Sample records for nasa funded project

  1. NASA Astrophysics Funds Strategic Technology Development

    NASA Astrophysics Data System (ADS)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  2. Development of Risk Uncertainty Factors from Historical NASA Projects

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R.

    2011-01-01

    NASA is a good investment of federal funds and strives to provide the best value to the nation. NASA has consistently budgeted to unrealistic cost estimates, which are evident in the cost growth in many of its programs. In this investigation, NASA has been using available uncertainty factors from the Aerospace Corporation, Air Force, and Booz Allen Hamilton to develop projects risk posture. NASA has no insight into the developmental of these factors and, as demonstrated here, this can lead to unrealistic risks in many NASA Programs and projects (P/p). The primary contribution of this project is the development of NASA missions uncertainty factors, from actual historical NASA projects, to aid cost-estimating as well as for independent reviews which provide NASA senior management with information and analysis to determine the appropriate decision regarding P/p. In general terms, this research project advances programmatic analysis for NASA projects.

  3. Replacement of SSE with NASA's POWER Project GIS-enabled Web Data Portal

    Atmospheric Science Data Center

    2018-04-30

    Replacement of SSE with NASA's POWER Project GIS-enabled Web Data Portal Friday, March ... 2018 Replacement of SSE (Release 6) with NASA's Prediction of Worldwide Energy Resource (POWER) Project GIS-enabled Web ... Worldwide Energy Resource (POWER) Project funded largely by NASA Earth Applied Sciences program.   The new POWER web portal ...

  4. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  5. NASA's University Program: Active projects, fiscal year 1981

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Active university R and D activities funded by NASA which contribute to mission needs are documented. Technical rather than fiscal information is emphasized. A classification of government sponsored research is included. A cross index providing access to the project description is also included.

  6. The MY NASA DATA Project

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Alston, Erica J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.; Mims, Forrest M., III

    2006-01-01

    On the one hand, locating the right dataset, then figuring out how to use it, is a daunting task that is familiar to almost any scientist or graduate student in the fields of Earth system science. On the other hand, the ability to explore authentic Earth system science data, through inquiry-based education, is an important goal in US national education standards. Fortunately, in the digital age, tools are emerging that can make such data exploration commonplace at all educational levels. This paper describes the conception and development of one project that aims to bridge this gap: Mentoring and inquiry using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA; mynasadata.larc.nasa.gov). With funding from NASA's Science Mission Directorate, this project was launched in early 2004 with the aim of developing microsets and identifying other enablers for making data accessible. A key feature of the project is a Live Access Server, the first educational implementation of this open source software, developed by NOAA, that makes it possible to explore multiple data formats through a single interface. This powerful tool is made more useful to the primary target audiences (K-12 and amateur scientists) through careful selection of the data offered, user-friendly explanations of the tool itself, and age-appropriate explanations of the parameters. However experience already shows that graduate students and even practicing scientists can also make use of this resource. The website also hosts teacher-contributed lesson plans, and seeks to feature reports of research projects that use the data.

  7. A Research Design for NASA-Funded Professional Development Projects

    NASA Astrophysics Data System (ADS)

    Bleicher, R. E.; Lambert, J.; Getty, S. R.

    2011-12-01

    This proposal outlines a research plan designed to measure gains in student learning resulting from their teachers participating in professional development. Project Description Misconceptions about global climate change (GCC) are prevalent in the general public (Kellstedt, Zahran, & Vedlitz, 2008; Washington & Cook, 2011). One solution is to provide high school students with a better grounding in the basic science and data that underlie GCC. The overarching goal of a NASA-funded project, Promoting Educational Leadership in Climate Change Literacy (PEL), is to increase GCC literacy in high school students. Research Design The research design is interpretative (Erickson, 2006), framed within a multi-method design, synthesizing both quantitative and qualitative data sources (Morse, 2003). Overall, the data will provide rich information about the PEL's impact on curriculum development, teacher pedagogical knowledge, and student learning. The expectancy-value theory of achievement motivation (E-V-C) (Fan, 2011; Wigfield & Eccles, 1994) provides a theoretical foundation for the research. Expectancy is the degree to which a teacher or student has reason to expect that they will be successful in school. Value indicates whether they think that performance at school will be worthwhile to them. Cost is the perceived sacrifices that must be undertaken, or factors that can inhibit, a successful performance at school. For students, data from an embedded E-V-C investigation will help articulate how E-V-C factors relate to student interest in science, continuing to study science, or embarking on STEM related careers. For teachers, the E-V-C measures will give insight into a key mediating variable on student achievement in science. The evaluation will seek to address research questions at the student and teacher levels. Table 1 presents a sample of research questions and data sources. This is a sample of a much larger set of questions that will be addressed in the project. Data

  8. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 7:] The NASA/DOD Aerospace Knowledge Diffusion Research Project: The DOD perspective

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    This project will provide descriptive and analytical data regarding the flow of STI at the individual, organizational, national, and international levels. It will examine both the channels used to communicate information and the social system of the aerospace knowledge diffusion process. Results of the project should provide useful information to R and D managers, information managers, and others concerned with improving access to and use of STI. Objectives include: (1) understanding the aerospace knowledge diffusion process at the individual, organizational, and national levels, placing particular emphasis on the diffusion of Federally funded aerospace STI; (2) understanding the international aerospace knowledge diffusion process at the individual and organizational levels, placing particular emphasis on the systems used to diffuse the results of Federally funded aerospace STI; (3) understanding the roles NASA/DoD technical report and aerospace librarians play in the transfer and use of knowledge derived from Federally funded aerospace R and D; (4) achieving recognition and acceptance within NASA, DoD and throughout the aerospace community that STI is a valuable strategic resource for innovation, problem solving, and productivity; and (5) providing results that can be used to optimize the effectiveness and efficiency of the Federal STI aerospace transfer system and exchange mechanism.

  9. The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.

  10. Research Funding Set for NSF, NASA, EPA.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1982

    1982-01-01

    Funds (1983) for National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA) research programs include $1,092,200,000 (NSF), $5.5 billion (NASA), and $119 million (EPA). NSF's science education activities were raised to $30 million in spite of the Administration's plan to phase…

  11. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into Aeronautics Research Mission Directorate Projects for 2016

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research (SBIR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial project managers interested in ARMD funding opportunities through NASA's SBIR program will find this report useful as well.

  12. NASA Photovoltaic Village Project in Arizona

    NASA Image and Video Library

    1978-11-21

    National Aeronautics and Space Administration (NASA) Lewis Research Center. NASA signed an agreement with the Papago tribe in May 1978 to provide the village with solar-generated electricity within the year. The project was funded by the Department of Energy and managed by NASA Lewis. Lewis provided all of the equipment and technical assistance while the tribe’s construction team built the arrays and support equipment, seen here. The 3.5-kilowatt system was modest in scope, but resulted in the first solar electric village. The system provided power to operate a refrigerator, freezer, washing machine, and water pump for the village and lights in each of the 16 homes. The system was activated on December 16, 1978. During the next year officials from around the world travelled to Schuchuli to ascertain if the system was applicable to their areas. The major television networks and over 100 publications covered the story. Less than one percent of the cells failed during the first year of operation.

  13. NASA Innovation Fund 2010 Project Elastically Shaped Future Air Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2010-01-01

    This report describes a study conducted in 2010 under the NASA Innovation Fund Award to develop innovative future air vehicle concepts. Aerodynamic optimization was performed to produce three different aircraft configuration concepts for low drag, namely drooped wing, inflected wing, and squashed fuselage. A novel wing shaping control concept is introduced. This concept describes a new capability of actively controlling wing shape in-flight to minimize drag. In addition, a novel flight control effector concept is developed to enable wing shaping control. This concept is called a variable camber continuous trailing edge flap that can reduce drag by as much as 50% over a conventional flap. In totality, the potential benefits of fuel savings offered by these concepts can be significant.

  14. Critical time for NSF, NASA funding bills

    NASA Astrophysics Data System (ADS)

    Jones, Richard

    Although the new fiscal year does not start until October, the next few weeks will be critical in determining the amount of money which the National Science Foundation and the National Aeronautics and Space Administration receive. Scientists who want to communicate their views to key representatives and senators about these agencies should do so now.Every year Congress must pass new funding, or appropriations, legislation. Both NSF and NASA funding come under the jurisdiction of the House and Senate appropriations subcommittees for the Veterans Administration, Department of Housing and Urban Development, and Independent Agencies. These two subcommittees have already heard from NSF officials, and will wrap-up official NASA testimony this week. Several days of hearings from public witnesses are also scheduled.

  15. Louisiana NASA EPSCoR Project

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    2002-01-01

    In 1994, the National Aeronautics and Space Administration issued a Cooperative Agreement (CA) to the State of Louisiana, through the Louisiana Board of Regents (BOB), for the performance of scientific research under the Experimental Program to Stimulate Competitive Research (EPSCoR) Project. Originally constructed as a three-year program with an optional two-year follow on, this federal-state partnership culminated on 31 October 2001, including two CA extensions. The total value of the project reached $3.3M in NASA funding, matched by $2.75M in BOB funds, and supplemented by several million dollars in institutional contributions. Three Research Clusters comprised the state-wide research effort coupled with scientific/technical management and a teacher involvement component. The three research clusters addressed the Enterprises of Space Science, Earth Science and Aerospace Technology with research in High Energy Astrophysics, the Global Carbon Cycle, and Propulsion. Ten universities, over two dozen faculty, over 150 students and numerous support personnel were involved. All of the scientific and technical objectives were met or exceeded. In aggregate, the clusters generated about $18M in outside support, better than a 2:1 return on investment (better than 5:1 considering only the NASA investment). Moreover, two of the clusters have advanced to the level of applying for major NSF research center designation. This project was a trial of the model of building research infrastructure through mentoring. While not completely successful, the results at the smaller institutions were, none the less, positive. Faculty were engaged in major research and involved their students. Administrations improved their capabilities to handle grants and contracts. Faculty release time was granted, research space was provided and, in some cases, equipment was made available for the research. Some of the faculty at these schools have remained involved in research and/or formed

  16. An Overview Of NASA's Solar Sail Propulsion Project

    NASA Technical Reports Server (NTRS)

    Garbe, Gregory; Montgomery, Edward E., IV

    2003-01-01

    Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.

  17. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  18. The NASA CSTI high capacity power project

    NASA Astrophysics Data System (ADS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-08-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  19. NASA's In-Space Propulsion Technology Project's Products for Near-term Mission Applicability

    NASA Astrophysics Data System (ADS)

    Dankanich, John

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. The primary investments and products currently available for technology infusion include NASA's Evolutionary Xenon Thruster (NEXT) and the Advanced Materials Bipropellant Rocket (AMBR) engine. These products will reach TRL 6 in 2008 and are available for the current and all future mission opportunities. Development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of electric propulsion, advanced chemical thrusters, and aerocapture are presented.

  20. NASA Taxonomy 2.0 Project Overview

    NASA Technical Reports Server (NTRS)

    Dutra, Jayne; Busch, Joseph

    2004-01-01

    This viewgraph presentation reviews the project to develop a Taxonomy for NASA. The benefits of this project are: Make it easy for various audiences to find relevant information from NASA programs quickly, specifically (1) Provide easy access for NASA Web resources (2) Information integration for unified queries and management reporting ve search results targeted to user interests the ability to move content through the enterprise to where it is needed most (3) Facilitate Records Management and Retention Requirements. In addition the project will assist NASA in complying with E-Government Act of 2002 and prepare NASA to participate in federal projects.

  1. Replacement of SSE (Release 6) with NASA's Prediction of Worldwide Energy Resource (POWER) Project GIS-enabled Web Data Portal:

    Atmospheric Science Data Center

    2018-03-15

    ... effort has been developed under the Prediction Of Worldwide Energy Resource (POWER) Project funded largely by NASA Earth Applied Sciences ... to NASA's satellite and modeling analysis for Renewable Energy, Sustainable Buildings and Agroclimatology applications.  A new POWER ...

  2. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 29: The US government technical report and the transfer of federally funded aerospace R and D

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    This article discusses the U.S. government technical report and the transfer of federally funded aerospace research and development in a conceptual framework of the federal government as a producer of scientific and technical information. The article summarizes current literature and research and discusses U.S. government technical report use and the importance of using data obtained from the NASA/DoD Aerospace Knowledge Diffusion Research Project. The authors make a case for changing existing U.S. technology policy and present a research agenda for the U.S. government technical report.

  3. Investing American Recovery and Reinvestment Act Funds to Advance Capability, Reliability, and Performance in NASA Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Sydnor, Goerge H.

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Aeronautics Test Program (ATP) is implementing five significant ground-based test facility projects across the nation with funding provided by the American Recovery and Reinvestment Act (ARRA). The projects were selected as the best candidates within the constraints of the ARRA and the strategic plan of ATP. They are a combination of much-needed large scale maintenance, reliability, and system upgrades plus creating new test beds for upcoming research programs. The projects are: 1.) Re-activation of a large compressor to provide a second source for compressed air and vacuum to the Unitary Plan Wind Tunnel at the Ames Research Center (ARC) 2.) Addition of high-altitude ice crystal generation at the Glenn Research Center Propulsion Systems Laboratory Test Cell 3, 3.) New refrigeration system and tunnel heat exchanger for the Icing Research Tunnel at the Glenn Research Center, 4.) Technical viability improvements for the National Transonic Facility at the Langley Research Center, and 5.) Modifications to conduct Environmentally Responsible Aviation and Rotorcraft research at the 14 x 22 Subsonic Tunnel at Langley Research Center. The selection rationale, problem statement, and technical solution summary for each project is given here. The benefits and challenges of the ARRA funded projects are discussed. Indirectly, this opportunity provides the advantages of developing experience in NASA's workforce in large projects and maintaining corporate knowledge in that very unique capability. It is envisioned that improved facilities will attract a larger user base and capabilities that are needed for current and future research efforts will offer revenue growth and future operations stability. Several of the chosen projects will maximize wind tunnel reliability and maintainability by using newer, proven technologies in place of older and obsolete equipment and processes. The projects will meet NASA's goal of

  4. NASA PC software evaluation project

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kuan, Julie C.

    1986-01-01

    The USL NASA PC software evaluation project is intended to provide a structured framework for facilitating the development of quality NASA PC software products. The project will assist NASA PC development staff to understand the characteristics and functions of NASA PC software products. Based on the results of the project teams' evaluations and recommendations, users can judge the reliability, usability, acceptability, maintainability and customizability of all the PC software products. The objective here is to provide initial, high-level specifications and guidelines for NASA PC software evaluation. The primary tasks to be addressed in this project are as follows: to gain a strong understanding of what software evaluation entails and how to organize a structured software evaluation process; to define a structured methodology for conducting the software evaluation process; to develop a set of PC software evaluation criteria and evaluation rating scales; and to conduct PC software evaluations in accordance with the identified methodology. Communication Packages, Network System Software, Graphics Support Software, Environment Management Software, General Utilities. This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in using this report out of context of the full Final Report.

  5. NASA Astrophysics Prioritizes Technology Development Funding for Strategic Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Pham, Bruce; Ganel, Opher

    2017-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope, Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and X-ray Surveyor. The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned L3 gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. Starting in 2016, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of this year’s technology gap prioritization and showcase our current portfolio of technology development projects. To date, 77 COR and 80 PCOS SAT proposals have been received, of which 18 COR and 22 PCOS projects

  6. NASA Design Projects at UC Berkeley for NASA's HEDS-UP Program

    NASA Astrophysics Data System (ADS)

    Kuznetz, Lawrence

    1998-01-01

    Missions to Mars have been a topic for study since the advent of the space age. But funding has been largely reserved for the unmanned probes such as Viking, Pathfinder and Global Surveyer. Financial and political constraints have relegated human missions, on the other hand, to backroom efforts such as the Space Exploration Initiative (SEI) of 1989-1990. With the new found enthusiasm from Pathfinder and the meteorite ALH84001, however, there is renewed interest in human exploration of Mars. This is manifest in the new Human Exploration and Development of Space (HEDS) program that NASA has recently initiated. This program, through its University Projects (HEDS-UP) office has taken the unusual step of soliciting creative solutions from universities. For its part in the HEDS-UP program, the University of California at Berkeley was asked to study the issues of Habitat design, Space Suits for Mars, Environmental Control and Life Support Systems, Countermeasures to Hypogravity and Crew Size/Mix. These topics were investigated as design projects in "Mars by 2012", an on-going class for undergraduates and graduate students. The methodology of study was deemed to be as important as the design projects themselves and for that we were asked to create an Interactive Design Environment. The Interactive Design Environment (IDE) is an electronic "office" that allows scientists and engineers, as well as other interested parties, to interact with and critique engineering designs as they progress. It usually takes the form of a website that creates a "virtual office" environment. That environment is a place where NASA and others can interact with and critique the university designs for potential inclusion in the Mars Design Reference Mission.

  7. Funding Mechanisms for Ecosystem Services Projects

    NASA Astrophysics Data System (ADS)

    Russell, V.

    2014-12-01

    Ecosystem services projects ideally should be funded through commoditized markets. Where those markets do not exist financing directly from interested private sector parties can be a direct link between business interested in fulfilling sustainability goals and project implementers. Challenges exist, however in 1) linking those interests; 2) carefully quantifying the services produced, their true costs to implement and meeting protocol standards; 3) measuring the success of projects, especially over lengthy periods of time; and 4) balancing issues related to multiple spatial scales for projects and funding to make a difference. Examples from National Forest Foundation's experience implementing carbon and water projects with multiple private sector funders and the USDA Forest Service will highlight experiences and lessons learned in funding and implementing ecosystem service projects.

  8. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  9. K-12 Project Management Education: NASA Hunch Projects

    ERIC Educational Resources Information Center

    Morgan, Joe; Zhan, Wei; Leonard, Matt

    2013-01-01

    To increase the interest in science, technology, engineering, and math (STEM) among high school students, the National Aeronautics and Space Administration (NASA) created the "High Schools United with NASA to Create Hardware" (HUNCH) program. To enhance the experience of the students, NASA sponsored two additional projects that require…

  10. Funding for Computer-Assisted Instruction Projects.

    ERIC Educational Resources Information Center

    Corn, Milton

    1994-01-01

    An informal survey of individuals and a search of MEDLINE literature sought information on funding sources for computer-assisted instruction projects in dental, medical, and nursing education. General patterns are outlined, and suggestions are made for locating project funding. (MSE)

  11. Use of NASA Satellite Data in Aiding Mississippi Barrier Island Restoration Projects

    NASA Technical Reports Server (NTRS)

    Giardino, Marco; Spruce, Joseph; Kalcic, Maria; Fletcher, Rose

    2009-01-01

    This presentation discusses a NASA Stennis Space Center project in which NASA-supported satellite and aerial data is being used to aid state and federal agencies in restoring the Mississippi barrier islands. Led by the Applied Science and Technology Project Office (ASTPO), this project will produce geospatial information products from multiple NASA-supported data sources, including Landsat, ASTER, and MODIS satellite data as well as ATLAS multispectral, CAMS multispectral, AVIRIS hyperspectral, EAARL, and other aerial data. Project objectives include the development and testing of a regional sediment transport model and the monitoring of barrier island restoration efforts through remote sensing. Barrier islands provide invaluable benefits to the State of Mississippi, including buffering the mainland from storm surge impacts, providing habitats for valuable wildlife and fisheries habitat, offering accessible recreational opportunities, and preserving natural environments for educating the public about coastal ecosystems and cultural resources. Unfortunately, these highly valued natural areas are prone to damage from hurricanes. For example, Hurricane Camille in 1969 split Ship Island into East and West Ship Island. Hurricane Georges in 1998 caused additional land loss for the two Ship Islands. More recently, Hurricanes Ivan, Katrina, Rita, Gustav, and Ike impacted the Mississippi barrier islands. In particular, Hurricane Katrina caused major damage to island vegetation and landforms, killing island forest overstories, overwashing entire islands, and causing widespread erosion. In response, multiple state and federal agencies are working to restore damaged components of these barrier islands. Much of this work is being implemented through federally funded Coastal Impact Assessment and Mississippi Coastal Improvement programs. One restoration component involves the reestablishment of the island footprints to that in 1969. Our project will employ NASA remote sensing

  12. Development of funding project risk management tools.

    DOT National Transportation Integrated Search

    2013-11-01

    Funding project risk management is a process for identifying, assessing, and prioritizing project funding risks. To plan to : minimize or eliminate the impact of negative events, one must identify what projects have higher risk to respond to potentia...

  13. The NASA Severe Thunderstorm Observations and Regional Modeling (NASA STORM) Project

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Gatlin, Patrick N.; Lang, Timothy J.; Srikishen, Jayanthi; Case, Jonathan L.; Molthan, Andrew L.; Zavodsky, Bradley T.; Bailey, Jeffrey; Blakeslee, Richard J.; Jedlovec, Gary J.

    2016-01-01

    The NASA Severe Storm Thunderstorm Observations and Regional Modeling(NASA STORM) project enhanced NASA’s severe weather research capabilities, building upon existing Earth Science expertise at NASA Marshall Space Flight Center (MSFC). During this project, MSFC extended NASA’s ground-based lightning detection capacity to include a readily deployable lightning mapping array (LMA). NASA STORM also enabled NASA’s Short-term Prediction and Research Transition (SPoRT) to add convection allowing ensemble modeling to its portfolio of regional numerical weather prediction (NWP) capabilities. As a part of NASA STORM, MSFC developed new open-source capabilities for analyzing and displaying weather radar observations integrated from both research and operational networks. These accomplishments enabled by NASA STORM are a step towards enhancing NASA’s capabilities for studying severe weather and positions them for any future NASA related severe storm field campaigns.

  14. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1992-01-01

    This volume is the fifth in an ongoing series on aerospace project management at NASA. Articles in this volume cover: an overview of the project cycle; SE&I management for manned space flight programs; shared experiences from NASA Programs and Projects - 1975; cost control for Mariner Venus/Mercury 1973; and the Space Shuttle - a balancing of design and politics. A section on resources for NASA managers rounds out the publication.

  15. Survey of university programs in remote sensing funded under grants from the NASA University-Space Applications program

    NASA Technical Reports Server (NTRS)

    Madigan, J. A.; Earhart, R. W.

    1978-01-01

    NASA's Office of Space and Terrestrial Applications (OSTA) is currently assessing approaches to transferring NASA technology to both the public and private sectors. As part of this assessment, NASA is evaluating the effectiveness of an ongoing program in remote sensing technology transfer conducted by 20 university contractors/grantees, each supported totally or partially by NASA funds. The University-Space Applications program has as its objective the demonstration of practical benefits from the use of remote sensing technology to a broad spectrum of new users, principally in state and local governments. To evaluate the University-Space Applications program, NASA has a near-term requirement for data on each university effort including total funding, funding sources, length of program, program description, and effectiveness measures.

  16. 24 CFR 200.54 - Project completion funding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Project completion funding. 200.54... Project completion funding. (a) Except as provided in paragraph (d) of this section, the mortgagor shall... conditions established by the Commissioner, where the required funding is to be provided by a grant or loan...

  17. 24 CFR 200.54 - Project completion funding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Project completion funding. 200.54... Project completion funding. (a) Except as provided in paragraph (d) of this section, the mortgagor shall... conditions established by the Commissioner, where the required funding is to be provided by a grant or loan...

  18. The NASA Bed Rest Project

    NASA Technical Reports Server (NTRS)

    Rhodes, Bradley; Meck, Janice

    2005-01-01

    NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation

  19. Assessing the maturity and re-usability of NASA's Advanced Information System Technology (AIST) Projects

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Hines, K.

    2016-12-01

    Considerable funding has been invested in Earth science information technology (IT) projects by NASA over the past 15 years. While many of these projects succeeded at completing their objectives, rapid improvements in technology and growth in available data could further enhance the capabilities available to the Earth science community. Independent evaluation of these projects has become more and more important. Not only do they qualify the maturity of the work, but they give potential adopters the chance to kick the tires. One approach that has been used is to task Federally Funded Research and Development Corporations (FFRDC) with reviews and paper studies. Another approach involves field testing by third parties. Over the past three years, the AIST Program has tried both. This paper will describe both approaches and lessons learned from the experiences. The audience will be asked for their suggestions as to how to qualify and value these results.

  20. 48 CFR 1832.705-270 - NASA clauses for limitation of cost or funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA clauses for limitation of cost or funds. 1832.705-270 Section 1832.705-270 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Contract Funding 1832...

  1. Monitoring the Mesoamerican Biological Corridor: A NASA/CCAD Cooperative Research Project

    NASA Technical Reports Server (NTRS)

    Sever, Thomas; Irwin, Daniel; Sader, Steven A.; Saatchi, Sassan

    2004-01-01

    To foster scientific cooperation under a Memorandum of Understanding between NASA and the Central American countries, the research project developed regional databases to monitor forest condition and environmental change throughout the region. Of particular interest is the Mesoamerican Biological Corridor (MBC), a chain of protected areas and proposed conservation areas that will link segments of natural habitats in Central America from the borders of northern Columbia to southern Mexico. The first and second year of the project focused on the development of regional satellite databases (JERS-IC, MODIS, and Landsat-TM), training of Central American cooperators and forest cover and change analysis. The three regional satellite mosaics were developed and distributed on CD-ROM to cooperators and regional outlets. Four regional remote sensing training courses were conducted in 3 countries including participants from all 7 Central American countries and Mexico. In year 3, regional forest change assessment in reference to Mesoamerican Biological Corridor was completed and land cover maps (from Landsat TM) were developed for 7 Landsat scenes and accuracy assessed. These maps are being used to support validation of MODIS forest/non forest maps and to examine forest fragmentation and forest cover change in selected study sites. A no-cost time extension (2003-2004) allowed the completion of an M.S. thesis by a Costa Rican student and preparation of manuscripts for future submission to peer-reviewed outlets. Proposals initiated at the end of the project have generated external funding from the U.S. Forest Service (to U. Maine), NASA-ESSF (Oregon State U.) and from USAID and EPA (to NASA-MSFC-GHCC) to test MODIS capabilities to detect forest change; conduct literature review on biomass estimation and carbon stocks and develop a regional remote sensing monitoring center in Central America. The success of the project has led to continued cooperation between NASA, other federal

  2. Managemant of NASA's major projects

    NASA Technical Reports Server (NTRS)

    James, L. B.

    1973-01-01

    Approaches used to manage major projects are studied and the existing documents on NASA management are reviewed. The work consists of: (1) the project manager's role, (2) request for proposal, (3) project plan, (4) management information system, (5) project organizational thinking, (6) management disciplines, (7) important decisions, and (8) low cost approach.

  3. NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Anderson, David J.

    2008-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  4. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1990-01-01

    This volume is the third in an ongoing series on aerospace project management at NASA. Articles in this volume cover the attitude of the program manager, program control and performance measurement, risk management, cost plus award fee contracting, lessons learned from the development of the Far Infrared Absolute Spectrometer (FIRAS), small projects management, and age distribution of NASA scientists and engineers. A section on resources for NASA managers rounds out the publication.

  5. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1991-01-01

    This volume is the third in an ongoing series on aerospace project management at NASA. Articles in this volume cover the attitude of the program manager, program control and performance measurement, risk management, cost plus award fee contracting, lessons learned from the development of the Far Infrared Absolute Spectrometer (FIRAS), small projects management, and age distribution of NASA scientists and engineers. A section on resources for NASA managers rounds out the publication.

  6. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  7. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    NASA Technical Reports Server (NTRS)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  8. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor)

    1994-01-01

    This volume is the eighth in an ongoing series addressing current topics and lessons learned in NASA program and project management. Articles in this volume cover the following topics: (1) power sources for the Galileo and Ulysses Missions; (2) managing requirements; (3) program control of the Tropical Rainfall Measuring Mission; (4) project management method; (5) career development for project managers; and (6) resources for NASA managers.

  9. NASA SBIR abstracts of 1991 phase 1 projects

    NASA Technical Reports Server (NTRS)

    Schwenk, F. Carl; Gilman, J. A.; Paige, J. B.

    1992-01-01

    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included.

  10. The MINE project: Minority Involvement in NASA Engineering

    NASA Technical Reports Server (NTRS)

    Allen, H., Jr.

    1977-01-01

    The Mine Project developed by Lewis Research Center (LRC) along with Tennessee State University and Tuskegee Institute, is described. The project calls for LRC to assemble on-going NASA university affairs programs aimed at benefiting the school, its faculty, and its student body. The schools receive grants to pursue research and technology projects that are relevant to NASA's missions. Upon request from the universities, LRC furnishes instructors and lecturers. The schools have use of surplus government equipment and access to NASA research facilities for certain projects. Both the faculty and students of the universities are eligible for summer employment at LRC through special programs. The MINE Project is designed to establish a continuing active relationship of 3 to 5 years between NASA and the universities, and will afford LRC with an opportunity to increase its recruitment of minority and women employees.

  11. NASA SBIR abstracts of 1992, phase 1 projects

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Gilman, J. A.; Paige, J. B.; Sacknoff, S. M.

    1993-01-01

    The objectives of 346 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1992 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 346, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1992 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included.

  12. 42 CFR 59.208 - Use of project funds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Use of project funds. 59.208 Section 59.208 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.208 Use of project funds. (a) Any funds granted...

  13. 42 CFR 59.208 - Use of project funds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Use of project funds. 59.208 Section 59.208 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.208 Use of project funds. (a) Any funds granted...

  14. 42 CFR 59.208 - Use of project funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Use of project funds. 59.208 Section 59.208 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.208 Use of project funds. (a) Any funds granted...

  15. 42 CFR 59.208 - Use of project funds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Use of project funds. 59.208 Section 59.208 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.208 Use of project funds. (a) Any funds granted...

  16. 42 CFR 59.208 - Use of project funds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Use of project funds. 59.208 Section 59.208 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.208 Use of project funds. (a) Any funds granted...

  17. NASA funding opportunities for optical fabrication and testing technology development

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  18. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs

  19. 40 CFR 149.111 - Funding to redesigned projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) SOLE SOURCE AQUIFERS Review of Projects Affecting the Edwards Underground Reservoir, A Designated Sole Source Aquifer in the San Antonio, Texas Area § 149.111 Funding to redesigned projects. After... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Funding to redesigned projects. 149...

  20. Project Management in NASA: The system and the men

    NASA Technical Reports Server (NTRS)

    Pontious, R. H.; Barnes, L. B.

