Sample records for nasa dual microstructure

  1. Assessment of NASA Dual Microstructure Heat Treatment Method for Multiple Forging Batch Heat Treatment

    NASA Technical Reports Server (NTRS)

    Gayda, John (Technical Monitor); Lemsky, Joe

    2004-01-01

    NASA dual microstructure heat treatment technology previously demonstrated on single forging heat treat batches of a generic disk shape was successfully demonstrated on a multiple disk batch of a production shape component. A group of four Rolls-Royce Corporation 3rd Stage AE2100 forgings produced from alloy ME209 were successfully dual microstructure heat treated as a single heat treat batch. The forgings responded uniformly as evidenced by part-to-part consistent thermocouple recordings and resultant macrostructures, and from ultrasonic examination. Multiple disk DMHT processing offers a low cost alternative to other published dual microstructure processing techniques.

  2. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  3. Assessment of NASA Dual Microstructure Heat Treatment Method Utilizing Ladis SuperCooler(trademark) Cooling Technology

    NASA Technical Reports Server (NTRS)

    Lemsky, Joe; Gayda, John (Technical Monitor)

    2005-01-01

    The intent of this investigation was to demonstrate the NASA DMHT method with a tailored Ladish SuperCool(Trademark) cooling method on a Rolls-Royce AE2100, stage 3 disk shape. One disk each of two alloys, LSHR and ME3, were successfully converted as shown by macrostructure. DMHT heating time selection and cooling rate was aided by finite element modeling analysis. Residual stresses were also predicted and reported. Detailed microstructural analysis was performed by NASA and included in this report. Mechanical property characterization, also planned by NASA, is incomplete at this time and not part of this report.

  4. NASA-KSC/Florida Dual Use Technology Partnership

    NASA Technical Reports Server (NTRS)

    Kershaw, David

    2001-01-01

    This document constitutes the Technological Research and Development Authority's (TRDA) Final Reports for the NASA-KSC/Florida Dual Use Technology Partnership grant covering the period December 1, 1999 through November 30, 2000. The NASA Grant and Cooperative Agreement Handbook requires the TRDA to provide NASA with a final report on Subject Inventions, Federal Cash Transactions, Summary Research, and Federally-Owned Property. This report contains those requirements as well as a description of the TRDA's grant performance related to activities undertaken, difficulties incurred, remedial actions, and the current financial status of the contract.

  5. Simulation of springback and microstructural analysis of dual phase steels

    NASA Astrophysics Data System (ADS)

    Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard

    2013-12-01

    With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.

  6. Comparative study of eddy current and Barkhausen noise nondestructive testing methods in microstructural examination of ferrite-martensite dual-phase steel

    NASA Astrophysics Data System (ADS)

    Ghanei, S.; Kashefi, M.; Mazinani, M.

    2014-04-01

    The magnetic properties of ferrite-martensite dual-phase steels were evaluated using eddy current and Barkhausen noise nondestructive testing methods and correlated with their microstructural changes. Several routes were used to produce different microstructures of dual-phase steels. The first route was different heat treatments in γ region to vary the ferrite grain size (from 9.47 to 11.12 in ASTM number), and the second one was variation in intercritical annealing temperatures (from 750 to 890 °C) in order to produce different percentages of martensite in dual-phase microstructure. The results concerning magnetic Barkhausen noise are discussed in terms of height, position and shape of Barkhausen noise profiles, taking into account two main aspects: ferrite grain size, and different percentages of martensite. Then, eddy current testing was used to study the mentioned microstructural changes by detection of impedance variations. The obtained results show that microstructural changes have a noticeable effect on the magnetic properties of dual-phase steels. The results reveal that both magnetic methods have a high potential to be used as a reliable nondestructive tool to detect and monitor microstructural changes occurring during manufacturing of dual-phase steels.

  7. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  8. Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures

    NASA Astrophysics Data System (ADS)

    Ozturk, Tugce; Rollett, Anthony D.

    2018-02-01

    The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.

  9. Processing, Microstructures and Properties of a Dual Phase Precipitation-Hardening PM Stainless Steel

    NASA Astrophysics Data System (ADS)

    Schade, Christopher

    To improve the mechanical properties of PM stainless steels in comparison with their wrought counterparts, a PM stainless steel alloy was developed which combines a dual-phase microstructure with precipitation-hardening. The use of a mixed microstructure of martensite and ferrite results in an alloy with a combination of the optimum properties of each phase, namely strength and ductility. The use of precipitation hardening via the addition of copper results in additional strength and hardness. A range of compositions was studied in combination with various sintering conditions to determine the optimal thermal processing to achieve the desired microstructure. The microstructure could be varied from predominately ferrite to one containing a high percentage of martensite by additions of copper and a variation of the sintering temperature before rapid cooling. Mechanical properties (transverse rupture strength (TRS), yield strength, tensile strength, ductility and impact toughness) were measured as a function of the v/o ferrite in the microstructure. A dual phase alloy with the optimal combination of properties served as the base for introducing precipitation hardening. Copper was added to the base alloy at various levels and its effect on the microstructure and mechanical properties was quantified. Processing at various sintering temperatures led to a range of microstructures; dilatometry was used utilized to monitor and understand the transformations and the formation of the two phases. The aging process was studied as a function of temperature and time by measuring TRS, yield strength, tensile strength, ductility, impact toughness and apparent hardness. It was determined that optimum aging was achieved at 538°C for 1h. Aging at slightly lower temperatures led to the formation of carbides, which contributed to reduced hardness and tensile strength. As expected, at the peak aging temperature, an increase in yield strength and ultimate tensile strength as well as

  10. The Microstructure of RR1000 Nickel-Base Superalloy: The FIB-SEM Dual-Beam Approach

    NASA Astrophysics Data System (ADS)

    Croxall, S. A.; Hardy, M. C.; Stone, H. J.; Midgley, P. A.

    Nickel-base superalloys are aerospace materials that exhibit exceptional mechanical properties and corrosion resistance at very high temperatures. RR1000 is used in discs in gas turbine engines, where temperatures reach in excess of 650°C with high mechanical stresses. Study of the microstructure at the micron and sub-micron level has conventionally been undertaken using scanning electron microscope images, often meaning the underlying 3D microstructure can be inferred only with additional knowledge. Using a dual-beam workstation, we are able to interrogate directly the 3D microstructure using a serial sectioning approach. The 3D data set, typically (10µm)3 in volume, reveals microstructural detail with lateral resolution of circa 8nm and a depth resolution dictated by the slice thickness, typically 50nm. Morphological and volumetric analysis of the 3D reconstruction of RR1000 superalloy reveals microstructural details hitherto unseen.

  11. Mechanical Properties of a Superalloy Disk with a Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy; Kantzos, Peter

    2003-01-01

    Mechanical properties from an advanced, nickel-base superalloy disk, with a dual grain structure consisting of a fine grain bore and coarse grain rim, were evaluated. The dual grain structure was produced using NASA's low cost Dual Microstructure Heat Treatment (DMHT) process. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to a subsolvus (fine grain) heat treated disk, and a creep resistant rim comparable to a supersolvus (coarse grain) heat treated disk. Additional work on subsolvus solutioning before or after the DMHT conversion appears to be a viable avenue for further improvement in disk properties.

  12. Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Rabiul; Akter, Sanjida; Khatun, Tania; Rifat, Ahmmed A.; Anower, Md. Shamim

    2017-04-01

    A low-loss microstructure fiber is numerically investigated for convenient transmission of polarization maintaining terahertz (THz) waves. The dual-hole units (DHUs) are used inside the core of the kagome lattice microstructure to achieve high birefringence and low effective material loss (EML). It is demonstrated that by rotating the axis of orientation of the DHUs, it is possible to obtain low EML of 0.052 cm-1, low confinement loss of 0.01 cm-1, and high birefringence of 0.0354 at 0.85 THz. It is also reported that the transmission properties of the proposed microstructure fiber are varied with rotation angle, core diameter, and operating frequencies. Other guiding characteristics, such as single-mode propagation, power fraction, and dispersion, are also discussed thoroughly.

  13. NASA/CARES dual-use ceramic technology spinoff applications

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.; Nemeth, Noel N.

    1994-01-01

    NASA has developed software that enables American industry to establish the reliability and life of ceramic structures in a wide variety of 21st Century applications. Designing ceramic components to survive at higher temperatures than the capability of most metals and in severe loading environments involves the disciplines of statistics and fracture mechanics. Successful application of advanced ceramics material properties and the use of a probabilistic brittle material design methodology. The NASA program, known as CARES (Ceramics Analysis and Reliability Evaluation of Structures), is a comprehensive general purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. The latest version of this software, CARESALIFE, is coupled to several commercially available finite element analysis programs (ANSYS, MSC/NASTRAN, ABAQUS, COSMOS/N4, MARC), resulting in an advanced integrated design tool which is adapted to the computing environment of the user. The NASA-developed CARES software has been successfully used by industrial, government, and academic organizations to design and optimize ceramic components for many demanding applications. Industrial sectors impacted by this program include aerospace, automotive, electronic, medical, and energy applications. Dual-use applications include engine components, graphite and ceramic high temperature valves, TV picture tubes, ceramic bearings, electronic chips, glass building panels, infrared windows, radiant heater tubes, heat exchangers, and artificial hips, knee caps, and teeth.

  14. Multi-scale invertigation of the relationship between the microstructure and mechanical properties in dual phase steels

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    Dual phase steel alloys belong to the first generation of advanced high strength steels that are widely used in the automotive industry to form body structure and closure panels of vehicles. A deeper understanding of the microstructural features, such as phase orientation and morphology are needed in order to establish their effect on the mechanical performance and to design a material with optimized attributes. In this work, our goal is to establish what kind of relationship exist between the mechanical properties and the microstructural representation of dual phase steels obtained from experimental observations. Microstructure in different specimens are characterized with advanced experimental techniques as optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction pattern, scanning probe microscopy, and nanoindentation. Nanoindentation, Vickers hardness and tensile testing are conducted to reveal a multi-scale mechanical performance on original material and also specimens under a variety combinations of temperatures, cooling rates, and rolling conditions. To quantify the single phase properties in each sample, an inverse method is adopted using experimental nanoindentation load-depth curves to obtain tensile stress-strain curves for each phase, and the inverse results were verified with the true stress-strain curves from tensile tests. This work also provides the insight on spatial phase distribution of different phases through a 2-point correlation statistical methodology and relate to material strength and formability. The microstructure information is correlated with the results of mechanical tests. The broken surfaces from tensile testing are analyzed to discover the fracture mechanism in relation to martensite morphology and distribuion. Viscoplastic self-consistent fast Fourier Transformation simulations is also used to compute efficiently the local and the homogenized viscoplastic response of the

  15. Deep white matter hyperintensities, microstructural integrity and dual task walking in older people.

    PubMed

    Ghanavati, Tabassom; Smitt, Myriam Sillevis; Lord, Stephen R; Sachdev, Perminder; Wen, Wei; Kochan, Nicole A; Brodaty, Henry; Delbaere, Kim

    2018-01-03

    To examine neural, physiological and cognitive influences on gait speed under single and dual-task conditions. Sixty-two community-dwelling older people (aged 80.0 ± 4.2 years) participated in our study. Gait speed was assessed with a timed 20-meter walk under single and dual-task (reciting alternate letters of the alphabet) conditions. Participants also underwent tests to estimate physiological fall risk based on five measures of sensorimotor function, cognitive function across five domains, brain white matter (WM) hyperintensities and WM microstructural integrity by measuring fractional anisotropy (FA). Univariate linear regression analyses showed that global physiological and cognitive measures were associated with single (β = 0.594 and β=-0.297, respectively) and dual-task gait speed (β = 0.306 and β=-0.362, respectively). Deep WMHs were associated with dual-task gait speed only (β = 0.257). Multivariate mediational analyses showed that global and executive cognition reduced the strength of the association between deep WMHs and dual-task gait speed by 27% (β = 0.188) and 44% (β = 0.145) respectively. There was a significant linear association between single-task gait speed and mean FA values of the genu (β=-0.295) and splenium (β=-0.326) of the corpus callosum, and between dual-task gait speed and mean FA values of Superior Cerebellar Peduncle (β=-0.284), splenium of the Corpus Callosum (β=-0.286) and Cingulum (β=-0.351). Greater deep WMH volumes are associated with slower walking speed under dual-task conditions, and this relationship is mediated in part by global cognition and executive abilities specifically. Furthermore, both cerebellum and cingulum are related to dual-task walking due to their role in motor skill performance and attention, respectively.

  16. Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2006-01-01

    Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.

  17. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  18. Molecular dynamics study of dual-phase microstructure of Titanium and Zirconium metals during the quenching process

    NASA Astrophysics Data System (ADS)

    Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji

    Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.

  19. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. This presentation provides highlights of a technical paper that outlines this ultimate goal, including plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  20. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  1. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this paper provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  2. Microstructure Optimization of Dual-Phase Steels Using a Representative Volume Element and a Response Surface Method: Parametric Study

    NASA Astrophysics Data System (ADS)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2017-12-01

    Dual-phase (DP) steels have received widespread attention for their low density and high strength. This low density is of value to the automotive industry for the weight reduction it offers and the attendant fuel savings and emission reductions. Recent studies on developing DP steels showed that the combination of strength/ductility could be significantly improved when changing the volume fraction and grain size of phases in the microstructure depending on microstructure properties. Consequently, DP steel manufacturers are interested in predicting microstructure properties and in optimizing microstructure design. In this work, a microstructure-based approach using representative volume elements (RVEs) was developed. The approach examined the flow behavior of DP steels using virtual tension tests with an RVE to identify specific mechanical properties. Microstructures with varied martensite and ferrite grain sizes, martensite volume fractions, carbon content, and morphologies were studied in 3D RVE approaches. The effect of these microstructure parameters on a combination of strength/ductility of DP steels was examined numerically using the finite element method by implementing a dislocation density-based elastic-plastic constitutive model, and a Response surface methodology to determine the optimum conditions for a required combination of strength/ductility. The results from the numerical simulations are compared with experimental results found in the literature. The developed methodology proves to be a powerful tool for studying the effect and interaction of key microstructural parameters on strength and ductility and thus can be used to identify optimum microstructural conditions.

  3. Spin Testing of Superalloy Disks With Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Hefferman, Tab M.

    2006-01-01

    This 24-month program was a joint effort between Allison Advanced Development Company (AADC), General Electric Aircraft (GEAE), and NASA Glenn Research Center (GRC). AADC led the disk and spin hardware design and analysis utilizing existing Rolls-Royce turbine disk forging tooling. Testing focused on spin testing four disks: two supplied by GEAE and two by AADC. The two AADC disks were made of Alloy 10, and each was subjected to a different heat treat process: one producing dual microstructure with coarse grain size at the rim and fine grain size at the bore and the other produced single fine grain structure throughout. The purpose of the spin tests was to provide data for evaluation of the impact of dual grain structure on disk overspeed integrity (yielding) and rotor burst criteria. The program culminated with analysis and correlation of the data to current rotor overspeed criteria and advanced criteria required for dual structure disks.

  4. Microstructure, Corrosion and Magnetic Behavior of an Aged Dual-Phase Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ziouche, A.; Haddad, A.; Badji, R.; Zergoug, M.; Zoubiri, N.; Bedjaoui, W.; Abaidia, S.

    2018-03-01

    In the present work, the effect of the precipitation phenomena on corrosion and magnetic behavior of an aged dual-phase stainless steel was investigated. Aging treatment caused the precipitation of the σ phase, chromium carbides and secondary austenite, which was accompanied by the shifting of the δ/γ interfaces inside the δ ferrite grains. Aging between 700 and 850 °C strongly deteriorated the pitting corrosion resistance of the studied material. Magnetic investigation of the aged material using the vibration sample magnetic technique revealed the sensitivity of the intrinsic magnetic properties to the smallest microstructural change. This was confirmed by the Eddy current technique that led also to the evaluation of the aging-induced localized corrosion.

  5. Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

    NASA Astrophysics Data System (ADS)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2018-06-01

    The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

  6. Key Factors Influencing the Energy Absorption of Dual-Phase Steels: Multiscale Material Model Approach and Microstructural Optimization

    NASA Astrophysics Data System (ADS)

    Belgasam, Tarek M.; Zbib, Hussein M.

    2018-03-01

    The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.

  7. A Novel Reflector/Reflectarray Antenna: An Enabling Technology for NASA's Dual-Frequency ACE Radar

    NASA Technical Reports Server (NTRS)

    Racette, Paul E.; Heymsfield, Gerald; Li, Lihua; Cooley, Michael E.; Park, Richard; Stenger, Peter

    2011-01-01

    This paper describes a novel dual-frequency shared aperture Ka/W-band antenna design that enables wide-swath Imaging via electronic scanning at Ka-band and Is specifically applicable to NASA's Aerosol, Cloud and Ecosystems (ACE) mission. The innovative antenna design minimizes size and weight via use of a shared aperture and builds upon NASA's investments in large-aperture reflectors and high technology-readiness-level (TRL) W-band radar architectures. The antenna is comprised of a primary cylindrical reflector/reflectarray surface illuminated by a fixed W-band feed and a Ka-band Active Electronically Scanned Array (AESA) line feed. The reflectarray surface provides beam focusing at W-band, but is transparent at Ka-band.

  8. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  9. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2017-12-05

    We investigate the microcracking mechanisms responsible for Ti 3SiC 2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments in detail. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti 3SiC 2 and SiC phases. The behaviors of SiC and Ti 3SiC 2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504–515. This CDM model describes microcracking damage in brittlemore » ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti 3SiC 2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti 3SiC 2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti 3SiC 2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. Our predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.« less

  10. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    We investigate the microcracking mechanisms responsible for Ti 3SiC 2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments in detail. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti 3SiC 2 and SiC phases. The behaviors of SiC and Ti 3SiC 2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504–515. This CDM model describes microcracking damage in brittlemore » ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti 3SiC 2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti 3SiC 2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti 3SiC 2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. Our predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.« less

  11. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints

    NASA Astrophysics Data System (ADS)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2018-02-01

    The microcracking mechanisms responsible for Ti3SiC2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments are investigated in detail. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti3SiC2 and SiC phases. The behaviors of SiC and Ti3SiC2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504-515. This CDM model describes microcracking damage in brittle ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti3SiC2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti3SiC2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti3SiC2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. These predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.

  12. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This presentation proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  13. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  14. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    NASA Astrophysics Data System (ADS)

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited

  15. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials.

    PubMed

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben

    2015-09-21

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  16. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben

    2015-09-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa-1. More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  17. Dual nozzle aerodynamic and cooling analysis study. [dual throat and dual expander nozzles

    NASA Technical Reports Server (NTRS)

    Meagher, G. M.

    1980-01-01

    Geometric, aerodynamic flow field, performance prediction, and heat transfer analyses are considered for two advanced chamber nozzle concepts applicable to Earth-to-orbit engine systems. Topics covered include improvements to the dual throat aerodynamic and performance prediction program; geometric and flow field analyses of the dual expander concept; heat transfer analysis of both concepts, and engineering analysis of data from the NASA/MSFC hot-fire testing of a dual throat thruster model thrust chamber assembly. Preliminary results obtained are presented in graphs.

  18. Reliable dual-redundant sensor failure detection and identification for the NASA F-8 DFBW aircraft

    NASA Technical Reports Server (NTRS)

    Deckert, J. C.; Desai, M. N.; Deyst, J. J., Jr.; Willsky, A. S.

    1978-01-01

    A technique was developed which provides reliable failure detection and identification (FDI) for a dual redundant subset of the flight control sensors onboard the NASA F-8 digital fly by wire (DFBW) aircraft. The technique was successfully applied to simulated sensor failures on the real time F-8 digital simulator and to sensor failures injected on telemetry data from a test flight of the F-8 DFBW aircraft. For failure identification the technique utilized the analytic redundancy which exists as functional and kinematic relationships among the various quantities being measured by the different control sensor types. The technique can be used not only in a dual redundant sensor system, but also in a more highly redundant system after FDI by conventional voting techniques reduced to two the number of unfailed sensors of a particular type. In addition the technique can be easily extended to the case in which only one sensor of a particular type is available.

  19. Altitude-Compensating Nozzle (ACN) Project: Planning for Dual-Bell Rocket Nozzle Flight Testing on the NASA F-15B

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Although the dual-bell rocket nozzle has been thoroughly studied, this nozzle has still not been tested in a relevant flight environment. This poster presents the top-level rationale and preliminary plans for conducting flight research with the dual-bell rocket nozzle, while exhausting the plume into the freestream flow field at various altitudes. The primary objective is to gain a greater understanding of the nozzle plume sensitivity to freestream flight effects, which will also include detailed measurements of the plume mode transition within the nozzle. To accomplish this goal, the NASA F-15B is proposed as the testbed for advancing the technology readiness level of this greatly-needed capability. All proposed tests include the quantitative performance analysis of the dual-bell rocket nozzle as compared with the conventional-bell nozzle.

  20. Prediction of Continuous Cooling Transformation Diagrams for Dual-Phase Steels from the Intercritical Region

    NASA Astrophysics Data System (ADS)

    Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.

    2011-09-01

    The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.

  1. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    1990-01-01

    This work is part of the overall advanced main combustion chamber (AMCC) casting characterization program of the Materials and Processes Laboratory of the Marshall Space Flight Center. The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed.

  2. On the calibration and use of Dual Electron Sensors for NASA's Magnetospheric MultiScale mission

    NASA Astrophysics Data System (ADS)

    Avanov, L. A.; Gliese, U.; Pollock, C. J.; Barrie, A.; Mariano, A. J.; Tucker, C. J.; Jacques, A. D.; Zeuch, M.; Shields, N.; Christian, K. D.

    2013-12-01

    The scientific target of NASA's Magnetospheric MultiScale (MMS) mission is to study the fundamentally important phenomenon of magnetic reconnection. Theoretical models of this process predict a small (order of ten kilometers) size for the diffusion region where electrons are demagnetized at the dayside magnetopause. Yet, the region may typically sweep over the spacecraft at relatively high speeds of 50km/s. That is why Fast Plasma Investigation (FPI) instrument suite must have extremely high time resolution for measurements of the 3D particle distribution functions. The Dual Electron Spectrometers (DESs) provide fast (30ms) 3D electron velocity distributions, from 10eV to 30,000 eV, as part of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission. This is accomplished by combining the measurements from eight different spectrometers (packaged in four dual sets) on each MMS spacecraft to produce each full distribution. This approach presents a new and challenging aspect to the calibration and operation of these instruments. The response uniformity among the spectrometer set, the consistency and reliability of their calibration in both sensitivity and their phase space selectivity (energy and angle), and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application. In this paper, we will present brief descriptions of the spectrometers and our approach their ground calibration, trended results of those calibrations, and our plans to detect, track, and respond to any temporal evolution in instrument performance through the life of the mission.

  3. Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual-phase steel

    NASA Astrophysics Data System (ADS)

    Paul, Surajit Kumar

    2013-07-01

    The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.

  4. Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel

    NASA Astrophysics Data System (ADS)

    Kuang, Chun-fu; Zheng, Zhi-wang; Wang, Min-li; Xu, Quan; Zhang, Shen-gen

    2017-12-01

    A C-Mn dual-phase steel was soaked at 800°C for 90 s and then either rapidly cooled to 450°C and held for 30 s (process A) or rapidly cooled to 350°C and then reheated to 450°C (process B) to simulate the hot-dip galvanizing process. The influence of the hot-dip galvanizing process on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel (DP600) was investigated using optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile tests. The results showed that, in the case of process A, the microstructure of DP600 was composed of ferrite, martensite, and a small amount of bainite. The granular bainite was formed in the hot-dip galvanizing stage, and martensite islands were formed in the final cooling stage after hot-dip galvanizing. By contrast, in the case of process B, the microstructure of the DP600 was composed of ferrite, martensite, bainite, and cementite. In addition, compared with the yield strength (YS) of the DP600 annealed by process A, that for the DP600 annealed by process B increased by approximately 50 MPa because of the tempering of the martensite formed during rapid cooling. The work-hardening coefficient ( n value) of the DP600 steel annealed by process B clearly decreased because the increase of the YS affected the computation result for the n value. However, the ultimate tensile strength (UTS) and elongation ( A 80) of the DP600 annealed by process B exhibited less variation compared with those of the DP600 annealed by process A. Therefore, DP600 with excellent comprehensive mechanical properties (YS = 362 MPa, UTS = 638 MPa, A 80 = 24.3%, n = 0.17) was obtained via process A.

  5. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    NASA Astrophysics Data System (ADS)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  6. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints

    NASA Astrophysics Data System (ADS)

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan

    2017-08-01

    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  7. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    NASA Astrophysics Data System (ADS)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  8. Microstructures, Mechanical Properties, and Strain Hardening Behavior of an Ultrahigh Strength Dual Phase Steel Developed by Intercritical Annealing of Cold-Rolled Ferrite/Martensite

    NASA Astrophysics Data System (ADS)

    Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A.

    2015-07-01

    A dual phase (DP) steel was produced by a new process utilizing an uncommon cold-rolling and subsequent intercritical annealing of a martensite-ferrite duplex starting structure. Ultrafine grained DP steels with an average grain size of about 2 μm and chain-networked martensite islands were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructure. The strength of the low carbon steel with the new DP microstructure was reached about 1300 MPa (140 pct higher than that of the as-received state, e.g., 540 MPa), without loss of ductility. Tensile testing revealed good strength-elongation balance for the new DP steels (UTS × UE ≈ 11,000 to 15,000 MPa pct) in comparison with the previous works and commercially used high strength DP steels. Two strain hardening stages with comparable exponents were observed in the Holloman analysis of all DP steels. The variations of hardness, strength, elongation, and strain hardening behavior of the specimens with thermomechanical parameters were correlated to microstructural features.

  9. The Effect of Microstructure and Pre-strain on the Change in Apparent Young's Modulus of a Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Kupke, A.; Hodgson, P. D.; Weiss, M.

    2017-07-01

    The elastic recovery in dual-phase (DP) steels is not a linear process and changes with plastic deformation. The level of change in the apparent Young's modulus has been reported to depend on material composition and microstructure, but most previous experimental studies were limited to industrial DP steels and led to contradicting results. This work represents a first fundamental study that investigates the separate and combined effect of phase volume fraction and hardness on the change in apparent Young's modulus in DP steel. A common automotive DP steel (DP780) is heat treated to obtain seven different combinations of martensite and ferrite volume fraction and hardness while keeping the chemical composition as well as the shape of the martensite and ferrite phases unchanged. Loading-unloading tests were performed to analyze the chord modulus at various levels of pre-strain. The results suggest that the point of saturation of the chord modulus with pre-strain depends on the morphology of the microstructure, occurring earlier for microstructures consisting of ferrite grains surrounded by martensite laths. It is further revealed that the reduction of the apparent Young's modulus, which is the difference between the material's initial Young's modulus and the chord modulus, increases with martensite hardness if the martensite volume fraction is kept constant. A higher martensite volume fraction initially elevates the reduction of the apparent Young's modulus. After a critical volume fraction of martensite phase of 35%, a decrease in apparent Young's modulus reduction was observed. A comparison of the plastic unloading strain suggests that the mechanisms leading to a reduction in apparent Young's modulus are strongest for the microstructure consisting of 35% martensite volume fraction.

  10. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    DOE PAGES

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-03-03

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less

  11. The NASA Polarimetric Radar (NPOL)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  12. Role of Microstructure on the Performance of UHTC's

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matthew J.; Stackpoole, Mairead; Gusman, Mike; Thornton, Jeremy

    2009-01-01

    UHTCs, because of their refractory nature and high thermal conductivity, are candidates for use on sharp leading edges of hypersonic vehicles. NASA Ames has been investigating the use of UHTCs in the HfB2/SiC family under NASA's Fundamental Aeronautics Program. The goal of this work has been to tailor the microstructure to improve mechanical properties and the performance in reentry conditions, as determined by arcjet testing. This talk discusses results of mechanical evaluation and arcjet testing of various materials with different microstructures, including the incorporation of high-temperature fibers in these materials to improve fracture toughness. Some preliminary information on UHTC composites will also be discussed.

  13. Effect of solidification rate on microstructure evolution in dual phase microalloyed steel

    PubMed Central

    Kostryzhev, A. G.; Slater, C. D.; Marenych, O. O.; Davis, C. L.

    2016-01-01

    In steels the dependence of ambient temperature microstructure and mechanical properties on solidification rate is not well reported. In this work we investigate the microstructure and hardness evolution for a low C low Mn NbTi-microalloyed steel solidified in the cooling rate range of 1–50 Cs−1. The maximum strength was obtained at the intermediate solidification rate of 30 Cs−1. This result has been correlated to the microstructure variation with solidification rate. PMID:27759109

  14. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2017-12-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  15. Impact of Martensite Spatial Distribution on Quasi-Static and Dynamic Deformation Behavior of Dual-Phase Steel

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Das, Anindya; Venugopalan, T.; Mukherjee, Krishnendu; Walunj, Mahesh; Nanda, Tarun; Kumar, B. Ravi

    2018-02-01

    The effects of microstructure parameters of dual-phase steels on tensile high strain dynamic deformation characteristic were examined in this study. Cold-rolled steel sheets were annealed using three different annealing process parameters to obtain three different dual-phase microstructures of varied ferrite and martensite phase fraction. The volume fraction of martensite obtained in two of the steels was near identical ( 19 pct) with a subtle difference in its spatial distribution. In the first microstructure variant, martensite was mostly found to be situated at ferrite grain boundaries and in the second variant, in addition to at grain boundaries, in-grain martensite was also observed. The third microstructure was very different from the above two with respect to martensite volume fraction ( 67 pct) and its morphology. In this case, martensite packets were surrounded by a three-dimensional ferrite network giving an appearance of core and shell type microstructure. All the three steels were tensile deformed at strain rates ranging from 2.7 × 10-4 (quasi-static) to 650 s-1 (dynamic range). Field-emission scanning electron microscope was used to characterize the starting as well as post-tensile deformed microstructures. Dual-phase steel consisting of small martensite volume fraction ( 19 pct), irrespective of its spatial distribution, demonstrated high strain rate sensitivity and on the other hand, steel with large martensite volume fraction ( 67 pct) displayed a very little strain rate sensitivity. Interestingly, total elongation was found to increase with increasing strain rate in the dynamic regime for steel with core-shell type of microstructure containing large martensite volume fraction. The observed enhancement in plasticity in dynamic regime was attributed to adiabatic heating of specimen. To understand the evolving damage mechanism, the fracture surface and the vicinity of fracture ends were studied in all the three dual-phase steels.

  16. Effect of Annealing Temperature on Microstructure and Mechanical Properties of Hot-Dip Galvanizing DP600 Steel

    NASA Astrophysics Data System (ADS)

    Hai-yan, Sun; Zhi-li, Liu; Yang, Xu; Jian-qiang, Shi; Lian-xuan, Wang

    Hot-dip galvanizing dual phase steel DP600 steel grade with low Si was produced by steel plant and experiments by simulating galvanizing thermal history. The microstructure was observed and analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different annealing temperatures on the microstructure and mechanical properties of dual-phase steel was also discussed. The experimental results show that the dual-phase steel possesses excellent strength and elongation that match EN10346 600MPa standards. The microstructure is ferrite and martensite. TEM micrograph shows that white ferrite with black martensite islands inlay with a diameter of around 1um and the content of 14 18%. The volume will expand and phase changing take the form of shear transformation when ferrite converted to martensite. So there are high density dislocations in ferrite crystalline grain near martensite. The martensite content growing will be obvious along with annealing temperature going up. But the tendency will be weak when temperature high.

  17. Dual Nozzle Aerodynamic and Cooling Analysis Study.

    DTIC Science & Technology

    1981-02-27

    program and to the aerodynamic model computer program. This pro - cedure was used to define two secondary nozzle contours for the baseline con - figuration...both the dual-throat and dual-expander con - cepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow...preliminary heat transfer analysis of both con - cepts, and (5) engineering analysis of data from the NASA/MSFC hot-fire testing of a dual-throat

  18. Numerical Comparison of NASA's Dual Brayton Power Generation System Performance Using CO2 or N2 as the Working Fluid

    NASA Technical Reports Server (NTRS)

    Ownens, Albert K.; Lavelle, Thomas M.; Hervol, David S.

    2010-01-01

    A Dual Brayton Power Conversion System (DBPCS) has been tested at the NASA Glenn Research Center using Nitrogen (N2) as the working fluid. This system uses two closed Brayton cycle systems that share a common heat source and working fluid but are otherwise independent. This system has been modeled using the Numerical Propulsion System Simulation (NPSS) environment. This paper presents the results of a numerical study that investigated system performance changes resulting when the working fluid is changed from gaseous (N2) to gaseous carbon dioxide (CO2).

  19. NASA's Dual-Fuel Airbreathing Hypersonic Vehicle Study

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Eiswirth, Edward A.

    1996-01-01

    A Mach 10 cruise vehicle provides a quick response, global reach capability with high survivability. For operations from CONUS, mission radii on the order of 8,000 nmi are sufficient. For missions which return to CONUS, a dual-fueled vehicle is superior, due to its capability to in-flight refuel. However, for one-way mission, an all-hydrogen vehicle is preferable because of its higher specific impulse.

  20. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-05-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  1. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-04-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  2. Dual Ion Spectrometers and Their Calibration for the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Coffey, V. N.; Chandler, M. O.

    2017-01-01

    The scientific target of NASA's Magnetospheric Multiscale (MMS) mission is to study the fundamentally important phenomenon of magnetic reconnection. Theoretical models of this process predict a small size, on the order of hundred kilometers, for the ion diffusion region where ions are demagnetized at the dayside magnetopause. This region may typically sweep over the spacecraft at relatively high speeds of 50 km/s, requiring the fast plasma investigation (FPI) instrument suite to have an extremely high time resolution for measurements of the 3D particle distribution functions. As part of the FPI on MMS, the 16 dual ion spectrometers (DIS) will provide fast (150 ms) 3D ion velocity distributions, from 10 to 30,000 eV/q, by combining the measurements from four dual spectrometers on each of four MMS spacecraft. For any multispacecraft mission, the response uniformity among the spectrometer set assumes an enhanced importance. Due to these demanding instrument requirements and the effort of calibrating more than 32 sensors (16 × 2) within a tight schedule, a highly systematic and precise calibration was required for measurement repeatability. To illustrate how this challenge was met, a brief overview of the FPI DIS was presented with a detailed discussion of the calibration method of approach and implementation. Finally, a discussion of DIS performance results, their unit-to-unit variation, and the lessons learned from this calibration effort are presented.

  3. Connecting NASA science and engineering with earth science applications

    USDA-ARS?s Scientific Manuscript database

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  4. Human Factors Engineering: Current and Emerging Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Chandlee, G. O.; Goldsberry, B. S.

    1994-01-01

    Human Factors Engineering is a multidisciplinary endeavor in which information pertaining to human characteristics is used in the development of systems and machines. Six representatives considered to be experts from the public and private sectors were surveyed in an effort to identify the potential dual-use of human factors technology. Each individual was asked to provide a rating as to the dual-use of 85 identified NASA technologies. Results of the survey were as follows: nearly 75 percent of the technologies were identified at least once as high dual-use by one of the six survey respondents, and nearly 25 percent of the identified NASA technologies were identified as high dual-use technologies by a majority of the respondents. The perceived level of dual-use appeared to be independent of the technology category. Successful identification of dual-use technology requires expanded input from industry. As an adjunct, cost-benefit analysis should be conducted to identify the feasibility of the dual-use technology. Concurrent with this effort should be an examination of precedents established by other technologies in other industrial settings. Advances in human factors and systems engineering are critical to reduce risk in any workplace and to enhance industrial competitiveness.

  5. Microstructure and Mechanical Properties of V-Nb Microalloyed Ultrafine-Grained Dual-Phase Steels Processed Through Severe Cold Rolling and Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Papa Rao, M.; Subramanya Sarma, V.; Sankaran, S.

    2017-03-01

    Ultrafine-grained (UFG) dual-phase (DP) steel was produced by severe cold rolling (true strain of 2.4) and intercritical annealing of a low carbon V-Nb microalloyed steel in a temperature range of 1003 K to 1033 K (730 °C to 760 °C) for 2 minutes, and water quenching. The microstructure of UFG DP steels consisted of polygonal ferrite matrix with homogeneously distributed martensite islands (both of size <1 µm) and a small fraction of the inter lath films of retained austenite. The UFG DP steel produced through intercritical annealing at 1013 K (740 °C) has good combination of strength (1295 MPa) and ductility (uniform elongation, 13 pct). The nanoscale V- and Nb-based carbides/carbonitrides and spheroidized cementite particles have played a crucial role in achieving UFG DP microstructure and in improving the strength and work hardening. Analysis of work hardening behavior of the UFG DP steels through modified Crussard-Jaoul analysis showed a continuously varying work hardening rate response which could be approximated by 2 or 3 linear regimes. The transmission electron microscopy analysis on post tensile-tested samples indicated that these regimes are possibly related to the work hardening of ferrite, lath, and twin martensite, respectively.

  6. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes

    NASA Astrophysics Data System (ADS)

    Ahiale, Godwin Kwame; Oh, Yong-Jun; Choi, Won-Doo; Lee, Kwang-Bok; Jung, Jae-Gyu; Nam, Soo Woo

    2013-09-01

    This study presents the microstructure and high cycle fatigue performance of lap shear joints of dual phase steel (DP590) welded using gas metal arc welding (GMAW) and plasma arc welding (PAW) processes. High cycle fatigue tests were conducted on single and double lap joints under a load ratio of 0.1 and a frequency of 20 Hz. In order to establish a basis for comparison, both weldments were fabricated to have the same weld depth in the plate thickness. The PAW specimens exhibited a higher fatigue life, a gentle S-N slope, and a higher fatigue limit than the GMAW specimens. The improvement in the fatigue life of the PAW specimens was primarily attributed to the geometry effect that exhibited lower and wider beads resulting in a lower stress concentration at the weld toe where cracks initiate and propagate. Furthermore, the microstructural constituents in the heat-affected zone (HAZ) of the PAW specimens contributed to the improvement. The higher volume fraction of acicular ferrite in the HAZ beneath the weld toe enhanced the PAW specimen's resistance to fatigue crack growth. The double lap joints displayed a higher fatigue life than the single lap joints without changing the S-N slope.

  7. Microstructural evolution and wear behaviors of laser cladding Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC

    NASA Astrophysics Data System (ADS)

    Song, R.; Li, J.; Shao, J. Z.; Bai, L. L.; Chen, J. L.; Qu, C. C.

