Sample records for nasa flight engineer

  1. Flight Research Using F100 Engine P680063 in the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Conners, Timothy R.; Maxwell, Michael D.

    1994-01-01

    The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.

  2. NASA on a Strong Roll in Preparing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    NASA is on a roll when it comes to testing engines for its new Space Launch System (SLS) rocket that will send astronauts to deep-space destinations, including Mars. Just two weeks after the third test of a new RS-25 engine flight controller, the space agency recorded its fourth full-duration controller test Aug. 9 at Stennis Space Center near Bay St. Louis, Mississippi. Engineers conducted a 500-second test of the RS-25 engine controller on the A-1 Test Stand at Stennis. The test involved installing the controller on an RS-25 development engine and firing it in the same manner, and for the same length of time, as needed during an actual SLS launch. The test marked another milestone toward launch of the first integrated flight of the SLS rocket and Orion crew vehicle. Exploration Mission-1 will be an uncrewed mission into lunar orbit, designed to provide a final check-out test of rocket and Orion capabilities before astronauts are returned to deep space. The SLS rocket will be powered at launch by four RS-25 engines, providing a combined 2 million pounds of thrust, and with a pair of solid rocket boosters, providing more than 8 million pounds of total thrust. The RS-25 engines for the initial SLS flights are former space shuttle main engines that are now being used to launch the larger and heavier SLS rocket and with the new controller. The controller is a critical component that operates as the engine “brain” that communicates with SLS flight computers to receive operation performance commands and to provide diagnostic data on engine health and status. Engineers conducted early prototype tests at Stennis to collect data for development of the new controller by NASA, RS-25 prime contractor Aerojet Rocketdyne and subcontractor Honeywell. Testing of actual flight controllers began at Stennis in March. NASA is testing all controllers and engines designated for the EM-1 flight at Stennis. It also will test the SLS core stage for the flight at Stennis, which will

  3. Video File - NASA on a Roll Testing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    Just two weeks after conducting another in a series of tests on new RS-25 rocket engine flight controllers for NASA’s Space Launch System (SLS) rocket, engineers at NASA’s Stennis Space Center in Mississippi completed one more hot-fire test of a flight controller on August 9, 2017. With the hot fire, NASA has moved a step closer in completing testing on the four RS-25 engines which will power the first integrated flight of the SLS rocket and Orion capsule known as Exploration Mission 1.

  4. Improving System Engineering Excellence at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Takada, Pamela Wallace; Newton, Steve; Gholston, Sampson; Thomas, Dale (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center (MSFC) management feels that sound system engineering practices are essential for successful project management, NASA studies have concluded that recent project failures could be attributed in part to inadequate systems engineering. A recent survey of MSFC project managers and system engineers' resulted in the recognition of a need for training in Systems Engineering Practices, particularly as they relate to MSFC projects. In response to this survey, an internal pilot short-course was developed to reinforce accepted practices for system engineering at MSFC. The desire of the MSFC management is to begin with in-house training and offer additional educational opportunities to reinforce sound system engineering principles to the more than 800 professionals who are involved with system engineering and project management. A Systems Engineering Development Plan (SEDP) has been developed to address the longer-term systems engineering development needs of MSFC. This paper describes the survey conducted and the training course that was developed in response to that survey.

  5. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  6. High Stability Engine Control (HISTEC) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.

    1998-01-01

    The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.

  7. Career Profile: Flight Operations Engineer (Aeronautics) Brian Griffin

    NASA Image and Video Library

    2014-10-17

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Brian Griffin during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/

  8. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  9. NASA Hardware Heads to Kennedy For Flight Preparations

    NASA Image and Video Library

    2018-01-24

    The Orion stage adapter will be part of the first integrated flight of NASA's heavy-lift rocket, the Space Launch System, and the Orion spacecraft. The adapter, approximately 5 feet tall and 18 feet in diameter, was designed and built at NASA's Marshall Space Flight Center in Huntsville, Alabama, with advanced friction stir welding technology. It will connect the SLS interim cryogenic propulsion stage to Orion on the first flight that will help engineers check out and verify the agency's new deep-space exploration systems. Inside the adapter, engineers installed special brackets and cabling for the 13 CubeSats that will fly as secondary payloads. The Cubesats are boot-box-sized science and technology investigations that will help pave the way for future human exploration in deep space. The Orion stage adapter flight article recently finished major testing of the avionics system that will deploy the CubeSats. Technicians at NASA's Kennedy Space Center, Florida, will install the secondary payloads and engineers will examine the hardware before it is stacked on the interim cryogenic propulsion stage in the Vehicle Assembly Building prior to launch. For more information about SLS hardware, visit nasa.gov/sls.

  10. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  11. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  12. Career Profile: Flight Operations Engineer (Airborne Science) Matthew Berry

    NASA Image and Video Library

    2014-11-05

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Matthew Berry during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/

  13. Hyper-X Flight Engine Ground Testing for X-43 Flight Risk Reduction

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Rock, Kenneth E.; Ruf, Edward G.; Witte, David W.; Andrews, Earl H., Jr.

    2001-01-01

    Airframe-integrated scramjet engine testing has been completed at Mach 7 flight conditions in the NASA Langley 8-Foot High Temperature Tunnel as part of the NASA Hyper-X program. This test provided engine performance and operability data, as well as design and database verification, for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe-integrated scramjet data in flight. The Hyper-X Flight Engine, a duplicate Mach 7 X-43 scramjet engine, was mounted on an airframe structure that duplicated the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle trailing edge. This model was also tested to verify and validate the complete flight-like engine system. This paper describes the subsystems that were subjected to flight-like conditions and presents supporting data. The results from this test help to reduce risk for the Mach 7 flights of the X-43.

  14. Flight simulation software at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Norlin, Ken A.

    1995-01-01

    The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.

  15. Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.

    1993-01-01

    Personnel at the NASA Langley Research Center (NASA-Langley) and the NASA Dryden Flight Research Facility (NASA-Dryden) recently completed a joint acoustic flight test program. Several types of aircraft with high nozzle pressure ratio engines were flown to satisfy a twofold objective. First, assessments were made of subsonic climb-to-cruise noise from flights conducted at varying altitudes in a Mach 0.30 to 0.90 range. Second, using data from flights conducted at constant altitude in a Mach 0.30 to 0.95 range, engineers obtained a high quality noise database. This database was desired to validate the Aircraft Noise Prediction Program and other system noise prediction codes. NASA-Dryden personnel analyzed the engine data from several aircraft that were flown in the test program to determine the exhaust characteristics. The analysis of the exhaust characteristics from the F-18 aircraft are reported. An overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results are presented.

  16. Optical Fiber Assemblies for Space Flight from the NASA Goddard Space Flight Center, Photonics Group

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thoma, William Joe; LaRocca, Frank; Chuska, Richard; Switzer, Robert; Day, Lance

    2009-01-01

    The Photonics Group at NASA Goddard Space Flight Center in the Electrical Engineering Division of the Advanced Engineering and Technologies Directorate has been involved in the design, development, characterization, qualification, manufacturing, integration and anomaly analysis of optical fiber subsystems for over a decade. The group supports a variety of instrumentation across NASA and outside entities that build flight systems. Among the projects currently supported are: The Lunar Reconnaissance Orbiter, the Mars Science Laboratory, the James Webb Space Telescope, the Express Logistics Carrier for the International Space Station and the NASA Electronic Parts. and Packaging Program. A collection of the most pertinent information gathered during project support over the past year in regards to space flight performance of optical fiber components is presented here. The objective is to provide guidance for future space flight designs of instrumentation and communication systems.

  17. Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera

    NASA Image and Video Library

    2015-05-14

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.

  18. CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test

    NASA Technical Reports Server (NTRS)

    Voland, R. T.; Auslender, A. H.; Smart, M. K.; Roudakov, A. S.; Semenov, V. L.; Kopchenov, V.

    1999-01-01

    The Russian Central Institute of Aviation Motors (CIAM) performed a flight test of a CIAM-designed, hydrogen-cooled/fueled dual-mode scramjet engine over a Mach number range of approximately 3.5 to 6.4 on February 12, 1998, at the Sary Shagan test range in Kazakhstan. This rocket-boosted, captive-carry test of the axisymmetric engine reached the highest Mach number of any scramjet engine flight test to date. The flight test and the accompanying ground test program, conducted in a CIAM test facility near Moscow, were performed under a NASA contract administered by the Dryden Flight Research Center with technical assistance from the Langley Research Center. Analysis of the flight and ground data by both CIAM and NASA resulted in the following preliminary conclusions. An unexpected control sensor reading caused non-optimal fueling of the engine, and flowpath modifications added to the engine inlet during manufacture caused markedly reduced inlet performance. Both of these factors appear to have contributed to the dual-mode scramjet engine operating primarily in a subsonic combustion mode. At the maximum Mach number test point, combustion caused transition from supersonic flow at the fuel injector station to primarily subsonic flow in the combustor. Ground test data were obtained at similar conditions to the flight test, allowing for a meaningful comparison between the ground and flight data. The results of this comparison indicate that the differences in engine performance are small.

  19. Doing Systems Engineering Without Thinking About It at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Bohn-Meyer, Marta; Kilp, Stephen; Chun, Peggy; Mizukami, Masashi

    2004-01-01

    When asked about his processes in designing a new airplane, Burt Rutan responded: ...there is always a performance requirement. So I start with the basic physics of an airplane that can get those requirements, and that pretty much sizes an airplane... Then I look at the functionality... And then I try a lot of different configurations to meet that, and then justify one at a time, throwing them out... Typically I'll have several different configurations... But I like to experiment, certainly. I like to see if there are other ways to provide the utility. This kind of thinking engineering as a total systems engineering approach is what is being instilled in all engineers at the NASA Dryden Flight Research Center.

  20. NASA Test Flights Examine Effect of Atmospheric Turbulence on Sonic Booms

    NASA Image and Video Library

    2016-07-20

    NASA pilot Nils Larson, and flight test engineer and pilot Wayne Ringelberg, head for a mission debrief after flying a NASA F/A-18 at Mach 1.38 to create sonic booms as part of the SonicBAT flight series at NASA’s Armstrong Flight Research Center in California, to study sonic boom signatures with and without the element of atmospheric turbulence.

  1. NASA Tests RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans.

  2. The First Development of Human Factors Engineering Requirements for Application to Ground Task Design for a NASA Flight Program

    NASA Technical Reports Server (NTRS)

    Dischinger, H. Charles, Jr.; Stambolian, Damon B.; Miller, Darcy H.

    2008-01-01

    The National Aeronautics and Space Administration has long applied standards-derived human engineering requirements to the development of hardware and software for use by astronauts while in flight. The most important source of these requirements has been NASA-STD-3000. While there have been several ground systems human engineering requirements documents, none has been applicable to the flight system as handled at NASA's launch facility at Kennedy Space Center. At the time of the development of previous human launch systems, there were other considerations that were deemed more important than developing worksites for ground crews; e.g., hardware development schedule and vehicle performance. However, experience with these systems has shown that failure to design for ground tasks has resulted in launch schedule delays, ground operations that are more costly than they might be, and threats to flight safety. As the Agency begins the development of new systems to return humans to the moon, the new Constellation Program is addressing this issue with a new set of human engineering requirements. Among these requirements is a subset that will apply to the design of the flight components and that is intended to assure ground crew success in vehicle assembly and maintenance tasks. These requirements address worksite design for usability and for ground crew safety.

  3. A NASA technician paints NASA's first Orion full-scale abort flight test crew module.

    NASA Image and Video Library

    2008-03-31

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  4. NASA Engineering Excellence: A Case Study on Strengthening an Engineering Organization

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herbert; Wessel, Vernon W.

    2006-01-01

    NASA implemented a system of technical authority following the Columbia Accident Investigation Board (CAE) report calling for independent technical authority to be exercised on the Space Shuttle Program activities via a virtual organization of personnel exercising specific technical authority responsibilities. After the current NASA Administrator reported for duty, and following the first of two planned "Shuttle Return to Flight" missions, the NASA Chief Engineer and the Administrator redirected the Independent Technical Authority to a program of Technical Excellence and Technical Authority exercised within the existing engineering organizations. This paper discusses the original implementation of technical authority and the transition to the new implementation of technical excellence, including specific measures aimed at improving safety of future Shuttle and space exploration flights.

  5. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  6. NASA Tests 2nd RS-25 Flight Engine For Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  7. NASA's Suborbital Missions Teach Engineering and Technology: Goddard Space Flight Center's Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Winterton, Joyce L.

    2016-01-01

    A 50 minute-workshop based on NASA publicly available information will be conducted at the International Technology and Engineering Educator Association annual conference. Attendees will include middle and high school teachers and university teacher educators. Engineering and technology are essential to NASA's suborbital missions including sounding rockets, scientific balloon and airborne science. The attendees will learn how to include NASA information on these missions in their teaching.

  8. Potential utilization of the NASA/George C. Marshall Space Flight Center in earthquake engineering research

    NASA Technical Reports Server (NTRS)

    Scholl, R. E. (Editor)

    1979-01-01

    Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.

  9. NASA's first Orion full-scale abort flight test crew module was placed in NASA Dryden's Abort Flight Test integration area for equipment installation.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  10. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This handbook is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the handbook is to increase awareness and consistency across the Agency and advance the practice of SE. This handbook provides perspectives relevant to NASA and data particular to NASA. The coverage in this handbook is limited to general concepts and generic descriptions of processes, tools, and techniques. It provides information on systems engineering best practices and pitfalls to avoid. There are many Center-specific handbooks and directives as well as textbooks that can be consulted for in-depth tutorials. This handbook describes systems engineering as it should be applied to the development and implementation of large and small NASA programs and projects. NASA has defined different life cycles that specifically address the major project categories, or product lines, which are: Flight Systems and Ground Support (FS&GS), Research and Technology (R&T), Construction of Facilities (CoF), and Environmental Compliance and Restoration (ECR). The technical content of the handbook provides systems engineering best practices that should be incorporated into all NASA product lines. (Check the NASA On-Line Directives Information System (NODIS) electronic document library for applicable NASA directives on topics such as product lines.) For simplicity this handbook uses the FS&GS product line as an example. The specifics of FS&GS can be seen in the description of the life cycle and the details of the milestone reviews. Each product line will vary in these two areas; therefore, the reader should refer to the applicable NASA procedural requirements for the specific requirements for their life cycle and reviews. The engineering of NASA systems requires a systematic and disciplined set of processes that are applied recursively and

  11. NASA develops new digital flight control system

    NASA Technical Reports Server (NTRS)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  12. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2018-01-16

    On Jan. 16, 2018, engineers at NASA’s Stennis Space Center in Mississippi conducted a certification test of another RS-25 engine flight controller on the A-1 Test Stand at Stennis Space Center. The 365-second, full-duration test came a month after the space agency capped a year of RS-25 testing with a flight controller test in mid-December. For the “green run” test the flight controller was installed on RS-25 developmental engine E0528 and fired just as during an actual launch. Once certified, the flight controller will be removed and installed on a flight engine for use by NASA’s new deep-space rocket, the Space Launch System (SLS).

  13. Next-Generation RS-25 Engines for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2017-01-01

    The utilization of heritage RS-25 engine, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway at NASA and the RS-25 engine provider, Aerojet Rocketdyne, to improve system affordability and eliminate obsolescence concerns. This paper describes how the achievement of these key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.

  14. NASA Dryden Flight Research Center personnel accompany NASA's first Orion full-scale abort flight test crew module as it heads to its new home.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  15. Flight Control Laws for NASA's Hyper-X Research Vehicle

    NASA Technical Reports Server (NTRS)

    Davidson, J.; Lallman, F.; McMinn, J. D.; Martin, J.; Pahle, J.; Stephenson, M.; Selmon, J.; Bose, D.

    1999-01-01

    The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.

  16. NASA Earth-to-Orbit Engineering Design Challenges: Thermal Protection Systems

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration (NASA), 2010

    2010-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, Dryden Flight Research Center, and their partners at other NASA centers and in private industry are currently developing X-33, a prototype to test technologies for the next generation of space transportation. This single-stage-to-orbit reusable launch…

  17. Preparing for Flight Engine Test

    NASA Image and Video Library

    2015-11-04

    The first RS-25 flight engine, engine No. 2059, is lifted onto the A-1 Test Stand at Stennis Space Center on Nov. 4, 2015. The engine was tested in early 2016 to certify it for use on NASA’s new Space Launch System (SLS). The SLS core stage will be powered by four RS-25 engines, all tested at Stennis Space Center. NASA is developing the SLS to carry humans deeper into space than ever before, including on a journey to Mars.

  18. Data Mining of NASA Boeing 737 Flight Data: Frequency Analysis of In-Flight Recorded Data

    NASA Technical Reports Server (NTRS)

    Butterfield, Ansel J.

    2001-01-01

    Data recorded during flights of the NASA Trailblazer Boeing 737 have been analyzed to ascertain the presence of aircraft structural responses from various excitations such as the engine, aerodynamic effects, wind gusts, and control system operations. The NASA Trailblazer Boeing 737 was chosen as a focus of the study because of a large quantity of its flight data records. The goal of this study was to determine if any aircraft structural characteristics could be identified from flight data collected for measuring non-structural phenomena. A number of such data were examined for spatial and frequency correlation as a means of discovering hidden knowledge of the dynamic behavior of the aircraft. Data recorded from on-board dynamic sensors over a range of flight conditions showed consistently appearing frequencies. Those frequencies were attributed to aircraft structural vibrations.

  19. Next-Generation RS-25 Engines for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2017-01-01

    The utilization of heritage RS-25 engines, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over 1 million seconds total accumulated hot-fire time. In addition, there were also 16 flight engines and 2 development engines remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway to improve system affordability and eliminate obsolescence concerns. These key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.

  20. Review of NASA's Hypersonic Research Engine Project

    NASA Technical Reports Server (NTRS)

    Andrews, Earl H.; Mackley, Ernest A.

    1993-01-01

    The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a hypersonic research ramjet/scramjet engine for high performance and to flight-test the developed concept over the speed range from Mach 3 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research aircraft, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of engine models then became the focus of the project. Two axisymmetric full-scale engine models having 18-inch-diameter cowls were fabricated and tested: a structural model and a combustion/propulsion model. A brief historical review of the project with salient features, typical data results, and lessons learned is presented.

  1. One of NASA's Two Modified Boeing 747 Shuttle Carrier (SCA) Aircraft in Flight over NASA Dryden Flig

    NASA Technical Reports Server (NTRS)

    1999-01-01

    One of NASA's Boeing 747 Shuttle Carrier Aircraft flies over the Dryden Flight Research Center main building at Edwards Air Force Base, Edwards, California, in May 1999. NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights. Features which distinguish the two SCAs from standard 747 jetliners are: o Three struts, with associated interior structural strengthening, protruding from the top of the fuselage (two aft, one forward) on which the orbiter is attached o Two additional vertical stabilizers, one on each end of the standard horizontal stabilizer, to enhance directional stability o Removal of all interior furnishings and equipment aft of the forward No. 1 doors o Instrumentation used by SCA flight crews and engineers to monitor orbiter electrical loads during the ferry flights and also during pre- and post-ferry flight operations. The two SCAs are under the operational control of NASA's Johnson Space Center, Houston, Tex. NASA 905 NASA 905 was the first SCA. It was obtained from American Airlines in 1974. Shortly after it was accepted by NASA it was flown in a series of wake vortex research flights at the Dryden Flight Research Center in a study to

  2. NASA Synthetic Vision EGE Flight Test

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J.; Kramer, Lynda J.; Comstock, J. Raymond; Bailey, Randall E.; Hughes, Monica F.; Parrish, Russell V.

    2002-01-01

    NASA Langley Research Center conducted flight tests at the Eagle County, Colorado airport to evaluate synthetic vision concepts. Three display concepts (size 'A' head-down, size 'X' head-down, and head-up displays) and two texture concepts (photo, generic) were assessed for situation awareness and flight technical error / performance while making approaches to Runway 25 and Runway 07 and simulated engine-out Cottonwood 2 and KREMM departures. The results of the study confirm the retrofit capability of the HUD and Size 'A' SVS concepts to significantly improve situation awareness and performance over current EFIS glass and non-glass instruments for difficult approaches in terrain-challenged environments.

  3. NASA's new university engineering space research programs

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.

    1988-01-01

    The objective of a newly emerging element of NASA's university engineering programs is to provide a more autonomous element that will enhance and broaden the capabilities in academia, enabling them to participate more effectively in the U.S. civil space program. The programs utilize technical monitors at NASA centers to foster collaborative arrangements, exchange of personnel, and the sharing of facilities between NASA and the universities. The elements include: the university advanced space design program, which funds advanced systems study courses at the senior and graduate levels; the university space engineering research program that supports cross-disciplinary research centers; the outreach flight experiments program that offers engineering research opportunities to universities; and the planned university investigator's research program to provide grants to individuals with outstanding credentials.

  4. A Rainbow View of NASA's RS-25 Engine Test

    NASA Image and Video Library

    2017-02-22

    NASA engineers conducted their first RS-25 test of 2017 on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi, on Feb. 22, continuing to collect data on the performance of the rocket engine that will help power the new Space Launch System (SLS) rocket. Shown from the viewpoint of an overhead drone, the test of development engine No. 0528 ran the scheduled 380 seconds (six minutes and 20 seconds), allowing engineers to monitor various engine operating conditions. The test represents another step forward in development of the rocket that will launch humans aboard Orion deeper into space than ever before. Four RS-25 engines, together with a pair of solid rocket boosters, will power the SLS at launch on its deep-space missions. The engines for the first four SLS flights are former space shuttle main engines, which were tested extensively at Stennis and are some of the most proven engines in the world. Engineers are conducting an ongoing series of tests this year for SLS on both development and flight engines for future flights to ensure the engine, outfitted with a new controller, can perform at the higher level under a variety of conditions and situations. Stennis is also preparing its B-2 Test Stand to test the core stage for the first SLS flight with Orion, known as Exploration Mission-1. That testing will involve installing the flight stage on the stand and firing its four RS-25 engines simultaneously, just as during an actual launch. The Feb. 22 test was conducted by Aerojet Rocketdyne and Syncom Space Services engineers and operators. Aerojet Rocketdyne is the prime contractor for the RS-25 engines. Syncom Space Services is the prime contractor for Stennis facilities and operations. PAO Name:Kim Henry Phone Number:256-544-1899 Email Address: kimberly.m.henry@nasa.gov

  5. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1992-01-01

    Various engine related performance and health monitoring techniques developed in support of flight research are described. Techniques used during flight to enhance safety and to increase flight test productivity are summarized. A description of the NASA range facility is given along with a discussion of the flight data processing. Examples of data processed and the flight data displays are shown. A discussion of current trends and future capabilities is also included.

  6. NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

    NASA Image and Video Library

    2016-12-08

    A series of test firings like this one in late August brought a group of engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, a big step closer to their goal of a 100-percent 3-D printed rocket engine, said Andrew Hanks, test lead for the additively manufactured demonstration engine project. The main combustion chamber, fuel turbopump, fuel injector, valves and other components used in the tests were of the team's new design, and all major engine components except the main combustion chamber were 3-D printed. (NASA/MSFC)

  7. NASA Conducts Final RS-25 Rocket Engine Test of 2017

    NASA Image and Video Library

    2017-12-13

    NASA engineers at Stennis Space Center capped a year of Space Launch System testing with a final RS-25 rocket engine hot fire on Dec. 13. The 470-second test on the A-1 Test Stand was a “green run” test of an RS-25 flight controller. The engine tested also included a large 3-D-printed part, a pogo accumulator assembly, scheduled for use on future RS-25 flight engines.

  8. Video File - NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2017-10-19

    Engineers at NASA’s Stennis Space Center in Mississippi on Oct. 19 completed a hot-fire test of RS-25 rocket engine E2063, a flight engine for NASA’s new Space Launch System (SLS) rocket. Engine E2063 is scheduled to help power SLS on its Exploration Mission-2 (EM-2), the first flight of the new rocket to carry humans. Flight engine E2059 was tested on March 10, 2016, also for use on the EM-2 flight.

  9. An Overview of NASA Engine Ice-Crystal Icing Research

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Veres, Joseph P.

    2011-01-01

    Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.

  10. NASA Engineers Conduct Low Light Test on New Technology for NASA Webb Telescope

    NASA Image and Video Library

    2014-09-02

    NASA engineers inspect a new piece of technology developed for the James Webb Space Telescope, the micro shutter array, with a low light test at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Developed at Goddard to allow Webb's Near Infrared Spectrograph to obtain spectra of more than 100 objects in the universe simultaneously, the micro shutter array uses thousands of tiny shutters to capture spectra from selected objects of interest in space and block out light from all other sources. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. NASA Aerosciences Activities to Support Human Space Flight

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  12. NASA's Hypersonic Research Engine Project: A review

    NASA Technical Reports Server (NTRS)

    Andrews, Earl H.; Mackley, Ernest A.

    1994-01-01

    The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a high-performance hypersonic research ramjet/scramjet engine for flight tests of the developed concept over the speed range of Mach 4 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research airplane, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of full-scale engine models then became the focus of the project. Two axisymmetric full-scale engine models, having 18-inch-diameter cowls, were fabricated and tested: a structural model and combustion/propulsion model. A brief historical review of the project, with salient features, typical data results, and lessons learned, is presented. An extensive number of documents were generated during the HRE Project and are listed.

  13. UAS Related Activities at NASA's Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.

    2009-01-01

    NASA s Dryden Flight Research Center is completing its refurbishment and initial flights of one the pre-production Global Hawk aircraft it received from the U.S. Air Force. NASA Dryden has an agreement with the Global Hawk s manufacturer, Northrop Grumman, to partner in the refurbishment and flight operations of the vehicles. The National Oceanic and Atmospheric Administration (NOAA) has also partnered on the project and is assisting NASA with project management and pilot responsibilities for the aircraft. NASA and NOAA will be using the Global Hawks to conduct earth science research. The earth science community is increasing utilizing UAS of all sizes and capabilities to collect important data on a variety of issues including important global climate change issues. To pursue the data collection needs of the science community there is a growing demand for international collaboration with respect to operating UAS in global airspace. Operations of NASA s Ikhana aircraft continued this past year. The Ikhana is a modified Predator B UAS. A UAS dedicated to research at NASA Dryden is the X-48B blended wing body research aircraft. Flight tests with the 500- pound, remotely piloted test vehicle are now in a block 4 phase involving parameter identification and maneuvers to research the limits of the engine in stall situations. NASA s participation in the blended wing body research effort is focused on fundamental, advanced flight dynamics and structural design concepts within the Subsonic Fixed Wing project, part of the Fundamental Aeronautics program managed through NASA s Aeronautics Research Mission Directorate. Potential benefits of the aircraft include increased volume for carrying capacity, efficient aerodynamics for reduced fuel burn and possibly significant reductions in noise due to propulsion integration options. NASA Dryden continues to support the UAS industry by facilitating access to three specially designated test areas on Edwards Air Force Base for the

  14. Purpose, Principles, and Challenges of the NASA Engineering and Safety Center

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2016-01-01

    NASA formed the NASA Engineering and Safety Center in 2003 following the Space Shuttle Columbia accident. It is an Agency level, program-independent engineering resource supporting NASA's missions, programs, and projects. It functions to identify, resolve, and communicate engineering issues, risks, and, particularly, alternative technical opinions, to NASA senior management. The goal is to help ensure fully informed, risk-based programmatic and operational decision-making processes. To date, the NASA Engineering and Safety Center (NESC) has conducted or is actively working over 600 technical studies and projects, spread across all NASA Mission Directorates, and for various other U.S. Government and non-governmental agencies and organizations. Since inception, NESC human spaceflight related activities, in particular, have transitioned from Shuttle Return-to-Flight and completion of the International Space Station (ISS) to ISS operations and Orion Multi-purpose Crew Vehicle (MPCV), Space Launch System (SLS), and Commercial Crew Program (CCP) vehicle design, integration, test, and certification. This transition has changed the character of NESC studies. For these development programs, the NESC must operate in a broader, system-level design and certification context as compared to the reactive, time-critical, hardware specific nature of flight operations support.

  15. NASA Deputy Administrator Tours Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Pictured from the left, in the Saturn I mockup, are: William Brooksbank, Marshall Space Flight Center (MSFC) Propulsion and Vehicle Engineering Laboratory; Dr. Thomas O. Paine, Deputy Administrator of the National Aeronautics and Space Administration (NASA); Dr. Wernher von Braun, MSFC director; Colonel Clare F. Farley, executive officer of the Office of the Administrator; and Charles J. Donlan, newly appointed deputy associate administrator for Manned Space Flight, technical. The party examined an ordinary man's shoe (held by Paine) outfitted for use in the Saturn I Workshop. The shoe had a unique fastener built into the sole to allow an astronaut to move about the workshop floor and to remain in one position if he desired. Dr. Paine and his party indulged in a two-day tour at the Marshall Space Flight Center getting acquainted with Marshall personnel and programs. It was Paine's first visit to the center since assuming the NASA post on February 1, 1968.

  16. HIDEC F-15 adaptive engine control system flight test results

    NASA Technical Reports Server (NTRS)

    Smolka, James W.

    1987-01-01

    NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.

  17. The Quest for Engineering Innovation at NASA's Marshall Space Flight (MSFC)

    NASA Technical Reports Server (NTRS)

    Turner, James E.