    1973-01-01

    An analytical description of the NASA project management system is presented with emphasis on the human element. The NASA concept of project management, program managers, and the problems and strengths of the NASA system are discussed.

  1. Risk Management of NASA Projects

    NASA Technical Reports Server (NTRS)

    Sarper, Hueseyin

    1997-01-01

    Various NASA Langley Research Center and other center projects were attempted for analysis to obtain historical data comparing pre-phase A study and the final outcome for each project. This attempt, however, was abandoned once it became clear that very little documentation was available. Next, extensive literature search was conducted on the role of risk and reliability concepts in project management. Probabilistic risk assessment (PRA) techniques are being used with increasing regularity both in and outside of NASA. The value and the usage of PRA techniques were reviewed for large projects. It was found that both civilian and military branches of the space industry have traditionally refrained from using PRA, which was developed and expanded by nuclear industry. Although much has changed with the end of the cold war and the Challenger disaster, it was found that ingrained anti-PRA culture is hard to stop. Examples of skepticism against the use of risk management and assessment techniques were found both in the literature and in conversations with some technical staff. Program and project managers need to be convinced that the applicability and use of risk management and risk assessment techniques is much broader than just in the traditional safety-related areas of application. The time has come to begin to uniformly apply these techniques. The whole idea of risk-based system can maximize the 'return on investment' that the public demands. Also, it would be very useful if all project documents of NASA Langley Research Center, pre-phase A through final report, are carefully stored in a central repository preferably in electronic format.

  2. Issues in NASA Program and Project Management: Focus on Project Planning and Scheduling

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1997-01-01

    Topics addressed include: Planning and scheduling training for working project teams at NASA, overview of project planning and scheduling workshops, project planning at NASA, new approaches to systems engineering, software reliability assessment, and software reuse in wind tunnel control systems.

  3. NASA Hispanic Profile Interview with Evan Pineda

    NASA Image and Video Library

    2017-10-20

    Evan Pineda received his Ph.D. at the University of Michigan which was funded by a NASA project. After receiving a co-op position, he became a full-time employee at NASA Glenn Research Center. He talks about his project involvement with Space Launch System (SLS) and receiving the Hispanic Engineer National Achievement Awards Conference (HENAAC).

  4. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor); Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1995-01-01

    This volume is the ninth in an ongoing series on aerospace project management at NASA. Articles in this volume cover evolution of NASA cost estimating; SAM 2; National Space Science Program: strategies to maximize science return; and human needs, motivation, and results of the NASA culture surveys. A section on resources for NASA managers rounds out the publication.

  5. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1993-01-01

    This volume is the sixth in an ongoing series on aerospace project management at NASA. Articles in this volume cover evolution of NASA cost estimating; SAM 2; National Space Science Program: strategies to maximize science return; and human needs, motivation, and results of the NASA culture surveys. A section on resources for NASA managers rounds out the publication.

  6. Ulysses - An ESA/NASA cooperative programme

    NASA Technical Reports Server (NTRS)

    Meeks, W.; Eaton, D.

    1990-01-01

    Cooperation between ESA and NASA is discussed, noting that the Memorandum of Understanding lays the framework for this relationship, defining the responsibilities of ESA and NASA and providing for appointment of leadership and managers for the project. Members of NASA's Jet Propulsion Laboratory and ESA's ESTEC staff have been appointed to leadership positions within the project and ultimate control of the project rests with the Joint Working Group consisting of two project managers and two project scientists, equally representing both organizations. Coordination of time scales and overall mission design is discussed, including launch cooperation, public relations, and funding of scientific investigations such as Ulysses. Practical difficulties of managing an international project are discussed such as differing documentation requirements and communication techniques, and assurance of equality on projects.

  7. NASA SBIR abstracts of 1990 phase 1 projects

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Gilman, J. A.; Paige, J. B.

    1991-01-01

    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number.

  8. 10 CFR 603.520 - Reasonableness of total project funding.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Reasonableness of total project funding. 603.520 Section 603.520 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award Business Evaluation Total Funding § 603.520 Reasonableness of total project funding. In...

  9. 13 CFR 308.1 - Use of funds in Projects constructed under projected cost.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Use of funds in Projects constructed under projected cost. 308.1 Section 308.1 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE PERFORMANCE INCENTIVES § 308.1 Use of funds in Projects constructed under...

  10. The NASA/Army Autonomous Rotorcraft Project

    NASA Technical Reports Server (NTRS)

    Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.

    2002-01-01

    An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.

  11. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.

  12. EPO in NASA's Science Mission Directorate

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, A.; Cooper, L. P.

    2005-05-01

    The Science Mission Directorate (SMD) at NASA believes very strongly in education and public outreach (EPO) and has embedded such programs within its missions. There are also some funding opportunities that are available outside the mission context. We will provide an overview of the various funding opportunities available through the SMD at NASA to carry out EPO programs. We will introduce speakers who have won such EPO awards and they will discuss their experience with writing the proposals and carrying out their projects.

  13. NASA'S SERVIR Gulf of Mexico Project: The Gulf of Mexico Regional Collaborative (GoMRC)

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Irwin, Daniel; Presson, Joan; Estes, Maury; Estes, Sue; Judd, Kathleen

    2006-01-01

    The Gulf of Mexico Regional Collaborative (GoMRC) is a NASA-funded project that has as its goal to develop an integrated, working, prototype IT infrastructure for Earth science data, knowledge and models for the five Gulf U.S. states and Mexico, and to demonstrate its ability to help decision-makers better understand critical Gulf-scale issues. Within this preview, the mission of this project is to provide cross cutting solution network and rapid prototyping capability for the Gulf of Mexico region, in order to demonstrate substantial, collaborative, multi-agency research and transitional capabilities using unique NASA data sets and models to address regional problems. SERVIR Mesoamerica is seen as an excellent existing framework that can be used to integrate observational and GIs data bases, provide a sensor web interface, visualization and interactive analysis tools, archival functions, data dissemination and product generation within a Rapid Prototyping concept to assist decision-makers in better understanding Gulf-scale environmental issues.

  14. Issues in NASA program and project management. Special Report: 1993 conference

    NASA Technical Reports Server (NTRS)

    Hoffman, ED (Editor); Kishiyama, Jenny S. (Editor)

    1993-01-01

    This volume is the seventh in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1993 Conference: perspectives in NASA program/project management; the best job in aerospace; improvements in project management at NASA; strategic planning...mapping the way to NASA's future; new NASA procurement initiatives; international cooperation; and industry, government and university partnership. A section on resources for NASA managers rounds out the publication.

  15. 40 CFR 149.111 - Funding to redesigned projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Funding to redesigned projects. 149.111 Section 149.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Designated Sole Source Aquifer in the San Antonio, Texas Area § 149.111 Funding to redesigned projects. After...

  16. Student Projects as a Funding Source

    ERIC Educational Resources Information Center

    Henson, Kerry L.

    2010-01-01

    Prompted by restricted funding for a lab which supported student software development work on real-world projects, a contribution program was established to facilitate monetary support from the external clients. The paper explores the relationships between instructor, students and client and how a funding component can affect these ties.…

  17. The Scientific and Engineering Student Internship (SESI) Program at NASA's GSFC

    NASA Astrophysics Data System (ADS)

    Bruhweiler, F.; Verner, E.; Rabin, D. M.

    2011-12-01

    Through our Scientific and Engineering Student Internship (SESI) program we have provided exceptional research opportunities for undergraduate and graduate students in one of the world's premier research centers dedicated to the Sun and its heliosphere, the Heliophysics Science Division at NASA/Goddard Space Flight Center. NASA/GSFC and the NSF/REU program have funded this activity jointly. These opportunities combine the advantages of the stimulating, multi-disciplinary, environment of a NASA laboratory with the guidance provided by researchers who are, in addition, committed to education and the encouragement of women, under-represented minorities, and students with disabilities. Opportunities also exist for non-U.S. citizens as well. Moreover, the surrounding Washington, DC area provides a variety of social and educational activities for our participating students. Our 19 years of experience has served as an effective catalyst, enabling us to establish a formal program for students interested in Solar and Space Physics at NASA and to develop more NASA-funded opportunities for students, in addition to those funded by NSF/REU awards. This has allowed us to present a combined NSF/REU and NASA-funded program for undergraduates at NASA/GSFC. This synergistic program exposes our student interns to a very wide range of projects and ideas, normally unavailable in other programs. We have had roughly 300 students (about 1/2 being supported by NSF) actively participate in over 200 different research opportunities. These research projects have spanned the spectrum, ranging from theoretical modeling associated with space weather, developing instrumentation for space missions, analysis of spacecraft data, including 'hands-on' experience with sounding rockets and working in the clean environs of GSFC's Detector Development Laboratory. Although SESI is largely a summer program, a number of students, often through other funding sources, continue their research projects during

  18. The Drawbacks of Project Funding for Epistemic Innovation: Comparing Institutional Affordances and Constraints of Different Types of Research Funding.

    PubMed

    Franssen, Thomas; Scholten, Wout; Hessels, Laurens K; de Rijcke, Sarah

    2018-01-01

    Over the past decades, science funding shows a shift from recurrent block funding towards project funding mechanisms. However, our knowledge of how project funding arrangements influence the organizational and epistemic properties of research is limited. To study this relation, a bridge between science policy studies and science studies is necessary. Recent studies have analyzed the relation between the affordances and constraints of project grants and the epistemic properties of research. However, the potentially very different affordances and constraints of funding arrangements such as awards, prizes and fellowships, have not yet been taken into account. Drawing on eight case studies of funding arrangements in high performing Dutch research groups, this study compares the institutional affordances and constraints of prizes with those of project grants and their effects on organizational and epistemic properties of research. We argue that the prize case studies diverge from project-funded research in three ways: 1) a more flexible use, and adaptation of use, of funds during the research process compared to project grants; 2) investments in the larger organization which have effects beyond the research project itself; and 3), closely related, greater deviation from epistemic and organizational standards. The increasing dominance of project funding arrangements in Western science systems is therefore argued to be problematic in light of epistemic and organizational innovation. Funding arrangements that offer funding without scholars having to submit a project-proposal remain crucial to support researchers and research groups to deviate from epistemic and organizational standards.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The objective of the NASA/DOD Aerospace Knowledge Diffusion Research Project is to provide descriptive and analytical data regarding the flow of scientific and technical information (STI) at the individual, organizational, national, and international levels, placing emphasis on the systems used to diffuse the results of federally funded aerospace STI. An overview of project assumptions, objectives, and design is presented and preliminary results of the phase 2 aerospace library survey are summarized. Phase 2 addressed aerospace knowledge transfer and use within the larger social system and focused on the flow of aerospace STI in government and industry and the role of the information intermediary in knowledge transfer.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 10: The NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The role of the NASA/DOD Aerospace Knowledge DIffusion Research Project in helping to maintain U.S. competitiveness is addressed. The phases of the project are examined in terms of the focus, emphasis, subjects, methods, and desired outcomes. The importance of the project to aerospace R&D is emphasized.

  1. 23 CFR 661.39 - How are project cost overruns funded?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false How are project cost overruns funded? 661.39 Section 661... OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.39 How are project cost overruns funded? (a) A request for additional IRRBP funds for cost overruns on a specific bridge project must be submitted to...

  2. 23 CFR 661.39 - How are project cost overruns funded?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false How are project cost overruns funded? 661.39 Section 661... OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.39 How are project cost overruns funded? (a) A request for additional IRRBP funds for cost overruns on a specific bridge project must be submitted to...

  3. 23 CFR 661.39 - How are project cost overruns funded?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false How are project cost overruns funded? 661.39 Section 661... OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.39 How are project cost overruns funded? (a) A request for additional IRRBP funds for cost overruns on a specific bridge project must be submitted to...

  4. 23 CFR 661.39 - How are project cost overruns funded?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false How are project cost overruns funded? 661.39 Section 661... OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.39 How are project cost overruns funded? (a) A request for additional IRRBP funds for cost overruns on a specific bridge project must be submitted to...

  5. 23 CFR 661.39 - How are project cost overruns funded?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.39 How are project cost overruns funded? (a) A request for additional IRRBP funds for cost overruns on a specific bridge project must be submitted to... 23 Highways 1 2010-04-01 2010-04-01 false How are project cost overruns funded? 661.39 Section 661...

  6. NASA Redox system development project status

    NASA Technical Reports Server (NTRS)

    Nice, A. W.

    1981-01-01

    NASA-Redox energy storage systems developed for solar power applications and utility load leveling applications are discussed. The major objective of the project is to establish the technology readiness of Redox energy storage for transfer to industry for product development and commercialization by industry. The approach is to competitively contract to design, build, and test Redox systems progressively from preprototype to prototype multi-kW and megawatt systems and conduct supporting technology advancement tasks. The Redox electrode and membrane are fully adequate for multi-kW solar related applications and the viability of the Redox system technology as demonstrated for multi-kW solar related applications. The status of the NASA Redox Storage System Project is described along with the goals and objectives of the project elements.

  7. The Mars Express - NASA Project at JPL

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Horttor, Richard L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S. W.; Goltz, G.

    2006-01-01

    This viewgraph presentation gives a general overview of the Mars Express NASA Project at JPL. The contents include: 1) Mars Express/NASA Project Overview; 2) Experiment-Investigator Matrix; 3) Mars Express Support of NASA's Mars Exploration Objectives; 4) U.S./NASA Support of Mars Express; 5) Mars Express Schedule (2003-2007); 6) Mars Express Data Rates; 7) MARSIS Overview Results; 8) MARSIS with Antennas Deployed; 9) MARSIS Science Objectives; 10) Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) Experiment Overview; 11) Mars Express Orbit Evolution; 12) MARSIS Science - Subsurface Sounding; 13) MARSIS-North Polar Ice Cap; 14) MARSIS Data-Buried Basin; 15) MARSIS over a Crater Basin; 16) MARSIS-Buried Basin; 17) Ionogram - Orbit 2032 (example from Science paper); 18) Ionogram-Orbit 2018 (example from Science paper); and 19) Recent MARSIS Results ESA Press Releases.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 58; Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this paper, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as (1) the order in which report components are read, (2) components used to determine if a report would be read, (3) those components that could be deleted, (4) the placement of such components as the symbols list, (e) the de-sirability of a table of contents, (5) the format of reference citations, (6) column layout and right margin treatment, and (7) and person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 65: Survey of Reader Preferences Concerning the Format of NASA Langley-Authored Technical Reports

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1997-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this article, we summarize the literature on the U.S. government technical report and present the results of a survey of U.S. aerospace engineers and scientists that solicited their opinions concerning the format of NASA Langley Research Center (LaRC)-authored technical reports. To learn more about the preferences of U.S. aerospace engineers and scientists concerning the format of NASA LaRC-authored technical reports, we surveyed 133 report producers (i.e., authors) and 137 report users in March-April 1996. Questions covered such topics as: (a) the order in which report components are read; (b) components used to determine if a report would be read; (c) those components that could be deleted; (d) the placement of such components as the symbols list; (e) the desirability of a table of contents; (f) the format of reference citations; (g) column layout and right margin treatment; and (h) writing style in terms of person and voice. Mail (self-reported) surveys were used to collect the data. The response rates for report producers (i.e., authors) was 68% and for users was 62%.

  10. The NASA Astrophysics Data System

    Science.gov Websites

    a digital library for researchers in astronomy and astrophysics. It also covers other subject areas related to astronomy and astrophysics. This data system is a NASA funded project and access to all ADS Eichhorn, Project Scientist for ADS, received the Physics, Astronomy and Mathematics Division Award from

  11. Technology Investments in the NASA Entry Systems Modeling Project

    NASA Technical Reports Server (NTRS)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  12. NASA Guidelines for Promoting Scientific and Research Integrity

    NASA Technical Reports Server (NTRS)

    Kaminski, Amy P.; Neogi, Natasha A.

    2017-01-01

    This guidebook provides an overarching summary of existing policies, activities, and guiding principles for scientific and research integrity with which NASA's workforce and affiliates must conform. This document addresses NASA's obligations as both a research institution and as a funder of research, NASA's use of federal advisory committees, NASA's public communication of research results, and professional development of NASA's workforce. This guidebook is intended to provide a single resource for NASA researchers, NASA research program administrators and project managers, external entities who do or might receive funding from NASA for research or technical projects, evaluators of NASA research proposals, NASA advisory committee members, NASA communications specialists, and members of the general public so that they can understand NASA's commitment to and expectations for scientific and integrity across the agency.

  13. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  14. NASA TEERM Hexavalent Chrome Alternatives Projects

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matt

    2009-01-01

    This slide presentation reviews the NASA/DOD projects to select an alternative to hexavalent chrome in the aerospace industry. The Phase I process of the project performed: (1) Evaluation and testing of non-chromated coating systems as replacements for hexavalent chrome coatings in aircraft and aerospace applications. (2) Testing of coating systems to DoD and NASA specifications for corrosion resistance and adhesion. (3) Bare corrosion resistance and atmospheric exposure will be focus areas of Phase II Testing. The description includes a chart that summarizes the 3000 hour salt fog test results. The second phase of the project includes (1) Evaluation and testing of coating systems that do not contain hexavalent chrome as replacements for aerospace applications. (2) Evaluation of coatings at Beach Test Site and Launch Complex 39B (3) Evaluation of non-chrome coatings for electronic housings (bare corrosion resistance and electrical impedance) is a part of this round of testing. This project was performed for the Technology Evaluation for Environmental Risk Mitigation (TEERM)

  15. NASA Project Planning and Control Handbook

    NASA Technical Reports Server (NTRS)

    Moreland, Robert; Claunch, Cathy L.

    2016-01-01

    This handbook provides an overview of the fundamental principles and explains the functions and products that go into project planning and control. The 2010 Interim Results of the NASA Program Planning and Control (PPC) Study identified seven categories of activities for PPC, and those provide the basis for the seven functions described in this handbook. This handbook maps out the interfaces and interactions between PPC functions, as well as their external interfaces. This integration of information and products within and between functions is necessary to form the whole picture of how a project is progressing. The handbook descriptions are meant to facilitate consistent, common, and comprehensive approaches for providing valued analysis, assessment, and evaluation focused on the project level at NASA. The handbook also describes activities in terms of function rather than the job title or the specific person or organization responsible for the activity, which could differ by Center or size of a project. This handbook is primarily guidance for project planning and control: however, the same principles apply to programs and generally apply to institutional planning and control.

  16. Project ELaNa and NASA's CubeSat Initiative

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2010-01-01

    This slide presentation reviews the NASA program to use expendable lift vehicles (ELVs) to launch nanosatellites for the purpose of enhancing educational research. The Education Launch of Nanosatellite (ELaNa) project, run out of the Launch Services Program is requesting proposals for CubeSat type payload to provide information that will aid or verify NASA Projects designs while providing higher educational research

  17. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).

  18. Aeronautics Education, Research, and Industry Alliance (AERIAL) Progress Report and Proposal for Funding Continuation NASA Nebraska EPSCoR

    NASA Technical Reports Server (NTRS)

    Bowen, Brent; Fink, Mary; Gogos, George; Moussavi, Massoum; Nickerson, Jocelyn; Rundquist, Donald; Russell, Valerie; Tarry, Scott

    2004-01-01

    The Aeronautics Education, Research, and Industry Alliance (AERIAL), which began as a comprehensive, multi-faceted NASA EPSCoR 2000 initiative, has contributed substantially to the strategic research and technology priorities of NASA, while intensifying Nebraska's rapidly growing aeronautics research and development endeavors. AERIAL has enabled Nebraska researchers to: (a) continue strengthening their collaborative relationships with NASA Field Centers, Codes, and Enterprises; (b) increase the capacity of higher education throughout Nebraska to invigorate and expand aeronautics research; and (c) expedite the development of aeronautics-related research infrastructure and industry in the state. Nebraska has placed emphasis on successfully securing additional funds from non-EPSCoR and non-NASA sources. AERIAL researchers have aggressively pursued additional funding opportunities offered by NASA, industry, and other agencies. This report contains a summary of AERIAL's activities and accomplishments during its first three years of implementation.

  19. NASA in the 21st century: A vision of greatness

    NASA Technical Reports Server (NTRS)

    Murphy, Kathleen J.

    1992-01-01

    Notions of greatness are discussed that have guided NASA in the past, values are presented that might be delivered by NASA in the future, and the the skills required for NASA to execute a vision of greatness are examined. Three possible patterns of space development by NASA are reviewed: (1) a mission to protect the ecology of the Earth; (2) the engineering of the technologies critical to space transportation and a healthy, productive life in space; and (3) the management of a major nonterrestrial resource project. Potential sources of funds are discussed along with opportunities for sustainable collaboration, and the life cycle of NASA's funding responsibility for its space development program.

  20. NASA's In-Space Manufacturing Project: A Roadmap for a Multimaterial Fabrication Laboratory in Space

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for NASA to partner with private industry for development and demonstration of the technologies needed to support exploration initiatives. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing (ISM) project, its past and current activities (2014-2017), and how technologies under development will ultimately culminate in a multimaterial fabrication laboratory ("ISM FabLab") to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit, through a resupply launch or a return to earth, may instead result in a loss of mission while in transit to Mars. To have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The presentation provides a broad overview of ISM projects activities culminating with the Fabrication Laboratory for ISS. In 2017, the in-space manufacturing project issued a broad agency announcement for this capability. Requirements of the Fabrication Laboratory as stated in the solicitation will be discussed. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the current ISM FabLab will be tested on ISS, future systems are eventually intended for use in a deep space habitat or transit vehicle. The work of commercial companies funded under NASA's Small Business

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report No. 36: The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 1 NASA Langley Research Center Mail Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who were assigned to the Research and Technology Group (RTG) at the NASA Langley Research Center in September 1995.

  2. NASA Parts Selection List (NPSL) WWW Site http://nepp.nasa.gov/npsl

    NASA Technical Reports Server (NTRS)

    Brusse, Jay

    2000-01-01

    The NASA Parts Selection List (NPSL) is an on-line resource for electronic parts selection tailored for use by spaceflight projects. The NPSL provides a list of commonly used electronic parts that have a history of satisfactory use in spaceflight applications. The objective of this www site is to provide NASA projects, contractors, university experimenters, et al with an easy to use resource that provides a baseline of electronic parts from which designers are encouraged to select. The NPSL is an ongoing resource produced by Code 562 in support of the NASA HQ funded NASA Electronic Parts and Packaging (NEPP) Program. The NPSL is produced as an electronic format deliverable made available via the referenced www site administered by Code 562. The NPSL does not provide information pertaining to patented or proprietary information. All of the information contained in the NPSL is available through various other public domain resources such as US Military procurement specifications for electronic parts, NASA GSFC's Preferred Parts List (PPL-21), and NASA's Standard Parts List (MIL-STD975).

  3. The Drawbacks of Project Funding for Epistemic Innovation: Comparing Institutional Affordances and Constraints of Different Types of Research Funding

    ERIC Educational Resources Information Center

    Franssen, Thomas; Scholten, Wout; Hessels, Laurens K.; de Rijcke, Sarah

    2018-01-01

    Over the past decades, science funding shows a shift from recurrent block funding towards project funding mechanisms. However, our knowledge of how project funding arrangements influence the organizational and epistemic properties of research is limited. To study this relation, a bridge between science policy studies and science studies is…

  4. Louisiana NASA EPSCoR Preparation Grant

    NASA Technical Reports Server (NTRS)

    Wefel, John P.; Savoie, E. Joseph

    2002-01-01

    In August, 1999, the National Aeronautics and Space Administration issued a Cooperative Agreement (CA) to the State of Louisiana, through the Louisiana Board of Regents (BOB), for the performance of scientific research and graduate fellowships under the NASA Experimental Program to Stimulate Competitive Research (EPSCoR) -- Preparation Grant. Originally constructed as a one year program, with an optional one year continuation, this federal-state partnership culminated on 14 August 2002, including a successful continuation proposal and a no cost extension. The total value of the project reached $450K in NASA funding, matched by state funds and institutional contributions. The purpose of the Preparation Grant program was to develop and nurture strong research ties between the state and NASA field centers and Enterprises, in order to prepare for the upcoming full competition for NASA EPSCoR.

  5. NASA Game Changing Development Program Manufacturing Innovation Project

    NASA Technical Reports Server (NTRS)

    Tolbert, Carol; Vickers, John

    2011-01-01

    This presentation examines the new NASA Manufacturing Innovation Project. The project is a part of the Game Changing Development Program which is one element of the Space Technology Programs Managed by Office of the Chief Technologist. The project includes innovative technologies in model-based manufacturing, digital additive manufacturing, and other next generation manufacturing tools. The project is also coupled with the larger federal initiatives in this area including the National Digital Engineering and Manufacturing Initiative and the Advanced Manufacturing Partnership. In addition to NASA, other interagency partners include the Department of Defense, Department of Commerce, NIST, Department of Energy, and the National Science Foundation. The development of game-changing manufacturing technologies are critical for NASA s mission of exploration, strengthening America s manufacturing competitiveness, and are highly related to current challenges in defense manufacturing activities. There is strong consensus across industry, academia, and government that the future competitiveness of U.S. industry will be determined, in large part, by a technologically advanced manufacturing sector. This presentation highlights the prospectus of next generation manufacturing technologies to the challenges faced NASA and by the Department of Defense. The project focuses on maturing innovative/high payoff model-based manufacturing technologies that may lead to entirely new approaches for a broad array of future NASA missions and solutions to significant national needs. Digital manufacturing and computer-integrated manufacturing "virtually" guarantee advantages in quality, speed, and cost and offer many long-term benefits across the entire product lifecycle. This paper addresses key enablers and emerging strategies in areas such as: Current government initiatives, Model-based manufacturing, and Additive manufacturing.

  6. A Novel Approach for Engaging Academia in Collaborative Projects with NASA through the X-Hab Academic Innovation Challenge

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Gattuso, Kelly

    2015-01-01

    The X-Hab Academic Innovation Challenge, currently in its sixth year of execution, provides university students with the opportunity to be on the forefront of innovation. The X-Hab Challenge, for short, is designed to engage and retain students in Science, Technology, Engineering and Math (STEM). NASA identifies necessary technologies and studies for deep space missions and invites universities from around the country to develop concepts, prototypes, and lessons learned that will help shape future space missions and awards seed funds to design and produce functional products of interest as proposed by university teams according to their interests and expertise. Universities propose on a variety of projects suggested by NASA and are then judged on technical merit, academic integration, leveraged funding, and outreach. The universities assemble a multi-discipline team of students and advisors that invest months working together, developing concepts, and frequently producing working prototypes. Not only are students able to gain quality experience, working real world problems that have the possibility to be implemented, but they work closely with subject matter experts from NASA who guide them through an official engineering development process.

  7. A Novel Approach for Engaging Academia in Collaborative Projects with NASA through the X-Hab Academic Innovation Challenge

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Gattuso, Kelly J.

    2015-01-01

    The X-Hab Academic Innovation Challenge, currently in its sixth year of execution, provides university students with the opportunity to be on the forefront of innovation. The X-Hab Challenge, for short, is designed to engage and retain students in Science, Technology, Engineering and Math (STEM). NASA identifies necessary technologies and studies for deep space missions and invites universities from around the country to develop concepts, prototypes, and lessons learned that will help shape future space missions and awards seed funds to design and produce functional products of interest as proposed by university teams according to their interests and expertise. Universities propose on a variety of projects suggested by NASA and are then judged on technical merit, academic integration, leveraged funding, and outreach. The universities assemble a multi-discipline team of students and advisors that invest months working together, developing concepts, and frequently producing working prototypes. Not only are students able to gain quality experience, working real world problems that have the possibility of be implemented, but they work closely with subject matter experts from NASA who guide them through an official engineering development process.

  8. Technology transfer in the NASA Ames Advanced Life Support Division

    NASA Technical Reports Server (NTRS)

    Connell, Kathleen; Schlater, Nelson; Bilardo, Vincent; Masson, Paul

    1992-01-01

    This paper summarizes a representative set of technology transfer activities which are currently underway in the Advanced Life Support Division of the Ames Research Center. Five specific NASA-funded research or technology development projects are synopsized that are resulting in transfer of technology in one or more of four main 'arenas:' (1) intra-NASA, (2) intra-Federal, (3) NASA - aerospace industry, and (4) aerospace industry - broader economy. Each project is summarized as a case history, specific issues are identified, and recommendations are formulated based on the lessons learned as a result of each project.

  9. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its

  10. Recent Results from NASA's Morphing Project

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Washburn, Anthony E.; Horta, Lucas G.; Bryant, Robert G.; Cox, David E.; Siochi, Emilie J.; Padula, Sharon L.; Holloway, Nancy M.

    2002-01-01

    The NASA Morphing Project seeks to develop and assess advanced technologies and integrated component concepts to enable efficient, multi-point adaptability in air and space vehicles. In the context of the project, the word "morphing" is defined as "efficient, multi-point adaptability" and may include macro, micro, structural and/or fluidic approaches. The project includes research on smart materials, adaptive structures, micro flow control, biomimetic concepts, optimization and controls. This paper presents an updated overview of the content of the Morphing Project including highlights of recent research results.

  11. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Dr. Amber Straughn, Lead Scientist for James Webb Space Telescope Education & Public Outreach at NASA's Goddard Space Flight Center, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014 Photo Credit: (NASA/Joel Kowsky)

  12. A method for evaluating the funding of components of natural resource and conservation projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellington, John F., E-mail: welling@ipfw.edu; Lewis, Stephen A., E-mail: lewis.sa07@gmail.com

    Many public and private entities such as government agencies and private foundations have missions related to the improvement, protection, and sustainability of the environment. In pursuit of their missions, they fund projects with related outcomes. Typically, the funding scene consists of scarce funding dollars for the many project requests. In light of funding limitations and funder's search for innovative funding schemes, a method to support the allocation of scarce dollars among project components is presented. The proposed scheme has similarities to methods in the project selection literature but differs in its focus on project components and its connection to andmore » enumeration of the universe of funding possibilities. The value of having access to the universe is demonstrated with illustrations. The presentation includes Excel implementations that should appeal to a broad spectrum of project evaluators and reviewers. Access to the space of funding possibilities facilitates a rich analysis of funding alternatives. - Highlights: • Method is given for allocating scarce funding dollars among competing projects. • Allocations are made to fund parts of projects • Proposed method provides access to the universe of funding possibilities. • Proposed method facilitates a rich analysis of funding possibilities. • Excel spreadsheet implementations are provided.« less

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The flow of U.S. government-funded and foreign scientific and technical information (STI) through libraries and related facilities to users in government and industry is examined, summarizing preliminary results of Phase 2 of the NASA/DOD Aerospace Knowledge Diffusion Research Project (NAKDRP). The design and objectives of NAKDRP are reviewed; the NAKDRP model of STI transfer among producers, STI intermediaries, surrogates (technical report repositories or clearinghouses), and users is explained and illustrated with diagrams; and particular attention is given to the organization and operation of aerospace libraries. In a survey of North American libraries it was found that 25-30 percent of libraries regularly receive technical reports from ESA and the UK; the corresponding figures for Germany and for France, Sweden, and Japan are 18 and 5 percent, respectively. Also included is a series of bar graphs showing the librarians' assessments of the quality and use of NASA Technical Reports.