    2015-11-01

    The Ti2Ni/α(Ti) dual-phase coating reinforced by TiB and TiC was fabricated on the Ti6Al4V substrate by laser cladding. Phase constituents were confirmed by a theoretical prediction combined with X-ray diffraction (XRD) analyses. From the surface to the bottom of the coating, a regular evolution of the reinforcements' microstructure, namely TiCp+(TiB+TiC)e, (TiB+TiC)e and TiBp+(TiB+TiC)e (p and e were the abbreviations of primary and eutectic, respectively), was investigated by scanning electron microscopy (SEM). The coating possessed the higher microhardness than that of the substrate. An in situ dynamic method (in situ continuing tests at different time intervals) was designed to reveal wear behaviors at different wear stages. A quantitative calculation formula was established by a mathematic model to predict wear losses under different sliding time and applied loads in a definite precision. The wear mechanism was transformed from brittle debonding (at 10 N) to the joint action of brittle debonding and micro-cutting (at 20 N and 30 N) due to the microstructural evolution across the depth from the surface of the coating.

  8. Selective excitation of LP01 and LP02 in dual-concentric cores fiber using an adiabatically tapered microstructured mode converter

    NASA Astrophysics Data System (ADS)

    Sammouda, Marwa; Taher, Aymen Belhadj; Bahloul, Faouzi; Bin, Philippe Di

    2016-09-01

    We propose to connect a single-mode fiber (SMF) to a dual-concentric cores fiber (DCCF) using an adiabatically tapered microstructured mode converter, and to evaluate the SMF LP01 mode and the DCCF LP01 and LP02 modes selective excitations performances. We theoretically and numerically study this selective excitation method by calculating the effective indices of the propagated modes, the adiabaticity criteria, the coupling loss, and the modes amplitudes along the tapered structure. This study shows that this method is able to achieve excellent selective excitations of the first two linearly polarized modes (LP01 and LP02) among the five guided modes in the DCCF with a negligible loss. The part of the LP01 and LP02 modes from the total power are 99% and 84% corresponding to 0.1 and 0.8 dB losses, respectively.

  9. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  10. Effect of Carbon on Microstructure and Mechanical Properties of Low C-1.6 pct Mn-0.1 pct Cr-0.3 pct Mo-0.0005 pct B Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Jeong, W. C.

    2014-11-01

    Effect of carbon on the microstructure and mechanical properties of 0.011 and 0.032 pct carbon dual-phase steels was investigated. r m value was increased to 1.52 at around 400 MPa tensile strength level through the optimal design in the steel chemistry and proper control of phase transformation during continuous galvanizing cycle. The isolated martensite particles are expected to increase the strength but are expected not to be desirable for the deep drawability.

  11. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  12. Cyclic Spin Testing of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2005-01-01

    An aggressive cyclic spin test program was run to verify the reliability of superalloy disks with a dual grain structure, fine grain bore and coarse grain rim, utilizing a disk design with web holes bisecting the grain size transition zone. Results of these tests were compared with conventional disks with uniform grain structures. Analysis of the test results indicated the cyclic performance of disks with a dual grain structure could be estimated to a level of accuracy which does not appear to prohibit the use of this technology in advanced gas turbine engines, although further refinement of lifing methodology is clearly warranted.

  13. Microstructure Modeling of 3rd Generation Disk Alloy

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2008-01-01

    The objective of this initiative, funded by NASA's Aviation Safety Program, is to model, validate, and predict, with high fidelity, the microstructural evolution of third-generation high-refractory Ni-based disc superalloys during heat treating and service conditions. This initiative is a natural extension of the DARPA-AIM (Accelerated Insertion of Materials) initiative with GE/Pratt-Whitney and with other process simulation tools. Strong collaboration with the NASA Glenn Research Center (GRC) is a key component of this initiative and the focus of this program is on industrially relevant disk alloys and heat treatment processes identified by GRC. Employing QuesTek s Computational Materials Dynamics technology and PrecipiCalc precipitation simulator, physics-based models are being used to achieve high predictive accuracy and precision. Combining these models with experimental data and probabilistic analysis, "virtual alloy design" can be performed. The predicted microstructures can be optimized to promote desirable features and concurrently eliminate nondesirable phases that can limit the reliability and durability of the alloys. The well-calibrated and well-integrated software tools that are being applied under the proposed program will help gas turbine disk alloy manufacturers, processing facilities, and NASA, to efficiently and effectively improve the performance of current and future disk materials.

  14. MR-based trabecular bone microstructure is not altered in subjects with indolent systemic mastocytosis.

    PubMed

    Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk

    2015-01-01

    Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Detailed Microstructural Characterization of the Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Garg, Anita; Ellis, David L.; O'Connor, Kenneth M.

    2004-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA/General Electric/Pratt & Whitney HSR/EPM disk program to have extended durability for large disks at maximum temperatures of 600 to 700 C. Scaled-up disks of this alloy were then produced at the conclusion of that program to demonstrate these properties in realistic disk shapes. The objective of the present study was to assess the microstructural characteristics of these ME3 disks at two consistent locations, in order to enable estimation of the variations in microstructure across each disk and across several disks of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor/Turbine Disk program had been sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. For this study, microstructures of grip sections from tensile specimens in the bore and rim were evaluated from these disks. The major and minor phases were identified and quantified using transmission electron microscopy (TEM). Particular attention was directed to the .' precipitates, which along with grain size can predominantly control the mechanical properties of superalloy disks.

  16. Phase Field Modeling of Microstructure Development in Microgravity

    NASA Technical Reports Server (NTRS)

    Dantzig, Jonathan A.; Goldenfeld, Nigel

    2001-01-01

    This newly funded project seeks to extend our NASA-sponsored project on modeling of dendritic microstructures to facilitate collaboration between our research group and those of other NASA investigators. In our ongoing program, we have applied advanced computational techniques to study microstructural evolution in dendritic solidification, for both pure isolated dendrites and directionally solidified alloys. This work has enabled us to compute dendritic microstructures using both realistic material parameters and experimentally relevant processing conditions, thus allowing for the first time direct comparison of phase field computations with laboratory observations. This work has been well received by the materials science and physics communities, and has led to several opportunities for collaboration with scientists working on experimental investigations of pattern selection and segregation in solidification. While we have been able to pursue these collaborations to a limited extent, with some important findings, this project focuses specifically on those collaborations. We have two target collaborations: with Prof. Glicksman's group working on the Isothermal Dendritic Growth Experiment (IDGE), and with Prof. Poirier's group studying directional solidification in Pb-Sb alloys. These two space experiments match well with our two thrusts in modeling, one for pure materials, as in the IDGE, and the other directional solidification. Such collaboration will benefit all of the research groups involved, and will provide for rapid dissemination of the results of our work where it will have significant impact.

  17. Tempering characteristics of a vanadium containing dual phase steel

    NASA Astrophysics Data System (ADS)

    Rashid, M. S.; Rao, B. V. N.

    1982-10-01

    Dual phase steels are characterized by a microstructure consisting of ferrite, martensite, retained austenite, and/or lower bainite. This microstructure can be altered by tempering with accompanying changes in mechanical properties. This paper examines such changes produced in a vanadium bearing dual phase steel upon tempering below 500 °C. The steel mechanical properties were minimally affected on tempering below 200 °C; however, a simultaneous reduction in uniform elongation and tensile strength occurred upon tempering above 400 °C. The large amount of retained austenite (≅10 vol pct) observed in the as-received steel was found to be essentially stable to tempering below 300 °C. On tempering above 400 °C, most of the retained austenite decomposed to either upper bainite (at 400 °C) or a mixture of upper bainite and ferrite-carbide aggregate formed by an interphase precipitation mechanism (at 500 °C). In addition, tempering at 400 °C led to fine precipitation in the retained ferrite. The observed mechanical properties were correlated with these microstructural changes. It was concluded that the observed decrease in uniform elongation upon tempering above 400 °C is primarily the consequence of the decomposition of retained austenite and the resulting loss of transformation induced plasticity (TRIP) as a contributing mechanism to the strain hardening of the steel.

  18. Alloy NASA-HR-1

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Mitchell, Michael

    2005-01-01

    NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.

  19. Synthesis and characterization of a model dual-phase system using the spark plasma sintering technique

    NASA Astrophysics Data System (ADS)

    Teimouri, M.; Godfrey, A.

    2017-07-01

    Samples of a model dual-phase system, consisting of copper and AISI-420 martensitic steel have been synthesized using spark plasma sintering, with the objective of developing a microstructural analogue for dual-phase steels, in which the volume fraction and size of each phase can be controlled independently. Microstructural investigation of the samples, including fractography of samples deformed in tension until failure, show that densification is strongly temperature dependent. Samples sintered at temperatures of 900 °C or above at a pressure of 60 MPa show a density of more than 98%. The best mechanical properties, in terms of ultimate tensile strength and ductility is found in samples sintered at a temperature of 1000 °C, where a density of nearly 99% is achieved.

  20. PuMA: the Porous Microstructure Analysis software

    NASA Astrophysics Data System (ADS)

    Ferguson, Joseph C.; Panerai, Francesco; Borner, Arnaud; Mansour, Nagi N.

    2018-01-01

    The Porous Microstructure Analysis (PuMA) software has been developed in order to compute effective material properties and perform material response simulations on digitized microstructures of porous media. PuMA is able to import digital three-dimensional images obtained from X-ray microtomography or to generate artificial microstructures. PuMA also provides a module for interactive 3D visualizations. Version 2.1 includes modules to compute porosity, volume fractions, and surface area. Two finite difference Laplace solvers have been implemented to compute the continuum tortuosity factor, effective thermal conductivity, and effective electrical conductivity. A random method has been developed to compute tortuosity factors from the continuum to rarefied regimes. Representative elementary volume analysis can be performed on each property. The software also includes a time-dependent, particle-based model for the oxidation of fibrous materials. PuMA was developed for Linux operating systems and is available as a NASA software under a US & Foreign release.

  1. Texture and microstructure evolution in single-phase Ti{sub x}Ta{sub 1-x}N alloys of rocksalt structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutsokeras, L. E.; Department of Materials Science and Engineering, University of Ioannina, GR-45100 Ioannina; Abadias, G.

    2011-08-15

    The mechanisms controlling the structural and morphological features (texture and microstructure) of ternary transition metal nitride thin films of the Ti{sub x}Ta{sub 1-x}N system, grown by various physical vapor deposition techniques, are reported. Films deposited by pulsed laser deposition, dual cathode magnetron sputtering, and dual ion beam sputtering have been investigated by means of x-ray diffraction in various geometries and scanning electron microscopy. We studied the effects of composition, energetic, and kinetics in the evolution of the microstructure and texture of the films. We obtain films with single and mixed texture as well as films with columnar ''zone-T'' and globularmore » type morphology. The results have shown that the texture evolution of ternary transition metal nitrides as well as the microstructural features of such films can be well understood in the framework of the kinetic mechanisms proposed for their binary counterparts, thus giving these mechanisms a global application.« less

  2. HIWRAP Radar Development for High-Altitude Operation on the NASA Global Hawk and ER-2

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerlad; Careswell, James; Schaubert, Dan; Creticos, Justin

    2011-01-01

    The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state transmitter-based, dual-frequency (Ka- and Ku-band), dual-beam (30 degree and 40 degree incidence angle), conical scan Doppler radar system, designed for operation on the NASA high-altitude (20 km) aircrafts, such as the Global Hawk Unmanned Aerial System (UAS). Supported by the NASA Instrument Incubator Program (IIP), HIWRAP was developed to provide high spatial and temporal resolution 3D wind and reflectivity data for the research of tropical cyclone and severe storms. With the simultaneous measurements at both Ku- and Ka-band two different incidence angles, HIWRAP is capable of imaging Doppler winds and volume backscattering from clouds and precipitation associated with tropical storms. In addition, HIWRAP is able to obtain ocean surface backscatter measurements for surface wind retrieval using an approach similar to QuikScat. There are three key technology advances for HIWRAP. Firstly, a compact dual-frequency, dual-beam conical scan antenna system was designed to fit the tight size and weight constraints of the aircraft platform. Secondly, The use of solid state transmitters along with a novel transmit waveform and pulse compression scheme has resulted in a system with improved performance to size, weight, and power ratios compared to typical tube based Doppler radars currently in use for clouds and precipitation measurements. Tube based radars require high voltage power supply and pressurization of the transmitter and radar front end that complicates system design and implementation. Solid state technology also significantly improves system reliability. Finally, HIWRAP technology advances also include the development of a high-speed digital receiver and processor to handle the complex receiving pulse sequences and high data rates resulting from multi receiver channels and conical scanning. This paper describes HIWRAP technology development for dual-frequency operation at

  3. The Effects of One and Double Heat Treatment Cycles on the Microstructure and Mechanical Properties of a Ferritic-Bainitic Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Piri, Reza; Ghasemi, Behrooz; Yousefpour, Mardali

    2018-03-01

    In this study, samples with ferritic-bainitic dual phase structures consisting of 62 pct bainite were obtained from the AISI 4140 steel by applying one and double heat treatment cycles. Microstructural investigations by electron and optical microscopy indicated that the sample heat treated through double cycle benefited from finer ferrite and bainite grains. Additionally, results obtained from mechanical tests implied that the double-cycle heat-treated sample not only has a higher tensile strength as well as ultimate strength but also benefits from a higher ductility along with a higher impact energy than the one-cycle heat-treated sample. Moreover, fractography results showed that the type of fracture in both samples is a combination of the brittle and the ductile fracture. Besides, the ratio of the ductile fracture is higher for the double-cycle heat-treated sample than for the one-cycle sample, due to the lower aggregation of sulfur at grain boundaries.

  4. Microstructure and Hardness Profiles of Bifocal Laser-Welded DP-HSLA Steel Overlap Joints

    NASA Astrophysics Data System (ADS)

    Grajcar, A.; Matter, P.; Stano, S.; Wilk, Z.; Różański, M.

    2017-04-01

    The article presents results related to the bifocal laser welding of overlap joints made of HSLA and DP high-strength steels. The joints were made using a disk laser and a head enabling the 50-50% distribution of laser power. The effects of the laser welding rates and the distance between laser spots on morphological features and hardness profiles were analyzed. It was established that the positioning of beams at angles of 0° or 90° determined the hardness of the individual zones of the joints, without causing significant differences in microstructures of the steels. Microstructural features were inspected using scanning electron microscopy. Both steels revealed primarily martensitic-bainitic microstructures in the fusion zone and in the heat-affected zone. Mixed multiphase microstructures were revealed in the inter-critical heat-affected zone of the joint. The research involved the determination of parameters making it possible to reduce the hardness of joints and prevent the formation of the soft zone in the dual-phase steel.

  5. Nonlinear mechanics of composite materials with periodic microstructure

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Walker, K. P.

    1991-01-01

    This report summarizes the result of research done under NASA NAG3-882 Nonlinear Mechanics of Composites with Periodic Microstructure. The effort involved the development of non-finite element methods to calculate local stresses around fibers in composite materials. The theory was developed and some promising numerical results were obtained. It is expected that when this approach is fully developed, it will provide an important tool for calculating local stresses and averaged constitutive behavior in composites. NASA currently has a major contractual effort (NAS3-24691) to bring the approach developed under this grant to application readiness. The report has three sections. One, the general theory that appeared as a NASA TM, a second section that gives greater details about the theory connecting Greens functions and Fourier series approaches, and a final section shows numerical results.

  6. Laser and Optical Subsystem for NASA's Cold Atom Laboratory

    NASA Astrophysics Data System (ADS)

    Kohel, James; Kellogg, James; Elliott, Ethan; Krutzik, Markus; Aveline, David; Thompson, Robert

    2016-05-01

    We describe the design and validation of the laser and optics subsystem for NASA's Cold Atom Laboratory (CAL), a multi-user facility being developed at NASA's Jet Propulsion Laboratory for studies of ultra-cold quantum gases in the microgravity environment of the International Space Station. Ultra-cold atoms will be generated in CAL by employing a combination of laser cooling techniques and evaporative cooling in a microchip-based magnetic trap. Laser cooling and absorption imaging detection of bosonic mixtures of 87 Rb and 39 K or 41 K will be accomplished using a high-power (up to 500 mW ex-fiber), frequency-agile dual wavelength (767 nm and 780 nm) laser and optical subsystem. The CAL laser and optical subsystem also includes the capability to generate high-power multi-frequency optical pulses at 784.87 nm to realize a dual-species Bragg atom interferometer. Currently at Humboldt-Universität zu Berlin.

  7. Meteorological Observations and System Performance From the NASA D3R's First 5 Years

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Beauchamp, Robert M.; Vega, Manuel; Chen, Haonan; Kumar, Mohit; Joshil, Shashank; Schwaller, Mathew; Petersen, Walter; Wolff, David

    2017-01-01

    The NASA dual-frequency, dual-polarization, Doppler radar (D3R) was conceived and developed to support ground validation (GV) operations of the Global Precipitation Measurement (GPM) mission. The D3R operates in the same frequencies bands, Ku- and Ka-band, as GPMs dual-frequency precipitation radar enabling direct comparisons of microphysical observations of precipitation. To support the GPM GVmission, D3R substantively participated in four field campaigns in North America with diverse geographic features covering both winter and summer conditions.

  8. In Situ Verification of the NASA D3R's Hydrometeor Classification and Rainfall Products during the OLYMPEx Field Campaign

    NASA Astrophysics Data System (ADS)

    Chen, H.; Chandra, C. V.

    2017-12-01

    As a ground validation (GV) radar for the Global Precipitation Measurement (GPM) satellite mission, the NASA dual-frequency, dual-polarization, Doppler radar (D3R) was deployed just north of Pacific Beach, WA between November 8th, 2015 and January 15th, 2016, as part of the Olympic Mountains Experiment (OLYMPEx). The D3R's observations were coordinated with a diverse array of instruments including the NASA NPOL S-band radar, Autonomous Parsivel Unit (APU) disdrometers, rain gauges, and airborne probe. The Ku- and Ka-band D3R is analogous to the GPM core satellite dual-frequency precipitation radar (DPR), but can provide more detailed insight into the precipitation microphysics through the ground-based dual-frequency dual-polarization observations. Previous studies have revealed that the dual polarization radar can be used to identify different hydrometeor types and their size and shape information. However, most of the previous studies are devoted to S-, C-, and/or X-band frequencies since they are standard operating frequency in many countries. This paper presents a region-based hydrometeor classification methodology applied for the NASA D3R measurements collected during OLYMPEx. This paper also details the differential phase based attenuation correction methodology and rainfall algorithm developed for the D3R. The D3R's hydrometeor classification and rainfall products are evaluated using other remote sensors and in situ measurements. In particular, the derived hydrometeor types are cross compared with collocated S-band products and images collected by the airborne probe. The rainfall performance are assessed using rain gauge and disdrometer observations. Results show that the NASA D3R has great potential for monitoring precipitation microphysics and rainfall estimation, especially light rainfall that is hard to be observed by traditional ground or space based sensors.

  9. Microstructural Developments Leading to New Advanced High Strength Sheet Steels: A Historical Assessment of Critical Metallographic Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlock, David K; Thomas, Larrin S; Taylor, Mark D

    In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. Inmore » response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.« less

  10. Technology Development Report: CDDF, Dual Use Partnerships, SBIR/STTR: Fiscal Year 2003 Activities

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    The FY2003 NASA John C. Stennis Stennis Space Center (SSC) Technology Development Report provides an integrated report of all technology development activities at SSC. This report actually combines three annual reports: the Center Director's Discretionary Fund (CDDF) Program Report, Dual Use Program Report, and the Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Program Report. These reports are integrated in one document to summarize all technology development activities underway in support of the NASA missions assigned to SSC. The Dual Use Program Report provides a summary review of the results and status of the nine (9) Dual Use technology development partnership projects funded and managed at SSC during FY2003. The objective of these partnership projects is to develop or enhance technologies that will meet the technology needs of the two NASA SSC Mission Areas: Propulsion Test and Earth Science Applications. During FY2003, the TDTO managed twenty (20) SBIR Phase II Projects and two (2) STTR Phase II Projects. The SBIR contracts support low TRL technology development that supports both the Propulsion Test and the Earth Science Application missions. These projects are shown in the SBIR/STTR Report. In addition to the Phase II contracts, the TDTO managed ten (10) SBIR Phase I contracts which are fixed price, six month feasibility study contracts. These are not listed in this report. Together, the Dual Use Projects and the SBIR/STTR Projects constitute a technology development partnership approach that has demonstrated that success can be achieved through the identification of the technical needs of the NASA mission and using various available partnership techniques to maximize resource utilization to achieve mutual technology goals. Greater use of these partnership techniques and the resource leveraging they provide, is a goal of the TDTO, providing more support to meet the technology development needs of the mission areas at

  11. NASA'S Changing Role in Technology Development and Transfer

    NASA Technical Reports Server (NTRS)

    Griner, Carolyn S.; Craft, Harry G., Jr.

    1997-01-01

    National Aeronautics and Space Administration NASA has historically had to develop new technology to meet its mission objectives. The newly developed technologies have then been transferred to the private sector to assist US industry's worldwide competitiveness and thereby spur the US economy. The renewed emphasis by the US Government on a proactive technology transfer approach has produced a number of contractual vehicles that assist technology transfer to industrial, aerospace and research firms. NASA's focus has also been on leveraging the shrinking space budget to accomplish "more with less." NASA's cooperative agreements and resource sharing agreements are measures taken to achieve this goal, and typify the changing role of government technology development and transfer with industry. Large commercial partnerships with aerospace firms, as typified by the X-33 and X-34 Programs, are evolving. A new emphasis on commercialization in the Small Business Innovative Research and Dual Use programs paves the way for more rapid commercial application of new technologies developed for NASA.

  12. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  13. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center (GRC) developed a non-nuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASC), a Dual Convertor Controller (DCC) EM (engineering model) 2 & 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) to actively control a pair of Advanced Stirling Convertors (ASC). The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS) which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASC's in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and supercapacitor. A load profile, created based on data from several missions, tested the RPS and RSIL ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 V or exceeded 36 V. Once operation was verified with the DASCS, the tests were repeated with actual operating ASC's. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  14. Understanding the Interaction between a Steel Microstructure and Hydrogen

    PubMed Central

    Depover, Tom; Laureys, Aurélie; Wallaert, Elien

    2018-01-01

    The present work provides an overview of the work on the interaction between hydrogen (H) and the steel’s microstructure. Different techniques are used to evaluate the H-induced damage phenomena. The impact of H charging on multiphase high-strength steels, i.e., high-strength low-alloy (HSLA), transformation-induced plasticity (TRIP) and dual phase (DP) is first studied. The highest hydrogen embrittlement resistance is obtained for HSLA steel due to the presence of Ti- and Nb-based precipitates. Generic Fe-C lab-cast alloys consisting of a single phase, i.e., ferrite, bainite, pearlite or martensite, and with carbon contents of approximately 0, 0.2 and 0.4 wt %, are further considered to simplify the microstructure. Finally, the addition of carbides is investigated in lab-cast Fe-C-X alloys by adding a ternary carbide forming element to the Fe-C alloys. To understand the H/material interaction, a comparison of the available H trapping sites, the H pick-up level and the H diffusivity with the H-induced mechanical degradation or H-induced cracking is correlated with a thorough microstructural analysis. PMID:29710803

  15. Recent Developments in Ultra High Temperature Ceramics at NASA Ames

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matt; Lawson, John W.; Gusman, Michael I.; Stackpole, Margaret M.

    2009-01-01

    NASA Ames is pursuing a variety of approaches to modify and control the microstructure of UHTCs with the goal of improving fracture toughness, oxidation resistance and controlling thermal conductivity. The overall goal is to produce materials that can perform reliably as sharp leading edges or nose tips in hypersonic reentry vehicles. Processing approaches include the use of preceramic polymers as the SiC source (as opposed to powder techniques), the addition of third phases to control grain growth and oxidation, and the use of processing techniques to produce high purity materials. Both hot pressing and field assisted sintering have been used to make UHTCs. Characterization of the mechanical and thermal properties of these materials is ongoing, as is arcjet testing to evaluate performance under simulated reentry conditions. The preceramic polymer approach has generated a microstructure in which elongated SiC grains grow in the form of an in-situ composite. This microstructure has the advantage of improving fracture toughness while potentially improving oxidation resistance by reducing the amount and interconnectivity of SiC in the material. Addition of third phases, such as Ir, results in a very fine-grained microstructure, even in hot-pressed samples. The results of processing and compositional changes on microstructure and properties are reported, along with selected arcjet results.

  16. Development of 780MPa grade gal annealed dual phase steel sheets for automobile

    NASA Astrophysics Data System (ADS)

    Jiang, Yinghua; Xie, Chunqian; Kuang, Shuang

    2018-01-01

    As the weight reduction of automotive body and crash safety become much more important factors, in an effort to satisfy these requirements, Shougang has developed 780MPa grade galvannealed dual phase steel sheet. Steel chemistry with low C and low Si was designed for good zinc wettability and spot weldability. And some of elements were added to improve the hole expansibility and work hardening capacity of steel as these effectively refine the microstructure and introduce retained austenite. Newly developed 780MPa grade galvannealed dual phase steels have a high yield strength and a good hole expansibility.

  17. Application of dual-fuel propulsion to a single stage AMLS vehicle

    NASA Technical Reports Server (NTRS)

    Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit

    1993-01-01

    As part of NASA's Advanced Manned Launch System (AMLS) study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate engine concept combining Russian RD-170 kerosene-fueled engines with SSME-derivative engines; the kerosene and hydrogen-fueled Russian RD-701 engine concept; and a dual-fuel, dual-expander engine concept. Analysis to determine vehicle weight and size characteristics was performed using conceptual level design techniques. A response surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicle concepts with respect to several important propulsion system and vehicle design parameters in order to achieve minimum empty weight. Comparisons were then made with a hydrogen-fueled reference, single-stage vehicle. The tools and methods employed in the analysis process are also summarized.

  18. Lexical Access and Dual-Task Performance: Determining the Locus of the Bottleneck

    NASA Technical Reports Server (NTRS)

    Allen, Phil

    2004-01-01

    During the two years of funding for NASA Grant "NCC21325, Lexical access and dual-task performance: Determining the locus of the bottleneck," we completed three experiments involving the psychological refractory period (PRP) and word frequency.

  19. High strength, low carbon, dual phase steel rods and wires and process for making same

    DOEpatents

    Thomas, Gareth; Nakagawa, Alvin H.

    1986-01-01

    A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.

  20. Depth-resolved dual-beamlet vibrometry based on Fourier domain low coherence interferometry

    PubMed Central

    Choudhury, Niloy; Chen, Fangyi; Wang, Ruikang K.; Jacques, Steven L.; Nuttall, Alfred L.

    2013-01-01

    Abstract. We present an optical vibrometer based on delay-encoded, dual-beamlet phase-sensitive Fourier domain interferometric system to provide depth-resolved subnanometer scale vibration information from scattering biological specimens. System characterization, calibration, and preliminary vibrometry with biological specimens were performed. The proposed system has the potential to provide both amplitude and direction of vibration of tissue microstructures on a single two-dimensional plane. PMID:23455961

  1. A NASA/Industry/University Partnership for Development of Dual-Use Vibration Isolation Technology

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1994-01-01

    A partnership is described that was formed as a result of a NASA university grant for the study of wire rope vibration isolation systems. Vibration isolators of this type are currently used in the Space Shuttle Orbiter and engine test facility, and have potential application in the international space station and other space vehicles. Wire rope isolators were considered for use on the Hubble Space Telescope and the military has used wire rope technology extensively. The desire of the wire rope industry to expand sales in commercial markets coupled with results of the prior NASA funded study, led to the formation of a partnership including NASA, the university involved in the research grant, and a small company that designs wire rope systems. Goals include the development of improved mathematical models and a designers handbook to facilitate the use of the new modeling tools.

  2. Analyses of microstructural and elastic properties of porous SOFC cathodes based on focused ion beam tomography

    NASA Astrophysics Data System (ADS)

    Chen, Zhangwei; Wang, Xin; Giuliani, Finn; Atkinson, Alan

    2015-01-01

    Mechanical properties of porous SOFC electrodes are largely determined by their microstructures. Measurements of the elastic properties and microstructural parameters can be achieved by modelling of the digitally reconstructed 3D volumes based on the real electrode microstructures. However, the reliability of such measurements is greatly dependent on the processing of raw images acquired for reconstruction. In this work, the actual microstructures of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes sintered at an elevated temperature were reconstructed based on dual-beam FIB/SEM tomography. Key microstructural and elastic parameters were estimated and correlated. Analyses of their sensitivity to the grayscale threshold value applied in the image segmentation were performed. The important microstructural parameters included porosity, tortuosity, specific surface area, particle and pore size distributions, and inter-particle neck size distribution, which may have varying extent of effect on the elastic properties simulated from the microstructures using FEM. Results showed that different threshold value range would result in different degree of sensitivity for a specific parameter. The estimated porosity and tortuosity were more sensitive than surface area to volume ratio. Pore and neck size were found to be less sensitive than particle size. Results also showed that the modulus was essentially sensitive to the porosity which was largely controlled by the threshold value.

  3. Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.

    2010-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.

  4. Photovoltaic Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey; Bailey, Sheila G.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    Recent advances in crystalline solar cell technology are reviewed. Dual-junction and triple-junction solar cells are presently available from several U. S. vendors. Commercially available triple-junction cells consisting of GaInP, GaAs, and Ge layers can produce up to 27% conversion efficiency in production lots. Technology status and performance figures of merit for currently available photovoltaic arrays are discussed. Three specific NASA mission applications are discussed in detail: Mars surface applications, high temperature solar cell applications, and integrated microelectronic power supplies for nanosatellites.

  5. Evolution and Control of 2219 Aluminum Microstructural Features Through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  6. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

    PubMed

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-03-27

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

  7. Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching

    PubMed Central

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff

    2017-01-01

    The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures. PMID:28772707

  8. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  9. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    NASA Astrophysics Data System (ADS)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  10. NASA Technology Applications Team: Commercial applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Research Triangle Institute (RTI) Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies, that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. The RTI Team has been successful in the development of NASA/industry partnerships and commercialization of NASA technologies. RTI ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed and implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs. (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology. And (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  11. Simultaneous Noncontact Precision Imaging of Microstructural and Thickness Variation in Dielectric Materials Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Seebo, Jeffrey P.; Winfree, William P.

    2008-01-01

    This article describes a noncontact single-sided terahertz electromagnetic measurement and imaging method that simultaneously characterizes microstructural (egs. spatially-lateral density) and thickness variation in dielectric (insulating) materials. The method was demonstrated for two materials-Space Shuttle External Tank sprayed-on foam insulation and a silicon nitride ceramic. It is believed that this method can be used as an inspection method for current and future NASA thermal protection system and other dielectric material inspection applications, where microstructural and thickness variation require precision mapping. Scale-up to more complex shapes such as cylindrical structures and structures with beveled regions would appear to be feasible.

  12. Dual Heat Pulse, Dual Layer Thermal Protection System Sizing Analysis and Trade Studies for Human Mars Entry Descent and Landing

    NASA Technical Reports Server (NTRS)

    McGuire, Mary Kathleen

    2011-01-01

    NASA has been recently updating design reference missions for the human exploration of Mars and evaluating the technology investments required to do so. The first of these started in January 2007 and developed the Mars Design Reference Architecture 5.0 (DRA5). As part of DRA5, Thermal Protection System (TPS) sizing analysis was performed on a mid L/D rigid aeroshell undergoing a dual heat pulse (aerocapture and atmospheric entry) trajectory. The DRA5 TPS subteam determined that using traditional monolithic ablator systems would be mass expensive. They proposed a new dual-layer TPS concept utilizing an ablator atop a low thermal conductivity insulative substrate to address the issue. Using existing thermal response models for an ablator and insulative tile, preliminary hand analysis of the dual layer concept at a few key heating points indicated that the concept showed potential to reduce TPS masses and warranted further study. In FY09, the followon Entry, Descent and Landing Systems Analysis (EDL-SA) project continued by focusing on Exploration-class cargo or crewed missions requiring 10 to 50 metric tons of landed payload. The TPS subteam advanced the preliminary dual-layer TPS analysis by developing a new process and updated TPS sizing code to rapidly evaluate mass-optimized, full body sizing for a dual layer TPS that is capable of dual heat pulse performance. This paper describes the process and presents the results of the EDL-SA FY09 dual-layer TPS analyses on the rigid mid L/D aeroshell. Additionally, several trade studies were conducted with the sizing code to evaluate the impact of various design factors, assumptions and margins.

  13. The DEVELOP National Program: Building Dual Capacity in Decision Makers and Young Professionals Through NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Childs, L. M.; Rogers, L.; Favors, J.; Ruiz, M.

    2012-12-01

    Through the years, NASA has played a distinct/important/vital role in advancing Earth System Science to meet the challenges of environmental management and policy decision making. Within NASA's Earth Science Division's Applied Sciences' Program, the DEVELOP National Program seeks to extend NASA Earth Science for societal benefit. DEVELOP is a capacity building program providing young professionals and students the opportunity to utilize NASA Earth observations and model output to demonstrate practical applications of those resources to society. Under the guidance of science advisors, DEVELOP teams work in alignment with local, regional, national and international partner organizations to identify the widest array of practical uses for NASA data to enhance related management decisions. The program's structure facilitates a two-fold approach to capacity building by fostering an environment of scientific and professional development opportunities for young professionals and students, while also providing end-user organizations enhanced management and decision making tools for issues impacting their communities. With the competitive nature and growing societal role of science and technology in today's global workplace, DEVELOP is building capacity in the next generation of scientists and leaders by fostering a learning and growing environment where young professionals possess an increased understanding of teamwork, personal development, and scientific/professional development and NASA's Earth Observation System. DEVELOP young professionals are partnered with end user organizations to conduct 10 week feasibility studies that demonstrate the use of NASA Earth science data for enhanced decision making. As a result of the partnership, end user organizations are introduced to NASA Earth Science technologies and capabilities, new methods to augment current practices, hands-on training with practical applications of remote sensing and NASA Earth science, improved remote

  14. Electron Backscatter Diffraction Analysis of Joints Between AISI 316L Austenitic/UNS S32750 Dual-Phase Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shamanian, Morteza; Mohammadnezhad, Mahyar; Amini, Mahdi; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-01

    Stainless steels are among the most economical and highly practicable materials widely used in industrial areas due to their mechanical and corrosion resistances. In this study, a dissimilar weld joint consisting of an AISI 316L austenitic stainless steel (ASS) and a UNS S32750 dual-phase stainless steel was obtained under optimized welding conditions by gas tungsten arc welding technique using AWS A5.4:ER2594 filler metal. The effect of welding on the evolution of the microstructure, crystallographic texture, and micro-hardness distribution was also studied. The weld metal (WM) was found to be dual-phased; the microstructure is obtained by a fully ferritic solidification mode followed by austenite precipitation at both ferrite boundaries and ferrite grains through solid-state transformation. It is found that welding process can affect the ferrite content and grain growth phenomenon. The strong textures were found in the base metals for both steels. The AISI 316L ASS texture is composed of strong cube component. In the UNS S32750 dual-phase stainless steel, an important difference between the two phases can be seen in the texture evolution. Austenite phase is composed of a major cube component, whereas the ferrite texture mainly contains a major rotated cube component. The texture of the ferrite is stronger than that of austenite. In the WM, Kurdjumov-Sachs crystallographic orientation relationship is found in the solidification microstructure. The analysis of the Kernel average misorientation distribution shows that the residual strain is more concentrated in the austenite phase than in the other phase. The welding resulted in a significant hardness increase in the WM compared to initial ASS.

  15. Rainfall Measurement with a Ground Based Dual Frequency Radar

    NASA Technical Reports Server (NTRS)

    Takahashi, Nobuhiro; Horie, Hiroaki; Meneghini, Robert

    1997-01-01

    Dual frequency methods are one of the most useful ways to estimate precise rainfall rates. However, there are some difficulties in applying this method to ground based radars because of the existence of a blind zone and possible error in the radar calibration. Because of these problems, supplemental observations such as rain gauges or satellite link estimates of path integrated attenuation (PIA) are needed. This study shows how to estimate rainfall rate with a ground based dual frequency radar with rain gauge and satellite link data. Applications of this method to stratiform rainfall is also shown. This method is compared with single wavelength method. Data were obtained from a dual frequency (10 GHz and 35 GHz) multiparameter radar radiometer built by the Communications Research Laboratory (CRL), Japan, and located at NASA/GSFC during the spring of 1997. Optical rain gauge (ORG) data and broadcasting satellite signal data near the radar t location were also utilized for the calculation.

  16. NASA Technology Applications Team: Commercial applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Research Triangle Institute (RTI) is pleased to report the results of NASA contract NASW-4367, 'Operation of a Technology Applications Team'. Through a period of significant change within NASA, the RTI Team has maintained its focus on helping NASA establish partnerships with U.S. industry for dual use development and technology commercialization. Our emphasis has been on outcomes, such as licenses, industry partnerships and commercialization of technologies that are important to NASA in its mission of contributing to the improved competitive position of U.S. industry. RTI's ongoing commitment to quality and customer responsiveness has driven our staff to continuously improve our technology transfer methodologies to meet NASA's requirements. For example, RTI has emphasized the following areas: (1) Methodology For Technology Assessment and Marketing: RTI has developed an implemented effective processes for assessing the commercial potential of NASA technologies. These processes resulted from an RTI study of best practices, hands-on experience, and extensive interaction with the NASA Field Centers to adapt to their specific needs; (2) Effective Marketing Strategies: RTI surveyed industry technology managers to determine effective marketing tools and strategies. The Technology Opportunity Announcement format and content were developed as a result of this industry input. For technologies with a dynamic visual impact, RTI has developed a stand-alone demonstration diskette that was successful in developing industry interest in licensing the technology; and (3) Responsiveness to NASA Requirements: RTI listened to our customer (NASA) and designed our processes to conform with the internal procedures and resources at each NASA Field Center and the direction provided by NASA's Agenda for Change. This report covers the activities of the Research Triangle Institute Technology Applications Team for the period 1 October 1993 through 31 December 1994.

  17. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    NASA Astrophysics Data System (ADS)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  18. Ultra High Temperature Ceramics' Processing Routes and Microstructures Compared

    NASA Technical Reports Server (NTRS)

    Gusman, Michael; Stackpoole, Mairead; Johnson, Sylvia; Gasch, Matt; Lau, Kai-Hung; Sanjurjo, Angel

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs), such as HfB2 and ZrB2 composites containing SiC, are known to have good thermal shock resistance and high thermal conductivity at elevated temperatures. These UHTCs have been proposed for a number of structural applications in hypersonic vehicles, nozzles, and sharp leading edges. NASA Ames is working on controlling UHTC properties (especially, mechanical properties, thermal conductivity, and oxidation resistance) through processing, composition, and microstructure. In addition to using traditional methods of combining additives to boride powders, we are preparing UHTCs using coat ing powders to produce both borides and additives. These coatings and additions to the powders are used to manipulate and control grain-boundary composition and second- and third-phase variations within the UHTCs. Controlling the composition of high temperature oxidation by-products is also an important consideration. The powders are consolidated by hot-pressing or field-assisted sintering (FAS). Comparisons of microstructures and hardness data will be presented.