    2017-01-01

    A recent NASA team, chartered to examine innovation within the Agency, captured the meaning of the word innovation as the "application of creative ideas to improve and generate value for the organization". The former NASA Administrator Charles Bolden shared his own thoughts about innovation in a memo with all employees that stated, "At NASA, we are dedicated to innovation, bold ideas, and excellence." Innovation turns out to be one of the major driving forces behind the work produced at NASA. It seems failure is often what has driven NASA to be more innovative. Fifty years ago, the Apollo 1 tragedy killed three astronauts when fire erupted in their command module. NASA had to bear the responsibility of such loss and at the same time work smarter in order to obtain the dream to reach the moon by the end of the 1960s. Through this circumstance, NASA engineers developed a revolutionary replacement for the combustible nylon astronaut suits so the Apollo program could continue. A material called Beta Cloth was born. This material was used to produce noncombustible space suits for all Apollo astronauts, enabling the United States to ultimately land 12 Americans on the moon. Eventually this material was used as the roof system in the Denver International Airport, showing relevance and applications of NASA innovations to real-world need. Innovative ideas are also driven by the need to accomplish NASA missions and to improve the way we produce our products. MSFC engineers are advancing technologies in additive manufacturing of liquid rocket engines in order to reduce the number of parts, design time, and the cost of the engines. NASA is working with academia to eliminate the need for miles of sensor cables by investigating innovations in wireless sensors. In order to enable future exploration missions to Mars, MSFC engineers are pursuing innovative approaches in diverse areas such as the use of ionic liquids for life support systems and composite cryogenic tanks, very low

  18. The role of engineering in the flight equipment purchasing process

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The role of the airline engineering department in the flight equipment acquisition process is examined. The data for the study was collected from six airlines. The principal findings of the study include: (1) engineering activities permeate, but do not dominate the airline flight equipment decision process. (2) The principal criterion for the flight equipment acquisition decision is return on investment. (3) The principal sources of information for the airline engineering departments in the monitoring process are the manufacturers of equipment. Subsidiary information sources include NASA publications and conferences, among others and (4) The engineering department is the principal communication channel for technical information.

  19. X-43A departs NASA Dryden Flight Research Center for first free-flight attempt.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A 'stack' lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing 'scramjet' engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or 'scramjet' engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean.

  20. NASA Crew Launch Vehicle Flight Test Options

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Davis, Stephan R.; Robonson, Kimberly; Tuma, Margaret L.; Sullivan, Greg

    2006-01-01

    Options for development flight testing (DFT) of the Ares I Crew Launch Vehicle (CLV) are discussed. The Ares-I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to launch the Crew Exploration Vehicle (CEV) into low Earth Orbit (LEO). The Ares-I implements one of the components of the Vision for Space Exploration (VSE), providing crew and cargo access to the International Space Station (ISS) after retirement of the Space Shuttle and, eventually, forming part of the launch capability needed for lunar exploration. The role of development flight testing is to demonstrate key sub-systems, address key technical risks, and provide flight data to validate engineering models in representative flight environments. This is distinguished from certification flight testing, which is designed to formally validate system functionality and achieve flight readiness. Lessons learned from Saturn V, Space Shuttle, and other flight programs are examined along with key Ares-I technical risks in order to provide insight into possible development flight test strategies. A strategy for the first test flight of the Ares I, known as Ares I-1, is presented.

  1. Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2018-01-01

    NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.

  2. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1991-01-01

    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

  3. The Power for Flight: NASA's Contributions to Aircraft Propulsion

    NASA Technical Reports Server (NTRS)

    Kinney, Jeremy R.

    2017-01-01

    The New York Times announced America's entry into the 'long awaited' Jet Age when a Pan American (Pan Am) World Airways Boeing 707 airliner left New York for Paris on October 26, 1958. Powered by four turbojet engines, the 707 offered speed, more nonstop flights, and a smoother and quieter travel experience compared to newly antiquated propeller airliners. With the Champs-Elysees only 6 hours away, humankind had entered into a new and exciting age in which the shrinking of the world for good was no longer a daydream. Fifty years later, the New York Times declared the second coming of a 'cleaner, leaner' Jet Age. Decades-old concerns over fuel efficiency, noise, and emissions shaped this new age as the aviation industry had the world poised for 'a revolution in jet engines'. Refined turbofans incorporating the latest innovations would ensure that aviation would continue to enable a worldwide transportation network. At the root of many of the advances over the preceding 50 years was the National Aeronautics and Space Administration (NASA). On October 1, 1958, just a few weeks before the flight of that Pan Am 707, NASA came into existence. Tasked with establishing a national space program as part of a Cold War competition between the United States and the Soviet Union, NASA is often remembered in popular memory first for putting the first human beings on the Moon in July 1969, followed by running the successful 30-year Space Shuttle Program and by landing the Rover Curiosity on Mars in August 2012. What many people do not recognize is the crucial role the first 'A' in NASA played in the development of aircraft since the Agency's inception. Innovations shaping the aerodynamic design, efficient operation, and overall safety of aircraft made NASA a vital element of the American aviation industry even though they remained unknown to the public. This is the story of one facet of NASA's many contributions to commercial, military, and general aviation: the development of

  4. A Chief Engineer's View of the NASA X-43A Scramjet Flight Test

    NASA Technical Reports Server (NTRS)

    Marshall, Laurie A.; Corpening, Griffin P.; Sherrill, Robert

    2005-01-01

    This paper presents an overview of the preparation and execution of the first two flights of the NASA X-43A scramjet flight test project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The first flight, conducted on June 2, 2001, was unsuccessful and resulted in a nine-month mishap investigation. A two-year return to flight effort ensued and concluded when the second Mach 7 flight was successfully conducted on March 27, 2004. The challenges faced by the project team as they prepared the first ever scramjet-powered airplane for flight are presented. Modifications made to the second flight vehicle as a result of the first flight failure and the return to flight activities are discussed. Flight results and lessons learned are also presented.

  5. Video File - NASA Conducts Final RS-25 Rocket Engine Test of 2017

    NASA Image and Video Library

    2017-12-13

    NASA engineers at Stennis Space Center capped a year of Space Launch System testing with a final RS-25 rocket engine hot fire on Dec. 13. The 470-second test on the A-1 Test Stand was a “green run” test of an RS-25 flight controller. The engine tested also included a large 3-D-printed part, a pogo accumulator assembly, scheduled for use on future RS-25 flight engines.

  6. HIDEC adaptive engine control system flight evaluation results

    NASA Technical Reports Server (NTRS)

    Yonke, W. A.; Landy, R. J.; Stewart, J. F.

    1987-01-01

    An integrated flight propulsion control mode, the Adaptive Engine Control System (ADECS), has been developed and flight tested on an F-15 aircraft as part of the NASA Highly Integrated Digital Electronic Control program. The ADECS system realizes additional engine thrust by increasing the engine pressure ratio (EPR) at intermediate and afterburning power, with the amount of EPR uptrim modulated using a predictor scheme for angle-of-attack and sideslip angle. Substantial improvement in aircraft and engine performance was demonstrated, with a 16 percent rate of climb increase, a 14 percent reduction in time to climb, and a 15 percent reduction in time to accelerate. Significant EPR uptrim capability was found with angles-of-attack up to 20 degrees.

  7. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

    NASA Technical Reports Server (NTRS)

    Tartt, David M.; Hewett, Marle D.; Duke, Eugene L.; Cooper, James A.; Brumbaugh, Randal W.

    1989-01-01

    The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

  8. NASA Applications and Lessons Learned in Reliability Engineering

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Fuller, Raymond P.

    2011-01-01

    Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.

  9. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  10. NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF) flew mated to a specially-

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'

  11. SLS Engine Section Test Article Moves From NASA Barge Pegasus To Test Stand at NASA’s Marshall Space Flight Center

    NASA Image and Video Library

    2017-05-18

    The NASA barge Pegasus made its first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from the barge to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  12. NASA Alternative-Fuel Effects on Contrails and Cruise Emissions (ACCESS) Flight Experiments

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Moore, R.; Beyersdorf, A. J.; Thornhill, K. L., II; Shook, M.; Winstead, E.; Ziemba, L. D.; Bulzan, D. L.; Brown, A.; Beaton, B.; Schlager, H.

    2014-12-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of ~2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum für Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground-test venues.

  13. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  14. The optical fiber array bundle assemblies for the NASA lunar reconnaissance orbiter; evaluation lessons learned for flight implementation from the NASA electronic parts and packaging program

    NASA Astrophysics Data System (ADS)

    Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomes, William J.; Day, Lance W.; MacMurphy, Shawn

    2017-11-01

    The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.

  15. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; Mcduffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-01-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive. Superseded by: NASA/SP-2007-6105 Rev 1 (20080008301).

  16. The NASA hypersonic research engine program

    NASA Technical Reports Server (NTRS)

    Rubert, Kennedy F.; Lopez, Henry J.

    1992-01-01

    An overview is provided of the NASA Hypersonic Research Engine Program. The engine concept is described which was evolved, and the accomplishments of the program are summarized. The program was undertaken as an in-depth program of hypersonic airbreathing propulsion research to provide essential inputs to future prototype engine development and decision making. An airbreathing liquid hydrogen fueled research oriented scramjet was to be developed to certain performance goals. The work was many faceted, required aerodynamic design evaluation, structures development, and development of flight systems such as the fuel and control system, but the main objective was the study of the internal aerothermodynamics of the propulsion system.

  17. NASA systems engineering handbook

    NASA Astrophysics Data System (ADS)

    Shishko, Robert; Aster, Robert; Chamberlain, Robert G.; McDuffee, Patrick; Pieniazek, Les; Rowell, Tom; Bain, Beth; Cox, Renee I.; Mooz, Harold; Polaski, Lou

    1995-06-01

    This handbook brings the fundamental concepts and techniques of systems engineering to NASA personnel in a way that recognizes the nature of NASA systems and environment. It is intended to accompany formal NASA training courses on systems engineering and project management when appropriate, and is designed to be a top-level overview. The concepts were drawn from NASA field center handbooks, NMI's/NHB's, the work of the NASA-wide Systems Engineering Working Group and the Systems Engineering Process Improvement Task team, several non-NASA textbooks and guides, and material from independent systems engineering courses taught to NASA personnel. Five core chapters cover systems engineering fundamentals, the NASA Project Cycle, management issues in systems engineering, systems analysis and modeling, and specialty engineering integration. It is not intended as a directive.

  18. NASA engineer Wayne Peterson from the Johnson Space Center reviews postflight checklists following a

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA engineer Wayne Peterson from the Johnson Space Center reviews postflight checklists following a spectacular flight of the X-38 prototype for a crew recovery vehicle that may be built for the International Space Station. The X-38 tested atmospheric flight characteristics on December 13, 2001, in a descent from 45,000 feet to Rogers Dry Lake at the NASA Dryden Flight Research Center/Edwards Air Force Base complex in California.

  19. CECE: A Deep Throttling Demonstrator Cryogenic Engine for NASA's Lunar Lander

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Adamski, Walter M.; Kim, Tony S.

    2007-01-01

    As one of the first technology development programs awarded under NASA's Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic Lunar Lander engine for use across multiple human and robotic lunar exploration mission segments with extensibility to Mars. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. NASA Marshall Space Flight Center and NASA Glenn Research Center personnel were integral design and analysis team members throughout the requirements assessment, propellant studies and the deep throttling demonstrator elements of the program. The testbed selected for the initial deep throttling demonstration phase of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. In just nine months from technical program start, CECE Demonstrator No. 1 engine testing in April/May 2006 at PWR's E06 test stand successfully demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. This test provided an early demonstration of a viable, enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for both the subsequent CECE Demonstrator No. 2 program and to the future Lunar Lander Design, Development, Test and Evaluation effort.

  20. Summary of NASA Aerospace Flight Battery Systems Program activities

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; Odonnell, Patricia

    1994-01-01

    A summary of NASA Aerospace Flight Battery Systems Program Activities is presented. The NASA Aerospace Flight Battery Systems Program represents a unified NASA wide effort with the overall objective of providing NASA with the policy and posture which will increase the safety, performance, and reliability of space power systems. The specific objectives of the program are to: enhance cell/battery safety and reliability; maintain current battery technology; increase fundamental understanding of primary and secondary cells; provide a means to bring forth advanced technology for flight use; assist flight programs in minimizing battery technology related flight risks; and ensure that safe, reliable batteries are available for NASA's future missions.

  1. NASA Space Flight Vehicle Fault Isolation Challenges

    NASA Technical Reports Server (NTRS)

    Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.

  2. NASA Engineering Design Challenges: Spacecraft Structures. EP-2008-09-121-MSFC

    ERIC Educational Resources Information Center

    Haddad, Nick; McWilliams, Harold; Wagoner, Paul

    2007-01-01

    NASA (National Aeronautics and Space Administration) Engineers at Marshall Space Flight Center along with their partners at other NASA centers, and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles are part of the Constellation…

  3. Software process improvement in the NASA software engineering laboratory

    NASA Technical Reports Server (NTRS)

    Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon; Basili, Victor; Zelkowitz, Marvin

    1994-01-01

    The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and measuring software processes with the intent of identifying improvements that could be applied to the production of ground support software within the Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Corporation (CSC). The concept of process improvement within the SEL focuses on the continual understanding of both process and product as well as goal-driven experimentation and analysis of process change within a production environment.

  4. Propulsion Flight Research at NASA Dryden From 1967 to 1997

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.; Conners, Timothy R.; Walsh, Kevin R.

    1997-01-01

    From 1967 to 1997, pioneering propulsion flight research activities have been conceived and conducted at the NASA Dryden Flight Research Center. Many of these programs have been flown jointly with the United States Department of Defense, industry, or the Federal Aviation Administration. Propulsion research has been conducted on the XB-70, F-111 A, F-111E, YF-12, JetStar, B-720, MD-11, F-15, F- 104, Highly Maneuverable Aircraft Technology, F-14, F/A-18, SR-71, and the hypersonic X-15 airplanes. Research studies have included inlet dynamics and control, in-flight thrust computation, integrated propulsion controls, inlet and boattail drag, wind tunnel-to-flight comparisons, digital engine controls, advanced engine control optimization algorithms, acoustics, antimisting kerosene, in-flight lift and drag, throttle response criteria, and thrust-vectoring vanes. A computer-controlled thrust system has been developed to land the F-15 and MD-11 airplanes without using any of the normal flight controls. An F-15 airplane has flown tests of axisymmetric thrust-vectoring nozzles. A linear aerospike rocket experiment has been developed and tested on the SR-71 airplane. This paper discusses some of the more unique flight programs, the results, lessons learned, and their impact on current technology.

  5. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  6. NASA Dryden's new in-house designed Propulsion Flight Test Fixture (PFTF), carried on an F-15B's cen

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Dryden Flight Research Center's new in-house designed Propulsion Flight Test Fixture (PFTF) is an airborne engine test facility that allows engineers to glean actual flight data on small experimental engines that would otherwise have to be gathered from traditional wind tunnels, ground test stands or laboratory setups. Now, with the 'captive carry' capability of the PFTF, new air-breathing propulsion schemes, such as Rocket Based Combined Cycle engines, can be economically flight-tested using sub-scale experiments. The PFTF flew mated to NASA Dryden's specially-equipped supersonic F-15B research aircraft during December 2001 and January 2002. The PFTF, carried on the F-15B's centerline attachment point, underwent in-flight checkout, known as flight envelope expansion, in order to verify its design and capabilities. Envelope expansion for the PFTF included envelope clearance, which involves maximum performance testing. Top speed of the F-15B with the PFTF is Mach 2.0. Other elements of envelope clearance are flying qualities assessment and flutter analysis. Airflow visualization of the PFTF and a 'stand-in' test engine was accomplished by attaching small tufts of nylon on them and videotaping the flow patterns revealed during flight. A surrogate experimental engine shape, called the cone tube, was flown attached to the force balance on the PFTF. The cone tube emulated the dimensional and mass properties of the maximum design load the PFTF can carry. As the F-15B put the PFTF and the attached cone tube through its paces, accurate data was garnered, allowing engineers to fully verify PFTF and force balance capabilities in real flight conditions. When the first actual experimental engine is ready to fly on the F-15B/PFTF, engineers will have full confidence and knowledge of what they can accomplish with this 'flying engine test stand.'

  7. Flight effects on noise by the JT8D engine with inverted primary/fan flow as measured in the NASA-Ames 40 by 80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1978-01-01

    A JT8D-17R engine with inverted primary and fan flows was tested under static conditions as well as in the NASA Ames 40 by 80 Foot Wind Tunnel to determine static and flight noise characteristics, and flow profile of a large scale engine. Test and analysis techniques developed by a previous model and JT8D engine test program were used to determine the in-flight noise. The engine with inverted flow was tested with a conical nozzle and with a plug nozzle, 20 lobe nozzle, and an acoustic shield. Wind tunnel results show that forward velocity causes significant reduction in peak PNL suppression relative to uninverted flow. The loss of EPNL suppression is relatively modest. The in-flight peak PNL suppression of the inverter with conical nozzle was 2.5 PNdb relative to a static value of 5.5 PNdb. The corresponding EPNL suppression was 4.0 EPNdb for flight and 5.0 EPNdb for static operation. The highest in-flight EPNL suppression was 7.5 EPNdb obtained by the inverter with 20 lobe nozzle and acoustic shield. When compared with the JT8D engine with internal mixer, the inverted flow configuration provides more EPNL suppression under both static and flight conditions.

  8. Retired NASA research pilot and former astronaut Gordon Fullerton was greeted by scores of NASA Dryden staff who bid him farewell after his final NASA flight.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  9. A Review of the NASA MLAS Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Taylor, Anthony P.; Kelley, Christopher; Manger, Eldred; Peterson, David; Hahn, Jeffrey; Yuchnovicz, Daniel

    2011-01-01

    The NASA Engineering and Safety Center (NESC) has tested the Max Launch Abort System (MLAS) as a risk-mitigation design should problems arise with the baseline Orion spacecraft launch abort design. The Max in MLAS is not Maximum, but rather dedicated to Max Faget, the renowned NASA Spacecraft designer. In July 2009, the mission was flown, with great success, from the NASA Wallops Flight Facility. The MLAS flight test vehicle prototype consists of a boost skirt, coast skirt, and the MLAS fairing itself, which houses an Orion Command Module (CM) boilerplate. The objective of the MLAS flight test is to reorient the fairing with the CM, weighing approximately 29,000 lbs and traveling 290 fps, 180 degrees to an orientation suitable for the release of the CM during a pad abort or low altitude abort. The boost and coast skirts provide the necessary thrust and stability to establish the flight test conditions and are released prior to the reorientation of the fairing. A secondary test objective after successful release of the CM from the fairing is to demonstrate the removal of the CM forward bay cover (FBC) with the CM drogue parachutes, and subsequent deployment of the CM main parachutes attached to the FBC. Although multiple parachute deployments are used in the MLAS flight test vehicle to complete its objective, there are only two parachute types employed in the flight test. Five of the nine parachutes used for MLAS are 27.6 ft DO ribbon parachutes already proven as a spin/stall parachute for military aircraft, and the remaining four are G-12 cargo parachutes modified for increased strength and reefing. This paper presents an overview of the 27.6 ft DO ribbon parachute system employed on the MLAS flight test vehicle for coast skirt separation, fairing reorientation, and as CM drogue parachutes. Discussion will include: the process used to select this design; descriptions of all components of the parachute system; the minor modifications necessary to adapt the parachute

  10. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  11. The SOFIA flight crew descends the stairs after ferrying the 747SP airborne observatory from Waco, TX, to NASA's Dryden Flight Research Center in California

    NASA Image and Video Library

    2007-05-31

    The SOFIA flight crew, consisting of Co-pilot Gordon Fullerton; DFRC, Pilot Bill Brocket; DFRC, Test Conductor Marty Trout; DFRC, Test Engineer Don Stonebrook; L-3, and Flight Engineer Larry Larose; JSC, descend the stairs after ferrying the 747SP airborne observatory from Waco, Texas, to its new home at NASA's Dryden Flight Research Center in California. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  12. Flight evaluation of an extended engine life mode on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Conners, Timothy R.

    1992-01-01

    An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.

  13. Integrated flight/propulsion control - Adaptive engine control system mode

    NASA Technical Reports Server (NTRS)

    Yonke, W. A.; Terrell, L. A.; Meyers, L. P.

    1985-01-01

    The adaptive engine control system mode (ADECS) which is developed and tested on an F-15 aircraft with PW1128 engines, using the NASA sponsored highly integrated digital electronic control program, is examined. The operation of the ADECS mode, as well as the basic control logic, the avionic architecture, and the airframe/engine interface are described. By increasing engine pressure ratio (EPR) additional thrust is obtained at intermediate power and above. To modulate the amount of EPR uptrim and to prevent engine stall, information from the flight control system is used. The performance benefits, anticipated from control integration are shown for a range of flight conditions and power settings. It is found that at higher altitudes, the ADECS mode can increase thrust as much as 12 percent, which is used for improved acceleration, improved turn rate, or sustained turn angle.

  14. The value of early flight evaluation of propulsion concepts using the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.

    1987-01-01

    The value of early flight evaluation of propulsion and propulsion control concepts was demonstrated on the NASA F-15 airplane in programs such as highly integrated digital electronic control (HIDEC), the F100 engine model derivative (EMD), and digital electronic engine control (DEEC). (In each case, the value of flight demonstration was conclusively demonstrated). This paper described these programs, and discusses the results that were not expected, based on ground test or analytical prediction. The role of flight demonstration in facilitating transfer of technology from the laboratory to operational airplanes is discussed.

  15. Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.

    2017-01-01

    The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.

  16. Affordable Development and Demonstration of a Small NTR engine and Stage: A Preliminary NASA, DOE, and Industry Assessment

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G; Werner, J.; Weitzberg, A.; Joyner, C. R.

    2015-01-01

    In FY'11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program A strategy was outlined by GRC and NASA HQ that included 2 key elements -"Foundational Technology Development" followed by specific "Technology Demonstration" projects. The "Technology Demonstration "element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by approx. 2025. In order to reduce development costs, the demonstration projects would focus on developing a small, low thrust (approx. 7.5 -16.5 klb(f)) engine that utilizes a "common" fuel element design scalable to the higher thrust (approx. 25 klb(f)) engines used in NASA's Mars DRA 5.0 study(NASA-SP-2009-566). Besides reducing development costs and allowing utilization of existing, flight proven engine hard-ware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability -increased payloads and decreased transit times -valued for robotic science missions identified in NASA's Decadal Study.

  17. NASA Engineering Design Challenges: Thermal Protection Systems. EP-2008-09-122-MSFC

    ERIC Educational Resources Information Center

    Haddad, Nick; McWilliams, Harold; Wagoner, Paul

    2007-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, and their partners at other NASA centers and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles--the Ares I and Ares V launch…

  18. NASA-LaRc Flight-Critical Digital Systems Technology Workshop

    NASA Technical Reports Server (NTRS)

    Meissner, C. W., Jr. (Editor); Dunham, J. R. (Editor); Crim, G. (Editor)

    1989-01-01

    The outcome is documented of a Flight-Critical Digital Systems Technology Workshop held at NASA-Langley December 13 to 15 1988. The purpose of the workshop was to elicit the aerospace industry's view of the issues which must be addressed for the practical realization of flight-critical digital systems. The workshop was divided into three parts: an overview session; three half-day meetings of seven working groups addressing aeronautical and space requirements, system design for validation, failure modes, system modeling, reliable software, and flight test; and a half-day summary of the research issues presented by the working group chairmen. Issues that generated the most consensus across the workshop were: (1) the lack of effective design and validation methods with support tools to enable engineering of highly-integrated, flight-critical digital systems, and (2) the lack of high quality laboratory and field data on system failures especially due to electromagnetic environment (EME).

  19. NASA's hypersonic flight research program

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah; Pyle, Jon

    1993-01-01

    The NASA hypersonic flight research program is reviewed focusing on program history, philosophy, and rationale. Flight research in the high Mach numbers, high dynamic pressure flight regime is considered to be essential to the development of future operational hypersonic systems. The piggy-back experiments which are to be carried out on the Pegasus will develop instrumentation packages for hypersonic data acquisition and will provide unique data of high value to designers and researchers.

  20. Development of a test and flight engineering oriented language, phase 3

    NASA Technical Reports Server (NTRS)

    Kamsler, W. F.; Case, C. W.; Kinney, E. L.; Gyure, J.

    1970-01-01

    Based on an analysis of previously developed test oriented languages and a study of test language requirements, a high order language was designed to enable test and flight engineers to checkout and operate the proposed space shuttle and other NASA vehicles and experiments. The language is called ALOFT (a language oriented to flight engineering and testing). The language is described, its terminology is compared to similar terms in other test languages, and its features and utilization are discussed. The appendix provides the specifications for ALOFT.

  1. Assessment of the NASA Flight Assurance Review Program

    NASA Technical Reports Server (NTRS)

    Holmes, J.; Pruitt, G.

    1983-01-01

    The NASA flight assurance review program to develop minimum standard guidelines for flight assurance reviews was assessed. Documents from NASA centers and NASA headquarters to determine current design review practices and procedures were evaluated. Six reviews were identified for the recommended minimum. The practices and procedures used at the different centers to incorporate the most effective ones into the minimum standard review guidelines were analyzed and guidelines for procedures, personnel and responsibilies, review items/data checklist, and feedback and closeout were defined. The six recommended reviews and the minimum standards guidelines developed for flight assurance reviews are presented. Observations and conclusions for further improving the NASA review and quality assurance process are outlined.

  2. Overview of the NASA Dryden Flight Research Facility aeronautical flight projects

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    1992-01-01

    Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

  3. Lessons Learned from Inlet Integration Analysis of NASA's Low Boom Flight Demonstrator

    NASA Technical Reports Server (NTRS)

    Friedlander, David; Heath, Christopher; Castner, Ray

    2017-01-01

    In 2016, NASA's Aeronautics Research Mission Directorate announced the New Aviation Horizons Initiative with a goal of designing/building several X-Planes, including a Low Boom Flight Demonstrator (LBFD). That same year, NASA awarded a contract to Lockheed Martin (LM) to advance the LBFD concept through preliminary design. Several configurations of the LBFD aircraft were analyzed by both LM engineers and NASA researchers. This presentation focuses on some of the CFD simulations that were run by NASA Glenn researchers. NASA's FUN3D V13.1 code was used for all adjoint-based grid refinement studies and Spalart-Allmaras turbulence model was used during adaptation. It was found that adjoint-based grid adaptation did not accurately capture inlet performance for high speed top-aft-mounted propulsion.

  4. NASA Beechcraft KingAir #801 in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA 801 Beechcraft Beech Super KingAir in flight. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  5. A NASA painter applies the first primer coat to NASA's Orion full-scale abort flight test crew module in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  6. NASA Examines Technology To Fold Aircraft Wings In Flight

    NASA Image and Video Library

    2018-01-17

    NASA conducts a flight test series to investigate the ability of an innovative technology to fold the outer portions of wings in flight as part of the Spanwise Adaptive Wing project, or SAW. Flight tests took place at NASA Armstrong Flight Research Center in California, using a subscale UAV called Prototype Technology-Evaluation Research Aircraft, or PTERA, provided by Area-I. NASA Glenn Research Center in Cleveland developed the alloy material, and worked with Boeing Research & Technology to integrate the material into an actuator. The alloy is triggered by temperature to move the outer portions of wings up or down in flight. The ability to fold wings to the ideal position of various flight conditions may produce several aerodynamic benefits for both subsonic and supersonic aircraft.

  7. Flights of Discovery: 50 Years at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Wallace, Lance E.

    1996-01-01

    As part of the NASA History Series, this report (NASA SP-4309) describes fifty years of aeronautical research at the NASA Dryden Flight Research Center. Starting with early efforts to exceed the speed of sound with the X-1 aircraft, and continuing through to the X-31 research aircraft, the report covers the flight activities of all of the major research aircraft and lifting bodies studied by NASA. Chapter One, 'A Place for Discovery', describes the facility itself and the surrounding Mojave Desert. Chapter Two, 'The Right Stuff', is about the people involved in the flight research programs. Chapter Three, 'Higher, Faster' summarizes the early years of transonic flight testing and the development of several lifting bodies. Chapter Four, 'Improving Efficiency, Maneuverability & Systems', outlines the development of aeronautical developments such as the supercritical wing, the mission adaptive wing, and various techniques for improving maneuverability fo winged aircraft. Chapter 5, 'Supporting National Efforts', shows how the research activities carried out at Dryden fit into NASA's programs across the country in supporting the space program, in safety and in problem solving related to aircraft design and aviation safety in general. Chapter Six, ' Future Directions' looks to future research building on the fifty year history of aeronautical research at the Dryden Flight Research Center. A glossary of acronyms and an appendix covering concepts and innovations are included. The report also contains many photographs providing a graphical perspective to the historical record.

  8. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  9. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  10. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  11. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  12. 14 CFR 63.42 - Flight engineer certificate issued on basis of a foreign flight engineer license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer certificate issued on basis of a foreign flight engineer license. 63.42 Section 63.42 Aeronautics and Space FEDERAL AVIATION... PILOTS Flight Engineers § 63.42 Flight engineer certificate issued on basis of a foreign flight engineer...