  14. 45 CFR 2553.72 - What are project funding requirements?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... local funding sources during the first three years of operations; or (2) An economic downturn, the... sources of local funding support; or (3) The unexpected discontinuation of local support from one or more... 45 Public Welfare 4 2010-10-01 2010-10-01 false What are project funding requirements? 2553.72...

  15. An innovative program to fund health-oriented student projects and research.

    PubMed

    Bybee, Ronald F; Thompson, Sharon E

    2004-01-01

    The price of a university education has increased over the years. As a result, students often graduate with thousands of dollars of debt. Conducting research or developing class projects that require personal expenditures can be overwhelming, if not impossible. Participation in research and in developing projects can enhance a student's educational experience. In an effort to address cost issues and provide an optimal learning experience for all students through participation in projects and research, the College of Health Sciences at the University of Texas at El Paso (UTEP) collaborated with a regional foundation to fund health-oriented students' projects and research. Approximately 100 projects have been funded in amounts from 200 dollars to 10,000 dollars at UTEP. Similar programs can be replicated at other US universities. Establishing a general fund and identifying contributors may be a viable option, although finding a foundation or agency to fund the project poses a challenge.

  16. 42 CFR 86.16 - Use of project funds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES GRANTS FOR EDUCATION PROGRAMS IN OCCUPATIONAL SAFETY AND HEALTH Occupational Safety and Health Training Grants § 86.16 Use of project funds. (a) Any funds granted pursuant to...

  17. 42 CFR 86.16 - Use of project funds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES GRANTS FOR EDUCATION PROGRAMS IN OCCUPATIONAL SAFETY AND HEALTH Occupational Safety and Health Training Grants § 86.16 Use of project funds. (a) Any funds granted pursuant to...

  18. NASA Redox Storage System Development Project

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1984-01-01

    The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.

  19. Opportunities within NASA's Exploration Systems Mission Directorate for Engineering Students and Faculty

    NASA Technical Reports Server (NTRS)

    Garner, Lesley

    2008-01-01

    In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.

  20. Funding Solar Projects at Federal Agencies: Mechanisms and Selection Criteria (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Implementing solar energy projects at federal facilities is a process. The project planning phase of the process includes determining goals, building a team, determining site feasibility and selecting the appropriate project funding tool. This fact sheet gives practical guidance to assist decision-makers with understanding and selecting the funding tool that would best address their site goals. Because project funding tools are complex, federal agencies should seek project assistance before making final decisions. High capital requirements combined with limits on federal agency energy contracts create challenges for funding solar projects. Solar developers typically require long-term contracts (15-20) years to spread outmore » the initial investment and to enable payments similar to conventional utility bill payments. In the private sector, 20-year contracts have been developed, vetted, and accepted, but the General Services Administration (GSA) contract authority (federal acquisition regulation [FAR] part 41) typically limits contract terms to 10 years. Payments on shorter-term contracts make solar economically unattractive compared with conventional generation. However, in several instances, the federal sector has utilized innovative funding tools that allow long-term contracts or has created a project package that is economically attractive within a shorter contract term.« less

  1. America COMPETES Act: Programs, Funding, and Selected Issues

    DTIC Science & Technology

    2009-04-17

    exhibited by the balance of trade in high -technology products, was declining as the U.S. share of world exports on research and development (R&D...fund high - risk research and development at small and medium-sized businesses. With respect to labor, the act takes actions that are intended to make...to fund high -risk, high -reward basic research projects. The act also expresses the sense of the Congress that appropriately funding NASA at the

  2. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1989-01-01

    This new collection of papers on aerospace management issues contains a history of NASA program and project management, some lessons learned in the areas of management and budget from the Space Shuttle Program, an analysis of tools needed to keep large multilayer programs organized and on track, and an update of resources for NASA managers. A wide variety of opinions and techniques are presented.

  3. The NASA/DOE/DOD nuclear rocket propulsion project - FY 1991 status

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning and critical technology development for nuclear rocket propulsion systems for Space Exploration Initiative missions to the moon and to Mars. Interagency agreements are being negotiated between NASA, the Department of Energy, and the Department of Defense for joint technology development activities. This paper summarizes the activities of the NASA project planning team in FY 1990 that led to the draft Nuclear Propulsion Project Plan, outlines the FY 1991 Interagency activities, and describes the current status of the project plan.

  4. LP DAAC MEaSUREs Project Artifact Tracking Via the NASA Earthdata Collaboration Environment

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.

    2015-12-01

    The Land Processes Distributed Active Archive Center (LP DAAC) is a NASA Earth Observing System (EOS) Data and Information System (EOSDIS) DAAC that supports selected EOS Community non-standard data products such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED), and also supports NASA Earth Science programs such as Making Earth System Data Records for Use in Research Environments (MEaSUREs) to contribute in providing long-term, consistent, and mature data products. As described in The LP DAAC Project Lifecycle Plan (Daucsavage, J.; Bennett, S., 2014), key elements within the Project Inception Phase fuse knowledge between NASA stakeholders, data producers, and NASA data providers. To support and deliver excellence for NASA data stewardship, and to accommodate long-tail data preservation with Community and MEaSUREs products, the LP DAAC is utilizing NASA's own Earthdata Collaboration Environment to bridge stakeholder communication divides. By leveraging a NASA supported platform, this poster describes how the Atlassian Confluence software combined with a NASA URS/Earthdata support can maintain each project's members, status, documentation, and artifact checklist. Furthermore, this solution provides a gateway for project communities to become familiar with NASA clients, as well as educating the project's NASA DAAC Scientists for NASA client distribution.

  5. NASA Space Flight Program and Project Management Handbook

    NASA Technical Reports Server (NTRS)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  6. NASA Open Rotor Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2010-01-01

    Owing to their inherent fuel burn efficiency advantage compared with the current generation high bypass ratio turbofan engines, there is resurgent interest in developing open rotor propulsion systems for powering the next generation commercial aircraft. However, to make open rotor systems truly competitive, they must be made to be acoustically acceptable too. To address this challenge, NASA in collaboration with industry is exploring the design space for low-noise open rotor propulsion systems. The focus is on the system level assessment of the open rotors compared with other candidate concepts like the ultra high bypass ratio cycle engines. To that end there is an extensive research effort at NASA focused on component testing and diagnostics of the open rotor acoustic performance as well as assessment and improvement of open rotor noise prediction tools. In this presentation and overview of the current NASA research on open rotor noise will be provided. Two NASA projects, the Environmentally Responsible Aviation Project and the Subsonic Fixed Wing Project, have been funding this research effort.

  7. Integrating Engineering Data Systems for NASA Spaceflight Projects

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert E.; Tollinger, Irene; Bell, David G.; Berrios, Daniel C.

    2012-01-01

    NASA has a large range of custom-built and commercial data systems to support spaceflight programs. Some of the systems are re-used by many programs and projects over time. Management and systems engineering processes require integration of data across many of these systems, a difficult problem given the widely diverse nature of system interfaces and data models. This paper describes an ongoing project to use a central data model with a web services architecture to support the integration and access of linked data across engineering functions for multiple NASA programs. The work involves the implementation of a web service-based middleware system called Data Aggregator to bring together data from a variety of systems to support space exploration. Data Aggregator includes a central data model registry for storing and managing links between the data in disparate systems. Initially developed for NASA's Constellation Program needs, Data Aggregator is currently being repurposed to support the International Space Station Program and new NASA projects with processes that involve significant aggregating and linking of data. This change in user needs led to development of a more streamlined data model registry for Data Aggregator in order to simplify adding new project application data as well as standardization of the Data Aggregator query syntax to facilitate cross-application querying by client applications. This paper documents the approach from a set of stand-alone engineering systems from which data are manually retrieved and integrated, to a web of engineering data systems from which the latest data are automatically retrieved and more quickly and accurately integrated. This paper includes the lessons learned through these efforts, including the design and development of a service-oriented architecture and the evolution of the data model registry approaches as the effort continues to evolve and adapt to support multiple NASA programs and priorities.

  8. Michigan Community Colleges Job Training and Retraining Investment Fund. 1983-84 Investment Fund Projects: Impact Statement.

    ERIC Educational Resources Information Center

    Michigan Community Colleges Economic Development and Job Training Network, Ann Arbor.

    This report assesses the impact on Michigan's 29 community colleges of projects funded in 1983-84 through the Community College Job Training and Retraining Investment Fund, a program for funding the state's community colleges so that they will contribute to the economic rehabilitation and development of Michigan. Part I details the financial…

  9. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Students and faculty from Mapletown Jr/Sr High School and Margaret Bell Middle School listen as John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Photo Credit: (NASA/Joel Kowsky)

  10. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  11. 15 CFR 917.22 - National Projects funding.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-effective manner; and (4) the utilization of existing capability and coordination with other relevant projects. Innovation and uniqueness will be significant factors in determining whether to fund a proposed...

  12. 15 CFR 917.22 - National Projects funding.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-effective manner; and (4) the utilization of existing capability and coordination with other relevant projects. Innovation and uniqueness will be significant factors in determining whether to fund a proposed...

  13. 15 CFR 917.22 - National Projects funding.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-effective manner; and (4) the utilization of existing capability and coordination with other relevant projects. Innovation and uniqueness will be significant factors in determining whether to fund a proposed...

  14. 15 CFR 917.22 - National Projects funding.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-effective manner; and (4) the utilization of existing capability and coordination with other relevant projects. Innovation and uniqueness will be significant factors in determining whether to fund a proposed...

  15. 15 CFR 917.22 - National Projects funding.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-effective manner; and (4) the utilization of existing capability and coordination with other relevant projects. Innovation and uniqueness will be significant factors in determining whether to fund a proposed...

  16. Issues in NASA Program and Project Management. Special Edition: A Collection of Papers on NASA Procedures and Guidance 7120.5A. Volume 14

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1998-01-01

    A key aspect of NASA's new Strategic Management System is improving the way we plan, approve, execute and evaluate our programs and projects. To this end, NASA has developed the NASA Program and Project Management processes and Requirements-NASA Procedures and Guidelines (NPG) 7120.5A, which formally documents the "Provide Aerospace Products and Capabilities" crosscutting process, and defines the processes and requirements that are responsive to the Program/Project Management-NPD 7120.4A. The Program/Project Management-NPD 7120.4A, issued November 14, 1996, provides the policy for managing programs and projects in a new way that is aligned with the new NASA environment. An Agencywide team has spent thousands of hours developing the NASA Program and Project Management Processes and Requirements-NPG 7120.5A. We have created significant flexibility, authority and discretion for the program and project managers to exercise and carry out their duties, and have delegated the responsibility and the accountability for their programs and projects.

  17. How Project Managers Really Manage: An Indepth Look at Some Managers of Large, Complex NASA Projects

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Impaeilla, Cliff (Technical Monitor)

    2000-01-01

    This paper reports on a research study by the author that examined ten contemporary National Aeronautics and Space Administration (NASA) complex projects. In-depth interviews with the project managers of these projects provided qualitative data about the inner workings of the project and the methodologies used in establishing and managing the projects. The inclusion of a variety of space, aeronautics, and ground based projects from several different NASA research centers helped to reduce potential bias in the findings toward any one type of project, or technical discipline. The findings address the participants and their individual approaches. The discussion includes possible implications for project managers of other large, complex, projects.

  18. Year 4 Of The NSF-funded PAARE Project At SC State

    NASA Astrophysics Data System (ADS)

    Walter, Donald K.; Brittain, S. D.; Cash, J. L.; Hartmann, D. H.; Howell, S. B.; King, J. R.; Leising, M. D.; Mayo, E. A.; Mighell, K. J.; Smith, D. M.

    2012-01-01

    We summarize the progress made through Year 4 of "A Partnership in Observational and Computational Astronomy (POCA)". This NSF-funded project is part of the "Partnerships in Astronomy and Astrophysics Research and Education (PAARE)" program. Our partnership includes South Carolina State University (a Historically Black College/University), Clemson University (a Ph.D. granting institution) and the National Optical Astronomy Observatory. Fellowships provided by POCA as well as recruitment efforts on the national level have resulted in enrolling a total of four underrepresented minorities into the Ph.D. program in astronomy at Clemson. We report on the success and challenges to recruiting students into the undergraduate physics major with astronomy option at SC State. Our summer REU program under POCA includes underrepresented students from across the country conducting research at each of our three institutions. Examples are given of our inquiry-based, laboratory exercises and web- based activities related to cosmology that have been developed with PAARE funding. We discuss our ground-based photometric and spectroscopic study of RV Tauri and Semi-Regular variables which has been expanded to include successful Cycle 2 Kepler observations of a dozen of these objects reported elsewhere at this conference (see D.K. Walter, et.al.). Support for the POCA project is provided by the NSF PAARE program to South Carolina State University under award AST-0750814 as well as resources and support provided by Clemson University and the National Optical Astronomy Observatory. Support for the Kepler observations is provided by NASA to South Carolina State University under award NNX11AB82G.

  19. NASA-DoD Lower Process Temperature Lead-Free Solder Project Overview

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2014-01-01

    This project is a follow-on effort to the Joint Council on Aging AircraftJoint Group on Pollution Prevention (JCAAJG-PP) Pb-free Solder Project and NASA-DoD Lead-Free Electronics Project which were the first projects to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community. This effort would continue to build on the results from the JCAAJG-PP Lead-Free Solder Project and NASA-DoD Lead-Free Electronics Project while focusing on a particular failure mechanism currently plaguing Pb-free assemblies, pad cratering.The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. Pad Cratering is a latent defect that may occur during assembly, rework, and post assembly handling and testing.

  20. Issues in NASA Program and Project Management. Special Report: 1997 Conference. Project Management Now and in the New Millennium

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1997-01-01

    Topics Considered Include: NASA's Shared Experiences Program; Core Issues for the Future of the Agency; National Space Policy Strategic Management; ISO 9000 and NASA; New Acquisition Initiatives; Full Cost Initiative; PM Career Development; PM Project Database; NASA Fast Track Studies; Fast Track Projects; Earned Value Concept; Value-Added Metrics; Saturn Corporation Lessons Learned; Project Manager Credibility.

  1. Ecological Forecasting Project Management with Examples

    NASA Technical Reports Server (NTRS)

    Skiles, J. W.; Schmidt, Cindy; Estes, Maury; Turner, Woody

    2017-01-01

    Once scientists publish results of their projects and studies, all too often they end up on the shelf and are not otherwise used. The NASA Earth Science Division established its Applied Sciences Program (ASP) to apply research findings to help solve and manage real-world problems and needs. ASP-funded projects generally produce decision support systems for operational applications which are expected to last beyond the end of the NASA funding. Because of NASAs unique perspective of looking down on the Earth from space, ASP studies involve the use of remotely sensed information consisting of satellite data and imagery as well as information from sub-orbital platforms. ASP regularly solicits Earth science proposals that address one or more focus areas; disasters mitigation, ecological forecasting, health and air quality, and water resources. Reporting requirements for ASP-funded projects are different from those typical for research grants from NASA and other granting agencies, requiring management approaches different from other programs. This presentation will address the foregoing in some detail and give examples of three ASP-funded ecological forecasting projects that include: 1) the detection and survey of chimpanzee habitat in Africa from space, 2) harmful algal blooms (HABs) in the California Current System affecting aquaculture facilities and marine mammal populations, and 3) a call for the public to identify North America wildlife in Wisconsin using trail camera photos. Contact information to propose to ASP solicitations for those PIs interested is also provided.

  2. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  3. The NASA Global Climate Change Education Project: An Integrated Effort to Improve the Teaching and Learning about Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Pippin, M. R.; Welch, S.; Spruill, K.; Matthews, M. J.; Person, C.

    2010-12-01

    The NASA Global Climate Change Education (GCCE) Project, initiated in 2008, seeks to: - improve the teaching and learning about global climate change in elementary and secondary schools, on college campuses, and through lifelong learning; - increase the number of people, particularly high school and undergraduate students, using NASA Earth observation data, Earth system models, and/or simulations to investigate and analyze global climate change issues; - increase the number of undergraduate students prepared for employment and/or to enter graduate school in technical fields relevant to global climate change. Through an annual solicitation, proposals are requested for projects that address these goals using a variety of approaches. These include using NASA Earth system data, interactive models and/or simulations; providing research experiences for undergraduate or community college students, or for pre- or in-service teachers; or creating long-term teacher professional development experiences. To date, 57 projects have been funded to pursue these goals (22 in 2008, 18 in 2009, and 17 in 2010), each for a 2-3 year period. The vast majority of awards address either teacher professional development, or use of data, models, or simulations; only 7 awards have been made for research experiences. NASA, with assistance from the Virginia Space Grant Consortium, is working to develop these awardees into a synergistic community that works together to maximize its impact. This paper will present examples of collaborations that are evolving within this developing community. It will also introduce the opportunities available in fiscal year 2011, when a change in emphasis is expected for the project as it moves within the NASA Office of Education Minority University Research and Education Program (MUREP).

  4. 42 CFR 137.340 - May a Self-Governance Tribe contribute funding to a project?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false May a Self-Governance Tribe contribute funding to a... Project Assumption Process § 137.340 May a Self-Governance Tribe contribute funding to a project? Yes, the Self-Governance Tribe and the Secretary may jointly fund projects. The construction project agreement...

  5. 42 CFR 137.340 - May a Self-Governance Tribe contribute funding to a project?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false May a Self-Governance Tribe contribute funding to a... Project Assumption Process § 137.340 May a Self-Governance Tribe contribute funding to a project? Yes, the Self-Governance Tribe and the Secretary may jointly fund projects. The construction project agreement...

  6. 42 CFR 137.340 - May a Self-Governance Tribe contribute funding to a project?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false May a Self-Governance Tribe contribute funding to a... Project Assumption Process § 137.340 May a Self-Governance Tribe contribute funding to a project? Yes, the Self-Governance Tribe and the Secretary may jointly fund projects. The construction project agreement...

  7. 42 CFR 137.340 - May a Self-Governance Tribe contribute funding to a project?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false May a Self-Governance Tribe contribute funding to a... Project Assumption Process § 137.340 May a Self-Governance Tribe contribute funding to a project? Yes, the Self-Governance Tribe and the Secretary may jointly fund projects. The construction project agreement...

  8. Design of components for the NASA OCEAN project

    NASA Technical Reports Server (NTRS)

    Wright, Jenna (Editor); Clift, James; Dumais, Bryan; Gardner, Shannon; Hernandez, Juan Carlos; Nolan, Laura; Park, Mia; Peoples, Don; Phillips, Elizabeth; Tillman, Mark

    1993-01-01

    The goal of the Fall 1993 semester of the EGM 4000 class was to design, fabricate, and test components for the 'Ocean CELSS Experimental Analog NASA' Project (OCEAN Project) and to aid in the future development of NASA's Controlled Ecological Life Support System (CELSS). The OCEAN project's specific aims are to place a human, Mr. Dennis Chamberland from NASA's Life Science Division of Research, into an underwater habitat off the shore of Key Largo, FL for three months. During his stay, he will monitor the hydroponic growth of food crops and evaluate the conditions necessary to have a successful harvest of edible food. The specific designs chosen to contribute to the OCEAN project by the EGM 4000 class are in the areas of hydroponic habitat monitoring, human health monitoring, and production of blue/green algae. The hydroponic monitoring system focused on monitoring the environment of the plants. This included the continuous sensing of the atmospheric and hydroponic nutrient solution temperatures. Methods for monitoring the continuous flow of the hydroponic nutrient solution across the plants and the continuous supply of power for these sensing devices were also incorporated into the design system. The human health monitoring system concentrated on continuously monitoring various concerns of the occupant in the underwater living habitat of the OCEAN project. These concerns included monitoring the enclosed environment for dangerous levels of carbon monoxide and smoke, high temperatures from fire, and the ceasing of the continuous airflow into the habitat. The blue/green algae project emphasized both the production and harvest of a future source of food. This project did not interact with any part of the OCEAN project. Rather, it was used to show the possibility of growing this kind of algae as a supplemental food source inside a controlled ecological life support system.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace Research and Development (R&D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The present exploration of the diffusion of federally-funded R&D via the information-seeking behavior of scientists and engineers proceeds under three assumptions: (1) that knowledge transfer and utilization is as important as knowledge production; (2) that the diffusion of knowledge obtained through federally-funded R&D is necessary for the maintenance of U.S. preeminence in the aerospace field; and (3) that federally-funded NASA and DoD technical reports play an important, albeit as-yet undefined, role in aerospace R&D diffusion. A conceptual model is presented for the process of knowledge diffusion that stresses the role of U.S. government-funded technical reports.

  10. Federal R&D Funding: Trends and Projections

    NASA Astrophysics Data System (ADS)

    White, K. S.

    2014-12-01

    Between sequestration, shutdowns, and budget "cliffs," the federal budget process has experienced many challenges in recent years. Budgets for research and development (R&D) have mirrored these larger fiscal constraints. Over the past decade, many agencies and programs have seen flat or declining budgets, particularly when inflation is considered. This talk will examine recent geoscience R&D funding in the historical context and examine projections of future science funding in the framework of the Budget Control Act and other initiatives.

  11. Issues in NASA program and project management. Special report: 1995 conference

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1995-01-01

    This volume is the tenth in an ongoing series on aerospace project management at NASA. Articles in this volume cover the 1996 Conference as follows: international partnerships; industry/interagency collaboration; technology transfer; and project management development process. A section on resources for NASA managers rounds out the publication.

  12. NASA-funded study says glacier shape matters and influences vulnerability to melting

    NASA Image and Video Library

    2017-12-08

    A new NASA-funded study has identified which glaciers in West Greenland are most susceptible to thinning in the coming decades by analyzing how they’re shaped. The research could help predict how much the Greenland Ice Sheet will contribute to future sea level rise in the next century, a number that currently ranges from inches to feet. “There are glaciers that popped up in our study that flew under the radar until now,” said lead author Denis Felikson, a graduate research assistant at The University of Texas Institute for Geophysics (UTIG) and a Ph.D. student in The University of Texas Department of Aerospace Engineering and Engineering Mechanics. Felikson’s study was published in Nature Geoscience on April 17. Read more: go.nasa.gov/2pJJwNA Caption: Terminus of Kangerlugssuup Sermerssua glacier in west Greenland Photo credit: Denis Felikson, Univ. of Texas NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Best Practices in NASA's Astrophysics Education and Public Outreach Projects

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Smith, D.

    2015-11-01

    NASA's Astrophysics Education and Public Outreach (EPO) program has partnered scientists and educators since its inception almost twenty years ago, leading to authentic STEM experiences and products widely used by the education and outreach community. We present examples of best practices and representative projects. Keys to success include effective use of unique mission science/technology, attention to audience needs, coordination of effort, robust partnerships and publicly accessible repositories of EPO products. Projects are broadly targeted towards audiences in formal education, informal education, and community engagement. All NASA programs are evaluated for quality and impact. New technology is incorporated to engage young students being raised in the digital age. All projects focus on conveying the excitement of scientific discoveries from NASA's Astrophysics missions, advancing scientific literacy, and engaging students in science and technology careers.

  14. The 1994 NASA/USRA/ADP Design Projects

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas; Richardson, Joseph; Tryon, Robert

    1994-01-01

    The NASA/USRA/ADP Design Projects from Vanderbilt University, Department of Mechanical Engineering (1994) are enclosed in this final report. Design projects include: (1) Protein Crystal Growth, both facilities and methodology; (2) ACES Deployable Space Boom; (3) Hybrid Launch System designs for both manned and unmanned systems; (4) LH2 Fuel Tank design (SSTO); (5) SSTO design; and (6) Pressure Tank Feed System design.

  15. Program/Project Management Resources: A collection of 50 bibliographies focusing on continual improvement, reinventing government, and successful project management

    NASA Technical Reports Server (NTRS)

    Michaels, Jeffrey

    1994-01-01

    These Program/Project Management Resource Lists were originally written for the NASA project management community. Their purpose was to promote the use of the NASA Headquarters Library Program/Project Management Collection funded by NASA Headquarters Code FT, Training & Development Division, by offering introductions to the management topics studied by today's managers. Lists were also written at the request of NASA Headquarters Code T, Office of Continual improvements, and at the request of NASA members of the National Performance Review. This is the second edition of the compilation of these bibliographies; the first edition was printed in March 1994.

  16. Crowdfunding: an innovative way to fund your project.

    PubMed

    Walker, Dawn-Marie

    2017-06-22

    Background Getting research funded is extremely difficult, with research councils rejecting more than 70% of grant applications ( Else 2014 ). It is even more difficult if you are a junior researcher who doesn't have a track record of being awarded grant money or leading a research project. Crowdfunding may offer a solution. It is a method of raising funds from members of the public online and can offer an alternative to the more formal methods of research funding. Aim To outline how this model works and provide tips on designing a campaign. Discussion The authors provide an overview of the literature regarding this model, as well as a set of resources for future reference when designing a campaign. Conclusion Crowdfunding can provide small amounts of money for your first project. Implications for practice It is expected that clinicians practice evidence based medicine, and research in health environments is commonplace. Crowdfunding can offer you support in becoming more engaged in research.

  17. Risk management, financial evaluation and funding for wastewater and stormwater reuse projects.

    PubMed

    Furlong, Casey; De Silva, Saman; Gan, Kein; Guthrie, Lachlan; Considine, Robert

    2017-04-15

    This paper has considered risk management, financial evaluation and funding in seven Australian wastewater and stormwater reuse projects. From the investigated case studies it can be seen that responsible parties have generally been well equipped to identify potential risks. In relation to financial evaluation methods some serious discrepancies, such as time periods for analysis, and how stormwater benefits are valued, have been identified. Most of the projects have required external, often National Government, funding to proceed. As National funding is likely to become less common in the future, future reuse projects may need to be funded internally by the water industry. In order to enable this the authors propose that the industry requires (1) a standard project evaluation process, and (2) an infrastructure funders' forum (or committee) with representation from both utilities and regulators, in order to compare and prioritise future reuse projects against each other. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enhancement of Mutual Discovery, Search, and Access of Data for Users of NASA and GEOSS-Cataloged Data Systems

    NASA Technical Reports Server (NTRS)

    Teng, William; Maidment, David; Rodell, Matthew; Strub, Richard; Arctur, David; Ames, Daniel; Rui, Hualan; Vollmer, Bruce; Seiler, Edward

    2014-01-01

    An ongoing NASA-funded Data Rods (time series) project has demonstrated the removal of a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series) for selected variables of the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) and other NASA data sets. Data rods are pre-generated or generated on-the-fly (OTF), leveraging the NASA Simple Subset Wizard (SSW), a gateway to NASA data centers. Data rods Web services are accessible through the CUAHSI Hydrologic Information System (HIS) and the Goddard Earth Sciences Data and Information Services Center (GES DISC) but are not easily discoverable by users of other non-NASA data systems. An ongoing GEOSS Water Services project aims to develop a distributed, global registry of water data, map, and modeling services cataloged using the standards and procedures of the Open Geospatial Consortium and the World Meteorological Organization. Preliminary work has shown GEOSS can be leveraged to help provide access to data rods. A new NASA-funded project is extending this early work.

  19. The Mars Express/NASA Project at JPL

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S.; Goltz, G.

    2006-03-01

    The Mars Express/NASA Project at JPL supports much of the U.S. involvement in ESA's Mars Express mission. Mars Express has just completed its prime mission in late 2005 and has embarked on its first extended mission cycle.

  20. NASA's UAS NAS Access Project

    NASA Technical Reports Server (NTRS)

    Johnson, Charles W.

    2011-01-01

    this Project is limited ($150M over the five years), the focus is on reducing the technical barriers where NASA has unique capabilities. As a result, technical areas, such as Sense and Avoid (SAA) and beyond line of sight command and control will not be addressed. While these are critical barriers to UAS access, currently, there is a great deal of global effort being exercised to address these challenge areas. Instead, specific technology development in areas where there is certainty that NASA can advance the research to high technology readiness levels will be the Project's focus. Specific sub-projects include Separation Assurance, Human Systems Integration, Communications, Certification, and Integrated Test and Evaluation. Each sub-project will transfer technologies to relevant key stakeholders and decision makers through research transition teams, technology forums, or through other analogous means.

  1. Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)

    NASA Astrophysics Data System (ADS)

    Pierce, D. L.

    2016-12-01

    These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.

  2. DOE/NASA Automotive Stirling Engine Project overview '83

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.

    1982-01-01

    An overview of the DOE/NASA Automotive Stirling Engine Project is presented. The background and objectives of the project are reviewed. Project activities are described and technical progress and status are presented and assessed. Prospects for achieving the objective 30% fuel economy improvement are considered good. The key remaining technology issues are primarily related to life, reliability and cost, such as piston rod seals, and low cost heat exchanges.

  3. NASA/Goddard Thermal Technology Overview 2014

    NASA Technical Reports Server (NTRS)

    Butler, Daniel; Swanson, Theodore D.