  19. Characterization of Dual-Band Infrared Detectors for Application to Remote Sensing

    NASA Technical Reports Server (NTRS)

    Abedin, M. Nurul; Refaat, Tamer F.; Xiao, Yegao; Bhat, Ishwara

    2005-01-01

    NASA Langley Research Center (LaRC), in partnership with the Rensselaer Polytechnic Institute (RPI), developed photovoltaic infrared (IR) detectors suitable at two different wavelengths using Sb-based material systems. Using lattice-matched InGaAsSb grown on GaSb substrates, dual wavelength detectors operating at 1.7 and 2.5 micron wavelengths can be realized. P-N junction diodes are fabricated on both GaSb and InGaAsSb materials. The photodiode on GaSb detects wavelengths at 1.7 micron and the InGaAsSb detector detects wavelengths at 2.2 micron or longer depending on the composition. The films for these devices are grown by metal-organic vapor phase epitaxy (MOVPE). The cross section of the independently accessed back-to-back photodiode dual band detector consists of a p-type substrate on which n-on-p GaInAsSb junction is grown, followed by a p-on-n GaSb junction. There are three ohmic contacts in this structure, one to the p-GaSb top layer, one to the n-GaSb/n-GaInAsSb layer and one to the p-type GaSb substrate. The common terminal is the contact to the n-GaSb/n-GaInAsSb layer. The contact to the n-GaSb/p-GaInAsSb region of the photodiode in the dual band is electrically connected and is accessed at the edge of the photodiode. NASA LaRC acquired the fabricated dual band detector from RPI and characterized the detector at its Detector Characterization Laboratory. Characterization results, such as responsivity, noise, quantum efficiency, and detectivity will be presented.

  20. LOW ACTIVATION JOINING OF SIC/SIC COMPOSITES FOR FUSION APPLICATIONS: MODELING DUAL-PHASE MICROSTRUCTURES AND DISSIMILAR MATERIAL JOINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.

    2016-03-31

    Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.

  1. Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants.

    PubMed

    Taniguchi, Yoichi; Aoki, Akira; Mizutani, Koji; Takeuchi, Yasuo; Ichinose, Shizuko; Takasaki, Aristeo Atsushi; Schwarz, Frank; Izumi, Yuichi

    2013-07-01

    Er:YAG laser (ErL) irradiation has been reported to be effective for treating peri-implant disease. The present study seeks to evaluate morphological and elemental changes induced on microstructured surfaces of dental endosseous implants by high-pulse-repetition-rate ErL irradiation and to determine the optimal irradiation conditions for debriding contaminated microstructured surfaces. In experiment 1, dual acid-etched microstructured implants were irradiated by ErL (pulse energy, 30-50 mJ/pulse; repetition rate, 30 Hz) with and without water spray and for used and unused contact tips. Experiment 2 compared the ErL treatment with conventional mechanical treatments (metal/plastic curettes and ultrasonic scalers). In experiment 3, five commercially available microstructures were irradiated by ErL light (pulse energy, 30-50 mJ/pulse; pulse repetition rate, 30 Hz) while spraying water. In experiment 4, contaminated microstructured surfaces of three failed implants were debrided by ErL irradiation. After the experiments, all treated surfaces were assessed by stereomicroscopy, scanning electron microscopy (SEM), and/or energy-dispersive X-ray spectroscopy (EDS). The stereomicroscopy, SEM, and EDS results demonstrate that, unlike mechanical treatments, ErL irradiation at 30 mJ/pulse and 30 Hz with water spray induced no color or morphological changes to the microstructures except for the anodized implant surface, which was easily damaged. The optimized irradiation parameters effectively removed calcified deposits from contaminated titanium microstructures without causing substantial thermal damage. ErL irradiation at pulse energies below 30 mJ/pulse (10.6 J/cm(2)/pulse) and 30 Hz with water spray in near-contact mode seems to cause no damage and to be effective for debriding microstructured surfaces (except for anodized microstructures).

  2. Code and codeless ionospheric measurements with NASA's Rogue GPS Receiver

    NASA Technical Reports Server (NTRS)

    Srinivasan, Jeff M.; Meehan, Tom K.; Young, Lawrence E.

    1989-01-01

    The NASA/JPL Rogue Receiver is an 8-satellite, non-multiplexed, highly digital global positioning system (GPS) receiver that can obtain dual frequency data either with or without knowledge of the P-code. In addition to its applications for high accuracy geodesy and orbit determination, the Rogue uses GPS satellite signals to measure the total electron content (TEC) of the ionosphere along the lines of sight from the receiver to the satellites. These measurements are used by JPL's Deep Space Network (DSN) for calibrating radiometric data. This paper will discuss Rogue TEC measurements, emphasizing the advantages of a receiver that can use the P-code, when available, but can also obtain reliable dual frequency data when the code is encrypted.

  3. Microstructure based simulations for prediction of flow curves and selection of process parameters for inter-critical annealing in DP steel

    NASA Astrophysics Data System (ADS)

    Deepu, M. J.; Farivar, H.; Prahl, U.; Phanikumar, G.

    2017-04-01

    Dual phase steels are versatile advanced high strength steels that are being used for sheet metal applications in automotive industry. It also has the potential for application in bulk components like gear. The inter-critical annealing in dual phase steels is one of the crucial steps that determine the mechanical properties of the material. Selection of the process parameters for inter-critical annealing, in particular, the inter-critical annealing temperature and time is important as it plays a major role in determining the volume fractions of ferrite and martensite, which in turn determines the mechanical properties. Selection of these process parameters to obtain a particular required mechanical property requires large number of experimental trials. Simulation of microstructure evolution and virtual compression/tensile testing can help in reducing the number of such experimental trials. In the present work, phase field modeling implemented in the commercial software Micress® is used to predict the microstructure evolution during inter-critical annealing. Virtual compression tests are performed on the simulated microstructure using finite element method implemented in the commercial software, to obtain the effective flow curve of the macroscopic material. The flow curves obtained by simulation are experimentally validated with physical simulation in Gleeble® and compared with that obtained using linear rule of mixture. The methodology could be used in determining the inter-critical annealing process parameters required for achieving a particular flow curve.

  4. Properties and microstructures for dual alloy combinations of three superalloys with alloy 901

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Dual alloy combinations have potential for use in aircraft engine components such as turbine disks where a wide range of stress and temperature regimes exists during operation. Such alloy combinations may directly result in the conservation of elements which are costly or not available domestically. Preferably, a uniform heat treatment yielding good properties for both alloys should be used. Dual alloy combinations of iron rich Alloy 901 with nickel base superalloys Rene 95, Astroloy, or MERL 76 were not isostatically pressed from prealloyed powders. Individual alloys, alloy mixtures, and layered alloy combinations were given the heat treatments specified for their use in turbine disks or appropriate for Alloy 901. Selected specimens were overaged for 1500 hr at 650 C. Metallographic examinations revealed the absence of phases not originally present in either alloy of a combination. Mechanical tests showed adequate properties in combinations of Rene 95 or Astroloy with Alloy 901 when given the Alloy 901 heat treatment. Combinations with MERL 76 had better properties when given the MERL 76 heat treatment. The results indicate that these combinations are promising candidates for use in turbine disks.

  5. Assimilation of Dual-Polarimetric Radar Observations with WRF GSI

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Mecikalski, John; Fehnel, Traci; Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, more accurate estimate of liquid and solid cloud and precipitation can be provided. The upgrade of the traditional NWS WSR-88D radar to include dual-pol capabilities will soon be completed for the entire NEXRAD network. Therefore, the use of dual-pol radar network will have a broad impact in both research and operational communities. The assimilation of dual-pol radar data is especially challenging as few guidelines have been provided by previous research. It is our goal to examine how to best use dual-pol radar data to improve forecast of severe storm and forecast initialization. In recent years, the Development Testbed Center (DTC) has released the community Gridpoint Statistical Interpolation (GSI) DA system for the Weather Research and Forecasting (WRF) model. The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this study explores regional assimilation of the dual-pol radar variables from the WSR-88D radars for real case storms. Our presentation will highlight our recent effort on incorporating the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms, with a significant focus being on an improved representation of hydrometeor fields. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to dual-pol variables. Beyond the dual-pol variable assimilation procedure developing within a GSI framework, highresolution (=1 km) WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast

  6. Imaging whole mouse brains with a dual resolution serial swept-source optical coherence tomography scanner

    NASA Astrophysics Data System (ADS)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2018-02-01

    High resolution imaging of whole rodent brains using serial OCT scanners is a promising method to investigate microstructural changes in tissue related to the evolution of neuropathologies. Although micron to sub-micron sampling resolution can be obtained by using high numerical aperture objectives and dynamic focusing, such an imaging system is not adapted to whole brain imaging. This is due to the large amount of data it generates and the significant computational resources required for reconstructing such volumes. To address this limitation, a dual resolution serial OCT scanner was developed. The optical setup consists in a swept-source OCT made of two sample and reference arms, each arm being coupled with different microscope objectives (3X / 40X). Motorized flip mirrors were used to switch between each OCT arm, thus allowing low and high resolution acquisitions within the same sample. The low resolution OCT volumes acquired with the 3X arm were stitched together, providing a 3D map of the whole mouse brain. This brain can be registered to an OCT brain template to enable neurological structures localization. The high resolution volumes acquired with the 40X arm were also stitched together to create local high resolution 3D maps of the tissue microstructure. The 40X data can be acquired at any arbitrary location in the sample, thus limiting storage-heavy high resolution data to application restricted to specific regions of interest. By providing dual-resolution OCT data, this setup can be used to validate diffusion MRI with tissue microstructure derived metrics measured at any location in ex vivo brains.

  7. Facile Fabrication of Composite Membranes with Dual Thermo- and pH-Responsive Characteristics.

    PubMed

    Ma, Bing; Ju, Xiao-Jie; Luo, Feng; Liu, Yu-Qiong; Wang, Yuan; Liu, Zhuang; Wang, Wei; Xie, Rui; Chu, Liang-Yin

    2017-04-26

    Facile fabrication of novel functional membranes with excellent dual thermo- and pH-responsive characteristics has been achieved by simply designing dual-layer composite membranes. pH-Responsive poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymers and polystyrene blended with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) nanogels are respectively used to construct the top layer and bottom layer of composite membranes. The stretching/coiling conformation changes of the P4VP chains around the pK a (∼3.5-4.5) provide the composite membranes with extraordinary pH-responsive characteristics, and the volume phase transitions of PNIPAM nanogels at the pore/matrix interfaces in the bottom layer around the volume phase transition temperature (VPTT, ∼33 °C) provide the composite membranes with great thermoresponsive characteristics. The microstructures, permeability performances, and dual stimuli-responsive characteristics can be well tuned by adjusting the content of PNIPAM nanogels and the thickness of the PS-b-P4VP top layer. The water fluxes of the composite membranes can be changed in order of magnitude by changing the environment temperature and pH, and the dual thermo- and pH-responsive permeation performances of the composite membranes are satisfactorily reversible and reproducible. The membrane fabrication strategy in this work provides valuable guidance for further development of dual stimuli-responsive membranes or even multi stimuli-responsive membranes.

  8. The Deposition of Multicomponent Films for Electrooptic Applications via a Computer Controlled Dual Ion Beam Sputtering System

    DTIC Science & Technology

    1991-12-31

    AD-A252 218 The Deposition of Multicomponent Films for Electrooptic Applications via a Computer Controlled Dual Ion Beam Sputtering System ONR...6 3 2. Deposition of Electrooptic Thin Films ................................... 11 3. High Resolution Imaging of Twin and Antiphase...Domain Boundaries in Perovskite KNbO3 Thin Films .......... 30 4. Microstructural Characterization of the Epitaxial3 (111) KNbO3 on (0001) Sapphire

  9. The NASA GPM Iowa Flood Studies Experiment

    NASA Astrophysics Data System (ADS)

    Petersen, W. A.; Krajewski, W. F.; Peters-Lidard, C. D.; Rutledge, S. A.; Wolff, D. B.

    2013-12-01

    The overarching objective of NASA Global Precipitation Measurement Mission (GPM) integrated hydrologic ground validation (GV) is to provide a better understanding of the strengths and limitations of the satellite products, in the context of hydrologic applications. Accordingly, the NASA GPM GV program recently completed the first of several hydrology-oriented field efforts: the Iowa Flood Studies (IFloodS) experiment. IFloodS was conducted in central Iowa during the months of April-June, 2013. IFloodS science objectives focused on: a) The collection of reference multi-parameter radar, rain gauge, disdrometer, soil moisture, and hydrologic network measurements to quantify the physical character and space/time variability of rain (e.g., rates, drop size distributions, processes), land surface- state and hydrologic response; b) Application of the ground reference measurements to assessment of satellite-based rainfall estimation uncertainties; c) Propagation of both ground and satellite rainfall estimation uncertainties in coupled hydrologic prediction models to assess impacts on predictive skill; and d) Evaluation of rainfall properties such as rate and accumulation relative to basin hydrologic characteristics in modeled flood genesis. IFloodS observational objectives were achieved via deployments of the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars (operating in coordinated scanning modes), four University of Iowa X-band dual-polarimetric radars, four Micro Rain Radars, a network of 25 paired rain gauge platforms with attendant soil moisture and temperature probes, a network of six 2D Video and 14 Parsivel disdrometers, and 15 USDA-ARS rain gauge and soil-moisture stations (collaboration with the USDA-ARS and NASA Soil Moisture Active-Passive mission). The aforementioned platforms complemented existing operational WSR-88D S-band polarimetric radar, USGS streamflow, and Iowa Flood Center-affiliated stream monitoring and rainfall measurements. Coincident

  10. Dual-Telescope Multi-Channel Thermal-Infrared Radiometer for Outer Planet Fly-By Missions

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; hide

    2016-01-01

    The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 microns, in five spectral pass bands, for outer planet fly-by missions is described. The dual- telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field- of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.

  11. Crystal plasticity analysis of stress partitioning mechanisms and their microstructural dependence in advanced steels

    DOE PAGES

    Pu, Chao; Gao, Yanfei

    2015-01-23

    Two-phase advanced steels contain an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures ofmore » dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. Finally, it is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.« less

  12. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy

    PubMed Central

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-01-01

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al4Sr and Al2Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress–strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al4Sr phases and spheroidal Al2Y particles, which can accelerate the nucleation. The continuous Al4Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion. PMID:29522473

  13. Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy.

    PubMed

    Liu, Gang; Xie, Wen; Wei, Guobing; Yang, Yan; Liu, Junwei; Xu, Tiancai; Xie, Weidong; Peng, Xiaodong

    2018-03-09

    The hot deformation and dynamic recrystallization behavior of the dual-phase Mg-9Li-3Al-2Sr-2Y alloy had been investigated using a compression test. The typical dual-phase structure was observed, and average of grain size of as-homogenized alloy is about 110 µm. It mainly contains β-Li, α-Mg, Al₄Sr and Al₂Y phases. The dynamic recrystallization (DRX) kinetic was established based on an Avrami type equation. The onset of the DRX process occurred before the peak of the stress-strain flow curves. It shows that the DRX volume fraction increases with increasing deformation temperature or decreasing strain rate. The microstructure evolution during the hot compression at various temperatures and strain rates had been investigated. The DRX grain size became larger with the increasing testing temperature or decreasing strain rate because the higher temperature or lower strain rate can improve the migration of DRX grain boundaries. The fully recrystallized microstructure can be achieved in a small strain due to the dispersed island-shape α-Mg phases, continuous the Al₄Sr phases and spheroidal Al₂Y particles, which can accelerate the nucleation. The continuous Al₄Sr phases along the grain boundaries are very helpful for enhancing the corrosion resistance of the duplex structured Mg-Li alloy, which can prevent the pitting corrosion and filiform corrosion.

  14. Stirling Technology Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2001-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDCs) built by STC includes mapping of a second pair of TDCs, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDCs with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  15. Influence of Heating Rate on Ferrite Recrystallization and Austenite Formation in Cold-Rolled Microalloyed Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Philippot, C.; Bellavoine, M.; Dumont, M.; Hoummada, K.; Drillet, J.; Hebert, V.; Maugis, P.

    2018-01-01

    Compared with other dual-phase (DP) steels, initial microstructures of cold-rolled martensite-ferrite have scarcely been investigated, even though they represent a promising industrial alternative to conventional ferrite-pearlite cold-rolled microstructures. In this study, the influence of the heating rate (over the range of 1 to 10 K/s) on the development of microstructures in a microalloyed DP steel is investigated; this includes the tempering of martensite, precipitation of microalloying elements, recrystallization, and austenite formation. This study points out the influence of the degree of ferrite recrystallization prior to the austenite formation, as well as the importance of the cementite distribution. A low heating rate giving a high degree of recrystallization, leads to the formation of coarse austenite grains that are homogenously distributed in the ferrite matrix. However, a high heating rate leading to a low recrystallization degree, results in a banded-like structure with small austenite grains surrounded by large ferrite grains. A combined approach, involving relevant multiscale microstructural characterization and modeling to rationalize the effect of the coupled processes, highlights the role of the cold-worked initial microstructure, here a martensite-ferrite mixture: recrystallization and austenite formation commence in the former martensite islands before extending in the rest of the material.

  16. Development of Low Carbon Niobium Bearing High Strength F-B Dual Phase Steel with High Hole Expansion Property

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo

    In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.

  17. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.

    PubMed

    Zhang, Peng; Maeda, Yota; Lv, Fengyong; Takata, Yasuyuki; Orejon, Daniel

    2017-10-11

    Superhydrophobic surfaces are receiving increasing attention due to the enhanced condensation heat transfer, self-cleaning, and anti-icing properties by easing droplet self-removal. Despite the extensive research carried out on this topic, the presence or absence of microstructures on droplet adhesion during condensation has not been fully addressed yet. In this work we, therefore, study the condensation behavior on engineered superhydrophobic copper oxide surfaces with different structural finishes. More specifically, we investigate the coalescence-induced droplet-jumping performance on superhydrophobic surfaces with structures varying from the micro- to the nanoscale. The different structural roughness is possible due to the specific etching parameters adopted during the facile low-cost dual-scale fabrication process. A custom-built optical microscopy setup inside a temperature and relative humidity controlled environmental chamber was used for the experimental observations. By varying the structural roughness, from the micro- to the nanoscale, important differences on the number of droplets involved in the jumps, on the frequency of the jumps, and on the size distribution of the jumping droplets were found. In the absence of microstructures, we report an enhancement of the droplet-jumping performance of small droplets with sizes in the same order of magnitude as the microstructures. Microstructures induce further droplet adhesion, act as a structural barrier for the coalescence between droplets growing on the same microstructure, and cause the droplet angular deviation from the main surface normal. As a consequence, upon coalescence, there is a decrease in the net momentum in the out-of-plane direction, and the jump does not ensue. We demonstrate that the absence of microstructures has therefore a positive impact on the coalescence-induced droplet-jumping of micrometer droplets for antifogging, anti-icing, and condensation heat transfer applications.

  18. Dual-Mode Combustion

    NASA Technical Reports Server (NTRS)

    Goyne, Christopher P.; McDaniel, James C.

    2002-01-01

    The Department of Mechanical and Aerospace Engineering at the University of Virginia has conducted an investigation of the mixing and combustion processes in a hydrogen fueled dual-mode scramjet combustor. The experiment essentially consisted of the "direct connect" continuous operation of a Mach 2 rectangular combustor with a single unswept ramp fuel injector. The stagnation enthalpy of the test flow simulated a flight Mach number of 5. Measurements were obtained using conventional wall instrumentation and laser based diagnostics. These diagnostics included, pressure and wall temperature measurements, Fuel Plume Imaging (FPI) and Particle Image Velocimetry (PIV). A schematic of the combustor configuration and a summary of the measurements obtained are presented. The experimental work at UVa was parallel by Computational Fluid Dynamics (CFD) work at NASA Langley. The numerical and experiment results are compared in this document.

  19. Dual-telescope multi-channel thermal-infrared radiometer for outer planet fly-by missions

    NASA Astrophysics Data System (ADS)

    Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; Irwin, Patrick; Jennings, Donald E.; Kessler, Ernst; Lakew, Brook; Loeffler, Mark; Mellon, Michael; Nicoletti, Anthony; Nixon, Conor A.; Putzig, Nathaniel; Quilligan, Gerard; Rathbun, Julie; Segura, Marcia; Spencer, John; Spitale, Joseph; West, Garrett

    2016-11-01

    The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 μm, in five spectral pass bands, for outer planet fly-by missions is described. The dual-telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field-of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.

  20. Partnering Community Decision Makers with Early Career Scientists - The NASA DEVELOP Method for Dual Capacity Building

    NASA Astrophysics Data System (ADS)

    Ross, K. W.; Childs-Gleason, L. M.; Cripps, G. S.; Clayton, A.; Remillard, C.; Watkins, L. E.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.

    2017-12-01

    The NASA DEVELOP National Program carries out many projects every year with the goal of bringing the benefits of NASA Earth science to bear on decision-making challenges that are local in scale. Every DEVELOP project partners end users with early/transitioning science professionals. Many of these projects invited communities to consider NASA science data in new ways to help them make informed decisions. All of these projects shared three characteristics: they were rapid, nimble and risk-taking. These projects work well for some communities, but might best be suited as a feasibility studies that build community/institutional capacity towards eventual solutions. This presentation will discuss DEVELOP's lessons learned and best practices in conducting short-term feasibility projects with communities, as well as highlight several past successes.

  1. Rock-Fluid Interactions Under Stress: How Rock Microstructure Controls The Evolution of Porosity and Permeability

    NASA Astrophysics Data System (ADS)

    Vanorio, T.

    2016-12-01

    Monitoring chemo-mechanical processes geophysically — e.g., fluid disposal or storage, thermal and chemical stimulation of reservoirs, or natural fluids simply entering a new system in the subsurface— raises numerous concerns because of the likelihood of fluid-rock chemical interactions and our limited ability to decipher the geophysical signature of coupled processes. One of the missing links is coupling the evolution of porosity, permeability, and velocity of rocks together with reactive transport, since rocks deform and their microstructure evolves, as a result of chemical reactions under stress. This study describes recent advances in rock-physics experiments to understand the effects of dissolution-induced compaction on acoustic velocity, porosity, and permeability. Data observation includes time-lapse experiments and imaging tracking transport and elastic properties, the rock microstructure, and the pH and chemical composition of the fluid permeating the rock. Results show that the removal of high surface area, mineral phases such as microcrystalline calcite and clay appears to be mostly responsible for dissolution-induced compaction. Nevertheless, it is the original rock microstructure and its response to stress that ultimately defines how solution-transfer and rock compaction feed back upon each other. This work has a dual aim: understanding the mechanisms underlying permanent modifications to the rock microstructure and providing a richer set of experimental information to inform the formulation of new simulations and rock modeling.

  2. NASA research on refractory compounds.

    NASA Technical Reports Server (NTRS)

    Gangler, J. J.

    1971-01-01

    The behavior and properties of the refractory carbides, nitrides, and borides are being investigated by NASA as part of its research aimed at developing superior heat resistant materials for aerospace applications. Studies of the zirconium-carbon-oxygen system show that zirconium oxycarbides of different compositions and lattice parameters can be formed between 1500 C and 1900 C and are stable below 1500 C. More applied studies show that hot working generally improves the microstructure and therefore the strength of TiC and NbC. Sintering studies on UN indicate that very high densities can be achieved. Hot pressing of cermets of HfN and HfC produces good mechanical properties for high temperature bearing applications. Attempts to improve the impact resistance of boride composites by the addition of a nickel or carbon yarn were not overly successful.

  3. NASA research on refractory compounds.

    NASA Technical Reports Server (NTRS)

    Gangler, J. J.

    1971-01-01

    The behavior and properties of the refractory carbides, nitrides, and borides are being investigated by NASA as part of its research aimed at developing superior heat resistant materials for aerospace applications. Fundamental studies on the electronic and defect structures of the carbides indicate that there is promise for improving the strength and ductility of these materials. Studies of the zirconium-carbon-oxygen system show that zirconium oxycarbides of different compositions and lattice parameters can be formed between 1500 and 1900 C and are stable below 1500 C. More applied studies show that hot working generally improves the microstructure and therefore the strength of TiC and NbC. Sintering studies on UN indicate that very high densities can be achieved. Hot pressing of cermets of HfN and HfC produces good mechanical properties for high temperature bearing applications.

  4. High-Temperature, Dual-Atmosphere Corrosion of Solid-Oxide Fuel Cell Interconnects

    NASA Astrophysics Data System (ADS)

    Gannon, Paul; Amendola, Roberta

    2012-12-01

    High-temperature corrosion of ferritic stainless steel (FSS) surfaces can be accelerated and anomalous when it is simultaneously subjected to different gaseous environments, e.g., when separating fuel (hydrogen) and oxidant (air) streams, in comparison with single-atmosphere exposures, e.g., air only. This so-called "dual-atmosphere" exposure is realized in many energy-conversion systems including turbines, boilers, gasifiers, heat exchangers, and particularly in intermediate temperature (600-800°C) planar solid-oxide fuel cell (SOFC) stacks. It is generally accepted that hydrogen transport through the FSS (plate or tube) and its subsequent integration into the growing air-side surface oxide layer can promote accelerated and anomalous corrosion—relative to single-atmosphere exposure—via defect chemistry changes, such as increased cation vacancy concentrations, decreased oxygen activity, and steam formation within the growing surface oxide layers. Establishment of a continuous and dense surface oxide layer on the fuel side of the FSS can inhibit hydrogen transport and the associated effects on the air side. Minor differences in FSS composition, microstructure, and surface conditions can all have dramatic influences on dual-atmosphere corrosion behaviors. This article reviews high-temperature, dual-atmosphere corrosion phenomena and discusses implications for SOFC stacks, related applications, and future research.

  5. Research on the Microstructures and Mechanical Properties of Ti Micro-Alloyed Cold Rolled Hot-Dip Galvanizing DP980 Steel

    NASA Astrophysics Data System (ADS)

    Han, Yun; Kuang, Shuang; Qi, Xiumei; Xie, Chunqian; Liu, Guanghui

    Effects of galvanizing simulation parameters on microstructures and mechanical properties of Ti-microalloyed cold rolled hot-dip galvanizing DP980 steel were investigated in this study by optical microscopy (OM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and tensile test. Moreover, the precipitation behavior of Ti in the experimental steel was also studied. The results show that, as the heating temperature increases, the tensile strength of experimental galvanizing DP980 steel decreases while the yield ratio and elongation of the steel are enhanced. The microstructures of experimental steels exhibit typical dual phase steel character and the volume fractions of MA islands are almost 30%. In addition, lots of nano-sized TiC precipitates can be found in the ferrite grains.

  6. Dual Fan Separator within the Universal Waste Management System

    NASA Technical Reports Server (NTRS)

    Stapleton, Tom; Converse, Dave; Broyan, James Lee, Jr.

    2014-01-01

    Since NASA's new spacecraft in development for both LEO and Deep Space capability have considerable crew volume reduction in comparison to the Space Shuttle, it is clear that NASA requires a smaller and less expensive commode. The UTAS Universal Waste Management System (UWMS) was designed to address these new constraints, resulting in an 80% volume reduction in the cabin while enhancing performance. Whereas all of the current space commodes use air flow to capture both urine and feces and separate air from the captured air/urine mixture, the UWMS commode and urine fans and the urine separator were combined into a single unit. This unit enables use of a single motor and motor controller, which provides considerable packaging and weight efficiency. In some of the intended platform applications for the UWMS, the urine is pumped to a water reclamation system. The ISS Urine Processor Assembly (UPA) system requires delivered urine to include less than 0.25% air inclusion. Air inclusion in centrifugal urine separators is greatly dependent on its rotational speed. To satisfy this requirement, a gear reducer was included, allowing the fans to rotate at a much higher speed than the separator. This new design, the Dual Fan Separator (DFS) has been designed, prototyped and tested. This paper will outline the studies and analysis performed to develop the design configuration for testing. The studies included a configuration trade study, dynamic stability analysis of the rotating bodies and a performance analysis of included labyrinth seals. NASA is considereing a program to fly the UWMS aboard the ISS as a flight experiment. The goal of the design activity is to elevate the Technical Readiness Level (TRL) of the Dual Fan Separator and determine if the concept is ready to be included in flight experiment deliverable.

  7. Tracing Supermassive Black Hole Growth with Offset and Dual AGN

    NASA Astrophysics Data System (ADS)

    Comerford, Julia

    black hole mass growth has not yet been realized, due to the small number of such systems known. To date, only 13 confirmed offset and dual AGN are known. Here we propose a new observational approach to identifying offset and dual AGN, which will increase the known number from 13 to 100. This technique depends on multiwavelength archival data from HST, Spitzer, XMM-Newton, and Chandra, and it selects offset/dual AGN candidates as active galaxies (identified by Spitzer, XMMNewton, and Chandra detections) that exhibit two stellar bulges in their HST images. Our follow-up longslit spectroscopy will then confirm whether the two nuclei in fact correspond to offset AGN or dual AGN. The catalog of 100 offset and dual AGN that we build with this approach will enable offset and dual AGN to be used, for the first time, for statistical studies of black hole mass growth. We will use the catalog to test theoretical predictions about (1) whether major mergers preferentially fuel higher-luminosity AGN, (2) whether offset AGN are preferentially triggered by minor mergers and dual AGN preferentially triggered by major mergers, and (3) at what black hole separations the mass growth of black holes peaks. The primary emphasis of this project is the analysis of multiwavelength archival data from several NASA space missions, which is aligned with the goals of the Astrophysics Data Analysis Program. This project will advance offset and dual AGN as a new tool for statistical studies of galaxy evolution, and the results of our study will promote the NASA Cosmic Origins program in one of its objectives, which is to understand how galaxies evolve.

  8. The NASA Langley Isolator Dynamics Research Lab

    NASA Technical Reports Server (NTRS)

    Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Humphreys, William M.; Wilson, Lloyd G.

    2010-01-01

    The Isolator Dynamics Research Lab (IDRL) is under construction at the NASA Langley Research Center in Hampton, Virginia. A unique test apparatus is being fabricated to support both wall and in-stream measurements for investigating the internal flow of a dual-mode scramjet isolator model. The test section is 24 inches long with a 1-inch by 2-inch cross sectional area and is supplied with unheated, dry air through a Mach 2.5 converging-diverging nozzle. The test section is being fabricated with two sets (glass and metallic) of interchangeable sidewalls to support flow visualization and laser-based measurement techniques as well as static pressure, wall temperature, and high frequency pressure measurements. During 2010, a CFD code validation experiment will be conducted in the lab in support of NASA s Fundamental Aerodynamics Program. This paper describes the mechanical design of the Isolator Dynamics Research Lab test apparatus and presents a summary of the measurement techniques planned for investigating the internal flow field of a scramjet isolator model.

  9. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  10. Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression

    NASA Astrophysics Data System (ADS)

    Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming

    2018-05-01

    High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.

  11. Stirling Technology Development at NASA GRC. Revised

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (NASA Glenn) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing, of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping, of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a nonmagnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. NASA Glenn is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at NASA Glenn when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multidimensional Stirling computational fluid dynamics code to significantly improve Stirling loss

  12. NASA Procurement Career Development Program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The NASA Procurement Career Development Program establishes an agency-wide framework for the management of career development activity in the procurement field. Within this framework, installations are encouraged to modify the various components to meet installation-specific mission and organization requirements. This program provides a systematic process for the assessment of and planning for the development, training, and education required to increase the employees' competence in the procurement work functions. It includes the agency-wide basic knowledge and skills by career field and level upon which individual and organizational development plans are developed. Also, it provides a system that is compatible with other human resource management and development systems, processes, and activities. The compatibility and linkage are important in fostering the dual responsibility of the individual and the organization in the career development process.

  13. Earthbound applications for NASA's physician workstation

    NASA Technical Reports Server (NTRS)

    Grams, R.; Yu, F. S.; Li, B.; Iddings, E.; Fiorentino, R.; Shao, S.; Wang, L.; Broughton, H.

    1993-01-01

    The dream of a space probe to Mars or an astronaut colony on the moon persists. Despite years of setbacks and delays, NASA continues to lay the foundation for a new frontier in space. The necessity of a self contained health maintenance facility is an integral part of this stellar venture. As a subsystem of this health maintenance facility, the physician or astronaut workstation was envisioned as the vehicle of interface between the computer resources of the space station and the care provider. Our efforts to define and build this interface have resulted in a series of programs which can now be tested and refined using earth-based applications. The modules which have dual-use application from the NASA workstation include: patient scheduling and master patient index, pharmacy, laboratory, medical library, problem list/progress notes, and digital medical records. Our current plan is to develop these tools as objects that can be assembled in a variety of configurations. This will allow the technology to be used by the private sector where each doctor can select the starting point of his outpatient office system and add modules as he makes progress in system integration and training.

  14. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  15. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  16. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-03-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  17. The Effect of Niobium Microalloying on Processing and Application Properties of Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Mohrbacher, Hardy

    Dual phase steel is widely used in today's car body manufacturing. Its characteristics of high n-value and good elongation (A80) are the basis of good press formability. However, practical experience has shown unexpected failure in forming operations where tight bending, stretch flanging or hole expansion are predominant. The inhomogeneous microstructure of soft ferrite and hard martensite in combination with highly localized straining is the origin of these problems. Furthermore, weldability and delayed cracking have been experienced to cause problems in ultra-high strength DP steel. Refinement and homogenization of the two-phase microstructure as well as lowering of the carbon content have been identified as remedies to the mentioned problems. However, mill processing of DP steel with reduced carbon content is more difficult especially for the higher strength levels. Niobium microalloying proved to be very effective in increasing the processing window of low-carbon DP steels besides of its natural effect of refining the microstructure. Meanwhile the production of niobium microalloyed DP steel has been established in several markets including China. The paper details the fundamentals, demonstrates respective production concepts and presents examples of application of Nb-microalloyed DP steels.

  18. Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Suh, Dong-Woo; Park, Seong-Jun; Lee, Tae-Ho; Oh, Chang-Seok; Kim, Sung-Joon

    2010-02-01

    Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.

  19. Fabrication of nanofibers reinforced polymer microstructures using femtosecond laser material processing

    NASA Astrophysics Data System (ADS)

    Alubaidy, Mohammed-Amin

    A new method has been introduced for the formation of microfeatures made of nanofibers reinforced polymer, using femtosecond laser material processing. The Femtosecond laser is used for the generation of three-dimensional interweaved nanofibers and the construction of microfeatures, like microchannels and voxels, through multi photon polymerization of nanofiber dispersed polymer resin. A new phenomenon of multiphoton polymerization induced by dual wavelength irradiation was reported for the first time. A significant improvement in the spatial resolution, compared to the two photon absorption (2PA) and the three photon absorption (3PA) processes has been achieved. Conductive polymer microstructures and magnetic polymer microstructures have been fabricated through this method. The mechanical properties of nanofiber reinforced polymer microstructures has been investigated by means of nanoindentation and the volume fraction of the generated nanofibers in the nanocomposite was calculated by using nanoindentation analysis. The results showed significant improvement in strength of the material. The electrical conductivity of the two photon polymerization (TPP) generated microfeatures was measured by a two-probe system at room temperature and the conductivity-temperature relationship was measured at a certain temperature range. The results suggest that the conductive polymer microstructure is reproducible and has a consistent conductivity-temperature relation. The magnetic strength has been characterized using Guassmeter. To demonstrate the potential application of the new fabrication method, a novel class of DNA-functionalized three-dimensional (3D), stand-free, and nanostructured electrodes were fabricated. The developed nanofibrous DNA biosensor has been characterized by cyclic voltammetry with the use of ferrocyanide as an electrochemical redox indicator. Results showed that the probe--target recognition has been improved. This research demonstrated that femtosecond

  20. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    NASA Astrophysics Data System (ADS)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  1. Multiscale Microstructures and Microstructural Effects on the Reliability of Microbumps in Three-Dimensional Integration

    PubMed Central

    Huang, Zhiheng; Xiong, Hua; Wu, Zhiyong; Conway, Paul; Altmann, Frank

    2013-01-01

    The dimensions of microbumps in three-dimensional integration reach microscopic scales and thus necessitate a study of the multiscale microstructures in microbumps. Here, we present simulated mesoscale and atomic-scale microstructures of microbumps using phase field and phase field crystal models. Coupled microstructure, mechanical stress, and electromigration modeling was performed to highlight the microstructural effects on the reliability of microbumps. The results suggest that the size and geometry of microbumps can influence both the mesoscale and atomic-scale microstructural formation during solidification. An external stress imposed on the microbump can cause ordered phase growth along the boundaries of the microbump. Mesoscale microstructures formed in the microbumps from solidification, solid state phase separation, and coarsening processes suggest that the microstructures in smaller microbumps are more heterogeneous. Due to the differences in microstructures, the von Mises stress distributions in microbumps of different sizes and geometries vary. In addition, a combined effect resulting from the connectivity of the phase morphology and the amount of interface present in the mesoscale microstructure can influence the electromigration reliability of microbumps. PMID:28788356

  2. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1994. These results were presented at the Fifth Annual NASA LA2ST Grant Review Meeting held at the Langley Research Center in July of 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, lightweight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  3. Dual-fuel, dual-throat engine preliminary analysis

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1979-01-01

    A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.

  4. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  5. NASA Tech Briefs, August 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Measurement and Controls Data Acquisition System IMU/GPS System Provides Position and Attitude Data Using Artificial Intelligence to Inform Pilots of Weather Fast Lossless Compression of Multispectral-Image Data Developing Signal-Pattern-Recognition Programs Implementing Access to Data Distributed on Many Processors Compact, Efficient Drive Circuit for a Piezoelectric Pump; Dual Common Planes for Time Multiplexing of Dual-Color QWIPs; MMIC Power Amplifier Puts Out 40 mW From 75 to 110 GHz; 2D/3D Visual Tracker for Rover Mast; Adding Hierarchical Objects to Relational Database General-Purpose XML-Based Information Managements; Vaporizable Scaffolds for Fabricating Thermoelectric Modules; Producing Quantum Dots by Spray Pyrolysis; Mobile Robot for Exploring Cold Liquid/Solid Environments; System Would Acquire Core and Powder Samples of Rocks; Improved Fabrication of Lithium Films Having Micron Features; Manufacture of Regularly Shaped Sol-Gel Pellets; Regulating Glucose and pH, and Monitoring Oxygen in a Bioreactor; Satellite Multiangle Spectropolarimetric Imaging of Aerosols; Interferometric System for Measuring Thickness of Sea Ice; Microscale Regenerative Heat Exchanger Protocols for Handling Messages Between Simulation Computers Statistical Detection of Atypical Aircraft Flights NASA's Aviation Safety and Modeling Project Multimode-Guided-Wave Ultrasonic Scanning of Materials Algorithms for Maneuvering Spacecraft Around Small Bodies Improved Solar-Radiation-Pressure Models for GPS Satellites Measuring Attitude of a Large, Flexible, Orbiting Structure

  6. CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test

    NASA Technical Reports Server (NTRS)

    Voland, R. T.; Auslender, A. H.; Smart, M. K.; Roudakov, A. S.; Semenov, V. L.; Kopchenov, V.