  13. NASA systems engineering handbook. Draft

    NASA Technical Reports Server (NTRS)

    Shishko, Robert; Chamberlain, Robert G.; Aster, Robert; Bilardo, Vincent; Forsberg, Kevin; Hammond, Walter E.; Mooz, Harold; Polaski, Lou; Wade, Ron; Cassingham, Randy (Editor)

    1992-01-01

    This handbook is intended to provide information on systems engineering that will be useful to NASA system engineers, especially new ones. Its primary objective is to provide a generic description of systems engineering as it should be applied throughout NASA. Field Center Handbooks are encouraged to provide center-specific details of implementation. For NASA system engineers to choose to keep a copy of this handbook at their elbows, it must provide answers that cannot be easily found elsewhere. Consequently, it provides NASA-relevant perspectives and NASA-particular data. NASA management instructions (NMI's) are referenced when applicable. This handbook's secondary objective is to serve as a useful companion to all of the various courses in systems engineering that are being offered under NASA's auspices. The coverage of systems engineering is general to techniques, concepts, and generic descriptions of processes, tools, and techniques. It provides good systems engineering practices, and pitfalls to avoid. This handbook describes systems engineering as it should be applied to the development of major NASA product and producing systems.

  14. NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  15. From Runway to Orbit: Reflections of a NASA Engineer

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Peebles, Curtis L.

    2004-01-01

    In his remarkable memoir Runway to Orbit, Dr. Kenneth W. Iliff - the recently retired Chief Scientist of the NASA Dryden Flight Research Center- tells a highly personal, yet a highly persuasive account of the last forty years of American aeronautical research. His interpretation of events commands respect, because over these years he has played pivotal roles in many of the most important American aeronautics and spaceflight endeavors. Moreover, his narrative covers much of the second half of the first 100 years of flight, a centennial anniversary being celebrated this year. aerospace knowledge. He arrived at the then NASA Flight Research Center in 1962 as a young aeronautical engineer and quickly became involved in two of the seminal projects of modern flight, the X-15 and the lifting bodies. In the process, he pioneered (with Lawrence Taylor) the application of digital computing to the reduction of flight data, arriving at a method known as parameter estimation, now applied the world over. Parameter estimation not only enabled researchers to acquire stability and control derivatives from limited flight data, but in time allowed them to obtain a wide range of aerodynamic effects. Although subsequently involved in dozens of important projects, Dr. Iliff devoted much of his time and energy to hypersonic flight, embodied in the Shuttle orbiter (or as he refers to it, the world s fastest airplane). To him, each Shuttle flight, instrumented to obtain a variety of data, represents a research treasure trove, one that he has mined for years. This book, then, represents the story of Dr. Ken Iliff s passion for flight, his work, and his long and astoundingly productive career. It can be read with profit not just by scientists and engineers, but equally by policy makers, historians, and journalists wishing to better comprehend advancements in flight during the second half of the twentieth century. Dr. Iliff's story is one of immense contributions to the nation s repository of

  16. Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John

    1998-01-01

    With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

  17. X-43A departs NASA Dryden Flight Research Center for first free-flight attempt

    NASA Image and Video Library

    2001-06-02

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz.

  18. Engineers and technicians in the control room at the Dryden Flight Research Center must constantly monitor critical operations and checks during research projects like NASA's hypersonic X-43A

    NASA Image and Video Library

    2004-01-24

    Engineers and technicians in the control room at the Dryden Flight Research Center must constantly monitor critical operations and checks during research projects like NASA's hypersonic X-43A. Visible in the photo, taken two days before the X-43's captive carry flight in January 2004, are [foreground to background]; Tony Kawano (Range Safety Officer), Brad Neal (Mission Controller), and Griffin Corpening (Test Conductor).

  19. Options for flight testing rocket-based combined-cycle (RBCC) engines

    NASA Technical Reports Server (NTRS)

    Olds, John

    1996-01-01

    While NASA's current next-generation launch vehicle research has largely focused on advanced all-rocket single-stage-to-orbit vehicles (i.e. the X-33 and it's RLV operational follow-on), some attention is being given to advanced propulsion concepts suitable for 'next-generation-and-a-half' vehicles. Rocket-based combined-cycle (RBCC) engines combining rocket and airbreathing elements are one candidate concept. Preliminary RBCC engine development was undertaken by the United States in the 1960's. However, additional ground and flight research is required to bring the engine to technological maturity. This paper presents two options for flight testing early versions of the RBCC ejector scramjet engine. The first option mounts a single RBCC engine module to the X-34 air-launched technology testbed for test flights up to about Mach 6.4. The second option links RBCC engine testing to the simultaneous development of a small-payload (220 lb.) two-stage-to-orbit operational vehicle in the Bantam payload class. This launcher/testbed concept has been dubbed the W vehicle. The W vehicle can also serve as an early ejector ramjet RBCC launcher (albeit at a lower payload). To complement current RBCC ground testing efforts, both flight test engines will use earth-storable propellants for their RBCC rocket primaries and hydrocarbon fuel for their airbreathing modes. Performance and vehicle sizing results are presented for both options.

  20. Flight deck engine advisor

    NASA Technical Reports Server (NTRS)

    Shontz, W. D.; Records, R. M.; Antonelli, D. R.

    1992-01-01

    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.

  1. Video File - NASA Conducts 2nd RS-25 Engine Hot Fire of 2018 - 2018-02-01

    NASA Image and Video Library

    2018-02-01

    NASA Conducts 2nd RS-25 Engine Hot Fire of 2018. A 365-second hot fire test on Feb. 1, 2018, at NASA’s Stennis Space Center in Mississippi marks the completion of “green run” testing, or flight certification, for all new RS-25 engine flight controllers slated for Exploration Mission-2, the first Space Launch System mission with astronauts on board. In addition to the flight controller, the Feb. 1 hot fire also marked the third test of a 3D printed pogo accumulator assembly for the RS-25 engine.

  2. Wireless Instrumentation Systems for Flight Testing at NASA AFRC

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2017-01-01

    NASA Armstrong Flight Research Center is revolutionizing its traditional wired instrumentation systems with wireless technologies. This effort faces many technical challenges, such as spectrum compliance, time synchronization, power distribution and airworthiness. This presentation summarizes NASA AFRC's flight test capabilities with current conventional instrumentation methodology and highlights the technical challenges of wireless systems used for flight test research applications.

  3. Adaptive Flight Control Research at NASA

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  4. Implementation of NASA Materials and Processes Requirements at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    2009-01-01

    This slide presentation reviews the history and current practices of the Materials Engineering Branch (MEB) at the Goddard Space Flight Center. Included in the presentation is a review of the general Materials and Processes (M&P) requirements in the NASA-STD-6016. The work that the Materials Engineering Branch does to support GSFC Projects is also reviewed. The Materials Engineering Branch capabilities are listed, the expertise that is available to GSFC projects is also listed. Included in the backup slides are forms that the MEB uses to identify the materials in the spacecraft under development.

  5. The Road to Mach 10: A History of the X-43A Hypersonic Flight Test Program at NASA Dryden -- Origins to First Flight

    NASA Technical Reports Server (NTRS)

    Peebles, Curtis

    2006-01-01

    The NASA Dryden Flight Research Center, in partnership with the NASA Langley Research Center and industrial contractors, conducted the first flight tests of a supersonic combustion ramjet (scramjet) in 2004. This was a revolutionary airbreathing engine able to operate at speeds above Mach 5, which carries potential for both high-speed atmospheric flight and as a space launcher. For the Dryden engineers, the X-43 program was the culmination of a nearly 60-year history of flight research, going back to the early days of supersonic flight, and to rocket planes such as the X-1, D-558-II Skyrocket, and the X-15. For the propulsion community, it marked a turning point in a quest that had taken nearly as long. The scramjet engine did not arise from the work of a single individual or from a single technological breakthrough. It evolved instead from work under way on ramjets in the early 1950s, and from research programs at the National Advisory Committee for Aeronautics (NACA) Lewis Research Center, at the U.S. Army Aberdeen Proving Ground, and by the U.S. Navy. Studies developed in the course of these disparate projects raised the possibility of supersonic combustion. Many researchers had considered the notion impractical due to the difficulty of stabilizing a flame front in a supersonic airflow. NACA researchers at Lewis attempted to test the idea's feasibility by burning aluminum borohydride in a supersonic wind tunnel. Sustained burning was believed to have been observed at Mach 1.5, Mach 2, and Mach 3 for as long as two seconds.

  6. Quiet engine program flight engine design study

    NASA Technical Reports Server (NTRS)

    Klapproth, J. F.; Neitzel, R. E.; Seeley, C. T.

    1974-01-01

    The results are presented of a preliminary flight engine design study based on the Quiet Engine Program high-bypass, low-noise turbofan engines. Engine configurations, weight, noise characteristics, and performance over a range of flight conditions typical of a subsonic transport aircraft were considered. High and low tip speed engines in various acoustically treated nacelle configurations were included.

  7. Technical publications of the NASA Wallops Flight Facility, 1980 through 1983

    NASA Technical Reports Server (NTRS)

    Foster, J. N.

    1984-01-01

    This bibliography lists the publications sponsored by the NASA Wallops Flight Center/NASA Goddard Space Flight Center, Wallops Flight Facility during the period 1980 through 1983. The compilation contains citations listed by type of publication; i.e., NASA formal report, NASA contractor report, journal article, or presentation; by contract/grant number; and by accession number. Oceanography, astrophysics, artificial satellites, fluid mechanics, and sea ice are among the topics covered.

  8. Evolution and Reengineering of NASA's Flight Dynamics Facility (FDF)

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas; Hoge, Susan

    2008-01-01

    The NASA Goddard Space Flight Center's Flight Dynamics Facility (FDF) is a multimission support facility that performs ground navigation and spacecraft trajectory design services for a wide range of scientific satellites. The FDF also supports the NASA Space Network by providing orbit determination and tracking data evaluation services for the Tracking Data Relay Satellite System (TDRSS). The FDF traces its history to early NASA missions in the 1960's, including navigation support to the Apollo lunar missions. Over its 40 year history, the FDF has undergone many changes in its architecture, services offered, missions supported, management approach, and business operation. As a fully reimbursable facility (users now pay 100% of all costs for FDF operations and sustaining engineering activities), the FDF has faced significant challenges in recent years in providing mission critical products and services at minimal cost while defining and implementing upgrades necessary to meet future mission demands. This paper traces the history of the FDF and discusses significant events in the past that impacted the FDF infrastructure and/or business model, and the events today that are shaping the plans for the FDF in the next decade. Today's drivers for change include new mission requirements, the availability of new technology for spacecraft navigation, and continued pressures for cost reduction from FDF users. Recently, the FDF completed an architecture study based on these drivers that defines significant changes planned for the facility. This paper discusses the results of this study and a proposed implementation plan. As a case study in how flight dynamics operations have evolved and will continue to evolve, this paper focuses on two periods of time (1992 and the present) in order to contrast the dramatic changes that have taken place in the FDF. This paper offers observations and plans for the evolution of the FDF over the next ten years. Finally, this paper defines the

  9. NASA 947 and NASA 904 during training flight over White Sands, New Mexico

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA 947 and NASA 904 during a training and familiarization flight over White Sands, New Mexico. The Gulfstream aircraft on the left is NASA's Space Shuttle Training aircraft (STA) and the T-38 jet serves as a chase plane.

  10. NASA Systems Engineering Handbook

    NASA Technical Reports Server (NTRS)

    Hirshorn, Steven R.; Voss, Linda D.; Bromley, Linda K.

    2017-01-01

    The update of this handbook continues the methodology of the previous revision: a top-down compatibility with higher level Agency policy and a bottom-up infusion of guidance from the NASA practitioners in the field. This approach provides the opportunity to obtain best practices from across NASA and bridge the information to the established NASA systems engineering processes and to communicate principles of good practice as well as alternative approaches rather than specify a particular way to accomplish a task. The result embodied in this handbook is a top-level implementation approach on the practice of systems engineering unique to NASA. Material used for updating this handbook has been drawn from many sources, including NPRs, Center systems engineering handbooks and processes, other Agency best practices, and external systems engineering textbooks and guides. This handbook consists of six chapters: (1) an introduction, (2) a systems engineering fundamentals discussion, (3) the NASA program project life cycles, (4) systems engineering processes to get from a concept to a design, (5) systems engineering processes to get from a design to a final product, and (6) crosscutting management processes in systems engineering. The chapters are supplemented by appendices that provide outlines, examples, and further information to illustrate topics in the chapters. The handbook makes extensive use of boxes and figures to define, refine, illustrate, and extend concepts in the chapters.

  11. Senator Barbara Mikulski visits NASA Goddard Space Flight Center.

    NASA Image and Video Library

    2016-01-06

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: http://www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mikulski-visits-nasa-goddard Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram   N

  12. Systems Engineering Processes at NASA/SR-71 Pratt and Whitney J58 Engine

    NASA Technical Reports Server (NTRS)

    Donastorg, Cristina

    2010-01-01

    This summer I was given several opportunities at NASA's Dryden Flight Research Center (DFRC). The first opportunity was given to me by a Senior Propulsion Engineer, Kurtt Kloesel, to work in a specialized engineering discipline. My task was to research the Pratt & Whitney J58 engine that was used on the SR-71 Blackbird. I entered the data I collected into engine modeling software programs in order to receive certain outputs, such as net thrust. I also had to take a "crash course" in propulsion in order to better understand the research I was performing. To facilitate my understanding of propulsion principals and formulas, I worked many problems out of thermodynamics and propulsion textbooks and entered the given values of various situations into the modeling software.

  13. Hyper-X Engine Testing in the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Rock, Kenneth E.; Witte, David W.; Ruf, Edward G.; Andrews, Earl H., Jr.

    2000-01-01

    Airframe-integrated scramjet engine tests have 8 completed at Mach 7 in the NASA Langley 8-Foot High Temperature Tunnel under the Hyper-X program. These tests provided critical engine data as well as design and database verification for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe- integrated scramjet flight data. The first model tested was the Hyper-X Engine Model (HXEM), and the second was the Hyper-X Flight Engine (HXFE). The HXEM, a partial-width, full-height engine that is mounted on an airframe structure to simulate the forebody features of the X-43, was tested to provide data linking flowpath development databases to the complete airframe-integrated three-dimensional flight configuration and to isolate effects of ground testing conditions and techniques. The HXFE, an exact geometric representation of the X-43 scramjet engine mounted on an airframe structure that duplicates the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle base, was tested to verify the complete design as it will be flight tested. This paper presents an overview of these two tests, their importance to the Hyper-X program, and the significance of their contribution to scramjet database development.

  14. NASA Science Flights Target Melting Arctic Sea Ice

    NASA Image and Video Library

    2017-12-08

    This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge

  15. NASA personnel in a control room during the successful second flight of the X-43A aircraft

    NASA Image and Video Library

    2004-03-27

    NASA personnel in a control room during the successful second flight of the X-43A aircraft. front row, left to right: Randy Voland, LaRC Propulsion; Craig Christy, Boeing Systems; Dave Reubush, NASA Hyper-X Deputy Program Manager; and Vince Rausch, NASA Hyper-X Program Manager. back row, left to right: Bill Talley, DCI/consultant; Pat Stoliker, DFRC Director (Acting) of Research Engineering; John Martin, LaRC G&C; and Dave Bose, AMA/Controls.

  16. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  17. NASA Conducts First RS-25 Rocket Engine Test of 2015

    NASA Image and Video Library

    2015-01-09

    From the Press Release: The new year is off to a hot start for NASA's Space Launch System (SLS). The engine that will drive America's next great rocket to deep space blazed through its first successful test Jan. 9 at the agency's Stennis Space Center near Bay St. Louis, Mississippi. The RS-25, formerly the space shuttle main engine, fired up for 500 seconds on the A-1 test stand at Stennis, providing NASA engineers critical data on the engine controller unit and inlet pressure conditions. This is the first hot fire of an RS-25 engine since the end of space shuttle main engine testing in 2009. Four RS-25 engines will power SLS on future missions, including to an asteroid and Mars. "We’ve made modifications to the RS-25 to meet SLS specifications and will analyze and test a variety of conditions during the hot fire series,” said Steve Wofford, manager of the SLS Liquid Engines Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, where the SLS Program is managed. "The engines for SLS will encounter colder liquid oxygen temperatures than shuttle; greater inlet pressure due to the taller core stage liquid oxygen tank and higher vehicle acceleration; and more nozzle heating due to the four-engine configuration and their position in-plane with the SLS booster exhaust nozzles.” The engine controller unit, the "brain" of the engine, allows communication between the vehicle and the engine, relaying commands to the engine and transmitting data back to the vehicle. The controller also provides closed-loop management of the engine by regulating the thrust and fuel mixture ratio while monitoring the engine's health and status. The new controller will use updated hardware and software configured to operate with the new SLS avionics architecture. "This first hot-fire test of the RS-25 engine represents a significant effort on behalf of Stennis Space Center’s A-1 test team," said Ronald Rigney, RS-25 project manager at Stennis. "Our technicians and

  18. Performance improvements of an F-15 airplane with an integrated engine-flight control system

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Walsh, Kevin R.

    1988-01-01

    An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 deg, respectively.

  19. Performance improvements of an F-15 airplane with an integrated engine-flight control system

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Walsh, Kevin R.

    1988-01-01

    An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 degrees, respectively.

  20. NASA Fastrac Engine Gas Generator Component Test Program and Results

    NASA Technical Reports Server (NTRS)

    Dennis, Henry J., Jr.; Sanders, T.

    2000-01-01

    Low cost access to space has been a long-time goal of the National Aeronautics and Space Administration (NASA). The Fastrac engine program was begun at NASA's Marshall Space Flight Center to develop a 60,000-pound (60K) thrust, liquid oxygen/hydrocarbon (LOX/RP), gas generator-cycle booster engine for a fraction of the cost of similar engines in existence. To achieve this goal, off-the-shelf components and readily available materials and processes would have to be used. This paper will present the Fastrac gas generator (GG) design and the component level hot-fire test program and results. The Fastrac GG is a simple, 4-piece design that uses well-defined materials and processes for fabrication. Thirty-seven component level hot-fire tests were conducted at MSFC's component test stand #116 (TS116) during 1997 and 1998. The GG was operated at all expected operating ranges of the Fastrac engine. Some minor design changes were required to successfully complete the test program as development issues arose during the testing. The test program data results and conclusions determined that the Fastrac GG design was well on the way to meeting the requirements of NASA's X-34 Pathfinder Program that chose the Fastrac engine as its main propulsion system.

  1. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  2. NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Carter, David; Wetzel, Scott

    2000-01-01

    The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.

  3. NASA Aerospace Flight Battery Systems Program: An update

    NASA Astrophysics Data System (ADS)

    Manzo, Michelle A.

    1992-02-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  4. NASA Aerospace Flight Battery Systems Program: An Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1992-01-01

    The major objective of the NASA Aerospace Flight Battery Systems Program is to provide NASA with the policy and posture to increase and ensure the safety, performance, and reliability of batteries for space power systems. The program was initiated in 1985 to address battery problems experienced by NASA and other space battery users over the previous ten years. The original program plan was approved in May 1986 and modified in 1990 to reflect changes in the agency's approach to battery related problems that are affecting flight programs. The NASA Battery Workshop is supported by the NASA Aerospace Flight Battery Systems Program. The main objective of the discussions is to aid in defining the direction which the agency should head with respect to aerospace battery issues. Presently, primary attention in the Battery Program is being devoted to issues revolving around the future availability of nickel-cadmium batteries as a result of the proposed OSHA standards with respect to allowable cadmium levels in the workplace. The decision of whether or not to pursue the development of an advanced nickel-cadmium cell design and the qualification of vendors to produce cells for flight programs hinges on the impact of the OSHA ruling. As part of a unified Battery Program, the evaluation of a nickel-hydrogen cell design options and primary cell issues are also being pursued to provide high performance NASA Standards and space qualified state-of-the-art cells. The resolution of issues is being addressed with the full participation of the aerospace battery community.

  5. Energy Efficient Engine Flight Propulsion System Preliminary Analysis and Design Report

    NASA Technical Reports Server (NTRS)

    Bisset, J. W.; Howe, D. C.

    1983-01-01

    The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.

  6. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  7. Women in Flight Research at NASA Dryden Flight Research Center from 1946 to 1995. Number 6; Monographs in Aerospace History

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke

    1997-01-01

    This monograph discusses the working and living environment of women involved with flight research at NASA Dryden Flight Research Center during the late 1940s and early 1950s. The women engineers, their work and the airplanes they worked on from 1960 to December 1995 are highlighted. The labor intensive data gathering and analysis procedures and instrumentation used before the age of digital computers are explained by showing and describing typical instrumentation found on the X-series aircraft from the X-1 through the X-15. The data reduction technique used to obtain the Mach number position error curve for the X-1 aircraft and which documents the historic first flight to exceed the speed of sound is described and a Mach number and altitude plot from an X-15 flight is shown.

  8. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  9. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  10. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  11. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  12. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  13. Study Confirms Biofuels Reduce Jet Engine Pollution on This Week @NASA – March 17, 2017

    NASA Image and Video Library

    2017-03-17

    Findings published March 15 in the journal Nature from a series of flight tests in 2013 and 2014 near NASA’s Armstrong Flight Research Center in California indicate that using biofuels helps jet engines reduce particle emissions in exhaust by as much as 50 to 70 percent. That’s both an economic and an environmental benefit. The findings were based on data from the Alternative Fuel Effects on Contrails and Cruise Emissions Study, or ACCESS. The international research program led by NASA and involving agencies from Germany and Canada, studied the effects of alternative fuels on aircraft-generated contrails, engine performance and emissions. Also, NASA @SXSW Interactive Festival, Satellites See Winter Storm from Space, CST-100 Starliner Parachute Testing, and NASA’s Pi Day Challenge!

  14. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Technical Reports Server (NTRS)

    Golub, R. A.; Preisser, J. S.

    1984-01-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  15. Obtaining NASA Approval for use of Non-Metallic Materials in Manned Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Samuel E.; Wise, Harry L.

    2003-01-01

    Material manufacturers and suppliers are often surprised when a material commonly provided to industry is not approved for use on manned spacecraft. Often the reason is a lack of test data in environments that simulate those encountered in space applications, especially oxygen-enriched conditions, which significantly increase both the likelihood of material combustion and the propagation of a fire. This paper introduces the requirements for flight approval of non-metallic materials, focusing on material testing for human-rated space flight programs; it reviews the history of flight materials requirements and provides the rationale for such and introduces specific requirements related to testing and to good material engineering and design practices. After describing the procedure for submitting materials to be tested, the paper outlines options available if a material fails testing. In addition, this treatise introduces the National Aeronautics and Space Administration's (NASA's) Materials and Processes Technical Information System (MAPTIS), a database housing all test data produced in accordance with NASA-STD-6001, Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion.

  16. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    NASA Technical Reports Server (NTRS)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  17. NASA Lewis F100 engine testing

    NASA Technical Reports Server (NTRS)

    Werner, R. A.; Willoh, R. G., Jr.; Abdelwahab, M.

    1984-01-01

    Two builds of an F100 engine model derivative (EMD) engine were evaluated for improvements in engine components and digital electronic engine control (DEEC) logic. Two DEEC flight logics were verified throughout the flight envelope in support of flight clearance for the F100 engine model derivative program (EMPD). A nozzle instability and a faster augmentor transient capability was investigated in support of the F-15 DEEC flight program. Off schedule coupled system mode fan flutter, DEEC nose-boom pressure correlation, DEEC station six pressure comparison, and a new fan inlet variable vane (CIVV) schedule are identified.

  18. 14 CFR 63.43 - Flight engineer courses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  19. 14 CFR 63.43 - Flight engineer courses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  20. 14 CFR 63.43 - Flight engineer courses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  1. 14 CFR 63.43 - Flight engineer courses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  2. 14 CFR 63.43 - Flight engineer courses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer courses. 63.43 Section 63...) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.43 Flight engineer courses. An applicant for approval of a flight engineer course must submit a letter to the Administrator...

  3. NASA researchers in gold control room during an F-15 HiDEC flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers monitor equipment in the mission control Gold room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  4. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  5. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...

  6. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...

  7. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...

  8. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...

  9. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...

  10. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  11. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of a new, unmatched capability for deep space exploration, with launch readiness planned for 2018. The initial Block 1 configuration of the Space Launch System will more than double the mass and volume to Low Earth Orbit (LEO) of any launch vehicle currently in operation - with a path to evolve to the greatest capability ever developed. The program formally began in 2011. The vehicle successfully passed Preliminary Design Review (PDR) in 2013, Key Decision Point C (KDPC) in 2014 and Critical Design Review (CDR) in October 2015 - nearly 40 years since the last CDR of a NASA human-rated rocket. Every major SLS element has completed components of test and flight hardware. Flight software has completed several development cycles. RS-25 hotfire testing at NASA Stennis Space Center (SSC) has successfully demonstrated the space shuttle-heritage engine can perform to SLS requirements and environments. The five-segment solid rocket booster design has successfully completed two full-size motor firing tests in Utah. Stage and component test facilities at Stennis and NASA Marshall Space Flight Center are nearing completion. Launch and test facilities, as well as transportation and other ground support equipment are largely complete at NASA's Kennedy, Stennis and Marshall field centers. Work is also underway on the more powerful Block 1 B variant with successful completion of the Exploration Upper Stage (EUS) PDR in January 2017. NASA's approach is to develop this heavy lift launch vehicle with limited resources by building on existing subsystem designs and existing hardware where available. The systems engineering and integration (SE&I) of existing and new designs introduces unique challenges and opportunities. The SLS approach was designed with three objectives in mind: 1) Design the vehicle around the capability of existing systems; 2) Reduce work hours for nonhardware/ software activities; 3) Increase the probability of mission

  12. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  13. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  14. Sporting a fresh paint job, NASA's first Orion full-scale abort flight test crew module awaits avionics and other equipment installation.

    NASA Image and Video Library

    2008-04-01

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  15. Crafting Flight: Aircraft Pioneers and the Contributions of the Men and Women of NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Schultz, James

    2003-01-01

    While this is a self-contained history of NASA Langley Research Center's contributions to flight, many other organizations around the country played a vital role in the work described in this book.When you pass through the front gates of NASA Langley Research Center you are entering an extraordinary place. You could easily miss that fact, however. A few years cross-state bicycle tour passed through the Center. As interesting as looping around Center was, the riders observed that nothing about the vaguely industrial site fit the conventional stereotypes of what high tech looks like. NASA Langley does not fit many stereotypes. It takes a close examination to discover the many ways it has contributed to development of flight. As part of the national celebrations commemorating the 100th anniversary of the Wright brothers first flight, James Schultz, an experienced journalist with a gift for translating the language of engineers and scientists into prose that nonspecialists can comprehend, has revised and expanded Winds of Change , his wonderful guide to the Center. This revised book, Crafting Flight , invites you inside. You will read about one of the Nation s oldest research and development facilities, a place of imagination and ingenuity.

  16. F-111E IPCS in flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This NASA Dryden Flight Research Center photograph taken in 1975 shows the General Dynamic IPCS/F-111E Aardvark with a camouflage paint pattern. This prototype F-111E was used during the flight testing of the Integrated Propulsion Control System (IPCS). The wings of the IPCS/F-111E are swept back to near 60 degrees for supersonic flight. During the same period as F-111 TACT program, an F-111E Aardvark (#67-0115) was flown at the NASA Flight Research Center to investigate an electronic versus a conventional hydro-mechanical controlled engine. The program called integrated propulsion control system (IPCS) was a joint effort by NASA's Lewis Research Center and Flight Research Center, the Air Force's Flight Propulsion Laboratory and the Boeing, Honeywell and Pratt & Whitney companies. The left engine of the F-111E was selected for modification to an all electronic system. A Pratt & Whitney TF30-P-9 engine was modified and extensively laboratory, and ground-tested before installation into the F-111E. There were 14 IPCS flights made from 1975 through 1976. The flight demonstration program proved an engine could be controlled electronically, leading to a more efficient Digital Electronic Engine Control System flown in the F-15.

  17. Flight effects on noise generated by the JT8D-17 engine in a quiet nacelle and a conventional nacelle as measured in the NASA-Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1976-01-01

    A JT8D-17 turbofan engine was tested in the NASA-Ames 40- by 80-foot wind tunnel to determine flight effects on jet and fan noise. Baseline, quiet nacelle with 20-lobe ejector/suppressor, and internal mixer configurations were tested over a range of engine power settings and tunnel velocities. Flight effects derived from the 40- by 80-foot wind tunnel test are compared with 727/JT8D flight test data and with model data obtained in a smaller wind tunnel. Procedures are defined for measuring noise data in a wind tunnel relatively near the sources and analyzing the results to obtain far-field flight effects. Wind tunnel and 727 flight test noise results compare favorably for both the baseline and quiet nacelle configurations. Two reports are provided, including a comprehensive version with extensive test results and analysis and the subject summary version that emphasizes data analysis and program finding.

  18. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2011-01-01

    NASA now requires all flight hardware projects to develop and implement a Foreign Object Damage (FOD) Prevention Program. With the increasing use of composite and bonded structures, NASA now also requires an Impact Damage Protection Plan for these items. In 2009, Marshall Space Flight Center released an interim directive that required all Center organizations to comply with FOD protocols established by on-site Projects, to include prevention of impact damage. The MSFC Technical Standards Control Board authorized the development of a new MSFC technical standard for FOD Prevention.

  19. A status report on NASA general aviation stall/spin flight testing

    NASA Technical Reports Server (NTRS)

    Patton, J. M., Jr.

    1980-01-01

    The NASA Langley Research Center has undertaken a comprehensive program involving spin tunnel, static and rotary balance wind tunnel, full-scale wind tunnel, free flight radio control model, flight simulation, and full-scale testing. Work underway includes aerodynamic definition of various configurations at high angles of attack, testing of stall and spin prevention concepts, definition of spin and spin recovery characteristics, and development of test techniques and emergency spin recovery systems. This paper presents some interesting results to date for the first aircraft (low-wing, single-engine) in the program, in the areas of tail design, wing leading edge design, mass distribution, center of gravity location, and small airframe changes, with associated pilot observations. The design philosophy of the spin recovery parachute system is discussed in addition to test techniques.