    2014-01-01

    This presentation summarizes the current plans and efforts at NASA Goddard to develop new thermal control technology for anticipated future missions. It will also address some of the programmatic developments currently underway at NASA, especially with respect to the Technology Development Program at NASA. While funding for basic technology development is still scarce, significant efforts are being made in direct support of flight programs. New technology development continues to be driven by the needs of future missions, and applications of these technologies to current Goddard programs will be addressed. Many of these technologies also have broad applicability to DOD, DOE, and commercial programs. Partnerships have been developed with the Air Force, Navy, and various universities to promote technology development. In addition, technology development activities supported by internal research and development (IRAD) program, the Small Business Innovative Research (SBIR) program, and the NASA Engineering and Safety Center (NESC), are reviewed in this presentation. Specific technologies addressed include; two-phase systems applications and issues on NASA missions, latest developments of electro-hydrodynamically pumped systems, development of high electrical conductivity coatings, and various other research activities. New Technology program underway at NASA, although funding is limited center dot NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce - now have people on overhead working new missions and proposals center dot Future mission applications promise to be thermally challenging center dot Direct technology funding is still very restricted - Projects are the best source for direct application of technology - SBIR thermal subtopic resurrected in FY 14 - Limited Technology development underway via IRAD, NESC, other sources - Administrator pushing to revive technology and educational programs at NASA

  4. NASA Desert RATS 2011 Education Pilot Project and Classroom Activities

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; McGlone, M.; Allen, J.; Tobola, K.; Graff, P.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of hardware and operations carried out annually in the high desert of Arizona, as an analog to future exploration activities beyond low Earth orbit [1]. For the past several years, these tests have occurred in the San Francisco Volcanic Field, north of Flagstaff. For the 2011 Desert RATS season, the Exploration Systems Mission Directorate (ESMD) at NASA headquarters provided support to develop an education pilot project that would include student activities to parallel the Desert RATS mission planning and exploration activities in the classroom, and educator training sessions. The development of the pilot project was a joint effort between the NASA Johnson Space Center (JSC) Astromaterials Research and Exploration Science (ARES) Directorate and the Aerospace Education Services Project (AESP), managed at Penn State University.

  5. Current Status of NASA's NEXT-C Ion Propulsion System Development Project

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Soulas, George; Aulisio, Michael; Schmidt, George

    2017-01-01

    NASA's Evolutionary Xenon Thruster (NEXT) is a 7-kW class gridded ion thruster-based propulsion system that was initially developed from 2002 to 2012 under NASAs In-Space Propulsion Technology Program to meet future science mission requirements. In 2015, a contract was awarded to Aerojet Rocketdyne, with subcontractor ZIN Technologies, to design, build and test two NEXT flight thrusters and two power processing units that would be available for use on future NASA science missions. Because an additional goal of this contract is to take steps towards offering NEXT as a commercialized system, it is called the NEXT-Commercial project, or NEXT-C. This paper reviews the capabilities of the NEXT-C system, status of the NEXT-C project, and the forward plan to build, test, and deliver flight hardware in support of future NASA and commercial applications. It also briefly addresses some of the potential applications that could utilize the hardware developed and built by the project.

  6. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  7. Electrical Materials Research for NASAs Hybrid Electric Commercial Aircraft Program

    NASA Technical Reports Server (NTRS)

    Bowman, Randy

    2017-01-01

    A high-level description of NASA GRC research in electrical materials is presented with a brief description of the AATTHGEP funding project. To be presented at the Interagency Advanced Power Group Electrical Materials panel session.

  8. NASA Global Hawk: Project Overview and Future Plans

    NASA Technical Reports Server (NTRS)

    Naftel, J. Chris

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Global Hawk Project became operational in 2009 and began support of Earth science in 2010. Thus far, the NASA Global Hawk has completed three Earth science campaigns and preparations are under way for two extensive multi-year campaigns. One of the most desired performance capabilities of the Global Hawk aircraft is very long endurance: the Global Hawk aircraft can remain airborne longer than almost all other jet-powered aircraft currently flying, and longer than all other aircraft available for airborne science use. This paper describes the NASA Global Hawk system, payload accommodations, concept of operations, and the scientific data-gathering campaigns.

  9. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Human Exploration and Operations Mission Directorate Projects at Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).

  10. NASA Citizen Science for Earth Systems Program: fusing public participation and remote sensing to improve our understanding of the planet

    NASA Astrophysics Data System (ADS)

    Whitehurst, A.; Murphy, K. J.

    2017-12-01

    The objectives of the NASA Citizen Science for Earth Systems Program (CSESP) include both the evaluation of using citizen science data in NASA Earth science related research and engaging the public in Earth systems science. Announced in 2016, 16 projects were funded for a one year prototype phase, with the possibility of renewal for 3 years pending a competitive evaluation. The current projects fall into the categories of atmospheric composition (5), biodiversity and conservation (5), and surface hydrology/water and energy cycle (6). Out of the 16, 8 of the projects include the development and/or implementation of low cost sensors to facilitate data collection. This presentation provides an overview of the NASA CSESP program to both highlight the diversity of innovative projects being funded and to share information with future program applicants.

  11. Report on a NASA astrobiology institute-funded workshop without walls: stellar stoichiometry.

    PubMed

    Desch, Steven J; Young, Patrick A; Anbar, Ariel D; Hinkel, Natalie; Pagano, Michael; Truitt, Amanda; Turnbull, Margaret

    2014-04-01

    We report on the NASA Astrobiology Institute-funded Workshop Without Walls entitled "Stellar Stoichiometry," hosted by the "Follow the Elements" team at Arizona State University in April 2013. We describe several innovative practices we adopted that made effective use of the Workshop Without Walls videoconferencing format, including use of information technologies, assignment of scientific tasks before the workshop, and placement of graduate students in positions of authority. A companion article will describe the scientific results arising from the workshop. Our intention here is to suggest best practices for future Workshops Without Walls.

  12. DOE/NASA Automotive Stirling Engine Project Overview 83

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.

    1983-01-01

    An overview of the DOE/NASA Automotive Stirling Engine Project is presented. The background and objectives of the project are reviewed. Project activities are described and technical progress and status are presented and assessed. Prospects for achieving the objective 30 percent fuel economy improvement are considered good. The key remaining technology issues are primarily related to life, reliability and cost, such as piston rod seals, and low cost heat exchanges. Previously announced in STAR as N83-27924

  13. Enhancing Discovery, Search, and Access of NASA Hydrological Data by Leveraging GEOSS

    NASA Technical Reports Server (NTRS)

    Teng, William L.

    2015-01-01

    An ongoing NASA-funded project has removed a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series) for selected variables of the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) and other EOSDIS (Earth Observing System Data Information System) data sets (e.g., precipitation, soil moisture). These time series (data rods) are pre-generated. Data rods Web services are accessible through the CUAHSI Hydrologic Information System (HIS) and the Goddard Earth Sciences Data and Information Services Center (GES DISC) but are not easily discoverable by users of other non-NASA data systems. The Global Earth Observation System of Systems (GEOSS) is a logical mechanism for providing access to the data rods. An ongoing GEOSS Water Services project aims to develop a distributed, global registry of water data, map, and modeling services cataloged using the standards and procedures of the Open Geospatial Consortium and the World Meteorological Organization. The ongoing data rods project has demonstrated the feasibility of leveraging the GEOSS infrastructure to help provide access to time series of model grid information or grids of information over a geographical domain for a particular time interval. A recently-begun, related NASA-funded ACCESS-GEOSS project expands on these prior efforts. Current work is focused on both improving the performance of the generation of on-the-fly (OTF) data rods and the Web interfaces from which users can easily discover, search, and access NASA data.

  14. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  15. NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  16. Issues in NASA program and project management

    NASA Technical Reports Server (NTRS)

    Hoban, Francis T. (Editor)

    1988-01-01

    This collection of papers and resources on aerospace management issues is inspired by a desire to benefit from the lessons learned from past projects and programs. Inherent in the NASA culture is a respect for divergent viewpoints and innovative ways of doing things. This publication presents a wide variety of views and opinions. Good management is enhanced when program and project managers examine the methods of veteran managers, considering the lessons they have learned and reflected on their own guiding principles.

  17. Demonstrating Robotic Autonomy in NASA's Intelligent Systems Project

    NASA Technical Reports Server (NTRS)

    Morris, Robert; Smith, Ben; Estlin, Tara; Pedersen, Liam

    2004-01-01

    This paper will provide an overview of NASA's investments in autonomy during the past five years within the Intelligent Systems Project, with particular attention paid to investments that have resulted in mission infusion of autonomy technology, in particular, into the recent Mars Exploration Rover (MER) mission. The content of the paper will be divided into two primary topic areas: a technical overview of the component technologies developed under the program, and a programmatic overview of the history and organization of the NASA IS project itself, with a focus on describing the program elements related to autonomy and intelligent robotics. The paper will also provide an overview of the September 2004 autonomy demonstrations, including a discussion of objectives, organization, and preliminary results (to the extent they are available before the submission deadline).

  18. NASA SBIR product catalog, 1990

    NASA Technical Reports Server (NTRS)

    Schwenk, F. Carl; Gilman, J. A.

    1990-01-01

    Since 1983 the NASA Small Business Innovation Research (SBIR) program has benefitted both the agency and the high technology small business community. By making it possible for more small businesses to participate in NASA's research and development, SBIR also provides opportunities for these entrepreneurs to develop products which may also have significant commercial markets. Structured in three phases, the SBIR program uses Phase 1 to assess the technical feasibility of novel ideas proposed by small companies and Phase 2 to conduct research and development on the best concepts. Phase 3, not funded by SBIR, is the utilization and/or commercialization phase. A partial list of products of NASA SBIR projects which have advanced to some degree into Phase 3 are provided with a brief description.

  19. The USL NASA PC R and D project: Detailed specifications of objects

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Chum, Frank Y.; Hall, Philip P.; Moreau, Dennis R.; Triantafyllopoulos, Spiros

    1984-01-01

    The specifications for a number of projects which are to be implemented within the University of Southwestern Louisiana NASA PC R and D Project are discussed. The goals and objectives of the PC development project and the interrelationships of the various components are discussed. Six projects are described. They are a NASA/RECON simulator, a user interface to multiple remote information systems, evaluation of various personal computer systems, statistical analysis software development, interactive presentation system development, and the development of a distributed processing environment. The relationships of these projects to one another and to the goals and objectives of the overall project are discussed.

  20. NASA historical data book. Volume 2: Programs and projects 1958-1968

    NASA Technical Reports Server (NTRS)

    Ezell, Linda Neuman

    1988-01-01

    This is Volume 2, Programs and Projects 1958-1968, of a multi-volume series providing a 20-year compilation of summary statistical and other data descriptive of NASA's programs in aeronautics and manned and unmanned spaceflight. This series is an important component of NASA published historical reference works, used by NASA personnel, managers, external researchers, and other government agencies.

  1. NASA historical data book. Volume 3: Programs and projects 1969-1978

    NASA Technical Reports Server (NTRS)

    Ezell, Linda Neuman

    1988-01-01

    This is Volume 3, Programs and Projects 1969-1978, of a multi-volume series providing a 20-year compilation of summary statistical and other data descriptive of NASA's programs in aeronautics and manned and unmanned spaceflight. This series is an important component of NASA published historical reference works, used by NASA personnel, managers, external researchers, and other government agencies.

  2. NASA Space Radiation Risk Project: Overview and Recent Results

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; hide

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  3. NASA's Aviation Safety and Modeling Project

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.; Statler, Irving C.

    2006-01-01

    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  4. The Mars Express/NASA Project at JPL

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S. W.; Goltz, G.

    2005-01-01

    An overview of the Mars Express/NASA Project at JPL is presented. The topics include: 1) Mars Express Mission Experiments and Investigators; 2) Mars Advanced Radar for Subsurface and Ionospheric Soundig (MARSIS) Overview; 3) MARSIS Experiment Overview; 4) Interoperability Concept; 5) Mars Express Science Operations; 6) Mars Express Schedule (2003-2007);

  5. What and How Are We Evaluating? Meta-Evaluation Study of the NASA Innovations in Climate Education (NICE) Portfolio

    NASA Astrophysics Data System (ADS)

    Martin, A. M.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.

    2011-12-01

    As part of NASA's Minority University Research and Education Program (MUREP), the NASA Innovations in Climate Education (NICE) project at Langley Research Center has funded 71 climate education initiatives since 2008. The funded initiatives span across the nation and contribute to the development of a climate-literate public and the preparation of a climate-related STEM workforce through research experiences, professional development opportunities, development of data access and modeling tools, and educational opportunities in both K-12 and higher education. Each of the funded projects proposes and carries out its own evaluation plan, in collaboration with external or internal evaluation experts. Using this portfolio as an exemplar case, NICE has undertaken a systematic meta-evaluation of these plans, focused primarily on evaluation questions, approaches, and methods. This meta-evaluation study seeks to understand the range of evaluations represented in the NICE portfolio, including descriptive information (what evaluations, questions, designs, approaches, and methods are applied?) and questions of value (do these evaluations meet the needs of projects and their staff, and of NASA/NICE?). In the current climate, as federal funders of climate change and STEM education projects seek to better understand and incorporate evaluation into their decisions, evaluators and project leaders are also seeking to build robust understanding of program effectiveness. Meta-evaluations like this provide some baseline understanding of the current status quo and the kinds of evaluations carried out within such funding portfolios. These explorations are needed to understand the common ground between evaluative best practices, limited resources, and agencies' desires, capacity, and requirements. When NASA asks for evaluation of funded projects, what happens? Which questions are asked and answered, using which tools? To what extent do the evaluations meet the needs of projects and

  6. What and How Are We Evaluating? Meta-Evaluation Study of the NASA Innovations in Climate Education (NICE) Portfolio

    NASA Astrophysics Data System (ADS)

    Martin, A. M.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.

    2013-12-01

    As part of NASA's Minority University Research and Education Program (MUREP), the NASA Innovations in Climate Education (NICE) project at Langley Research Center has funded 71 climate education initiatives since 2008. The funded initiatives span across the nation and contribute to the development of a climate-literate public and the preparation of a climate-related STEM workforce through research experiences, professional development opportunities, development of data access and modeling tools, and educational opportunities in both K-12 and higher education. Each of the funded projects proposes and carries out its own evaluation plan, in collaboration with external or internal evaluation experts. Using this portfolio as an exemplar case, NICE has undertaken a systematic meta-evaluation of these plans, focused primarily on evaluation questions, approaches, and methods. This meta-evaluation study seeks to understand the range of evaluations represented in the NICE portfolio, including descriptive information (what evaluations, questions, designs, approaches, and methods are applied?) and questions of value (do these evaluations meet the needs of projects and their staff, and of NASA/NICE?). In the current climate, as federal funders of climate change and STEM education projects seek to better understand and incorporate evaluation into their decisions, evaluators and project leaders are also seeking to build robust understanding of program effectiveness. Meta-evaluations like this provide some baseline understanding of the current status quo and the kinds of evaluations carried out within such funding portfolios. These explorations are needed to understand the common ground between evaluative best practices, limited resources, and agencies' desires, capacity, and requirements. When NASA asks for evaluation of funded projects, what happens? Which questions are asked and answered, using which tools? To what extent do the evaluations meet the needs of projects and

  7. The USL NASA PC R and D project: General specifications of objectives

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor)

    1984-01-01

    Given here are the general specifications of the objectives of the University of Southwestern Louisiana Data Base Management System (USL/DBMS) NASA PC R and D Project, a project initiated to address future R and D issues related to PC-based processing environments acquired pursuant to the NASA contract work; namely, the IBM PC/XT systems.

  8. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds? 661.43 Section 661.43 Highways FEDERAL HIGHWAY... PROGRAM § 661.43 Can other sources of funds be used to finance a queued project in advance of receipt of...

  9. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds? 661.43 Section 661.43 Highways FEDERAL HIGHWAY... PROGRAM § 661.43 Can other sources of funds be used to finance a queued project in advance of receipt of...

  10. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds? 661.43 Section 661.43 Highways FEDERAL HIGHWAY... PROGRAM § 661.43 Can other sources of funds be used to finance a queued project in advance of receipt of...

  11. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds? 661.43 Section 661.43 Highways FEDERAL HIGHWAY... PROGRAM § 661.43 Can other sources of funds be used to finance a queued project in advance of receipt of...

  12. Low Energy Nuclear Reaction Aircraft- 2013 ARMD Seedling Fund Phase I Project

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.; McDonald, Robert; Campbell, Robbie; Chase, Adam; Daniel, Jason; Darling, Michael; Green, Clayton; MacGregor, Collin; Sudak, Peter; Sykes, Harrison; hide

    2014-01-01

    This report serves as the final written documentation for the Aeronautic Research Mission Directorate (ARMD) Seedling Fund's Low Energy Nuclear Reaction (LENR) Aircraft Phase I project. The findings presented include propulsion system concepts, synergistic missions, and aircraft concepts. LENR is a form of nuclear energy that potentially has over 4,000 times the energy density of chemical energy sources. It is not expected to have any harmful emissions or radiation which makes it extremely appealing. There is a lot of interest in LENR, but there are no proven theories. This report does not explore the feasibility of LENR. Instead, it assumes that a working system is available. A design space exploration shows that LENR can enable long range and high speed missions. Six propulsion concepts, six missions, and four aircraft concepts are presented. This report also includes discussion of several issues and concerns that were uncovered during the study and potential research areas to infuse LENR aircraft into NASA's aeronautics research.

  13. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  14. NASA TEERM Hexavalent Chrome Alternatives Projects

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt; Rothgeb, Matt

    2011-01-01

    This slide presentation reviews the NASA project to select an alternative to hexavalent chrome in the aerospace industry. Included is a recent historic testing and research that the Agency has performed on (1) the external tank, (2) the shuttle orbiter, (3) the Shuttle Rocket Booster, and (4) the Space Shuttle Main Engine. Other related Technology Evaluation for Environmental Risk Mitigation (TEERM) projects are reviewed. The Phase I process of the project performed testing of alternatives the results are shown in a chart for different coating systems. International collaboration was also reviewed. Phase II involves further testing of pretreatment and primers for 6 and 12 months of exposure to conditions at Launch Pad and the beach. Further test were performed to characterize the life cycle corrosion of the space vehicles. A new task is described as a joint project with the Department of Defense to identify a Hex Chrome Free Coatings for Electronics.

  15. NASA-funded sounding rocket to catch aurora in the act

    NASA Image and Video Library

    2014-01-22

    The NASA-funded Ground-to-Rocket Electron-Electrodynamics Correlative Experiment, or GREECE, wants to understand aurora. Specifically, it will study classic auroral curls that swirl through the sky like cream in a cup of coffee. The GREECE instruments travel on a sounding rocket that launches for a ten-minute ride right through the heart of the aurora reaching its zenith over the native village of Venetie, Alaska. To study the curl structures, GREECE consists of two parts: ground-based imagers located in Venetie to track the aurora from the ground and the rocket to take measurements from the middle of the aurora itself. At their simplest, auroras are caused when particles from the sun funnel over to Earth's night side, generate electric currents, and trigger a shower of particles that strike oxygen and nitrogen some 60 to 200 miles up in Earth's atmosphere, releasing a flash of light. But the details are always more complicated, of course. Researchers wish to understand the aurora, and movement of plasma in general, at much smaller scales including such things as how different structures are formed there. This is a piece of information, which in turn, helps paint a picture of the sun-Earth connection and how energy and particles from the sun interact with Earth's own magnetic system, the magnetosphere. GREECE is a collaborative effort between SWRI, which developed particle instruments and the ground-based imaging, and the University of California, Berkeley, measuring the electric and magnetic fields. The launch is supported by a sounding rocket team from NASA’s Wallops Flight Facility, Wallops Island, Va. The Poker Flat Research Range is operated by the University of Alaska, Fairbanks. Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing

  16. Realizing NASA's Goal of Societal Benefits From Earth Observations in Mesoamerica Through the SERVIR Project

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Irwin, D.; Sever, T.; Graves, S.

    2006-12-01

    One of the goals of NASA's Applied Sciences Program is to manifest societal benefits from the vast store of Earth Observations through partnerships with public, private and academic organizations. The SERVIR project represents an early success toward this goal. By combining Earth Observations from NASA missions, results from environmental models and decision support tools from its partners the SERVIR project has produced an integrated systems solution that is yielding societal benefits for the region of Mesoamerica. The architecture of the SERVIR system consists of an operational facility in Panama with regional nodes in Costa Rica, Nicaragua, Honduras, Guatemala, El Salvador and Belize plus a Rapid Prototyping Center (RPC), located in Huntsville, Alabama. The RPC, funded by NASA's Applied Sciences Division, and developed by the Information Technology and Systems Center at the University of Alabama in Huntsville, and NASA Marshall Space Flight Center, produces scientifically strong decision support products and applications. When mature, the products and applications migrate to the operational center in Panama. There, they are available to environmental ministers and decision makers in Mesoamerica. In June 2004, the SERVIR project was contacted by the environmental ministry of El Salvador, which urgently requested remote sensing imagery of the location, direction, and extent of a HAB event off the coast of El Salvador and Guatemala. Using MODIS data the SERVIR team developed a value added product that predicts the location, direction, and extent of HABs. The products are produced twice daily and are used by the El Salvadoran and Guatemalan governments to alert their tourism and fishing industries of potential red tide events. This has enabled these countries to save millions of dollars for their industries as well as improve the health of harvested fish. In the area of short term weather forecasting the SERVIR team, in collaboration with the NASA Short

  17. The control panel for the joint NASA/Gulfstream Quiet Spike project, located in the backseat of NASA's F-15B testbed aircraft

    NASA Image and Video Library

    2006-08-16

    The control panel for the joint NASA/Gulfstream Quiet Spike project, located in the backseat of NASA's F-15B testbed aircraft. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  18. Strategic Project Management at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Lavelle, Jerome P.

    2000-01-01

    This paper describes Project Management at NASA's Kennedy Space Center (KSC) from a strategic perspective. It develops the historical context of the agency and center's strategic planning process and illustrates how now is the time for KSC to become a center which has excellence in project management. The author describes project management activities at the center and details observations on those efforts. Finally the author describes the Strategic Project Management Process Model as a conceptual model which could assist KSC in defining an appropriate project management process system at the center.

  19. Update on the NASA GRC Stirling Technology development project

    NASA Astrophysics Data System (ADS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2001-02-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project. .

  20. Update on the NASA GRC Stirling Technology Development Project

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project.

  1. NASA Advanced Refrigerator/Freezer Technology Development Project Overview

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.

    1995-01-01

    NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies, required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.

  2. 31 CFR 205.16 - What special rules apply to Federal assistance programs and projects funded by the Federal...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... assistance programs and projects funded by the Federal Highway Trust Fund? 205.16 Section 205.16 Money and... special rules apply to Federal assistance programs and projects funded by the Federal Highway Trust Fund? The following applies to Federal assistance programs and projects funded out of the Federal Highway...

  3. 31 CFR 205.16 - What special rules apply to Federal assistance programs and projects funded by the Federal...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... assistance programs and projects funded by the Federal Highway Trust Fund? 205.16 Section 205.16 Money and... special rules apply to Federal assistance programs and projects funded by the Federal Highway Trust Fund? The following applies to Federal assistance programs and projects funded out of the Federal Highway...

  4. 31 CFR 205.16 - What special rules apply to Federal assistance programs and projects funded by the Federal...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... assistance programs and projects funded by the Federal Highway Trust Fund? 205.16 Section 205.16 Money and... special rules apply to Federal assistance programs and projects funded by the Federal Highway Trust Fund? The following applies to Federal assistance programs and projects funded out of the Federal Highway...

  5. 31 CFR 205.16 - What special rules apply to Federal assistance programs and projects funded by the Federal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... assistance programs and projects funded by the Federal Highway Trust Fund? 205.16 Section 205.16 Money and... special rules apply to Federal assistance programs and projects funded by the Federal Highway Trust Fund? The following applies to Federal assistance programs and projects funded out of the Federal Highway...

  6. 31 CFR 205.16 - What special rules apply to Federal assistance programs and projects funded by the Federal...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... assistance programs and projects funded by the Federal Highway Trust Fund? 205.16 Section 205.16 Money and... special rules apply to Federal assistance programs and projects funded by the Federal Highway Trust Fund? The following applies to Federal assistance programs and projects funded out of the Federal Highway...

  7. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: - Packages (e.g., TSOP, BOA, PDIP) assembled and reworked with solder interconnects consisting of lead-free alloys - Packages (e.g., TSOP, BOA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder.

  8. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: - Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of lead-free alloys - Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder.

  9. Review of NASA's Hypersonic Research Engine Project

    NASA Technical Reports Server (NTRS)

    Andrews, Earl H.; Mackley, Ernest A.

    1993-01-01

    The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a hypersonic research ramjet/scramjet engine for high performance and to flight-test the developed concept over the speed range from Mach 3 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research aircraft, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of engine models then became the focus of the project. Two axisymmetric full-scale engine models having 18-inch-diameter cowls were fabricated and tested: a structural model and a combustion/propulsion model. A brief historical review of the project with salient features, typical data results, and lessons learned is presented.

  10. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  11. ERDA-NASA wind energy project ready to involve users

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1976-01-01

    The NASA contribution to the Wind Energy Project is discussed. NASA is responsible for the following: (1) identification of cost-effective configurations and sizes of wind-conversion systems, (2) the development of technology needed to produce these systems, (3) the design of wind-conversion systems that are compatible with user requirements, particularly utility networks, and (4) technology transfer obtained from the program to stimulate rapid commercial application of wind systems. Various elements of the NASA program are outlined, including industry-built user operation, the evaluation phase, the proposed plan and schedule for site selection and user involvement, supporting research and technology (e.g., energy storage), and component and subsystem technology development.

  12. NASA Project Develops Next-Generation Low-Emissions Combustor Technologies

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chang, Clarence T.; Herbon, John T.; Kramer, Stephen K.

    2013-01-01

    NASA's Environmentally Responsible Aviation (ERA) Project is working with industry to develop the fuel flexible combustor technologies for a new generation of low-emissions engine targeted for the 2020 timeframe. These new combustors will reduce nitrogen oxide (NOx) emissions to half of current state-of-the-art (SOA) combustors, while simultaneously reducing noise and fuel burn. The purpose of the low NOx fuel-flexible combustor research is to advance the Technology Readiness Level (TRL) and Integration Readiness Level (IRL) of a low NOx, fuel flexible combustor to the point where it can be integrated in the next generation of aircraft. To reduce project risk and optimize research benefit NASA chose to found two Phase 1 contracts. The first Phase 1 contracts went to engine manufactures and were awarded to: General Electric Company, and Pratt & Whitney Company. The second Phase 1 contracts went to fuel injector manufactures Goodrich Corporation, Parker Hannifin Corporation, and Woodward Fuel System Technology. In 2012, two sector combustors were tested at NASA's ASCR. The results indicated 75% NOx emission reduction below the 2004 CAEP/6 regulation level.

  13. A model for making project funding decisions at the National Cancer Institute.

    PubMed

    Hall, N G; Hershey, J C; Kessler, L G; Stotts, R C

    1992-01-01

    This paper describes the development of a model for making project funding decisions at The National Cancer Institute (NCI). The American Stop Smoking Intervention Study (ASSIST) is a multiple-year, multiple-site demonstration project, aimed at reducing smoking prevalence. The initial request for ASSIST proposals was answered by about twice as many states as could be funded. Scientific peer review of the proposals was the primary criterion used for funding decisions. However, a modified Delphi process made explicit several criteria of secondary importance. A structured questionnaire identified the relative importance of these secondary criteria, some of which we incorporated into a composite preference function. We modeled the proposal funding decision as a zero-one program, and adjusted the preference function and available budget parametrically to generate many suitable outcomes. The actual funding decision, identified by our model, offers significant advantages over manually generated solutions found by experts at NCI.

  14. Future prospects for space life sciences from a NASA perspective

    NASA Technical Reports Server (NTRS)

    White, Ronald J.; Lujan, Barbara F.

    1989-01-01

    Plans for future NASA research programs in the life sciences are reviewed. Consideration is given to international cooperation in space life science research, the NASA approach to funding life science research, and research opportunities using the Space Shuttle, the Space Station, and Biological Satellites. Several specific programs are described, including the Centrifuge Project to provide a controlled acceleration environment for microgravity studies, the Rhesus Project to conduct biomedical research using rhesus monkeys, and the LifeSat international biosatellite project. Also, the Space Biology Initiative to design and develop life sciences laboratory facilities for the Space Shuttle and the Space Station and the Extended Duration Crew Operations program to study crew adaptation needs are discussed.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  16. Flight- and Ground-Based Materials Science Programs at NASA

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Microgravity Research Division of NASA funds research programs in all branches of materials science including ceramics and glasses. A NASA Research Announcement (NRA)is currently planned with proposals due in March 1999. Proposals are accepted for both flight- definition and ground- based research projects with a main criterion being a strong justification for microgravity. A review of the program in its entirety will be given, with special emphasis on microgravity related ceramics research. The topics of current interest in the NRA will be discussed in terms of International Space Station research and NASA's Human Exploration and Development of Space (HEDS) initiative.

  17. [Overview of research projects funding in traditional Chinese medicine oncology field supported by National Natural Science Foundation of China].

    PubMed

    Tang, Dong-Xin; Chen, Lian-Yu; Guo, Shu-Zhen; Han, Li-Wei; Zhang, Feng-Zhu

    2017-05-01

    In this paper, the funding situation of traditional Chinese medicine oncology research projects supported by National Natural Science Fund from 1986-2016 was reviewed. The characteristics of funded projects were summarized from funding amount, funding expenses, funding category, and the main research contents of projects, etc. At the same time, the main problems in the projects were analyzed in this paper, in order to provide reference for the relevant fund applicants. Copyright© by the Chinese Pharmaceutical Association.

  18. The New Approach to Self-Achievement (N.A.S.A.) Project 2004

    NASA Technical Reports Server (NTRS)

    Thomas, Candace J.

    2004-01-01

    The New Approach to Self-Achievement Program is designed to target rising seventh, eighth, and ninth grade students who require assistance in refining their mathematical skills, science awareness and knowledge, and test taking strategies. During the six week duration of the program, students are challenged in these areas through the application of robotic and aeronautic projects which encourage the students to practically apply their mathematical and science awareness accordingly. The first three weeks of my tenure were designated to assisting Mrs. Tammy Allen in the preparation of the 2004 NASA Project. As her assistant, I was held accountable for organizing, filing, preparing, analyzing, and completing the applications for the NASA Project. Additionally, I constructed the apposite databases which contained imperative information which aided in the selection of our participants. During the latter portion of those three weeks, Mrs. Allen, various staff members, and I, interviewed the numerous first-time applicants of the NASA Project. Furthermore, I was assigned to contact the accepted applicants of the program and provide all necessary information for the initiation of the child into the NASA Project. During the six week duration of the program, I will be working as a Project Leader at the Lorain Middle School site located in Lorain, Oh, with Mr. Fondriest Fountain. Mr. Fountain and I Will work with the eighth and ninth grade students in constructing robots, in which the students are told are made for NASA research which is being conducted on the surface of planet Mars. The robots, which are built from LEGOS and programmed through RoboLab computer software, are prepared to complete assigned Missions such as running obstacle courses; plowing and retrieving LEGOS; and scanning surfaces for intense regions of light.