    1999-01-01

    The Russian Central Institute of Aviation Motors (CIAM) performed a flight test of a CIAM-designed, hydrogen-cooled/fueled dual-mode scramjet engine over a Mach number range of approximately 3.5 to 6.4 on February 12, 1998, at the Sary Shagan test range in Kazakhstan. This rocket-boosted, captive-carry test of the axisymmetric engine reached the highest Mach number of any scramjet engine flight test to date. The flight test and the accompanying ground test program, conducted in a CIAM test facility near Moscow, were performed under a NASA contract administered by the Dryden Flight Research Center with technical assistance from the Langley Research Center. Analysis of the flight and ground data by both CIAM and NASA resulted in the following preliminary conclusions. An unexpected control sensor reading caused non-optimal fueling of the engine, and flowpath modifications added to the engine inlet during manufacture caused markedly reduced inlet performance. Both of these factors appear to have contributed to the dual-mode scramjet engine operating primarily in a subsonic combustion mode. At the maximum Mach number test point, combustion caused transition from supersonic flow at the fuel injector station to primarily subsonic flow in the combustor. Ground test data were obtained at similar conditions to the flight test, allowing for a meaningful comparison between the ground and flight data. The results of this comparison indicate that the differences in engine performance are small.

  7. NASA Studies Lightning Storms Using High-Flying, Uninhabited Vehicle

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA team studying the causes of electrical storms and their effects on our home planet achieved a milestone on August 21, 2002, completing the study's longest-duration research flight and monitoring four thunderstorms in succession. Based at the Naval Air Station Key West, Florida, researchers with the Altus Cumulus Electrification Study (ACES) used the Altus II remotely-piloted aircraft to study thunderstorms in the Atlantic Ocean off Key West and the west of the Everglades. Using special equipment aboard the Altus II, scientists in ACES will gather electric, magnetic, and optical measurements of the thunderstorms, gauging elements such as lightning activity and the electrical environment in and around the storms. With dual goals of gathering weather data safely and testing the adaptability of the uninhabited aircraft, the ACES study is a collaboration among the Marshall Space Flight Center, the University of Alabama in Huntsville, NASA's Goddard Space Flight Center in Greenbelt, Maryland, Pernsylvania State University in University Park, and General Atomics Aeronautical Systems, Inc.

  8. Dual-Materials Dispersion Apparatus

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. This drawing depicts a cross-section of a set of Dual-Materials Dispersion Apparatus (DMDA) specimen wells, one of which can include a reverse osmosis membrane to dewater a protein solution and thus cause crystallization. Depending on individual needs, two or three wells may be used, the membrane may be absent, or other proprietary enhancements may be present. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  9. Microstructure Evolution and Mechanical Behavior of a CMnSiAl TRIP Steel Subjected to Partial Austenitization Along with Quenching and Partitioning Treatment

    NASA Astrophysics Data System (ADS)

    Kong, H.; Chao, Q.; Cai, M. H.; Pavlina, E. J.; Rolfe, B.; Hodgson, P. D.; Beladi, H.

    2018-02-01

    The present study investigated the microstructure evolution and mechanical behavior in a low carbon CMnSiAl transformation-induced plasticity (TRIP) steel, which was subjected to a partial austenitization at 1183 K (910 °C) followed by one-step quenching and partitioning (Q&P) treatment at different isothermal holding temperatures of [533 K to 593 K (260 °C to 320 °C)]. This thermal treatment led to the formation of a multi-phase microstructure consisting of ferrite, tempered martensite, bainitic ferrite, fresh martensite, and retained austenite, offering a superior work-hardening behavior compared with the dual-phase microstructure (i.e., ferrite and martensite) formed after partial austenitization followed by water quenching. The carbon enrichment in retained austenite was related to not only the carbon partitioning during the isothermal holding process, but also the carbon enrichment during the partial austenitization and rapid cooling processes, which has broadened our knowledge of carbon partitioning mechanism in conventional Q&P process.

  10. NASA technology applications team: Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two critical aspects of the Applications Engineering Program were especially successful: commercializing products of Application Projects; and leveraging NASA funds for projects by developing cofunding from industry and other agencies. Results are presented in the following areas: the excimer laser was commercialized for clearing plaque in the arteries of patients with coronary artery disease; the ultrasound burn depth analysis technology is to be licensed and commercialized; a phased commercialization plan was submitted to NASA for the intracranial pressure monitor; the Flexible Agricultural Robotics Manipulator System (FARMS) is making progress in the development of sensors and a customized end effector for a roboticized greenhouse operation; a dual robot are controller was improved; a multisensor urodynamic pressure catherer was successful in clinical tests; commercial applications were examined for diamond like carbon coatings; further work was done on the multichannel flow cytometer; progress on the liquid airpack for fire fighters; a wind energy conversion device was tested in a low speed wind tunnel; and the Space Shuttle Thermal Protection System was reviewed.

  11. NASA Studies Lightning Storms Using High-Flying, Uninhabited Vehicle

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A NASA team studying the causes of electrical storms and their effects on our home planet achieved a milestone on August 21, 2002, completing the study's longest-duration research flight and monitoring four thunderstorms in succession. Radio news media can talk with Dr. Richard Blakeslee, the project's principal investigator, and Tony Kim, project manager at the Marshall Space Flight Center (MSFC), about their results and how their work will help improve future weather forecasting ability. Based at the Naval Air Station Key West, Florida, researchers with the Altus Cumulus Electrification Study (ACES) used the Altus II remotely- piloted aircraft to study a thunderstorm in the Atlantic Ocean off Key West, two storms at the western edge of the Everglades, and a large storm over the northwestern corner of the Everglades. This photograph shows Tony Kim And Dr. Richard Blakeslee of MSFC testing aircraft sensors that would be used to measure the electric fields produced by thunderstorm as part of NASA's ACES. With dual goals of gathering weather data safely and testing the adaptability of the uninhabited aircraft, the ACES study is a collaboration among the MSFC, the University of Alabama in Huntsville, NASA's Goddard Space Flight Center in Greenbelt, Maryland, Pernsylvania State University in University Park, and General Atomics Aeronautical Systems, Inc.

  12. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    DTIC Science & Technology

    2013-08-23

    REPORT Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design 14. ABSTRACT 16. SECURITY...15. SUBJECT TERMS materials design, stainless steels , plastic deformation by twinning, computational materials science, experimental characterization...Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 30-Jun-2013 Stablization of Nanotwinned Microstructures in Stainless Steels Through

  13. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1996-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.

  14. Dual Credit/Dual Enrollment and Data Driven Policy Implementation

    ERIC Educational Resources Information Center

    Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug

    2014-01-01

    The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…

  15. Influence of Microstructure and Surface Activation of Dual-Phase Membrane Ce 0.8 Gd 0.2 O 2-δ -FeCo 2 O 4 on Oxygen Permeation

    DOE PAGES

    Ramasamy, Madhumidha; Baumann, Stefan; Palisaitis, Justinas; ...

    2015-09-24

    In dual-phase oxygen transport membranes we noticed that there is fast-growing interest in research for oxyfuel combustion process application. One such potential candidate is CGO-FCO (60wt% Ce 0.8Gd 0.2O 2-δ-40wt% FeCo 2O4) identified to provide good oxygen permeation flux with substantial stability in harsh atmosphere. Dense CGO-FCO membranes of 1mm thickness were fabricated by sintering dry pellets pressed from powders synthesized by one-pot method (modified Pechini process) at 1200 degrees C for 10h. Microstructure analysis indicates presence of a third orthorhombic perovskite phase in the sintered composite. We also identified that the spinel phase tends to form an oxygen deficientmore » phase at the grain boundary of spinel and CGO phases. Surface exchange limitation of the membranes was overcome by La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) porous layer coating over the composite. Moreover, the oxygen permeation flux of the CGO-FCO screen printed with a porous layer of 10mthick LSCF is 0.11mL/cm 2 per minute at 850 degrees C with argon as sweep and air as feed gas at the rates of 50 and 250mL/min.« less

  16. Microstructure and Macrosegregation Study of Directionally Solidified Al-7Si Samples Processed Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Erdman, R. G.; Poirier, David R.; Tewari, S.N.; Grugel, R. N.

    2014-01-01

    This talk reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). The DS-experiments have been carried out under 1-g at Cleveland State University (CSU) and under low-g on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially-processed samples and the ISS-processed samples. We have observed that the primary dendrite arm spacings of two samples grown in the low-g environment of the ISS show good agreement with a dendrite-growth model based on diffusion controlled growth. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosgregation. In order to process DS-samples aboard the ISS, dendritic-seed crystals have to partially remelted in a stationary thermal gradient before the DS is carried out. Microstructural changes and macrosegregation effects during this period are described.

  17. NASA Update

    NASA Image and Video Library

    2010-04-08

    "NASA Update" program with NASA Administrator Charles Bolden, NASA Deputy Administrator Lori Garver and NASA Acting Asistant Administrator for Public Affairs Bob Jacobs as moderator, NASA Headquarters, Thursday, April 8, 2010 in Washington. Photo Credit: (NASA/Bill Ingalls)

  18. Using NASA Remotely Sensed Data to Help Characterize Environmental Risk Factors for National Public Health Applications

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Crosson, William; Estes, Maury; Estes, Sue; Hemmings, Sarah; Quattrochi, Dale; McClure, Keslie; Kent, Shia; Economou, Sigrid; Puckett, Mark; hide

    2012-01-01

    This project has dual goals in decision ]making activities .. Providing information to decision makers about associations between environmental exposures and health conditions in a large national cohort study. Enriching the CDC Wide ]ranging Online Data for Epidemiologic Research (WONDER) system by integrating environmental exposure data. .. Develop daily high ]quality spatial data sets of environmental variables for the conterminous U.S. for the years 2003-2008 utilizing NASA data (Objective 1). Fine Particulates (PM2.5) (NASA MODIS and EPA AQS). Land Surface Temperature (NASA MODIS). Solar Insolation and Heat ]related Products (Reanalysis Data). Link these environmental variables with public health data from a national cohort study and examine environmental health relationships (Objective 2). Cognitive Function. Hypertension. Make the environmental datasets available to public health professionals, researchers and the general public via the CDC WONDER system (Objective 3).

  19. Computational Fluid Dynamics Simulation of Dual Bell Nozzle Film Cooling

    NASA Technical Reports Server (NTRS)

    Braman, Kalen; Garcia, Christian; Ruf, Joseph; Bui, Trong

    2015-01-01

    Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) are working together to advance the technology readiness level (TRL) of the dual bell nozzle concept. Dual bell nozzles are a form of altitude compensating nozzle that consists of two connecting bell contours. At low altitude the nozzle flows fully in the first, relatively lower area ratio, nozzle. The nozzle flow separates from the wall at the inflection point which joins the two bell contours. This relatively low expansion results in higher nozzle efficiency during the low altitude portion of the launch. As ambient pressure decreases with increasing altitude, the nozzle flow will expand to fill the relatively large area ratio second nozzle. The larger area ratio of the second bell enables higher Isp during the high altitude and vacuum portions of the launch. Despite a long history of theoretical consideration and promise towards improving rocket performance, dual bell nozzles have yet to be developed for practical use and have seen only limited testing. One barrier to use of dual bell nozzles is the lack of control over the nozzle flow transition from the first bell to the second bell during operation. A method that this team is pursuing to enhance the controllability of the nozzle flow transition is manipulation of the film coolant that is injected near the inflection between the two bell contours. Computational fluid dynamics (CFD) analysis is being run to assess the degree of control over nozzle flow transition generated via manipulation of the film injection. A cold flow dual bell nozzle, without film coolant, was tested over a range of simulated altitudes in 2004 in MSFC's nozzle test facility. Both NASA centers have performed a series of simulations of that dual bell to validate their computational models. Those CFD results are compared to the experimental results within this paper. MSFC then proceeded to add film injection to the CFD grid of the dual bell nozzle. A series of

  20. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  1. Development of the Dual Aerodynamic Nozzle Model for the NTF Semi-Span Model Support System

    NASA Technical Reports Server (NTRS)

    Jones, Greg S.; Milholen, William E., II; Goodliff, Scott L.

    2011-01-01

    The recent addition of a dual flow air delivery system to the NASA Langley National Transonic Facility was experimentally validated with a Dual Aerodynamic Nozzle semi-span model. This model utilized two Stratford calibration nozzles to characterize the weight flow system of the air delivery system. The weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions to be 0.1 to 23 lbm/sec for the high flow leg and 0.1 to 9 lbm/sec for the low flow leg. Results from this test verified system performance and identified problems with the weight-flow metering system that required the vortex flow meters to be replaced at the end of the test.

  2. Advanced Antenna Design for NASA's EcoSAR Instrument

    NASA Technical Reports Server (NTRS)

    Du Toit, Cornelis F.; Deshpande, Manohar; Rincon, Rafael F.

    2016-01-01

    Advanced antenna arrays were designed for NASA's EcoSAR airborne radar instrument. EcoSAR is a beamforming synthetic aperture radar instrument designed to make polarimetric and "single pass" interferometric measurements of Earth surface parameters. EcoSAR's operational requirements of a 435MHz center frequency with up to 200MHz bandwidth, dual polarization, high cross-polarization isolation (> 30 dB), +/- 45deg beam scan range and antenna form-factor constraints imposed stringent requirements on the antenna design. The EcoSAR project successfully developed, characterized, and tested two array antennas in an anechoic chamber. EcoSAR's first airborne campaign conducted in the spring of 2014 generated rich data sets of scientific and engineering value, demonstrating the successful operation of the antennas.

  3. Predicting dual-task performance with the Multiple Resources Questionnaire (MRQ).

    PubMed

    Boles, David B; Bursk, Jonathan H; Phillips, Jeffrey B; Perdelwitz, Jason R

    2007-02-01

    The objective was to assess the validity of the Multiple Resources Questionnaire (MRQ) in predicting dual-task interference. Subjective workload measures such as the Subjective Workload Assessment Technique (SWAT) and NASA Task Load Index are sensitive to single-task parameters and dual-task loads but have not attempted to measure workload in particular mental processes. An alternative is the MRQ. In Experiment 1, participants completed simple laboratory tasks and the MRQ after each. Interference between tasks was then correlated to three different task similarity metrics: profile similarity, based on r(2) between ratings; overlap similarity, based on summed minima; and overall demand, based on summed ratings. Experiment 2 used similar methods but more complex computer-based games. In Experiment 1 the MRQ moderately predicted interference (r = +.37), with no significant difference between metrics. In Experiment 2 the metric effect was significant, with overlap similarity excelling in predicting interference (r = +.83). Mean ratings showed high diagnosticity in identifying specific mental processing bottlenecks. The MRQ shows considerable promise as a cognitive-process-sensitive workload measure. Potential applications of the MRQ include the identification of dual-processing bottlenecks as well as process overloads in single tasks, preparatory to redesign in areas such as air traffic management, advanced flight displays, and medical imaging.

  4. Ultrasonic Guided-Wave Scan System Used to Characterize Microstructure and Defects in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Verrilli, Michael J.; Bhatt, Ramakrishna T.

    2004-01-01

    Ceramic matrix composites (CMCs) are being developed for advanced aerospace propulsion applications to save weight, improve reuse capability, and increase performance. However, mechanical and environmental loads applied to CMCs can cause discrete flaws and distributed microdamage, significantly reducing desirable physical properties. Such microdamage includes fiber/matrix debonding (interface failure), matrix microcracking, fiber fracture and buckling, oxidation, and second phase formation. A recent study (ref. 1) of the durability of a C/SiC CMC discussed the requirement for improved nondestructive evaluation (NDE) methods for monitoring degradation in these materials. Distributed microdamage in CMCs has proven difficult to characterize nondestructively because of the complex microstructure and macrostructure of these materials. This year, an ultrasonic guided-wave scan system developed at the NASA Glenn Research Center was used to characterize various microstructural and flaw conditions in SiC/SiC (silicon carbide fiber in silicon carbide matrix) and C/SiC (carbon fiber in silicon carbide matrix) CMC samples.

  5. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  6. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and NASA Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  7. NASA Tech Briefs, January 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics covered include: Cryogenic Flow Sensor; Multi-Sensor Mud Detection; Gas Flow Detection System; Mapping Capacitive Coupling Among Pixels in a Sensor Array; Fiber-Based Laser Transmitter for Oxygen A-Band Spectroscopy and Remote Sensing; Low-Profile, Dual-Wavelength, Dual-Polarized Antenna; Time-Separating Heating and Sensor Functions of Thermistors in Precision Thermal Control Applications; Cellular Reflectarray Antenna; A One-Dimensional Synthetic-Aperture Microwave Radiometer; Electrical Switching of Perovskite Thin-Film Resistors; Two-Dimensional Synthetic-Aperture Radiometer; Ethernet-Enabled Power and Communication Module for Embedded Processors; Electrically Variable Resistive Memory Devices; Improved Attachment in a Hybrid Inflatable Pressure Vessel; Electrostatic Separator for Beneficiation of Lunar Soil; Amorphous Rover; Space-Frame Antenna; Gear-Driven Turnbuckle Actuator; In-Situ Focusing Inside a Thermal Vacuum Chamber; Space-Frame Lunar Lander; Wider-Opening Dewar Flasks for Cryogenic Storage; Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation; Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C; Designs and Materials for Better Coronagraph Occulting Masks; Fuel-Cell-Powered Vehicle with Hybrid Power Management; Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher; Fuel-Cell Water Separator; Turbulence and the Stabilization Principle; Improved Cloud Condensation Nucleus Spectrometer; Better Modeling of Electrostatic Discharge in an Insulator; Sub-Aperture Interferometers; Terahertz Mapping of Microstructure and Thickness Variations; Multiparallel Three-Dimensional Optical Microscopy; Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber; Vacuum-Compatible Wideband White Light and Laser Combiner Source System; Optical Tapers as White-Light WGM Resonators; EPR Imaging at a Few Megahertz Using SQUID Detectors; Reducing Field Distortion in Magnetic Resonance Imaging; Fluorogenic Cell

  8. The mechanical properties and microstructures of vanadium bearing high strength dual phase steels processed with continuous galvanizing line simulations

    NASA Astrophysics Data System (ADS)

    Gong, Yu

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance. At the beginning of this thesis, compositions with a common base but containing various additions of V or Nb with or without high N were designed and subjected to Gleeble simulations of different galvanizing(GI), galvannealing(GA) and supercooling processing. The results revealed the phase balance was strongly influenced by the different microalloying additions, while the strengths of each phase were somewhat less affected. Our research revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). In the late part of this thesis, the base composition was a low carbon steel which would exhibit good spot weldability. To this steel were added two levels of Cr and Mo for strengthening the ferrite and increasing the hardenability of intercritically formed austenite. Also, these steels were produced with and without the addition of vanadium in an effort to further increase the strength. Since earlier studies revealed a relationship between the nature of the starting cold rolled microstructure and the response to CGL processing, the variables of hot band coiling temperature and level of cold reduction prior to annealing were also studied. Finally, in an effort to increase strength and ductility of both the final sheet (general formability) and the sheared edges of cold punched holes (local formability), a new thermal path was developed that replaced the conventional GI ferrite-martensite microstructure with a new ferrite-martensite-tempered martensite and retained austenite microstructure. The new

  9. Chemistry in microstructured reactors.

    PubMed

    Jähnisch, Klaus; Hessel, Volker; Löwe, Holger; Baerns, Manfred

    2004-01-16

    The application of microstructured reactors in the chemical process industry has gained significant importance in recent years. Companies that offer not only microstructured reactors, but also entire chemical process plants and services relating to them, are already in existence. In addition, many institutes and universities are active within this field, and process-engineering-oriented reviews and a specialized book are available. Microstructured systems can be applied with particular success in the investigation of highly exothermic and fast reactions. Often the presence of temperature-induced side reactions can be significantly reduced through isothermal operations. Although microstructured reaction techniques have been shown to optimize many synthetic procedures, they have not yet received the attention they deserve in organic chemistry. For this reason, this Review aims to address this by providing an overview of the chemistry in microstructured reactors, grouped into liquid-phase, gas-phase, and gas-liquid reactions.

  10. Correlation of microstructure, tensile properties and hole expansion ratio in cold rolled advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Terrazas, Oscar R.

    The demand for advanced high strength steels (AHSS) with higher strengths is increasing in the automotive industry. While there have been major improvements recently in the trade-off between ductility and strength, sheared-edge formability of AHSS remains a critical issue. AHSS sheets exhibit cracking during stamping and forming operations below the predictions of forming limits. It has become important to understand the correlation between microstructure and sheared edge formability. The present work investigates the effects of shearing conditions, microstructure, and tensile properties on sheared edge formability. Seven commercially produced steels with tensile strengths of 1000 +/- 100 MPa were evaluated: five dual-phase (DP) steels with different compositions and varying microstructural features, one trip aided bainitic ferrite (TBF) steel, and one press-hardened steel tempered to a tensile strength within the desired range. It was found that sheared edge formability is influenced by the martensite in DP steels. Quantitative stereology measurements provided results that showed martensite size and distribution affect hole expansion ratio (HER). The overall trend is that HER increases with more evenly dispersed martensite throughout the microstructure. This microstructure involves a combination of martensite size, contiguity, mean free distance, and number of colonies per unit area. Additionally, shear face characterization showed that the fracture and burr region affect HER. The HER decreases with increasing size of fracture and burr region. With a larger fracture and burr region more defects and/or micro-cracks will be present on the shear surface. This larger fracture region on the shear face facilitates cracking in sheared edge formability. Finally, the sheared edge formability is directly correlated to true fracture strain (TFS). The true fracture strain from tensile samples correlates to the HER values. HER increases with increasing true fracture strain.

  11. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George R.

    1996-01-01

    It is widely known that the average American citizen has either no idea or the wrong impression of what NASA is doing. The most common impression is that NASA's sole mission is to build and launch spacecraft and that the everyday experience of the common citizen would be impacted very little if NASA failed to exist altogether. Some feel that most of NASA's efforts are much too expensive and that the money would be better used on other efforts. Others feel that most of NASA's efforts either fail altogether or fail to meet their original objectives. Yet others feel that NASA is so mired in bureaucracy that it is no longer able to function. The goal of the NASA Ambassadors Program (NAP) is to educate the general populace as to what NASA's mission and goals actually are, to re-excite the "man on the street" with NASA's discoveries and technologies, and to convince him that NASA really does impact his everyday experience and that the economy of the U.S. is very dependent on NASA-type research. Each of the NASA centers currently run a speakers bureau through its Public Affairs Office (PAO). The speakers, NASA employees, are scheduled on an "as available" status and their travel is paid by NASA. However, there are only a limited number of them and their message may be regarded as being somewhat biased as they are paid by NASA. On the other hand, there are many members of NASA's summer programs which come from all areas of the country. Most of them not only believe that NASA's mission is important but are willing and able to articulate it to others. Furthermore, in the eyes of the public, they are probably more effective as ambassadors for NASA than are the NASA employees, as they do not derive their primary funding from it. Therefore it was decided to organize materials for them to use in presentations to general audiences in their home areas. Each person who accepted these materials was to be called a "NASA Ambassador".

  12. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Thermomechanical Modeling of Dual-Phase Microstructures and Dissimilar Material Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2016-09-30

    Finite element (FE) continuum damage mechanics (CDM) models have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including preliminary thermomechanical analyses of cracked joints and implementation of dual-phase damage models.

  13. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  14. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, right, looks on as NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  15. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver, second right on stage, speaks as NASA Administrator Charles F. Bolden Jr. looks on during a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  16. Microstructure and Shape Memory Behavior of Ti-Nb Shape Memory Alloy Thin Film

    NASA Astrophysics Data System (ADS)

    Meng, X. L.; Sun, B.; Sun, J. Y.; Gao, Z. Y.; Cai, W.; Zhao, L. C.

    2017-09-01

    Ti-Nb shape memory alloy (SMA) thin film is a promising candidate applied as microactuator in biomedical field. In this study, the microstructure and shape memory behavior of Ti-Nb SMA thin films in different heat treatment conditions have been investigated. Fine ω phases embedded in the β phase matrix suppress the martensitic transformation of the films. As a result, the as-deposited and most of the annealed films consist of the β and α″ dual phases. The annealed Ti-Nb thin film shows excellent superelasticity effect when deformed above the reverse martensitic transformation temperature, that is 3.5% total recovery strain can be obtained when 4% pre-strain is loaded.

  17. NASA Technologies that Benefit Society

    NASA Technical Reports Server (NTRS)

    Griffin, Amanda

    2012-01-01

    Applications developed on Earth of technology needed for space flight have produced thousands of spinoffs that contribute to improving national security, the economy, productivity and lifestyle. Over the course of it s history, NASA has nurtured partnerships with the private sector to facilitate the transfer of NASA-developed technology. For every dollar spent on research and development in the space program, it receives back $7 back in the form of corporate and personal income taxes from increased jobs and economic growth. A new technology, known as Liquid-metal alloy, is the result of a project funded by NASA s Jet Propulsion Lab. The unique technology is a blend of titanium, zirconium, nickel, copper and beryllium that achieves a strength greater than titanium. NASA plans to use this metal in the construction of a drill that will help for the search of water beneath the surface of Mars. Many other applications include opportunities in aerospace, defense, military, automotive, medical instrumentation and sporting goods.Developed in the 1980 s, the original Sun Tigers Inc sunlight-filtering lens has withstood the test of time. This technology was first reported in 1987 by NASA s JPL. Two scientists from JPL were later tasked with studying the harmful effects of radiation produced during laser and welding work. They came up with a transparent welding curtain that absorbs, filters and scatters light to maximize protection of human eyes. The two scientists then began doing business as Eagle Eye Optics. Each pair of sunglasses comes complete with ultraviolet protection, dual layer scratch resistant coating, polarized filters for maximum protection against glare and high visual clarity. Sufficient evidence shows that damage to the eye, especially to the retina, starts much earlier than most people realize. Sun filtering sunglasses are important. Winglets seen at the tips of airplane wings are among aviations most visible fuel-saving, performance enhancing technology

  18. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  19. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1986-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  20. Use of a Dual-Structure Constitutive Model for Predicting the Long-Term Behavior of an Expansive Clay Buffer in a Nuclear Waste Repository

    DOE PAGES

    Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura; ...

    2015-12-31

    Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and

  1. A simple microstructure return model explaining microstructure noise and Epps effects

    NASA Astrophysics Data System (ADS)

    Saichev, A.; Sornette, D.

    2014-01-01

    We present a novel simple microstructure model of financial returns that combines (i) the well-known ARFIMA process applied to tick-by-tick returns, (ii) the bid-ask bounce effect, (iii) the fat tail structure of the distribution of returns and (iv) the non-Poissonian statistics of inter-trade intervals. This model allows us to explain both qualitatively and quantitatively important stylized facts observed in the statistics of both microstructure and macrostructure returns, including the short-ranged correlation of returns, the long-ranged correlations of absolute returns, the microstructure noise and Epps effects. According to the microstructure noise effect, volatility is a decreasing function of the time-scale used to estimate it. The Epps effect states that cross correlations between asset returns are increasing functions of the time-scale at which the returns are estimated. The microstructure noise is explained as the result of the negative return correlations inherent in the definition of the bid-ask bounce component (ii). In the presence of a genuine correlation between the returns of two assets, the Epps effect is due to an average statistical overlap of the momentum of the returns of the two assets defined over a finite time-scale in the presence of the long memory process (i).

  2. NASA Update.

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver answers questions during a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Garver and NASA Administrator Charles Bolden took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  3. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, senior advisor to the NASA Administator, far left, makes a point as he introduces NASA Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  4. Impact of Weight Loss With Intragastric Balloon on Bone Density and Microstructure in Obese Adults.

    PubMed

    Madeira, Eduardo; Madeira, Miguel; Guedes, Erika Paniago; Mafort, Thiago Thomaz; Moreira, Rodrigo Oliveira; de Mendonça, Laura Maria Carvalho; Lima, Inayá Correa Barbosa; Neto, Leonardo Vieira; de Pinho, Paulo Roberto Alves; Lopes, Agnaldo José; Farias, Maria Lucia Fleiuss

    2018-03-21

    The historical concept that obesity protects against bone fractures has been questioned. Weight loss appears to reduce bone mineral density (BMD); however, the results in young adults are inconsistent, and data on the effects of weight loss on bone microstructure are limited. This study aimed to evaluate the impact of weight loss using an intragastric balloon (IGB) on bone density and microstructure. Forty obese patients with metabolic syndrome (mean age 35.1 ± 7.3 yr) used an IGB continuously for 6 mo. Laboratory tests, areal BMD, and body composition measurements via dual-energy X-ray absorptiometry, and volumetric BMD and bone microstructure measurements via high-resolution peripheral quantitative computed tomography were conducted before IGB placement and after IGB removal. The mean weight loss was 11.5%. After 6 mo, there were significant increases in vitamin D and carboxyterminal telopeptide of type 1 collagen levels. After IGB use, areal BMD increased in the spine but decreased in the total femur and the 33% radius. Cortical BMD increased in the distal radius but tended to decrease in the distal tibia. The observed trabecular bone loss in the distal tibia contributed to the decline in the total volumetric BMD at this site. There was a negative correlation between the changes in leptin levels and the measures of trabecular quality in the tibia on high-resolution peripheral quantitative computed tomography. Weight loss may negatively impact bone microstructure in young patients, especially for weight-bearing bones, in which obesity has a more prominent effect. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  5. Microstructural characterization and mechanical properties of Excel alloy pressure tube material

    NASA Astrophysics Data System (ADS)

    Sattari, Mohammad

    Microstructural characterization and mechanical properties of Excel (Zr-3.5%Sn-0.8%Mo-0.8%Nb), a dual phase alphaZr -hcp and betaZr-bcc pressure tube material, is discussed in the current study which is presented in manuscript format. Chapter 3 discusses phase transformation temperatures using different techniques such as quantitative metallography, differential scanning calorimetry (DSC), and electrical resistivity. It was found that the alphaZr → alphaZr+beta Zr and alphaZr+betaZr → betaZr transformation temperatures are in the range of 600-690°C and 960-970°C respectively. Also it was observed that upon quenching from temperatures below ˜860°C the martensitic transformation of betaZr to alpha'--hcp is halted and instead the microstructure transforms into retained Zr with o hexagonal precipitates inside betaZr grains. Chapter 4 deals with aging response of Excel alloy. Precipitation hardening was observed in samples water-quenched from high in the alphaZr+beta Zr or betaZr regions followed by aging. The optimum aging conditions were found to be 450°C for 1 hour. Transmission electron microscopy (TEM) showed dispersion of fine precipitates (˜10nm) inside the martensitic phase. Energy dispersive X-ray spectroscopy (EDS) showed the chemical composition of precipitates to be Zr-30wt%Mo-25wt%Nb-2wt%Fe. Electron crystallography using whole pattern symmetry of the convergent beam electron diffraction (CBED) patterns together with selected area diffraction (SAD) polycrystalline ring patterns, suggests the -6m2 point group for the precipitates belonging to hexagonal crystal structure, with a= 2.936 A and c=4.481 A, i.e. c/a =1.526. Crystallographic texture and high temperature tensile properties as well as creep-rupture properties of different microstructures are discussed in Chapter 5. Texture analysis showed that solution treatment high in the alpha Zr+betaZr or betaZr regions followed by water quenching or air cooling results in a more random texture compared

  6. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  7. Evolution and Control of 2219 Aluminum Microstructural Features through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  8. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Administrator Charles F. Bolden Jr., and Deputy Administrator Lori Garver deliver a NASA Update on, Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  9. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Administrator Lori Garver listens as NASA Administrator Charles Bolden answers a question during a NASA Update on Tuesday, Feb. 15, 2011, at NASA Headquarters in Washington. Bolden and Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  10. NASA Update

    NASA Image and Video Library

    2011-02-15

    NASA Deputy Associate Administrator for the Office of Communications Bob Jacobs moderates the NASA Update program, Tuesday, Feb. 15, 2011 at NASA Headquarters in Washington. NASA's 12th Administrator Charles Bolden and Deputy Administrator Lori Garver took the time discuss the agency’s fiscal year 2012 budget request and to take questions from employees. Photo Credit: (NASA/Bill Ingalls)

  11. Advanced Durability and Damage Tolerance Design and Analysis Methods for Composite Structures: Lessons Learned from NASA Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.

    2003-01-01

    Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.

  12. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  13. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left, and Deputy Administrator Lori Garver are seen during their first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  14. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. speaks during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  15. Imaging brain tumour microstructure.

    PubMed

    Nilsson, Markus; Englund, Elisabet; Szczepankiewicz, Filip; van Westen, Danielle; Sundgren, Pia C

    2018-05-08

    Imaging is an indispensable tool for brain tumour diagnosis, surgical planning, and follow-up. Definite diagnosis, however, often demands histopathological analysis of microscopic features of tissue samples, which have to be obtained by invasive means. A non-invasive alternative may be to probe corresponding microscopic tissue characteristics by MRI, or so called 'microstructure imaging'. The promise of microstructure imaging is one of 'virtual biopsy' with the goal to offset the need for invasive procedures in favour of imaging that can guide pre-surgical planning and can be repeated longitudinally to monitor and predict treatment response. The exploration of such methods is motivated by the striking link between parameters from MRI and tumour histology, for example the correlation between the apparent diffusion coefficient and cellularity. Recent microstructure imaging techniques probe even more subtle and specific features, providing parameters associated to cell shape, size, permeability, and volume distributions. However, the range of scenarios in which these techniques provide reliable imaging biomarkers that can be used to test medical hypotheses or support clinical decisions is yet unknown. Accurate microstructure imaging may moreover require acquisitions that go beyond conventional data acquisition strategies. This review covers a wide range of candidate microstructure imaging methods based on diffusion MRI and relaxometry, and explores advantages, challenges, and potential pitfalls in brain tumour microstructure imaging. Copyright © 2018. Published by Elsevier Inc.

  16. Non-Toxic Dual Thrust Reaction Control Engine Development for On-Orbit APS Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.

    2003-01-01

    A non-toxic dual thrust proof-of-concept demonstration engine was successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the Next Generation Launch Technology (NGLT) program. The demonstration engine utilized the existing Kistler K-1 870 lbf LOX/Ethanol orbital maneuvering engine ( O m ) coupled with some special test equipment (STE) that enabled engine operation at 870 lbf in the primary mode and 25 lbf in the vernier mode. Ambient testing in primary mode varied mixture ratio (MR) from 1.28 to 1.71 and chamber pressure (P(c) from 110 to 181 psia, and evaluated electrical pulse widths (EPW) of 0.080, 0.100 and 0.250 seconds. Altitude testing in vernier mode explored igniter and thruster pulsing characteristics, long duration steady state operation (greater than 420 sec) and the impact of varying the percent fuel film cooling on vernier performance and chamber thermal response at low PC (4 psia). Data produced from the testing provided calibration of the performance and thermal models used in the design of the next version of the dual thrust Reaction Control Engine (RCE).

  17. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on at right,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  18. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr., left on stage, speaks during his first NASA Update as Deputy Administrator Lori Garver looks on at right,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  19. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Deputy Administrator Lori Garver makes a point as she speaks during a NASA Update with Administrator Charles F. Bolden Jr.,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  20. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    1994-01-01

    The primary motivation for this research was to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Four primary hypotheses were to be tested under this current grant: (1) A fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment. (2) An interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment. (3) The Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results. (4) The microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. These hypotheses were tested. It was concluded that none of these can explain the Grumman flight results. Experiments also were performed on the influence of current pulses on MnBi-Bi microstructure. A thorough review was made of all experimental results on the influence of convection on the fiber spacing in rod eutectics, including results from solidification in space or at high gravity, and use of mechanical stirring or a magnetic field. Contradictory results were noted. The predictions of models for convective influences were compared with the experimental results. Vigorous mechanical stirring appears to coarsen the microstructure by altering the concentration field in front of the freezing interface. Gentle convection is believed to alter the microstructure of a fibrous eutectic only when it causes a fluctuating freezing rate with a system for which the kinetics of fiber branching differs from that for fiber termination. These fluctuations may cause the microstructure to coarsen or to become finer, depending on the relative kinetics of these processes. The microstructure of lamellar eutectics is less sensitive to

  1. Predicting grid-size-dependent fracture strains of DP980 with a microstructure-based post-necking model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Hu, X. H.; Choi, K. S.

    Ductile fracture is a local phenomenon, and it is well established that fracture strain levels depend on both stress triaxiality and the resolution (grid size) of strain measurements. Two-dimensional plane strain post-necking models with different representative volume element (RVE) sizes are used to predict the size-dependent fracture strain of a commercial dual-phase steel, DP980. The models are generated from the actual microstructures, and the individual phase flow properties and literature-based individual phase damage parameters for the Johnson-Cook model are used for ferrite and martensite. A monotonic relationship is predicted: the smaller the model size, the higher the fracture strain. Thus,more » a general framework is developed to quantify the size-dependent fracture strains for multiphase materials. In addition to the RVE sizes, the influences of intrinsic microstructure features, i.e., the flow curve and fracture strains of the two constituent phases, on the predicted fracture strains also are examined. Application of the derived fracture strain versus RVE size relationship is demonstrated with large clearance trimming simulations with different element sizes.« less

  2. Polarization Enhanced Charge Transfer: Dual-Band GaN-Based Plasmonic Photodetector.

    PubMed

    Jia, Ran; Zhao, Dongfang; Gao, Naikun; Liu, Duo

    2017-01-13

    Here, we report a dual-band plasmonic photodetector based on Ga-polar gallium nitride (GaN) for highly sensitive detection of UV and green light. We discover that decoration of Au nanoparticles (NPs) drastically increases the photoelectric responsivities by more than 50 times in comparition to the blank GaN photodetector. The observed behaviors are attributed to polarization enhanced charge transfer of optically excited hot electrons from Au NPs to GaN driven by the strong spontaneous polarization field of Ga-polar GaN. Moreover, defect ionization promoted by localized surface plasmon resonances (LSPRs) is also discussed. This novel type of photodetector may shed light on the design and fabrication of photoelectric devices based on polar semiconductors and microstructural defects.

  3. Microstructure and Mechanical Properties of Extruded Gamma Microstructure Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, J.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at.%) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C. exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  4. Heat Treatment Devices and Method of Operation Thereof to Produce Dual Microstructure Superalloys Disks

    NASA Technical Reports Server (NTRS)

    Gayda, John (Inventor); Gabb, Timothy P. (Inventor); Kantzos, Peter T. (Inventor)

    2003-01-01

    A heat treatment assembly and heat treatment methods are disclosed for producing different microstructures in the bore and rim portions of nickel-based superalloy disks, particu- larly suited for gas turbine applications. The heat treatment assembly is capable of being removed from the furnace and disassembled to allow rapid fan or oil quenching of the disk. For solutioning heat treatments of the disk, temperatures higher than that of this solvus temperature of the disk are used to produce coarse grains in the rim of each disk so as to give maximum creep and dwell crack resistance at the rim service temperature. At the same time, solution temperature lower than the solvus temperature of the disk are provided to produce fine grain in the bore of the disk so as to give maximum strength and low cycle fatigue resistance.