  20. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  1. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-22

    The National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  2. NASA's Airborne Science DC-8 displays new colors in a check flight over the Dryden Flight Research Center

    NASA Image and Video Library

    2004-02-24

    NASA's large Airborne Science research aircraft, a modified DC-8 airliner, displayed new colors in a check flight Feb. 24, 2004, over its home base, the NASA Dryden Flight Research Center at Edwards AFB, California.

  3. NASA Marshall Engineering Thermosphere Model. 2.0

    NASA Technical Reports Server (NTRS)

    Owens, J. K.

    2002-01-01

    This Technical Memorandum describes the NASA Marshall Engineering Thermosphere Model-Version 2.0 (MET-V 2.0) and contains an explanation on the use of the computer program along with an example of the MET-V 2.0 model products. The MET-V 2.0 provides an update to the 1988 version of the model. It provides information on the total mass density, temperature, and individual species number densities for any altitude between 90 and 2,500 km as a function of latitude, longitude, time, and solar and geomagnetic activity. A description is given for use of estimated future 13-mo smoothed solar flux and geomagnetic index values as input to the model. Address technical questions on the MET-V 2.0 and associated computer program to Jerry K. Owens, Spaceflight Experiments Group, Marshall Space Flight Center, Huntsville, AL 35812 (256-961-7576; e-mail Jerry.Owens@msfc.nasa.gov).

  4. NASA's J-2X Engine Builds on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Snoddy, Jimmy R.

    2006-01-01

    In January 2006, NASA streamlined its U.S. Vision for Space Exploration hardware development approach for replacing the Space Shuttle after it is retired in 2010. The revised CLV upper stage will use the J-2X engine, a derivative of NASA s Apollo Program Saturn V s S-II and S-IVB main propulsion, which will also serve as the Earth Departure Stage (EDS) engine. This paper gives details of how the J- 2X engine effort mitigates risk by building on the Apollo Program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. It is well documented that propulsion is historically a high-risk area. NASA s risk reduction strategy for the J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development efforts. In addition, NASA and its industry partner, Rocketdyne, which originally built the J-2, have tapped into their extensive databases and are applying lessons conveyed firsthand by Apollo-era veterans of America s first round of Moon missions in the 1960s and 1970s. NASA s development approach for the J-2X engine includes early requirements definition and management; designing-in lessons learned from the 5-2 heritage programs; initiating long-lead procurement items before Preliminary Desi& Review; incorporating design features for anticipated EDS requirements; identifying facilities for sea-level and altitude testing; and starting ground support equipment and logistics planning at an early stage. Other risk reduction strategies include utilizing a proven gas generator cycle with recent development experience; utilizing existing turbomachinery ; applying current and recent main combustion chamber (Integrated Powerhead Demonstrator) and channel wall nozzle (COBRA) advances; and performing rigorous development, qualification, and certification testing of the engine system

  5. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  6. Hyper-X Research Vehicle - Artist Concept in Flight with Scramjet Engine Firing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's depiction of a Hyper-X research vehicle under scramjet power in free-flight following separation from its booster rocket. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need

  7. Flight test of a propulsion controlled aircraft system on the NASA F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.

    1995-01-01

    Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.

  8. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing

  9. Industrial and Systems Engineering Applications in NASA

    NASA Technical Reports Server (NTRS)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  10. Flight Engineer Knowledge Test Guide

    DOT National Transportation Integrated Search

    1995-01-01

    At one time, the flight engineer functioned as an inflight maintenance person. Today, the flight engineer is a technical expert, who must be thoroughly familiar with the operation and function of various airplane : components. The principal function ...

  11. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  12. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  13. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  14. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  15. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  16. Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/Unity

    NASA Image and Video Library

    2005-04-17

    ISS011-E-05161 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, uses the ISS wet/dry vacuum cleaner assembly to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).

  17. NASA Space Engineering Research Center for VLSI System Design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This annual report outlines the activities of the past year at the NASA SERC on VLSI Design. Highlights for this year include the following: a significant breakthrough was achieved in utilizing commercial IC foundries for producing flight electronics; the first two flight qualified chips were designed, fabricated, and tested and are now being delivered into NASA flight systems; and a new technology transfer mechanism has been established to transfer VLSI advances into NASA and commercial systems.

  18. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  19. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  20. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  1. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  2. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  3. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  4. Expanded Guidance for NASA Systems Engineering. Volume 1: Systems Engineering Practices

    NASA Technical Reports Server (NTRS)

    Hirshorn, Steven R.

    2016-01-01

    This document is intended to provide general guidance and information on systems engineering that will be useful to the NASA community. It provides a generic description of Systems Engineering (SE) as it should be applied throughout NASA. A goal of the expanded guidance is to increase awareness and consistency across the Agency and advance the practice of SE. This guidance provides perspectives relevant to NASA and data particular to NASA. This expanded guidance should be used as a companion for implementing NPR 7123.1, Systems Engineering Processes and Requirements, the Rev 2 version of SP-6105, and the Center-specific handbooks and directives developed for implementing systems engineering at NASA. It provides a companion reference book for the various systems engineering-related training being offered under NASA's auspices.

  5. Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.

    1983-01-01

    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.

  6. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Bob Barber, Lunar Atmosphere and Dust Environment Explorer (LADEE) Spacecraft Systems Engineer at NASA Ames Research Center, points to a model of the LADEE spacecraft a NASA Social, Thursday, Sept. 5, 2013 at NASA Wallops Flight Facility in Virginia. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  7. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    NASA Technical Reports Server (NTRS)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  8. Internal Social Media at Marshall Space Flight Center - An Engineer's Snapshot

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2013-01-01

    In the brief span of about six years (2004-2010), social media radically enhanced people's ways of maintaining recreational friendships. Social media's impact on public affairs (PAO) and community engagement is equally striking: NASA has involved millions of non-NASA viewers in its activities via outward-facing social media, often in a very two-way street fashion. Use of social media as an internal working tool by NASA's tens of thousands of civil servants, onsite contractor employees, and external stakeholders is evolving more slowly. This paper examines, from an engineer's perspective, Marshall Space Flight Center s (MSFC) efforts to bring the power of social media to the daily working environment. Primary emphasis is on an internal Social Networking Service called Explornet that could be scaled Agency-wide. Other topics include MSFC use of other social media day-to-day for non-PAO purposes, some specialized uses of social techniques in space flight control operations, and how to help a community open up so it can discover and adopt what works well.

  9. Flight and Static Exhaust Flow Properties of an F110-GE-129 Engine in an F-16XL Airplane During Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Holzman, Jon K.; Webb, Lannie D.; Burcham, Frank W., Jr.

    1996-01-01

    The exhaust flow properties (mass flow, pressure, temperature, velocity, and Mach number) of the F110-GE-129 engine in an F-16XL airplane were determined from a series of flight tests flown at NASA Dryden Flight Research Center, Edwards, California. These tests were performed in conjunction with NASA Langley Research Center, Hampton, Virginia (LARC) as part of a study to investigate the acoustic characteristics of jet engines operating at high nozzle pressure conditions. The range of interest for both objectives was from Mach 0.3 to Mach 0.9. NASA Dryden flew the airplane and acquired and analyzed the engine data to determine the exhaust characteristics. NASA Langley collected the flyover acoustic measurements and correlated these results with their current predictive codes. This paper describes the airplane, tests, and methods used to determine the exhaust flow properties and presents the exhaust flow properties. No acoustics results are presented.

  10. Chemical Engineering at NASA

    NASA Technical Reports Server (NTRS)

    Collins, Jacob

    2008-01-01

    This viewgraph presentation is a review of the career paths for chemicals engineer at NASA (specifically NASA Johnson Space Center.) The author uses his personal experience and history as an example of the possible career options.

  11. NASA paint shop technicians prepare the Orion full-scale flight test crew module for painting in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  12. NASA Dryden Flight Research Center C-17 Research Overview

    NASA Technical Reports Server (NTRS)

    Miller, Chris

    2007-01-01

    A general overview of NASA Dryden Flight Research Center's C-17 Aircraft is presented. The topics include: 1) 2006 Activities PHM Instrumentation Refurbishment; 2) Acoustic and Vibration Sensors; 3) Gas Path Sensors; 4) NASA Instrumentation System Racks; 5) NASA C-17 Simulator; 6) Current Activities; 7) Future Work; 8) Lawn Dart ; 9) Weight Tub; and 10) Parachute Test Vehicle.

  13. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineer. 121.387 Section 121.387..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer. No..., having a maximum certificated takeoff weight of more than 80,000 pounds without a flight crewmember...

  14. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineer. 121.387 Section 121.387..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer. No..., having a maximum certificated takeoff weight of more than 80,000 pounds without a flight crewmember...

  15. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineer. 121.387 Section 121.387..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer. No..., having a maximum certificated takeoff weight of more than 80,000 pounds without a flight crewmember...

  16. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer. 121.387 Section 121.387..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer. No..., having a maximum certificated takeoff weight of more than 80,000 pounds without a flight crewmember...

  17. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineer. 121.387 Section 121.387..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer. No..., having a maximum certificated takeoff weight of more than 80,000 pounds without a flight crewmember...

  18. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight engineer requirements. 91.529...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer... flight engineer certificate: (1) An airplane for which a type certificate was issued before January 2...

  19. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer requirements. 91.529...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer... flight engineer certificate: (1) An airplane for which a type certificate was issued before January 2...

  20. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer requirements. 91.529...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer... flight engineer certificate: (1) An airplane for which a type certificate was issued before January 2...

  1. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its unique design as it flies low over Rogers Dry Lake during a 1996 test flight from NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global

  2. SLS Engine Section Test Article Arrives at Marshall on NASA Barge Pegasus

    NASA Image and Video Library

    2017-05-16

    The NASA barge Pegasus made it’s first trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama on May 15. It arrived carrying the first piece of Space Launch System hardware built at NASA's Michoud Assembly Facility in New Orleans. The barge left Michoud on April 28 with the core stage engine section test article, traveling 1,240 miles by river to Marshall. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article will be moved to Marshall’s Building 4619 where it will be tested. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The test article will endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  3. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    NASA Technical Reports Server (NTRS)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  4. NASA Researchers Examine a Pratt and Whitney RL-10 Rocket Engine

    NASA Image and Video Library

    1962-04-21

    Lead Test Engineer John Kobak (right) and a technician use an oscilloscope to test the installation of a Pratt and Whitney RL-10 engine in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In 1955 the military asked Pratt and Whitney to develop hydrogen engines specifically for aircraft. The program was canceled in 1958, but Pratt and Whitney decided to use the experience to develop a liquid-hydrogen rocket engine, the RL-10. Two of the 15,000-pound-thrust RL-10 engines were used to power the new Centaur second-stage rocket. Centaur was designed to carry the Surveyor spacecraft on its mission to soft-land on the Moon. Pratt and Whitney ran into problems while testing the RL-10 at their facilities. NASA Headquarters assigned Lewis the responsibility for investigating the RL-10 problems because of the center’s long history of liquid-hydrogen development. Lewis’ Chemical Rocket Division began a series of tests to study the RL-10 at its Propulsion Systems Laboratory in March 1960. The facility contained two test chambers that could study powerful engines in simulated altitude conditions. The first series of RL-10 tests in early 1961 involved gimballing the engine as it fired. Lewis researchers were able to yaw and pitch the engine to simulate its behavior during a real flight.

  5. 14 CFR 121.453 - Flight engineer qualifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer qualifications. 121.453... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Crewmember Qualifications § 121.453 Flight engineer qualifications. (a) No certificate holder may use any person nor may any person serve as a flight engineer on an...

  6. 14 CFR 121.453 - Flight engineer qualifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineer qualifications. 121.453... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Crewmember Qualifications § 121.453 Flight engineer qualifications. (a) No certificate holder may use any person nor may any person serve as a flight engineer on an...

  7. 14 CFR 121.453 - Flight engineer qualifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineer qualifications. 121.453... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Crewmember Qualifications § 121.453 Flight engineer qualifications. (a) No certificate holder may use any person nor may any person serve as a flight engineer on an...

  8. 14 CFR 121.453 - Flight engineer qualifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineer qualifications. 121.453... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Crewmember Qualifications § 121.453 Flight engineer qualifications. (a) No certificate holder may use any person nor may any person serve as a flight engineer on an...

  9. 14 CFR 121.453 - Flight engineer qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineer qualifications. 121.453... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Crewmember Qualifications § 121.453 Flight engineer qualifications. (a) No certificate holder may use any person nor may any person serve as a flight engineer on an...

  10. Energy Efficient Engine: Flight propulsion system final design and analysis

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y.; Stearns, E. Marshall

    1985-01-01

    The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport engines. The Flight Propulsion System (FPS) is the engine designed to achieve E3 goals. Achieving these goals required aerodynamic, mechanical and system technologies advanced beyond that of current production engines. These technologies were successfully demonstrated in component rigs, a core engine and a turbofan ground test engine. The design and benefits of the FPS are presented. All goals for efficiency, environmental considerations, and economic payoff were met. The FPS has, at maximum cruise, 10.67 km (35,000 ft), M0.8, standard day, a 16.9 percent lower installed specific fuel consumption than a CF6-50C. It provides an 8.6 percent reduction in direct operating cost for a short haul domestic transport and a 16.2 percent reduction for an international long distance transport.

  11. PA-30 Twin Comanche - NASA 808 in flight

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Dryden Flight Research Center's Piper PA-30 Twin Commanche, which helped validate the RPRV concept, descends to a remotely controlled landing on Rogers Dry Lake, unassisted by the onboard pilot. A Piper PA-30 Twin Commanche, known as NASA 808, was used at the NASA Dryden Flight Research Center as a rugged workhorse in a variety of research projects associated with both general aviation and military projects. In the early 1970s, the PA-30, serial number 301498, was used to test a flight technique used to fly Remotely Piloted Research Vehicles (RPRV's). The technique was first tested with the cockpit windows of the light aircraft blacked out while the pilot flew the aircraft utilizing a television monitor which gave him a 'pilot's eye' view ahead of the aircraft. Later pilots flew the aircraft from a ground cockpit, a procedure used with all RPRV's. TV and two-way telemetry allow the pilot to be in constant control of the aircraft. The apparatus mounted over the cockpit is a special fish eye lens camera, used to obtain images that are transmitted to the ground based cockpit. This project paved the way for sophisticated, highly successful research programs involving high risk spin, stall, and flight control conditions, such as the HiMAT and the subscale F-15 remotely piloted vehicles. Over the years, NASA 808 has also been used for spin and stall research related to general aviation aircraft and also research to alleviate wake vortices behind large jetliners.

  12. PA-30 Twin Comanche - NASA 808 in flight

    NASA Image and Video Library

    1971-10-08

    Dryden Flight Research Center's Piper PA-30 Twin Commanche, which helped validate the RPRV concept, descends to a remotely controlled landing on Rogers Dry Lake, unassisted by the onboard pilot. A Piper PA-30 Twin Commanche, known as NASA 808, was used at the NASA Dryden Flight Research Center as a rugged workhorse in a variety of research projects associated with both general aviation and military projects. In the early 1970s, the PA-30, serial number 301498, was used to test a flight technique used to fly Remotely Piloted Research Vehicles (RPRV's). The technique was first tested with the cockpit windows of the light aircraft blacked out while the pilot flew the aircraft utilizing a television monitor which gave him a "pilot's eye" view ahead of the aircraft. Later pilots flew the aircraft from a ground cockpit, a procedure used with all RPRV's. TV and two-way telemetry allow the pilot to be in constant control of the aircraft. The apparatus mounted over the cockpit is a special fish eye lens camera, used to obtain images that are transmitted to the ground based cockpit. This project paved the way for sophisticated, highly successful research programs involving high risk spin, stall, and flight control conditions, such as the HiMAT and the subscale F-15 remotely piloted vehicles. Over the years, NASA 808 has also been used for spin and stall research related to general aviation aircraft and also research to alleviate wake vortices behind large jetliners.

  13. Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/ Unity

    NASA Image and Video Library

    2005-04-17

    ISS011-E-05163 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, poses for a photo with the ISS wet/dry vacuum cleaner assembly he used to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).

  14. NASA System Engineering Design Process

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  15. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  16. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher engines of the prototype Theseus research aircraft can be clearly seen in this photo of the aircraft during a 1996 research flight from the Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  17. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus research aircraft in flight over Rogers Dry Lake, Edwards, California, during a 1996 research flight. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  18. Photonic Component Qualification and Implementation Activities at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Jin, Xiaodan Linda; Chuska, Richard F.; LaRocca, Frank V.; MacMurphy, Shawn L.; Matuszeski, Adam J.; Zellar, Ronald S.; Friedberg, Patricia R.; Malenab, Mary C.

    2006-01-01

    The photonics group in Code 562 at NASA Goddard Space Flight Center supports a variety of space flight programs at NASA including the: International Space Station (ISS), Shuttle Return to Flight Mission, Lunar Reconnaissance Orbiter (LRO), Express Logistics Carrier, and the NASA Electronic Parts and Packaging Program (NEPP). Through research, development, and testing of the photonic systems to support these missions much information has been gathered on practical implementations for space environments. Presented here are the highlights and lessons learned as a result of striving to satisfy the project requirements for high performance and reliable commercial optical fiber components for space flight systems. The approach of how to qualify optical fiber components for harsh environmental conditions, the physics of failure and development lessons learned will be discussed.

  19. Orion Flight Test 1 Architecture: Observed Benefits of a Model Based Engineering Approach

    NASA Technical Reports Server (NTRS)

    Simpson, Kimberly A.; Sindiy, Oleg V.; McVittie, Thomas I.

    2012-01-01

    This paper details how a NASA-led team is using a model-based systems engineering approach to capture, analyze and communicate the end-to-end information system architecture supporting the first unmanned orbital flight of the Orion Multi-Purpose Crew Exploration Vehicle. Along with a brief overview of the approach and its products, the paper focuses on the observed program-level benefits, challenges, and lessons learned; all of which may be applied to improve system engineering tasks for characteristically similarly challenges

  20. Engine Damage to a NASA DC-8-72 Airplane From a High-Altitude Encounter With a Diffuse Volcanic Ash Cloud

    NASA Technical Reports Server (NTRS)

    Grindle, Thomas J.; Burcham, Frank W., Jr.

    2003-01-01

    The National Aeronautics and Space Administration (NASA) DC-8 airborne sciences research airplane inadvertently flew through a diffuse volcanic ash cloud of the Mt. Hekla volcano in February 2000 during a flight from Edwards Air Force Base (Edwards, California) to Kiruna, Sweden. Although the ash plume was not visible to the flight crew, sensitive research experiments and instruments detected it. In-flight performance checks and postflight visual inspections revealed no damage to the airplane or engine first-stage fan blades; subsequent detailed examination of the engines revealed clogged turbine cooling air passages. The engines were removed and overhauled. This paper presents volcanic ash plume analysis, trajectory from satellites, analysis of ash particles collected in cabin air heat exchanger filters and removed from the engines, and data from onboard instruments and engine conditions.

  1. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba speaks at a behind-the-scenes NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  2. NASA Social

    NASA Image and Video Library

    2012-12-04

    A NASA Social participant tweets during as astronaut Joe Acaba answers questions from the audience at NASA Headquaters, Tuesday, Dec. 4, 2012 in Washington. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  3. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba answers questions at a behind-the-scenes NASA Social at NASA Headquarters on Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  4. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA astronaut Joe Acaba, center, greets participants at a behind-the-scenes NASA Social in Washington, Tuesday, Dec. 4, 2012 at NASA Headquarters. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  5. NASA-universities relationships in aero/space engineering: A review of NASA's program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    NASA is concerned about the health of aerospace engineering departments at U.S. universities. The number of advanced degrees in aerospace engineering has declined. There is concern that universities' facilities, research equipment, and instrumentation may be aging or outmoded and therefore affect the quality of research and education. NASA requested that the National Research Council's Aeronautics and Space Engineering Board (ASEB) review NASA's support of universities and make recommendations to improve the program's effectiveness.

  6. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  7. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  8. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  9. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  10. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION...

  11. Flight Test 4 Preliminary Results: NASA Ames SSI

    NASA Technical Reports Server (NTRS)

    Isaacson, Doug; Gong, Chester; Reardon, Scott; Santiago, Confesor

    2016-01-01

    Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements as well as the safety substantiation and end-to-end assessment of DAA system performance. The Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS) Project conducted flight test program, referred to as Flight Test 4, at Armstrong Flight Research Center from April -June 2016. Part of the test flights were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as JADEM (Java Architecture for DAA Extensibility and Modeling). The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Flight test 4 has four objectives: (1) validate DAA requirements in stressing cases that drive MOPS requirements, including: high-speed cooperative intruder, low-speed non-cooperative intruder, high vertical closure rate encounter, and Mode CS-only intruder (i.e. without ADS-B), (2) validate TCASDAA alerting and guidance interoperability concept in the presence of realistic sensor, tracking and navigational errors and in multiple-intruder encounters against both cooperative and non-cooperative intruders, (3) validate Well Clear Recovery guidance in the presence of realistic sensor, tracking and navigational errors, and (4) validate DAA alerting and guidance requirements in the presence of realistic sensor, tracking and navigational errors. The results will be

  12. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  13. The NASA Dryden Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2005-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented

  14. FOSTER-Flight Opportunities for Science Teacher EnRichment, A New IDEA Program From NASA Astrophysics

    NASA Astrophysics Data System (ADS)

    Devore, E.; Gillespie, C.; Hull, G.; Koch, D.

    1993-05-01

    Flight Opportunities for Science Teacher EnRichment (FOSTER) is a new educational program from the Imitative to Develop Education through Astronomy in the Astrophysics Division at NASA Headquarters. Now in its first year of the pilot program, the FOSTER project brings eleven Bay Area teaaaachers to NASA Ames to participate in a year-long program of workshops, educational programs at their schools and the opportunity to fly aboard the Kuiper Airborne Observatory (KAO) on research missions. As science and math educators, FOSTER teachers get a close-up look at science in action and have the opportunity to interact with the entire team of scientists, aviators and engineers that support the research abord the KAO. In June, a second group of FOSTER teachers will participate in a week-long workshop at ASes to prepare for flights during the 1993-94 school year. In addition, the FOSTER project trains teachers to use e-mail for ongoing communication with scientists and the KAO team, develops educational materials and supports opportunities for scientists to become directly involved in local schools. FOSTER is supported by a NASA grant (NAGW 3291).

  15. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection of flight controls, engine...

  16. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine...

  17. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine...

  18. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine...

  19. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Design and Construction Fire Protection § 25.865 Fire protection of flight controls, engine mounts, and other flight structure. Essential flight controls, engine mounts, and other flight structures located in... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine...

  20. SCARLET Photovoltaic Concentrator Array Selected for Flight Under NASA's New Millennium Program

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.

    1997-01-01

    The NASA Lewis Research Center continues to demonstrate its expertise in the development and implementation of advanced space power systems. For example, during the past year, the NASA New Millennium Program selected the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) photovoltaic array as the power system for its Deep Space-1 (DS-1) mission. This Jet Propulsion Laboratory (JPL) managed DS-1 mission, which represents the first operational flight of a photovoltaic concentrator array, will provide a baseline for the use of this technology in a variety of future government and commercial applications. SCARLET is a joint NASA Lewis/Ballistic Missile Defense Organization program to develop advanced photovoltaic array technology that uses a unique refractive concentrator design to focus sunlight onto a line of photovoltaic cells located below the optical element. The general concept is based on previous work conducted at Lewis under a Small Business Innovation Research (SBIR) contract with AEC-Able Engineering, Inc., for the Multiple Experiments to Earth Orbit and Return (METEOR) spacecraft. The SCARLET II design selected by the New Millennium Program is a direct adaptation of the smaller SCARLET I array built for METEOR. Even though SCARLET I was lost during a launch failure in October 1995, the hardware (designed, built, and flight qualified within 6 months) provided invaluable information and experience that led to the selection of this technology as the primary power source for DS-1.

  1. The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing 'jumbo jets' that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.

  2. The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet

    NASA Image and Video Library

    2000-02-03

    The NASA Dryden 747 Shuttle Carrier Aircraft crew poses in an engine inlet; Standing L to R - aircraft mechanic John Goleno and SCA Team Leader Pete Seidl; Kneeling L to R - aircraft mechanics Todd Weston and Arvid Knutson, and avionics technician Jim Bedard NASA uses two modified Boeing 747 jetliners, originally manufactured for commercial use, as Space Shuttle Carrier Aircraft (SCA). One is a 747-100 model, while the other is designated a 747-100SR (short range). The two aircraft are identical in appearance and in their performance as Shuttle Carrier Aircraft. The 747 series of aircraft are four-engine intercontinental-range swept-wing "jumbo jets" that entered commercial service in 1969. The SCAs are used to ferry space shuttle orbiters from landing sites back to the launch complex at the Kennedy Space Center, and also to and from other locations too distant for the orbiters to be delivered by ground transportation. The orbiters are placed atop the SCAs by Mate-Demate Devices, large gantry-like structures which hoist the orbiters off the ground for post-flight servicing, and then mate them with the SCAs for ferry flights.

  3. NASA balloon design and flight - Philosophy and criteria

    NASA Technical Reports Server (NTRS)

    Smith, I. S., Jr.

    1993-01-01

    The NASA philosophy and criteria for the design and flight of scientific balloons are set forth and discussed. The thickness of balloon films is standardized at 20.3 microns to isolate potential film problems, and design equations are given for specific balloon parameters. Expressions are given for: flight-stress index, total required thickness, cap length, load-tape rating, and venting-duct area. The balloon design criteria were used in the design of scientific balloons under NASA auspices since 1986, and the resulting designs are shown to be 95 percent effective. These results represent a significant increase in the effectiveness of the balloons and therefore indicate that the design criteria are valuable. The criteria are applicable to four balloon volume classes in combination with seven payload ranges.

  4. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  5. Moving Towards a Common Ground and Flight Data Systems Architecture for NASA's Exploration Missions

    NASA Technical Reports Server (NTRS)

    Rader. Steve; Kearney, Mike; McVittie, Thom; Smith, Dan

    2006-01-01

    The National Aeronautics and Space Administration has embarked on an ambitious effort to return man to the moon and then on to Mars. The Exploration Vision requires development of major new space and ground assets and poses challenges well beyond those faced by many of NASA's recent programs. New crewed vehicles must be developed. Compatible supply vehicles, surface mobility modules and robotic exploration capabilities will supplement the manned exploration vehicle. New launch systems will be developed as well as a new ground communications and control infrastructure. The development must take place in a cost-constrained environment and must advance along an aggressive schedule. Common solutions and system interoperability and will be critical to the successful development of the Exploration data systems for this wide variety of flight and ground elements. To this end, NASA has assembled a team of engineers from across the agency to identify the key challenges for Exploration data systems and to establish the most beneficial strategic approach to be followed. Key challenges and the planned NASA approach for flight and ground systems will be discussed in the paper. The described approaches will capitalize on new technologies, and will result in cross-program interoperability between spacecraft and ground systems, from multiple suppliers and agencies.

  6. NASA Dryden Flight Research Center: We Fly What Others Only Imagine

    NASA Technical Reports Server (NTRS)

    Ennix-Sandhu, Kimberly

    2006-01-01

    A powerpoint presentation of NASA Dryden's historical and future flight programs is shown. The contents include: 1) Getting To Know NASA; 2) Our Namesake; 3) To Fly What Others Only Imagine; 4) Dryden's Mission: Advancing Technology and Science Through Flight; 5) X-1 The First of the Rocket-Powered Research Aircraft; 6) X-1 Landing; 7) Lunar Landing Research Vehicle (LLRV) Liftoff and Landing; 8) Linear Aerospike SR-71 Experiment (LASRE) Ground Test; 9) M2-F1 (The Flying Bathtub); 10) M2-F2 Drop Test; 11) Enterprise Space Shuttle Prototype; 12) Space Shuttle Columbia STS-1; 13) STS-114 Landing-August 2005; 14) Crew Exploration Vehicle (CEV); 15) What You Can Do To Succeed!; and 16) NASA Dryden Flight Research Center: This is What We Do!

  7. NASA Briefing Previews Upcoming Spacewalks on ISS

    NASA Image and Video Library

    2017-10-02

    On Oct. 2, NASA held a briefing at the Johnson Space Center in Houston, to preview a trio of spacewalks in October to perform maintenance outside the International Space Station. Expedition 53 Commander Randy Bresnik of NASA will lead all three spacewalks, joined on Oct. 5 and 10 by Flight Engineer Mark Vande Hei, also of NASA. Flight Engineer Joe Acaba of NASA will join Bresnik on Oct. 18 for the third spacewalk. NASA TV coverage of the spacewalks will begin at 6:30 a.m. on Oct. 5, 10 and 18. Each spacewalk is scheduled to start at approximately 8:05 a.m., however, the spacewalks may begin earlier if the crew is running ahead of schedule.

  8. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  9. Nicole Schultheiss flies an F/A-18 simulator with NASA engineer Byron Simpson's coaching during Take Your Children to Work Day June 22

    NASA Image and Video Library

    2004-06-22

    Nicole Schultheiss, a fourth-grader at Ulrich Elementary School in California City, "flew" an F/A-18 simulator with NASA engineer Byron Simpson's coaching during Take Your Children to Work Day June 22 at NASA Dryden Flight Research Center.