  19. Finding Funding for Science and Engineering Projects

    ERIC Educational Resources Information Center

    Helme, Anne

    2012-01-01

    With many funding schemes around, a teacher needs to choose the one that suits the type of project he/she wants to do. Look carefully at the eligibility and judging criteria as this is what the applications will be assessed on. All the schemes mentioned here are open to primary schools, but some may need to involve other people as well. Some…

  20. NASA's Hypersonic Research Engine Project: A review

    NASA Technical Reports Server (NTRS)

    Andrews, Earl H.; Mackley, Ernest A.

    1994-01-01

    The goals of the NASA Hypersonic Research Engine (HRE) Project, which began in 1964, were to design, develop, and construct a high-performance hypersonic research ramjet/scramjet engine for flight tests of the developed concept over the speed range of Mach 4 to 8. The project was planned to be accomplished in three phases: project definition, research engine development, and flight test using the X-15A-2 research airplane, which was modified to carry hydrogen fuel for the research engine. The project goal of an engine flight test was eliminated when the X-15 program was canceled in 1968. Ground tests of full-scale engine models then became the focus of the project. Two axisymmetric full-scale engine models, having 18-inch-diameter cowls, were fabricated and tested: a structural model and combustion/propulsion model. A brief historical review of the project, with salient features, typical data results, and lessons learned, is presented. An extensive number of documents were generated during the HRE Project and are listed.

  1. The MY NASA DATA Project: Tools and a Collaboration Space for Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Alston, E. J.; Diones, D. D.; Moore, S. W.; Oots, P. C.; Phelps, C. S.

    2006-05-01

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is charged with serving a wide user community that is interested in its large data holdings in the areas of Aerosols, Clouds, Radiation Budget, and Tropospheric Chemistry. Most of the data holdings, however, are in large files with specialized data formats. The MY NASA DATA (mynasadata.larc.nasa.gov) project began in 2004, as part of the NASA Research, Education, and Applications Solutions Network (REASoN), in order to open this important resource to a broader community including K-12 education and citizen scientists. MY NASA DATA (short for Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs) consists of a web space that collects tools, lesson plans, and specially developed documentation to help the target audience more easily use the vast collection of NASA data about the Earth System. The core piece of the MY NASA DATA project is the creation of microsets (both static and custom) that make data easily accessible. The installation of a Live Access Server (LAS) greatly enhanced the ability for teachers, students, and citizen scientists to create and explore custom microsets of Earth System Science data. The LAS, which is an open source software tool using emerging data standards, also allows the MY NASA DATA team to make available data on other aspects of the Earth System from collaborating data centers. We are currently working with the Physical Oceanography DAAC at the Jet Propulsion Laboratory to bring in several parameters describing the ocean. In addition, MY NASA DATA serves as a central space for the K-12 community to share resources. The site already includes a dozen User-contributed lesson plans. This year we will be focusing on the Citizen Science portion of the site, and will be welcoming user-contributed project ideas, as well as reports of completed projects. An e-mentor network has also been created to involve a wider community in

  2. Comparing Life-Cycle Costs of ESPCs and Appropriations-Funded Energy Projects: An Update to the 2002 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shonder, John A; Hughes, Patrick; Atkin, Erica

    2006-11-01

    A study was sponsored by FEMP in 2001 - 2002 to develop methods to compare life-cycle costs of federal energy conservation projects carried out through energy savings performance contracts (ESPCs) and projects that are directly funded by appropriations. The study described in this report follows up on the original work, taking advantage of new pricing data on equipment and on $500 million worth of Super ESPC projects awarded since the end of FY 2001. The methods developed to compare life-cycle costs of ESPCs and directly funded energy projects are based on the following tasks: (1) Verify the parity of equipmentmore » prices in ESPC vs. directly funded projects; (2) Develop a representative energy conservation project; (3) Determine representative cycle times for both ESPCs and appropriations-funded projects; (4) Model the representative energy project implemented through an ESPC and through appropriations funding; and (5) Calculate the life-cycle costs for each project.« less

  3. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    EPA Pesticide Factsheets

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  4. A systems approach to the management of large projects: Review of NASA experience with societal implications

    NASA Technical Reports Server (NTRS)

    Vaccaro, M. J.

    1973-01-01

    The application of the NASA type management approach to achieve objectives in other fields is considered. The NASA management outlook and the influences of the NASA environment are discussed along with project organization and management, and applications to socio-economic projects.

  5. Nobel Prize In Physics Awarded To Astronomer For NASA-Funded Research

    NASA Astrophysics Data System (ADS)

    2002-10-01

    Riccardo Giacconi, the "father of X-ray astronomy," has received the Nobel Prize in physics for "pioneering contributions to astrophysics," which have led to the discovery of cosmic X-ray sources. Giaconni, president of the Associated Universities Inc., in Washington, and Research Professor of Physics and Astronomy at Johns Hopkins University, Baltimore, discovered the first X-ray stars and the X-ray background in the 1960s and conceived of and led the implementation of the Uhuru and High Energy Astronomy Observatory-2 (HEAO-2) X-ray observatories in the 1970s. With funding from NASA, he also detected sources of X-rays that most astronomers now consider to contain black holes. Giacconi said that receiving the award confirms the importance of X-ray astronomy. "I think I'm one of the first to get the Nobel prize for work with NASA, so that's good for NASA and I think it's also good for the field," he said. "It's also nice for all the other people who've worked in this field. I recognize that I was never alone. I'm happy for me personally, I'm happy for my family, and I'm happy for the field and for NASA," Giacconi added. In 1976, Giacconi along with Harvey Tananbaum of the Harvard- Smithsonian Center for Astrophysics, Cambridge, Mass., submitted a proposal letter to NASA to initiate the study and design of a large X-ray telescope. In 1977 work began on the program, which was then known as the Advanced X-ray Astrophysics Facility and in 1998 renamed the Chandra X-ray Observatory. "Partnerships with universities and scientists are essential in our quest to answer the fundamental questions of the universe," said Dr. Ed Weiler, NASA Associate Administrator for Space Science, Headquarters, Washington. "Dr. Giacconi's achievements are a brilliant example of this synergy among NASA, universities and their community of scientists and students," he said. Giacconi is Principal Investigator for the ultradeep survey with Chandra - the "Chandra Deep Field South" - that has

  6. Overview of NASA's Thermal Control System Development for Exploration Project

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.

    2010-01-01

    NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several sub-elements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project. The risks and design challenges are addressed through a rigorous technology development process that culminates with an integrated thermal control system test. The resulting hardware typically has a Technology Readiness Level (TRL) of six. This paper summarizes the development efforts being performed by the technology development project. The development efforts involve heat acquisition and heat rejection hardware including radiators, heat exchangers, and evaporators. The project has also been developing advanced phase change material heat sinks and performing assessments for thermal control system fluids.

  7. NASA In-Situ Resource Utilization Project-and Seals Challenges

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt; Linne, Diane

    2006-01-01

    A viewgraph presentation on NASA's In-Situ Resource Utilization Project and Seals Challenges is shown. The topics include: 1) What Are Space Resources?; 2) Space Resource Utilization for Exploration; 3) ISRU Enables Affordable, Sustainable & Flexible Exploration; 4) Propellant from the Moon Could Revolutionize Space Transportation; 5) NASA ISRU Capability Roadmap Study, 2005; 6) Timeline for ISRU Capability Implementation; 7) Lunar ISRU Implementation Approach; 8) ISRU Technical-to-Mission Capability Roadmap; 9) ISRU Resources & Products of Interest; and 10) Challenging Seals Requirements for ISRU.

  8. Funding Large Projects in Ohio's Small and Medium Sized Metropolitan Planning Organizations

    DOT National Transportation Integrated Search

    1999-01-01

    This abstract addresses how the state of Ohio assists the smaller MPO areas in : funding larger transportation projects. The amount of funds and corresponding : obligation ceiling available to an individual smaller MPO in a particular : year m...

  9. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae; hide

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.

  10. NASA Small Business Innovation Research Program. Composite List of Projects, 1983 to 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA SBIR Composite List of Projects, 1983 to 1989, includes all projects that have been selected for support by the Small Business Innovation Research (SBIR) Program of NASA. The list describes 1232 Phase 1 and 510 Phase 2 contracts that had been awarded or were in negotiation for award in August 1990. The main body is organized alphabetically by name of the small businesses. Four indexes cross-reference the list. The objective of this listing is to provide information about the SBIR program to anyone concerned with NASA research and development activities.

  11. Fiscal Year 2011 Afghanistan Infrastructure Fund Projects Are Behind Schedule and Lack Adequate Sustainment Plans

    DTIC Science & Technology

    2012-07-30

    interconnected subset ofUSATD Economic Support Fund ( ESl -") projects, which arc essential to meet program ol~jcctives. Under the program, DOS and US AID...with conunent: The congressional reporting requirements in the KDAA cover AIF funded projects, whether executed hy DoD or DOS. ESl ’-tunded projects

  12. Academy Sharing Knowledge (ASK). The NASA Source for Project Management Magazine, Volume 11, March 2003

    NASA Technical Reports Server (NTRS)

    2003-01-01

    APPL is a research-based organization that serves NASA program and project managers, as well as project teams, at every level of development. In 1997, APPL was created from an earlier program to underscore the importance that NASA places on project management and project teams through a wide variety of products and services, including knowledge sharing, classroom and online courses, career development guidance, performance support, university partnerships, and advanced technology tools. ASK Magazine grew out of APPL's Knowledge Sharing Initiative. The stories that appear in ASK are written by the 'best of the best' project managers, primarily from NASA, but also from other government agencies and industry. Contributors to this issue include: Teresa Bailey, a librarian at the Jet Propulsion Laboratory, Roy Malone, Deputy Director in the Safety and Mission Assurance (S&MA) Office at the NASA Marshall Space Flight Center (MSFC), W. Scott Cameron, Capital Systems Manager for the Food and Beverage Global Business Unit of Procter and Gamble, Ray Morgan, recent retiree as Vice President of AeroVironment, Inc., Marty Davis, Program Manager of the Geostationary Operational Environmental Satellite (GOES) at the NASA Goddard Space Flight Center (GSFC) in Greenbelt, Maryland, Todd Post, editor of ASK Magazine, and works for EduTech Ltd. in Silver Spring, Maryland, Dr. Owen Gadeken, professor of Engineering Management at the Defense Acquisition University, Ken Schwer, currently the Project Manager of Solar Dynamics Observatory, Dr. Edward Hoffmwan, Director of the NASA Academy of Program and Project Leadership, Frank Snow, a member of the NASA Explorer Program at Goddard Space Flight Center since 1992, Dr. Alexander Laufer, Editor-in-Chief of ASK Magazine and a member of the Advisory Board of the NASA Academy of Program and Project Leadership, Judy Stokley, presently Air Force Program Executive Officer for Weapons in Washington, D.C. and Terry Little, Director of the Kinetic

  13. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  14. NASA AETC Test Technology Subproject

    NASA Technical Reports Server (NTRS)

    Bell, James

    2017-01-01

    Funds directed to improve measurement capabilities (pressure, force, flow, and temperature), test techniques and processes, and develop technologies critical to meeting NASA research needs and applicable to a multitude of facilities. Primarily works by funding small ($40K - $400K) tasks which result in a demonstration or initial capability of a new technology in an AETC facility.TT research and development tasks are generally TRL 3-6; they should be things which work in small scale or lab environments but need further development for use in production facilities.TT differs from CA in its focus on smaller-scale tasks and on instrumentation. Technologies developed by TT may become CA projects in order be fully realized within a facility.

  15. NASA's Atmospheric Effects of Aviation Project

    NASA Technical Reports Server (NTRS)

    Cofer, W. Randy, III; Anderson, Bruce E.; Connors, V. S.; Wey, C. C.; Sanders, T.; Winstead, E. L.; Pui, C.; Chen, Da-ren; Hagen, D. E.; Whitefield, P.

    2001-01-01

    During August 1-14, 1999, NASA's Atmospheric Effects of Aviation Project (AEAP) convened a workshop at the NASA Langley Research Center to try to determine why such a wide variation in aerosol emissions indices and chemical and physical properties has been reported by various independent AEAP-supported research teams trying to characterize the exhaust emissions of subsonic commercial aircraft. This workshop was divided into two phases, a laboratory phase and a field phase. The laboratory phase consisted of supplying known particle number densities (concentrations) and particle size distributions to a common manifold for the participating research teams to sample and analyze. The field phase was conducted on an aircraft run-up pad. Participating teams actually sampled aircraft exhaust generated by a Langley T-38 Talon aircraft at 1 and 9 m behind the engine at engine powers ranging from 48 to 100 percent. Results from the laboratory phase of this intercomparison workshop are reported in this paper.

  16. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with solder interconnects consisting of lead-free alloys (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder

  17. Program for the Increased Participation of Minorities in NASA-Related Research

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The goal of this program is to increase the participation of minorities in NASA related research and "Science for the Nation s Interest". Collaborative research projects will be developed involving NASA-MSFC, National Space Science and Technology Center (NSSTC), other government agencies, industries and minority serving institutions (MSIs). The primary focus for the MSIs will be on Alabama A&M University and Tuskegee University, which are in partnership with the NSSTC. These schools have excellent Ph.D. programs in physics and materials science and engineering, respectively. The first phase of this program will be carried out at Alabama A&M University in the "Research and Development Office" in collaboration with Dr. Dorothy Huston, Vice President of Research and Development. The development assignment will be carried out at the NSSTC with Sandy Coleman/ RS01 and this will primarily involve working with Tuskegee University.A portion of the program will be devoted to identifying and contacting potential funding sources for use in establishing collaborative research projects between NASA-MSFC, other government agencies, NSSTC, industries, and MSIs. These potential funding sources include the National Science Foundation (NSF), National Institute of Health (NIH), Department of Defense (DOD), Army, Navy, and Air Force. Collaborative research projects will be written mostly in the following research areas: a. Cosmic radiation shielding materials b. Advanced propulsion material c. Biomedical materials and biosensors d. In situ resource utilization e. Photonics for NASA applications

  18. Research projects in family medicine funded by the European Union.

    PubMed

    Pavličević, Ivančica; Barać, Lana

    2014-01-01

    This study aimed at synthesizing funding opportunities in the field of family medicine by determining the number of family medicine projects, as well as number of project leaderships and/ or participations by each country. This was done in order to encourage inclusion of physicians in countries with underdeveloped research networks in successful research networks or to encourage them to form new ones. We searched the Community Research and Development Information Service project database in February 2013. Study covered the period from years 1992 - 2012, selecting the projects within the field of general/family medicine. The search was conducted in February 2013. First search conducted in the CORDIS database came up with a total of 466 projects. After excluding 241 projects with insufficient data, we analysed 225 remaining projects; out of those, 22 (9.8%) were in the field of family medicine and 203 (90.2%) were from other fields of medicine. Sorted by the number of projects per country, Dutch institutions had the highest involvement in family medicine projects and were partners or coordinators in 18 out of 22 selected projects (81.8%), followed by British institutions with 15 (68.8%), and Spanish with 10 projects (45.5%). Croatia was a partner in a single FP7 Health project. Research projects in family medicine funded by the European Union show significant differences between countries. Constant and high-quality international cooperation in family medicine is the prerequisite for improvement and development of scientific research and the profession. Copyright © 2014 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  19. NASA Alternate Access to Station Service Concept

    NASA Technical Reports Server (NTRS)

    Bailey, Michelle D.; Crumbly, Chris

    2001-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research - and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply

  20. NASA Alternate Access to Station Service Concept

    NASA Astrophysics Data System (ADS)

    Bailey, M. D.; Crumbly, C.

    2002-01-01

    The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply

  1. 77 FR 12281 - Lock+ Hydro Friends Fund XLIII; FFP Project 53, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14181-000; Project No. 14195-000] Lock+ Hydro Friends Fund XLIII; FFP Project 53, LLC; Notice Announcing Filing Priority for... follows: 1. Lock+ Hydro Friends Fund XLIII, Project No. 14181-000. 2. FFP Project 53, LLC, Project No...

  2. 77 FR 12280 - Lock+ Hydro Friends Fund XXXV; FFP Project 57, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14186-000; Project No. 14197-000] Lock+ Hydro Friends Fund XXXV; FFP Project 57, LLC;Notice Announcing Filing Priority for... follows: 1. Lock+ Hydro Friends Fund XXXV, Project No. 14186-000. 2. FFP Project 57, LLC, Project No...

  3. 77 FR 12279 - Lock+ Hydro Friends Fund XXXVIII; FFP Project 1, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14184-000; Project No. 14191-000] Lock+ Hydro Friends Fund XXXVIII; FFP Project 1, LLC; Notice Announcing Filing Priority for... follows: 1. Lock+ Hydro Friends Fund XXXVIII, Project No. 14184-000. 2. FFP Project 1, LLC, Project No...

  4. NASA and Public Libraries: Enhancing STEM Literacy in Underserved Communities

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Harold, J. B.; Randall, C.

    2016-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, and defining the conditions necessary to support life beyond Earth. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was recently funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are developing new ways to engage their patrons in STEM learning, and NCIL's STAR Library Education Network (STAR_Net) has been supporting their efforts for the last eight years, including through a vibrant community of practice that serves both librarians and STEM professionals. Project stakeholders include public library staff, state libraries, the earth and space science education community at NASA, subject matter experts, and informal science educators. The project will leverage high-impact SMD and library events to catalyze partnerships through dissemination of SMD assets and professional development. It will also develop frameworks for public libraries to increase STEM interest pathways in their communities (with supports for reaching underserved audiences). This presentation will summarize the key activities and expected outcomes of the 5-year project.

  5. Teacher Preparation with GLOBE and NASA Assets

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Templin, M.; Struble, J.; Mierzwiak, S.; Hedley, M. L.; Padgett, D.

    2017-12-01

    The GLOBE Program has been a working with teachers and students for over 20 years. Pre-service education students can be a target audience as well. Mission EARTH is a NASA funded project through the NASA Cooperative Agreement Notice (CAN) from the Science Mission Directorate. A goal of Mission EARTH is to improve student understanding of Earth System Science and to engage the next generation of scientists and global citizens. This presentation will discuss Weather and Climate courses offered at both the University of Toledo and Tennessee State University for pre-service education students. Students engaged in atmospheric observations through the GLOBE protocols and developed research projects to study El Nino. Undergraduate students helped K-12 students take GLOBE observations as well by partnering with in-service GLOBE teachers affiliated with these GLOBE partnerships.

  6. 77 FR 12280 - Lock+ Hydro Friends Fund XLI; FFP Project 54, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14182-000; Project No. 14192-000] Lock+ Hydro Friends Fund XLI; FFP Project 54, LLC; Notice Announcing Filing Priority for... follows: 1. FFP Project 54, LLC, Project No. 14192-000. 2. Lock+ Hydro Friends Fund XLI, Project No. 14182...

  7. NASA Hydrogen Research at Florida Universities, Program Year 2003

    NASA Technical Reports Server (NTRS)

    Block, David L.; Raissi, Ali

    2006-01-01

    This document presents the final report for the NASA Hydrogen Research at Florida Universities project for program year 2003. This multiyear hydrogen research program has positioned Florida to become a major player in future NASA space and space launch projects. The program is funded by grants from NASA Glenn Research Center with the objective of supporting NASA's hydrogen-related space, space launch and aeronautical research activities. The program conducts over 40 individual projects covering the areas of cryogenics, storage, production, sensors, fuel cells, power and education. At the agency side, this program is managed by NASA Glenn Research Center and at the university side, co-managed by FSEC and the University of Florida with research being conducted by FSEC and seven Florida universities: Florida International University, Florida State University, Florida A&M University, University of Central Florida, University of South Florida, University of West Florida and University of Florida. For detailed information, see the documents section of www.hydrogenresearch.org. This program has teamed these universities with the nation's premier space research center, NASA Glenn, and the nation's premier space launch facility, NASA Kennedy Space Center. It should be noted that the NASA Hydrogen Research at Florida Universities program has provided a shining example and a conduit for seven Florida universities within the SUS to work collaboratively to address a major problem of national interest, hydrogen energy and the future of energy supply in the U.S.

  8. University guide to NASA, 1993

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This guide provides brief descriptions of the two NASA Headquarters program offices through which NASA primarily funds universities, the Office of Space Science and Applications and the Office of Aeronautics and Space Technology. It also describes NASA's Office of Commercial Programs, which funds the Centers for the Commercial Development of Space and the Small Business Innovation Research Program. This guide explains the roles played by NASA's eight field centers and the Jet Propulsion Laboratory, and gives a sampling of ongoing NASA-wide educational programs and services. Most importantly, this guide provides practical information in the form of names and telephone numbers of NASA contacts.

  9. University guide to NASA, 1993

    NASA Astrophysics Data System (ADS)

    1992-10-01

    This guide provides brief descriptions of the two NASA Headquarters program offices through which NASA primarily funds universities, the Office of Space Science and Applications and the Office of Aeronautics and Space Technology. It also describes NASA's Office of Commercial Programs, which funds the Centers for the Commercial Development of Space and the Small Business Innovation Research Program. This guide explains the roles played by NASA's eight field centers and the Jet Propulsion Laboratory, and gives a sampling of ongoing NASA-wide educational programs and services. Most importantly, this guide provides practical information in the form of names and telephone numbers of NASA contacts.

  10. Technology transfer in New York City - The NASA/NYC Applications Project.

    NASA Technical Reports Server (NTRS)

    Karen, A.; Orrick, D.; Anuskiewicz, T.

    1973-01-01

    New York City faces many varied and complex problems ranging from truck hijacking to graffiti. In answer to a request from NYC officials NASA is sponsoring the efforts of a project aimed at applying aerospace-derived solutions to a series of city technical problems. An immediate result has been a pilot experiment to improve security in the City's schools. Other problem areas for NASA review have been selected from the Fire, Police and Air Resources Departments. The Project offers a significant example of a viable approach to the crucial process of bridging the communications gap between urban officials and technologists.

  11. Statutes related to programming and funding of transportation projects.

    DOT National Transportation Integrated Search

    2004-03-01

    This book is a collection of statutes related to programming and funding of transportation projects. : It is an auxiliary tool that is meant to provide easy access to current, relevant statutes. The 2004 edition : of the Statutes Book incorporates al...

  12. [Review and analysis of transplant biological research projects funded by National Natural Science Foundation of China].

    PubMed

    Gong, Weihua; Sun, Ruijuan; Dong, Erdan

    2015-08-01

    To study the funding and achievements in the field of organ transplantation support by the National Natural Science Foundation of China (NSFC). A search of NSFC database was made by using the key word "transplantation" and excluding "bone marrow transplantation" for the projects funded between 1988 and 2013. SCI indexed publications that marked with NSFC project number were collected by searching each grant number in the database of the Web of Science. Six hundreds fifty-five projects were identified and received about 220 million yuan in grant funding. These funded research projects were distributed among 25 provinces and autonomous regions, however, which were mainly in the developed coastal areas; of them, 43 (6.56%) projects were granted in xenotransplantation and 17 projects (2.60%) were funded in the field of traditional Chinese medicine-related organ transplantation; Transplantation on blood vessels, heart, kidney, liver, lung, small intestine, pancreatic, cornea, trachea, skin, etc. were primarily performed in research. Nine hundreds and sixty-one SCI-indexed publications were achieved. Magnitude and intensity of NSFC funding, output of SCI publications have been increasing, suggesting that NSFC positively promotes the development of organ transplantation. Although a great progress of transplantation has been made, basic and translational studies should be vigorously strengthened.

  13. NASA/Haughton-Mars Project 2006 Lunar Medical Contingency Simulation

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.

    2007-01-01

    A viewgraph presentation describing NASA's Haughton-Mars Project (HMP) medical requirements and lunar surface operations is shown. The topics onclude: 1) Mission Purpose/ Overview; 2) HMP as a Moon/Mars Analog; 3) Simulation objectives; 4) Discussion; and 5) Forward work.

  14. 77 FR 12280 - Lock+ Hydro Friends Fund XL; FFP Project 56, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14189-000, 14198-000] Lock+ Hydro Friends Fund XL; FFP Project 56, LLC; Notice Announcing Filing Priority for Preliminary Permit...+ Hydro Friends Fund XL, Project No. 14189-000. 2. FFP Project 56, LLC, Project No. 14198-000. Dated...

  15. 77 FR 9232 - Lock+ Hydro Friends Fund XXXVIII; FFP Project 1, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14184-000; 14191-000] Lock+ Hydro Friends Fund XXXVIII; FFP Project 1, LLC; Notice Announcing Preliminary Permit Drawing The... filed by Lock+ Hydro Friends Fund XXXVIII for Project No. 14184-000 and FFP Project 1, LLC for Project...

  16. 77 FR 9232 - Lock+ Hydro Friends Fund XXXV; FFP Project 57, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14186-000; Project No. 14197-000] Lock+ Hydro Friends Fund XXXV; FFP Project 57, LLC; Notice Announcing Preliminary Permit.... The applications were filed by Lock+ Hydro Friends Fund XXXV for Project No. 14186-000 and FFP Project...

  17. 77 FR 12279 - Lock+ Hydro Friends Fund XLVII FFP Project 52, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14178-000, 14190-000] Lock+ Hydro Friends Fund XLVII FFP Project 52, LLC; Notice Announcing Filing Priority for Preliminary Permit...+ Hydro Friends Fund XLVII, Project No. 14178-000. 2. FFP Project 52, LLC, Project No. 14190-000. Dated...

  18. 77 FR 12281 - Lock+ Hydro Friends Fund XXXIV; FFP Project 58, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14187-000, 14199-000] Lock+ Hydro Friends Fund XXXIV; FFP Project 58, LLC; Notice Announcing Filing Priority for Preliminary Permit...+ Hydro Friends Fund XXXIV, Project No. 14187-000. 2. FFP Project 58, LLC, Project No. 14199-000. Dated...

  19. 77 FR 9915 - Lock+ Hydro Friends Fund XLIV; FFP Project 51, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14179-000; Project No. 14194-000] Lock+ Hydro Friends Fund XLIV; FFP Project 51, LLC; Notice Announcing Preliminary Permit.... The applications were filed by Lock+ Hydro Friends Fund XLIV for Project No. 14179-000 and FFP Project...

  20. 77 FR 12279 - Lock+ Hydro Friends Fund XLIV FFP Project 51, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14179-000, 14194-000] Lock+ Hydro Friends Fund XLIV FFP Project 51, LLC; Notice Announcing Filing Priority for Preliminary Permit...+ Hydro Friends Fund XLIV, Project No. 14179-000. 2. FFP Project 51, LLC, Project No. 14194-000. Dated...

  1. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  2. 77 FR 14775 - Lock+ Hydro Friends Fund XLV, FFP Project 2, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14180-000, 14193-000] Lock+ Hydro Friends Fund XLV, FFP Project 2, LLC; Notice Announcing Filing Priority for Preliminary Permit...+ Hydro Friends Fund XLV Project No. 14180-000. 2. FFP Project 2, LLC Project No. 14193-000. Dated: March...

  3. 77 FR 9230 - Lock+ Hydro Friends Fund XLV; FFP Project 2, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14180-000; 14193-000] Lock+ Hydro Friends Fund XLV; FFP Project 2, LLC; Notice Announcing Preliminary Permit Drawing The Commission... filed by Lock+ Hydro Friends Fund XLV for Project No. 14180-000 and FFP Project 2, LLC for Project No...

  4. 77 FR 12280 - Lock+ Hydro Friends Fund XXVIII; FFP Project 59, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14188-00o, 14200-000] Lock+ Hydro Friends Fund XXVIII; FFP Project 59, LLC; Notice Announcing Filing Priority for Preliminary Permit.... FFP Project 59, LLC, Project No. 14200-000. 2. Lock+ Hydro Friends Fund XXXVIII, Project No. 14188-000...

  5. 77 FR 13318 - Lock+ Hydro Friends Fund IV, FFP Project 55, LLC; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14185-000, 14196-000] Lock+ Hydro Friends Fund IV, FFP Project 55, LLC; Notice Announcing Filing Priority for Preliminary Permit... Friends Fund IV: Project No. 14185-000. 2. FFP Project 55, LLC: Project No. 14196-000. Dated: February 29...

  6. Designing and Developing a NASA Research Projects Knowledge Base and Implementing Knowledge Management and Discovery Techniques

    NASA Astrophysics Data System (ADS)

    Dabiru, L.; O'Hara, C. G.; Shaw, D.; Katragadda, S.; Anderson, D.; Kim, S.; Shrestha, B.; Aanstoos, J.; Frisbie, T.; Policelli, F.; Keblawi, N.

    2006-12-01

    The Research Project Knowledge Base (RPKB) is currently being designed and will be implemented in a manner that is fully compatible and interoperable with enterprise architecture tools developed to support NASA's Applied Sciences Program. Through user needs assessment, collaboration with Stennis Space Center, Goddard Space Flight Center, and NASA's DEVELOP Staff personnel insight to information needs for the RPKB were gathered from across NASA scientific communities of practice. To enable efficient, consistent, standard, structured, and managed data entry and research results compilation a prototype RPKB has been designed and fully integrated with the existing NASA Earth Science Systems Components database. The RPKB will compile research project and keyword information of relevance to the six major science focus areas, 12 national applications, and the Global Change Master Directory (GCMD). The RPKB will include information about projects awarded from NASA research solicitations, project investigator information, research publications, NASA data products employed, and model or decision support tools used or developed as well as new data product information. The RPKB will be developed in a multi-tier architecture that will include a SQL Server relational database backend, middleware, and front end client interfaces for data entry. The purpose of this project is to intelligently harvest the results of research sponsored by the NASA Applied Sciences Program and related research program results. We present various approaches for a wide spectrum of knowledge discovery of research results, publications, projects, etc. from the NASA Systems Components database and global information systems and show how this is implemented in SQL Server database. The application of knowledge discovery is useful for intelligent query answering and multiple-layered database construction. Using advanced EA tools such as the Earth Science Architecture Tool (ESAT), RPKB will enable NASA and

  7. Latest Changes to NASA's Laser Communication Relay Demonstration Project

    NASA Technical Reports Server (NTRS)

    Edwards, Bernard L.; Israel, David J.; Vithlani, Seema K.