  5. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. is seen through a television camera monitor during his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  6. NASA Update

    NASA Image and Video Library

    2009-07-20

    NASA Administrator Charles F. Bolden Jr. is seen on a television camera monitor while speaking at his first NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, NASA's 12th Administrator, was joined by Deputy Administrator Lori Garver where they took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  7. Computational discovery of extremal microstructure families

    PubMed Central

    Chen, Desai; Skouras, Mélina; Zhu, Bo; Matusik, Wojciech

    2018-01-01

    Modern fabrication techniques, such as additive manufacturing, can be used to create materials with complex custom internal structures. These engineered materials exhibit a much broader range of bulk properties than their base materials and are typically referred to as metamaterials or microstructures. Although metamaterials with extraordinary properties have many applications, designing them is very difficult and is generally done by hand. We propose a computational approach to discover families of microstructures with extremal macroscale properties automatically. Using efficient simulation and sampling techniques, we compute the space of mechanical properties covered by physically realizable microstructures. Our system then clusters microstructures with common topologies into families. Parameterized templates are eventually extracted from families to generate new microstructure designs. We demonstrate these capabilities on the computational design of mechanical metamaterials and present five auxetic microstructure families with extremal elastic material properties. Our study opens the way for the completely automated discovery of extremal microstructures across multiple domains of physics, including applications reliant on thermal, electrical, and magnetic properties. PMID:29376124

  8. High Temperature Burst Testing of a Superalloy Disk With a Dual Grain Structure

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Kantzos, P.

    2004-01-01

    Elevated temperature burst testing of a disk with a dual grain structure made from an advanced nickel-base superalloy, LSHR, was conducted. The disk had a fine grain bore and coarse grain rim, produced using NASA's low cost DMHT technology. The results of the spin testing showed the disk burst at 42 530 rpm in line with predictions based on a 2-D finite element analysis. Further, significant growth of the disk was observed before failure which was also in line with predictions.

  9. A Summary of Closed Brayton Cycle Development Activities at NASA

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2009-01-01

    NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.

  10. Backtracking Depth-Resolved Microstructures for Crystal Plasticity Identification—Part 1: Backtracking Microstructures

    NASA Astrophysics Data System (ADS)

    Shi, Qiwei; Latourte, Félix; Hild, François; Roux, Stéphane

    2017-12-01

    In situ mechanical tests performed on polycrystalline materials in a scanning electron microscope suffer from the lack of information on depth-resolved three-dimensional microstructures. The latter ones can be accessed with focused ion beam technology only postmortem, because it is destructive. The present study considers the challenge of backtracking this deformed microstructure to the reference state. This theoretical question is tackled on a numerical (synthetic) test case. A two-dimensional microstructure with one dimension along the depth is considered, and deformed using a crystal plasticity law. The proposed numerical strategy is shown to retrieve accurately the reference state.

  11. Dual-Fiberoptic Microcantilever Proximity Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goedeke, S.M.

    2001-08-08

    Microcantilevers are key components of many Micro-Electro-Mechanical Systems (MEMS) and Micro-Optical-Electro-Mechanical Systems (MOEMS) because slight changes to them physically or chemically lead to changes in mechanical characteristics. An inexpensive dual-fiberoptic microcantilever proximity sensor and model to predict its performance are reported here. Motion of a magnetic-material-coated cantilever is the basis of a system under development for measuring magnetic fields. The dual fiber proximity sensor will be used to monitor the motion of the cantilever. The specific goal is to sense induction fields produced by a current carrying conductor. The proximity sensor consists of two fibers side by side with claddingsmore » in contact. The fiber core diameter, 50 microns, and cladding thickness, 10 microns, are as small as routinely available commercially with the exception of single mode fiber. Light is launched into one fiber from a light-emitting diode (LED). It emerges from that fiber and reflects from the cantilever into the adjacent receiving fiber connected to a detector. The sensing end is cast molded with a diameter of 3-mm over the last 20-mm, yielding a low profile sensor. This reflective triangulation approach is probably the oldest and simplest fiber proximity sensing approach, yet the novelty here is in demonstrating high sensitivity at low expense from a triangular microstructure with amorphous magnetic coatings of iron, cobalt, permalloy, etc. The signal intensity versus distance curve yields an approximate gaussian shape. For a typical configuration, the signal grows from 10% to 90% of maximum in traversing from 6 to 50 microns from a coated cantilever. With signal levels exceeding a volt, nanometer resolution should be readily achievable for periodic signals.« less

  12. Composition-microstructure-property relationships in dual phase bulk magnetoelectric composite

    NASA Astrophysics Data System (ADS)

    Islam, Rashed Adnan

    The coexistence of coupled electrical and magnetic properties in the "magnetoelectric" material has led to the possibility of developing smarter and smaller electronic components. In order to make this possibility a reality, significant efforts are required to understand the science of magnetoelectric (ME) behavior and apply this understanding to develop higher sensitivity material. The primary aims of this thesis are to identify the role of composition, microstructural variables, composite geometry, texturing, post sintering heat treatment, and nanoscale assembly on ME coefficient. The overall objective is to synthesize, characterize and utilize a high ME coefficient composite. The desired range of ME coefficient in the sintered composite is more than 1.5 V/cm.Oe. At first, a piezoelectric composition in the system of Pb(Zr,Ti)O 3 - Pb[(Zn,Ni)1/3Nb2/3]O3 was designed and synthesized which has high energy density (d.g) parameter of 18456.2 x 10-15m2/N and high g constant of 83.1 V-m/N in order to use it as the matrix in piezoelectric---magnetostrictive composite. Secondly it was found that soft piezoelectric phase shows much better magnetoelectric response. The magnetoelectric coefficient for Pb(Zr 0.52Ti0.48)O3 - 15% Pb(Zn1/3Nb 2/3)O3 [PZT - 15 PZN] - 20% Ni0.8Zn 0.2Fe2O4 was found to be around 186 mV/cm.Oe. Thridly, soft magnetic phase with lower coercivity and higher magnetization was found to be suitable for high ME coefficient. Zinc doped Ni-ferrite has higher resistivity, permeability, magnetization and it was found that with increasing Zn concentration the ME coefficient increases exhibiting maxima near 30 at% Zn (138 mV/cm.Oe). Fourthly, if the connectivity was changed from (0-3) to (2-2) which is a bilayer geometry, improved piezoelectric (d33 ˜ 80 pC/N), ferroelectric (polarization = 60 muC/cm2), magnetization (25 emu/gm) and lower coercive field (2.8 Oe) were measured. The bilayer shows an enhancement of 67% increase in ME coefficient compared to bulk

  13. Preliminary Flight Results of the Microelectronics and Photonics Test Bed: NASA DR1773 Fiber Optic Data Bus Experiment

    NASA Technical Reports Server (NTRS)

    Jackson, George L.; LaBel, Kenneth A.; Marshall, Cheryl; Barth, Janet; Seidleck, Christina; Marshall, Paul

    1998-01-01

    NASA Goddard Spare Flight Center's (GSFC) Dual Rate 1773 (DR1773) Experiment on the Microelectronic and Photonic Test Bed (MPTB) has provided valuable information on the performance of the AS 1773 fiber optic data bus in the space radiation environment. Correlation of preliminary experiment data to ground based radiation test results show the AS 1773 bus is employable in future spacecraft applications requiring radiation tolerant communication links.

  14. Behavior of W-SiC/SiC dual layer tiles under LHD plasma exposure

    NASA Astrophysics Data System (ADS)

    Mohrez, Waleed A.; Kishimoto, Hirotatsu; Kohno, Yutaka; Hirotaki, S.; Kohyama, Akira

    2013-11-01

    Towards the early realization of fusion power reactors, high performance first wall and plasma facing components (PFCs) are essentially required. As one of the biggest challenges for this, high heat flux component (HHFC) design and R & D has been emphasized. This report provides the high performance HHFC materials R & D status and the first plasma exposure test result from large helical device (LHD). W-SiC/SiC dual layer tiles (hereafter, W-SiC/SiC) were developed by applied NITE process. This is the realistic concept of tungsten armor with ceramic composite substrates for fusion power reactors. The dual layer tiles were fabricated and tested their survival under the LHD divertor plasma exposure (Nominally 10 MW/m2 maximum heat load for 6 s operation cycle). The microstructure evolution, including crack and pore formation, was analyzed, besides the behavior of bonding layer between tungsten and SiC/SiC was evaluated by C-scanning images of ultrasonic method and Electron probe Micro-analyzer (EPMA). Thermal analysis was conducted by finite element method, where ANSYS code release 13.0 was used.

  15. NASA Studies Lightning Storms Using High-Flying, Uninhabited Vehicle

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA team studying the causes of electrical storms and their effects on our home planet achieved a milestone on August 21, 2002, completing the study's longest-duration research flight and monitoring four thunderstorms in succession. Based at the Naval Air Station Key West, Florida, researchers with the Altus Cumulus Electrification Study (ACES) used the Altus II remotely-piloted aircraft to study thunderstorms in the Atlantic Ocean off Key West and the west of the Everglades. The ACES lightning study used the Altus II twin turbo uninhabited aerial vehicle, built by General Atomics Aeronautical Systems, Inc. of San Diego. The Altus II was chosen for its slow flight speed of 75 to 100 knots (80 to 115 mph), long endurance, and high-altitude flight (up to 65,000 feet). These qualities gave the Altus II the ability to fly near and around thunderstorms for long periods of time, allowing investigations to be to be conducted over the entire life cycle of storms. The vehicle has a wing span of 55 feet and a payload capacity of over 300 lbs. With dual goals of gathering weather data safely and testing the adaptability of the uninhabited aircraft, the ACES study is a collaboration among the Marshall Space Flight Center, the University of Alabama in Huntsville, NASA,s Goddard Space Flight Center in Greenbelt, Maryland, Pernsylvania State University in University Park, and General Atomics Aeronautical Systems, Inc.

  16. Microstructural Evolution and Mechanical Properties of Ti-22Al-25Nb (At.%) Orthorhombic Alloy with Three Typical Microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zeng, Weidong; Liu, Yantao; Xie, Guoxin; Liang, Xiaobo

    2018-01-01

    Microstructural evolution, tensile and creep behavior of Ti-22Al-25Nb (at.%) orthorhombic alloy with three typical microstructures were investigated. The three typical microstructures were obtained by different solution and age treatment temperatures and analyzed by the BSE technique. The tensile strengths of the alloy at room temperature and 650 °C were investigated. The creep behaviors of the three typical microstructures were also studied at 650 °C/150 MPa for 100 h in air. The phase transformation mechanisms in creep deformation were also found. The experimental results showed that the formations of the three typical microstructures were decided by the isothermal forging and heat treatment. It was supposed that the high-temperature solution treatment might be dominant for the volume fraction and diameter of the equiaxed particles. While the double age treatment would lead to lamellar O phases. Due to grain refinement strengthening, the equiaxed microstructure presented the best tensile strength and ductility. The fully lamellar microstructure had the best creep resistance than that of other microstructures. In this paper, the phenomenon of creep-induced α 2 phase decomposition was occurred during creep deformation of the equiaxed microstructure.

  17. A Vertical Census of Precipitation Characteristics using Ground-based Dual-polarimetric Radar Data

    NASA Astrophysics Data System (ADS)

    Wolff, D. B.; Petersen, W. A.; Marks, D. A.; Pippitt, J. L.; Tokay, A.; Gatlin, P. N.

    2017-12-01

    Characterization of the vertical structure/variability of precipitation and resultant microphysics is critical in providing physical validation of space-based precipitation retrievals. In support of NASAs Global Precipitation Measurement (GPM) mission Ground Validation (GV) program, NASA has invested in a state-of-art dual-polarimetric radar known as NPOL. NPOL is routinely deployed on the Delmarva Peninsula in support of NASAs GPM Precipitation Research Facility (PRF). NPOL has also served as the backbone of several GPM field campaigns in Oklahoma, Iowa, South Carolina and most recently in the Olympic Mountains in Washington state. When precipitation is present, NPOL obtains very high-resolution vertical profiles of radar observations (e.g. reflectivity (ZH) and differential reflectivity (ZDR)), from which important particle size distribution parameters are retrieved such as the mass-weight mean diameter (Dm) and the intercept parameter (Nw). These data are then averaged horizontally to match the nadir resolution of the dual-frequency radar (DPR; 5 km) on board the GPM satellite. The GPM DPR, Combined, and radiometer algorithms (such as GPROF) rely on functional relationships built from assumed parametric relationships and/or retrieved parameter profiles and spatial distributions of particle size (PSD), water content, and hydrometeor phase within a given sample volume. Thus, the NPOL-retrieved profiles provide an excellent tool for characterization of the vertical profile structure and variability during GPM overpasses. In this study, we will use many such overpass comparisons to quantify an estimate of the true sub-IFOV variability as a function of hydrometeor and rain type (convective or stratiform). This presentation will discuss the development of a relational database to help provide a census of the vertical structure of precipitation via analysis and correlation of reflectivity, differential reflectivity, mean-weight drop diameter and the normalized

  18. NASA Releases 'NASA App HD' for iPad

    NASA Image and Video Library

    2012-07-06

    The NASA App HD invites you to discover a wealth of NASA information right on your iPad. The application collects, customizes and delivers an extensive selection of dynamically updated mission information, images, videos and Twitter feeds from various online NASA sources in a convenient mobile package. Come explore with NASA, now on your iPad. 2012 Updated Version - HD Resolution and new features. Original version published on Sept. 1, 2010.

  19. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  20. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  1. 14 CFR 1240.105 - Special procedures-NASA and NASA contractor employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Special procedures-NASA and NASA contractor...—NASA and NASA contractor employees. (a) A NASA Headquarters office, a NASA field installation, or a NASA contractor may submit to the Board an application for an award identifying the originator(s) of...

  2. NASA Social

    NASA Image and Video Library

    2012-05-19

    A NASA Social follower holds up a mobile device as NASA Administrator Charles Bolden, left, and Kennedy Space Center director Robert Cabana appear at the NASA Social event, Friday morning, May 19, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  3. Microstructural and Mechanical-Property Manipulation through Rapid Dendrite Growth and Undercooling in an Fe-based Multinary Alloy

    PubMed Central

    Ruan, Ying; Mohajerani, Amirhossein; Dao, Ming

    2016-01-01

    Rapid dendrite growth in single- or dual-phase multicomponent alloys can be manipulated to improve the mechanical properties of such metallic materials. Rapid growth of (αFe) dendrites was realized in an undercooled Fe-5Ni-5Mo-5Ge-5Co (wt.%) multinary alloy using the glass fluxing method. The relationship between rapid dendrite growth and the micro-/nano-mechanical properties of the alloy was investigated by analyzing the grain refinement and microstructural evolution resulting from the rapid dendrite growth. It was found that (αFe) dendrites grow sluggishly within a low but wide undercooling range. Once the undercooling exceeds 250 K, the dendritic growth velocity increases steeply until reaching a plateau of 31.8 ms−1. The increase in the alloy Vickers microhardness with increasing dendritic growth velocity results from the hardening effects of increased grain/phase boundaries due to the grain refinement, the more homogeneous distribution of the second phase along the boundaries, and the more uniform distribution of solutes with increased contents inside the grain, as verified also by nanohardness maps. Once the dendritic growth velocity exceeds ~8 ms−1, the rate of Vickers microhardness increase slows down significantly with a further increase in dendritic growth velocity, owing to the microstructural transition of the (αFe) phase from a trunk-dendrite to an equiaxed-grain microstructure. PMID:27539749

  4. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }< 110rangle and bar{B} { {bar{1}1bar{2}} }< bar{1}bar{1}0rangle simple shear texture components, where the bainite phase textures formed on cooling were inherited from the shear textures of the austenite phase with relatively strong variant selection. The ferrite portion of the stirred zone and the ferrites in the thermo-mechanically affected zones and the overlapped area underwent shear deformation with textures dominated by the D1 { {bar{1}bar{1}2} }< 111rangle and D2 { {11bar{2}} }< 111rangle simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  5. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.

  6. The effect of low-magnitude whole body vibration on bone density and microstructure in men and women with chronic motor complete paraplegia.

    PubMed

    Wuermser, Lisa-Ann; Beck, Lisa A; Lamb, Jeffry L; Atkinson, Elizabeth J; Amin, Shreyasee

    2015-03-01

    To examine the effect of low-magnitude whole body vibration on bone density and microstructure in women and men with chronic motor complete paraplegia. We studied nine subjects (four women and five men) with motor complete paraplegia of 2 years duration or more, age 20-50 years. Subjects were instructed to stand on a low-magnitude vibration plate within a standing frame for 20 minutes per day, 5 days a week, and for 6 months. Bone density at the proximal femur by dual-energy X-ray absorptiometry and bone microstructure at the distal tibia by high-resolution peripheral quantitative computed tomography were assessed at four timepoints over 12 months (baseline, at 3 months and 6 months while on intervention, and after 6 months off intervention). Standing on the low-magnitude vibration plate with a standing frame was well tolerated by participants. However, most subjects did not show an improvement in bone density or microstructure after 6 months of intervention, or any relevant changes 6 months following the discontinuation of the low-magnitude vibration. We were unable to identify an improvement in either bone density or microstructure following 6 months use of a low-magnitude vibration plate in women or men with chronic motor complete paraplegia. Longer duration of use may be necessary, or it is possible that this intervention is of limited benefit following chronic spinal cord injury.

  7. Initial Test Results of a Dual Closed-Brayton-Cycle Power Conversion System

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Mason, Lee S.

    2007-01-01

    The dual Brayton power conversion system constructed for NASA Glenn Research Center (GRC) was acceptance tested April 2007 at Barber-Nichols, Inc., Arvada, Colorado. This uniquely configured conversion system is built around two modified commercial Capstone C30 microturbines and employs two closed-Brayton-cycle (CBC) converters sharing a common gas inventory and common heat source. Because both CBCs share the gas inventory, behavior of one CBC has an impact on the performance of the other CBC, especially when one CBC is standby or running at a different shaft speed. Testing performed to date includes the CBCs operating at equal and unequal shaft speeds. A test was also conducted where one CBC was capped off and the other was operated as a single CBC converter. The dual Brayton configuration generated 10.6 kWe at 75 krpm and a turbine inlet temperature of 817 K. Single Brayton operation generated 14.8 kWe at 90 krpm and a turbine inlet temperature of 925 K.

  8. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  9. A multiscale microstructural approach to ductile-phase toughened tungsten for plasma-facing materials

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Jr., Charles H.; Overman, Nicole R.; ...

    2018-05-23

    Increasing fracture toughness and modifying the ductile-brittle transition temperature of a tungsten-alloy relative to pure tungsten has been shown to be feasible by ductile-phase toughening (DPT) of tungsten for future plasma-facing materials for fusion energy. In DPT, a ductile phase is included in a brittle tungsten matrix to increase the overall work of fracture for the material. This research models the deformation behavior of DPT tungsten materials, such as tungsten-copper composites, using a multiscale modeling approach that involves a microstructural dual-phase (copper-tungsten) region of interest where the constituent phases are finely discretized and are described by a continuum damage mechanicsmore » model. Large deformation, damage, and fracture are allowed to occur and are modeled in a region that is connected to adjacent homogenized elastic regions to form a macroscopic structure, such as a test specimen. The present paper illustrates this multiscale modeling approach to analyze unnotched and single-edge notched (SENB) tungsten-copper composite specimens subjected to three-point bending. The predicted load-displacement responses and crack propagation patterns are compared to the corresponding experimental results to validate the model. Furthermore, such models may help design future DPT composite configurations for fusion materials, including volume fractions of ductile phase and microstructural optimization.« less

  10. Dual Protection and Dual Methods in Women Living with HIV: The Brazilian Context

    PubMed Central

    Barbosa, Regina María; Pinho, Adriana de Araujo

    2013-01-01

    The cooccurrence of HIV and unintended pregnancy has prompted a body of work on dual protection, the simultaneous protection against HIV and unintended pregnancy. This study examines dual protection and dual methods as a risk-reduction strategy for women living with HIV. Data are from a cross-sectional sample of HIV-positive women attended in Specialized STI/AIDS Public Health Service Clinics in 13 municipalities from all five regions of Brazil 2003-2004 (N = 834). Descriptive techniques and logistic regression were used to examine dual protection among women living with HIV. We expand the definition of dual protection to include consistent condom use and reversible/irreversible contraceptive methods, we test the dual methods hypothesis that women who use dual methods will use condoms less consistently than women who use only condoms, and we identify predictors of dual protection. Dual protection is common in our sample. Women who use dual methods have lower odds of consistent condom use than women who only use condoms. Among dual method users, we find that women who use an irreversible method use condoms more consistently than women who use a reversible method. Women on ART and with an HIV-serodiscordant partner have greater odds of consistent condom use than their counterparts. PMID:26316959

  11. NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams

    NASA Technical Reports Server (NTRS)

    Prahst, Steve

    2003-01-01

    Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.

  12. Autonomous Microstructure EM-APEX Floats

    DTIC Science & Technology

    2016-01-01

    Autonomous Microstructure_EM-APEX_Float 4/8/16 at 3:21 PM 1 Title: Autonomous Microstructure EM-APEX Floats Authors: Ren-Chieh Lien1,2...Street Seattle, WA 98105 rcl@uw.edu Abstract: Fast responding FP-07 thermistors have been incorporated on profiling EM-APEX floats to measure...storage board. The raw and processed temperature observations are stored on a microSD card. Results from eight microstructure EM-APEX floats

  13. NASA Update

    NASA Image and Video Library

    2009-07-20

    Alan Ladwig, Senior Advisor to the NASA Administrator, introduces Administrator Charles F. Bolden Jr. and Deputy Administrator Lori Garver at a NASA Update,Tuesday, July 21, 2009, at NASA Headquarters in Washington. Bolden, the agency's 12th Administrator and Garver took the time to introduce themselves and outline their vision for the agency going forward. No questions were taken during the session. Photo Credit: (NASA/Bill Ingalls)

  14. NASA Social

    NASA Image and Video Library

    2011-05-18

    Ed Mango, of the NASA Commercial Crew Office, speaks during a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  15. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jerry Y. S.

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO 2 permeance in the range of 0.5-5×10 -7 mol·m -2·s -1·Pa -1 in 500-900°C and measured CO 2/N 2more » selectivity of up to 3000. CO 2 permeation mechanism and factors that affect CO 2 permeation through the dual-phase membranes have been identified. A reliable CO 2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO 2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO 2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO 2 stream of >95% purity, with 90% CO 2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual

  16. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This handbook is designed to promote a better understanding of NASA's interests and the process of doing business with NASA. The document is divided into the following sections: (1) this is NASA; (2) the procurement process; (3) marketing your capabilities; (4) special assistance programs; (5) NASA field installations; (6) sources of additional help; (7) listing of NASA small/minority business personnel; and (8) NASA organization chart.

  17. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    PubMed

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dual-core optical fiber based strain sensor for remote sensing in hard-to-reach areas

    NASA Astrophysics Data System (ADS)

    MÄ kowska, Anna; Szostkiewicz, Łukasz; Kołakowska, Agnieszka; Budnicki, Dawid; Bieńkowska, Beata; Ostrowski, Łukasz; Murawski, Michał; Napierała, Marek; Mergo, Paweł; Nasiłowski, Tomasz

    2017-10-01

    We present research on optical fiber sensors based on microstructured multi-core fiber. Elaborated sensor can be advantageously used in hard-to-reach areas by taking advantage of the fact, that optical fibers can play both the role of sensing elements and they can realize signal delivery. By using the sensor, it is possible to increase the level of the safety in the explosive endangered areas, e.g. in mine-like objects. As a base for the strain remote sensor we use dual-core fibers. The multi-core fibers possess a characteristic parameter called crosstalk, which is a measure of the amount of signal which can pass to the adjacent core. The strain-sensitive area is made by creating the tapered section, in which the level of crosstalk is changed. Due to this fact, we present broadened conception of fiber optic sensor designing. Strain measurement is realized thanks to the fact, that depending on the strain applied, the power distribution between the cores of dual-core fibers changes. Principle of operation allows realization of measurements both in wavelength and power domain.

  19. Comparison of Analytical Predictions and Experimental Results for a Dual Brayton Power System (Discussion on Test Hardware and Computer Model for a Dual Brayton System)

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2007-01-01

    NASA Glenn Research Center (GRC) contracted Barber-Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.

  20. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  1. A handy motion driven hybrid energy harvester: dual Halbach array based electromagnetic and triboelectric generators

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Park, J. Y.

    2016-11-01

    In this work, we have proposed and experimentally validated of hybrid electromagnetic and triboelectric energy harvester using dual Halbach magnets array excited by human handy motion. Hybrid electromagnetic (EM) and triboelectric (TE) generator that can deliver an output performance much higher than that of the individual energy-harvesting unit due to the combination operation of EM and TE mechanisms under the same mechanical movements. A Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. When an external mechanical vibration is applied to the hybrid structure in the axial direction of the harvester, the suspended mass (two sided dual-Halbach-array frame) starts to oscillate within the magnetic springs and TEG part. Therefore, the TEG part, the Al film and microstructure PDMS film are collected into full contact with each other, generating triboelectric charges due to the various triboelectricities between them. A prototype of the hybrid harvester has been fabricated and tested. The EMG is capable of delivering maximum 11.5mW peak power at 32.5Ω matching load resistance and the TEG delivering 88μW peak power at 10MΩ load resistance.

  2. Evaluation and Characterization Study of Dual Pulse Laser-Induced Spark (DPLIS) for Rocket Engine Ignition System Application

    NASA Technical Reports Server (NTRS)

    Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James

    2003-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los

  3. Cavity nucleation and growth in dual beam irradiated 316L industrial austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jublot-Leclerc, S.; Li, X.; Legras, L.; Fortuna, F.; Gentils, A.

    2017-10-01

    Thin foils of 316L were simultaneously ion irradiated and He implanted in situ in a Transmission Electron Microscope at elevated temperatures. The resulting microstructure is carefully investigated in comparison with previous single ion irradiation experiments with a focus on the nucleation and growth of cavities. Helium is found to strongly enhance the nucleation of cavities in dual beam experiments. On the contrary, it does not induce more nucleation when implanted consecutively to an in situ ion irradiation but rather the growth of cavities by absorption at existing cavities, which shows the importance of synergistic effects and He injection mode on the microstructural changes. In both dual beam and single beam experiments, the characteristics of the populations of cavities, either stabilized by He or O atoms, are in qualitative agreement with the predictions of rate theory models for cavity growth. The evolutions of cavity population as a function of irradiation conditions can be reasonably well explained by the concept of relative sink strength of cavities and dislocations and the resulting partitioning of defects at sinks, or conversely recombination when either of the sinks dominates. The dislocations whose presence is a prerequisite to cavity growth in rate theory models are not observed in all studied conditions. In this case, the net influx of vacancies to cavities necessary to their growth and conversion to voids is believed to result from free surface effects, and possibly also segregation of elements close to the cavity surface. In any studied condition, the measured swelling is low, which is ascribed to the dilution of gaseous atoms among a high density of cavities as well as a high rate of point defect recombination and loss at traps. This high rate of recombination enhanced when dislocations are absent appears to result in the formation of overpressurized He bubbles.

  4. Evaluation of the prototype dual-axis wall attitude measurement sensor

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    1994-01-01

    A prototype dual-axis electrolytic tilt sensor package for angular position measurements was built and evaluated in a laboratory environment. The objective was to investigate the use of this package for making wind tunnel wall attitude measurements for the National Transonic Facility (NTF) at NASA Langley Research Center (LaRC). The instrumentation may replace an existing, more costly, and less rugged servo accelerometer package (angle-of-attack package) currently in use. The dual-axis electrolytic tilt sensor package contains two commercial electrolytic tilt sensors thermally insulated with NTF foam, all housed within a stainless steel package. The package is actively heated and maintained at 160 F using foil heating elements. The laboratory evaluation consisted of a series of tests to characterize the linearity, repeatability, cross-axis interaction, lead wire effect, step response, thermal time constant, and rectification errors. Tests revealed that the total RMS errors for the x-axis sensor is 0.084 degree, and 0.182 degree for the y-axis sensor. The RMS errors are greater than the 0.01 degree specification required for NTF wall attitude measurements. It is therefore not a viable replacement for the angle-of-attack package in the NTF application. However, with some physical modifications, it can be used as an inexpensive 5-degree range dual-axis inclinometer with overall accuracy approaching 0.01 degree under less harsh environments. Also, the data obtained from the tests can be valuable for wind tunnel applications of most types of electrolytic tilt sensors.

  5. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    Dr. Laurie Leshin, NASA Deputy Associate Administrator Exploration Systems Mission Directortorate, second from right, speaks as Dr. Waleed Abdalati, NASA Chief Scientist, right, Dr. Robert Braun, NASA Chief Technologist, and Leland Melvin, Assoicate Administrator for NASA Education, far left, at the NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011 in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  6. NASA Social

    NASA Image and Video Library

    2012-05-19

    NASA Administrator Charles Bolden, left, and Kennedy Space Center director Robert Cabana appear at the NASA Social event, Friday morning, May 19, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  7. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba speaks at a behind-the-scenes NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  8. NASA Social

    NASA Image and Video Library

    2012-12-04

    A NASA Social participant tweets during as astronaut Joe Acaba answers questions from the audience at NASA Headquaters, Tuesday, Dec. 4, 2012 in Washington. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  9. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a behind-the-scenes NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  10. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba, center, greets participants at a behind-the-scenes NASA Social in Washington, Tuesday, Dec. 4, 2012 at NASA Headquarters. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  11. NASA Applied Sciences' DEVELOP National Program: Success Stories and Feedback from Former Participants

    NASA Astrophysics Data System (ADS)

    Ross, K. W.; Orne, T. N.; Brumbaugh, E. J.; Childs-Gleason, L. M.; Favors, J. E.; Rogers, L.; Ruiz, M. L.; Allsbrook, K. N.; Bender, M. R.

    2014-12-01

    The NASA DEVELOP National Program builds capacity to use Earth observations in decision making in both participating individuals and in partnering institutions. In accomplishing this dual capacity building model, NASA DEVELOP invests ownership of project objectives fully in participants working with them to propose, implement and lead ambitious projects with aggressive schedules and a strong emphasis on partner engagement. DEVELOP offers over 350 participant opportunities a year to accomplish between 70 and 80 projects with around 160 partners. In the over 15 years since its inception, DEVELOP has worked with over 2000 participants, immersing them an environment rich in STEM tools, skills and networking. This presentation summarizes a recent survey capturing trends in outcomes and impressions among DEVELOP alumni and follows up with success stories for select individuals who have gone on to careers in Earth science, geoinformation technologies, science and engineering fields more generally and even outside of STEM. The presentation concludes with common themes that can be drawn from both survey measures and participant narratives.

  12. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with solder interconnects consisting of lead-free alloys (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder

  13. Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions

    NASA Technical Reports Server (NTRS)

    Gandin, Charles-Andre; Ratke, Lorenz

    2008-01-01

    The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.

  14. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    Dr. Robert Braun, NASA Chief Technologist, second from left, makes a point, as panelists Leland Melvin, Assoicate Administrator for NASA Education, left, Dr. Laurie Leshin, NASA Deputy Associate Administrator Exploration Systems Mission Directortorate, and Dr. Waleed Abdalati, NASA Chief Scientist, right, look on during a panel discussion at the NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011 in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  15. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    1992-01-01

    The primary motivation for this research has been to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Prior experimental research at Grumman and here showed that the microstructure of MnBi-Bi eutectic is twice as fine when solidified in space or in a magnetic field, is uninfluenced by interfacial temperature gradient, adjusts very quickly to changes in freezing rate, and becomes coarser when spin-up/spin-down (accelerated crucible rotation technique) is used during solidification. Theoretical work at Clarkson predicted that buoyancy driven convection on earth could not account for the two fold change in fiber spacing caused by solidification in space. However, a lamellar structure with a planar interface was assumed, and the Soret effect was not included in the analysis. Experimental work at Clarkson showed that the interface is not planar, and that MnBi fibers project out in front of the Bi matrix on the order of one fiber diameter. Originally four primary hypotheses were to be tested under this current grant: (1) a fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment; (2) an interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment; (3) the Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results; and (4) the microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. As reported previously, we have learned that while a fibrous microstructure and a non-planar interface are more sensitive to convection than a lamellar microstructure with a planar interface, the influence of convection remains too small to explain the flight and magnetic

  16. Predicting grid-size-dependent fracture strains of DP980 with a microstructure-based post-necking model

    DOE PAGES

    Cheng, G.; Hu, X. H.; Choi, K. S.; ...

    2017-07-08

    Ductile fracture is a local phenomenon, and it is well established that fracture strain levels depend on both stress triaxiality and the resolution (grid size) of strain measurements. Two-dimensional plane strain post-necking models with different model sizes are used in this paper to predict the grid-size-dependent fracture strain of a commercial dual-phase steel, DP980. The models are generated from the actual microstructures, and the individual phase flow properties and literature-based individual phase damage parameters for the Johnson–Cook model are used for ferrite and martensite. A monotonic relationship is predicted: the smaller the model size, the higher the fracture strain. Thus,more » a general framework is developed to quantify the grid-size-dependent fracture strains for multiphase materials. In addition to the grid-size dependency, the influences of intrinsic microstructure features, i.e., the flow curve and fracture strains of the two constituent phases, on the predicted fracture strains also are examined. Finally, application of the derived fracture strain versus model size relationship is demonstrated with large clearance trimming simulations with different element sizes.« less

  17. Predicting grid-size-dependent fracture strains of DP980 with a microstructure-based post-necking model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Hu, X. H.; Choi, K. S.

    Ductile fracture is a local phenomenon, and it is well established that fracture strain levels depend on both stress triaxiality and the resolution (grid size) of strain measurements. Two-dimensional plane strain post-necking models with different model sizes are used in this paper to predict the grid-size-dependent fracture strain of a commercial dual-phase steel, DP980. The models are generated from the actual microstructures, and the individual phase flow properties and literature-based individual phase damage parameters for the Johnson–Cook model are used for ferrite and martensite. A monotonic relationship is predicted: the smaller the model size, the higher the fracture strain. Thus,more » a general framework is developed to quantify the grid-size-dependent fracture strains for multiphase materials. In addition to the grid-size dependency, the influences of intrinsic microstructure features, i.e., the flow curve and fracture strains of the two constituent phases, on the predicted fracture strains also are examined. Finally, application of the derived fracture strain versus model size relationship is demonstrated with large clearance trimming simulations with different element sizes.« less

  18. Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining

    NASA Astrophysics Data System (ADS)

    Dai, Chun-duo; Ma, Rui-na; Wang, Wei; Cao, Xiao-ming; Yu, Yan

    2017-05-01

    An Al-Ti-Cu-Si solid-liquid dual-phase alloy that exhibits good wettability and appropriate interfacial reaction with SiC at 500-600°C was designed for SiC-metal joining. The microstructure, phases, differential thermal curves, and high-temperature wetting behavior of the alloy were analyzed using scanning electron microscopy, X-ray diffraction analysis, differential scanning calorimetry, and the sessile drop method. The experimental results show that the 76.5Al-8.5Ti-5Cu-10Si alloy is mainly composed of Al-Al2Cu and Al-Si hypoeutectic low-melting-point microstructures (493-586°C) and the high-melting-point intermetallic compound AlTiSi (840°C). The contact angle, determined by high-temperature wetting experiments, is approximately 54°. Furthermore, the wetting interface is smooth and contains no obvious defects. Metallurgical bonding at the interface is attributable to the reaction between Al and Si in the alloy and ceramic, respectively. The formation of the brittle Al4C3 phase at the interface is suppressed by the addition of 10wt% Si to the alloy.

  19. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington engages in social media as he listens to astronaut Joe Acaba answer questions, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  20. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  1. GOES-R Dual Isolation

    NASA Technical Reports Server (NTRS)

    Freesland, Doug; Carter, Delano; Chapel, Jim; Clapp, Brian; Howat, John; Krimchansky, Alexander

    2015-01-01

    The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the first of the next generation geostationary weather satellites, scheduled for delivery in late 2015. GOES-R represents a quantum increase in Earth and solar weather observation capabilities, with 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands for Earth observations. With the improved resolution, comes the instrument suite's increased sensitive to disturbances over a broad spectrum 0-512 Hz. Sources of disturbance include reaction wheels, thruster firings for station keeping and momentum management, gimbal motion, and internal instrument disturbances. To minimize the impact of these disturbances, the baseline design includes an Earth Pointed Platform (EPP), a stiff optical bench to which the two nadir pointed instruments are collocated together with the Guidance Navigation & Control (GN&C) star trackers and Inertial Measurement Units (IMUs). The EPP is passively isolated from the spacecraft bus with Honeywell D-Strut isolators providing attenuation for frequencies above approximately 5 Hz in all six degrees-of-freedom. A change in Reaction Wheel Assembly (RWA) vendors occurred very late in the program. To reduce the risk of RWA disturbances impacting performance, a secondary passive isolation system manufactured by Moog CSA Engineering was incorporated under each of the six 160 Nms RWAs, tuned to provide attenuation at frequencies above approximately 50 Hz. Integrated wheel and isolator testing was performed on a Kistler table at NASA Goddard Space Flight Center. High fidelity simulations were conducted to evaluate jitter performance for four topologies: 1) hard mounted no isolation, 2) EPP isolation only, 2) RWA isolation only, and 4) dual isolation. Simulation results demonstrate excellent performance relative to the pointing stability requirements, with dual isolated Line of Sight (LOS) jitter less than 1 micron rad.

  2. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    NASA Astronaut Don Pettit, speaks about his experience onboard the International Space Station at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  3. NASA Astrophysics Technology Needs

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2012-01-01

    July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.

  4. Dual Diagnosis - Multiple Languages

    MedlinePlus

    ... National Library of Medicine Comorbidity or dual diagnosis - Opioid addiction, part 9 - English PDF Comorbidity or dual diagnosis - Opioid addiction, part 9 - español (Spanish) PDF Comorbidity or dual ...

  5. Stirling technology development at NASA GRC

    NASA Astrophysics Data System (ADS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.; Mason, Lee S.

    2002-01-01

    The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA GRC is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDC's) built by STC includes mapping of a second pair of TDC's, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a non-magnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC's with several engineering mounting structures with different natural frequencies have recently been completed. A preliminary life assessment has been completed for the TDC heater head, and creep testing of the IN718 material to be used for the flight convertors is underway. Long-term magnet aging tests are continuing to characterize any potential aging in the strength or demagnetization resistance of the magnets used in the linear alternator (LA). Evaluations are now beginning on key organic materials used in the LA and piston/rod surface coatings. GRC is also conducting finite element analyses for the LA, in part to look at the demagnetization margin on the permanent magnets. The world's first known integrated test of a dynamic power system with electric propulsion was achieved at GRC when a Hall-effect thruster was successfully operated with a free-piston Stirling power source. Cleveland State University is developing a multi-dimensional Stirling computational fluid dynamics code to significantly improve Stirling loss predictions and assist in

  6. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington tweets as he listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  7. Dual Career Families.

    ERIC Educational Resources Information Center

    Farmer, Helen S.