  10. MD-11 PCA - Research flight team egress

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This McDonnell Douglas MD-11 has parked on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. Coming down the steps from the aircraft are Gordon Fullerton (in front), followed by Bill Burcham, Propulsion Controlled Aircraft (PCA) project engineer at Dryden; NASA Dryden controls engineer John Burken; John Feather of McDonnell Douglas; and Drew Pappas, McDonnell Douglas' project manager for PCA.

  11. Benefit from NASA

    NASA Image and Video Library

    2004-04-22

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA’s patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  12. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...

  13. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...

  14. NASA's Airborne Science DC-8, displaying new colors in a check flight Feb. 24, 2004, over the Dryden Flight Research Center

    NASA Image and Video Library

    2004-02-24

    NASA's large Airborne Science research aircraft, a modified DC-8 airliner, displayed new colors in a check flight Feb. 24, 2004, over its home base, the NASA Dryden Flight Research Center at Edwards AFB, California.

  15. Preliminary Analysis of Acoustic Measurements from the NASA-Gulfstream Airframe Noise Flight Test

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockhard, David D.; Humphreys, Willliam M.; Choudhari, Meelan M.; Van De Ven, Thomas

    2008-01-01

    The NASA-Gulfstream joint Airframe Noise Flight Test program was conducted at the NASA Wallops Flight Facility during October, 2006. The primary objective of the AFN flight test was to acquire baseline airframe noise data on a regional jet class of transport in order to determine noise source strengths and distributions for model validation. To accomplish this task, two measuring systems were used: a ground-based microphone array and individual microphones. Acoustic data for a Gulfstream G550 aircraft were acquired over the course of ten days. Over twenty-four test conditions were flown. The test matrix was designed to provide an acoustic characterization of both the full aircraft and individual airframe components and included cruise to landing configurations. Noise sources were isolated by selectively deploying individual components (flaps, main landing gear, nose gear, spoilers, etc.) and altering the airspeed, glide path, and engine settings. The AFN flight test program confirmed that the airframe is a major contributor to the noise from regional jets during landing operations. Sound pressure levels from the individual microphones on the ground revealed the flap system to be the dominant airframe noise source for the G550 aircraft. The corresponding array beamform maps showed that most of the radiated sound from the flaps originates from the side edges. Using velocity to the sixth power and Strouhal scaling of the sound pressure spectra obtained at different speeds failed to collapse the data into a single spectrum. The best data collapse was obtained when the frequencies were left unscaled.

  16. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington asks astronaut Joe Acaba a question, Tuesday, Dec. 4, 2012, at NASA Headquarters. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  17. J-2X Gas Generator Development Testing at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reynolds, D. C.; Hormonzian, Carlo

    2010-01-01

    NASA is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, two phases of testing have been completed on the development of the gas generator for the J-2X engine. The hardware has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in combustion instability of the gas generator assembly. Development of the final configuration of workhorse hardware (which will ultimately be used to verify critical requirements on a component level) has required a balance between changes in the injector and chamber hardware in order to successfully mitigate the combustion instability without sacrificing other engine system requirements. This paper provides an overview of the two completed test series, performed at NASA s Marshall Space Flight Center. The requirements, facility setup, hardware configurations, and test series progression are detailed. Significant levels of analysis have been performed in order to provide design solutions to mitigate the combustion stability issues, and these are briefly covered. Also discussed are the results of analyses related to either anomalous readings or off-nominal testing throughout the two test series.

  18. Emergency Flight Control Using Only Engine Thrust and Lateral Center-of-Gravity Offset: A First Look

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John; Maine, Trindel A.; Bull, John

    1997-01-01

    Normally, the damage that results in a total loss of the primary flight controls of a jet transport airplane, including all engines on one side, would be catastrophic. In response, NASA Dryden has conceived an emergency flight control system that uses only the thrust of a wing-mounted engine along with a lateral center-of-gravity (CGY) offset from fuel transfer. Initial analysis and simulation studies indicate that such a system works, and recent high-fidelity simulation tests on the MD-11 and B-747 suggest that the system provides enough control for a survivable landing. This paper discusses principles of flight control using only a wing engine thrust and CGY offset, along with the amount of CGY offset capability of some transport airplanes. The paper also presents simulation results of the throttle-only control capability and closed-loop control of ground track using computer-controlled thrust.

  19. Rocket Engine Health Management: Early Definition of Critical Flight Measurements

    NASA Technical Reports Server (NTRS)

    Christenson, Rick L.; Nelson, Michael A.; Butas, John P.

    2003-01-01

    The NASA led Space Launch Initiative (SLI) program has established key requirements related to safety, reliability, launch availability and operations cost to be met by the next generation of reusable launch vehicles. Key to meeting these requirements will be an integrated vehicle health management ( M) system that includes sensors, harnesses, software, memory, and processors. Such a system must be integrated across all the vehicle subsystems and meet component, subsystem, and system requirements relative to fault detection, fault isolation, and false alarm rate. The purpose of this activity is to evolve techniques for defining critical flight engine system measurements-early within the definition of an engine health management system (EHMS). Two approaches, performance-based and failure mode-based, are integrated to provide a proposed set of measurements to be collected. This integrated approach is applied to MSFC s MC-1 engine. Early identification of measurements supports early identification of candidate sensor systems whose design and impacts to the engine components must be considered in engine design.

  20. The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.

  1. NASA Ames Contributes to Orion / EFT-1 Test Flight (Reporter Pkg)

    NASA Image and Video Library

    2014-12-03

    NASA's Orion spacecraft is built to take humans farther than they've ever gone before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel, and provide safe re-entry from deep space return velocities. NASA's Ames Research Center played a critical role in the development and preparation for the flight test designated Exploration Flight Test 1, or EFT-1.

  2. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, D.; Mathias, D.; Reuther, J.; Garn, M.

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  3. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington engages in social media as he listens to astronaut Joe Acaba answer questions, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  4. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  5. NASA Flight Operations of Ikhana and Global Hawk

    NASA Technical Reports Server (NTRS)

    Posada, Herman

    2010-01-01

    This slide presentation reviews the flight operations for NASA's Ikhana and Globalhawk unmanned aerial vehicles. It includes information on the ground support systems, vehicle specifications, payloads, mission planning and the 2007 Western States Fire Mission Objectives.

  6. Linear Aerospike SR-71 Experiment (LASRE) first flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 successfully completed its first flight 31 October 1997 as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with

  7. Linear Aerospike SR-71 Experiment (LASRE) first flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 made its successful first flight Oct. 31 as part of the NASA/Rocketdyne/ Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust

  8. Anomaly Analysis: NASA's Engineering and Safety Center Checks Recurring Shuttle Glitches

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    The NASA Engineering and Safety Center (NESC), set up in the wake of the Columbia accident to backstop engineers in the space shuttle program, is reviewing hundreds of recurring anomalies that the program had determined don't affect flight safety to see if in fact they might. The NESC is expanding its support to other programs across the agency, as well. The effort, which will later extend to the International Space Station (ISS), is a principal part of the attempt to overcome the normalization of deviance--a situation in which organizations proceeded as if nothing was wrong in the face of evidence that something was wrong--cited by sociologist Diane Vaughn as contributing to both space shuttle disasters.

  9. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  10. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  11. The Generalized Support Software (GSS) Domain Engineering Process: An Object-Oriented Implementation and Reuse Success at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Condon, Steven; Hendrick, Robert; Stark, Michael E.; Steger, Warren

    1997-01-01

    The Flight Dynamics Division (FDD) of NASA's Goddard Space Flight Center (GSFC) recently embarked on a far-reaching revision of its process for developing and maintaining satellite support software. The new process relies on an object-oriented software development method supported by a domain specific library of generalized components. This Generalized Support Software (GSS) Domain Engineering Process is currently in use at the NASA GSFC Software Engineering Laboratory (SEL). The key facets of the GSS process are (1) an architecture for rapid deployment of FDD applications, (2) a reuse asset library for FDD classes, and (3) a paradigm shift from developing software to configuring software for mission support. This paper describes the GSS architecture and process, results of fielding the first applications, lessons learned, and future directions

  12. Aircraft flight flutter testing at the NASA Ames-Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1988-01-01

    Many parameter identification techniques have been used at the NASA Ames Research Center, Dryden Research Facility at Edwards Air Force Base to determine the aeroelastic stability of new and modified research vehicles in flight. This paper presents a summary of each technique used with emphasis on fast Fourier transform methods. Experiences gained from application of these techniques to various flight test programs are discussed. Also presented are data-smoothing techniques used for test data distorted by noise. Data are presented for various aircraft to demonstrate the accuracy of each parameter identification technique discussed.

  13. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program

    NASA Technical Reports Server (NTRS)

    Roudakov, Alexander S.; Semenov, Vyacheslav L.; Hicks, John W.

    1998-01-01

    Under a contract with NASA, a joint Central Institute of Aviation Motors (CIAM) and NASA team recently conducted the fourth flight test of a dual-mode scramjet aboard the CIAM Hypersonic Flying Laboratory, 'Kholod'. With an aim test Mach 6.5 objective, the successful launch was conducted at the Sary Shagan test range in central Kazakstan on February 12, 1998. Ground-launch, rocket boosted by a modified Russian SA5 missile, the redesigned scramjet was accelerated to a new maximum velocity greater than Mach 6.4. This launch allowed for the measurement of the fully supersonic combustion mode under actual flight conditions. The primary program objective was the flight-to-ground correlation of measured data with preflight analysis and wind-tunnel tests in Russia and potentially in the United States. This paper describes the development and objectives of the program as well as the technical details of the scramjet and SA5 redesign to achieve the Mach 6.5 aim test condition. An overview of the launch operation is also given. Finally, preliminary flight test results are presented and discussed.

  14. Using Web 2.0 Techniques in NASA's Ares Engineering Operations Network (AEON) Environment - First Impressions

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2010-01-01

    The Mission Operations Laboratory (MOL) at Marshall Space Flight Center (MSFC) is responsible for Engineering Support capability for NASA s Ares rocket development and operations. In pursuit of this, MOL is building the Ares Engineering and Operations Network (AEON), a web-based portal to support and simplify two critical activities: Access and analyze Ares manufacturing, test, and flight performance data, with access to Shuttle data for comparison Establish and maintain collaborative communities within the Ares teams/subteams and with other projects, e.g., Space Shuttle, International Space Station (ISS). AEON seeks to provide a seamless interface to a) locally developed engineering applications and b) a Commercial-Off-The-Shelf (COTS) collaborative environment that includes Web 2.0 capabilities, e.g., blogging, wikis, and social networking. This paper discusses how Web 2.0 might be applied to the typically conservative engineering support arena, based on feedback from Integration, Verification, and Validation (IV&V) testing and on searching for their use in similar environments.

  15. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  16. NASA IN-STEP Cryo System Experiment flight test

    NASA Astrophysics Data System (ADS)

    Russo, S. C.; Sugimura, R. S.

    The Cryo System Experiment (CSE), a NASA In-Space Technology Experiments Program (IN-STEP) flight experiment, was flown on Space Shuttle Discovery (STS 63) in February 1995. The experiment was developed by Hughes Aircraft Company to validate in zero- g space a 65 K cryogenic system for focal planes, optics, instruments or other equipment (gamma-ray spectrometers and infrared and submillimetre imaging instruments) that requires continuous cryogenic cooling. The CSE is funded by the NASA Office of Advanced Concepts and Technology's IN-STEP and managed by the Jet Propulsion Laboratory (JPL). The overall goal of the CSE was to validate and characterize the on-orbit performance of the two thermal management technologies that comprise a hybrid cryogenic system. These thermal management technologies consist of (1) a second-generation long-life, low-vibration, Stirling-cycle 65 K cryocooler that was used to cool a simulated thermal energy storage device (TRP) and (2) a diode oxygen heat pipe thermal switch that enables physical separation between a cryogenic refrigerator and a TRP. All CSE experiment objectives and 100% of the experiment success criteria were achieved. The level of confidence provided by this flight experiment is an important NASA and Department of Defense (DoD) milestone prior to multi-year mission commitment. Presented are generic lessons learned from the system integration of cryocoolers for a flight experiment and the recorded zero- g performance of the Stirling cryocooler and the diode oxygen heat pipe.

  17. Theseus Landing Following Maiden Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it comes in for a landing on Rogers Dry Lake after its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able

  18. NASA's Man-Systems Integration Standards: A Human Factors Engineering Standard for Everyone in the Nineties

    NASA Technical Reports Server (NTRS)

    Booher, Cletis R.; Goldsberry, Betty S.

    1994-01-01

    During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.

  19. SLS Engine Section Test Article Loaded on Barge Pegasus at NASA's Michoud Assembly Facility

    NASA Image and Video Library

    2017-04-27

    A NASA move team loaded the engine section structural qualification test article for the Space Launch System into the barge Pegasus docked in the harbor at NASA's Michoud Assembly Facility in New Orleans. The rocket's engine section is the bottom of the core stage and houses the four RS-25 engines. The engine section test article was moved from Building 103, Michoud’s 43-acre rocket factory, to the barge where it was loaded for a river trip to NASA’s Marshall Space Flight Center in Huntsville, Alabama. The bottom part of the test article is structurally the same as the engine section that will be flown as part of the SLS core stage. The shiny metal top part simulates the rocket's liquid hydrogen tank, which is the fuel tank that joins to the engine section. The barge Pegasus will travel 1,240 miles by river to Marshall and endure tests that pull, push, and bend it, subjecting it to millions of pounds of force. This ensures the structure can withstand the incredible stresses produced by the 8.8 million pounds of thrust during launch and ascent.

  20. Unique Education and Workforce Development for NASA Engineers

    NASA Technical Reports Server (NTRS)

    Forsgren, Roger C.; Miller, Lauren L.

    2010-01-01

    NASA engineers are some of the world's best-educated graduates, responsible for technically complex, highly significant scientific programs. Even though these professionals are highly proficient in traditional analytical competencies, there is a unique opportunity to offer continuing education that further enhances their overall scientific minds. With a goal of maintaining the Agency's passionate, "best in class" engineering workforce, the NASA Academy of Program/Project & Engineering Leadership (APPEL) provides educational resources encouraging foundational learning, professional development, and knowledge sharing. NASA APPEL is currently partnering with the scientific community's most respected subject matter experts to expand its engineering curriculum beyond the analytics and specialized subsystems in the areas of: understanding NASA's overall vision and its fundamental basis, and the Agency initiatives supporting them; sharing NASA's vast reservoir of engineering experience, wisdom, and lessons learned; and innovatively designing hardware for manufacturability, assembly, and servicing. It takes collaboration and innovation to educate an organization that possesses such a rich and important historyand a future that is of great global interest. NASA APPEL strives to intellectually nurture the Agency's technical professionals, build its capacity for future performance, and exemplify its core valuesalJ to better enable NASA to meet its strategic visionand beyond.

  1. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington tweets as he listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  2. The second X-43A hypersonic research aircraft, shown here in its protective shipping jig, arrives at NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2001-01-31

    The second of three X-43A hypersonic research aircraft, shown here in its protective shipping jig, arrived at NASA's Dryden Flight Research Center, Edwards, California, on January 31, 2001. The arrival of the second X-43A from its manufacturer, MicroCraft, Inc., of Tullahoma, Tenn., followed by only a few days the mating of the first X-43A and its specially-designed adapter to the first stage of a modified Pegasus® booster rocket. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the 12-foot-long, unpiloted research aircraft to a predetermined altitude and speed after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer, 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine.

  3. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2017-01-01

    Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.

  4. Flight Research into Simple Adaptive Control on the NASA FAST Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2011-01-01

    A series of simple adaptive controllers with varying levels of complexity were designed, implemented and flight tested on the NASA Full-Scale Advanced Systems Testbed (FAST) aircraft. Lessons learned from the development and flight testing are presented.

  5. Initial Flight Tests of the NASA F-15B Propulsion Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nathan; Moes, Timothy R.; Vachon, M. Jake

    2002-01-01

    Flights of the F-15B/Propulsion Flight Test Fixture (PFTF) with a Cone Drag Experiment (CDE) attached have been accomplished at NASA Dryden Flight Research Center. Mounted underneath the fuselage of an F-15B airplane, the PFTF provides volume for experiment systems and attachment points for propulsion experiments. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. The force balance mounts between the PFTF and experiment and measures three forces and moments. The CDE has been attached to the force balance for envelope expansion flights. This experiment spatially and inertially simulates a large propulsion test article. This report briefly describes the F-15B airplane, the PFTF, and the force balance. A detailed description of the CDE is provided. Force-balance ground testing and stiffness modifications are described. Flight profiles and selected flight data from the envelope expansion flights are provided and discussed, including force-balance data, the internal PFTF thermal and vibration environment, a handling qualities assessment, and performance capabilities of the F-15B airplane with the PFTF installed.

  6. NASA Software Engineering Benchmarking Study

    NASA Technical Reports Server (NTRS)

    Rarick, Heather L.; Godfrey, Sara H.; Kelly, John C.; Crumbley, Robert T.; Wifl, Joel M.

    2013-01-01

    To identify best practices for the improvement of software engineering on projects, NASA's Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA) formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking study. The primary goals of the study are to identify best practices that: Improve the management and technical development of software intensive systems; Have a track record of successful deployment by aerospace industries, universities [including research and development (R&D) laboratories], and defense services, as well as NASA's own component Centers; and Identify candidate solutions for NASA's software issues. Beginning in the late fall of 2010, focus topics were chosen and interview questions were developed, based on the NASA top software challenges. Between February 2011 and November 2011, the Benchmark Team interviewed a total of 18 organizations, consisting of five NASA Centers, five industry organizations, four defense services organizations, and four university or university R and D laboratory organizations. A software assurance representative also participated in each of the interviews to focus on assurance and software safety best practices. Interviewees provided a wealth of information on each topic area that included: software policy, software acquisition, software assurance, testing, training, maintaining rigor in small projects, metrics, and use of the Capability Maturity Model Integration (CMMI) framework, as well as a number of special topics that came up in the discussions. NASA's software engineering practices compared favorably with the external organizations in most benchmark areas, but in every topic, there were ways in which NASA could improve its practices. Compared to defense services organizations and some of the industry organizations, one of NASA's notable weaknesses involved communication with contractors regarding its policies and requirements for acquired software. One of NASA's strengths

  7. NASA specification for manufacturing and performance requirements of NASA standard aerospace nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    1988-01-01

    On November 25, 1985, the NASA Chief Engineer established a NASA-wide policy to maintain and to require the use of the NASA standard for aerospace nickel-cadmium cells and batteries. The Associate Administrator for Safety, Reliability, Maintainability, and Quality Assurance stated on December 29, 1986, the intent to retain the NASA standard cell usage policy established by the Office of the Chief Engineer. The current NASA policy is also to incorporate technological advances as they are tested and proven for spaceflight applications. This policy will be implemented by modifying the existing standard cells or by developing new NASA standards and their specifications in accordance with the NASA's Aerospace Battery Systems Program Plan. This NASA Specification for Manufacturing and Performance Requirements of NASA Standard Aerospace Nickel-Cadmium Cells is prepared to provide requirements for the NASA standard nickel-cadmium cell. It is an interim specification pending resolution of the separator material availability. This specification has evolved from over 15 years of nickel-cadmium cell experience by NASA. Consequently, considerable experience has been collected and cell performance has been well characterized from many years of ground testing and from in-flight operations in both geosynchronous (GEO) and low earth orbit (LEO) applications. NASA has developed and successfully used two standard flight qualified cell designs.

  8. The Lovelace Award presentation of the Society of NASA Flight Surgeons.

    PubMed

    White, S C

    1997-09-01

    The following speech was presented at the Society of NASA Flight Surgeon's annual luncheon meeting on May 11, 1995 in Anaheim, CA. The Randolph C. Lovelace Award is presented annually by the Society. Stanley C. White, M.D., had a very distinguished career in Aerospace Medicine, including working with the Air Force's Man-In-Space and Man-In-Space-Soonest Programs, and, later, as the first Flight Surgeon assigned to the NASA Space Task Group. For these, and numerous other contributions, Dr. White was chosen to receive the Society of NASA Flight Surgeons' 1995 Lovelace Award at the 66th Annual Scientific Meeting of the Aerospace Medical Association. Dr. White, who was a personal acquaintance of Dr. Randy Lovelace for whom the award is named, then captivated the audience with a fascinating speech about Dr. Lovelace. Furthermore, he admonished us to remember the legacy of Dr. Lovelace and the many lessons his wisdom still teaches us today. The following is Dr. White's presentation.

  9. NASA Social

    NASA Image and Video Library

    2012-12-04

    NASA Social participants listen as astronaut Joe Acaba answers questions about his time living aboard the International Space Station at NASA Headquarters, Tuesday, Dec. 4, 2012 in Washington. Acaba launched to the International Space Station on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  10. Theseus Waits on Lakebed for First Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft waits on the lakebed before its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change

  11. Theseus on Take-off for First Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft takes off for its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden

  12. NASA Women's History Month - Erin Waggoner (AFRC)

    NASA Image and Video Library

    2018-03-20

    Erin Waggoner is an Aerospace Engineer in the Aerodynamics and Propulsion Branch at NASA Armstrong Flight Research Center. Erin has a BS in Aerospace Engineering from Wichita State University and a MS in Aeronautics and Astronautics from Purdue University. Her work includes planning, coordinating, and executing ground tests; analyzing data; writing papers; and serving as a Flight Test Engineer onboard test aircraft.

  13. Design, analysis and control of large transports so that control of engine thrust can be used as a back-up of the primary flight controls. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.

    1995-01-01

    A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.

  14. Linear Aerospike SR-71 Experiment (LASRE) first flight takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 takes off Oct. 31, making its first flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust

  15. Torque Tension Testing of Fasteners used for NASA Flight Hardware Applications

    NASA Technical Reports Server (NTRS)

    Hemminger, Edgar G.; Posey, Alan J.; Dube, Michael J.

    2014-01-01

    The effect of various lubricants and other compounds on fastener torque-tension relationships is evaluated. Testing was performed using a unique test apparatus developed by Posey at the NASA Goddard Space Flight Center. A description of the test methodology, including associated data collection and analysis will be presented. Test results for 300 series CRES and A286 heat resistant fasteners, torqued into various types of inserts will be presented. The primary objective of this testing was to obtain torque-tension data for use on NASA flight projects.

  16. Systems Engineering Management Plan NASA Traffic Aware Planner Integration Into P-180 Airborne Test-Bed

    NASA Technical Reports Server (NTRS)

    Maris, John

    2015-01-01

    NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).

  17. NASA Space Flight Program and Project Management Handbook

    NASA Technical Reports Server (NTRS)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  18. HL-10 flight simulator

    NASA Technical Reports Server (NTRS)

    1968-01-01

    As shown in this photo of the HL-10 flight simulator, the lifting-body pilots and engineers made use of early simulators for both training and the determination of a given vehicle's handling at various speeds, attitudes, and altitudes. This provided warning of possible problems. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided

  19. Alertness Management In Flight Operations: A NASA Education and Training Module

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Lebacqz, Victor J.; Gander, Philippa H.; Co, Elizabeth L.; Weldon, Keri J.; Smith, Roy M.; Miller, Donna L.; Gregory, Kevin B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Since 1980, the NASA Ames Fatigue Countermeasures Program has been conducting research on sleep, circadian rhythms, and fatigue in a variety of flight operations 1. An original goal of the program was to return the scientific and operational knowledge to the aviation industry. To meet this goal, the NASA Ames Fatigue Countermeasures Program has created an Education and Training Module entitled, "Strategies for Alertness Management in Flight Operations." The Module was designed to meet three objectives: 1) explain the current state of knowledge about the physiological mechanisms underlying fatigue, 2) demonstrate how this knowledge can be applied to improve flight crew sleep, performance, and alertness, and 3) offer countermeasure recommendations. The Module is composed of two components: 1) a 60-minute live presentation provided by a knowledgeable individual and 2) a NASA/FAA Technical Memorandum (TM) that contains the presentation materials and appendices with complementary information. The TM is provided to all individuals attending the live presentation. The Module content is divided into three parts: 1) basic information on sleep, sleepiness, circadian rhythms, fatigue, and how flight operations affect these physiological factors, 2) common misconceptions about sleep, sleepiness, and fatigue, and 3) alertness management strategies. The Module is intended for pilots, management personnel, schedulers, flight attendants, and the many other individuals involved in the aviation system.

  20. Accelerating NASA GN&C Flight Software Development

    NASA Technical Reports Server (NTRS)

    Tamblyn, Scott; Henry, Joel; Rapp, John

    2010-01-01

    When the guidance, navigation, and control (GN&C) system for the Orion crew vehicle undergoes Critical Design Review (CDR), more than 90% of the flight software will already be developed - a first for NASA on a project of this scope and complexity. This achievement is due in large part to a new development approach using Model-Based Design.

  1. Certification of COTS Software in NASA Human Rated Flight Systems

    NASA Technical Reports Server (NTRS)

    Goforth, Andre

    2012-01-01

    Adoption of commercial off-the-shelf (COTS) products in safety critical systems has been seen as a promising acquisition strategy to improve mission affordability and, yet, has come with significant barriers and challenges. Attempts to integrate COTS software components into NASA human rated flight systems have been, for the most part, complicated by verification and validation (V&V) requirements necessary for flight certification per NASA s own standards. For software that is from COTS sources, and, in general from 3rd party sources, either commercial, government, modified or open source, the expectation is that it meets the same certification criteria as those used for in-house and that it does so as if it were built in-house. The latter is a critical and hidden issue. This paper examines the longstanding barriers and challenges in the use of 3rd party software in safety critical systems and cover recent efforts to use COTS software in NASA s Multi-Purpose Crew Vehicle (MPCV) project. It identifies some core artifacts that without them, the use of COTS and 3rd party software is, for all practical purposes, a nonstarter for affordable and timely insertion into flight critical systems. The paper covers the first use in a flight critical system by NASA of COTS software that has prior FAA certification heritage, which was shown to meet the RTCA-DO-178B standard, and how this certification may, in some cases, be leveraged to allow the use of analysis in lieu of testing. Finally, the paper proposes the establishment of an open source forum for development of safety critical 3rd party software.

  2. Guidance, Navigation and Control Innovations at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2002-01-01

    A viewgraph presentation on guidance navigation and control innovations at the NASA Goddard Space Flight Center is presented. The topics include: 1) NASA's vision; 2) NASA's Mission; 3) Earth Science Enterprise (ESE); 4) Guidance, Navigation and Control Division (GN&C); 5) Landsat-7 Earth Observer-1 Co-observing Program; and 6) NASA ESE Vision.

  3. NASA researchers in gold control room during an F-15 HiDEC flight, John Orme and Gerard Schkolnik

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers Gerard Schkolnik (left) and John Orme monitor equipment in the control room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  4. The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, Calif.

    NASA Image and Video Library

    2007-06-23

    The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California, June 22, 2007. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.

  5. Technicians inspect external tank attachment fittings on the Space Shuttle Discovery as part of its post-flight processing at NASA DFRC

    NASA Image and Video Library

    2005-08-12

    Robert 'Skip' Garrett; main propulsion advanced systems technician, and Chris Jacobs; main propulsion systems engineering technician, inspect external tank attachment fittings on the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items and returned to Shuttle pa

  6. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  7. NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flies over NASA DFRC after a ferry flight from Waco, Texas

    NASA Image and Video Library

    2007-05-31

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flies over NASA's Dryden Flight Research Center after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  8. In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.

    2002-01-01

    Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.

  9. The NASA radar entomology program at Wallops Flight Center

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R.

    1979-01-01

    NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

  10. NASA Marshall Space Flight Center Barrel-Shaped Asymmetrical Capacitor

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.; Carruth, M. R.; Edwards, D. L.; Finchum, A.; Maxwell, G.; Nabors, S.; Smalley, L.; Huston, D.; Ila, D.; Zimmerman, R.

    2004-01-01

    The NASA Barrel-Shaped Asymmetrical Capacitor (NACAP) has been extensively tested at NASA Marshall Space Flight Center and the National Space Science and Technology Center. Trichel pulse emission was first discovered here. The NACAP is a magnetohydrodynamic device for electric propulsion. In air it requires no onboard propellant nor any moving parts. No performance was observed in hard vacuum. The next step shall be optimizing the technology for future applications.

  11. Trailblazer 1B Flight Preparations

    NASA Image and Video Library

    1959-06-04

    L59-3896 Engineers W. N. Gardner and C.A. Brown, Jr., check operations as Trailblazer 1b is readied for Flight, June 4, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication, page 675. D58-3001 Model. Engineers W. N. Gardner and C.A. Brown

  12. Theseus First Flight - May 24, 1996

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it lifts off from Rogers Dry Lake during its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to

  13. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  14. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    ERIC Educational Resources Information Center

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  15. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 1, Part 3

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume I: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries of the program's operations.

  16. NASA Aerospace Flight Battery Program: Wet Life of Nickel-Hydrogen (Ni-H2) Batteries. Volume 2, Part 3; Appendices

    NASA Technical Reports Server (NTRS)

    Jung, David S,; Lee, Leonine S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 3 - Volume II Appendices to Part 3 - Volume I.

  17. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 2/Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume II Appendix A to Part 2 - Volume I.

  18. An Assessment Methodology to Evaluate In-Flight Engine Health Management Effectiveness

    NASA Astrophysics Data System (ADS)

    Maggio, Gaspare; Belyeu, Rebecca; Pelaccio, Dennis G.