    2018-01-01

    Over the last couple of years, NASA has been making changes to the Laser Communications Relay Demonstration Project (LCRD), a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). The changes made makes LCRD more like a future Earth relay system that has both high speed optical and radio frequency links. This will allow LCRD to demonstrate a more detailed concept of operations for a future operational mission critical Earth relay. LCRD is expected to launch in June 2019 and is expected to be followed a couple of years later with a prototype user terminal on the International Space Station. LCRD's architecture will allow it to serve as a testbed in space and this paper will provide an update of its planned capabilities and experiments.

  8. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  9. 77 FR 12281 - Lock+ Hydro Friends Fund IV; FFP Project 55, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14185-000; Project No. 14196-000] Lock+ Hydro Friends Fund IV; FFP Project 55, LLC; Notice Announcing Preliminary Permit... County, Kentucky. The applications were filed by Lock+ Hydro Friends Fund IV for Project No. 14185-000...

  10. 77 FR 9230 - Lock+ Hydro Friends Fund XLVII; FFP Project 52, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Project No. 14178-000; Project No. 14190-000] Lock+ Hydro Friends Fund XLVII; FFP Project 52, LLC; Notice Announcing Preliminary Permit... County, Arkansas. The applications were filed by Lock+ Hydro Friends Fund XLVII for Project No. 14178-000...

  11. 77 FR 9232 - Lock+ Hydro Friends Fund XXXIV; FFP Project 58, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14187-000; Project No. 14199-000] Lock+ Hydro Friends Fund XXXIV; FFP Project 58, LLC; Notice Announcing Preliminary Permit... County, Kentucky. The applications were filed by Lock+ Hydro Friends Fund XXXIV for Project No. 14187-000...

  12. Australia to fund HIV / AIDS projects in Southeast Asia.

    PubMed

    1994-12-19

    Australia will fund 23 new HIV-AIDS projects in Southeast Asian countries, the government announced. "Asia is predicted to be the major growth area for human immunodeficiency virus (HIV) infections over the next decade, " Minister for Development Cooperation Gordon Bilney said. "These projects, worth some $4.35 million over three years, will help meet the challenge of preventing the spread of the disease in the region." The projects--in Thailand, Vietnam, the Philippines, Indonesia, Malaysia and Cambodia--emphasize education and prevention activities as well as programs which focus on the care and support of people living with HIV, Bilney said. He also said a variety of Australian and overseas organizations will implement the projects, many of which will feature the significant involvement of communities at risk and people with HIV. "It is in keeping with the fundamental spirit of the aid program that we should seek to share this expertise with our neighbors in the region." Bilney said one Australian success story--the creative "Streetwize comics" (publications in Australia which help street kids and under privileged kids understand HIV/AIDS problems)--will be piloted in Vietnam in conjunction with the Vietnam Youth Federation. He said Vietnamese staff will be trained in the production of a series of bilingual mini-comics on HIV-AIDS prevention for youth. "This project will receive funding of $187,500 over three years," Bilney said. Bilney said the projects would help minimize the individual and social impact of the epidemic in the targeted countries. full text

  13. Funding Medical Research Projects: Taking into Account Referees' Severity and Consistency through Many-Faceted Rasch Modeling of Projects' Scores.

    PubMed

    Tesio, Luigi; Simone, Anna; Grzeda, Mariuzs T; Ponzio, Michela; Dati, Gabriele; Zaratin, Paola; Perucca, Laura; Battaglia, Mario A

    2015-01-01

    The funding policy of research projects often relies on scores assigned by a panel of experts (referees). The non-linear nature of raw scores and the severity and inconsistency of individual raters may generate unfair numeric project rankings. Rasch measurement (many-facets version, MFRM) provides a valid alternative to scoring. MFRM was applied to the scores achieved by 75 research projects on multiple sclerosis sent in response to a previous annual call by FISM-Italian Foundation for Multiple Sclerosis. This allowed to simulate, a posteriori, the impact of MFRM on the funding scenario. The applications were each scored by 2 to 4 independent referees (total = 131) on a 10-item, 0-3 rating scale called FISM-ProQual-P. The rotation plan assured "connection" of all pairs of projects through at least 1 shared referee.The questionnaire fulfilled satisfactorily the stringent criteria of Rasch measurement for psychometric quality (unidimensionality, reliability and data-model fit). Arbitrarily, 2 acceptability thresholds were set at a raw score of 21/30 and at the equivalent Rasch measure of 61.5/100, respectively. When the cut-off was switched from score to measure 8 out of 18 acceptable projects had to be rejected, while 15 rejected projects became eligible for funding. Some referees, of various severity, were grossly inconsistent (z-std fit indexes less than -1.9 or greater than 1.9). The FISM-ProQual-P questionnaire seems a valid and reliable scale. MFRM may help the decision-making process for allocating funds to MS research projects but also in other fields. In repeated assessment exercises it can help the selection of reliable referees. Their severity can be steadily calibrated, thus obviating the need to connect them with other referees assessing the same projects.

  14. 77 FR 9230 - Lock+ Hydro Friends Fund XLIII; FFP Project 53, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14181-000; 14195-000] Lock+ Hydro Friends Fund XLIII; FFP Project 53, LLC; Notice Announcing Preliminary Permit Drawing The... applications were filed by Lock+ Hydro Friends Fund XLIII for Project No. 14181-000, and FFP Project 53, LLC...

  15. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  16. 24 CFR 1000.103 - How may IHBG funds be used for tenant-based or project-based rental assistance?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Housing Activities § 1000.103 How may IHBG funds be used for tenant-based or project-based rental assistance? (a) IHBG funds may be used for project-based or tenant-based rental assistance. (b) IHBG funds may be used for project-based or tenant-based rental assistance that is provided in a manner...

  17. 77 FR 9231 - Lock+ Hydro Friends Fund XL; FFP Project 56, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14189-000; 14198-000] Lock+ Hydro Friends Fund XL; FFP Project 56, LLC; Notice Announcing Preliminary Permit Drawing The Commission... applications were filed by Lock+ Hydro Friends Fund XL for Project No. 14189-000 and FFP Project 56, LLC for...

  18. Energy Exchange NASA Opening Plenary

    NASA Technical Reports Server (NTRS)

    Marrs, Rick

    2017-01-01

    Rick Marrs, Deputy Assistant Administrator Office of Strategic Infrastructure NASA Headquarters will be speaking during the 2017 Energy Exchange opening plenary. His presentation showcases the NASA mission, sustainability at NASA, NASA's strategic Sustainability Performance Plan, Existing PV Partnerships, and NASA funded Solar Initiatives at KSC.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 35: The US government technical report and aerospace knowledge diffusion: Results of an on-going investigation

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Khan, A. Rahman; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded (U.S.) R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this paper, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from two surveys (one of five studies) of our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report and close with a brief overview of on-going research into the use of the U.S. government technical report as a rhetorical device for transferring federally funded aerospace R&D.

  20. Developing Nationally Competitive NASA Research Capability in West Virginia

    NASA Technical Reports Server (NTRS)

    Calzonetti, Frank J.

    1997-01-01

    In May, 1995 West Virginia EPSCOR was awarded $150,000 to support activities to develop research capabilities in West Virginia in support of the National Aeronautics and Space Administration (NASA). These funds were used to support three projects: 1) Information Processing and the Earth Observing System, directed by Dr. Stuart Tewksbury of West Virginia University; 2) Development of Optical Materials for Atmospheric Sensing Experiments, directed by Dr. Nancy Giles of West Virginia University; and 3) Development of Doppler Global Velocimeter (DGV) for Aeronautical and Combustion Studies, directed by Dr. John Kuhlman of West Virginia University. The funding provides the means to develop capability in each of these areas. This report summarizes the technical accomplishments in each project supported under this award.

  1. Integration of a NASA faculty fellowship project within an undergraduate engineering capstone design class

    NASA Astrophysics Data System (ADS)

    Carmen, C.

    2012-11-01

    The United States (US) National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) provides university faculty fellowships that prepare the faculty to implement engineering design class projects that possess the potential to contribute to NASA ESMD objectives. The goal of the ESMD is to develop new capabilities, support technologies and research that will enable sustained and affordable human and robotic space exploration. In order to create a workforce that will have the desire and skills necessary to achieve these goals, the NASA ESMD faculty fellowship program enables university faculty to work on specific projects at a NASA field center and then implement the project within their capstone engineering design class. This allows the senior - or final year - undergraduate engineering design students, the opportunity to develop critical design experience using methods and design tools specified within NASA's Systems Engineering (SE) Handbook. The faculty fellowship projects focus upon four specific areas critical to the future of space exploration: spacecraft, propulsion, lunar and planetary surface systems and ground operations. As the result of a 2010 fellowship, whereby faculty research was conducted at Marshall Space Flight Center (MSFC) in Huntsville, Alabama (AL), senior design students in the Mechanical and Aerospace Engineering (MAE) department at the University of Alabama in Huntsville (UAH) had the opportunity to complete senior design projects that pertained to current work conducted to support ESMD objectives. Specifically, the UAH MAE students utilized X-TOOLSS (eXploration Toolset for the Optimization Of Launch and Space Systems), an Evolutionary Computing (EC) design optimization software, as well as design, analyze, fabricate and test a lunar regolith burrowing device - referred to as the Lunar Wormbot (LW) - that is aimed at exploring and retrieving samples of lunar regolith. These two projects were

  2. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    NASA Technical Reports Server (NTRS)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  3. 34 CFR 664.3 - Who is eligible to participate in projects funded under the Fulbright-Hays Group Projects Abroad...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Fulbright-Hays Group Projects Abroad Program? 664.3 Section 664.3 Education Regulations of the... EDUCATION FULBRIGHT-HAYS GROUP PROJECTS ABROAD PROGRAM General § 664.3 Who is eligible to participate in projects funded under the Fulbright-Hays Group Projects Abroad Program? An individual is eligible to...

  4. 34 CFR 664.3 - Who is eligible to participate in projects funded under the Fulbright-Hays Group Projects Abroad...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Fulbright-Hays Group Projects Abroad Program? 664.3 Section 664.3 Education Regulations of the... EDUCATION FULBRIGHT-HAYS GROUP PROJECTS ABROAD PROGRAM General § 664.3 Who is eligible to participate in projects funded under the Fulbright-Hays Group Projects Abroad Program? An individual is eligible to...

  5. 34 CFR 664.3 - Who is eligible to participate in projects funded under the Fulbright-Hays Group Projects Abroad...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Fulbright-Hays Group Projects Abroad Program? 664.3 Section 664.3 Education Regulations of the... EDUCATION FULBRIGHT-HAYS GROUP PROJECTS ABROAD PROGRAM General § 664.3 Who is eligible to participate in projects funded under the Fulbright-Hays Group Projects Abroad Program? An individual is eligible to...

  6. Recent Progress on Sonic Boom Research at NASA

    NASA Technical Reports Server (NTRS)

    Loubeau, Alexandra

    2012-01-01

    Sonic boom research conducted at NASA through the Supersonics Project of the Fundamental Aeronautics Program is oriented toward understanding the potential impact of sonic boom noise on communities from new low-boom supersonic aircraft designs. Encompassing research in atmospheric propagation, structural response, and human response, NASA research contributes to knowledge in key areas needed to support development of a new noise-based standard for supersonic aircraft certification. Partnerships with several industry, government, and academic institutions have enabled the recent execution of several acoustic field studies on sonic booms. An overview of recent activities funded by NASA includes: focus boom model development and experimental validation, field experiments of structural transmission of sonic booms into large buildings, and low boom community response testing.

  7. Federal Research and Development Funding: FY2014

    DTIC Science & Technology

    2014-02-19

    microbial contamination.29 In FY2012, four agencies—NSF, NIH, NASA , and USDA —issued a joint solicitation to provide research funding for next...Table 10. NSF Funding by Major Account .................................................................................... 38 Table 11. NASA R&D...National Aeronautics and Space Administration ( NASA ), 8.1%; National Science Foundation (NSF), 4.3%; Department of Commerce (DOC), 1.9%; and

  8. System Safety in Early Manned Space Program: A Case Study of NASA and Project Mercury

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick D.; Pitts, Donald

    2005-01-01

    This case study provides a review of National Aeronautics and Space Administration s (NASA's) involvement in system safety during research and evolution from air breathing to exo-atmospheric capable flight systems culminating in the successful Project Mercury. Although NASA has been philosophically committed to the principals of system safety, this case study points out that budget and manpower constraints-as well as a variety of internal and external pressures can jeopardize even a well-designed system safety program. This study begins with a review of the evolution and early years of NASA's rise as a project lead agency and ends with the lessons learned from Project Mercury.

  9. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  10. [The analysis on the funding of Natural Science Foundation of China for acupuncture projects from 2005 to 2015].

    PubMed

    Deng, Hongyong; Xu, Ji

    2017-05-12

    The funding of Natural Science Foundation of China (NSFC) for acupuncture projects from 2005 to 2015 was summarized and analyzed. The results indicated during past 11 years, 711 projects regarding acupuncture were funded by NSFC, with a total of 281 million RMB, accounting for 12.39% in TCM projects. It was concluded the funding for acupuncture projects was increased year by year, but was still relatively weak; in addition, the funding was unbalanced in different areas and organizations, mainly in Beijing, Shanghai, Sichuan, Guangdong, Tianjin, and the continuity and variability both existed in research content and direction.

  11. Implications of Project-Based Funding of Research on Budgeting and Financial Management in Public Universities

    ERIC Educational Resources Information Center

    Raudla, Ringa; Karo, Erkki; Valdmaa, Kaija; Kattel, Rainer

    2015-01-01

    The main goal of the paper is to explore--both theoretically and empirically--the implications of project-based research funding for budgeting and financial management at public universities. The theoretical contribution of the paper is to provide a synthesized discussion of the possible impacts of project-based funding on university financial…

  12. 2005 NASA Seal/Secondary Air System Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2006-01-01

    The 2005 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Propulsion 21 Project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed tests completed for the shuttle main landing gear door seals.

  13. Caltrans : transit funding manual : managing the delivery of transit projects

    DOT National Transportation Integrated Search

    2001-05-01

    This manual attempts to provide a step by step transit funding process. Included in this manual : is an overview of Caltrans Division of Mass Transportation, roles and responsibilities in : assisting local agencies to deliver transit projects. Transi...

  14. NASA Exercise Physiology and Countermeasures Project Overview

    NASA Technical Reports Server (NTRS)

    Loerch, Linda; Ploutz-Snyder, Lori

    2009-01-01

    Efficient exercise countermeasures are necessary to offset or minimize spaceflight-induced deconditioning and to maximize crew performance of mission tasks. These countermeasure protocols should use the fewest crew and vehicle resources. NASA s Exercise Physiology and Countermeasures (ExPC) Project works to identify, collect, interpret, and summarize evidence that results in effective exercise countermeasure protocols which protect crew health and performance during International Space Station (ISS) and future exploration-class missions. The ExPC and NASA s Human Research Program are sponsoring multiple studies to evaluate and improve the efficacy of spaceflight exercise countermeasures. First, the Project will measure maximal aerobic capacity (VO2max) during cycle ergometry before, during, and after ISS missions. Second, the Project is sponsoring an evaluation of a new prototype harness that offers improved comfort and increased loading during treadmill operations. Third, the Functional Tasks Test protocol will map performance of anticipated lunar mission tasks with physiologic systems before and after short and long-duration spaceflight, to target system contributions and the tailoring of exercise protocols to maximize performance. In addition to these studies that are actively enrolling crewmember participants, the ExPC is planning new studies that include an evaluation of a higher-intensity/lower-volume exercise countermeasure protocol aboard the ISS using the Advanced Resistive Exercise Device and second-generation treadmill, studies that evaluate bone loading during spaceflight exercise, and ground-based studies that focus on fitness for duty standards required to complete lunar mission tasks and for which exercise protocols need to protect. Summaries of these current and future studies and strategies will be provided to international colleagues for knowledge sharing and possible collaboration.

  15. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions.

    NASA Astrophysics Data System (ADS)

    Coughlan, J. C.

    2005-12-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle, human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future NASA missions.

  16. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.

  17. Implementation of the Interdisciplinary Generalist Curriculum Project: considerations of structure, funding, and design.

    PubMed

    Wilson, M; Kahn, N; Wartman, S

    2001-04-01

    Implementation of the Interdisciplinary Generalist Curriculum (IGC) Project involved complex processes that reflect structural, funding, and intervention design considerations. Among structural considerations, the IGC Project benefited from a national structure above the level of the demonstration schools. Governance by committee was highly effective because it harnessed and balanced power. At the national level, governance by committee was enhanced by strong central coordination, and it had a role-modeling effect for governance at the school level. The IGC experience over the seven-year course of the project suggests that it is important to revisit the role of a national advisory committee over time and to revise that role as warranted. Funding considerations, including the importance of funding evaluation for a period of time long enough to measure intended impacts and the length and amount of funding to demonstration schools, are discussed. Prescription of the IGC intervention and the focus on years one and two of medical education are critical design considerations. The authors conclude that the IGC Project used relatively few federal dollars to demonstrate a highly prescribed intervention in a limited number of medical schools toward a clear and limited goal. IGC lessons apply to programs specifically targeting primary care education, but also to other medical school curricular innovations, and perhaps, to a larger framework of multi-site educational interventions.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  19. Electric Propulsion Requirements and Mission Analysis Under NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.

    2007-01-01

    The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.

  20. 78 FR 49509 - Lock+ Hydro Friends Fund XXX, LLC; FFP Project 121, LLC; Notice Announcing Preliminary Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Project No. 13625-003; Project No. 14504-000] Lock+ Hydro Friends Fund XXX, LLC; FFP Project 121, LLC; Notice Announcing Preliminary Permit... and Jefferson County, Ohio. The applications were filed by Lock+ Hydro Friends Fund XXX, LLC for...

  1. 77 FR 9231 - Lock+ Hydro Friends Fund XXVIII; FFP Project 59, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14188-000; 14200-000] Lock+ Hydro Friends Fund XXVIII; FFP Project 59, LLC; Notice Announcing Preliminary Permit Drawing The.... The applications were filed by Lock+ Hydro Friends Fund XXVIII for Project No. 14188-000 and FFP...

  2. Fund for the Improvement of Postsecondary Education Project Descriptions.

    ERIC Educational Resources Information Center

    Fund for the Improvement of Postsecondary Education (ED), Washington, DC.

    Descriptions of 155 programs supported by the Fund for the Improvement of Postsecondary Education are provided. In addition to a brief statement of the scope of each program, the project director, address, and phone number are identified. Topics addressed by the programs include: ensuring adequate math preparation for college work through…

  3. NASA Astrophysics Data System's New Data

    NASA Astrophysics Data System (ADS)

    Eichhorn, G.; Accomazzi, A.; Demleitner, M.; Grant, C. S.; Kurtz, M. J.; Murray, S. S.

    2000-05-01

    The NASA Astrophysics Data System has greatly increased its data holdings. The Physics database now contains almost 900,000 references and the Astronomy database almost 550,000 references. The Instrumentation database has almost 600,000 references. The scanned articles in the ADS Article Service are increasing in number continuously. Almost 1 million pages have been scanned so far. Recently the abstracts books from the Lunar and Planetary Science Conference have been scanned and put on-line. The Monthly Notices of the Royal Astronomical Society are currently being scanned back to Volume 1. This is the last major journal to be completely scanned and on-line. In cooperation with a conservation project of the Harvard libraries, microfilms of historical observatory literature are currently being scanned. This will provide access to an important part of the historical literature. The ADS can be accessed at: http://adswww.harvard.edu This project is funded by NASA under grant NCC5-189.

  4. Reality check in the project management of EU funding

    NASA Astrophysics Data System (ADS)

    Guo, Chenbo

    2015-04-01

    A talk addressing workload, focuses, impacts and outcomes of project management (hereinafter PM) Two FP7 projects serve as objects for investigation. In the Earth Science sector NACLIM is a large scale collaborative project with 18 partners from North and West Europe. NACLIM aims at investigating and quantifying the predictability of the North Atlantic/Arctic sea surface temperature, sea ice variability and change on seasonal to decadal time scales which have a crucial impact on weather and climate in Europe. PRIMO from Political Science is a global PhD program funded by Marie Curie ITN instrument with 11 partners from Europe, Eurasia and BRICS countries focusing on the rise of regional powers and its impact on international politics at large. Although the two projects are granted by different FP7 funding instruments, stem from different cultural backgrounds and have different goals, the inherent processes and the key focus of the PM are quite alike. Only the operational management is at some point distinguished from one another. From the administrative point of view, understanding of both EU requirements and the country-specific regulations is essential; it also helps us identifying the grey area in order to carry out the projects more efficiently. The talk will focus on our observation of the day-to-day PM flows - primarily the project implementation - with few particular cases: transparency issues, e.g. priority settings of non-research stakeholders including the conflict in the human resources field, End-User integration, gender issues rising up during a monitoring visit and ethical aspects in field research. Through a brief comparison of both projects we summarize a range of dos and don'ts, an "acting instead of reacting" line of action, and the conclusion to a systematic overall management instead of exclusively project controlling. In a nutshell , the talk aims at providing the audience a summary of the observation in management methodologies and toolkits

  5. How to Apply for and Secure EU Funding for Collaborative IBD Research Projects

    PubMed Central

    Satsangi, Jack; Kitten, Olivier; Chavez, Marcela; Kalla, Rahul; Prel, Nadege; Meuwis, Marie-Alice; Scott, Stephanie; Bonetti, Illaria; Ventham, Nicholas T.

    2016-01-01

    The European Union offers opportunities for high-level of funding of collaborative European research. Calls are regularly published: after the end of the FP7 funding programme the new round of Horizon 2020 calls started in 2015. Several topics are relevant to inflammatory bowel disease (IBD) challenges, including chronic disease management, biomarker discovery and new treatments developments. The aim of this Viewpoint article is to describe the new Horizon 2020 instrument and the project submission procedures, and to highlight these through the description of tips and tricks, taking advantage of four examples of successful projects in the field of IBD: the SADEL, IBD-BIOM, IBD Character and BIOCYCLE projects. PMID:26744440

  6. SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Berrios, Daniel C.; Carvalho, Robert E.; Hall, David R.; Rich, Stephen J.; Sturken, Ian B.; Swanson, Keith J.; Wolfe, Shawn R.

    2004-01-01

    SemanticOrganizer is a collaborative knowledge management system designed to support distributed NASA projects, including diverse teams of scientists, engineers, and accident investigators. The system provides a customizable, semantically structured information repository that stores work products relevant to multiple projects of differing types. SemanticOrganizer is one of the earliest and largest semantic web applications deployed at NASA to date, and has been used in diverse contexts ranging from the investigation of Space Shuttle Columbia's accident to the search for life on other planets. Although the underlying repository employs a single unified ontology, access control and ontology customization mechanisms make the repository contents appear different for each project team. This paper describes SemanticOrganizer, its customization facilities, and a sampling of its applications. The paper also summarizes some key lessons learned from building and fielding a successful semantic web application across a wide-ranging set of domains with diverse users.

  7. 77 FR 9231 - Lock+ Hydro Friends Fund IV; FFP Project 55, LLC; Notice Announcing Preliminary Permit Drawing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14185-000; 14196-000] Lock+ Hydro Friends Fund IV; FFP Project 55, LLC; Notice Announcing Preliminary Permit Drawing The Commission..., Kentucky. The applications were filed by Lock+ Hydro Friends Fund IV for Project No. 14185-000 and FFP...

  8. 34 CFR 222.192 - What local funds may be considered as available for this project?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 222.192 What local funds may be considered as available for this project? To determine the amount of... 34 Education 1 2010-07-01 2010-07-01 false What local funds may be considered as available for this project? 222.192 Section 222.192 Education Regulations of the Offices of the Department of...

  9. 23 CFR 661.43 - Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Can other sources of funds be used to finance a queued project in advance of receipt of IRRBP funds? 661.43 Section 661.43 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.43 Can other sources of funds be...

  10. 77 FR 13317 - Lock+ Hydro Friends Fund XVIII, Upper Hydroelectric, LLC, FFP Project 95, LLC, Riverbank Hydro No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14261-000, 14268-000, 14277-000, 14281-000] Lock+ Hydro Friends Fund XVIII, Upper Hydroelectric, LLC, FFP Project 95, LLC.... Lock+ Hydro Friends Fund XVIII: Project No. 14261-000. 2. Riverbank Hydro No. 25, LLC: Project No...

  11. NASA newsletters for the Weber Student Shuttle Involvement Project

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Sebesta, P. D.; Ladwig, A. M.; Jackson, J. T.; Knott, W. M., III

    1988-01-01

    Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix.

  12. JSC Director's Discretionary Fund 1992 Annual Report

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle (Compiler)

    1993-01-01

    Annual report of the Johnson Space Center Director's Discretionary Fund documenting effective use of resources. The $1,694,000 funding for FY92 was distributed among 27 projects. The projects are an overall aid to the NASA mission, as well as providing development opportunities for the science and engineering staff with eventual spinoff to commercial uses. Projects described include space-based medical research such as the use of stable isotopes of deuterium and oxygen to measure crew energy use and techniques for noninvasive motion sickness medication. Recycling essentials for space crew support is conducted in the Regenerative Life Support and the Hybrid Regenerative Water Recovery test beds. Two-phase fluid flow simulated under low-gravity conditions, hypervelocity particle impact on open mesh bumpers, and microcalorimetry to measure the long-term hydrazine/material compatibility were investigated. A patent application was made on a shape-memory-alloy release nut. Computer estimate of crew accommodations for advanced concepts was demonstrated. Training techniques were evaluated using multimedia and virtual environment. Upgrades of an electronic still camera provide high resolution images from orbit are presented.

  13. First NASA Aviation Safety Program Weather Accident Prevention Project Annual Review

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2000-01-01

    The goal of this Annual Review was to present NASA plans and accomplishments that will impact the national aviation safety goal. NASA's WxAP Project focuses on developing the following products: (1) Aviation Weather Information (AWIN) technologies (displays, sensors, pilot decision tools, communication links, etc.); (2) Electronic Pilot Reporting (E-PIREPS) technologies; (3) Enhanced weather products with associated hazard metrics; (4) Forward looking turbulence sensor technologies (radar, lidar, etc.); (5) Turbulence mitigation control system designs; Attendees included personnel from various NASA Centers, FAA, National Weather Service, DoD, airlines, aircraft and pilot associations, industry, aircraft manufacturers and academia. Attendees participated in discussion sessions aimed at collecting aviation user community feedback on NASA plans and R&D activities. This CD is a compilation of most of the presentations presented at this Review.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 22: US academic librarians and technical information specialists as information intermediaries: Results of the phase 3 survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. academic librarians and technical information specialists as information intermediaries.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 23: The communications practices of US aerospace engineering faculty and students: Results of the phase 3 survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace engineering faculty and students.

  16. [Analysis and prospect of projects funded in discipline of microbiology (NSFC) from 2006 to 2010].

    PubMed

    Liao, Hai; Wen, Mingzhang; Yang, Haihua

    2011-01-01

    The overview of projects funded by general programs,key programs and national science fund for distinguished young scholars in discipline of microbiology, National Natural Science Foundation of China (NSFC) from 2006 to 2010 was recommended. Some important characters such as the distribution of projects in different subjects, organizations, regions and research fields were analyzed. Some important research fields which should be supported in "The Twelfth Five-Year Plan" was also put forward. The goal of the paper is to provide information of funding in NSFC for researchers in the field of microbiology.

  17. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    Four reindeer walk past the BARREL payload on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Samar Mathur NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A member of the BARREL team prepares a payload for launch from Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The fourth BARREL balloon of this campaign sits on the launch pad shortly before it launched on Aug. 21, 2016. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The third BARREL balloon floats towards the stratosphere on Aug. 21, 2016. This payload flew for nearly 30 hours, measuring X-rays in Earth’s atmosphere. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL payload sits on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL team member recovers the second payload after it landed. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Montana State University/Arlo Johnson NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    Prior to launch, the BARREL team works on the payload from the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Dartmouth/Robyn Millan NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The BARREL team prepares to launch their third payload from Esrange Space Center near Kiruna, Sweden, on Aug. 21, 2016. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL team member watches as one of their payloads launches from Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL balloon inflates on the launch pad at Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The first BARREL balloon is inflated just before its launch on Aug. 13, 2016, from Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The BARREL team inflates the balloon to launch their fifth scientific payload from Esrange Space Center near Kiruna, Sweden, on Aug. 24, 2016. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL payload sits on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Dartmouth/Robyn Millan NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. 45 CFR 2552.113 - What financial obligation does the Corporation incur for non-Corporation funded projects?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROGRAM Non-Corporation Funded Foster Grandparent Program Projects § 2552.113 What financial obligation... 45 Public Welfare 4 2010-10-01 2010-10-01 false What financial obligation does the Corporation incur for non-Corporation funded projects? 2552.113 Section 2552.113 Public Welfare Regulations Relating...

  11. NASA atmospheric effects of aviation projects: Status and plans

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Thompson, Anne M.; Stolarski, Richard S.

    1994-01-01

    NASA's Atmospheric Effects of Aviation Project is developing a scientific basis for assessment of the atmospheric impact of subsonic and supersonic aviation. Issues addressed include predicted ozone changes and climatic impact, and related uncertainties. A primary goal is to assist assessments of United Nations scientific organizations and, hence, consideration of emission standards by the International Civil Aviation Organization. Project focus is on simulation of atmospheric processes by computer models, but studies of aircraft operations, laboratory studies, and remote and in situ observations of chemical, dynamic, and radiative processes are also included.

  12. NASA Engineering and Safety Center (NESC) Enhanced Melamine (ML) Foam Acoustic Test (NEMFAT)

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Hughes, William O.; McNelis, Mark E.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) funded a proposal to achieve initial basic acoustic characterization of ML (melamine) foam, which could serve as a starting point for a future, more comprehensive acoustic test program for ML foam. A project plan was developed and implemented to obtain acoustic test data for both normal and enhanced ML foam. This project became known as the NESC Enhanced Melamine Foam Acoustic Test (NEMFAT). This document contains the outcome of the NEMFAT project.

  13. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  14. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Science Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.