    Home-career conflict may exist in varying degrees for both spouses in a dual-career couple. Home-career conflict exists when a dual-career wife values both homemaking and career and views some aspects of these two roles as incompatible. Home-career conflict results when a dual-career husband values his own career and that of his wife, but is…

  8. Noninvasive Assessment of Early Dental Lesion Using a Dual-Contrast Photoacoustic Tomography

    PubMed Central

    Cheng, Renxiang; Shao, Jiaojiao; Gao, Xiaoxiang; Tao, Chao; Ge, Jiuyu; Liu, Xiaojun

    2016-01-01

    Dental hard tissue lesions, including caries, cracked-tooth, etc., are the most prevalent diseases of people worldwide. Dental lesions and correlative diseases greatly decrease the life quality of patients throughout their lifetime. It is still hard to noninvasively detect these dental lesions in their early stages. Photoacoustic imaging is an emerging hybrid technology combining the high spatial resolution of ultrasound in deep tissue with the rich optical contrasts. In this study, a dual-contrast photoacoustic tomography is applied to detect the early dental lesions. One contrast, named B-mode, is related to the optical absorption. It is good at providing the sharp image about the morphological and macro-structural features of the teeth. Another contrast, named S-mode, is associated with the micro-structural and mechanical properties of the hard tissue. It is sensitive to the change of tissue properties induced by the early dental lesions. Experiments show that the comprehensive analysis of dual-contrast information can provide reliable information of the early dental lesions. Moreover, the imaging parameter of S-mode is device-independent and it could measure tissue properties quantitatively. We expect that the proposed scheme could be beneficial for improving safety, accuracy and sensitivity of the clinical diagnosis of the dental lesion. PMID:26902394

  9. Noninvasive Assessment of Early Dental Lesion Using a Dual-Contrast Photoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Cheng, Renxiang; Shao, Jiaojiao; Gao, Xiaoxiang; Tao, Chao; Ge, Jiuyu; Liu, Xiaojun

    2016-02-01

    Dental hard tissue lesions, including caries, cracked-tooth, etc., are the most prevalent diseases of people worldwide. Dental lesions and correlative diseases greatly decrease the life quality of patients throughout their lifetime. It is still hard to noninvasively detect these dental lesions in their early stages. Photoacoustic imaging is an emerging hybrid technology combining the high spatial resolution of ultrasound in deep tissue with the rich optical contrasts. In this study, a dual-contrast photoacoustic tomography is applied to detect the early dental lesions. One contrast, named B-mode, is related to the optical absorption. It is good at providing the sharp image about the morphological and macro-structural features of the teeth. Another contrast, named S-mode, is associated with the micro-structural and mechanical properties of the hard tissue. It is sensitive to the change of tissue properties induced by the early dental lesions. Experiments show that the comprehensive analysis of dual-contrast information can provide reliable information of the early dental lesions. Moreover, the imaging parameter of S-mode is device-independent and it could measure tissue properties quantitatively. We expect that the proposed scheme could be beneficial for improving safety, accuracy and sensitivity of the clinical diagnosis of the dental lesion.

  10. NASA historical data book. Volume 4: NASA resources 1969-1978

    NASA Technical Reports Server (NTRS)

    Gawdiak, Ihor Y.; Fedor, Helen

    1994-01-01

    This is Volume 4, NASA Resources 1969-1978, of a series providing a 20-year statistical summary of NASA programs. This series is an important component of NASA published historical reference works, used by NASA personnel, managers, external researchers, and other government agencies. This volume combines statistical data of the component facilities with the data of the parent installation.

  11. NASA historical data book. Volume 1: NASA resources 1958-1968

    NASA Technical Reports Server (NTRS)

    Vannimmen, Jane; Bruno, Leonard C.; Rosholt, Robert L.

    1988-01-01

    This is Volume 1, NASA Resources 1958-1968, of a multi-volume series providing a 20-year compilation of summary statistical and other data descriptive of NASA's programs in aeronautics and manned and unmanned spaceflight. This series is an important component of NASA published historical reference works, used by NASA personnel, managers, external researchers, and other government agencies.

  12. The effect of low-magnitude whole body vibration on bone density and microstructure in men and women with chronic motor complete paraplegia

    PubMed Central

    Wuermser, Lisa-Ann; Beck, Lisa A.; Lamb, Jeffry L.; Atkinson, Elizabeth J.; Amin, Shreyasee

    2015-01-01

    Objective To examine the effect of low-magnitude whole body vibration on bone density and microstructure in women and men with chronic motor complete paraplegia. Methods We studied nine subjects (four women and five men) with motor complete paraplegia of 2 years duration or more, age 20–50 years. Subjects were instructed to stand on a low-magnitude vibration plate within a standing frame for 20 minutes per day, 5 days a week, and for 6 months. Bone density at the proximal femur by dual-energy X-ray absorptiometry and bone microstructure at the distal tibia by high-resolution peripheral quantitative computed tomography were assessed at four timepoints over 12 months (baseline, at 3 months and 6 months while on intervention, and after 6 months off intervention). Results Standing on the low-magnitude vibration plate with a standing frame was well tolerated by participants. However, most subjects did not show an improvement in bone density or microstructure after 6 months of intervention, or any relevant changes 6 months following the discontinuation of the low-magnitude vibration. Conclusion We were unable to identify an improvement in either bone density or microstructure following 6 months use of a low-magnitude vibration plate in women or men with chronic motor complete paraplegia. Longer duration of use may be necessary, or it is possible that this intervention is of limited benefit following chronic spinal cord injury. PMID:24621040

  13. Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Ashrafi, H.; Shamanian, M.; Emadi, R.; Saeidi, N.

    2017-03-01

    In the present study, microstructure, tensile properties and work hardening behavior of a DP700 steel after gas tungsten arc welding were investigated. Formation of bainite in the fusion zone resulted in a hardness increase compared to that for the base metal (BM), whereas tempering of the pre-existing martensite in the subcritical heat-affected zone (HAZ) led to softening. The GTA-welded joint exhibited a continuous yielding behavior and a yield strength close to that for the BM, while its ultimate tensile strength and total elongation were lower than those for the BM owing to the formation of soft zone in the HAZ. A joint efficiency of about 81% was obtained for the GTA-welded joint, and it failed in the softened HAZ. Analysis of work hardening based on the Kocks-Mecking approach showed one stage of hardening behavior corresponding to the stage III for both the DP700 BM and welded sample. It was also revealed that the DP700 BM has larger values of work hardening exponent and magnitude of work hardening compared with the welded sample. Analysis of fractured surfaces showed that the dominant fracture mode for both the DP700 BM and welded joint was ductile.

  14. NASA's Education Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA's current education programs, which will be examined under its Strategic Plan for Education are presented. It is NASA's first goal to maintain this base - revising, expanding, or eliminating programs as necessary. Through NASA's second goal, new education reform initiatives will be added which specifically address NASA mission requirements, national educational reform, and Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) priorities. The chapters in this publication are divided by educational levels, with additional sections on programs to improve the technological competence of students and on an array of NASA published materials to supplement programs. The resource section lists NASA's national and regional Teacher Resource Centers and introduces the reader to NASA's Central Operation of Resources for Educators (CORE), which distributes materials in audiovisual format.

  15. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree

    1990-01-01

    The mechanism responsible for the difference in microstructure caused by solidifying the MnBi-Bi eutectic in space is sought. The objectives for the three year period are as follows: (1) completion of the following theoretical analyses - determination of the influence of the Soret effect on the average solid composition versus distance of off-eutectic mixtures directionally solidified in the absence of convection, determination of the influence of convection on the microstructure of off-eutectic mixtures using a linear velocity profile in the adjacent melt, determination of the influence of volumetric changes during solidification on microconvection near the freezing interface and on microstructure, and determination of the influence of convection on microstructure when the MnBi fibers project out in front of the bismuth matrix; (2) search for patterns in the effect of microgravity on different eutectics (for example, eutectic composition, eutectic temperature, usual microstructure, densities of pure constituents, and density changes upon solidification); and (3) determination of the Soret coefficient and the diffusion coefficient for Mn-Bi melts near the eutectic composition, both through laboratory experiements to be performed here and from data from Shuttle experiments.

  16. Study of Static Microchannel Plate Saturation Effects for the Fast Plasma Investigation Dual Electron Spectrometers on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Avanov, L. A.; Gliese, U.; Pollock, C. J.; Moore, T. E.; Chornay, D. J.; Barrie, A. C.; Kujawski, J. T.; Gershman, D. J.; Tucker, C. J.; Mariano, A.; hide

    2015-01-01

    Imaging detecting systems based on microchannel plates (MCPs) are the most common for low energy plasma measurements for both space borne and ground applications. One of the key parameters of these detection systems is the dynamic range of the MCP's response to the input fluxes of charged particles. For most applications the dynamic range of the linear response should be as wide as possible. This is especially true for the Dual Electron Spectrometers (DESs) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission because a wide range of input fluxes are expected. To make use of the full available dynamic range, it is important to understand the MCP response behavior beyond the linear regime where the MCPs start to saturate. We have performed extensive studies of this during the characterization and calibration of the DES instruments and have identified several saturation effects of the detection system. The MCP itself exhibits saturation when the channels lack the ability to replenish charge sufficiently rapidly. It is found and will be shown that the ground system can significantly impact the correct measurement of this effect. As the MCP starts to saturate, the resulting pulse height distribution (PHD) changes shape and location (with less pulse height values), which leads to truncation of the PHD by the threshold set on the detection system discriminator. Finally, the detection system pulse amplifier exhibits saturation as the input flux drives pulse rates greater than its linear response speed. All of these effects effectively change the dead time of the overall detection system and as a result can affect the quality and interpretation of the flight data. We present results of detection system saturation effects and their interaction with special emphasis on the MCP related effects.

  17. Transformation-Induced, Geometrically Necessary, Dislocation-Based Flow Curve Modeling of Dual-Phase Steels: Effect of Grain Size

    NASA Astrophysics Data System (ADS)

    Ramazani, Ali; Mukherjee, Krishnendu; Prahl, Ulrich; Bleck, Wolfgang

    2012-10-01

    The flow behavior of dual-phase (DP) steels is modeled on the finite-element method (FEM) framework on the microscale, considering the effect of the microstructure through the representative volume element (RVE) approach. Two-dimensional RVEs were created from microstructures of experimentally obtained DP steels with various ferrite grain sizes. The flow behavior of single phases was modeled through the dislocation-based work-hardening approach. The volume change during austenite-to-martensite transformation was modeled, and the resultant prestrained areas in the ferrite were considered to be the storage place of transformation-induced, geometrically necessary dislocations (GNDs). The flow curves of DP steels with varying ferrite grain sizes, but constant martensite fractions, were obtained from the literature. The flow curves of simulations that take into account the GND are in better agreement with those of experimental flow curves compared with those of predictions without consideration of the GND. The experimental results obeyed the Hall-Petch relationship between yield stress and flow stress and the simulations predicted this as well.

  18. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  19. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    A NASA Social participant asks a question to the astronauts onboard the International Space Station in a live downlink from the ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  20. Retrieval of Snow Properties for Ku- and Ka-band Dual-Frequency Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tokay, Ali; Bliven, Larry F.

    2016-01-01

    The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro/macro-physical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager Particle Image Probe (SVIPIP) duringthe winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.

  1. Retrieval of Snow Properties for Ku- and Ka-Band Dual-Frequency Radar

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tokay, Ali; Bliven, Larry F.

    2016-01-01

    The focus of this study is on the estimation of snow microphysical properties and the associated bulk parameters such as snow water content and water equivalent snowfall rate for Ku- and Ka-band dual-frequency radar. This is done by exploring a suitable scattering model and the proper particle size distribution (PSD) assumption that accurately represent, in the electromagnetic domain, the micro-macrophysical properties of snow. The scattering databases computed from simulated aggregates for small-to-moderate particle sizes are combined with a simple scattering model for large particle sizes to characterize snow-scattering properties over the full range of particle sizes. With use of the single-scattering results, the snow retrieval lookup tables can be formed in a way that directly links the Ku- and Ka-band radar reflectivities to snow water content and equivalent snowfall rate without use of the derived PSD parameters. A sensitivity study of the retrieval results to the PSD and scattering models is performed to better understand the dual-wavelength retrieval uncertainties. To aid in the development of the Ku- and Ka-band dual-wavelength radar technique and to further evaluate its performance, self-consistency tests are conducted using measurements of the snow PSD and fall velocity acquired from the Snow Video Imager Particle Image Probe (SVIPIP) during the winter of 2014 at the NASA Wallops Flight Facility site in Wallops Island, Virginia.

  2. Control of Dual-Opposed Stirling Convertors with Active Power Factor Correction Controllers

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G.

    2007-01-01

    When using recently-developed active power factor correction (APFC) controllers in power systems comprised of dual-opposed free-piston Stirling convertors, a variety of configurations of the convertors and controller(s) can be considered, with configuration ultimately selected based on benefits of efficiency, reliability, and robust operation. The configuration must not only achieve stable control of the two convertors, but also synchronize and regulate motion of the pistons to minimize net dynamic forces. The NASA Glenn Research Center (GRC) System Dynamic Model (SDM) was used to study ten configurations of dual-opposed convertor systems. These configurations considered one controller with the alternators connected in series or in parallel, and two controllers with the alternators not connected (isolated). For the configurations where the alternators were not connected, several different approaches were evaluated to synchronize the two convertors. In addition, two thermodynamic configurations were considered: two convertors with isolated working spaces and convertors with a shared expansion space. Of the ten configurations studied, stable operating modes were found for four. Three of those four had a common expansion space. One stable configuration was found for the dual-opposed convertors with separate working spaces. That configuration required isochronous control of both convertors, and two APFC controllers were used to accomplish this. A frequency/phase control loop was necessary to allow each APFC controller to synchronize its associated convertor with a common frequency.

  3. Control of Dual-Opposed Stirling Convertors with Active Power Factor Correction Controllers

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G.

    2006-01-01

    When using recently-developed active power factor correction (APFC) controllers in power systems comprised of dual-opposed free-piston Stirling convertors, a variety of configurations of the convertors and controller(s) can be considered, with configuration ultimately selected based on benefits of efficiency, reliability, and robust operation. The configuration must not only achieve stable control of the two convertors, but also synchronize and regulate motion of the pistons to minimize net dynamic forces. The NASA Glenn Research Center (GRC) System Dynamic Model (SDM) was used to study ten configurations of dual-opposed convertor systems. These configurations considered one controller with the alternators connected in series or in parallel, and two controllers with the alternators not connected (isolated). For the configurations where the alternators were not connected, several different approaches were evaluated to synchronize the two convertors. In addition, two thermodynamic configurations were considered: two convertors with isolated working spaces and convertors with a shared expansion space. Of the ten configurations studied, stable operating modes were found for four. Three of those four had a common expansion space. One stable configuration was found for the dual-opposed convertors with separate working spaces. That configuration required isochronous control of both convertors, and two APFC controllers were used to accomplish this. A frequency/phase control loop was necessary to allow each APFC controller to synchronize its associated convertor with a common frequency.

  4. NASA strategic plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Strategic Plan is a living document. It provides far-reaching goals and objectives to create stability for NASA's efforts. The Plan presents NASA's top-level strategy: it articulates what NASA does and for whom; it differentiates between ends and means; it states where NASA is going and what NASA intends to do to get there. This Plan is not a budget document, nor does it present priorities for current or future programs. Rather, it establishes a framework for shaping NASA's activities and developing a balanced set of priorities across the Agency. Such priorities will then be reflected in the NASA budget. The document includes vision, mission, and goals; external environment; conceptual framework; strategic enterprises (Mission to Planet Earth, aeronautics, human exploration and development of space, scientific research, space technology, and synergy); strategic functions (transportation to space, space communications, human resources, and physical resources); values and operating principles; implementing strategy; and senior management team concurrence.

  5. Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT.

    PubMed

    Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael

    2017-01-01

    Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases.

  6. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld talks during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  7. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Lunar Atmosphere and Dust Environment Explorer (LADEE) Program Scientist Sarah Noble talks during a NASA Social about the LADEE mission at NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  8. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Bob Barber, Lunar Atmosphere and Dust Environment Explorer (LADEE) Spacecraft Systems Engineer at NASA Ames Research Center, points to a model of the LADEE spacecraft a NASA Social, Thursday, Sept. 5, 2013 at NASA Wallops Flight Facility in Virginia. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  9. DUAL-MODE PROPULSION SYSTEM ENABLING CUBESAT EXPLORATION OF THE SOLAR SYSTEM NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan Jerred; Troy Howe; Adarsh Rajguru

    chemical-based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payload’s communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods – the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.« less

  10. Multi-scale Microstructure Characterization for Improved Understanding of Microstructure-Property Relationship in Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Song, Hye Yun

    Additive manufacturing (AM) is the process for making 3-D objects by adding materials layer by layer. It can result in a marked reduction of the time and cost associated with designing and producing highly complex parts. Over the past decade, significant progress has been made in machine hardware and control software for process development to achieve dimensional accuracy and mitigate defects. On the other hand, the knowledge on microstructure-property relationship in the additively manufactured builds is still being established. In additive manufacturing, the interactions between the heat source and the material lead to a series of physical phenomena including localized heating, melting, solidification and micro-segregation, and cooling. Far-from-equilibrium microstructure can form as the material experiences a large number of repeated, rapid heating and cooling cycles (i.e. temperature gyrations) during depositions. The mechanical properties of additively manufactured parts are significantly influenced by their final microstructure. The overarching goal of the present research is to improve the fundamental understanding of microstructure-property relationship for AM parts. Specially, it is investigated the high-temperature creep strength of InconelRTM 718 (abbreviated as IN718 thereafter) fabricated by laser-powder bed fusion (L-PBF) AM. The specific objectives include (1) effect of support on the local microstructure, (2) microstructure evolution during post-built heat treatment, and (3) creep strength. Detailed microstructure characterization is performed using a multitude of tools including micro-hardness mapping, scanning electron microscope (SEM) along with electron backscatter diffraction (EBSD), and transmission electron microscope (TEM) for selected area diffraction (SAD) analysis and energy-dispersive X-ray spectroscopy (EDS). The characterized microstructure is correlated to the mechanical properties. Highlights of the research findings are discussed in

  11. Microstructure Applications for Battery Design | Transportation Research |

    Science.gov Websites

    NREL Microstructure Applications for Battery Design Microstructure Applications for Battery Design NREL's Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) work includes simulating physics at the electrode microstructure level and created a virtual design tool for battery

  12. Tin Sulfide Phase Exploration: Dependence of Optoelectronic Properties on Microstructural Growth and Chemical Variations in Thin Film Material

    NASA Astrophysics Data System (ADS)

    Banai, Rona Elinor

    Herzenbergite tin (II) monosulfide (alpha-SnS) is of growing interest as a photovoltaic material because of its interesting optoelectronic properties and Earth abundance. It has several stable phases due to the dual valency of tin. As a layered material, alpha-SnS has the ability to form varying microstructure with differing properties. For this dissertation, films were RF sputtered from a SnS and SnS2 target to produce films with varying microstructure. Growth of high energy phases includin beta-SnS and amorphous SnS2 were possible through sputtering. Films of mixed or strained phase resulted from both targets. Pure phase alpha-SnS was made by annealing amorphous SnS2 films. Microstructure was measured using grazing incidence XRD and field emission SEM. The impact of microstructure was seen for both optical and electronic properties. Films were evaluated using spectroscopic ellipsometry as well as unpolarized UV-Vis transmission and reflection measurements. Optical modeling of the films is sufficient for developing models corresponding to specific microstructure, enabling it to be an inexpensive tool for studying the material. Absorption coefficient and band gap were also derived for these films. Films deposited with the SnS target had resistivity values up to 20,000 O-cm. Annealing of amorphous films deposited from the SnS2 target resulted in alpha-SnS films with much lower resistivity (<50 O-cm) values. This method for producing alpha-SnS offered better control of the phase, microstructure and therefore optoelectronic properties. While SnS films made from either target were typically p-type, sputtering of the SnS2 target with substrate heating resulted in n-type SnSx of a potentially new phase similar to SnS2 but with a 2:3 tin-to-sulfur ratio. Resistivity of those films typically ranged from 1 to 40 O-cm. Both p- and n-type films made from the SnS2 target had high carrier concentration of 10 17 to 1020 cm-3, but films had low Hall mobility such that

  13. Prior ankle fractures in postmenopausal women are associated with low areal bone mineral density and bone microstructure alterations.

    PubMed

    Biver, E; Durosier, C; Chevalley, T; Herrmann, F R; Ferrari, S; Rizzoli, R

    2015-08-01

    In a cross-sectional analysis in postmenopausal women, prior ankle fractures were associated with lower areal bone mineral density (BMD) and trabecular bone alterations compared to no fracture history. Compared to women with forearm fractures, microstructure alterations were of lower magnitude. These data suggest that ankle fractures are another manifestation of bone fragility. Whether ankle fractures represent fragility fractures associated with low areal bone mineral density (aBMD) and volumetric bone mineral density (vBMD) and/or bone microstructure alterations remains unclear, in contrast to the well-recognised association between forearm fractures and osteoporosis. The objective of this study was to investigate aBMD, vBMD and bone microstructure in postmenopausal women with prior ankle fracture in adulthood, compared with women without prior fracture or with women with prior forearm fractures, considered as typically of osteoporotic origin. In a cross-sectional analysis in the Geneva Retirees Cohort study, 63 women with ankle fracture and 59 with forearm fracture were compared to 433 women without fracture (mean age, 65 ± 1 years). aBMD was measured by dual-energy X-ray absorptiometry; distal radius and tibia vBMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography. Compared with women without fracture, those with ankle fractures had lower aBMD, radius vBMD (-7.9%), trabecular density (-10.7%), number (-7.3%) and thickness (-4.6%) and higher trabecular spacing (+14.5%) (P < 0.05 for all). Tibia trabecular variables were also altered. For 1 standard deviation decrease in total hip aBMD or radius trabecular density, odds ratios for ankle fractures were 2.2 and 1.6, respectively, vs 2.2 and 2.7 for forearm fracture, respectively (P ≤ 0.001 for all). Compared to women with forearm fractures, those with ankle fractures had similar spine and hip aBMD, but microstructure alterations of lower magnitude

  14. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs, left, and present NASA Administrator Charles Bolden conduct a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. Bolden took over the post as NASA's 12th administrator in July 2009. The dialogue is part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  15. 14 CFR 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by an...

  16. Acting Administrator Robert Lightfoot Discusses NASAs FY2018 NASA Budget Request

    NASA Image and Video Library

    2017-05-23

    Acting NASA Administrator Robert Lightfoot discussed the agency’s Fiscal Year 2018 budget request on May 23, during an agencywide town hall State of NASA address at NASA Headquarters in Washington. The address also was broadcast on NASA Television and streamed on the agency’s homepage and mobile apps.

  17. Research in NASA history: A guide to the NASA history program

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report describes the research opportunities and accomplishments of NASA's agency wide history program. It also offers a concise guide to the historical documentary resources available at NASA Headquarters in Washington D.C., at NASA facilities located around the country, and through the federal records system. In addition, this report contains expanded contributions by Lee D. Saegessor and other members of the NASA Headquarters History Division and by those responsible for historical documents and records at some NASA centers.

  18. Reason for high strength and good ductility in dual phase steels composed of soft ferrite and hard martensite

    NASA Astrophysics Data System (ADS)

    Terada, Daisuke; Ikeda, Gosuke; Park, Myeong-heom; Shibata, Akinobu; Tsuji, Nobuhiro

    2017-07-01

    Dual phase (DP) steels in which the microstructures are composed of a soft ferrite phase and a hard martensite phase are known to show good strain-hardening, high strength and large elongation, but reasons for their superior mechanical properties are still unclear. In the present study, two types of DP structures, having either networked martensite or isolated martensite were fabricated in a low-carbon steel by different heat treatment routes, and their tensile deformation behavior was analyzed using the digital image correlation (DIC) technique. It was revealed that the DP specimens having networked martensite microstructures showed a better strength-ductility balance than the DP specimens with isolated martensite structures. The microscopic DIC analysis of identical areas showed that the strain distribution within the DP microstructures was not uniform and the plastic strain was localized in soft ferrite grains. The strain localized regions tended to detour around hard martensite but eventually propagated across the martensite. It was found also from the DIC analysis that the degree of strain partitioning between ferrite and martensite in the networked DP structure was lower than that in the isolated DP structure. The deformation became more homogeneous when the hard phase (martensite) was connected to form a network structure, which could be one of the reasons for the better strength-ductility balance in the networked DP structure compared to that in the isolated DP structure.

  19. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld is seen in a video monitor during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  20. 75 FR 70951 - NASA Advisory Council; NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-148)] NASA Advisory Council; NASA... Committee of the NASA Advisory Council. DATES: Tuesday, December 14, 2010, 1:30 p.m.-4:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center Room 1Q39, Washington, DC 20546...

  1. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Expedition 33/34 astronauts onboard the International Space Station answer questions in a live downlink at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Seen from left to right are NASA astronauts Tom Marshburn, Kevin Ford and Canadian Space Agency (CSA) astronaut Chris Hadfield. Photo Credit: (NASA/Carla Cioffi)

  2. A preliminary research on the mechanical properties of TiAl + Ti{sub 5}Si{sub 3} dual phase alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Qiu, G.; Wu, J.

    A sufficient Si addition to TiAl matrix has led to TiAl + Ti{sub 5}Si{sub 3} dual phase alloys, showing coupled-growth microstructure. Compression tests at R.T. as well as high temp indicated that the yield stress increased with increasing Ti{sub 5}Si{sub 3} volume fraction, and decreased at higher temperature. The reinforcement from Ti{sub 5}Si{sub 3} phase was obvious while high Si and Al contents resulted in low ductility. The fracture surfaces were quasi-cleavage. Further research should concern with the adjustment of the shape and amount of the second phase.

  3. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  4. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  5. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells

    NASA Technical Reports Server (NTRS)

    Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.

    2002-01-01

    We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.

  6. NASA Social

    NASA Image and Video Library

    2011-05-18

    Gwynne Shotwell, President of SpaceX, speaks during a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  7. NASA Social

    NASA Image and Video Library

    2012-05-18

    Models of various rockets line a table at a NASA Social, Friday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  8. Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor

    2013-06-01

    Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.

  9. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs is seen during a dialogue with present NASA Administrator Charles Bolden on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  10. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. In the foreground is pictured Veggie, a container used for growing plants on the ISS. Photo Credit: (NASA/Carla Cioffi)

  11. Bone microstructure in men assessed by HR-pQCT: Associations with risk factors and differences between men with normal, low, and osteoporosis-range areal BMD.

    PubMed

    Okazaki, Narihiro; Burghardt, Andrew J; Chiba, Ko; Schafer, Anne L; Majumdar, Sharmila

    2016-12-01

    The primary objective of this study was to analyze the relationships between bone microstructure and strength, and male osteoporosis risk factors including age, body mass index, serum 25-hydroxyvitamin D level, and testosterone level. A secondary objective was to compare microstructural and strength parameters between men with normal, low, and osteoporosis-range areal bone mineral density (aBMD). Seventy-eight healthy male volunteers (mean age 62.4 ± 7.8 years, range 50-84 years) were recruited. The participants underwent dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT) of the ultra-distal radius and tibia. From the HR-pQCT images, volumetric bone mineral density (BMD) and cortical and trabecular bone microstructure were evaluated, and bone strength and cortical load fraction (Ct.LF) were estimated using micro-finite element analysis (μFEA). Age was more strongly correlated with bone microstructure than other risk factors. Age had significant positive correlations with cortical porosity at both ultra-distal radius and tibia ( r  = 0.36, p  = 0.001, and r  = 0.47, p  < 0.001, respectively). At the tibia, age was negatively correlated with cortical BMD, whereas it was positively correlated with trabecular BMD. In μFEA, age was negatively correlated with Ct.LF, although not with bone strength. Compared with men with normal aBMD, men with low or osteoporosis-range aBMD had significantly poor trabecular bone microstructure and lower bone strength at the both sites, while there was no significant difference in cortical bone. Cortical bone microstructure was negatively affected by aging, and there was a suggestion that the influence of aging may be particularly important at the weight-bearing sites.

  12. NASA L-SAR instrument for the NISAR (NASA-ISRO) Synthetic Aperture Radar mission

    NASA Astrophysics Data System (ADS)

    Hoffman, James P.; Shaffer, Scott; Perkovic-Martin, Dragana

    2016-05-01

    The National Aeronautics and Space Administration (NASA) in the United States and the Indian Space Research Organization (ISRO) have partnered to develop an Earth-orbiting science and applications mission that exploits synthetic aperture radar to map Earth's surface every 12 days or less. To meet demanding coverage, sampling, and accuracy requirements, the system was designed to achieve over 240 km swath at fine resolution, and using full polarimetry where needed. To address the broad range of disciplines and scientific study areas of the mission, a dual-frequency system was conceived, at L-band (24 cm wavelength) and S-band (10 cm wavelength). To achieve these observational characteristics, a reflector-feed system is considered, whereby the feed aperture elements are individually sampled to allow a scan-on-receive ("SweepSAR") capability at both L-band and S-band. The instrument leverages the expanding capabilities of on-board digital processing to enable real-time calibration and digital beamforming. This paper describes the mission characteristics, current status of the L-band Synthetic Aperture Radar (L-SAR) portion of the instrument, and the technology development efforts in the United States that are reducing risk on the key radar technologies needed to ensure proper SweepSAR operations.

  13. Observation of asphalt binder microstructure with ESEM.

    PubMed

    Mikhailenko, P; Kadhim, H; Baaj, H; Tighe, S

    2017-09-01

    The observation of asphalt binder with the environmental scanning electron microscope (ESEM) has shown the potential to observe asphalt binder microstructure and its evolution with binder aging. A procedure for the induction and identification of the microstructure in asphalt binder was established in this study and included sample preparation and observation parameters. A suitable heat-sampling asphalt binder sample preparation method was determined for the test and several stainless steel and Teflon sample moulds developed, finding that stainless steel was the preferable material. The magnification and ESEM settings conducive to observing the 3D microstructure were determined through a number of observations to be 1000×, although other magnifications could be considered. Both straight run binder (PG 58-28) and an air blown oxidised binder were analysed; their structures being compared for their relative size, abundance and other characteristics, showing a clear evolution in the fibril microstructure. The microstructure took longer to appear for the oxidised binder. It was confirmed that the fibril microstructure corresponded to actual characteristics in the asphalt binder. Additionally, a 'bee' micelle structure was found as a transitional structure in ESEM observation. The test methods in this study will be used for more comprehensive analysis of asphalt binder microstructure. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  15. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington asks astronaut Joe Acaba a question, Tuesday, Dec. 4, 2012, at NASA Headquarters. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  16. NASA Social

    NASA Image and Video Library

    2012-05-18

    Participants with the NASA Social stand together, Friday, May 18, 2012, in front of the Vehicle Assembly Building (VAB) at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  17. Dual-pump CARS of Air in a Heated Pressure Vessel up to 55 Bar and 1300 K

    NASA Technical Reports Server (NTRS)

    Cantu, Luca; Gallo, Emanuela; Cutler, Andrew D.; Danehy, Paul M.

    2014-01-01

    Dual-pump Coherent anti-Stokes Raman scattering (CARS) measurements have been performed in a heated pressure vessel at NASA Langley Research Center. Each measurement, consisting of 500 single shot spectra, was recorded at a fixed location in dry air at various pressures and temperatures, in a range of 0.03-55×10(exp 5) Pa and 300-1373 K, where the temperature was varied using an electric heater. The maximum output power of the electric heater limited the combinations of pressures and temperatures that could be obtained. Charts of CARS signal versus temperature (at constant pressure) and signal versus pressure (at constant temperature) are presented and fit with an empirical model to validate the range of capability of the dual-pump CARS technique; averaged spectra at different conditions of pressure and temperature are also shown.

  18. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Jason Townsend, NASA's Deputy Social Media Manager, kicks off the Lunar Atmosphere and Dust Environment Explorer (LADEE) NASA Social at Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  19. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    William Gerstenmaier, Associate Administrator Human Exploration and Operations, speaks at a NASA Social on Science on the International Space Station at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  20. NASA Video Catalog

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  1. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  2. Dual-targeting siRNAs

    PubMed Central

    Tiemann, Katrin; Höhn, Britta; Ehsani, Ali; Forman, Stephen J.; Rossi, John J.; Sætrom, Pål

    2010-01-01

    We have developed an algorithm for the prediction of dual-targeting short interfering RNAs (siRNAs) in which both strands are deliberately designed to separately target different mRNA transcripts with complete complementarity. An advantage of this approach versus the use of two separate duplexes is that only two strands, as opposed to four, are competing for entry into the RNA-induced silencing complex. We chose to design our dual-targeting siRNAs as Dicer substrate 25/27mer siRNAs, since design features resembling pre-microRNAs (miRNAs) can be introduced for Dicer processing. Seven different dual-targeting siRNAs targeting genes that are potential targets in cancer therapy have been developed including Bcl2, Stat3, CCND1, BIRC5, and MYC. The dual-targeting siRNAs have been characterized for dual target knockdown in three different cell lines (HEK293, HCT116, and PC3), where they were as effective as their corresponding single-targeting siRNAs in target knockdown. The algorithm developed in this study should prove to be useful for predicting dual-targeting siRNAs in a variety of different targets and is available from http://demo1.interagon.com/DualTargeting/. PMID:20410240

  3. NASA Satellite Gives a Clear View for NASA's LADEE Launch

    NASA Image and Video Library

    2013-09-06

    NASA's Wallops Flight Facility is located on Wallops Island, Va. and is the site of tonight's moon mission launch. Satellite imagery from NOAA's GOES-East satellite shows that high pressure remains in control over the Mid-Atlantic region, providing an almost cloud-free sky. This visible image of the Mid-Atlantic was captured by NOAA's GOES-East satellite at 17:31 UTC/1:31 p.m. EDT and shows some fair weather clouds over the Delmarva Peninsula (which consists of the state of Delaware and parts of Maryland and Virginia - which together is "Delmarva") and eastern Virginia and North Carolina. Most of the region is cloud-free, making for a perfect viewing night to see a launch. NOAA operates GOES-East and NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. creates images and animations from the data. NOAA's National Weather Service forecast for tonight, Sept. 6 calls for winds blowing from the east to 11 mph, with clear skies and overnight temperatures dropping to the mid-fifties. The Lunar Atmosphere and Dust Environment Explorer, known as LADEE (pronounced like "laddie"), launches tonight at 11:27 p.m. EDT from Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA Wallops and will be visible along the Mid-Atlantic with tonight's perfect weather conditions. LADEE is managed by NASA's Ames Research Center in Moffett Field, Calif. This will be the first launch to lunar orbit from NASA Wallops and the first launch of a Minotaur V rocket – the biggest ever launched from Wallops. NASA's LADEE is a robotic mission that will orbit the moon to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. LADEE also carries an important secondary payload, the Lunar Laser Communication Demonstration, or LLCD, which will help us open a new

  4. NASA Social

    NASA Image and Video Library

    2012-05-18

    NASA Social participants are reflected in the sunglasses of former NASA astronaut Garrett Reisman, now a senior engineer working on astronaut safety and mission assurance for Space Exploration Technologies, or SpaceX, as he speaks with them, Friday, May 18, 2012, at the launch complex where the company's Falcon 9 rocket is set to launch early Friday morning at Cape Canaveral Air Force Station in Cape Canaveral, Fla. Photo Credit: (NASA/Paul E. Alers)

  5. NASA Alumni League Dialogue

    NASA Image and Video Library

    2011-03-04

    Former NASA Administrator James Beggs smiles during a dialogue on the future of the space program, Friday, March 4, 2011, at NASA Headquarters in Washington. Beggs was NASA's sixth administrator serving from July 1981 to December 1985. The dialogue was part of the program “The State of the Agency: NASA Future Programs Presentation” sponsored by the NASA Alumni League with support from the AAS, AIAA, CSE and WIA.Photo Credit: (NASA/Paul E. Alers)

  6. Microstructure of Matrix in UHTC Composites

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan

    2011-01-01

    Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.

  7. Lp-dual affine surface area

    NASA Astrophysics Data System (ADS)

    Wei, Wang; Binwu, He

    2008-12-01

    According to the notion of Lp-affine surface area by Lutwak, in this paper, we introduce the concept of Lp-dual affine surface area. Further, we establish the affine isoperimetric inequality and the Blaschke-Santaló inequality for Lp-dual affine surface area. Besides, the dual Brunn-Minkowski inequality for Lp-dual affine surface area is presented.

  8. AxTract: Toward microstructure informed tractography.

    PubMed

    Girard, Gabriel; Daducci, Alessandro; Petit, Laurent; Thiran, Jean-Philippe; Whittingstall, Kevin; Deriche, Rachid; Wassermann, Demian; Descoteaux, Maxime

    2017-11-01

    Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the tool of choice to probe the human brain's white matter in vivo. However, tractography algorithms produce a large number of erroneous streamlines (false positives), largely due to complex ambiguous tissue configurations. Moreover, the relationship between the resulting streamlines and the underlying white matter microstructure characteristics remains poorly understood. In this work, we introduce a new approach to simultaneously reconstruct white matter fascicles and characterize the apparent distribution of axon diameters within fascicles. To achieve this, our method, AxTract, takes full advantage of the recent development DW-MRI microstructure acquisition, modeling, and reconstruction techniques. This enables AxTract to separate parallel fascicles with different microstructure characteristics, hence reducing ambiguities in areas of complex tissue configuration. We report a decrease in the incidence of erroneous streamlines compared to the conventional deterministic tractography algorithms on simulated data. We also report an average increase in streamline density over 15 known fascicles of the 34 healthy subjects. Our results suggest that microstructure information improves tractography in crossing areas of the white matter. Moreover, AxTract provides additional microstructure information along the fascicle that can be studied alongside other streamline-based indices. Overall, AxTract provides the means to distinguish and follow white matter fascicles using their microstructure characteristics, bringing new insights into the white matter organization. This is a step forward in microstructure informed tractography, paving the way to a new generation of algorithms able to deal with intricate configurations of white matter fibers and providing quantitative brain connectivity analysis. Hum Brain Mapp 38:5485-5500, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Superlattice Microstructured Optical Fiber

    PubMed Central

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  10. @NASA Wins Shorty Award

    NASA Image and Video Library

    2013-04-10

    A Shorty Award is seen Wednesday, April 10, 2013 at NASA Headquarters in Washington. NASA's official Twitter feed, @NASA, has won its second consecutive Shorty award for the best government use of social media. The Shorty Award honors the best of social media across sites such as Twitter, Facebook, Tumblr, YouTube, Foursquare and others. NASA took the prize Monday, April 8, at the fifth Shorty Awards ceremony in New York. The @NASA acceptance tweet was, "We're sharing the universe 1 tweet at a time. Be inspired! Follow @NASA & RT if you love science & space. #ShortyAwards." Photo Credit: (NASA/Carla Cioffi)

  11. NASA - Beyond Boundaries

    NASA Technical Reports Server (NTRS)

    McMillan, Courtenay

    2016-01-01

    NASA is able to achieve human spaceflight goals in partnership with international and commercial teams by establishing common goals and building connections. Presentation includes photographs from NASA missions - on orbit, in Mission Control, and at other NASA facilities.