    2002-01-01

    flight effectiveness of candidate engine health management system concepts. A next generation engine health management system will be required to be both reliable and robust in terms of anomaly detection capability. The system must be able to operate successfully in the hostile, high-stress engine system environment. This implies that its system components, such as the instrumentation, process and control, and vehicle interface and support subsystems, must be highly reliable. Additionally, the system must be able to address a vast range of possible engine operation anomalies through a host of different types of measurements supported by a fast algorithm/architecture processing capability that can identify "true" (real) engine operation anomalies. False anomaly condition reports for such a system must be essentially eliminated. The accuracy of identifying only real anomaly conditions has been an issue with the Space Shuttle Main Engine (SSME) in the past. Much improvement in many of the technologies to address these areas is required. The objectives of this study were to identify and demonstrate a consistent assessment methodology that can evaluate the capability of next generation engine health management system concepts to respond in a correct, timely manner to alleviate an operational engine anomaly condition during flight. Science Applications International Corporation (SAIC), with support from NASA Marshall Space Flight Center, identified a probabilistic modeling approach to assess engine health management system concept effectiveness using a deterministic anomaly-time event assessment modeling approach that can be applied in the engine preliminary design stage of development to assess engine health management system concept effectiveness. Much discussion in this paper focuses on the formulation and application approach in performing this assessment. This includes detailed discussion of key modeling assumptions, the overall assessment methodology approach

  19. Model-Based Systems Engineering Pilot Program at NASA Langley

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

    2012-01-01

    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  20. NASA Marshall Space Flight Center solar observatory

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1988-01-01

    A description is provided of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and a summary is given of its observations and data reduction during Jan. to Mar. 1988. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer center. The data are represented by longitudinal contours with azimuth plots.

  1. NASA Marches on with Test of RS-25 Engine for New Space Launch System

    NASA Image and Video Library

    2016-07-29

    NASA engineers conducted a successful developmental test of RS-25 rocket engine No. 0528 July 29, 2016, to collect critical performance data for the most powerful rocket in the world – the Space Launch System (SLS). The engine roared to life for a full 650-second test on the A-1 Test Stand at NASA’s Stennis Space Center, near Bay St. Louis, Mississippi, marking another step forward in development of the SLS, which will launch humans deeper into space than ever before, including on the journey to Mars. Four RS-25 engines, joined with a pair of solid rocket boosters, will power the SLS core stage at launch. The RS-25 engines used on the first four SLS flights are former space shuttle main engines, modified to operate at a higher performance level and with a new engine controller, which allows communication between the vehicle and engine.

  2. NASA, Engineering, and Swarming Robots

    NASA Technical Reports Server (NTRS)

    Leucht, Kurt

    2015-01-01

    This presentation is an introduction to NASA, to science and engineering, to biologically inspired robotics, and to the Swarmie ant-inspired robot project at KSC. This presentation is geared towards elementary school students, middle school students, and also high school students. This presentation is suitable for use in STEM (science, technology, engineering, and math) outreach events. The first use of this presentation will be on Oct 28, 2015 at Madison Middle School in Titusville, Florida where the author has been asked by the NASA-KSC Speakers Bureau to speak to the students about the Swarmie robots.

  3. Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study

    NASA Technical Reports Server (NTRS)

    Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.

    2003-01-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.

  4. FOD Prevention at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lowrey, Nikki M.

    2010-01-01

    NASA-MSFC directive MID 5340.1 requires FOD prevention for all flight hardware projects, and requires all support organizations to comply. MSFC-STD-3598 implements a standard approach for FOD prevention, tailored from NAS 412. Three levels of FOD Sensitive Area are identified, adopting existing practices at other NASA facilities. Additional emphasis is given to prevention of impact damage and mitigation of facility FOD sources, especially leaks and spills. Impact Damage Susceptible (IDS) items are identified as FOD-sensitive as well as hardware vulnerable to entrapment of small items.

  5. NASA Conducts First RS-25 Rocket Engine Test of 2018

    NASA Image and Video Library

    2018-01-16

    A main objective for today’s test will be testing a new flight controller or “brain” of the engine. The controller, which is currently installed on a developmental engine, has the electronics that operate the engine and communicate with the SLS vehicle. Once test data is certified, the engine controller will be removed and installed on a flight engine in preparation for flight of SLS and the Orion spacecraft.

  6. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  7. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  8. Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

  9. Summary of results of NASA F-15 flight research program

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Trippensee, G. A.; Fisher, D. F.; Putnam, T. W.

    1986-01-01

    NASA conducted a multidisciplinary flight research program on the F-15 airplane. The program began in 1976 when two preproduction airplanes were obtained from the U.S. Air Force. Major projects involved stability and control, handling qualities, propulsion, aerodynamics, propulsion controls, and integrated propulsion-flight controls. Several government agencies and aerospace contractors were involved. In excess of 330 flights were flown, and over 85 papers and reports were published. This document describes the overall program, the projects, and the key results. The F-15 was demonstrated to be an excellent flight research vehicle, producing high-quality results.

  10. The NASA Human Space Flight Supply Chain, Current and Future

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2007-01-01

    The current NASA Human Space Flight transportation system, the Space Shuttle, is scheduled for final flight in 2010. The Exploration initiative will create a new capability with a combination of existing systems and new flight and ground elements. To fully understand and act on the implications of such change it is necessary to understand what, how, when and where such changes occur and more importantly, how all these interact. This paper presents Human Space Flight, with an emphasis on KSC Launch and Landing, as a Supply Chain of both information and materials. A supply chain methodology for understanding the flow of information and materials is presented. Further, modeling and simulation projects funded by the Exploration initiative to understand the NASA Exploration Supply Chain are explained. Key concepts and their purpose, including the Enterprise, Locations, Physical and Organizational Functional Units, Products, and Resources, are explained. It is shown that the art, science and perspective of Supply Chain Management is not only applicable to such a government & contractor operation, it is also an invaluable approach for understanding, focusing improvement and growth. It is shown that such commercial practice applies to Human Space Flight and is invaluable towards one day creating routine, affordable access to and from space.

  11. Bioinspired engineering of exploration systems for NASA and DoD

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita; Chahl, Javaan; Srinivasan, M. V.; Young, L.; Werblin, Frank; Hine, Butler; Zornetzer, Steven

    2002-01-01

    A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers.

  12. The Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD) at NASA's Dryden Flight Research Center, Edwards, Calif.

    NASA Image and Video Library

    2007-06-25

    Lit by sunlight filtered through the smoke of a distant forest fire, the Space Shuttle Atlantis receives post-flight servicing in the Mate-Demate Device (MDD), following its landing at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft.

  13. Re-Engineering Complex Legacy Systems at NASA

    NASA Technical Reports Server (NTRS)

    Ruszkowski, James; Meshkat, Leila

    2010-01-01

    The Flight Production Process (FPP) Re-engineering project has established a Model-Based Systems Engineering (MBSE) methodology and the technological infrastructure for the design and development of a reference, product-line architecture as well as an integrated workflow model for the Mission Operations System (MOS) for human space exploration missions at NASA Johnson Space Center. The design and architectural artifacts have been developed based on the expertise and knowledge of numerous Subject Matter Experts (SMEs). The technological infrastructure developed by the FPP Re-engineering project has enabled the structured collection and integration of this knowledge and further provides simulation and analysis capabilities for optimization purposes. A key strength of this strategy has been the judicious combination of COTS products with custom coding. The lean management approach that has led to the success of this project is based on having a strong vision for the whole lifecycle of the project and its progress over time, a goal-based design and development approach, a small team of highly specialized people in areas that are critical to the project, and an interactive approach for infusing new technologies into existing processes. This project, which has had a relatively small amount of funding, is on the cutting edge with respect to the utilization of model-based design and systems engineering. An overarching challenge that was overcome by this project was to convince upper management of the needs and merits of giving up more conventional design methodologies (such as paper-based documents and unwieldy and unstructured flow diagrams and schedules) in favor of advanced model-based systems engineering approaches.

  14. Return to flight SSME test at A2 test stand

    NASA Image and Video Library

    2004-07-16

    The Space Shuttle Main Engine (SSME) reached a historic milestone July 16, 2004, when a successful flight acceptance test was conducted at NASA Stennis Space Center (SSC). The engine tested today is the first complete engine to be tested and shipped in its entirety to Kennedy Space Center for installation on Space Shuttle Discovery for STS-114, NASA's Return to Flight mission. The engine test, which began about 3:59 p.m. CDT, ran for 520 seconds (8 minutes), the length of time it takes for the Space Shuttle to reach orbit.

  15. Theseus Engine Being Unloaded

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Crew members are seen here unloading an engine of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change

  16. The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training.

  17. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  18. Report to NASA Committee on Aircraft Operating Problems Relative to Aviation Safety Engineering and Research Activities

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The following report highlights some of the work accomplished by the Aviation Safety Engineering and Research Division of the Flight Safety Foundations since the last report to the NASA Committee on Aircraft Operating Problems on 22 May 1963. The information presented is in summary form. Additional details may be provided upon request of the reports themselves may be obtained from AvSER.

  19. Software Reliability Analysis of NASA Space Flight Software: A Practical Experience

    PubMed Central

    Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S.; Mcginnis, Issac

    2017-01-01

    In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions. PMID:29278255

  20. Software Reliability Analysis of NASA Space Flight Software: A Practical Experience.

    PubMed

    Sukhwani, Harish; Alonso, Javier; Trivedi, Kishor S; Mcginnis, Issac

    2016-01-01

    In this paper, we present the software reliability analysis of the flight software of a recently launched space mission. For our analysis, we use the defect reports collected during the flight software development. We find that this software was developed in multiple releases, each release spanning across all software life-cycle phases. We also find that the software releases were developed and tested for four different hardware platforms, spanning from off-the-shelf or emulation hardware to actual flight hardware. For releases that exhibit reliability growth or decay, we fit Software Reliability Growth Models (SRGM); otherwise we fit a distribution function. We find that most releases exhibit reliability growth, with Log-Logistic (NHPP) and S-Shaped (NHPP) as the best-fit SRGMs. For the releases that experience reliability decay, we investigate the causes for the same. We find that such releases were the first software releases to be tested on a new hardware platform, and hence they encountered major hardware integration issues. Also such releases seem to have been developed under time pressure in order to start testing on the new hardware platform sooner. Such releases exhibit poor reliability growth, and hence exhibit high predicted failure rate. Other problems include hardware specification changes and delivery delays from vendors. Thus, our analysis provides critical insights and inputs to the management to improve the software development process. As NASA has moved towards a product line engineering for its flight software development, software for future space missions will be developed in a similar manner and hence the analysis results for this mission can be considered as a baseline for future flight software missions.

  1. Propulsion system-flight control integration-flight evaluation and technology transition

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.

    1990-01-01

    Integration of propulsion and flight control systems and their optimization offering significant performance improvement are assessed. In particular, research programs conducted by NASA on flight control systems and propulsion system-flight control interactions on the YF-12 and F-15 aircraft are addressed; these programs have demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved aircraft performance. Focus is placed on altitude control, speed-Mach control, integrated controller design, as well as flight control systems and digital electronic engine control. A highly integrated digital electronic control program is analyzed and compared with a performance seeking control program. It is shown that the flight evaluation and demonstration of these technologies have been a key part in the transition of the concepts to production and operational use on a timely basis.

  2. Human Space Flight Plans Committee

    NASA Image and Video Library

    2009-08-11

    Dr. Edward Crawley, Ford Professor of Engineering at MIT and co-chair, NASA Exploration Technology Development Program Review Committee speaks during the final meeting of the Human Space Flight Review Committee, Wednesday, Aug. 12, 2009, in Washington. Photo Credit: (NASA/Paul E. Alers)

  3. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly F.

    2017-01-01

    Major hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of a major new capability for deep space human exploration. SLS continues to pursue a 2018 first launch of Exploration Mission 1 (EM-1). At NASA's Michoud Assembly Facility near New Orleans, LA, Boeing completed welding of structural test and flight liquid hydrogen tanks, and engine sections. Test stands for core stage structural tests at NASA's Marshall Space Flight Center, Huntsville, AL. neared completion. The B2 test stand at NASA's Stennis Space Center, MS, completed major structural renovation to support core stage green run testing in 2018. Orbital ATK successfully test fired its second qualification solid rocket motor in the Utah desert and began casting the motor segments for EM-1. Aerojet Rocketdyne completed its series of test firings to adapt the heritage RS-25 engine to SLS performance requirements. Production is under way on the first five new engine controllers. NASA also signed a contract with Aerojet Rocketdyne for propulsion of the RL10 engines for the Exploration Upper Stage. United Launch Alliance delivered the structural test article for the Interim Cryogenic Propulsion Stage to MSFC for tests and construction was under way on the flight stage. Flight software testing at MSFC, including power quality and command and data handling, was completed. Substantial progress is planned for 2017. Liquid oxygen tank production will be completed at Michoud. Structural testing at Marshall will get under way. RS-25 hotfire testing will verify the new engine controllers. Core stage horizontal integration will begin. The core stage pathfinder mockup will arrive at the B2 test stand for fit checks and tests. EUS will complete preliminary design review. This paper will discuss the technical and programmatic successes and challenges of 2016 and look ahead to plans for 2017.

  4. Convair F-106B Delta Dart Prepares for a Flight

    NASA Image and Video Library

    1969-05-21

    National Aeronautics and Space Administration (NASA) pilot Cliff Crabbs and the flight operations crew prepare a Convair F-106B Delta Dart for a flight from the Lewis Research Center in Cleveland, Ohio. NASA acquired the aircraft three years earlier to investigate noise-reducing inlet and nozzle designs for the supersonic transport engine program. Two General Electric J85 engines were installed underneath the aircraft’s delta wings to simulate the general shape of the supersonic transport’s engines. One of the engines was modified with experimental inlet or nozzle configurations. The unmodified engine was used for comparison. Most F-106B flights were flown in a 200-mile path over the lake between Buffalo and Sandusky, known as the Lake Erie Corridor. The 1100-miles per hour flight took only 11 minutes at an altitude of 30,000 feet. The aircraft almost always returned with a depleted fuel supply so a Visual Flight Rules operation was required. Following the crash of another jet fighter at Lewis in July 1969, the F-106s were stationed at Selfridge Air Force Base in Michigan. NASA pilots flew transport planes each morning to the base before commencing the F-106B missions.

  5. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  6. Linear Aerospike SR-71 Experiment (LASRE) refueling during first flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 refuels with an Edwards Air Force Base KC-135 during the first flight of the NASA/Rocketdyne/ Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE). The flight took place Oct. 31 at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It

  7. Flight Test of Composite Model Reference Adaptive Control (CMRAC) Augmentation Using NASA AirSTAR Infrastructure

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Gadient, ROss; Lavretsky, Eugene

    2011-01-01

    This paper presents flight test results of a robust linear baseline controller with and without composite adaptive control augmentation. The flight testing was conducted using the NASA Generic Transport Model as part of the Airborne Subscale Transport Aircraft Research system at NASA Langley Research Center.

  8. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility has been developed at NASA Lewis to allow integrated propulsion-control and flight-control algorithm development and evaluation in real time. As a preliminary check of the simulator facility and the correct integration of its components, the control design and physics models for an STOVL fighter aircraft model have been demonstrated, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The results show that this fixed-based flight simulator can provide real-time feedback and display of both airframe and propulsion variables for validation of integrated systems and testing of control design methodologies and cockpit mechanizations.

  9. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  10. Flight of a UV spectrophotometer aboard Galileo 2, the NASA Convair 990 aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunderwadel, J. L.; Hanser, F. A.

    1976-01-01

    An ultraviolet interference-filter spectrophotometer (UVS) fabricated for aircraft-borne use on the DOT Climatic Impact Assessment Program (CIAP) has been successfully tested in a series of flights on the NASA Convair 990, Galileo II. UV flux data and the calculated total ozone above the flight path are reported for several of the flights. Good agreement is obtained with the total ozone as deducted by integration of an ozone sonde vertical profile obtained at Wallops Island, Virginia near the time of a CV-990 underpass. Possible advantages of use of the UVS in the NASA Global Atmospheric Sampling Program are discussed.

  11. CSBF Engineering Overview

    NASA Astrophysics Data System (ADS)

    Orr, Dwayne

    CSBF Engineering Overview Dwayne Orr (Presenting Author) Columbia Scientific Balloon Facility, Palestine, Texas (USA) Dwayne.Orr@csbf.nasa.gov The Columbia Scientific Balloon Facility (CSBF) at Palestine, Texas provides operational and engineering support for the launch of NASA Scientific Balloons. Over the years with the support of the NASA Balloon Program Office, CSBF has developed unique flight systems with the focus of providing a highly reliable, cost effective medium for giving Scientist’s access to a near space environment. This paper will provide an overview of the CSBF flight systems with an emphasis on recent developments and plans for the future.

  12. INSPACE CHEMICAL PROPULSION SYSTEMS AT NASA's MARSHALL SPACE FLIGHT CENTER: HERITAGE AND CAPABILITIES

    NASA Technical Reports Server (NTRS)

    McRight, P. S.; Sheehy, J. A.; Blevins, J. A.

    2005-01-01

    NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.

  13. Clinical Core Competency Training for NASA Flight Surgeons

    NASA Technical Reports Server (NTRS)

    Polk, J. D.; Schmid, Josef; Hurst, Victor, IV; Doerr, Harold K.; Doerr, Harold K.

    2007-01-01

    Introduction: The cohort of NASA flight surgeons (FS) is a very accomplished group with varied clinical backgrounds; however, the NASA Flight Surgeon Office has identified that the extremely demanding schedule of this cohort prevents many of these physicians from practicing clinical medicine on a regular basis. In an effort to improve clinical competency, the NASA FS Office has dedicated one day a week for the FS to receive clinical training. Each week, an FS is assigned to one of five clinical settings, one being medical patient simulation. The Medical Operations Support Team (MOST) was tasked to develop curricula using medical patient simulation that would meet the clinical and operational needs of the NASA FS Office. Methods: The MOST met with the Lead FS and Training Lead FS to identify those core competencies most important to the FS cohort. The MOST presented core competency standards from the American Colleges of Emergency Medicine and Internal Medicine as a basis for developing the training. Results: The MOST identified those clinical areas that could be best demonstrated and taught using medical patient simulation, in particular, using high fidelity human patient simulators. Curricula are currently being developed and additional classes will be implemented to instruct the FS cohort. The curricula will incorporate several environments for instruction, including lab-based and simulated microgravity-based environments. Discussion: The response from the NASA FS cohort to the initial introductory class has been positive. As a result of this effort, the MOST has identified three types of training to meet the clinical needs of the FS Office; clinical core competency training, individual clinical refresher training, and just-in-time training (specific for post-ISS Expedition landings). The MOST is continuing to work with the FS Office to augment the clinical training for the FS cohort, including the integration of Web-based learning.

  14. Theseus Waits on Lakebed for First Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype remotely-piloted aircraft (RPA) waits on the lakebed before its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental

  15. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of Goddard Space Flight Center senior management and members of the Royal Swedish Academy of Engineering Sciences pose for a group photo in the atrium area of Building 28 at GSFC. Photo Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Numerical simulation of helicopter engine plume in forward flight

    NASA Technical Reports Server (NTRS)

    Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.

    1994-01-01

    Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.

  17. NASA Sea Ice and Snow Validation Program for the DMSP SSM/I: NASA DC-8 flight report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.

    1988-01-01

    In June 1987 a new microwave sensor called the Special Sensor Microwave Imager (SSM/I) was launched as part of the Defense Meteorological Satellite Program (DMSP). In recognition of the importance of this sensor to the polar research community, NASA developed a program to acquire the data, to convert the data into sea ice parameters, and finally to validate and archive both the SSM/I radiances and the derived sea ice parameters. Central to NASA's sea ice validation program was a series of SSM/I aircraft underflights with the NASA DC-8 airborne Laboratory. The mission (the Arctic '88 Sea Ice Mission) was completed in March 1988. This report summarizes the mission and includes a summary of aircraft instrumentation, coordination with participating Navy aircraft, flight objectives, flight plans, data collected, SSM/I orbits for each day during the mission, and lists several piggyback experiments supported during this mission.

  18. NASA Testing the Webb Telescope's MIRI Thermal Shield

    NASA Image and Video Library

    2017-12-08

    NASA engineer Acey Herrera recently checked out copper test wires inside the thermal shield of the Mid-Infrared Instrument, known as MIRI, that will fly aboard NASA's James Webb Space Telescope. The shield is designed to protect the vital MIRI instrument from excess heat. At the time of the photo, the thermal shield was about to go through rigorous environmental testing to ensure it can perform properly in the extreme cold temperatures that it will encounter in space. Herrera is working in a thermal vacuum chamber at NASA's Goddard Space Flight Center in Greenbelt, Md. As the MIRI shield lead, Herrera along with a thermal engineer and cryo-engineer verify that the shield is ready for testing. On the Webb telescope, the pioneering camera and spectrometer that comprise the MIRI instrument sit inside the Integrated Science Instrument Module flight structure, that holds Webb's four instruments and their electronic systems during launch and operations. Read more: 1.usa.gov/15I0wrS Credit: NASA/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 1, Part 2

    NASA Technical Reports Server (NTRS)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume I: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements of the program's operations.

  20. AJ26 engine test

    NASA Image and Video Library

    2011-02-07

    NASA Administrator Charles Bolden (l) and John C. Stennis Space Center Director Patrick Scheuermann watch the successful test of the first Aerojet AJ26 flight engine Feb. 7, 2011. The test was conducted on the E-1 Test Stand at Stennis. The engine now will be sent to Wallops Flight Facility in Virginia, where it will be used to power the first stage of Orbital Sciences Corporation's Taurus II space vehicle. The Feb. 7 test supports NASA's commitment to partner with companies to provide commercial cargo flights to the International Space Station. NASA has partnered with Orbital to carry out the first of eight cargo missions to the space station in early 2012.

  1. NASA C-17 Usage Overview

    NASA Technical Reports Server (NTRS)

    Miller, Christopher R.

    2008-01-01

    The usage and integrated vehicle health management of the NASA C-17. Propulsion health management flight objectives for the aircraft include mapping of the High Pressure Compressor in order to calibrate a Pratt and Whitney engine model and the fusion of data collected from existing sensors and signals to develop models, analysis methods and information fusion algorithms. An additional health manage flight objective is to demonstrate that the Commercial Modular Aero-Propulsion Systems Simulation engine model can successfully execute in real time onboard the C-17 T-1 aircraft using engine and aircraft flight data as inputs. Future work will address aircraft durability and aging, airframe health management, and propulsion health management research in the areas of gas path and engine vibration.

  2. Linear Aerospike SR-71 Experiment (LASRE) first flight view from above

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A NASA SR-71 made its successful first flight Oct. 31 as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a maximum speed of Mach 1.2 before landing at Edwards at 10:21 a.m. PST, successfully validating the SR-71/linear aerospike experiment configuration. The goal of the first flight was to evaluate the aerodynamic characteristics and the handling of the SR-71/linear aerospike experiment configuration. The engine was not fired during the flight. The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous helium and liquid nitrogen through the experiment to check its plumbing system for leaks and to test engine operational characteristics. During the other three flights, liquid oxygen was cycled through the engine. Two engine hot-firings were also completed on the ground. A final hot-fire test flight was canceled because of liquid oxygen leaks in the test apparatus. The LASRE experiment itself was a 20-percent-scale, half-span model of a lifting body shape (X-33) without the fins. It was rotated 90 degrees and equipped with eight thrust

  3. NASA/Boeing Orbital Test Flight Simulation

    NASA Image and Video Library

    2018-03-07

    NASA, Boeing and United Launch Alliance (ULA) conduct a simulation of launch procedures for Boeing’s Orbital Test Flight, the first uncrewed test of the company’s CST-100 Starliner and a ULA Atlas V rocket. Launch teams participated in the simulation across the country, including inside the Launch Vehicle Data Center at Hangar AE at Cape Canaveral Air Force Station in Florida. The Starliner will launch on an Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.

  4. Engineering Management Capstone Project EM 697: Compare and Contrast Risk Management Implementation at NASA and the US Army

    NASA Technical Reports Server (NTRS)

    Brothers, Mary Ann; Safie, Fayssal M. (Technical Monitor)

    2002-01-01

    NASA at Marshall Space Flight Center (MSFC) and the U.S. Army at Redstone Arsenal were analyzed to determine whether they were successful in implementing their risk management program. Risk management implementation surveys were distributed to aid in this analysis. The scope is limited to NASA S&MA (Safety and Mission Assurance) at MSFC, including applicable support contractors, and the US Army Engineering Directorate, including applicable contractors, located at Redstone Arsenal. NASA has moderately higher risk management implementation survey scores than the Army. Accordingly, the implementation of the risk management program at NASA is considered good while only two of five of the survey categories indicated that the risk management implementation is good at the Army.

  5. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine C

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor was evaluated. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penality. The NASA core suppressor without the spltter suppressed most of the core noise without any engine performance penalty.

  6. NASA software documentation standard software engineering program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Software Documentation Standard (hereinafter referred to as Standard) can be applied to the documentation of all NASA software. This Standard is limited to documentation format and content requirements. It does not mandate specific management, engineering, or assurance standards or techniques. This Standard defines the format and content of documentation for software acquisition, development, and sustaining engineering. Format requirements address where information shall be recorded and content requirements address what information shall be recorded. This Standard provides a framework to allow consistency of documentation across NASA and visibility into the completeness of project documentation. This basic framework consists of four major sections (or volumes). The Management Plan contains all planning and business aspects of a software project, including engineering and assurance planning. The Product Specification contains all technical engineering information, including software requirements and design. The Assurance and Test Procedures contains all technical assurance information, including Test, Quality Assurance (QA), and Verification and Validation (V&V). The Management, Engineering, and Assurance Reports is the library and/or listing of all project reports.

  7. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Astronaut and Expeditions 23 and 24 Flight Engineer, Tracy Caldwell Dyson, speaks at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Caldwell Dyson recently returned from a six-month stay aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  8. MD-11 PCA - Research flight team photo

    NASA Technical Reports Server (NTRS)

    1995-01-01

    On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.

  9. Flight-Tested Prototype of BEAM Software

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David

    2006-01-01

    Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.

  10. GN and C Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lanzi, Ryamond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system (LAS) already in development. The NESC was tasked with both formulating a conceptual objective system (OS) design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. The goal was to obtain sufficient flight test data to assess performance, validate models/tools, and to reduce the design and development risks for a MLAS OS. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. Overall, the as-flown flight performance was as predicted prior to launch. This paper provides an overview of the guidance navigation and control (GN&C) technical approaches employed on this rapid prototyping activity. This paper describes the methodology used to design the MLAS flight test vehicle (FTV). Lessons that were learned during this rapid prototyping project are also summarized.

  11. NASA - Human Space Flight

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).

  12. High Stability Engine Control (HISTEC): Flight Demonstration Results

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  13. NASA B737 flight test results of the total energy control system

    NASA Technical Reports Server (NTRS)

    Bruce, Kevin R.

    1987-01-01

    The Total Energy Control System (TECS) is an integrated autopilot/autothrottle developed by BCAC that was test flown on NASA Langley's Transport System Research Vehicle (i.e., a highly modified Boeing B737). This systems was developed using principles of total energy in which the total kinetic and potential energy of the airplane was controlled by the throttles, and the energy distribution controled by the elevator. TECS integrates all the control functions of a conventional pitch autopilot and autothrottle into a single generalized control concept. This integration provides decoupled flightpath and maneuver control, as well as a coordinated throttle response for all maneuvers. A mode hierarchy was established to preclude exceeding airplane safety and performance limits. The flight test of TECS took place as a series of five flights over a 33-week period during September 1985 at NASA Langley. Most of the original flight test plan was completed within the first three flights with the system not exhibiting any instabilities or design problems that required any gain adjustment during flight.

  14. The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2004-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented.

  15. From Paper to Production to Test: An Update on NASA's J-2X Engine for Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Michael

    2011-01-01

    The NASA/industry team responsible for developing the J-2X upper stage engine for the Space Launch System (SLS) Program has made significant progress toward moving beyond the design phase and into production, assembly, and test of development hardware. The J-2X engine exemplifies the SLS Program goal of using proven technology and experience from more than 50 years of United States spaceflight experience combined with modern manufacturing processes and approaches. It will power the second stage of the fully evolved SLS Program launch vehicle that will enable a return to human exploration of space beyond low earth orbit. Pratt & Whitney Rocketdyne (PWR) is under contract to develop and produce the engine, leveraging its flight-proven LH2/LOX, gas generator cycle J-2 and RS-68 engine capabilities, recent experience with the X-33 aerospike XRS-2200 engine, and development knowledge of the J-2S tap-off cycle engine. The J- 2X employs a gas generator operating cycle designed to produce 294,000 pounds of vacuum thrust in primary operating mode with its full nozzle extension. With a truncated nozzle extension suitable to support engine clustering on the stage, the nominal vacuum thrust level in primary mode is 285,000 pounds. It also has a secondary mode, during which it operates at 80 percent thrust by altering its mixture ratio. The J-2X development philosophy is based on proven hardware, an aggressive development schedule, and early risk reduction. NASA Marshall Space Flight Center (MSFC) and PWR began development of the J-2X in June 2006. The government/industry team of more than 600 people within NASA and PWR successfully completed the Critical Design Review (CDR) in November 2008, following extensive risk mitigation testing. Assembly of the first development engine was completed in May 2011 and the first engine test was conducted at the NASA Stennis Space Center (SSC), test stand A2, on 14 July 2011. Testing of the first development engine will continue through the

  16. AJ26 engine test

    NASA Image and Video Library

    2011-12-15

    Stennis Space Center test-fired Aerojet AJ26 flight engine No. 8 on Dec. 15, continuing a commercial partnership with Orbital Services Corporation. Orbital has partnered with NASA to provide commercial cargo flights to the International Space Station. The AJ26 engines tested at Stennis will power the company's Taurus II space launch vehicle on the flights.