  15. Issues in NASA Program and Project Management:: A Collection of Papers on Aerospace Management Issues (Supplement 11)

    NASA Technical Reports Server (NTRS)

    Hoffman, Edward J. (Editor); Lawbaugh, William M. (Editor)

    1996-01-01

    Papers address the following topics: NASA's project management development process; Better decisions through structural analysis; NASA's commercial technology management system; Today's management techniques and tools; Program control in NASA - needs and opportunities; and Resources for NASA managers.

  16. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    NASA Astrophysics Data System (ADS)

    Uihlein, Andreas; Salto Saura, Lourdes; Sigfusson, Bergur; Lichtenvort, Kerstin; Gagliardi, Filippo

    2015-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded to 39 projects through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around 70 mEUR funding to 3 geothermal projects in Hungary, Croatia and France (see Annex). The Hungarian geothermal project awarded funding under the first call will enter into operation at the end of 2015 and the rest are expected to start in 2016 (HR) and in 2018 (FR), respectively. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of

  17. Integrated Risk Management Within NASA Programs/Projects

    NASA Technical Reports Server (NTRS)

    Connley, Warren; Rad, Adrian; Botzum, Stephen

    2004-01-01

    As NASA Project Risk Management activities continue to evolve, the need to successfully integrate risk management processes across the life cycle, between functional disciplines, stakeholders, various management policies, and within cost, schedule and performance requirements/constraints become more evident and important. Today's programs and projects are complex undertakings that include a myriad of processes, tools, techniques, management arrangements and other variables all of which must function together in order to achieve mission success. The perception and impact of risk may vary significantly among stakeholders and may influence decisions that may have unintended consequences on the project during a future phase of the life cycle. In these cases, risks may be unintentionally and/or arbitrarily transferred to others without the benefit of a comprehensive systemic risk assessment. Integrating risk across people, processes, and project requirements/constraints serves to enhance decisions, strengthen communication pathways, and reinforce the ability of the project team to identify and manage risks across the broad spectrum of project management responsibilities. The ability to identify risks in all areas of project management increases the likelihood a project will identify significant issues before they become problems and allows projects to make effective and efficient use of shrinking resources. By getting a total team integrated risk effort, applying a disciplined and rigorous process, along with understanding project requirements/constraints provides the opportunity for more effective risk management. Applying an integrated approach to risk management makes it possible to do a better job at balancing safety, cost, schedule, operational performance and other elements of risk. This paper will examine how people, processes, and project requirements/constraints can be integrated across the project lifecycle for better risk management and ultimately improve the

  18. NASA's Morphing Project Research Summaries in Fiscal Year 2002

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Waszak, Martin R.

    2005-01-01

    The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.

  19. VLBI2010 in NASA's Space Geodesy Project

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2012-01-01

    In the summer of 20 11 NASA approved the proposal for the Space Geodesy Project (SGP). A major element is developing at the Goddard Geophysical and Astronomical Observatory a prototype of the next generation of integrated stations with co-located VLBI, SLR, GNSS and DORIS instruments as well as a system for monitoring the vector ties. VLBI2010 is a key component of the integrated station. The objectives ofSGP, the role of VLBI20 lOin the context of SGP, near term plans and possible future scenarios will be discussed.

  20. 45 CFR 2551.113 - What financial obligation does the Corporation incur for non-Corporation funded projects?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Non-Corporation Funded SCP Projects § 2551.113 What financial obligation does the Corporation incur... to a sponsor of a non-Corporation funded project, does not create a financial obligation on the part... 45 Public Welfare 4 2010-10-01 2010-10-01 false What financial obligation does the Corporation...

  1. 45 CFR 2553.83 - What financial obligation does the Corporation incur for non-Corporation funded projects?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VOLUNTEER PROGRAM Non-Corporation Funded Projects § 2553.83 What financial obligation does the Corporation... NGA to a sponsor of a non-Corporation funded project does not create a financial obligation on the... 45 Public Welfare 4 2010-10-01 2010-10-01 false What financial obligation does the Corporation...

  2. 78 FR 34092 - Lock+ Hydro Friends Fund XXX, LLC; FFP Project 121, LLC; Notice of Competing Preliminary Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    .... 14504-000] Lock+ Hydro Friends Fund XXX, LLC; FFP Project 121, LLC; Notice of Competing Preliminary... Applications Lock+ Hydro Friends Fund XXX, LLC and FFP Project 121, LLC filed preliminary permit applications... regular business day. See id. at 385.2001(a)(2). Lock+ Hydro Friends Fund XXX, LLC's application is for a...

  3. Analysis of Construction Quality Assurance Procedures on Federally Funded Local Public Agency Projects

    DOT National Transportation Integrated Search

    2016-07-01

    Approximately 20 percent of the Federal-aid highway program is invested in local public agency (LPA) infrastructure projects, which is a significant portion of total Federal funds allocated to highway construction projects in the United States. In re...

  4. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  5. NADA/DOD Aerospace Knowledge Diffusion Research Project. Report number 19: The US government technical report and the transfer of federally funded aerospace R/D: An analysis of five studies

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the 'NASA/DoD Aerospace Knowledge Diffusion Research Project'. In this report, we summarize the literature on technical reprts and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from five studies of our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report and close with a brief overview of on-going research into the use of the U.S. government technical report as a rhetorical device for transferring federally funded aerospace R&D.

  6. The JOVE initiative - A NASA/university Joint Venture in space science

    NASA Technical Reports Server (NTRS)

    Six, F.; Chappell, R.

    1990-01-01

    The JOVE (NASA/university Joint Venture in space science) initiative is a point program between NASA and institutions of higher education whose aim is to bring about an extensive merger between these two communities. The project is discussed with emphasis on suggested contributions of partnership members, JOVE process timeline, and project schedules and costs. It is suggested that NASA provide a summer resident research associateship (one ten week stipend); scientific on-line data from space missions; an electronic network and work station, providing a link to the data base and to other scientists; matching student support, both undergraduate and graduate; matching summer salary for up to three faculty participants; and travel funds. The universities will be asked to provide research time for faculty participants, matching student support, matching summer salary for faculty participants, an instructional unit in space science, and an outreach program to pre-college students.

  7. 23 CFR 140.610 - Conversion from bond issue to funded project status.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Conversion from bond issue to funded project status. 140.610 Section 140.610 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PAYMENT... construction of bond issue projects authorized by title 23 U.S.C., section 122, (1) have been retired on...

  8. 23 CFR 140.610 - Conversion from bond issue to funded project status.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Conversion from bond issue to funded project status. 140.610 Section 140.610 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PAYMENT... construction of bond issue projects authorized by title 23 U.S.C., section 122, (1) have been retired on...

  9. 23 CFR 140.610 - Conversion from bond issue to funded project status.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Conversion from bond issue to funded project status. 140.610 Section 140.610 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PAYMENT... construction of bond issue projects authorized by title 23 U.S.C., section 122, (1) have been retired on...

  10. 23 CFR 140.610 - Conversion from bond issue to funded project status.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Conversion from bond issue to funded project status. 140.610 Section 140.610 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PAYMENT... construction of bond issue projects authorized by title 23 U.S.C., section 122, (1) have been retired on...

  11. Profiles of Career Education Projects. Second Year's Program. Fiscal Year 1976 Funding.

    ERIC Educational Resources Information Center

    Pacific Consultants, Washington, DC.

    Short summaries are given of 71 exemplary and demonstration career education projects funded by the Office of Career Education in 1976. The profiles are grouped into five categories and arranged alphabetically by State within each category: (1) Incremental Quality Improvement in K-12 Career Education Programs (32 projects); (2) Effective Methods…

  12. 77 FR 10740 - Lock+ Hydro Friends Fund VIII, FFP Project 92, LLC, Riverbank Hydro No. 24, LLC; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14262-000, 14276-000, 14280-000] Lock+ Hydro Friends Fund VIII, FFP Project 92, LLC, Riverbank Hydro No. 24, LLC; Notice... Counties, Kentucky. The applications were filed by Lock+ Hydro Friends Fund VIII for Project No. 14262-000...

  13. Implementation of Risk Management in NASA's CEV Project- Ensuring Mission Success

    NASA Astrophysics Data System (ADS)

    Perera, Jeevan; Holsomback, Jerry D.

    2005-12-01

    Most project managers know that Risk Management (RM) is essential to good project management. At NASA, standards and procedures to manage risk through a tiered approach have been developed - from the global agency-wide requirements down to a program or project's implementation. The basic methodology for NASA's risk management strategy includes processes to identify, analyze, plan, track, control, communicate and document risks. The identification, characterization, mitigation plan, and mitigation responsibilities associated with specific risks are documented to help communicate, manage, and effectuate appropriate closure. This approach helps to ensure more consistent documentation and assessment and provides a means of archiving lessons learned for future identification or mitigation activities.A new risk database and management tool was developed by NASA in 2002 and since has been used successfully to communicate, document and manage a number of diverse risks for the International Space Station, Space Shuttle, and several other NASA projects and programs including at the Johnson Space Center. Organizations use this database application to effectively manage and track each risk and gain insight into impacts from other organization's viewpoint to develop integrated solutions. Schedule, cost, technical and safety issues are tracked in detail through this system.Risks are tagged within the system to ensure proper review, coordination and management at the necessary management level. The database is intended as a day-to- day tool for organizations to manage their risks and elevate those issues that need coordination from above. Each risk is assigned to a managing organization and a specific risk owner who generates mitigation plans as appropriate. In essence, the risk owner is responsible for shepherding the risk through closure. The individual that identifies a new risk does not necessarily get assigned as the risk owner. Whoever is in the best position to effectuate

  14. NASA Astrophysics Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Strategic Technology Development Program

    NASA Astrophysics Data System (ADS)

    Pham, Thai; Seery, Bernard D.

    2015-01-01

    The COR and PCOS Program Offices (PO) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions.The PO is guided by the National Research Council's 'New Worlds, New Horizons in Astronomy and Astrophysics' Decadal Survey report, and NASA's Astrophysics Implementation Plan. Strategic goals include dark energy; gravitational waves; X-ray observatories, e.g., US participation in ATHENA; Inflation probe; and a large UV/Visible telescope.To date, 51 COR and 65 PCOS SAT proposals have been received, of which 11 COR and 18 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2 that allowed measurement of B-mode polarization in the CMB signal, a possible signature of Inflation; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects. These include five newly selected projects, kicking off in FY 2015.For more information, visit the COR Program website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  15. NASA tire/runway friction projects

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  16. 2006 NASA Seal/Secondary Air System Workshop; Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce, M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert (Editor)

    2007-01-01

    The 2006 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of NASA s new fundamental aeronautics technology project; (iii) Overview of NASA Glenn Research Center s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakages as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed seal technologies employed by the Apollo command module that serve as an excellent basis for seals for NASA s new Crew Exploration Vehicle (CEV).

  17. 77 FR 13316 - FFP Project 91, LLC, Riverbank Hydro No. 23, LLC, Lock+ Hydro Friends Fund III; Notice Announcing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14275-000, 14279-000, 14282-000] FFP Project 91, LLC, Riverbank Hydro No. 23, LLC, Lock+ Hydro Friends Fund III; Notice.... 2. Riverbank Hydro No. 23, LLC: Project No. 14279-000. 3. Lock+ Hydro Friends Fund III: Project No...

  18. National Directory of NASA Space Grant Contacts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Congress enacted the National Space Grant College and Fellowship Program (also known as Space Grant). NASA's Space Grant Program funds education, research, and public service programs in all 50 States, the District of Columbia, and the Commonwealth of Puerto Rico through 52 university-based Space Grant consortia. These consortia form a network of colleges and universities, industry partners, State and local Government agencies, other Federal agencies, museum and science centers, and nonprofit organizations, all with interests in aerospace education, research, and training. Space Grant programs emphasize the diversity of human resources, the participation of students in research, and the communication of the benefits of science and technology to the general public. Each year approximately one-third of the NASA Space Grant funds support scholarships and fellowships for United States students at the undergraduate and graduate levels. Typically, at least 20 percent of these awards go to students from underrepresented groups, and at least 40 percent go to women. Most Space Grant student awards include a mentored research experience with university faculty or NASA scientists or engineers. Space Grant consortia also fund curriculum enhancement and faculty development programs. Consortia members administer precollege and public service education programs in their States. The 52 consortia typically leverage NASA funds with matching contributions from State, local, and other university sources, which more than double the NASA funding. For more information, consult the Space Grant Web site at http://education.nasa.gov/spacegrant/

  19. 2011-2012 Dryden Center Innovation Fund End of the Year Report: Altitude-Compensating Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.

    2012-01-01

    This report highlights one of the many successful projects at the NASA Dryden Flight Research Center that was approved for FY12 funding under the Center Innovation Fund. This project was focused on advancing the technology readiness level of one specific type of altitude-compensating nozzle: the dual-bell rocket nozzle. When considering a rocket's performance over its entire integrated trajectory, the dual-bell nozzle has been predicted to achieve a higher total impulse over the conventional bell nozzle, which is expected to result in a greater capability of payload mass to low-Earth orbit. Although the dual-bell rocket nozzle has been thoroughly studied for several decades, this nozzle has still not been adequately tested in a relevant flight-like environment. This report provides highlights and top-level details on the FY12 feasibility effort to advance this promising technology through flight test, a collaborative effort which leverages NASA Marshall's dual-bell nozzle research and development with Dryden's expertise in propulsion-focused flight testing. To accomplish this goal, the NASA F-15B is proposed as the testbed for the initial flight-test campaign to advance this greatly needed capability.

  20. The NASA/IPAC Teacher Archive Research Program (NITARP) at Pierce College

    NASA Astrophysics Data System (ADS)

    Mallory, Carolyn R.; Feig, M.; Mahmud, N.; Silic, T.; Rebull, L.; Hoette, V.; Johnson, C.; McCarron, K.

    2011-01-01

    Our team from Pierce Community College, Woodland Hills, CA, participated in the NASA/IPAC Teacher Archive Research Program (NITARP) this past year (2010). (NITARP is described in another poster, Rebull et al.) Our team worked with archival Spitzer, 2MASS, and optical data to look for young stars in CG4, part of the Gum Nebula; our scientific results are described in a companion poster, Johnson et al. In this poster, we describe more about what we learned and how we incorporated our NITARP experiences into the Pierce College environment. Students developed critical thinking skills and an ability to organize their data analysis and develop a mental "big picture" of what is going on in the CG4 region. The NITARP program is one of several "Active Learning" programs going on at Pierce, and the other programs are briefly summarized in this poster as well. This program was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.

  1. Teaching Inquiry using NASA Earth-System Science: Lessons Learned for Blended, Scaffolded Professional Development

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; TeBockhorst, D.

    2013-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a NASA EPOESS funded program exploring blended professional development for pre- and in-service educators to learn how to conduct meaningful inquiry lessons and projects in the K-12 classroom. This project combines trainings in GLOBE observational protocols and training in the use of NASA Earth Science mission data in a backward-faded scaffolding approach to teaching and learning about scientific inquiry. It also features a unique partnership with the National Science Teachers Association Learning Center to promote cohort building and blended professional development with access to NSTA's collection of resources. In this presentation, we will discuss lessons learned in year one and two of this program and how we plan to further develop this program over the next two years.

  2. Assessment of contributions to patient safety knowledge by the Agency for Healthcare Research and Quality-funded patient safety projects.

    PubMed

    Sorbero, Melony E S; Ricci, Karen A; Lovejoy, Susan; Haviland, Amelia M; Smith, Linda; Bradley, Lily A; Hiatt, Liisa; Farley, Donna O

    2009-04-01

    To characterize the activities of projects funded in Agency for Healthcare Research and Quality (AHRQ)'s patient safety portfolio and assess their aggregate potential to contribute to knowledge development. Information abstracted from proposals for projects funded in AHRQ's patient safety portfolio, information on safety practices from the AHRQ Evidence Report on Patient Safety Practices, and products produced by the projects. This represented one part of the process evaluation conducted as part of a longitudinal evaluation based on the Context–Input–Process–Product model. The 234 projects funded through AHRQ's patient safety portfolio examined a wide variety of patient safety issues and extended their work beyond the hospital setting to less studied parts of the health care system. Many of the projects implemented and tested practices for which the patient safety evidence report identified a need for additional evidence. The funded projects also generated a substantial body of new patient safety knowledge through a growing number of journal articles and other products. The projects funded in AHRQ's patient safety portfolio have the potential to make substantial contributions to the knowledge base on patient safety. The full value of this new knowledge remains to be confirmed through the synthesis of results

  3. NASA/Max Planck Institute Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

    1973-01-01

    NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

  4. 23 CFR 661.23 - How will a bridge project be programmed for funding once eligibility has been determined?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false How will a bridge project be programmed for funding once... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.23 How will a bridge project be programmed for funding once eligibility has been determined? (a) All projects will be...

  5. 23 CFR 661.23 - How will a bridge project be programmed for funding once eligibility has been determined?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false How will a bridge project be programmed for funding once... TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.23 How will a bridge project be programmed for funding once eligibility has been determined? (a) All projects will be...

  6. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; NASA Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National Aeronautics and Space... Environmental Impact Statement (EIS) for the NASA GRC Plum Brook Station Wind Farm Project located near Sandusky... obtain public comments on construction and operation of the wind farm. The purpose of constructing and...

  7. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  8. Active Aging and Elderly's Quality of Life: Comparing the Impact on Literature of Projects Funded by the European Union and USA.

    PubMed

    Kirilov, I; Atzeni, M; Perra, A; Moro, D; Carta, M G

    2018-01-01

    The objective of this research is to verify whether European projects on Active Aging (AA) and Elderly Quality of Life (Qol) funded by the Seventh Framework Programme (FP7) produce an impact on literature similar to projects funded by the National Health Institute (NHI) of the United States on international literature using well-known bibliometric indicators. This effort may be useful in developing standardized and replicable procedures. Fifteen randomly selected projects on AA and Elderly Qol concluded in August 2017 and funded by FP7 were compared to similar projects funded by the US NHI with reference to papers published (Scopus and Scholar), papers published in Q1 journals, and the number of citations of the papers linked to the projects. In all the indicators considered, the European projects showed no difference with the US NHI projects. The EU-funded AA and Qol Elderly projects have an impact on scientific literature comparable to projects funded in the United States by the NHI Agency.Our results are consistent with the data on general medical research, which indicates that, European research remains at a high level of competitiveness.In this experimental study, our methodology appeared to be convincing and reliable and it could be applied to the extent of the impact of more extensive research areas.Our research did not evaluate the relationship between funding required by research and scientific productivity.

  9. Fairfield Plume Measurement and Analysis on the NASA-300M and NASA-300MS

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    NASA is developing a 10- to 15-kW Hall thruster system to support future NASA missions. This activity is funded under the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project. As a part of the development process, the NASA-300M, a 20-kW Hall thruster, was modified to incorporate the magnetic shielding concept and named the NASA-300MS. This activity was undertaken to assess the viability of using the magnetic shielding concept on a high-power Hall thruster to greatly reduce discharge channel erosion. This paper reports on the study to characterize the far-field plumes of the NASA-300M and NASA-300MS. Diagnostics deployed included a polarlyswept Faraday probe, a Wien filter (ExB probe), a retarding potential analyzer, and a Langmuir probe. During the study, a new, more accurate, integration method for analyzing Wien filter probe data was implemented and effect of secondary electron emission on the Faraday probe data was treated. Comparison of the diagnostic results from the two thrusters showed that the magnetically shielded version performed with 2 percent higher voltage utilization efficiency, 2 percent lower plume divergence efficiency, and 2 percent lower mass utilization efficiency compared to the baseline version. The net change in efficiency is within the aggregate measurement uncertainty so the overall performance is roughly equal for the two versions of the thruster. Anode efficiency calculated from thrust stand measurement corroborates this finding.

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  12. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report number 21: US aerospace industry librarians and technical information specialists as information intermediaries: Results of the phase 2 survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace industry librarians and technical information specialists as information intermediaries.

  13. 14 CFR 1274.917 - Additional funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Additional funds. 1274.917 Section 1274.917... FIRMS Other Provisions and Special Conditions § 1274.917 Additional funds. Additional Funds July 2002... under the terms of this cooperative agreement. NASA is under no obligation to provide additional funds...

  14. 14 CFR 1274.917 - Additional funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Additional funds. 1274.917 Section 1274.917... FIRMS Other Provisions and Special Conditions § 1274.917 Additional funds. Additional Funds July 2002... under the terms of this cooperative agreement. NASA is under no obligation to provide additional funds...

  15. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  16. Continuing Evaluation of S'COOL, an Educational Outreach Project Focused on NASA's CERES Program

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Costulis, P. K.; Young, D. F.; Detweiler, P. T.; Sepulveda, R.; Stoddard, D. B.

    2002-12-01

    The Students' Cloud Observations On-Line (S'COOL) project began in early 1997 with 3 participating teachers acting as test sites. In the nearly 6 years since then, S'COOL has grown by leaps and bounds. Currently over 1250 sites in 61 countries are registered to participate. On the face of it, this seems like a huge success. However, to ensure that this effort continues to be useful to educators, we continue to use a variety of evaluation methods. S'COOL is a modest outreach effort associated with the Clouds and the Earth's Radiant Energy System (CERES) instrument of NASA's Earth Observing System. For most of its existence S'COOL has been run on the part-time efforts of a couple of CERES scientists, one or two web and database specialists, and a teacher-in-residence. Total funding for the project has never exceeded \\$300,000 per year, including everyone's time. Aside from the growth in registered participants, the number of cloud observations is also tracked. 6,500 were submitted in the past year, averaging about 20 per actively participating class, for a total of over 15,000 observations to date. S'COOL participation has always been at the discretion of the teacher; we do not require a set number of observations. Due to various difficulties with CERES data processing, only about 1,000 satellite matches to the observations are currently in the S'COOL database. However, examination of these matches has already provided some useful information about the problem of cloud detection from space. Less objective information is provided by extensive surveys of teachers attending our summer teacher workshops (run for 4 years and reaching 78 teachers so far), the on-line EDCATS survey run by NASA HQ which we ask our teachers to fill out annually, and day-to-day interaction with teachers - whether participants, conference attendees, or other interested educators. A new survey instrument is being designed (the last participant survey was in Fall 2000) and will be administered

  17. 25 CFR 170.142 - How can tribes obtain funds to perform highway safety projects?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false How can tribes obtain funds to perform highway safety... WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions § 170.142 How can tribes obtain funds to perform highway safety projects? There are two...

  18. 25 CFR 170.142 - How can tribes obtain funds to perform highway safety projects?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false How can tribes obtain funds to perform highway safety... WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions § 170.142 How can tribes obtain funds to perform highway safety projects? There are two...

  19. 25 CFR 170.142 - How can tribes obtain funds to perform highway safety projects?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true How can tribes obtain funds to perform highway safety... WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions § 170.142 How can tribes obtain funds to perform highway safety projects? There are two...

  20. 25 CFR 170.142 - How can tribes obtain funds to perform highway safety projects?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How can tribes obtain funds to perform highway safety... WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions § 170.142 How can tribes obtain funds to perform highway safety projects? There are two...

  1. 25 CFR 170.142 - How can tribes obtain funds to perform highway safety projects?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How can tribes obtain funds to perform highway safety... WATER INDIAN RESERVATION ROADS PROGRAM Indian Reservation Roads Program Policy and Eligibility Highway Safety Functions § 170.142 How can tribes obtain funds to perform highway safety projects? There are two...

  2. NASA Hybrid Reflectometer Project

    NASA Technical Reports Server (NTRS)

    Lynch, Dana; Mancini, Ron (Technical Monitor)

    2002-01-01

    Time-domain and frequency-domain reflectometry have been used for about forty years to locate opens and shorts in cables. Interpretation of reflectometry data is as much art as science. Is there information in the data that is being missed? Can the reflectometers be improved to allow us to detect and locate defects in cables that are not outright shorts or opens? The Hybrid Reflectometer Project was begun this year at NASA Ames Research Center, initially to model wire physics, simulating time-domain reflectometry (TDR) signals in those models and validating the models against actual TDR data taken on testbed cables. Theoretical models of reflectometry in wires will give us an understanding of the merits and limits of these techniques and will guide the application of a proposed hybrid reflectometer with the aim of enhancing reflectometer sensitivity to the point that wire defects can be detected. We will point out efforts by some other researchers to apply wire physics models to the problem of defect detection in wires and we will describe our own initial efforts to create wire physics models and report on testbed validation of the TDR simulations.

  3. Assessment of Contributions to Patient Safety Knowledge by the Agency for Healthcare Research and Quality-Funded Patient Safety Projects

    PubMed Central

    Sorbero, Melony E S; Ricci, Karen A; Lovejoy, Susan; Haviland, Amelia M; Smith, Linda; Bradley, Lily A; Hiatt, Liisa; Farley, Donna O

    2009-01-01

    Objective To characterize the activities of projects funded in Agency for Healthcare Research and Quality (AHRQ)' patient safety portfolio and assess their aggregate potential to contribute to knowledge development. Data Sources Information abstracted from proposals for projects funded in AHRQ' patient safety portfolio, information on safety practices from the AHRQ Evidence Report on Patient Safety Practices, and products produced by the projects. Study Design This represented one part of the process evaluation conducted as part of a longitudinal evaluation based on the Context–Input–Process–Product model. Principal Findings The 234 projects funded through AHRQ' patient safety portfolio examined a wide variety of patient safety issues and extended their work beyond the hospital setting to less studied parts of the health care system. Many of the projects implemented and tested practices for which the patient safety evidence report identified a need for additional evidence. The funded projects also generated a substantial body of new patient safety knowledge through a growing number of journal articles and other products. Conclusions The projects funded in AHRQ' patient safety portfolio have the potential to make substantial contributions to the knowledge base on patient safety. The full value of this new knowledge remains to be confirmed through the synthesis of results. PMID:21456108

  4. Supersonic Retropropulsion Technology Development in NASA's Entry, Descent, and Landing Project

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Berry, Scott A.; Rhode, Matthew N.; Kelb, Bil; Korzun, Ashley; Dyakonov, Artem A.; Zarchi, Kerry A.; Schauerhamer, Daniel G.; Post, Ethan A.

    2012-01-01

    NASA's Entry, Descent, and Landing (EDL) space technology roadmap calls for new technologies to achieve human exploration of Mars in the coming decades [1]. One of those technologies, termed Supersonic Retropropulsion (SRP), involves initiation of propulsive deceleration at supersonic Mach numbers. The potential benefits afforded by SRP to improve payload mass and landing precision make the technology attractive for future EDL missions. NASA's EDL project spent two years advancing the technological maturity of SRP for Mars exploration [2-15]. This paper summarizes the technical accomplishments from the project and highlights challenges and recommendations for future SRP technology development programs. These challenges include: developing sufficiently large SRP engines for use on human-scale entry systems; testing and computationally modelling complex and unsteady SRP fluid dynamics; understanding the effects of SRP on entry vehicle stability and controllability; and demonstrating sub-scale SRP entry systems in Earth's atmosphere.

  5. 23 CFR 646.208 - Funding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Highway Projects § 646.208 Funding. (a) Railroad/highway crossing projects may be funded through the Federal-aid funding source appropriate for the involved project. (b) Projects for the elimination of... 23 Highways 1 2010-04-01 2010-04-01 false Funding. 646.208 Section 646.208 Highways FEDERAL...

  6. 23 CFR 646.208 - Funding.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Funding. 646.208 Section 646.208 Highways FEDERAL...-Highway Projects § 646.208 Funding. (a) Railroad/highway crossing projects may be funded through the Federal-aid funding source appropriate for the involved project. (b) Projects for the elimination of...

  7. 23 CFR 646.208 - Funding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Funding. 646.208 Section 646.208 Highways FEDERAL...-Highway Projects § 646.208 Funding. (a) Railroad/highway crossing projects may be funded through the Federal-aid funding source appropriate for the involved project. (b) Projects for the elimination of...

  8. 23 CFR 646.208 - Funding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Funding. 646.208 Section 646.208 Highways FEDERAL...-Highway Projects § 646.208 Funding. (a) Railroad/highway crossing projects may be funded through the Federal-aid funding source appropriate for the involved project. (b) Projects for the elimination of...

  9. 23 CFR 646.208 - Funding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Funding. 646.208 Section 646.208 Highways FEDERAL...-Highway Projects § 646.208 Funding. (a) Railroad/highway crossing projects may be funded through the Federal-aid funding source appropriate for the involved project. (b) Projects for the elimination of...

  10. NASA Computational Case Study SAR Data Processing: Ground-Range Projection

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Rincon, Rafael

    2013-01-01

    Radar technology is used extensively by NASA for remote sensing of the Earth and other Planetary bodies. In this case study, we learn about different computational concepts for processing radar data. In particular, we learn how to correct a slanted radar image by projecting it on the surface that was sensed by a radar instrument.

  11. Responsibilities of the active participation of geoscientists in public funded projects

    NASA Astrophysics Data System (ADS)

    Correia, Victor; Fernandez, Isabel

    2016-04-01

    The European Federation of Geologists (EFG) is based in 24 European countries and represents over 50,000 geoscientists in Europe, working in organisations dealing with many of the critical societal challenges that came with fast population growing: soils fertility; fresh water; energy; and raw materials supply. This calls for the concerted contribution of networks of geoscientists to frame and answer the global challenges we are facing. In Europe, the Research and Innovation funding program Horizon 2020 provided a unique opportunity for EFG to play an active role in this context, and this justifies the direct involvement of EFG in several funded projects, ranging from international cooperation on raw materials supply to groundwater research or combined heat, power and metal extraction from ultra-deep ore bodies. But an active participation of a not for profit organization of geoscientists in such public funded projects brings responsibilities and reputational risks. The authors will describe how EFG is taking these responsibilities and facing the correspondent risks, through the involvement of certified professionals. The authors will highlight why EFG is keen in promoting the EurGeol professional title, ensuring title holders are skilled and competent to deliver high quality services within the practice of geology, framed by a Code of Ethics and a commitment towards continuing professional development.

  12. 76 FR 74779 - SV Hydro LLC; Coffeeville LLC; FFP Project 99 LLC; Lock Hydro Friends Fund XIV; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14298-000; 14299-000; 14301-000; 14302-000] SV Hydro LLC; Coffeeville LLC; FFP Project 99 LLC; Lock Hydro Friends Fund XIV... (Coffeeville), FFP Project 99 LLC (FFP 99), and Lock Hydro Friends Fund XIV (Lock Hydro) filed preliminary...