  12. Working at NASA

    NASA Technical Reports Server (NTRS)

    Harding, Adam

    2010-01-01

    This slide presentation reviews the author's educational and work background prior to working at NASA. It then presents an overview of NASA Dryden, a brief review of the author's projects while working at NASA, and some closing thoughts.

  13. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  14. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks NASA Associate Administrator for the Science Mission Directorate John Grunsfeld a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  15. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  16. Laser engineered net shaping of quasi-continuous network microstructural TiB reinforced titanium matrix bulk composites: Microstructure and wear performance

    NASA Astrophysics Data System (ADS)

    Hu, Yingbin; Ning, Fuda; Wang, Hui; Cong, Weilong; Zhao, Bo

    2018-02-01

    Titanium (Ti) and its alloys have been successfully applied to the aeronautical and biomedical industries. However, their poor tribological properties restrict their fields of applications under severe wear conditions. Facing to these challenges, this study investigated TiB reinforced Ti matrix composites (TiB-TMCs), fabricated by in-situ laser engineered net shaping (LENS) process, through analyzing parts quality, microstructure formation mechanisms, microstructure characterizations, and workpiece wear performance. At high B content areas (original B particle locations), reaction between Ti and B particles took place, generating flower-like microstructure. At low B content areas, eutectic TiB nanofibers contacted with each other with the formation of crosslinking microstructure. The crosslinking microstructural TiB aggregated and connected at the boundaries of Ti grains, forming a three-dimensional quasi-continuous network microstructure. The results show that compared with commercially pure Ti bulk parts, the TiB-TMCs exhibited superior wear performance (i.e. indentation wear resistance and friction wear resistance) due to the present of TiB reinforcement and the innovative microstructures formed inside TiB-TMCs. In addition, the qualities of the fabricated parts were improved with fewer interior defects by optimizing laser power, thus rendering better wear performance.

  17. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Chief Technologist Mason Peck talks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  18. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Deputy Administrator Lori Garver speaks during the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  19. Investigation of Microstructure and Microhardness in Self-Reacting Friction Stir Welded AA2014-T6 and AA2219-T87

    NASA Technical Reports Server (NTRS)

    Horton, K. Renee; McGill, Preston; Barkey, Mark

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. This work reports on the microstructure and microhardness of SR-FSW between two dissimilar aluminum alloys. Specifically, the study examines the cross section of the weld joint formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side. The microstructural analysis shows an irregularly displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the weld nugget region. There are sharp variations in the microhardness across the weld. These variations are described in the paper and mechanisms for their formation are discussed.

  20. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA Social participants listen as astronaut Joe Acaba answers questions about his time living aboard the International Space Station at NASA Headquarters, Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  1. Fine and gross motor skills: The effects on skill-focused dual-tasks.

    PubMed

    Raisbeck, Louisa D; Diekfuss, Jed A

    2015-10-01

    Dual-task methodology often directs participants' attention towards a gross motor skill involved in the execution of a skill, but researchers have not investigated the comparative effects of attention on fine motor skill tasks. Furthermore, there is limited information about participants' subjective perception of workload with respect to task performance. To examine this, the current study administered the NASA-Task Load Index following a simulated shooting dual-task. The task required participants to stand 15 feet from a projector screen which depicted virtual targets and fire a modified Glock 17 handgun equipped with an infrared laser. Participants performed the primary shooting task alone (control), or were also instructed to focus their attention on a gross motor skill relevant to task execution (gross skill-focused) and a fine motor skill relevant to task execution (fine skill-focused). Results revealed that workload was significantly greater during the fine skill-focused task for both skill levels, but performance was only affected for the lesser-skilled participants. Shooting performance for the lesser-skilled participants was greater during the gross skill-focused condition compared to the fine skill-focused condition. Correlational analyses also demonstrated a significant negative relationship between shooting performance and workload during the gross skill-focused task for the higher-skilled participants. A discussion of the relationship between skill type, workload, skill level, and performance in dual-task paradigms is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Tara Ruttley, International Space Station Program Scientist, talks about the benefits of conducting science experiments on ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  3. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    NASA Administrator Charles Bolden delivers opening remarks at the NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011 in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  4. 14 CFR § 1240.105 - Special initial awards-NASA and NASA contractor employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Special initial awards-NASA and NASA... initial awards—NASA and NASA contractor employees. (a) Patent Application Awards. (1) When the Board... Property or the Patent or Intellectual Property Counsel at a NASA Center that an invention made by an...

  5. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  6. NASA Studies Lightning Storms Using High-Flying, Uninhabited Vehicle

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA team studying the causes of electrical storms and their effects on our home planet achieved a milestone on August 21, 2002, completing the study's longest-duration research flight and monitoring four thunderstorms in succession. Based at the Naval Air Station Key West, Florida, researchers with the Altus Cumulus Electrification Study (ACES) used the Altus II remotely-piloted aircraft to study thunderstorms in the Atlantic Ocean off Key West and the west of the Everglades. Data obtained through sensors mounted to the aircraft will allow researchers in ACES to gauge elements such as lightning activity and the electrical environment in and around storms. By learning more about individual storms, scientists hope to better understand the global water and energy cycle, as well as climate variability. Contained in one portion of the aircraft is a three-axis magnetic search coil, which measures the AC magnetic field; a three-axis electric field change sensor; an accelerometer; and a three-axis magnetometer, which measures the DC magnetic field. With dual goals of gathering weather data safely and testing the adaptability of the uninhabited aircraft, the ACES study is a collaboration among the Marshall Space Flight Center, the University of Alabama in Huntsville, NASA's Goddard Space Flight Center in Greenbelt, Maryland, Pernsylvania State University in University Park, and General Atomics Aeronautical Systems, Inc.

  7. NASA Studies Lightning Storms Using High-Flying, Uninhabited Vehicle

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA team studying the causes of electrical storms and their effects on our home planet achieved a milestone on August 21, 2002, completing the study's longest-duration research flight and monitoring four thunderstorms in succession. Based at the Naval Air Station Key West, Florida, researchers with the Altus Cumulus Electrification Study (ACES) used the Altus II remotely piloted aircraft to study thunderstorms in the Atlantic Ocean off Key West and the west of the Everglades. The ACES lightning study used the Altus II twin turbo uninhabited aerial vehicle, built by General Atomics Aeronautical Systems, Inc. of San Diego. The Altus II was chosen for its slow flight speed of 75 to 100 knots (80 to 115 mph), long endurance, and high-altitude flight (up to 65,000 feet). These qualities gave the Altus II the ability to fly near and around thunderstorms for long periods of time, allowing investigations to be conducted over the entire life cycle of storms. The vehicle has a wing span of 55 feet and a payload capacity of over 300 lbs. With dual goals of gathering weather data safely and testing the adaptability of the uninhabited aircraft, the ACES study is a collaboration among the Marshall Space Flight Center, the University of Alabama in Huntsville, NASA's Goddard Space Flight Center in Greenbelt, Maryland, Pernsylvania State University in University Park, and General Atomics Aeronautical Systems, Inc.

  8. NASA/NOAA/AMS Earth Science Electronic Theatre

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat 7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite, Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  9. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  10. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  11. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  12. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Public Affairs Officer Lauren Worley kicks off the second day of the NASA Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  13. NASA IYA Programs

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2009-05-01

    NASA's Science Mission Directorate (SMD) launched a variety of programs to celebrate the International Year of Astronomy (IYA) 2009. A few examples will be presented to demonstrate how the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics has been given an IYA2009 flavor and made available to students, educators and the public worldwide. NASA participated in the official kickoff of US IYA activities by giving a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions that are now traveling to 40 public libraries around the country. NASA IYA Student Ambassadors represented the USA at the international Opening Ceremony in Paris, and have made strides in connecting with local communities throughout the USA. NASA's Object of the Month activities have generated great interest in the public through IYA Discovery Guides. Images from NASA's Great Observatories are included in the From Earth to the Universe (FETTU) exhibition, which was inaugurated both in the US and internationally. The Hubble Space Telescope Project had a tremendous response to its 100 Days of Astronomy "You Decide” competition. NASA's IYA programs have started a journey into the world of astronomy by the uninitiated and cultivated the continuation of a quest by those already enraptured by the wonders of the sky.

  14. Microstructural examination of

    NASA Astrophysics Data System (ADS)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y. G.; Lapides, M. E.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, ΔK = 18, 36, 54, and 72 MPa√m. The microstructure of the plastic zones around the crack tip were examined by trans- mission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro- orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 deg from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better under- standing of how fatigue initiation processes transit to cracks.

  15. Dual Motor-Cognitive Virtual Reality Training Impacts Dual-Task Performance in Freezing of Gait.

    PubMed

    Killane, Isabelle; Fearon, Conor; Newman, Louise; McDonnell, Conor; Waechter, Saskia M; Sons, Kristian; Lynch, Timothy; Reilly, Richard B

    2015-11-01

    Freezing of gait (FOG), an episodic gait disturbance characterized by the inability to generate effective stepping, occurs in more than half of Parkinson's disease patients. It is associated with both executive dysfunction and attention and becomes most evident during dual tasking (performing two tasks simultaneously). This study examined the effect of dual motor-cognitive virtual reality training on dual-task performance in FOG. Twenty community dwelling participants with Parkinson's disease (13 with FOG, 7 without FOG) participated in a pre-assessment, eight 20-minute intervention sessions, and a post-assessment. The intervention consisted of a virtual reality maze (DFKI, Germany) through which participants navigated by stepping-in-place on a balance board (Nintendo, Japan) under time pressure. This was combined with a cognitive task (Stroop test), which repeatedly divided participants' attention. The primary outcome measures were pre- and post-intervention differences in motor (stepping time, symmetry, rhythmicity) and cognitive (accuracy, reaction time) performance during single- and dual-tasks. Both assessments consisted of 1) a single cognitive task 2) a single motor task, and 3) a dual motor-cognitive task. Following the intervention, there was significant improvement in dual-task cognitive and motor parameters (stepping time and rhythmicity), dual-task effect for those with FOG and a noteworthy improvement in FOG episodes. These improvements were less significant for those without FOG. This is the first study to show benefit of a dual motor-cognitive approach on dual-task performance in FOG. Advances in such virtual reality interventions for home use could substantially improve the quality of life for patients who experience FOG.

  16. The microstructure of starchy food modulates its digestibility.

    PubMed

    Tian, Jinhu; Ogawa, Yukiharu; Shi, John; Chen, Shiguo; Zhang, Huiling; Liu, Donghong; Ye, Xingqian

    2018-06-05

    Starch is the main carbohydrate in human nutrition and shows a range of desired food properties. It has been demonstrated that fast digestion of starchy food can induce many health issues (e.g., hyperglycaemia, diabetes, etc.); therefore, how to modulate its digestion is an interesting topic. Previous studies have revealed that the microstructure and digestibility of starchy food of different botanical origin or from multiple processes are quite different; modulating starch digestion by retaining or altering its microstructure may be effective. In the present review, the current knowledge of the relationship between microstructural changes to starchy food and its digestibility at molecular, cell and tissue, and food processing levels is summarized. New technologies focused on microstructure studies and ways to manipulate food microstructure to modulate starch digestibility are also reviewed. In particular, some insights focusing on the future study of microstructure and the digestibility of starchy food are also suggested.

  17. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    NASA Technical Reports Server (NTRS)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  18. Garver NASA Social

    NASA Image and Video Library

    2011-05-18

    NASA Deputy Administrator Lori Garver, in yellow jacket, stands with participants from the NASA Social underneath the engines of the Saturn V rocket at the Apollo Saturn V visitor center, Thursday, May 18, 2012, at Kennedy Space Center in Cape Canaveral, Fla. About 50 NASA Social followers attended an event as part of activities surrounding the launch of Space Exploration Technologies, or SpaceX, demonstration mission of the company's Falcon 9 rocket to the International Space Station. Photo Credit: (NASA/Paul E. Alers)

  19. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  20. Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT

    PubMed Central

    Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael

    2017-01-01

    Summary Introduction Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Methods Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Results Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. Discussion CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases. PMID:28740526

  1. Research in NASA History: A Guide to the NASA History Program

    NASA Technical Reports Server (NTRS)

    Garber, Stephen J. (Compiler)

    1997-01-01

    This monograph details the archival and other related resources held by the NASA History Office at Headquarters, and at NASA's Field Centers and other related government agencies. It also gives information on the NASA History publications, World Wide Web pages and the like.

  2. NASA Overview

    NASA Technical Reports Server (NTRS)

    Sheffner, Edwin J.

    2007-01-01

    The Earth Science Division supports research projects that exploit the observations and measurements acquired by NASA Earth Observing missions and Applied Sciences projects that extend NASA research to the broader user community and address societal needs.

  3. Trabecular bone microstructure is impaired in the proximal femur of human immunodeficiency virus-infected men with normal bone mineral density.

    PubMed

    Kazakia, Galateia J; Carballido-Gamio, Julio; Lai, Andrew; Nardo, Lorenzo; Facchetti, Luca; Pasco, Courtney; Zhang, Chiyuan A; Han, Misung; Parrott, Amanda Hutton; Tien, Phyllis; Krug, Roland

    2018-02-01

    There is evidence that human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are independent risk factors for osteoporosis and fracture which is not solely explained by changes in bone mineral density. Thus, we hypothesized that the assessment of trabecular microstructure might play an important role for bone quality in this population and might explain the increased fracture risk. In this study, we have assessed bone microstructure in the proximal femur using high-resolution magnetic resonance imaging (MRI) as well as in the extremities using high resolution peripheral quantitative computed tomography (HR-pQCT) in HIV-infected men and healthy controls and compared these findings to those based on areal bone mineral density (aBMD) derived from dual X-ray absorptiometry (DXA) which is the standard clinical parameter for the diagnosis of osteoporosis. Eight HIV-infected men and 11 healthy age-matched controls were recruited and informed consent was obtained before each scan. High-resolution MRI of the proximal femur was performed using fully balanced steady state free precession (bSSFP) on a 3T system. Three volumes of interest at corresponding anatomic locations across all subjects were defined based on registrations of a common template. Four MR-based trabecular microstructural parameters were analyzed at each region: fuzzy bone volume fraction (f-BVF), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp). In addition, the distal radius and distal tibia were imaged with HR-pQCT. Four HR-pQCT-based microstructural parameters were analyzed: trabecular bone volume fraction (BV/TV), Tb.N, Tb.Th, and Tb.Sp. Total hip and spine aBMD were determined from DXA. Microstructural bone parameters derived from MRI at the proximal femur and from HR-pQCT at the distal tibia showed significantly lower bone quality in HIV-infected patients compared to healthy controls. In contrast, DXA aBMD data showed no significant differences between HIV

  4. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  5. Microstructure Modeling of Third Generation Disk Alloys

    NASA Technical Reports Server (NTRS)

    Jou, Herng-Jeng

    2010-01-01

    The objective of this program was to model, validate, and predict the precipitation microstructure evolution, using PrecipiCalc (QuesTek Innovations LLC) software, for 3rd generation Ni-based gas turbine disc superalloys during processing and service, with a set of logical and consistent experiments and characterizations. Furthermore, within this program, the originally research-oriented microstructure simulation tool was to be further improved and implemented to be a useful and user-friendly engineering tool. In this report, the key accomplishments achieved during the third year (2009) of the program are summarized. The activities of this year included: Further development of multistep precipitation simulation framework for gamma prime microstructure evolution during heat treatment; Calibration and validation of gamma prime microstructure modeling with supersolvus heat treated LSHR; Modeling of the microstructure evolution of the minor phases, particularly carbides, during isothermal aging, representing the long term microstructure stability during thermal exposure; and the implementation of software tools. During the research and development efforts to extend the precipitation microstructure modeling and prediction capability in this 3-year program, we identified a hurdle, related to slow gamma prime coarsening rate, with no satisfactory scientific explanation currently available. It is desirable to raise this issue to the Ni-based superalloys research community, with hope that in future there will be a mechanistic understanding and physics-based treatment to overcome the hurdle. In the mean time, an empirical correction factor was developed in this modeling effort to capture the experimental observations.

  6. Microstructure of Tablet-Pharmaceutical Significance, Assessment, and Engineering.

    PubMed

    Sun, Changquan Calvin

    2017-05-01

    To summarize the microstructure - property relationship of pharmaceutical tablets and approaches to improve tablet properties through tablet microstructure engineering. The main topics reviewed here include: 1) influence of material properties and manufacturing process parameters on the evolution of tablet microstructure; 2) impact of tablet structure on tablet properties; 3) assessment of tablet microstructure; 4) development and engineering of tablet microstructure. Microstructure plays a decisive role on important pharmaceutical properties of a tablet, such as disintegration, drug release, and mechanical strength. Useful information on mechanical properties of a powder can be obtained from analyzing tablet porosity-pressure data. When helium pycnometry fails to accurately measure true density of a water-containing powder, non-linear regression of tablet density-pressure data is a useful alternative method. A component that is more uniformly distributed in a tablet generally exerts more influence on the overall tablet properties. During formulation development, it is highly recommended to examine the relationship between any property of interest and tablet porosity when possible. Tablet microstructure can be engineered by judicious selection of formulation composition, including the use of the optimum solid form of the drug and appropriate type and amount of excipients, and controlling manufacturing process.

  7. NASA-UVA Light Aerospace Alloy and Structures Technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The general aim is to produce relevant data and basic understanding of material mechanical response, environment/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated students for aerospace technologies. Specific technical objectives are presented for each of the following research projects: time-temperature dependent fracture in advanced wrought ingot metallurgy, and spray deposited aluminum alloys; cryogenic temperature effects on the deformation and fracture of Al-Li-Cu-In alloys; effects of aging and temperature on the ductile fracture of AA2095 and AA2195; mechanisms of localized corrosion in alloys 2090 and 2095; hydrogen interactions in aluminum-lithium alloys 2090 and selected model alloys; mechanisms of deformation and fracture in high strength titanium alloys (effects of temperature and hydrogen and effects of temperature and microstructure); evaluations of wide-panel aluminum alloy extrusions; Al-Si-Ge alloy development; effects of texture and precipitates on mechanical property anisotropy of Al-Cu-Mg-X alloys; damage evolution in polymeric composites; and environmental effects in fatigue life prediction - modeling crack propagation in light aerospace alloys.

  8. Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades

    NASA Astrophysics Data System (ADS)

    Madrid, Mykal; Van Tyne, Chester J.; Sadagopan, Sriram; Pavlina, Erik J.; Hu, Jun; Clarke, Kester D.

    2018-04-01

    Challenging fuel economy and safety standards in the automotive industry have led to the need for materials with higher strength while maintaining levels of formability that meet component manufacturing requirements. Advanced high-strength steels, such as dual-phase steels with tensile strengths of 980 MPa and 1180 MPa, are of interest to address this need. Increasing the strength of these materials typically comes at the expense of ductility, which may result in problems when stamping parts with trimmed or sheared edges, as cracking at the sheared edge may occur at lower strains. Here, hole expansion tests were performed with different punch geometries (conical and flat-bottom) and different edge conditions (sheared and machined) to understand the effects of testing conditions on performance, and these results are discussed in terms of mechanical properties and microstructures.

  9. Effects of Testing Method on Stretch-Flangeability of Dual-Phase 980/1180 Steel Grades

    NASA Astrophysics Data System (ADS)

    Madrid, Mykal; Van Tyne, Chester J.; Sadagopan, Sriram; Pavlina, Erik J.; Hu, Jun; Clarke, Kester D.

    2018-06-01

    Challenging fuel economy and safety standards in the automotive industry have led to the need for materials with higher strength while maintaining levels of formability that meet component manufacturing requirements. Advanced high-strength steels, such as dual-phase steels with tensile strengths of 980 MPa and 1180 MPa, are of interest to address this need. Increasing the strength of these materials typically comes at the expense of ductility, which may result in problems when stamping parts with trimmed or sheared edges, as cracking at the sheared edge may occur at lower strains. Here, hole expansion tests were performed with different punch geometries (conical and flat-bottom) and different edge conditions (sheared and machined) to understand the effects of testing conditions on performance, and these results are discussed in terms of mechanical properties and microstructures.

  10. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  11. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  15. Dual leadership in a hospital practice.

    PubMed

    Thude, Bettina Ravnborg; Thomsen, Svend Erik; Stenager, Egon; Hollnagel, Erik

    2017-02-06

    Purpose Despite the practice of dual leadership in many organizations, there is relatively little research on the topic. Dual leadership means two leaders share the leadership task and are held jointly accountable for the results of the unit. To better understand how dual leadership works, this study aims to analyse three different dual leadership pairs at a Danish hospital. Furthermore, this study develops a tool to characterize dual leadership teams from each other. Design/methodology/approach This is a qualitative study using semi-structured interviews. Six leaders were interviewed to clarify how dual leadership works in a hospital context. All interviews were transcribed and coded. During coding, focus was on the nine principles found in the literature and another principle was found by looking at the themes that were generic for all six interviews. Findings Results indicate that power balance, personal relations and decision processes are important factors for creating efficient dual leaderships. The study develops a categorizing tool to use for further research or for organizations, to describe and analyse dual leaderships. Originality/value The study describes dual leadership in the hospital context and develops a categorizing tool for being able to distinguish dual leadership teams from each other. It is important to reveal if there are any indicators that can be used for optimising dual leadership teams in the health-care sector and in other organisations.

  16. High-Resolution Characterization of UMo Alloy Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.

    2016-11-30

    This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools thatmore » can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.« less

  17. NASA Future Forum

    NASA Image and Video Library

    2011-08-11

    Leland Melvin, NASA Associate Administrator for Education, speaks during a panel discussion on inspiration in education at the 2011 NASA Future Forum held at the Riggs Alumni Center on the campus of the University of Maryland, Thursday, Aug. 11, 2011, in College Park, Md. Photo Credit: (NASA/Paul E. Alers)

  18. Comparison of Analytical Predictions and Experimental Results for a Dual Brayton Power System

    NASA Technical Reports Server (NTRS)

    Johnson, Paul

    2007-01-01

    NASA Glenn Research Center (GRC) contracted Barber- Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.

  19. Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams.

    PubMed

    Bai, Xu-Dong; Liang, Xian-Ling; Sun, Yun-Tao; Hu, Peng-Cheng; Yao, Yu; Wang, Kun; Geng, Jun-Ping; Jin, Rong-Hong

    2017-01-10

    Recently, vortex beam carrying orbital angular momentum (OAM) for radio communications has attracted much attention for its potential of transmitting multiple signals simultaneously at the same frequency, which can be used to increase the channel capacity. However, most of the methods for getting multi-mode OAM radio beams are of complicated structure and very high cost. This paper provides an effective solution of generating dual circularly-polarized (CP) dual-mode OAM beams. The antenna consists of four dual-CP elements which are sequentially rotated 90 degrees in the clockwise direction. Different from all previous published research relating to OAM generation by phased arrays, the four elements are fed with the same phase for both left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP). The dual-mode operation for OAM is achieved through the opposite phase differences generated for LHCP and RHCP, when the dual-CP elements are sequentially rotated in the clockwise direction. The measured results coincide well with the simulated ones, which verified the effectiveness of the proposed design.

  20. Selling to NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Prospective contractors are acquainted with the organizational structure of NASA, and the major technical program offices and selected staff offices at the Headquarters level are briefly described. The basic procedures for Federal procurement are covered. A primer is presented on how to market to NASA. While the information is specific to NASA, many of the principles are applicable to other agencies as well. Some of the major programs are introduced which are available to small and disadvantaged businesses. The major research programs and fields of interest at individual NASA centers are summarized.

  1. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Fayette Collier, Aeronautics Research Mission Directorate, NASA Headquarters talks during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  2. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    NASA Technology Transfer Program Executive Daniel Lockney moderates the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  3. Nonword Reading: Comparing Dual-Route Cascaded and Connectionist Dual-Process Models with Human Data

    ERIC Educational Resources Information Center

    Pritchard, Stephen C.; Coltheart, Max; Palethorpe, Sallyanne; Castles, Anne

    2012-01-01

    Two prominent dual-route computational models of reading aloud are the dual-route cascaded (DRC) model, and the connectionist dual-process plus (CDP+) model. While sharing similarly designed lexical routes, the two models differ greatly in their respective nonlexical route architecture, such that they often differ on nonword pronunciation. Neither…

  4. The Dual Language Program Planner: A Guide for Designing and Implementing Dual Language Programs.

    ERIC Educational Resources Information Center

    Howard, Elizabeth R.; Olague, Natalie; Rogers, David

    This guide offers a framework to facilitate the planning process for dual language programs, assuming at least a basic working knowledge of the central characteristics and essential features of dual language models. It provides an overview of the various models that serve linguistically diverse student populations, defining the term dual language…

  5. Dual-wavelength digital holographic imaging with phase background subtraction

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Matz, Rebecca L.; Jasensky, Joshua; Seeley, Emily; Holl, Mark M. Banaszak; Chen, Zhan

    2012-05-01

    Three-dimensional digital holographic microscopic phase imaging of objects that are thicker than the wavelength of the imaging light is ambiguous and results in phase wrapping. In recent years, several unwrapping methods that employed two or more wavelengths were introduced. These methods compare the phase information obtained from each of the wavelengths and extend the range of unambiguous height measurements. A straightforward dual-wavelength phase imaging method is presented which allows for a flexible tradeoff between the maximum height of the sample and the amount of noise the method can tolerate. For highly accurate phase measurements, phase unwrapping of objects with heights higher than the beat (synthetic) wavelength (i.e. the product of the original two wavelengths divided by their difference), can be achieved. Consequently, three-dimensional measurements of a wide variety of biological systems and microstructures become technically feasible. Additionally, an effective method of removing phase background curvature based on slowly varying polynomial fitting is proposed. This method allows accurate volume measurements of several small objects with the same image frame.

  6. Jet trajectories and surface pressures induced on a body of revolution with various dual jet configurations

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Jakubowski, A. K.; Aoyagi, K.

    1983-01-01

    A jet in a cross flow is of interest in practical situations including jet-powered VTOL aircraft. Three aspects of the problem have received little prior study. First is the effect of the angle of the jet to the crossflow. Second is the performance of dual-jet configurations. The third item for further study is a jet injected from a body of revolution as opposed to a flat plate. The Test Plan for this work was designed to address these three aspects. The experiments were conducted in the 7 x 10 tunnel at NASA Ames at velocities 14.5 - 35.8 m/sec (47.6 - 117.4 ft/sec). Detailed pressure distributions are presented for single and dual jets over a range of velocity ratios from 3 to 8, spacings from 2 to 6 diameters and injection angles of 90, 75 and 60 degrees. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets.

  7. NASA Webb Telescope

    NASA Image and Video Library

    2017-12-08

    NASA image release September 17, 2010 In preparation for a cryogenic test NASA Goddard technicians install instrument mass simulators onto the James Webb Space Telescope ISIM structure. The ISIM Structure supports and holds the four Webb telescope science instruments : the Mid-Infrared Instrument (MIRI), the Near-Infrared Camera (NIRCam), the Near-Infrared Spectrograph (NIRSpec) and the Fine Guidance Sensor (FGS). Credit: NASA/GSFC/Chris Gunn To learn more about the James Webb Space Telescope go to: www.jwst.nasa.gov/ NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. Solidification microstructures in single-crystal stainless steel melt pools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. Thesemore » results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.« less

  9. NASA SAVE Award Winner

    NASA Image and Video Library

    2012-01-09

    NASA Goddard Space Flight Center Financial Manager and White House 2011 SAVE award winner Matthew Ritsko is seen during a television interview at NASA Headquarters shortly after meeting with President Obama at the White House on Monday, Jan. 9, 2011, in Washington. The Presidential Securing Americans' Value and Efficiency (SAVE) program gives front-line federal workers the chance to submit their ideas on how their agencies can save money and work more efficiently. Matthew's proposal calls for NASA to create a "lending library" where specialized space tools and hardware purchased by one NASA organization will be made available to other NASA programs and projects. Photo Credit: (NASA/Bill Ingalls)

  10. A three-dimensional dual potential procedure with applications to wind tunnel inlets and interacting boundary layers

    NASA Technical Reports Server (NTRS)

    Rao, K. V.; Pletcher, R. H.; Steger, J. L.; Vandalsem, W. R.

    1987-01-01

    A dual potential decomposition of the velocity field into a scalar and a vector potential function is extended to three dimensions and used in the finite-difference simulation of steady three-dimensional inviscid rotational flows and viscous flow. The finite-difference procedure was used to simulate the flow through the 80 by 120 ft wind tunnel at NASA Ames Research Center. Rotational flow produced by the stagnation pressure drop across vanes and screens which are located at the entrance of the inlet is modeled using actuator disk theory. Results are presented for two different inlet vane and screen configurations. The numerical predictions are in good agreement with experimental data. The dual potential procedure was also applied to calculate the viscous flow along two and three dimensional troughs. Viscous effects are simulated by injecting vorticity which is computed from a boundary layer algorithm. For attached flow over a three dimensional trough, the present calculations are in good agreement with other numerical predictions. For separated flow, it is shown from a two dimensional analysis that the boundary layer approximation provides an accurate measure of the vorticity in regions close to the wall; whereas further away from the wall, caution has to be exercised in using the boundary-layer equations to supply vorticity to the dual potential formulation.

  11. Development of an Outreach Program for NASA: "NASA Ambassadors"

    NASA Technical Reports Server (NTRS)

    Lebo, George

    1998-01-01

    The NASA Ambassadors Program is designed to present the excitement and importance of NASA's programs to its customers, the general public. Those customers, which are identified in the "Science Communications Strategy" developed by the Space Sciences Laboratory at the MSFC, are divided into three categories: (1) Not interested and not knowledgeable; (2) Interested but not knowledgeable; and (3) Science attentive. In it they recognize that it makes the most sense to attempt to communicate with those described in the last two categories. However, their plan suggests that the media and the educational institutions are the only means of outreach. The NASA Ambassadors Program allows NASA to reach its target audience directly. Steps to be taken in order for the program to commence: (1) MSFC chooses to support the NASA Ambassadors Program - decision point; (2) Designate an "Office In Charge". (3) Assign the "Operation" phase to in-house MSFC personnel or to a contractor - decision point; (4) Name a point of contact; (5) Identify partners in the program and enlist their assistance; (6) Process an unsolicited proposal from an outside source to accomplish those tasks which MSFC chooses to out-source.

  12. NASA specification for manufacturing and performance requirements of NASA standard aerospace nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    1988-01-01

    On November 25, 1985, the NASA Chief Engineer established a NASA-wide policy to maintain and to require the use of the NASA standard for aerospace nickel-cadmium cells and batteries. The Associate Administrator for Safety, Reliability, Maintainability, and Quality Assurance stated on December 29, 1986, the intent to retain the NASA standard cell usage policy established by the Office of the Chief Engineer. The current NASA policy is also to incorporate technological advances as they are tested and proven for spaceflight applications. This policy will be implemented by modifying the existing standard cells or by developing new NASA standards and their specifications in accordance with the NASA's Aerospace Battery Systems Program Plan. This NASA Specification for Manufacturing and Performance Requirements of NASA Standard Aerospace Nickel-Cadmium Cells is prepared to provide requirements for the NASA standard nickel-cadmium cell. It is an interim specification pending resolution of the separator material availability. This specification has evolved from over 15 years of nickel-cadmium cell experience by NASA. Consequently, considerable experience has been collected and cell performance has been well characterized from many years of ground testing and from in-flight operations in both geosynchronous (GEO) and low earth orbit (LEO) applications. NASA has developed and successfully used two standard flight qualified cell designs.

  13. Design Safety Used in NASA's Human-rated Primary Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Jeevarajan, J.

    2013-01-01

    Single cell tests were benign for external short, inadvertent charge and overdischarge into reversal up to 4.5 A. At lower current loads cells die (may be due to excessive dendrite formation) benignly. String level external short circuits lead to an unbalanced overdischarge, with one cell going into reversal. The result is catastrophic violent venting. Unbalanced string overdischarges at different currents causes catastrophic violent venting also. Heat-to-vent is very dramatic displaying violent venting Simulated internal short is also catastrophic and displays violent venting. Battery is not UL-rated; hence does not have dual-fault tolerance or tolerance to inherent cell tolerance to failures Battery Design for NASA JSC's human-rated application for use on ISS was changed to include two bypass diodes per cell to provide for two-failure tolerance to overdischarge into reversal (and external short) hazards.

  14. Forty Years of Psychological and Psychiatric Selection of NASA Astronauts

    NASA Technical Reports Server (NTRS)

    Holland, Albert W.

    2000-01-01

    The purpose of this presentation is to chronicle the history and development of the psychological selection process for NASA astronauts. For over 40 years, astronaut applicants have undergone rigorous medical testing to qualify for candidacy. Psychological selection has an equally long history, dating back to 1958, when psychological requirements were established for astronauts during the Mercury program. However, for many years, psychological selection consisted of psychiatric screening for psychopathology. As we approach the day in which the first ISS crew will live and work in space for months at a time, it becomes clear that both the psychological criteria and the selection system to detect said criteria have changed. This presentation discusses the events that led to the current, dual-phase selection system that is used to select individuals into the astronaut corps. Future directions for psychological selection will also be addressed.

  15. Relationships between microstructure and microfissuring in alloy 718

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.

    1985-01-01

    Microfissures which occur in the weld heat affected zone of alloy 718 can be a limiting factor in the material's weldability. Several studies have attempted to relate microfissuring susceptibility to processing conditions, microstructure, and/or heat-to-heat chemistry differences. The present investigation studies the relationships between microstructure and microfissuring by isolating a particular microstructural feature and measuring microfissuring as a function of that feature. Results to date include the identification of a microstructure-microfissure sequence, microfissuring susceptibility as a function of grain size, and microfissuring susceptibility as a function of solution annealing time.

  16. Real jet effects on dual jets in a crossflow

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.

    1984-01-01

    A 6-ft by 6-ft wind tunnel section was modification to accommodate the 7-ft wide NASA dual-jet flate model in an effort to determine the effects of nonuniform and/or noncircular jet exhaust profiles on the pressure field induced on a nearby surface. Tests completed yield surface pressure measurements for a 90 deg circular injector producing exit profiles representative of turbofan nozzles (such as the TF-34 nozzle). The measurements were obtained for both tandem and side-by-side jet configurations, jet spacing of S/D =2, and velocity ratios of R=2.2 and 4.0. Control tests at the same mass flow rate but with uniform exit velocity profiles were also conducted, for comparison purposes. Plots for 90 deg injection and R=2.2 show that the effects of exit velocity profile nonuniformity are quite significant.

  17. NASA reports

    NASA Technical Reports Server (NTRS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    1992-01-01

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  18. NASA reports

    NASA Astrophysics Data System (ADS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  19. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden speaks to students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA sponsored the Earth Day event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. Photo Credit: (NASA/Aubrey Gemignani)

  20. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Leland Melvin, NASA Associate Administrator for Education and NASA Astronaut, moderates the NASA Future Forum Inspiration and Education Panel at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  1. Advanced Steel Microstructural Classification by Deep Learning Methods.

    PubMed

    Azimi, Seyed Majid; Britz, Dominik; Engstler, Michael; Fritz, Mario; Mücklich, Frank

    2018-02-01

    The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.

  2. Microstructure evolution and tensile properties of Zr-2.5wt%Nb pressure tubes processed from billets with different microstructures

    NASA Astrophysics Data System (ADS)

    Kapoor, K.; Saratchandran, N.; Muralidharan, K.

    1999-02-01

    Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5wt%Nb pressure tubes. The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structure at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.

  3. Analysis of in-service failures and advances in microstructural characterization. Microstructural science Volume 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramovici, E.; Northwood, D.O.; Shehata, M.T.

    1999-01-01

    The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).

  4. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  5. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Social media gather in Kennedy Space Center’s Press Site auditorium for a briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18. NASA Social Media Team includes: Emily Furfaro and Amber Jacobson. Guest speakers include: Badri Younes, Deputy Associate Administrator for Space Communications and Navigation at NASA Headquarters in Washington; Dave Littmann, Project Manager for TDRS-M at NASA’s Goddard Space Flight Center; Neil Mallik, NASA Deputy Network Director for Human Spaceflight; Nicole Mann, NASA Astronaut; Steve Bowen, NASA Astronaut; Skip Owen, NASA Launch Services; Scott Messer, United Launch Alliance Program Manager for NASA Missions.

  6. Compensation of spectral artifacts in dual-modality intravascular optical coherence tomography and near-infrared spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fard, Ali M.; Gardecki, Joseph A.; Ughi, Giovanni J.; Hyun, Chulho; Tearney, Guillermo J.

    2016-02-01

    Intravascular optical coherence tomography (OCT) is a high-resolution catheter-based imaging method that provides three-dimensional microscopic images of coronary artery in vivo, facilitating coronary artery disease treatment decisions based on detailed morphology. Near-infrared spectroscopy (NIRS) has proven to be a powerful tool for identification of lipid-rich plaques inside the coronary walls. We have recently demonstrated a dual-modality intravascular imaging technology that integrates OCT and NIRS into one imaging catheter using a two-fiber arrangement and a custom-made dual-channel fiber rotary junction. It therefore enables simultaneous acquisition of microstructural and composition information at 100 frames/second for improved diagnosis of coronary lesions. The dual-modality OCT-NIRS system employs a single wavelength-swept light source for both OCT and NIRS modalities. It subsequently uses a high-speed photoreceiver to detect the NIRS spectrum in the time domain. Although use of one light source greatly simplifies the system configuration, such light source exhibits pulse-to-pulse wavelength and intensity variation due to mechanical scanning of the wavelength. This can be in particular problematic for NIRS modality and sacrifices the reliability of the acquired spectra. In order to address this challenge, here we developed a robust data acquisition and processing method that compensates for the spectral variations of the wavelength-swept light source. The proposed method extracts the properties of the light source, i.e., variation period and amplitude from a reference spectrum and subsequently calibrates the NIRS datasets. We have applied this method on datasets obtained from cadaver human coronary arteries using a polygon-scanning (1230-1350nm) OCT system, operating at 100,000 sweeps per second. The results suggest that our algorithm accurately and robustly compensates the spectral variations and visualizes the dual-modality OCT-NIRS images. These

  7. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Nechnical producer for NASA's Eyes at JPL, Jason Craig discusses the Cassini mission as seen through the NASA Eyes program during a NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  9. Role of Microstructure on the Performance of UHTCs

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead

    2010-01-01

    We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.

  10. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    William Kelly, PhD, PE, Manager, Public Affairs, American Society for Engineering Education speaks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Seated are NASA Administrator Charles Bolden, left, and NASA Acting Associate Administrator for Education, James Stofan. (Photo Credit: NASA/Carla Cioffi)

  11. Fabrication of metallic microstructures by micromolding nanoparticles

    DOEpatents

    Morales, Alfredo M.; Winter, Michael R.; Domeier, Linda A.; Allan, Shawn M.; Skala, Dawn M.