  17. Preliminary flight test results of a fly-by-throttle emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.

  18. Propulsion Flight-Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nate; Vachon, M. Jake; Richwine, Dave; Moes, Tim; Creech, Gray

    2003-01-01

    NASA Dryden Flight Research Center s new Propulsion Flight Test Fixture (PFTF), designed in house, is an airborne engine-testing facility that enables engineers to gather flight data on small experimental engines. Without the PFTF, it would be necessary to obtain such data from traditional wind tunnels, ground test stands, or laboratory test rigs. Traditionally, flight testing is reserved for the last phase of engine development. Generally, engines that embody new propulsion concepts are not put into flight environments until their designs are mature: in such cases, either vehicles are designed around the engines or else the engines are mounted in or on missiles. However, a captive carry capability of the PFTF makes it possible to test engines that feature air-breathing designs (for example, designs based on the rocket-based combined cycle) economically in subscale experiments. The discovery of unknowns made evident through flight tests provides valuable information to engine designers early in development, before key design decisions are made, thereby potentially affording large benefits in the long term. This is especially true in the transonic region of flight (from mach 0.9 to around 1.2), where it can be difficult to obtain data from wind tunnels and computational fluid dynamics. In January 2002, flight-envelope expansion to verify the design and capabilities of the PFTF was completed. The PFTF was flown on a specially equipped supersonic F-15B research testbed airplane, mounted on the airplane at a center-line attachment fixture, as shown in Figure 1. NASA s F-15B testbed has been used for several years as a flight-research platform. Equipped with extensive research air-data, video, and other instrumentation systems, the airplane carries externally mounted test articles. Traditionally, the majority of test articles flown have been mounted at the centerline tank-attachment fixture, which is a hard-point (essentially, a standardized weapon-mounting fixture

  19. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    NASA Image and Video Library

    1998-03-04

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. "I think all in all we had a good mission today," Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew "thought it was a really good flight." Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, "We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE."

  20. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  1. Orion flight test previewed on This Week @NASA - November 7, 2014

    NASA Image and Video Library

    2014-11-07

    A NASA media briefing on Nov. 6 at Kennedy Space Center highlighted the fully assembled Orion spacecraft and details of its first test flight, scheduled for Dec. 4. The 4 and-a-half hour flight, called Exploration Flight Test-1, will send Orion 3,600 miles from Earth on a two-orbit flight to confirm its critical systems are ready for the challenges of eventually sending astronauts on deep space missions to an asteroid and Mars. Also, Delta IV Heavy wet dress test, Next ISS crew trains, Space agency leaders support ISS, Curiosity confirms orbital data and more!

  2. cFE/CFS (Core Flight Executive/Core Flight System)

    NASA Technical Reports Server (NTRS)

    Wildermann, Charles P.

    2008-01-01

    This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.

  3. NASA Vision. Volume 1, No. 5

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    Contents include the following: Administrator O'Keefe addresses NASA's return to flight. New independent engineering and safety center. Around the centers. NASA and your library: local libraries making room for space. Robonaut: the next generation. Inspiring the next generation ... of Hispanics. NASA and teachers focus on parks. GSFC director gives keynote address. Agency honor awards. Summer interns join the NASA team. Catching a comet's tail in Earth's atmosphere.

  4. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    NASA Technical Reports Server (NTRS)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  5. Software Engineering for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  6. NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  7. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Astronaut and Expeditions 23 and 24 Flight Engineer, Tracy Caldwell Dyson, far left, speaks at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Caldwell Dyson recently returned from a six-month stay aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  8. NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft undergoes pre-flight checks before performing the first flight of the Quiet Spike project. The first flight was performed for evaluation purposes, and the spike was not extended. The Quiet Spike was developed as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  9. X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a 'lifeboat' to enable a full seven-person station crew to evacuate in an emergency.

  10. X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001

    NASA Image and Video Library

    2001-07-10

    The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a "lifeboat" to enable a full seven-person station crew to evacuate in an emergency.

  11. The Columbia Accident Investigation and The NASA Glenn Ballistic Impact Laboratory Contributions Supporting NASA's Return to Flight

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    2007-01-01

    On February 1, 2003, the Space Shuttle Columbia broke apart during reentry, resulting in loss of the vehicle and its seven crewmembers. For the next several months, an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA, concluded in August, 2003 that the most likely cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into the mission's launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of left wing, which ultimately led to the breakup of the orbiter. The findings of the CAIB were supported by ballistic impact tests, which simulated the physics of External Tank Foam impact on the RCC wing leading edge material. These tests ranged from fundamental material characterization tests to full-scale Orbiter Wing Leading Edge tests. Following the accident investigation, NASA spent the next 18 months focused on returning the shuttle safely to flight. In order to fully evaluate all potential impact threats from the many debris sources on the Space Shuttle during ascent, NASA instituted a significant impact testing program. The results from these tests led to the validation of high-fidelity computer models, capable of predicting actual or potential Shuttle impact events, were used in the certification of STS-114, NASA s Return to Flight Mission, as safe to fly. This presentation will provide a look into the inner workings of the Space Shuttle and a behind the scenes perspective on the impact analysis and testing done for the Columbia Accident Investigation and

  12. Requirements and feasibility study of flight demonstration of Active Controls Technology (ACT) on the NASA 515 airplane

    NASA Technical Reports Server (NTRS)

    Gordon, C. K.

    1975-01-01

    A preliminary design study was conducted to evaluate the suitability of the NASA 515 airplane as a flight demonstration vehicle, and to develop plans, schedules, and budget costs for fly-by-wire/active controls technology flight validation in the NASA 515 airplane. The preliminary design and planning were accomplished for two phases of flight validation.

  13. The Electrical Engineering Profession at NASA

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2004-01-01

    Presentation given at the opening ceremony of the Centre of Vocational Excellence in Birmingham, England on October 7, 2004. Presentation highlights examples of work performed by Electrical Engineers at the NASA Glenn Research Center and highlights the demographics of the NASA workforce. Presentation is intended to be inspirational in nature.

  14. Aero-acoustic performance comparison of core engine noise suppressors on NASA quiet engine 'C'

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Schaefer, J. W.

    1977-01-01

    The purpose of the experimental program reported herein was to evaluate and compare the relative aero-acoustic effectiveness of two core engine suppressors, a contractor-designed suppressor delivered with the Quiet Engine, and a NASA-designed suppressor, designed and built subsequently. The NASA suppressor was tested with and without a splitter making a total of three configurations being reported in addition to the baseline hardwall case. The aerodynamic results are presented in terms of tailpipe pressure loss, corrected net thrust, and corrected specific fuel consumption as functions of engine power setting. The acoustic results are divided into duct and far-field acoustic data. The NASA-designed core suppressor did the better job of suppressing aft end noise, but the splitter associated with it caused a significant engine performance penalty. The NASA core suppressor without the splitter suppressed most of the core noise without any engine performance penalty.

  15. Highlights of Nanosatellite Development Program at NASA-Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rhee, Michael S.; Zakrzwski, Chuck M.; Thomas, Mike A.; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    Currently the GN&C's Propulsion Branch of the NASA's Goddard Space Flight Center (GSFC) is conducting a broad technology development program for propulsion devices that are ideally suited for nanosatellite missions. The goal of our program is to develop nanosatellite propulsion systems that can be flight qualified in a few years and flown in support of nanosatellite missions. The miniature cold gas thruster technology, the first product from the GSFC's propulsion component technology development program, will be flown on the upcoming ST-5 mission in 2003. The ST-5 mission is designed to validate various nanosatellite technologies in all major subsystem areas. It is a precursor mission to more ambitious nanosatellite missions such as the Magnetospheric Constellation mission. By teaming with the industry and government partners, the GSFC propulsion component technology development program is aimed at pursuing a multitude of nanosatellite propulsion options simultaneously, ranging from miniaturized thrusters based on traditional chemical engines to MEMS based thruster systems. After a conceptual study phase to determine the feasibility and the applicability to nanosatellite missions, flight like prototypes of selected technology are fabricated for testing. The development program will further narrow down the effort to those technologies that are considered "mission-enabling" for future nanosatellite missions. These technologies will be flight qualified to be flown on upcoming nanosatellite missions. This paper will report on the status of our development program and provide details on the following technologies: Low power miniature cold gas thruster Nanosatellite solid rocket motor. Solid propellant gas generator system for cold gas thruster. Low temperature hydrazine blends for miniature hydrazine thruster. MEMS mono propellant thruster using hydrogen peroxide.

  16. Facilities Engineering in NASA

    NASA Technical Reports Server (NTRS)

    Pagluiso, M. A.

    1970-01-01

    An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.

  17. First Shuttle/747 Captive Flight

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise rides smoothly atop NASA's first Shuttle Carrier Aircraft (SCA), NASA 905, during the first of the shuttle program's Approach and Landing Tests (ALT) at the Dryden Flight Research Center, Edwards, California, in 1977. During the nearly one year-long series of tests, Enterprise was taken aloft on the SCA to study the aerodynamics of the mated vehicles and, in a series of five free flights, tested the glide and landing characteristics of the orbiter prototype. In this photo, the main engine area on the aft end of Enterprise is covered with a tail cone to reduce aerodynamic drag that affects the horizontal tail of the SCA, on which tip fins have been installed to increase stability when the aircraft carries an orbiter. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes

  18. HL-10 in flight over lakebed

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The HL-10 Lifting Body is seen here in flight over Rogers Dry lakebed. Like the other lifting bodies, the HL-10 made a steep descent toward the lakebed, followed by a high-speed landing. This was due to the vehicle's low lift-over-drag ratio. The first 11 flights of the HL-10 were unpowered, flown to check the vehicle's handling and stability before rocket-powered flights began using the XLR-11 rocket engine. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through

  19. HL-10 in flight after launch

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The HL-10 Lifting Body is seen here in powered flight shortly after launch from the B-52 mothership. When HL-10 powered flights began on October 23, 1968, the vehicle used the same basic XLR-11 rocket engine that powered the original X-1s. A total of five powered flights were made before the HL-10 first flew supersonically on May 9, 1969, with John Manke in the pilot's seat. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the

  20. Technology transfer within the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.

    1992-01-01

    Viewgraphs on technology transfer within the NASA Goddard Space Flight Center presented to Civil Space Technology Development workshop on technology transfer and effectiveness are provided. Topics covered include: obstacles to technology transfer; technology transfer improvement program at GSFC: communication between technology developers and users; and user feedback to technologists.

  1. NASA Computational Case Study: The Flight of Friendship 7

    NASA Technical Reports Server (NTRS)

    Simpson, David G.

    2012-01-01

    In this case study, we learn how to compute the position of an Earth-orbiting spacecraft as a function of time. As an exercise, we compute the position of John Glenn's Mercury spacecraft Friendship 7 as it orbited the Earth during the third flight of NASA's Mercury program.

  2. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  3. The Design and Implementation of NASA's Advanced Flight Computing Module

    NASA Technical Reports Server (NTRS)

    Alkakaj, Leon; Straedy, Richard; Jarvis, Bruce

    1995-01-01

    This paper describes a working flight computer Multichip Module developed jointly by JPL and TRW under their respective research programs in a collaborative fashion. The MCM is fabricated by nCHIP and is packaged within a 2 by 4 inch Al package from Coors. This flight computer module is one of three modules under development by NASA's Advanced Flight Computer (AFC) program. Further development of the Mass Memory and the programmable I/O MCM modules will follow. The three building block modules will then be stacked into a 3D MCM configuration. The mass and volume of the flight computer MCM achieved at 89 grams and 1.5 cubic inches respectively, represent a major enabling technology for future deep space as well as commercial remote sensing applications.

  4. NASA Concludes Summer of RS-25 Testing

    NASA Image and Video Library

    2017-08-30

    NASA engineers closed a summer of hot fire testing Aug. 30 for flight controllers on RS-25 engines that will help power the new Space Launch System (SLS) rocket being built to carry astronauts to deep-space destinations, including Mars. The 500-second hot fire an RS-25 engine flight controller unit on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi marked another step toward the nation’s return to human deep-space exploration missions.

  5. The NASA MLAS Flight Demonstration - A Review of a Highly Successful Test

    NASA Technical Reports Server (NTRS)

    Taylor, Anthony P.; Kelley, Christopher; Magner, Eldred; Peterson, David; Hahn, Jeffrey; Yuchnovicz, Daniel

    2010-01-01

    NASA has tested the Max Launch Abort System (MLAS) as a risk-mitigation design should problems arise with the baseline Orion spacecraft launch abort design. The Max in MLAS is not Maximum, but rather dedicated to Max Faget, The renowned NASA Spacecraft designer. In the fall of 2009, the mission was flown, with great success, from the NASA Wallops Flight Facility. The MLAS flight test vehicle prototype consists of a boost ring, coast ring, and the MLAS fairing itself, which houses an Orion Command Module (CM) boilerplate. The objective of the MLAS flight test is to reorient the fairing with the CM, weighing approximately 29,000 lbs and traveling 290 fps, 180 degrees to an orientation suitable for the release of the CM during a pad abort and low altitude abort. Although multiple parachute deployments are used in the MLAS flight test vehicle to complete its objective, there are only two parachute types employed in the flight test. Five of the nine parachutes used for MLAS are 27.6 ft DO ribbon parachutes, and the remaining four are standard G-12 cargo parachutes. This paper presents an overview of the 27.6 ft DO ribbon parachute system employed on the MLAS flight test vehicle for coast ring separation, fairing reorientation, and as drogue parachutes for the CM after separation from the fairing. Discussion will include: the process used to select this design, previously proven as a spin/stall recovery parachute; descriptions of all components of the parachute system; the minor modifications necessary to adapt the parachute to the MLAS program; the techniques used to analyze the parachute for the multiple roles it performs; a discussion of the rigging techniques used to interface the parachute system to the vehicle; a brief description of how the evolution of the program affected parachute usage and analysis; and a summary of the results of the flight test, including video of the flight test and subsequent summary analysis. . A discussion of the flight test which was

  6. Flight Engineer. Question Book. Expires September 1, 1991.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This question book was developed by the Federal Aviation Administration (FAA) to be used by FAA testing centers and FAA-designated written test examiners when administering the flight engineer written test. The book can be used to test applicants in the following flight engineer knowledge areas: basic, turbojet powered, turbopropeller powered, and…

  7. An overview of in-flight plume diagnostics for rocket engines

    NASA Technical Reports Server (NTRS)

    Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.

    1992-01-01

    An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.

  8. FE Fossum performs aRED In-Flight Maintenance

    NASA Image and Video Library

    2011-07-28

    ISS028-E-019392 (28 July 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.

  9. FE Fossum performs aRED In-Flight Maintenance

    NASA Image and Video Library

    2011-07-28

    ISS028-E-019399 (28 July 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the advanced Resistive Exercise Device (aRED) in the Tranquility node of the International Space Station.

  10. Investigation of wing upper surface flow-field disturbance due to NASA DC-8-72 in-flight inboard thrust-reverser deployment

    NASA Technical Reports Server (NTRS)

    Hamid, Hedayat U.; Margason, Richard J.; Hardy, Gordon

    1995-01-01

    An investigation of the wing upper surface flow-field disturbance due to in-flight inboard thrust reverser deployment on the NASA DC-8-72, which was conducted cooperatively by NASA Ames, the Federal Aviation Administration (FAA), McDonnell Douglas, and the Aerospace Industry Association (AIA), is outlined and discussed in detail. The purpose of this flight test was to obtain tufted flow visualization data which demonstrates the effect of thrust reverser deployment on the wing upper surface flow field to determine if the disturbed flow regions could be modeled by computational methods. A total of six symmetric thrust reversals of the two inboard engines were performed to monitor tuft and flow cone patterns as well as the character of their movement at the nominal Mach numbers of 0.55, 0.70, and 0.85. The tufts and flow cones were photographed and video-taped to determine the type of flow field that occurs with and without the thrust reversers deployed. In addition, the normal NASA DC-8 onboard Data Acquisition Distribution System (DADS) was used to synchronize the cameras. Results of this flight test will be presented in two parts. First, three distinct flow patterns associated with the above Mach numbers were sketched from the motion videos and discussed in detail. Second, other relevant aircraft parameters, such as aircraft's angular orientation, altitude, Mach number, and vertical descent, are discussed. The flight test participants' comments were recorded on the videos and the interested reader is referred to the video supplement section of this report for that information.

  11. Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; Smith, Norm

    1999-01-01

    Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.

  12. Flight performance summary for three NASA Terrier-Malemute II sounding rockets

    NASA Technical Reports Server (NTRS)

    Patterson, R. A.

    1982-01-01

    The subject of this paper is the presentation of flight data for three Terrier-Malemute II sounding rocket vehicles. The Malemute motor was modified by adding insulation and using a propellant that produced less Al2O3 agglomerate in the chamber. This modification, designated Malemute II, reduced the sensitivity of the motor to the roll rate induced motor case burnthrough experienced on some earlier Malemute flights. Two flight tests, including a single stage Malemute II and a Terrier-Malemute II, were made by Sandia to qualify this modification. The three NASA operational flights that are the subject of this paper were made using the modified Malemute II motors.

  13. Integration of a NASA faculty fellowship project within an undergraduate engineering capstone design class

    NASA Astrophysics Data System (ADS)

    Carmen, C.

    2012-11-01

    The United States (US) National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) provides university faculty fellowships that prepare the faculty to implement engineering design class projects that possess the potential to contribute to NASA ESMD objectives. The goal of the ESMD is to develop new capabilities, support technologies and research that will enable sustained and affordable human and robotic space exploration. In order to create a workforce that will have the desire and skills necessary to achieve these goals, the NASA ESMD faculty fellowship program enables university faculty to work on specific projects at a NASA field center and then implement the project within their capstone engineering design class. This allows the senior - or final year - undergraduate engineering design students, the opportunity to develop critical design experience using methods and design tools specified within NASA's Systems Engineering (SE) Handbook. The faculty fellowship projects focus upon four specific areas critical to the future of space exploration: spacecraft, propulsion, lunar and planetary surface systems and ground operations. As the result of a 2010 fellowship, whereby faculty research was conducted at Marshall Space Flight Center (MSFC) in Huntsville, Alabama (AL), senior design students in the Mechanical and Aerospace Engineering (MAE) department at the University of Alabama in Huntsville (UAH) had the opportunity to complete senior design projects that pertained to current work conducted to support ESMD objectives. Specifically, the UAH MAE students utilized X-TOOLSS (eXploration Toolset for the Optimization Of Launch and Space Systems), an Evolutionary Computing (EC) design optimization software, as well as design, analyze, fabricate and test a lunar regolith burrowing device - referred to as the Lunar Wormbot (LW) - that is aimed at exploring and retrieving samples of lunar regolith. These two projects were

  14. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  15. The Max Launch Abort System - Concept, Flight Test, and Evolution

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  16. Flight Planning Branch NASA Co-op Tour

    NASA Technical Reports Server (NTRS)

    Marr, Aja M.

    2013-01-01

    This semester I worked with the Flight Planning Branch at the NASA Johnson Space Center. I learned about the different aspects of flight planning for the International Space Station as well as the software that is used internally and ISSLive! which is used to help educate the public on the space program. I had the opportunity to do on the job training in the Mission Control Center with the planning team. I transferred old timeline records from the planning team's old software to the new software in order to preserve the data for the future when the software is retired. I learned about the operations of the International Space Station, the importance of good communication between the different parts of the planning team, and enrolled in professional development classes as well as technical classes to learn about the space station.

  17. NASA Experience with Pogo in Human Spaceflight Vehicles

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.

    2008-01-01

    An overview of more than 45 years of NASA human spaceflight experience is presented with respect to the thrust axis vibration response of liquid fueled rockets known as pogo. A coupled structure and propulsion system instability, pogo can result in the impairment of the astronaut crew, an unplanned engine shutdown, loss of mission, or structural failure. The NASA history begins with the Gemini Program and adaptation of the USAF Titan II ballistic missile as a spacecraft launch vehicle. It continues with the pogo experienced on several Apollo-Saturn flights in both the first and second stages of flight. The defining moment for NASA s subsequent treatment of pogo occurred with the near failure of the second stage on the ascent of the Apollo 13 mission. Since that time NASA has had a strict "no pogo" philosophy that was applied to the development of the Space Shuttle. The "no pogo" philosophy lead to the first vehicle designed to be pogo-free from the beginning and the first development of an engine with an integral pogo suppression system. Now, more than 30 years later, NASA is developing two new launch vehicles, the Ares I crew launch vehicle propelling the Orion crew excursion vehicle, and the Ares V cargo launch vehicle. A new generation of engineers must again exercise NASA s system engineering method for pogo mitigation during design, development and verification.

  18. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  19. LSRA in flight

    NASA Image and Video Library

    1993-04-07

    A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), in flight over NASA's Dryden Flight Research Center, Edwards, California, for a test of the space shuttle landing gear system. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.

  20. Overview of the NASA/Marshall Space Flight Center (MSFC) CFD Consortium for Applications in Propulsion Technology

    NASA Astrophysics Data System (ADS)

    McConnaughey, P. K.; Schutzenhofer, L. A.

    1992-07-01

    This paper presents an overview of the NASA/Marshall Space Flight Center (MSFC) Computational Fluid Dynamics (CFD) Consortium for Applications in Propulsion Technology (CAPT). The objectives of this consortium are discussed, as is the approach of managing resources and technology to achieve these objectives. Significant results by the three CFD CAPT teams (Turbine, Pump, and Combustion) are briefly highlighted with respect to the advancement of CFD applications, the development and evaluation of advanced hardware concepts, and the integration of these results and CFD as a design tool to support Space Transportation Main Engine and National Launch System development.

  1. Integrated Testing Approaches for the NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Cockrell, Charles E.; Tuma, Margaret L.; Askins, Bruce R.; Bland, Jeff D.; Davis, Stephan R.; Patterson, Alan F.; Taylor, Terry L.; Robinson, Kimberly L.

    2008-01-01

    The Ares I crew launch vehicle is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew and cargo access to the International Space Station (ISS) and, together with the Ares V cargo launch vehicle, serves as a critical component of NASA's future human exploration of the Moon. During the preliminary design phase, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements - including the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine - will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the upper stage Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle ground vibration test (IVGVT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, validate the ability of the upper stage to manage cryogenic propellants to achieve upper stage engine start conditions, and a high-altitude demonstration of the launch abort system (LAS) following stage separation. The Orion 1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch.

  2. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing

    NASA Image and Video Library

    2001-03-15

    The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  3. Entrance to the NACA's Flight Propulsion Research Laboratory

    NASA Image and Video Library

    1948-08-21

    The sign near the entrance of the National Advisory Committee for Aeronautics (NACA) Flight Propulsion Research Laboratory. The name was changed several weeks later to the Lewis Flight Propulsion Laboratory in honor of the NACA’s former Director of Aeronautical Research, George W. Lewis. The research laboratory has had five different names since its inception in 1941. The Cleveland laboratory was originally known as the NACA Aircraft Engine Research Laboratory. In 1947 it was renamed the NACA Flight Propulsion Research Laboratory to reflect the expansion of the research activities beyond just engines. Following the death of George Lewis, the name was changed to the NACA Lewis Flight Propulsion Laboratory in September 1948. On October 1, 1958, the lab was incorporated into the new NASA space agency, and it was renamed the NASA Lewis Research Center. Following John Glenn’s flight on the space shuttle, the name was changed again to the NASA Glenn Research Center on March 1, 1999. From his office in Washington DC, George Lewis managed the aeronautical research conducted at the NACA for over 20 years. His most important accomplishment, however, may have been an investigative tour of German research facilities in the fall of 1936. The visit resulted in the broadening of the scope of the NACA’s research and the physical expansion that included the new engine laboratory in Cleveland.

  4. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  5. Human Factors Interface with Systems Engineering for NASA Human Spaceflights

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2009-01-01

    This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.

  6. Six Decades of Flight Research: An Annotated Bibliography of Technical Publications of NASA Dryden Flight Research Center, 1946-2006

    NASA Technical Reports Server (NTRS)

    Fisher, David F.

    2007-01-01

    Titles, authors, report numbers, and abstracts are given for nearly 2900 unclassified and unrestricted technical reports and papers published from September 1946 to December 2006 by the NASA Dryden Flight Research Center and its predecessor organizations. These technical reports and papers describe and give the results of 60 years of flight research performed by the NACA and NASA, from the X-1 and other early X-airplanes, to the X-15, Space Shuttle, X-29 Forward Swept Wing, X-31, and X-43 aircraft. Some of the other research airplanes tested were the D-558, phase 1 and 2; M-2, HL-10 and X-24 lifting bodies; Digital Fly-By-Wire and Supercritical Wing F-8; XB-70; YF-12; AFTI F-111 TACT and MAW; F-15 HiDEC; F-18 High Alpha Research Vehicle, F-18 Systems Research Aircraft and the NASA Landing Systems Research aircraft. The citations of reports and papers are listed in chronological order, with author and aircraft indices. In addition, in the appendices, citations of 270 contractor reports, more than 200 UCLA Flight System Research Center reports, nearly 200 Tech Briefs, 30 Dryden Historical Publications, and over 30 videotapes are included.

  7. Proceedings of the First NASA Ada Users' Symposium

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Ada has the potential to be a part of the most significant change in software engineering technology within NASA in the last twenty years. Thus, it is particularly important that all NASA centers be aware of Ada experience and plans at other centers. Ada activity across NASA are covered, with presenters representing five of the nine major NASA centers and the Space Station Freedom Program Office. Projects discussed included - Space Station Freedom Program Office: the implications of Ada on training, reuse, management and the software support environment; Johnson Space Center (JSC): early experience with the use of Ada, software engineering and Ada training and the evaluation of Ada compilers; Marshall Space Flight Center (MSFC): university research with Ada and the application of Ada to Space Station Freedom, the Orbital Maneuvering Vehicle, the Aero-Assist Flight Experiment and the Secure Shuttle Data System; Lewis Research Center (LeRC): the evolution of Ada software to support the Space Station Power Management and Distribution System; Jet Propulsion Laboratory (JPL): the creation of a centralized Ada development laboratory and current applications of Ada including the Real-time Weather Processor for the FAA; and Goddard Space Flight Center (GSFC): experiences with Ada in the Flight Dynamics Division and the Extreme Ultraviolet Explorer (EUVE) project and the implications of GSFC experience for Ada use in NASA. Despite the diversity of the presentations, several common themes emerged from the program: Methodology - NASA experience in general indicates that the effective use of Ada requires modern software engineering methodologies; Training - It is the software engineering principles and methods that surround Ada, rather than Ada itself, which requires the major training effort; Reuse - Due to training and transition costs, the use of Ada may initially actually decrease productivity, as was clearly found at GSFC; and real-time work at LeRC, JPL and GSFC shows

  8. Linear Aerospike SR-71 Experiment (LASRE) dumps water after first in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA SR-71A successfully completed its first cold flow flight as part of the NASA/Rocketdyne/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) at NASA's Dryden Flight Research Center, Edwards, California on March 4, 1998. During a cold flow flight, gaseous helium and liquid nitrogen are cycled through the linear aerospike engine to check the engine's plumbing system for leaks and to check the engine operating characterisitics. Cold-flow tests must be accomplished successfully before firing the rocket engine experiment in flight. The SR-71 took off at 10:16 a.m. PST. The aircraft flew for one hour and fifty-seven minutes, reaching a maximum speed of Mach 1.58 before landing at Edwards at 12:13 p.m. PST. 'I think all in all we had a good mission today,' Dryden LASRE Project Manager Dave Lux said. Flight crew member Bob Meyer agreed, saying the crew 'thought it was a really good flight.' Dryden Research Pilot Ed Schneider piloted the SR-71 during the mission. Lockheed Martin LASRE Project Manager Carl Meade added, 'We are extremely pleased with today's results. This will help pave the way for the first in-flight engine data-collection flight of the LASRE.' The LASRE experiment was designed to provide in-flight data to help Lockheed Martin evaluate the aerodynamic characteristics and the handling of the SR-71 linear aerospike experiment configuration. The goal of the project was to provide in-flight data to help Lockheed Martin validate the computational predictive tools it was using to determine the aerodynamic performance of a future reusable launch vehicle. The joint NASA, Rocketdyne (now part of Boeing), and Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) completed seven initial research flights at Dryden Flight Research Center. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus (pod) on the back of the SR-71. Five later flights focused on the experiment itself. Two were used to cycle gaseous

  9. Dispersion of turbojet engine exhaust in flight

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1973-01-01

    The dispersion of the exhaust of turbojet engines into the atmosphere is estimated by using a model developed for the mixing of a round jet with a parallel flow. The analysis is appropriate for determining the spread and dilution of the jet exhaust from the engine exit until it is entrained in the aircraft trailing vortices. Chemical reactions are not expected to be important and are not included in the flow model. Calculations of the dispersion of the exhaust plumes of three aircraft turbojet engines with and without afterburning at typical flight conditions are presented. Calculated average concentrations for the exhaust plume from a single engine jet fighter are shown to be in good agreement with measurements made in the aircraft wake during flight.

  10. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.

    1992-01-01

    Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  11. Crane Cell Testing Support of Nasa/goddard Space Flight Center: an Update

    NASA Technical Reports Server (NTRS)

    Strawn, Mike; David, Jerry; Rao, Gopalakrishna M.

    2001-01-01

    The objective of this paper is to verify the quality and reliability of aerospace battery cells and batteries for NASA flight programs, disseminate the data - to develop a plan for in-orbit battery management - to design a cell/battery for future NASA spacecraft and establish a cell test data base for rechargeable cell/batteries.

  12. NASA Dryden's Dave Bushman aims the optics of a laser device at a panel on a model aircraft during the first flight demonstration of an aircraft powered by laser light.

    NASA Image and Video Library

    2003-09-17

    NASA Dryden project engineer Dave Bushman carefully aims the optics of a laser device at a solar cell panel on a model aircraft during the first flight demonstration of an aircraft powered by laser light.

  13. Space Flight Support Building

    NASA Image and Video Library

    2016-10-27

    This archival image was released as part of a gallery comparing JPL’s past and present, commemorating the 80th anniversary of NASA’s Jet Propulsion Laboratory on Oct. 31, 2016. Building 264, also known as the Space Flight Support Building, hosts engineers supporting space missions in flight at NASA's Jet Propulsion Laboratory. It used to be just two stories, as seen in this image from January 1972, but then the Viking project to Mars needed more room. The building still serves the same function today, but now has eight floors. http://photojournal.jpl.nasa.gov/catalog/PIA21123

  14. Model-Based Systems Engineering With the Architecture Analysis and Design Language (AADL) Applied to NASA Mission Operations

    NASA Technical Reports Server (NTRS)

    Munoz Fernandez, Michela Miche

    2014-01-01

    The potential of Model Model Systems Engineering (MBSE) using the Architecture Analysis and Design Language (AADL) applied to space systems will be described. AADL modeling is applicable to real-time embedded systems- the types of systems NASA builds. A case study with the Juno mission to Jupiter showcases how this work would enable future missions to benefit from using these models throughout their life cycle from design to flight operations.

  15. NASA African American History Month Profile - Kimberly Ennix-Sandhu (AFRC)

    NASA Image and Video Library

    2018-02-20

    Kimberly Ennix-Sandhu is the SOFIA Operations Center System Safety Lead at NASA Armstrong Flight Research Center. SOFIA is the Stratospheric Observatory for Infrared Astronomy. Kimberly has worked for NASA for 27 years. She started out in jet and rocket propulsion research engineering and moved to Safety and Mission Assurance as a system safety engineer.

  16. Test Report for NASA MSFC Support of the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Elam, S. K.

    2000-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) was performed in support of the Reusable Launch Vehicle (RLV) program to help develop a linear aerospike engine. The objective of this program was to operate a small aerospike engine at various speeds and altitudes to determine how slipstreams affect the engine's performance. The joint program between government and industry included NASA!s Dryden Flight Research Center, The Air Force's Phillips Laboratory, NASA's Marshall Space Flight Center, Lockheed Martin Skunkworks, Lockheed-Martin Astronautics, and Rocketdyne Division of Boeing North American. Ground testing of the LASRE engine produced two successful hot-fire tests, along with numerous cold flows to verify sequencing and operation before mounting the assembly on the SR-71. Once installed on the aircraft, flight testing performed several cold flows on the engine system at altitudes ranging from 30,000 to 50,000 feet and Mach numbers ranging from 0.9 to 1.5. The program was terminated before conducting hot-fires in flight because excessive leaks in the propellant supply systems could not be fixed to meet required safety levels without significant program cost and schedule impacts.

  17. Sensor fault diagnosis of aero-engine based on divided flight status.

    PubMed

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  18. Sensor fault diagnosis of aero-engine based on divided flight status

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Zhang, Jun; Sun, Yigang; Liu, Zhexu

    2017-11-01

    Fault diagnosis and safety analysis of an aero-engine have attracted more and more attention in modern society, whose safety directly affects the flight safety of an aircraft. In this paper, the problem concerning sensor fault diagnosis is investigated for an aero-engine during the whole flight process. Considering that the aero-engine is always working in different status through the whole flight process, a flight status division-based sensor fault diagnosis method is presented to improve fault diagnosis precision for the aero-engine. First, aero-engine status is partitioned according to normal sensor data during the whole flight process through the clustering algorithm. Based on that, a diagnosis model is built for each status using the principal component analysis algorithm. Finally, the sensors are monitored using the built diagnosis models by identifying the aero-engine status. The simulation result illustrates the effectiveness of the proposed method.

  19. SR-71 LASRE during in-flight cold flow test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This shot, from above and behind the SR-71 in flight, runs 11 seconds and shows the Aerospike engine and its fuel system being charged with gaseous helium and liquid nitrogen during one of two tests. The tests are to check for leaks and check the flow characteristics of cryogenic fuels to be used in the engine. The NASA/Lockheed Martin Linear Aerospike SR-71 Experiment (LASRE) concluded its flight operations phase at the NASA Dryden Flight Research Center, Edwards, California, in November 1998. The goal of this experiment was to provide in-flight data to help Lockheed Martin, Bethesda, Maryland, validate the computational predictive tools it was using to determine the aerodynamic performance of a future potential reusable launch vehicle. Information from the LASRE experiment will help Lockheed Martin maximize its design for a future potential reusable launch vehicle. It gave Lockheed an understanding of the performance of the lifting body and linear aerospike engine combination even before the X-33 Advanced Technology Demonstrator flies. LASRE was a small, half-span model of a lifting body with eight thrust cells of an aerospike engine. The experiment, mounted on the back of an SR-71 aircraft, operates like a kind of 'flying wind tunnel.' The experiment focused on determining how the engine plume of a reusable launch vehicle engine plume would affect the aerodynamics of its lifting body shape at specific altitudes and speeds reaching approximately 750 miles per hour. The interaction of the aerodynamic flow with the engine plume could create drag; design refinements look to minimize that interaction. During the flight research program, the aircraft completed seven research flights. Two initial flights were used to determine the aerodynamic characteristics of the LASRE apparatus on the back of the aircraft. The first of those two flights occurred October 31, 1997. The SR-71 took off at 8:31 a.m. PST. The aircraft flew for one hour and fifty minutes, reaching a

  20. Two NASA Dryden F/A-18s flown by Gordon Fullerton and Nils Larson fly in tight formation Dec. 21, 2007 during Fullerton's final flight before his retirement.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  1. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of the Space Launch System, a new, unmatched capability for deep space exploration with launch readiness planned for 2019. Since program start in 2011, SLS has passed several major formal design milestones, and every major element of the vehicle has produced test and flight hardware. The SLS approach to systems engineering has been key to the program's success. Key aspects of the SLS SE&I approach include: 1) minimizing the number of requirements, 2) elimination of explicit verification requirements, 3) use of certified models of subsystem capability in lieu of requirements when appropriate and 4) certification of capability beyond minimum required capability.

  2. Bringing Space Science to the Undergraduate Classroom: NASA's USIP Mission

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Spencer, E. A.; Gross, J.; Lusk, G. D.

    2015-12-01

    As part of its participation in NASA's Undergraduate Student Instrument Project (USIP), a team of engineering and physics students at West Virginia University (WVU) built a series of sounding rocket and balloon missions. The first rocket and balloon missions were flown near-simultaneously in a campaign on June 26, 2014 (image). The second sounding rocket mission is scheduled for October 5, 2015. Students took a course on space science in spring 2014, and followup courses in physics and aerospace engineering departments have been developed since then. Guest payloads were flown from students affiliated with WV Wesleyan College, NASA's IV&V Facility, and the University of South Alabama. Students specialized in electrical and aerospace engineering, and space physics topics. They interacted regularly with NASA engineers, presented at telecons, and prepared reports. A number of students decided to pursue internships and/or jobs related to space science and technology. Outreach to the campus and broader community included demos and flight projects. The physics payload includes plasma density and temperature measurements using a Langmuir and a triple probe; plasma frequency measurements using a radio sounder (WVU) and an impedance probe (U.S.A); and a magnetometer (WVWC). The aerospace payload includes an IMU swarm, a GPS experiment (with TEC capability); a cubesat communications module (NASA IV&V), and basic flight dynamics. Acknowledgments: staff members at NASA Wallops Flight Facility, and at the Orbital-ATK Rocket Center, WV.

  3. NASA F-15B #836 in flight with Quiet Spike attached

    NASA Image and Video Library

    2006-09-27

    NASA F-15B #836 in flight with Quiet Spike attached. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  4. NASA F-15B #836 in flight with Quiet Spike attached

    NASA Image and Video Library

    2006-10-03

    NASA F-15B #836 in flight with Quiet Spike attached. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  5. NASA F-15B #836 in flight with Quiet Spike attached

    NASA Image and Video Library

    2006-09-25

    NASA F-15B #836 in flight with Quiet Spike attached. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  6. NASA's Systems Engineering Approaches for Addressing Public Health Surveillance Requirements

    NASA Technical Reports Server (NTRS)

    Vann, Timi

    2003-01-01

    NASA's systems engineering has its heritage in space mission analysis and design, including the end-to-end approach to managing every facet of the extreme engineering required for successful space missions. NASA sensor technology, understanding of remote sensing, and knowledge of Earth system science, can be powerful new tools for improved disease surveillance and environmental public health tracking. NASA's systems engineering framework facilitates the match between facilitates the match between partner needs and decision support requirements in the areas of 1) Science/Data; 2) Technology; 3) Integration. Partnerships between NASA and other Federal agencies are diagrammed in this viewgraph presentation. NASA's role in these partnerships is to provide systemic and sustainable solutions that contribute to the measurable enhancement of a partner agency's disease surveillance efforts.

  7. Flying an Autonomous Formation Flight mission, two F/A-18s from the NASA Dryden Flight Research Cent

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Flying an Autonomous Formation Flight mission, two F/A-18's from the NASA Dryden Flight Research Center, Edwards, California, gain altitude near Rogers Dry Lake. The Systems Research Aircraft (tail number 845) and F/A-18 tail number 847 are flying the second phase of a project that is demonstrating a 15-percent fuel savings of the trailing aircraft during cruise flight. Project goal was a 10-percent savings. The drag-reduction study mimics the formation of migrating birds. Scientists have known for years that the trailing birds require less energy than flying solo.

  8. CECE: Expanding the Envelope of Deep Throttling in Liquid Oxygen/Liquid Hydrogen Rocket Engines For NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop technology and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Three series of demonstrator engine tests, the first in April-May 2006, the second in March-April 2007 and the third in November-December 2008, have demonstrated up to 13:1 throttling (104% to 8% thrust range) of the hydrogen/oxygen expander cycle engine. The first two test series explored a propellant feed system instability ("chug") environment at low throttled power levels. Lessons learned from these two tests were successfully applied to the third test series, resulting in stable operation throughout the 13:1 throttling range. The first three tests have provided an early demonstration of an enabling cryogenic propulsion concept, accumulating over 5,000 seconds of hot fire time over 27 hot fire tests, and have provided invaluable system-level technology data toward design and development risk mitigation for the NASA Altair and future lander propulsion system applications. This paper describes the results obtained from the highly successful third test series as well as the test objectives and early results obtained from a

  9. Overview of NASA MSFC IEC Federated Engineering Collaboration Capability

    NASA Technical Reports Server (NTRS)

    Moushon, Brian; McDuffee, Patrick

    2005-01-01

    The MSFC IEC federated engineering framework is currently developing a single collaborative engineering framework across independent NASA centers. The federated approach allows NASA centers the ability to maintain diversity and uniqueness, while providing interoperability. These systems are integrated together in a federated framework without compromising individual center capabilities. MSFC IEC's Federation Framework will have a direct affect on how engineering data is managed across the Agency. The approach is directly attributed in response to the Columbia Accident Investigation Board (CAB) finding F7.4-11 which states the Space Shuttle Program has a wealth of data sucked away in multiple databases without a convenient way to integrate and use the data for management, engineering, or safety decisions. IEC s federated capability is further supported by OneNASA recommendation 6 that identifies the need to enhance cross-Agency collaboration by putting in place common engineering and collaborative tools and databases, processes, and knowledge-sharing structures. MSFC's IEC Federated Framework is loosely connected to other engineering applications that can provide users with the integration needed to achieve an Agency view of the entire product definition and development process, while allowing work to be distributed across NASA Centers and contractors. The IEC DDMS federation framework eliminates the need to develop a single, enterprise-wide data model, where the goal of having a common data model shared between NASA centers and contractors is very difficult to achieve.

  10. Lunar Landing Research Vehicle (LLRV) in flight

    NASA Technical Reports Server (NTRS)

    1967-01-01

    In this 1967 NASA Flight Reserch Center photograph the Lunar Landing Research Vehicle (LLRV) is viewed from the front. This photograph provideds a good view of the pilot's platform with the restrictive cockpit view like that of he real Lunar Module (LM) When Apollo planning was underway in 1960, NASA was looking for asimulator to profile the descent to the moon's surface. Three conceptssurfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Lunar Landing Research Vehicle (LLRV) became the most significant one. After conceptual planning and meetings with engineers from Bell Aerosystems Company, Buffalo, N.Y., NASA FRC issued a $3.6 million production contract awarded in 1963, for delivery of the first of two vehicles for flight studies. Built of tubular aluminum alloy like a giant four-legged bedstead, the vehicle wasto simulate a lunar landing profile from around 1500 feet to the moon's surface. The LLRV had a turbofan engine mounted vertically in a gimbal, with 4200 pounds of thrust. The engine, lifted the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, thus simulating the reduced gravity of the moon. Two lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of descent and horizontal translations. Sixteen smaller rockets, mounted in pairs, gave the pilot control in pitch, yaw, and roll.. The pilot's platform extended forward between two legs while an electronics platform, similarly located, extended rearward. The pilot had a zero-zero ejection seat that would then lift him away to safety. The two LLRVs were shipped from Bell to the FRC in April 1964, with program emphasis on vehicle No. 1. The first flight, Oct. 30, 1964, NASA research pilot Joe Walker flew it three times for a total of just under 60 seconds, to a peak

  11. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  12. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. As part of the NASA Technical Standards Program activities, engineering lessons learned datasets have been identified from a number of sources. These are being searched and screened for those having a relation to Technical Standards. This paper will address some of these Systems Engineering Lessons Learned and how they are being related to Technical Standards within the NASA Technical Standards Program, including linking to the Agency's Interactive Engineering Discipline Training Courses and the life cycle for a flight vehicle development program.

  13. Application experience with the NASA aircraft interrogation and display system - A ground-support equipment for digital flight systems

    NASA Technical Reports Server (NTRS)

    Glover, R. D.

    1983-01-01

    The NASA Dryden Flight Research Facility has developed a microprocessor-based, user-programmable, general-purpose aircraft interrogation and display system (AIDS). The hardware and software of this ground-support equipment have been designed to permit diverse applications in support of aircraft digital flight-control systems and simulation facilities. AIDS is often employed to provide engineering-units display of internal digital system parameters during development and qualification testing. Such visibility into the system under test has proved to be a key element in the final qualification testing of aircraft digital flight-control systems. Three first-generation 8-bit units are now in service in support of several research aircraft projects, and user acceptance has been high. A second-generation design, extended AIDS (XAIDS), incorporating multiple 16-bit processors, is now being developed to support the forward swept wing aircraft project (X-29A). This paper outlines the AIDS concept, summarizes AIDS operational experience, and describes the planned XAIDS design and mechanization.

  14. Hyper-X Engine Design and Ground Test Program

    NASA Technical Reports Server (NTRS)

    Voland, R. T.; Rock, K. E.; Huebner, L. D.; Witte, D. W.; Fischer, K. E.; McClinton, C. R.

    1998-01-01

    The Hyper-X Program, NASA's focused hypersonic technology program jointly run by NASA Langley and Dryden, is designed to move hypersonic, air-breathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The Hyper-X research vehicle will provide the first ever opportunity to obtain data on an airframe integrated supersonic combustion ramjet propulsion system in flight, providing the first flight validation of wind tunnel, numerical and analytical methods used for design of these vehicles. A substantial portion of the integrated vehicle/engine flowpath development, engine systems verification and validation and flight test risk reduction efforts are experimentally based, including vehicle aeropropulsive force and moment database generation for flight control law development, and integrated vehicle/engine performance validation. The Mach 7 engine flowpath development tests have been completed, and effort is now shifting to engine controls, systems and performance verification and validation tests, as well as, additional flight test risk reduction tests. The engine wind tunnel tests required for these efforts range from tests of partial width engines in both small and large scramjet test facilities, to tests of the full flight engine on a vehicle simulator and tests of a complete flight vehicle in the Langley 8-Ft. High Temperature Tunnel. These tests will begin in the summer of 1998 and continue through 1999. The first flight test is planned for early 2000.

  15. NASA Space Flight Human-System Standard Human Factors, Habitability, and Environmental Health

    NASA Technical Reports Server (NTRS)

    Holubec, Keith; Connolly, Janis

    2010-01-01

    This slide presentation reviews the history, and development of NASA-STD-3001, NASA Space Flight Human-System Standard Human Factors, Habitability, and Environmental Health, and the related Human Integration Design Handbook. Currently being developed from NASA-STD-3000, this project standard currently in review will be available in two volumes, (i.e., Volume 1 -- VCrew Health and Volume 2 -- Human Factors, Habitability, and Environmental Health) and the handbook will be both available as a pdf file and as a interactive website.

  16. CSBF Engineering Overview

    NASA Astrophysics Data System (ADS)

    Orr, Dwayne

    The Columbia Scientific Balloon Facility (CSBF) at Palestine, Texas provides operational and engineering support for the launch of NASA Scientific Balloons. Over the years with the support of the NASA Balloon Program Office, CSBF has developed unique flight systems with the focus of providing a highly reliable, cost effective medium for giving Scientist's access to a near space environment. This paper will provide an overview of the CSBF flight systems with an emphasis on recent developments and plans for the future including: RIP Stitch -Parachute Shock Attenuation system, MIP -Micro Instrumentation Package, GAPR -Gondola Automatic Parachute Release system, NASA TDRSS High Gain Antenna system, Superpressure flight video systems

  17. NASA Acting Deputy Chief Technologist Briefed on Operation of Sonic Boom Prediction Algorithms

    NASA Image and Video Library

    2017-08-29

    NASA Acting Deputy Chief Technologist Vicki Crips being briefed by Tim Cox, Controls Engineer at NASA’s Armstrong Flight Research Center at Edwards, California, on the operation of the sonic boom prediction algorithms being used in engineering simulation for the NASA Supersonic Quest program.

  18. RS-25D engine

    NASA Image and Video Library

    2012-01-17

    Employees unload a RS25D rocket engine at NASA's John C. Stennis Space Center on Jan. 17. The engine - and 14 others - will be stored at the facility for future testing and use on NASA's new Space Launch System (SLS). The SLS is a new heavy-lift launch vehicle that will expand human presence beyond low-Earth orbit and enable new missions of exploration across the solar system. NASA's Marshall Space Flight Center in Huntsville, Ala., is leading the design and development of the Space Launch System for NASA, including the engine testing program. Delivery of the 15 RS-25 engines will continue throughout the next few months

  19. Developing Systems Engineering Skills Through NASA Summer Intern Project

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  20. Perseus Post-flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  1. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2001-03-13

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  2. Technicians Todd Viddle, Robert Garrett and Dan McGrath remove a servicing unit from the Space Shuttle Discovery during its post-flight processing at NASA DFRC

    NASA Image and Video Library

    2005-08-12

    Todd Viddle; APU advanced systems technician, Robert 'Skip' Garrett; main propulsion advanced systems technician, and Dan McGrath; main propulsion systems engineer technician, remove a servicing unit from the Space Shuttle Discovery as part of it's post-flight processing at NASA's Dryden Flight Research Center. The Space Shuttles receive post-flight servicing in the Mate-Demate Device (MDD) following landings at NASA's Dryden Flight Research Center, Edwards, California. The gantry-like MDD structure is used for servicing the shuttle orbiters in preparation for their ferry flight back to the Kennedy Space Center in Florida, including mounting the shuttle atop NASA's modified Boeing 747 Shuttle Carrier Aircraft. Space Shuttle Discovery landed safely at NASA's Dryden Flight Research Center at Edwards Air Force Base in California at 5:11:22 a.m. PDT, August 9, 2005, following the very successful 14-day STS-114 return to flight mission. During their two weeks in space, Commander Eileen Collins and her six crewmates tested out new safety procedures and delivered supplies and equipment the International Space Station. Discovery spent two weeks in space, where the crew demonstrated new methods to inspect and repair the Shuttle in orbit. The crew also delivered supplies, outfitted and performed maintenance on the International Space Station. A number of these tasks were conducted during three spacewalks. In an unprecedented event, spacewalkers were called upon to remove protruding gap fillers from the heat shield on Discovery's underbelly. In other spacewalk activities, astronauts installed an external platform onto the Station's Quest Airlock and replaced one of the orbital outpost's Control Moment Gyroscopes. Inside the Station, the STS-114 crew conducted joint operations with the Expedition 11 crew. They unloaded fresh supplies from the Shuttle and the Raffaello Multi-Purpose Logistics Module. Before Discovery undocked, the crews filled Raffeallo with unneeded items

  3. HL-10 first flight landing

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The HL-10 Lifting Body completes its first research flight with a landing on Rogers Dry Lake. Due to control problems, pilot Bruce Peterson had to land at a higher speed than originally planned in order to keep the vehicle under control. The actual touchdown speed was about 280 knots. This was 30 knots above the speed called for in the flight plan. The HL-10's first flight had lasted 3 minutes and 9 seconds. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the

  4. ATK Launch Systems Engineering NASA Programs Engineering Examples

    NASA Technical Reports Server (NTRS)

    Richardson, David

    2007-01-01

    This presentation provides an overview of the work done at ATK Launch Systems with and indication of how engineering knowledge can be applied to several real world problems. All material in the presentation has been screened to meet ITAR restrictions. The information provided is a compilation of general engineering knowledge and material available in the public domain. The presentation provides an overview of ATK Launch Systems and NASA programs. Some discussion is provided about the types of engineering conducted at the Promontory plant with added detail about RSRM nozzle engineering. Some brief examples of examples of nozzle technical issues with regard to adhesives and phenolics are shared. These technical issue discussions are based on material available in the public domain.

  5. A report on NASA software engineering and Ada training requirements

    NASA Technical Reports Server (NTRS)

    Legrand, Sue; Freedman, Glenn B.; Svabek, L.

    1987-01-01

    NASA's software engineering and Ada skill base are assessed and information that may result in new models for software engineering, Ada training plans, and curricula are provided. A quantitative assessment which reflects the requirements for software engineering and Ada training across NASA is provided. A recommended implementation plan including a suggested curriculum with associated duration per course and suggested means of delivery is also provided. The distinction between education and training is made. Although it was directed to focus on NASA's need for the latter, the key relationships to software engineering education are also identified. A rationale and strategy for implementing a life cycle education and training program are detailed in support of improved software engineering practices and the transition to Ada.

  6. NASA Goddard Space Flight Center Supply Chain Management Program

    NASA Technical Reports Server (NTRS)

    Kelly, Michael P.

    2011-01-01

    This slide presentation reviews the working of the Supplier Assessment Program at NASA Goddard Space Flight Center. The program supports many GSFC projects to ensure suppliers are aware of and are following the contractual requirements, to provide an independent assessment of the suppliers' processes, and provide suppliers' safety and mission assurance organizations information to make the changes within their organization.

  7. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  8. 14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...

  9. 14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...

  10. 14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...

  11. 14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...

  12. F100 Engine Emissions Tested in NASA Lewis' Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Wey, Chowen C.

    1998-01-01

    Recent advances in atmospheric sciences have shown that the chemical composition of the entire atmosphere of the planet (gases and airborne particles) has been changed due to human activity and that these changes have changed the heat balance of the planet. National Research Council findings indicate that anthropogenic aerosols1 reduce the amount of solar radiation reaching the Earth's surface. Atmospheric global models suggest that sulfate aerosols change the energy balance of the Northern Hemisphere as much as anthropogenic greenhouse gases have. In response to these findings, NASA initiated the Atmospheric Effects of Aviation Project (AEAP) to advance the research needed to define present and future aircraft emissions and their effects on the Earth's atmosphere. Although the importance of aerosols and their precursors is now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. Tests in 1997-an engine test at the NASA Lewis Research Center and the corresponding flight measurement test at the NASA Langley Research Center-attempted to address both issues by measuring emissions when fuels containing different levels of sulfur were burned. Measurement systems from four research groups were involved in the Lewis engine test: A Lewis gas analyzer suite to measure the concentration of gaseous species 1. including NO, NOx, CO, CO2, O2, THC, and SO2 as well as the smoke number; 2. A University of Missouri-Rolla Mobile Aerosol Sampling System to measure aerosol and particulate properties including the total concentration, size distribution, volatility, and hydration property; 3. An Air Force Research Laboratory Chemical Ionization Mass Spectrometer to measure the concentration of SO2 and SO3/H2SO4; and 4. An Aerodyne Research Inc

  13. The Optical Fiber Array Bundle Assemblies for the NASA Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Rob; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; MacMurphy, Shawn

    2008-01-01

    The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufactured at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.

  14. A compiler and validator for flight operations on NASA space missions

    NASA Astrophysics Data System (ADS)

    Fonte, Sergio; Politi, Romolo; Capria, Maria Teresa; Giardino, Marco; De Sanctis, Maria Cristina

    2016-07-01

    In NASA missions the management and the programming of the flight systems is performed by a specific scripting language, the SASF (Spacecraft Activity Sequence File). In order to perform a check on the syntax and grammar it is necessary a compiler that stress the errors (eventually) found in the sequence file produced for an instrument on board the flight system. In our experience on Dawn mission, we developed VIRV (VIR Validator), a tool that performs checks on the syntax and grammar of SASF, runs a simulations of VIR acquisitions and eventually finds violation of the flight rules of the sequences produced. The project of a SASF compiler (SSC - Spacecraft Sequence Compiler) is ready to have a new implementation: the generalization for different NASA mission. In fact, VIRV is a compiler for a dialect of SASF; it includes VIR commands as part of SASF language. Our goal is to produce a general compiler for the SASF, in which every instrument has a library to be introduced into the compiler. The SSC can analyze a SASF, produce a log of events, perform a simulation of the instrument acquisition and check the flight rules for the instrument selected. The output of the program can be produced in GRASS GIS format and may help the operator to analyze the geometry of the acquisition.

  15. Systems Engineering in NASA's R&TD Programs

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.

  16. Kids in Space Water Absorption Flight Procedures #40 Demo

    NASA Image and Video Library

    2010-09-15

    ISS024-E-014988 (15 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, conducts a demonstration for the "Kids in Space" session for Water Absorption Flight Procedures #40 in the Columbus laboratory of the International Space Station.

  17. Kids in Space Water Absorption Flight Procedures 40 Demo

    NASA Image and Video Library

    2010-09-15

    ISS024-E-014993 (15 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, conducts a demonstration for the "Kids in Space" session for Water Absorption Flight Procedures #40 in the Columbus laboratory of the International Space Station.

  18. Infusing Software Engineering Technology into Practice at NASA

    NASA Technical Reports Server (NTRS)

    Pressburger, Thomas; Feather, Martin S.; Hinchey, Michael; Markosia, Lawrence

    2006-01-01

    We present an ongoing effort of the NASA Software Engineering Initiative to encourage the use of advanced software engineering technology on NASA projects. Technology infusion is in general a difficult process yet this effort seems to have found a modest approach that is successful for some types of technologies. We outline the process and describe the experience of the technology infusions that occurred over a two year period. We also present some lessons from the experiences.

  19. NASA's SOFIA airborne observatory lands at Edwards AFB after being flown from Waco, Texas to NASA Dryden for systems installation, integration and flight test

    NASA Image and Video Library

    2007-05-31

    NASA's SOFIA airborne observatory lands at Edwards AFB after being flown from Waco, Texas to NASA Dryden for systems installation, integration and flight test. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  20. Enterprise - Free Flight after Separation from 747

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Space Shuttle prototype Enterprise flies free of NASA's 747 Shuttle Carrier Aircraft (SCA) during one of five free flights carried out at the Dryden Flight Research Facility, Edwards, California in 1977 as part of the Shuttle program's Approach and Landing Tests (ALT). The tests were conducted to verify orbiter aerodynamics and handling characteristics in preparation for orbital flights with the Space Shuttle Columbia. A tail cone over the main engine area of Enterprise smoothed out turbulent airflow during flight. It was removed on the two last free flights to accurately check approach and landing characteristics. The Space Shuttle Approach and Landings Tests (ALT) program allowed pilots and engineers to learn how the Space Shuttle and the modified Boeing 747 Shuttle Carrier Aircraft (SCA) handled during low-speed flight and landing. The Enterprise, a prototype of the Space Shuttles, and the SCA were flown to conduct the approach and landing tests at the NASA Dryden Flight Research Center, Edwards, California, from February to October 1977. The first flight of the program consisted of the Space Shuttle Enterprise attached to the Shuttle Carrier Aircraft. These flights were to determine how well the two vehicles flew together. Five 'captive-inactive' flights were flown during this first phase in which there was no crew in the Enterprise. The next series of captive flights was flown with a flight crew of two on board the prototype Space Shuttle. Only three such flights proved necessary. This led to the free-flight test series. The free-flight phase of the ALT program allowed pilots and engineers to learn how the Space Shuttle handled in low-speed flight and landing attitudes. For these landings, the Enterprise was flown by a crew of two after it was released from the top of the SCA. The vehicle was released at altitudes ranging from 19,000 to 26,000 feet. The Enterprise had no propulsion system, but its first four glides to the Rogers Dry Lake runway provided