    2002-01-01

    A method is provided for fabricating metallic microstructures, i.e., microcomponents of micron or submicron dimensions. A molding composition is prepared containing an optional binder and nanometer size (1 to 1000 nm in diameter) metallic particles. A mold, such as a lithographically patterned mold, preferably a LIGA or a negative photoresist mold, is filled with the molding composition and compressed. The resulting microstructures are then removed from the mold and the resulting metallic microstructures so provided are then sintered.

  12. Studying microstructure and microstructural changes in plant tissues by advanced diffusion magnetic resonance imaging techniques

    PubMed Central

    Morozov, Darya; Tal, Iris; Pisanty, Odelia; Shani, Eilon

    2017-01-01

    Abstract As sessile organisms, plants must respond to the environment by adjusting their growth and development. Most of the plant body is formed post-embryonically by continuous activity of apical and lateral meristems. The development of lateral adventitious roots is a complex process, and therefore the development of methods that can visualize, non-invasively, the plant microstructure and organ initiation that occur during growth and development is of paramount importance. In this study, relaxation-based and advanced diffusion magnetic resonance imaging (MRI) methods including diffusion tensor (DTI), q-space diffusion imaging (QSI), and double-pulsed-field-gradient (d-PFG) MRI, at 14.1 T, were used to characterize the hypocotyl microstructure and the microstructural changes that occurred during the development of lateral adventitious roots in tomato. Better contrast was observed in relaxation-based MRI using higher in-plane resolution but this also resulted in a significant reduction in the signal-to-noise ratio of the T2-weighted MR images. Diffusion MRI revealed that water diffusion is highly anisotropic in the vascular cylinder. QSI and d-PGSE MRI showed that in the vascular cylinder some of the cells have sizes in the range of 6–10 μm. The MR images captured cell reorganization during adventitious root formation in the periphery of the primary vascular bundles, adjacent to the xylem pole that broke through the cortex and epidermis layers. This study demonstrates that MRI and diffusion MRI methods allow the non-invasive study of microstructural features of plants, and enable microstructural changes associated with adventitious root formation to be followed. PMID:28398563

  13. Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure

    PubMed Central

    Skvortsova, Elena B.; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification

  14. Universal spatial correlation functions for describing and reconstructing soil microstructure.

    PubMed

    Karsanina, Marina V; Gerke, Kirill M; Skvortsova, Elena B; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification

  15. History at NASA

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The efforts of the National Aeronautics and Space Administration to capture and record the events of the past are described, particularly the research accomplishments of NASA's agency-wide history program. A concise guide to the historical research resources available at NASA Headquarters in Washington, D.C., at NASA facilities around the country, and through the federal records systems is given.

  16. An 8-DOF dual-arm system for advanced teleoperation performance experiments

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Szakaly, Zoltan F.

    1992-01-01

    This paper describes the electro-mechanical and control features of an 8-DOF manipulator manufactured by AAI Corporation and installed at the Jet Propulsion Lab. (JPL) in a dual-arm setting. The 8-DOF arm incorporates a variety of features not found in other lab or industrial manipulators. Some of the unique features are: 8-DOF revolute configuration with no lateral offsets at joint axes; 1 to 5 payload to weight ratio with 20 kg (44 lb) payload at a 1.75 m (68.5 in.) reach; joint position measurement with dual relative encoders and potentiometer; infinite roll of joint 8 with electrical and fiber optic slip rings; internal fiber optic link of 'smart' end effectors; four-axis wrist; graphite epoxy links; high link and joint stiffness; use of an upgraded JPL Universal Motor Controller (UMC) capable of driving up to 16 joints. The 8-DOF arm is equipped with a 'smart' end effector which incorporates a 6-DOF forcemoment sensor at the end effector base and grasp force sensors at the base of the parallel jaws. The 8-DOF arm is interfaced to a 6 DOF force reflecting hand controller. The same system is duplicated for and installed at NASA-Langley.

  17. Research on non-direct reflection columnar microstructure

    NASA Astrophysics Data System (ADS)

    Wu, B. Q.; Wang, X. Z.; Dong, L. H.

    2015-10-01

    To minimize the risk of laser accidents, especially those involving eye and skin injuries, it is crucial to pay more attention to laser safety. To control the risk of injury, depending on the laser power and wavelength, a number of required safety measures have been put forward, such as specific protection walls, and wearing safety goggles when operating lasers. The direct reflection columnar microstructure can also be used for laser safety. Based on mathematical foundations , a columnar microstructure is designed by the optical design software LightTools. Simulation showed that there is a tilt angle between the emergent and incident light, the incident light being perpendicular to the microstructure, as well as the phenomenon of no direct reflection happened. A novel testing platform was built for the columnar microstructure after it was machined. The applied testing method can measure the angle between the emergent and incident light. The method lays the condition for the further research. It is shown that the columnar microstructure with no direct reflection can be utilized in laser protection systems.

  18. Atomistic to continuum modeling of solidification microstructures

    DOE PAGES

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less

  19. Energy Exchange NASA Opening Plenary

    NASA Technical Reports Server (NTRS)

    Marrs, Rick

    2017-01-01

    Rick Marrs, Deputy Assistant Administrator Office of Strategic Infrastructure NASA Headquarters will be speaking during the 2017 Energy Exchange opening plenary. His presentation showcases the NASA mission, sustainability at NASA, NASA's strategic Sustainability Performance Plan, Existing PV Partnerships, and NASA funded Solar Initiatives at KSC.

  20. South Dakota NASA Space Grant Consortium Creating Bridges in Indian Country

    NASA Astrophysics Data System (ADS)

    Bolman, J. R.

    2004-12-01

    The South Dakota Space Grant Consortium (SDSGC) was established March 1, 1991 by a NASA Capability Enhancement Grant. Since that time SDSGC has worked to provide earth and space science educational outreach to all students across South Dakota. South Dakota has nine tribes and five tribal colleges. This has presented a tremendous opportunity to develop sustainable equitable partnerships and collaborations. SDSGC believes strongly in developing programs and activities that highlight the balance of indigenous science and ways of knowing with current findings in contemporary science. This blending of science and culture creates a learning community where individuals, especially students, can gain confidence and pride in their unique skills and abilities. Universities are also witnessing the accomplishments and achievements of students who are able to experience a tribal college environment and then carry that experience to a college/university/workplace and significantly increase the learning achievement of all. The presentation will highlight current Tribal College partnerships with Sinte Gleska University and Oglala Lakota College amongst others. Programs and activities to be explained during the presentation include: Native Connections, Scientific Knowledge for Indian Learning and Leadership (SKILL), Bridges to Success Summer Research Program, Fire Ecology Summer Experience, and dual enrolled/college bridge programs. The presentation will also cover the current initiatives underway through NASA Workforce Development. These include: partnering program with the Annual He Sapa Wacipi, American Indian Space Days 2005, NASA research/internship programs and NASA Fellow Summit. An overview of recent American Indian student success will conclude the presentation. The South Dakota School of Mines and Technology has struggled over many years to develop and implement sustainable successful initiatives with Tribal Colleges and Communities. The motivating philosophy is the

  1. The Science@NASA Websites

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Phillips. Tony; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Science@NASA websites represent a significant stride forward in communicating NASA science to the general public via the Internet. Using a family of websites aimed at science-attentive adults, high school students, middle school students and educators, the Science@NASA activity presents selected stories of on-going NASA science, giving context to otherwise dry press releases and scientific reports.

  2. NASA Performance Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Introduction NASA's mission is to advance and communicate scientific knowledge and understanding of Earth, the solar system, and the universe; to advance human exploration, use, and development of space; and to research, develop, verify, and transfer advanced aeronautics, space, and related technologies. In support of this mission, NASA has a strategic architecture that consists of four Enterprises supported by four Crosscutting Processes. The Strategic Enterprises are NASA's primary mission areas to include Earth Science, Space Science, Human Exploration and Development of Space, and Aerospace Technology. NASA's Crosscutting Processes are Manage Strategically, Provide Aerospace Products and Capabilities, Generate Knowledge and Communicate Knowledge. The implementation of NASA programs, science, and technology research occurs primarily at our Centers. NASA consists of a Headquarters, nine Centers, and the Jet Propulsion Laboratory, as well as several ancillary installations and offices in the United States and abroad. The nine Centers are as follows: (1) Ames Research Center, (2) Dryden Flight Research Center (DFRC), (3) Glenn Research Center (GRC), (4) Goddard Space Flight Center (GSFC), (5) Johnson Space Center, (6) Kennedy Space Center (KSC), (7) Langley Research Center (LaRC), (8) Marshall Space Flight Center (MSFC), and (9) Stennis Space Center (SSC).

  3. Microstructure evolution of heat treated NiTi alloys

    NASA Astrophysics Data System (ADS)

    Losertová, M.; Štencek, M.; Matýsek, D.; Štefek, O.; Drápala, J.

    2017-11-01

    Superelastic behavior of off-stoichiometric NiTi alloys is significantly affected by microstructure changes due to heat treatment. Applying appropriate thermal treatments important effects on microstructural changes, transformation temperatures and thermomechanical properties of final NiTi products can be achieved. The experimental samples of NiTi alloy with 55.8 wt.% Ni were submitted to heat treatment and the microstructures before and after the treatment were observed. The thermal regimes consisted of annealing treatment at 600 °C for 1 hour followed by water quenching and of ageing at eight different temperatures (250, 270, 290, 300, 350, 400, 450 and 500 °C) for 30 minutes. Microstructure features studied by means of optical and scanning electron microscopies, EDX microanalyses, X-ray diffraction analyses and microhardness measurement, have shown that higher ageing temperatures led to microstructure changes and corresponding increase in microhardness.

  4. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  5. NASA New England Outreach Center

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The NASA New England Outreach Center in Nashua, New Hampshire was established to serve as a catalyst for heightening regional business awareness of NASA procurement, technology and commercialization opportunities. Emphasis is placed on small business participation, with the highest priority given to small disadvantaged businesses, women-owned businesses, HUBZone businesses, service disabled veteran owned businesses, and historically black colleges and universities and minority institutions. The Center assists firms and organizations to understand NASA requirements and to develop strategies to capture NASA related procurement and technology opportunities. The establishment of the NASA Outreach Center serves to stimulate business in a historically underserved area. NASA direct business awards have traditionally been highly present in the West, Midwest, South, and Southeast areas of the United States. The Center guides and assists businesses and organizations in the northeast to target opportunities within NASA and its prime contractors and capture business and technology opportunities. The Center employs an array of technology access, one-on-one meetings, seminars, site visits, and targeted conferences to acquaint Northeast firms and organizations with representatives from NASA and its prime contractors to learn about and discuss opportunities to do business and access the inventory of NASA technology. This stimulus of interaction also provides firms and organizations the opportunity to propose the use of their developed technology and ideas for current and future requirements at NASA. The Center provides a complement to the NASA Northeast Regional Technology Transfer Center in developing prospects for commercialization of NASA technology. In addition, the Center responds to local requests for assistance and NASA material and documents, and is available to address immediate concerns and needs in assessing opportunities, timely support to interact with NASA Centers on

  6. New Fukui, dual and hyper-dual kernels as bond reactivity descriptors.

    PubMed

    Franco-Pérez, Marco; Polanco-Ramírez, Carlos-A; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-06-21

    We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.

  7. NASA's educational programs

    NASA Technical Reports Server (NTRS)

    Brown, Robert W.

    1990-01-01

    The educational programs of NASA's Educational Affairs Division are examined. The problem of declining numbers of science and engineering students is reviewed. The various NASA educational programs are described, including programs at the elementary and secondary school levels, teacher education programs, and undergraduate, graduate, and university faculty programs. The coordination of aerospace education activities and future plans for increasing NASA educational programs are considered.

  8. The rheology and microstructure of aging thermoreversible colloidal gels & attractive driven glasses

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    The properties of colloidal gels and glasses are known to change with age, but the particle-level mechanisms by which aging occurs is are fully understood, which limits our ability to predict macroscopic behavior in these systems. In this work, we quantitatively relate rheological aging to structural aging of a model, homogenous gel and attractive driven glass by simultaneously measuring the bulk properties and gel microstructure using rheometry and small angle neutron scattering (Rheo-SANS), respectively. Specifically, we develop a quantitative and predictive relationship between the macroscopic properties and the underlying microstructure (i . e . , the effective strength of attraction) of an aging colloidal gel and attractive driven glass and study it as a function of the thermal and shear history. Analysis with mode coupling theory is consistent with local particle rearrangements as the mechanism of aging, which lead to monotonically increasing interaction strengths in a continuously evolving material and strongly supports aging as a trajectory in the free energy landscape dominated by local particle relaxations. The analyses and conclusions of this study may be 1) industrially relevant to products that age on commercial timescales, such as paints and pharmaceuticals, 2) applicable to other dynamically arrested systems, such as metallic glasses, and 3) used in the design of new materials. NIST Center for Neutron Research CNS cooperative agreement number #70NANB12H239 and NASA Grant No. NNX15AI19H.

  9. The Microstructural Evolution of Fatigue Cracks in FCC Metals

    NASA Astrophysics Data System (ADS)

    Gross, David William

    The microstructural evolution during fatigue crack propagation was investigated in a variety of planar and wavy slip FCC metals. The planar materials included Haynes 230, Nitronic 40, and 316 stainless steel, and the wavy materials included pure nickel and pure copper. Three different sets of experiments were performed to fully characterize the microstructural evolution. The first, performed on Haynes 230, mapped the strain field ahead a crack tip using digital image correlation and electron backscatter diffraction techniques. Focused ion beam (FIB) lift-out techniques were then utilized to extract transmission electron microscopy (TEM) samples at specific distances from the crack tip. TEM investigations compared the measured strain to the microstructure. Overall, the strain measured via DIC and EBSD was only weakly correlated to the density of planar slip bands in the microstructure. The second set of experiments concerned the dislocation structure around crack tips. This set of experiments was performed on all the materials. The microstructure at arrested fatigue cracks on the free surface was compared to the microstructure found beneath striations on the fracture surfaces by utilizing FIB micromachining to create site-specific TEM samples. The evolved microstructure depended on the slip type. Strong agreement was found between the crack tip microstructure at the free surface and the fracture surface. In the planar materials, the microstructure in the plastic zone consisted of bands of dislocations or deformation twins, before transitioning to a refined sub-grain microstructure near the crack flank. The sub-grain structure extended 300-500 nm away from the crack flank in all the planar slip materials studied. In contrast, the bulk structure in the wavy slip material consisted of dislocation cells and did not transition to a different microstructure as the crack tip was approached. The strain in wavy slip was highest near the crack tip, as the misorientations

  10. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA's Administrator, Charles Bolden, conducts an experiment using circuits at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  11. Alterations of bone density, microstructure, and strength of the distal radius in male patients with rheumatoid arthritis: a case-control study with HR-pQCT.

    PubMed

    Zhu, Tracy Y; Griffith, James F; Qin, Ling; Hung, Vivian W; Fong, Tsz-Ning; Au, Sze-Ki; Li, Martin; Lam, Yvonne Yi-On; Wong, Chun-Kwok; Kwok, Anthony W; Leung, Ping-Chung; Li, Edmund K; Tam, Lai-Shan

    2014-09-01

    In this cross-sectional study, we investigated volumetric bone mineral density (vBMD), bone microstructure, and biomechanical competence of the distal radius in male patients with rheumatoid arthritis (RA). The study cohort comprised 50 male RA patients of average age of 61.1 years and 50 age-matched healthy males. Areal BMD (aBMD) of the hip, lumbar spine, and distal radius was measured by dual-energy X-ray absorptiometry. High-resolution peripheral quantitative computed tomography (HR-pQCT) of the distal radius provided measures of cortical and trabecular vBMD, microstructure, and biomechanical indices. aBMD of the hip but not the lumbar spine or ultradistal radius was significantly lower in RA patients than controls after adjustment for body weight. Total, cortical, and trabecular vBMD at the distal radius were, on average, -3.9% to -23.2% significantly lower in RA patients, and these differences were not affected by adjustment for body weight, testosterone level, or aBMD at the ultradistal radius. Trabecular microstructure indices were, on average, -8.1% (trabecular number) to 28.7% (trabecular network inhomogeneity) significantly inferior, whereas cortical pore volume and cortical porosity index were, on average, 80.3% and 63.9%, respectively, significantly higher in RA patients. RA patients also had significantly lower whole-bone stiffness, modulus, and failure load, with lower and more unevenly distributed cortical and trabecular stress. Density and microstructure indices significantly correlated with disease activity, severity, and levels of pro-inflammatory cytokines (interleukin [IL] 12p70, tumor necrosis factor, IL-6 and IL-1β). Ten RA patients had focal periosteal bone apposition most prominent at the ulnovolar aspect of the distal radius. These patients had shorter disease duration and significantly higher cortical porosity. In conclusion, HR-pQCT reveals significant alterations of bone density, microstructure, and strength of the distal radius in

  12. Modular synthesis of a dual metal-dual semiconductor nano-heterostructure

    DOE PAGES

    Amirav, Lilac; Oba, Fadekemi; Aloni, Shaul; ...

    2015-04-29

    Reported is the design and modular synthesis of a dual metal-dual semiconductor heterostructure with control over the dimensions and placement of its individual components. Analogous to molecular synthesis, colloidal synthesis is now evolving into a series of sequential synthetic procedures with separately optimized steps. Here we detail the challenges and parameters that must be considered when assembling such a multicomponent nanoparticle, and their solutions.

  13. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    The Ohio State University Vice President for Research Dr. Caroline Whitacre, standing right, moderates the first panel discussion during NASA's Future Forum with NASA Associate Administrator for Science Mission Directorate John Grunsfeld, left, Ohio State University Graduate Research Associate Vijay Gadepally, Sen. John Glenn, NASA Administrator Charles Bolden, and NASA 2009 Astronaut Candidate and Flight Surgeon Serena Auñón, seated right, at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  14. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Administrator Charles Bolden, far right, gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Administrator Bolden is joined on the panel from left to right by Leland Melvin, Education Design Team Co-Chair and NASA Astronaut; William Kelly, Manager, Public Affairs, American Society for Engineering Education; Michael Lach, Special Assistant for STEM Education, U.S. Department of Education; Cora Marrett, Acting Director, National Science Foundation; and James Stofan, NASA Acting Associate Administrator for Education. (Photo Credit: NASA/Carla Cioffi)

  15. NASA Thesaurus Data File

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Aeronautics and Space Database (NA&SD) and NASA Technical Reports Server (NTRS). The scope of this controlled vocabulary includes not only aerospace engineering, but all supporting areas of engineering and physics, the natural space sciences (astronomy, astrophysics, planetary science), Earth sciences, and the biological sciences. The NASA Thesaurus Data File contains all valid terms and hierarchical relationships, USE references, and related terms in machine-readable form. The Data File is available in the following formats: RDF/SKOS, RDF/OWL, ZThes-1.0, and CSV/TXT.

  16. Effects of Controlled Cooling-Induced Ferrite-Pearlite Microstructure on the Cold Forgeability of XC45 Steel

    NASA Astrophysics Data System (ADS)

    Hu, Chengliang; Chen, Lunqiang; Zhao, Zhen; Gong, Aijun; Shi, Weibing

    2018-05-01

    The combination of hot/warm and cold forging with an intermediate controlled cooling process is a promising approach to saving costs in the manufacture of automobile parts. In this work, the effects of the ferrite-pearlite microstructure, which formed after controlled cooling, on the cold forgeability of a medium-carbon steel were investigated. Different specimens for both normal and notched tensile tests were directly heated to high temperature and then cooled down at different cooling rates, producing different ferrite volume fractions, ranging from 6.69 to 40.53%, in the ferrite-pearlite microstructure. The yield strength, ultimate tensile strength, elongation rate, percentage reduction of area, and fracture strain were measured by tensile testing. The yield strength, indicating deformation resistance, and fracture strain, indicating formability, were used to evaluate the cold forgeability. As the ferrite volume fraction increased, the cold forgeability of the dual-phase ferritic-pearlitic steel improved. A quantitatively relationship between the ferrite volume fraction and the evaluation indexes of cold forgeability for XC45 steel was obtained from the test data. To validate the mathematical relationship, different tensile specimens machined from real hot-forged workpieces were tested. There was good agreement between the predicted and measured values. Our predictions from the relationship for cold forgeability had an absolute error less than 5%, which is acceptable for industrial applications and will help to guide the design of combined forging processes.

  17. Microstructure and Strengthening Mechanisms in an Ultrafine Grained Al-Mg-Sc Alloy Produced by Powder Metallurgy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tammy J. Harrell; Troy D. Topping; Haiming Wen

    2014-12-01

    Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grainedmore » material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 µm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.« less

  18. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program

    NASA Technical Reports Server (NTRS)

    Roudakov, Alexander S.; Semenov, Vyacheslav L.; Hicks, John W.

    1998-01-01

    Under a contract with NASA, a joint Central Institute of Aviation Motors (CIAM) and NASA team recently conducted the fourth flight test of a dual-mode scramjet aboard the CIAM Hypersonic Flying Laboratory, 'Kholod'. With an aim test Mach 6.5 objective, the successful launch was conducted at the Sary Shagan test range in central Kazakstan on February 12, 1998. Ground-launch, rocket boosted by a modified Russian SA5 missile, the redesigned scramjet was accelerated to a new maximum velocity greater than Mach 6.4. This launch allowed for the measurement of the fully supersonic combustion mode under actual flight conditions. The primary program objective was the flight-to-ground correlation of measured data with preflight analysis and wind-tunnel tests in Russia and potentially in the United States. This paper describes the development and objectives of the program as well as the technical details of the scramjet and SA5 redesign to achieve the Mach 6.5 aim test condition. An overview of the launch operation is also given. Finally, preliminary flight test results are presented and discussed.

  19. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi

    Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. NASA-STD-4005 and NASA-HDBK-4006, LEO Spacecraft Solar Array Charging Design Standard

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    Two new NASA Standards are now official. They are the NASA LEO Spacecraft Charging Design Standard (NASA-STD-4005) and the NASA LEO Spacecraft Charging Design Handbook (NASA-HDBK-4006). They give the background and techniques for controlling solar array-induced charging and arcing in LEO. In this paper, a brief overview of the new standards is given, along with where they can be obtained and who should be using them.

  2. Microstructure-failure mode correlations in braided composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly

    1992-01-01

    Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.

  3. NASA@Work

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2014-01-01

    NASA@work is an agency-wide website designed to increase innovation and access to ideas and knowledge from within the NASA community. Individuals (challenge owners) post their specific problem or "challenge." Anyone in the community (solvers) can contribute to the interactive discussions and submit proposed solutions with the opportunity to win an award.

  4. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    NASA Administrator Charles Bolden gives keynote remarks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  5. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    Students listen intently while NASA's Director, Earth Science Division, Mike Freilich, speaks at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  6. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Deputy Administrator Lori Garver, far left at table, answers a students question at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. Garver is joined on the panel by NASA astronaut Tracy Caldwell Dyson, center, and NASA Aerospace Engineer Sabrina Thompson. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Photo Credit: (NASA/Carla Cioffi)

  7. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Special Assitant for STEM Education, U. S. Department of Education, Michael Lach, far right, addresses guests at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. Seated from right are James Stofan, NASA Acting Associate Administrator for Education; Charles Bolden, NASA Administrator; and Cora B. Marrett, Acting Director, National Science Foundation. (Photo Credit: NASA/Carla Cioffi)

  8. Optical fabrication of large area photonic microstructures by spliced lens

    NASA Astrophysics Data System (ADS)

    Jin, Wentao; Song, Meng; Zhang, Xuehua; Yin, Li; Li, Hong; Li, Lin

    2018-05-01

    We experimentally demonstrate a convenient approach to fabricate large area photorefractive photonic microstructures by a spliced lens device. Large area two-dimensional photonic microstructures are optically induced inside an iron-doped lithium niobate crystal. The experimental setups of our method are relatively compact and stable without complex alignment devices. It can be operated in almost any optical laboratories. We analyze the induced triangular lattice microstructures by plane wave guiding, far-field diffraction pattern imaging and Brillouin-zone spectroscopy. By designing the spliced lens appropriately, the method can be easily extended to fabricate other complex large area photonic microstructures, such as quasicrystal microstructures. Induced photonic microstructures can be fixed or erased and re-recorded in the photorefractive crystal.

  9. Hierarchical microstructures in CZT

    NASA Astrophysics Data System (ADS)

    Sundaram, S. K.; Henager, C. H.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.; Toloczko, M. B.; Lynn, K. G.

    2011-10-01

    Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.

  10. Liquid-filled hollow core microstructured polymer optical fiber.

    PubMed

    Cox, F M; Argyros, A; Large, M C J

    2006-05-01

    Guidance in a liquid core is possible with microstructured optical fibers, opening up many possibilities for chemical and biochemical fiber-optic sensing. In this work we demonstrate how the bandgaps of a hollow core microstructured polymer optical fiber scale with the refractive index of liquid introduced into the holes of the microstructure. Such a fiber is then filled with an aqueous solution of (-)-fructose, and the resulting optical rotation measured. Hence, we show that hollow core microstructured polymer optical fibers can be used for sensing, whilst also fabricating a chiral optical fiber based on material chirality, which has many applications in its own right.

  11. Microstructures and Argon age dating

    NASA Astrophysics Data System (ADS)

    Forster, Marnie; Fitz Gerald, John; Lister, Gordon

    2010-05-01

    Microstructures can be dated using 40Ar/39Ar geochronology, but certain conditions apply. In particular the nature of the physical processes that took place during development of need be identified, and the pattern of gas release (and/or retention) during their evolution in nature, and subsequently in the mass spectrometer, during the measurement process. Most researchers cite temperature as the sole variable of importance. There is a belief that there is a single "closure temperature" or a "closure interval" above which the mineral is incapable of retaining radiogenic argon. This is a false conception. Closure is practically relevant only in circumstances that see a rock cooled relatively rapidly from temperatures that were high enough to prevent significant accumulation of radiogenic argon, to temperatures below which there is insignificant loss of radiogenic argon through the remainder of the geological history. These conditions accurately apply only to a limited subset - for example to rocks that cool rapidly from a melt and thereafter remain at or close to the Earth's surface, without subsequent ingress of fluids that would cause alteration and modification of microstructure. Some minerals in metamorphic rocks might display such "cooling ages" but in principle these data are difficult to interpret since they depend on the rate of cooling, the pressures that applied, and the subsequent geological history. Whereas the science of "cooling ages" is relatively well understood, the science of the Argon Partial Retention Zone is in its infancy. In the Argon PRZ it is evident that ages should (and do) show a strong correlation with microstructure. The difficulty is that, since diffusion of Argon is simultaneously multi-path and multi-scale, it is difficult to directly interrogate the distinct reservoirs that store gas populations and thus the age information that can be recorded as to the multiple events during the history of an individual microstructure. Laser

  12. Dual coil ignition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  13. Microstructures and properties of aluminum die casting alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  14. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA's Administrator, Charles Bolden watches as some students conduct an experiment with a balloon at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  15. NASA's Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Ramsay, Christopher M.

    2005-01-01

    NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.

  16. Morphology and microstructure of composite materials

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

  17. Microstructural Effects on Initiation Behavior in HMX

    NASA Astrophysics Data System (ADS)

    Molek, Christopher; Welle, Eric; Hardin, Barrett; Vitarelli, Jim; Wixom, Ryan; Samuels, Philip

    Understanding the role microstructure plays on ignition and growth behavior has been the subject of a significant body of research within the detonation physics community. The pursuit of this understanding is important because safety and performance characteristics have been shown to strongly correlate to particle morphology. Historical studies have often correlated bulk powder characteristics to the performance or safety characteristics of pressed materials. We believe that a clearer and more relevant correlation is made between the pressed microstructure and the observed detonation behavior. This type of assessment is possible, as techniques now exist for the quantification of the pressed microstructures. Our talk will report on experimental efforts that correlate directly measured microstructural characteristics to initiation threshold behavior of HMX based materials. The internal microstructures were revealed using an argon ion cross-sectioning technique. This technique enabled the quantification of density and interface area of the pores within the pressed bed using methods of stereology. These bed characteristics are compared to the initiation threshold behavior of three HMX based materials using an electric gun based test method. Finally, a comparison of experimental threshold data to supporting theoretical efforts will be made.

  18. Dual-Modulation, Dual-Wavelength, Optical Polarimetry System for Glucose Monitoring

    DTIC Science & Technology

    2016-08-26

    dual-wavelength, optical polarimetry system for glucose monitoring 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) 5d...JBO.21.8.087001] 14. ABSTRACT A dual modulation optical polarimetry system utilizing both laser intensity and polarization modulation was designed...varying birefringence, which is one of the major limitations to the realization of polarimetry for glucose monitoring in the eye. The high-speed less

  19. NASA metrication activities

    NASA Technical Reports Server (NTRS)

    Vlannes, P. N.

    1978-01-01

    NASA's organization and policy for metrification, history from 1964, NASA participation in Federal agency activities, interaction with nongovernmental metrication organizations, and the proposed metrication assessment study are reviewed.

  20. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Sen. John Glenn delivers the closing remarks for NASA's Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  1. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An expanded role for the U.S. private sector in America's space future has emerged as a key national objective, and NASA's Office of Commercial Programs is providing a focus for action. The Office supports new high technology commercial space ventures, the commercial application of existing aeronautics and space technology, and expanded commercial access to available NASA capabilities and services. The progress NASA has made in carrying out its new assignment is highlighted.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  4. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    NASA Technical Reports Server (NTRS)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control

  5. Improving nondestructive characterization of dual phase steels using data fusion

    NASA Astrophysics Data System (ADS)

    Kahrobaee, Saeed; Haghighi, Mehdi Salkhordeh; Akhlaghi, Iman Ahadi

    2018-07-01

    The aim of this paper is to introduce a novel methodology for nondestructive determination of microstructural and mechanical properties (due to the various heat treatments), as well as thickness variations (as a result of corrosion effect) of dual phase steels. The characterizations are based on the variations in the electromagnetic properties extracted from magnetic hysteresis loop and eddy current methods which are coupled with a data fusion system. This study was conducted on six groups of samples (with different thicknesses, from 1 mm to 4 mm) subjected to the various intercritical annealing processes to produce different fractions of martensite/ferrite phases and consequently, changes in hardness, yield strength and ultra tensile strength (UTS). This study proposes a novel soft computing technique to increase accuracy of nondestructive measurements and resolving overlapped NDE outputs related to the various samples. The empirical results indicate that applying the proposed data fusion technique on the two electromagnetic NDE data sets nondestructively, causes an increase in the accuracy and reliability of determining material features including ferrite fraction, hardness, yield strength, UTS, as well as thickness variations.

  6. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    Leland Melvin, right, Education Design Team Co-Chair and NASA Astronaut, speaks at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  7. Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam

    NASA Astrophysics Data System (ADS)

    Mayo, L.

    2017-12-01

    Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.

  8. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.

    2017-01-01

    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  9. NASA Symposium 76. [opportunities for minorities and women in NASA programs

    NASA Technical Reports Server (NTRS)

    1976-01-01

    New Mexico State University and the National Aeronautics and Space Administration hosted a symposium to promote NASA's efforts to increase the available pool of minority and women scientists and engineers to meet affirmative hiring goals. The conferences also provided an opportunity for key NASA officials to meet with appropriate officials of participating institutions to stimulate greater academic interest (among professors and students) in NASA's research and development programs. Minority aerospace scientists and engineers had opportunity to interact with the minority community, particulary with young people at the junior high, high school, and college levels. One aim was to raise minority community's level of understanding regarding NASA's Regional Distribution System for storage and retrieval of scientific and technical information.

  10. Microstructure evolution and tensile properties of Zr-2.5 wt.% Nb pressure tubes processed from billets with different microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, K.; Saratchandran, N.; Muralidharan, K.

    1999-02-01

    Pressurized heavy water reactors (PHWR) use zirconium-base alloys for their low neutron-absorption cross section, good mechanical strength, low irradiation creep, and high corrosion resistance in reactor atmospheres. Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5 wt%Nb pressure tubes., The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structuremore » at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.« less

  11. Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis

    PubMed Central

    Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O

    2017-01-01

    The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review’s inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16–2.10) and in patients suffering from chronic stroke (−0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (−0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive–motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings. PMID:28356727

  12. Effects of dual tasks and dual-task training on postural stability: a systematic review and meta-analysis.

    PubMed

    Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O

    2017-01-01

    The use of dual-task training paradigm to enhance postural stability in patients with balance impairments is an emerging area of interest. The differential effects of dual tasks and dual-task training on postural stability still remain unclear. A systematic review and meta-analysis were conducted to analyze the effects of dual task and training application on static and dynamic postural stability among various population groups. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, from inception until June 2016, on the online databases Scopus, PEDro, MEDLINE, EMBASE, and SportDiscus. Experimental studies analyzing the effects of dual task and dual-task training on postural stability were extracted, critically appraised using PEDro scale, and then summarized according to modified PEDro level of evidence. Of 1,284 records, 42 studies involving 1,480 participants met the review's inclusion criteria. Of the studies evaluating the effects of dual-task training on postural stability, 87.5% of the studies reported significant enhancements, whereas 30% of the studies evaluating acute effects of dual tasks on posture reported significant enhancements, 50% reported significant decrements, and 20% reported no effects. Meta-analysis of the pooled studies revealed moderate but significant enhancements of dual-task training in elderly participants (95% CI: 1.16-2.10) and in patients suffering from chronic stroke (-0.22 to 0.86). The adverse effects of complexity of dual tasks on postural stability were also revealed among patients with multiple sclerosis (-0.74 to 0.05). The review also discusses the significance of verbalization in a dual-task setting for increasing cognitive-motor interference. Clinical implications are discussed with respect to practical applications in rehabilitation settings.

  13. Utilization of FEM model for steel microstructure determination

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotěborský, R.; Linda, M.; Hromasová, M.

    2018-02-01

    Agricultural tools which are used in soil processing, they are worn by abrasive wear mechanism cases by hard minerals particles in the soil. The wear rate is influenced by mechanical characterization of tools material and wear rate is influenced also by soil mineral particle contents. Mechanical properties of steel can be affected by a technology of heat treatment that it leads to a different microstructures. Experimental work how to do it is very expensive and thanks to numerical methods like FEM we can assumed microstructure at low cost but each of numerical model is necessary to be verified. The aim of this work has shown a procedure of prediction microstructure of steel for agricultural tools. The material characterizations of 51CrV4 grade steel were used for numerical simulation like TTT diagram, heat capacity, heat conduction and other physical properties of material. A relationship between predicted microstructure by FEM and real microstructure after heat treatment shows a good correlation.

  14. 2-Point microstructure archetypes for improved elastic properties

    NASA Astrophysics Data System (ADS)

    Adams, Brent L.; Gao, Xiang

    2004-01-01

    Rectangular models of material microstructure are described by their 1- and 2-point (spatial) correlation statistics of placement of local state. In the procedure described here the local state space is described in discrete form; and the focus is on placement of local state within a finite number of cells comprising rectangular models. It is illustrated that effective elastic properties (generalized Hashin Shtrikman bounds) can be obtained that are linear in components of the correlation statistics. Within this framework the concept of an eigen-microstructure within the microstructure hull is useful. Given the practical innumerability of the microstructure hull, however, we introduce a method for generating a sequence of archetypes of eigen-microstructure, from the 2-point correlation statistics of local state, assuming that the 1-point statistics are stationary. The method is illustrated by obtaining an archetype for an imaginary two-phase material where the objective is to maximize the combination C_{xxxx}^{*} + C_{xyxy}^{*}

  15. Analysis of remote sensing data collected for detection and mapping of oil spills: Reduction and analysis of multi-sensor airborne data of the NASA Wallops oil spill exercise of November 1978

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Airborne, remotely sensed data of the NASA Wallops controlled oil spill were corrected, reduced and analysed. Sensor performance comparisons were made by registering data sets from different sensors, which were near-coincident in time and location. Multispectral scanner images were, in turn, overlayed with profiles of correlation between airborne and laboratory-acquired fluorosensor spectra of oil; oil-thickness contours derived (by NASA) from a scanning fluorosensor and also from a two-channel scanning microwave radiometer; and synthetic aperture radar X-HH images. Microwave scatterometer data were correlated with dual-channel (UV and TIR) line scanner images of the oil slick.

  16. NASA EEE Parts and NASA Electronic Parts and Packaging (NEPP) Program Update 2018

    NASA Technical Reports Server (NTRS)

    Label, Kenneth A.; Sampson, Michael J.; Pellish, Jonathan A.; Majewicz, Peter J.

    2018-01-01

    NASA Electronic Parts and Packaging (NEPP) Program and NASA Electronic Parts Assurance Group (NEPAG) are NASAs point-of-contacts for reliability and radiation tolerance of EEE parts and their packages. This presentation includes an FY18 program overview.

  17. NASA Education Stakeholder's Summit

    NASA Image and Video Library

    2010-09-12

    James Stofan, right, NASA Acting Associate Administrator for Education, introduces the keynote speakers at the NASA Education Stakeholders’ Summit One Stop Shopping Initiative (OSSI), Monday, Sep. 13, 2010, at the Westfields Marriott Conference Center in Chantilly, VA. (Photo Credit: NASA/Carla Cioffi)

  18. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This handbook is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the handbook is to increase awareness and consistency across the Agency and advance the practice of SE. This handbook provides perspectives relevant to NASA and data particular to NASA. The coverage in this handbook is limited to general concepts and generic descriptions of processes, tools, and techniques. It provides information on systems engineering best practices and pitfalls to avoid. There are many Center-specific handbooks and directives as well as textbooks that can be consulted for in-depth tutorials. This handbook describes systems engineering as it should be applied to the development and implementation of large and small NASA programs and projects. NASA has defined different life cycles that specifically address the major project categories, or product lines, which are: Flight Systems and Ground Support (FS&GS), Research and Technology (R&T), Construction of Facilities (CoF), and Environmental Compliance and Restoration (ECR). The technical content of the handbook provides systems engineering best practices that should be incorporated into all NASA product lines. (Check the NASA On-Line Directives Information System (NODIS) electronic document library for applicable NASA directives on topics such as product lines.) For simplicity this handbook uses the FS&GS product line as an example. The specifics of FS&GS can be seen in the description of the life cycle and the details of the milestone reviews. Each product line will vary in these two areas; therefore, the reader should refer to the applicable NASA procedural requirements for the specific requirements for their life cycle and reviews. The engineering of NASA systems requires a systematic and disciplined set of processes that are applied recursively and

  19. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden poses for a quick selfie with students who attended the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA announced the "Global Selfie" event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. All selfies posted to social media with the hashtag "GlobalSelfie" will be included in a mosaic image of Earth. Photo Credit: (NASA/Aubrey Gemignani)

  20. Partnering with NASA: An Overview

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2017-01-01

    Partnerships is an important part of doing business at NASA. NASA partners with external organizations to access capabilities under collaborative agreements; enters into agreements for partner access to NASA capabilities; expand overall landscape of space activity; and spurring innovation. NASA partnerships consist of Reimbursable and Non-Reimbursable Space Act Agreements. Partnerships at Ames aligns with Ames' core competencies, and Partners often office in the NASA Research Park, which is an established regional innovation cluster that facilitates commercialization and services as a technology accelerator via onsite collaborations between NASA and its partners.