  13. 76 FR 67176 - Riverbank Hydro No. 13 LLC, Lock Hydro Friends Fund XXXIV, FFP Project 55 LLC; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14168-000, 14187-000 and 14199-000] Riverbank Hydro No. 13 LLC, Lock Hydro Friends Fund XXXIV, FFP Project 55 LLC; Notice of..., Lock Hydro Friends Fund XXXIV (Lock Hydro), and FFP Project 55 LLC (FFP 55) filed preliminary permit...

  14. 76 FR 67168 - Riverbank Hydro No. 19 LLC; Lock Hydro Friends Fund XXXIV; FFP Project 59 LLC; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14176-000, 14188-000, 14200-000] Riverbank Hydro No. 19 LLC; Lock Hydro Friends Fund XXXIV; FFP Project 59 LLC; Notice of..., Lock Hydro Friends Fund XXXIV (Lock Hydro), and FFP Project 59 LLC (FFP 59) filed preliminary permit...

  15. NASA's Quiet Aircraft Technology Project

    NASA Technical Reports Server (NTRS)

    Whitfield, Charlotte E.

    2004-01-01

    NASA's Quiet Aircraft Technology Project is developing physics-based understanding, models and concepts to discover and realize technology that will, when implemented, achieve the goals of a reduction of one-half in perceived community noise (relative to 1997) by 2007 and a further one-half in the far term. Noise sources generated by both the engine and the airframe are considered, and the effects of engine/airframe integration are accounted for through the propulsion airframe aeroacoustics element. Assessments of the contribution of individual source noise reductions to the reduction in community noise are developed to guide the work and the development of new tools for evaluation of unconventional aircraft is underway. Life in the real world is taken into account with the development of more accurate airport noise models and flight guidance methodology, and in addition, technology is being developed that will further reduce interior noise at current weight levels or enable the use of lighter-weight structures at current noise levels.

  16. NASA GRC Technology Development Project for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.

  17. 34 CFR 272.10 - What types of projects may be funded?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., counselors, parents, community members, and other elementary or secondary school personnel to deal... 272.10 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND... Secretary may award funds to DACs for projects offering technical assistance (including training) to school...

  18. 34 CFR 272.10 - What types of projects may be funded?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., counselors, parents, community members, and other elementary or secondary school personnel to deal... 272.10 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND... Secretary may award funds to DACs for projects offering technical assistance (including training) to school...

  19. Developing and Deploying a Partnership Network Knowledge Base for Analysis of the Partners and Components within NASA's Earth Science Community.

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Lewis, D.; O'Hara, C.; Katragadda, S.

    2006-12-01

    The Partnership Network Knowledge Base (PNKB) is being developed to provide connectivity and deliver content for the research information needs of NASA's Applied Science Program and related scientific communities of practice. Data has been collected which will permit users to identify and analyze the current network of interactions between organizations within the community of practice, harvest research results fixed to those interactions, and identify potential collaborative opportunities to further research streams. The PNKB is being developed in parallel with the Research Projects Knowledge Base (RPKB) and will be deployed in a manner that is fully compatible and interoperable with the NASA enterprise architecture (EA). Information needs have been assessed through a survey of potential users, evaluations of existing NASA resource users, and collaboration between Stennis Space Center and The Mississippi Research Consortium (MRC). The PNKB will assemble information on funded research institutions and categorize the research emphasis of each as it relates to NASA's six major science focus areas and 12 national applications. The PNKB will include information about organizations that conduct NASA Earth Science research such as, principal investigators' affiliation, contact information, relationship-type with NASA and other NASA partners, funding arrangements, and formal agreements like memoranda-of-understanding. To further the utility of the PNKB, relational links have been integrated into the RPKB - which will contain data about projects awarded from NASA research solicitations, project investigator information, research publications, NASA data products employed, and model or decision support tools used or developed as well as new data product information. The combined PNKB and RPKB will be developed in a multi-tier architecture that will include a SQL Server relational database backend, middleware, and front end client interfaces for data entry.

  20. NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  1. Status of NASA's commercial cargo and crew transportation initiative

    NASA Astrophysics Data System (ADS)

    Lindenmoyer, Alan; Stone, Dennis

    2010-03-01

    To stimulate the commercial space transportation industry, the National Aeronautics and Space Administration (NASA) is facilitating the demonstration of Commercial Orbital Transportation Services (COTS) to Low Earth Orbit (LEO) by private-sector companies. In 2006, NASA entered into funded agreements with two such companies to share NASA's 500 million investment, Space Exploration Technologies (SpaceX) and Rocketplane Kistler (RpK), each of which proposed to obtain the additional private financing needed to complete its flight demonstrations. In 2007, NASA terminated the agreement with RpK because it failed to meet a series of technical and financial milestones which were necessary to receive the incremental NASA payments. In 2008, NASA conducted another competition for the remaining 170 million of NASA funding and entered into a funded agreement with Orbital Sciences Corporation (OSC). This paper provides an overview of the COTS approach of SpaceX and OSC and the status of their efforts to develop reliable and cost-effective commercial transportation to serve the LEO marketplace.

  2. Opportunities for NASA Aerospace Related Funding and Collaboration

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2005-01-01

    This presentation describes the different opportunities that NASA offers for effective collaboration with Academia and Industry. In particular, the presentation includes a general overview of opportunities such as SBIRs, STTRs, Educational Programs and NASA Research Announcements. A general description of forthcoming competitive opportunities under the Exploration Systems Mission Directorate (ESMD) as well as the Science Mission Directorate (SMD) are also provided.

  3. The MY NASA DATA Project: Preparing Future Earth and Environmental Scientists, and Future Citizens

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Phelps, C. S.; Phipps, M.; Holzer, M.; Daugherty, P.; Poling, E.; Vanderlaan, S.; Oots, P. C.; Moore, S. W.; Diones, D. D.

    2008-12-01

    For the past 5 years, the MY NASA DATA (MND) project at NASA Langley has developed and adapted tools and materials aimed at enabling student access to real NASA Earth science satellite data. These include web visualization tools including Google Earth capabilities, but also GPS and graphing calculator exercises, Excel spreadsheet analyses, and more. The project team, NASA scientists, and over 80 classroom science teachers from around the country, have created over 85 lesson plans and science fair project ideas that demonstrate NASA satellite data use in the classroom. With over 150 Earth science parameters to choose from, the MND Live Access Server enables scientific inquiry on numerous interconnected Earth and environmental science topics about the Earth system. Teachers involved in the project report a number of benefits, including networking with other teachers nationwide who emphasize data collection and analysis in the classroom, as well as learning about other NASA resources and programs for educators. They also indicate that the MND website enhances the inquiry process and facilitates the formation of testable questions by students (a task that is typically difficult for students to do). MND makes science come alive for students because it allows them to develop their own questions using the same data scientists use. MND also provides educators with a rich venue for science practice skills, which are often overlooked in traditional curricula as teachers concentrate on state and national standards. A teacher in a disadvantaged school reports that her students are not exposed to many educational experiences outside the classroom. MND allows inner city students to be a part of NASA directly. They are able to use the same information that scientists are using and this gives them inspiration. In all classrooms, the MND microsets move students out of their local area to explore global data and then zoom back into their homes realizing that they are a part of the

  4. The Sungrazer Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Battams, K.

    2016-12-01

    The NASA-funded Sungrazer Project is one of the oldest and most successful Citizen Science projects, having more than doubled the number of officially designated comets since it became public in 2002. The Sungrazer Project has enabled the discovery of more than 3,100 previously unknown near-Sun and Sungrazing comets in images returned by the joint ESA-NASA Solar and Heliospheric Observatory (SOHO), which was launched in 1995, and the NASA Solar Terrestrial Relations Observatories (STEREO), launched in 2006. The Sungrazer Project offers a centralized web site for amateur astronomers ("comet hunters") to report potential comets in SOHO and STEREO data, which the Project PI then confirms/rejects. It is then the task of the Project PI to perform precise astrometric measurements of all new comets, and supply the resulting data to the Minor Planet Center for official orbit determinations and designation. Almost 100 individuals from all over the world have discovered comets via the Project, with successful participants as young as 13-years old. In this talk I will discuss the history of the project, report the current discovery statistics, and highlight a few of the major discoveries enabled by the Project. I will also discuss the logistic of the program, participation requirements, day-to-day operations, and outreach efforts. Finally I will present an outlook for the project with respect to future space-based heliophysics missions.

  5. Systems Analysis Approach for the NASA Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Kimmel, William M.

    2011-01-01

    This conference paper describes the current systems analysis approach being implemented for the Environmentally Responsible Aviation Project within the Integrated Systems Research Program under the NASA Aeronautics Research Mission Directorate. The scope and purpose of these systems studies are introduced followed by a methodology overview. The approach involves both top-down and bottoms-up components to provide NASA s stakeholders with a rationale for the prioritization and tracking of a portfolio of technologies which enable the future fleet of aircraft to operate with a simultaneous reduction of aviation noise, emissions and fuel-burn impacts to our environment. Examples of key current results and relevant decision support conclusions are presented along with a forecast of the planned analyses to follow.

  6. 76 FR 73612 - Lock Hydro Friends Fund XVIII; Upper Hydroelectric LLC; FFP Project 95 LLC; Riverbank Hydro No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14261-000; 14268-000; 14277-000; 14281-000] Lock Hydro Friends Fund XVIII; Upper Hydroelectric LLC; FFP Project 95 LLC... Friends Fund XVIII (Lock Hydro), Upper Hydroelectric LLC (Upper Hydro), Riverbank Hydro No. 25 LLC...

  7. 77 FR 10740 - Lock+ Hydro Friends Fund XVIII, Upper Hydroelectric, LLC, FFP Project 95, LLC, Riverbank Hydro No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14261-000, 14268-000, 14277-000, 14281-000] Lock+ Hydro Friends Fund XVIII, Upper Hydroelectric, LLC, FFP Project 95, LLC...-Tombigbee Waterway in Lowndes County, Mississippi. The applications were filed by Lock+ Hydro Friends Fund...

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report number 20: The use of selected information products and services by US aerospace engineers and scientists: Results of two surveys

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally, funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from two surveys of our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report and close with a brief overview of on-going research into aerospace knowledge diffusion focusing on the role of the industry-affiliated information intermediary.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 25: The technical communications practices of British aerospace engineers and scientists: Results of the phase 4 RAeS mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of British aerospace engineers and scientists.

  10. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The faint green glow of aurora can be seen above the clouds at Esrange Space Center in this photo from Aug. 23, 2016. Auroras are created by energetic electrons, which rain down from Earth’s magnetic bubble and interact with particles in the upper atmosphere to create glowing lights that stretch across the sky. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling

  11. NASA Overview

    NASA Technical Reports Server (NTRS)

    Sheffner, Edwin J.

    2007-01-01

    The Earth Science Division supports research projects that exploit the observations and measurements acquired by NASA Earth Observing missions and Applied Sciences projects that extend NASA research to the broader user community and address societal needs.

  12. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    NASA Astrophysics Data System (ADS)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300

  13. 2013 NASA Range Safety Annual Report

    NASA Technical Reports Server (NTRS)

    Dumont, Alan G.

    2013-01-01

    Welcome to the 2013 edition of the NASA Range Safety Annual Report. Funded by NASA Headquarters, this report provides an Agency overview for current and potential range users. This report contains articles which cover a variety of subject areas, summaries of various activities performed during the past year, links to past reports, and information on several projects that may have a profound impact on the way business will be conducted in the future. Specific topics discussed in the 2013 NASA Range Safety Annual Report include a program overview and 2013 highlights, Range Safety Training, Independent Assessments, support to Program Operations at all ranges conducting NASA launch/flight operations, a continuing overview of emerging range safety-related technologies, and status reports from all of the NASA Centers that have Range Safety responsibilities. Every effort has been made to include the most current information available. We recommend this report be used only for guidance and that the validity and accuracy of all articles be verified for updates. As is the case each year, we had a wide variety of contributors to this report from across our NASA Centers and the national range safety community at large, and I wish to thank them all. On a sad note, we lost one of our close colleagues, Dr. Jim Simpson, due to his sudden passing in December. His work advancing the envelope of autonomous flight safety systems software/hardware development leaves a lasting impression on our community. Such systems are being flight tested today and may one day be considered routine in the range safety business. The NASA family has lost a pioneer in our field, and he will surely be missed. In conclusion, it has been a very busy and productive year, and I look forward to working with all of you in NASA Centers/Programs/Projects and with the national Range Safety community in making Flight/Space activities as safe as they can be in the upcoming year.

  14. Research Project for Increasing the Pool of Minority Engineers

    NASA Technical Reports Server (NTRS)

    Gott, Susan F. (Technical Monitor); Rogers, Decatur B.

    2003-01-01

    The NASA Glenn Research Center (GRC) funded the 2001-2002 Tennessee State University (TSU) Research Project for increasing the pool of minority engineers. The NASA GRC/TSU Research Project is designed to develop a cadre of SMET professionals who have academic and research expertise in technical areas of interest to NASA, in addition to having some familiarity with the mission of the NASA Glenn Research Center. The goal of increasing minority participation in SMET disciplines was accomplished by: (1) introducing and exposing 96 minority youth to Science, Math, Engineering, and Technology (SMET) careers and to the required high school preparation necessary to make high school graduation, college attendance and engineering careers a reality through the campus based pre-college SMET program: Minority Introduction to Engineering (MITE); (2) by providing financial support through scholarships for four (4) TSU engineering students to NASA; (3) familiarization with the SMET profession and with NASA through summer internships at NASA GRC for two TSU NASA Glenn Research Scholars; and experiences through research internships at NASA GRC.

  15. 77 FR 3784 - Recreational Boating Safety Projects, Programs and Activities Funded Under Provisions of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... 21st Century; Accounting of ACTION: Notice. SUMMARY: In 1999, the Transportation Equity Act for the... detailed accounting of the projects, programs, and activities funded under the national recreational... fiscal year 2011 for each activity is shown below. Specific Accounting of Funds National Recreational...

  16. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  17. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2010-01-01

    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  18. NASA's university program: Active grants and research contracts, fiscal year 1976

    NASA Technical Reports Server (NTRS)

    1976-01-01

    NASA Field Centers and certain Headquarters Program Offices provide funds for those research and development activities in universities which contribute to the mission needs of that particular NASA element. Although NASA has no predetermined amount of money to devote to university activities, the effort funded each year is substantial. This annual report is one means of documenting the NASA-university relationship, frequently denoted, collectively, as NASA's University Program.

  19. Applying Formal Methods to NASA Projects: Transition from Research to Practice

    NASA Technical Reports Server (NTRS)

    Othon, Bill

    2009-01-01

    NASA project managers attempt to manage risk by relying on mature, well-understood process and technology when designing spacecraft. In the case of crewed systems, the margin for error is even tighter and leads to risk aversion. But as we look to future missions to the Moon and Mars, the complexity of the systems will increase as the spacecraft and crew work together with less reliance on Earth-based support. NASA will be forced to look for new ways to do business. Formal methods technologies can help NASA develop complex but cost effective spacecraft in many domains, including requirements and design, software development and inspection, and verification and validation of vehicle subsystems. To realize these gains, the technologies must be matured and field-tested so that they are proven when needed. During this discussion, current activities used to evaluate FM technologies for Orion spacecraft design will be reviewed. Also, suggestions will be made to demonstrate value to current designers, and mature the technology for eventual use in safety-critical NASA missions.

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  1. Review of BPA Funded Sturgeon, Resident Fish and Wildlife Projects for 1990/1991.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration.

    1990-12-01

    The Bonneville Power Administration (BPA) held a public meeting on November 19--21, 1991, for the purpose of review, coordination, and consultation of the BPA-funded projects for sturgeon, resident fish, and wildlife in the Columbia River Basin (Basin). The comments received after the meeting were favorable and the participants agreed that the meeting was stimulating and productive. The information exchanged should lead to better coordination with other projects throughout the Basin. This document list the projects by title, the project leaders and BPA's project officers, and an abstract of each leader's presentation.

  2. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    projects under five functional themes. I) Streamflow and Flood Forecasting 2) Water Supply and Irrigation (includes evapotranspiration) 3) Drought 4) Water Quality 5) Climate and Water Resources. To maximize this activity NASA Water Resources Program works closely with other government agencies (e.g., the National Oceanic and Atmospheric Administration (NOAA); the U.S. Department of Agriculture (USDA); the U.S. Geological Survey (USGS); the Environmental Protection Agency (EPA), USAID, the Air Force Weather Agency (AFWA)), universities, non-profit national and international organizations, and the private sector. The NASA Water Resources program currently is funding 21 active projects under the functional themes (http://wmp.gsfc.nasa.gov & http://science.nasa.gov/earth-science/applied-sciences/).

  3. 24 CFR 232.254 - Withdrawal of project funds, including for repayments of advances from the borrower, operator, or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Withdrawal of project funds, including for repayments of advances from the borrower, operator, or management agent. 232.254 Section 232... FACILITIES Contract Rights and Obligations § 232.254 Withdrawal of project funds, including for repayments of...

  4. 24 CFR 232.254 - Withdrawal of project funds, including for repayments of advances from the borrower, operator, or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Withdrawal of project funds, including for repayments of advances from the borrower, operator, or management agent. 232.254 Section 232... FACILITIES Contract Rights and Obligations § 232.254 Withdrawal of project funds, including for repayments of...

  5. 42 CFR 137.342 - What happens to funds remaining at the conclusion of a cost reimbursement construction project?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false What happens to funds remaining at the conclusion of a cost reimbursement construction project? 137.342 Section 137.342 Public Health PUBLIC HEALTH... remaining at the conclusion of a cost reimbursement construction project? All funds, including contingency...

  6. Enhancement of Mutual Discovery, Search, and Access of Data for Users of NASA and GEOSS-Cataloged Data Systems

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Maidment, D. R.; Rodell, M.; Strub, R. F.; Arctur, D. K.; Ames, D. P.; Vollmer, B.; Seiler, E.

    2014-12-01

    An ongoing NASA-funded project has removed a longstanding barrier to accessing NASA data (i.e., accessing archived time-step array data as point-time series) for selected variables of the North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) and other EOSDIS (Earth Observing System Data Information System) data sets. These time series ("data rods") are pre-generated or generated on-the-fly (OTF), leveraging the NASA Simple Subset Wizard (SSW), a gateway to NASA data centers. Data rods Web services are accessible through the CUAHSI Hydrologic Information System (HIS) and the Goddard Earth Sciences Data and Information Services Center (GES DISC) but are not easily discoverable by users of other non-NASA data systems. The Global Earth Observation System of Systems (GEOSS) is a logical mechanism for providing access to the data rods, both pre-generated and OTF. There is an ongoing series of multi-organizational GEOSS Architecture Implementation Pilots, now in Phase-7 (AIP-7) and with a strong water sub-theme, that is aimed at the GEOSS Water Strategic Target "to produce [by 2015] comprehensive sets of data and information products to support decision-making for efficient management of the world's water resources, based on coordinated, sustained observations of the water cycle on multiple scales." The aim of this "GEOSS Water Services" project is to develop a distributed, global registry of water data, map, and modeling services catalogued using the standards and procedures of the Open Geospatial Consortium and the World Meteorological Organization. This project has already demonstrated that the GEOSS infrastructure can be leveraged to help provide access to time series of model grid information (e.g., NLDAS, GLDAS) or grids of information over a geographical domain for a particular time interval. A new NASA-funded project was begun, to expand on these early efforts to enhance the discovery, search, and access of NASA data by non-NASA

  7. NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A (Editor); Valdes, Carol (Editor)

    1992-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1992 NASA/ASEE Summer Faculty Fellowship Program at Kennedy Space Center (KSC). This was the eighth year that a NASA/ASEE program has been conducted at KSC. The 1992 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, D.C. The KSC program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 1992. The basic common objectives are to further the professional knowledge, to stimulate an exchange of ideas, to enrich and refresh the research and teaching activities, and to contribute to the research objectives of the NASA centers.

  8. Dynamics and Control of Orbiting Space Structures NASA Advanced Design Program (ADP)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1996-01-01

    The report summarizes the advanced design program in the mechanical engineering department at Vanderbilt University for the academic years 1994-1995 and 1995-1996. Approximately 100 students participated in the two years of the subject grant funding. The NASA-oriented design projects that were selected included lightweight hydrogen propellant tank for the reusable launch vehicle, a thermal barrier coating test facility, a piezoelectric motor for space antenna control, and a lightweight satellite for automated materials processing. The NASA supported advanced design program (ADP) has been a success and a number of graduates are working in aerospace and are doing design.

  9. Highlighting Your Science to NASA

    NASA Astrophysics Data System (ADS)

    Sharkey, C.

    2003-12-01

    An effort is underway to provide greater visibility within NASA headquarters, and to those who provide funding to NASA, of the outstanding work that is being performed by scientists involved in the Solar System Exploration Research and Analysis Programs, most of whom are DPS members. In support of this effort, a new feature has been developed for the NASA Headquarters Solar System Exploration Division web site whereby researchers can provide a synopsis of their current research results. The site (http://solarsystem.nasa.gov/spotlight/ - Username: your email address Password: sse) is an online submission area where NASA-funded scientists can upload the results of their research. There they provide their contact information, briefly describe their research, and upload any associated images or graphics. The information is available to a limited number of reviewers and writers at JPL. Each month, one researcher's work will be chosen as a science spotlight. After a writer interviews the scientist, a brief Power Point presentation that encapsulates their work will be given to Dr. Colleen Hartman at NASA headquarters. She will then present the exciting findings to Associate Administrator for Space Science, Dr. Ed Weiler. The information from some of these highlights can serve as a basis to bring Principal Investigators to NASA Headquarters for exposure to media through Space Science Updates on NASA television. In addition, the science results may also be incorporated into briefing material for the Office of Management and Budget and congressional staffers. Some spotlights will also be converted into feature stories for the Solar System Exploration website so the public, too, can learn about exciting new research. The site, http://solarsystem.nasa.gov/, is one of NASA's most visited. Over the past decade, there has been a trend of flat budgets for Research and Analysis activities. By giving more visibility to results of Solar System research, our goal is to encourage

  10. Sharing NASA's Scientific Explorations with Communities Across the Country: A Study of Public Libraries Collaborating with NASA STEM Experts

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; LaConte, K.; Holland, A.; Harold, J. B.; Johnson, A.; Randall, C.; Fitzhugh, G.

    2017-12-01

    NASA research programs are helping humanity understand the origin and evolution of galaxies, stars, and planets, how our Sun varies and impacts the heliosphere, and defining the conditions necessary to support life beyond Earth. As places that offer their services for free, public libraries have become the "public square" by providing a place where members of a community can gather for information, educational programming, and policy discussions. Libraries are also developing new ways to engage their patrons in STEM learning. The Space Science Institute's (SSI) National Center for Interactive Learning (NCIL) was funded by NASA`s Science Mission Directorate (SMD) to develop and implement a project called NASA@ My Library: A National Earth and Space Science Initiative That Connects NASA, Public Libraries and Their Communities. NCIL's STAR Library Network (STAR_Net) is providing important leverage to expand its community of practice that serves both librarians and STEM professionals. Seventy-five libraries were selected through a competitive application process to receive NASA STEM Facilitation Kits, NASA STEM Backpacks for circulation, financial resources, training, and partnership opportunities. Initial survey data from the 75 NASA@ My Library partners showed that, while they are actively providing programming, few STEM programs connected with NASA science and engineering. With the launch of the initiative - including training, resources, and STEM-related event opportunities - all 75 libraries are engaged in offering NASA-focused programs, including with NASA subject matter experts. This talk will highlight the impacts the initiative is having on both public library partners and many others across the country.

  11. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    NASA Technical Reports Server (NTRS)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  12. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Using Real NASA Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lawton, Brandon L.; Smith, D. A.; SMD Astrophysics E/PO Community, NASA

    2013-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community in enhancing the coherence, efficiency, and effectiveness of SMD-funded E/PO programs. As a part of this effort, the Astrophysics Forum is coordinating a collaborative project among the NASA SMD astrophysics missions and E/PO programs to create a broader impact for the use of real NASA data in classrooms. Among NASA's major education goals is the training of students in the Science, Technology, Engineering, and Math (STEM) disciplines. The use of real data, from some of the most sophisticated observatories in the world, provide educators an authentic opportunity to teach students basic science process skills, inquiry, and real-world applications of the STEM subjects. The goal of this NASA SMD astrophysics community collaboration is to find a way to maximize the reach of existing real data products produced by E/PO professionals working with NASA E/PO grants and missions in ways that enhance the teaching of the STEM subjects. We present an initial result of our collaboration: defining levels of basic science process skills that lie at the heart of authentic scientific research and national education standards (AAAS Benchmarks) and examples of NASA data products that align with those levels. Our results are the beginning of a larger goal of utilizing the new NASA education resource catalog, NASA Wavelength, for the creation of progressions that tie NASA education resources together. We aim to create an informational sampler that illustrates how an educator can use the NASA Wavelength resource catalog to connect NASA real-data resources that meet the educational goals of their class.

  13. NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Johnson, Roger (Editor); Buckingham, Gregg (Editor)

    1996-01-01

    This document is a collection of technical reports on research conducted by the participants in the 1996 NASA/ASEE Summer Faculty Fellowship Program at the Kennedy Space Center (KSC). This was the twelfth year that a NASA/ASEE program has been conducted at KSC. The 1996 program was administered by the University of Central Florida in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) with sponsorship and funding from the Office of Educational Affairs, NASA Headquarters, Washington, DC and KSC. The KSC Program was one of nine such Aeronautics and Space Research Program funded by NASA in 1996. The NASA/ASEE Program is intended to be a two-year program to allow in-depth research by the University faculty member. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many problems of current interest to NASA/KSC.

  14. Results From the John Glenn Biomedical Engineering Consortium. A Success Story for NASA and Northeast Ohio

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Barna, Gerald J.

    2009-01-01

    The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011.

  15. A Framework for Evaluation of Climate Science Professional Development Projects: A NICE NASA Example

    NASA Astrophysics Data System (ADS)

    Comfort, K.; Bleicher, R. E.

    2012-12-01

    Purpose of Presentation This research presents the overall logic model for the evaluation plan for a three-year NASA-funded project focused on teacher professional development. This session will highlight how we are using data to continually revise the evaluation plan, and we will also share insights about communication between the external evaluator and the PI. Objectives and Research Questions PEL leverages three NASA NICE projects with a high school district, providing professional development for teachers, learning opportunities for students, parental involvement and interaction with NASA scientists. PEL aims to increase Climate Science literacy in high school students, with a focus on Hispanic students, through scientific argumentation using authentic NASA data. Our research will concentrate on investigating the following questions: 1. What do we know about the alternative conceptions students' hold about climate science and what is challenging for students? 2. Are students developing climate science literacy, especially in the difficult concept areas, after PEL implementation? 3. How effective is PEL in nurturing scientific argumentation skills? 4. How effective are the resources we are providing in PEL? 5. Is there evidence that teachers are establishing stronger leadership capacity in their schools? Theoretical Framework for PEL Evaluation The expectancy-value theory of achievement motivation (E-V-C) (Fan, 2011; Wigfield & Eccles, 1994) provides a theoretical foundation for the research. Expectancy is the degree to which a teacher or student has reason to expect that they will be successful in school. Value indicates whether they think that performance at school will be worthwhile to them. Cost is the perceived sacrifices that must be undertaken, or factors that can inhibit a successful performance at school. For students, data from an embedded E-V-C investigation will help articulate how E-V-C factors relate to student interest in science, continuing to

  16. 34 CFR 200.86 - Use of MEP funds in schoolwide projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Use of MEP funds in schoolwide projects. 200.86 Section 200.86 Education Regulations of the Offices of the Department of Education OFFICE OF ELEMENTARY AND SECONDARY EDUCATION, DEPARTMENT OF EDUCATION TITLE I-IMPROVING THE ACADEMIC ACHIEVEMENT OF THE DISADVANTAGED...

  17. 76 FR 67172 - Riverbank Hydro No. 16 LLC, Lock Hydro Friends Fund IV, FFP Project 55 LLC; Notice of Competing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14167-000, 14185-000 and 14196-000] Riverbank Hydro No. 16 LLC, Lock Hydro Friends Fund IV, FFP Project 55 LLC; Notice of..., Lock Hydro Friends Fund IV (Lock Hydro), and FFP Project 55 LLC (FFP 55) filed preliminary permit...

  18. 76 FR 67169 - Riverbank Hydro No. 10 LLC Lock Hydro Friends Fund XL FFP Project 56 LLC; Notice of Competing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14164-000; 14189-000; 14198-000] Riverbank Hydro No. 10 LLC Lock Hydro Friends Fund XL FFP Project 56 LLC; Notice of Competing... Hydro Friends Fund XL (Lock Hydro), and FFP Project 56 LLC (FFP 56) filed preliminary permit...

  19. 76 FR 67167 - Riverbank Hydro No. 6 LLC, Lock Hydro Friends Fund XLVII, FFP Project 52 LLC; Notice of Competing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14172-000, 14178-000 and 14190-000] Riverbank Hydro No. 6 LLC, Lock Hydro Friends Fund XLVII, FFP Project 52 LLC; Notice of..., Lock Hydro Friends Fund XLVII (Lock Hydro), and FFP Project 52 LLC (FFP 52) filed preliminary permit...

  20. Development of a funding, cost, and spending model for satellite projects

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse P.

    1989-01-01

    The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.

  1. Energy Remote Sensing Applications Projects at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Norman, S. D.; Likens, W. C.; Mouat, D. A.

    1982-01-01

    The NASA Ames Research Center is active in energy projects primarily in the role of providing assistance to users in the solution of a number of problems related to energy. Data bases were produced which can be used, in combination with other sources of information, to solve spatially related energy problems. Six project activities at Ames are described which relate to energy and remote sensing. Two projects involve power demand forecasting and estimations using remote sensing and geographic information systems; two others involve transmission line routing and corridor analysis; one involves a synfuel user needs assessment through remote sensing; and the sixth involves the siting of energy facilities.

  2. NASA Countermeasures Evaluation and Validation Project

    NASA Technical Reports Server (NTRS)

    Lundquist, Charlie M.; Paloski, William H. (Technical Monitor)

    2000-01-01

    To support its ISS and exploration class mission objectives, NASA has developed a Countermeasure Evaluation and Validation Project (CEVP). The goal of this project is to evaluate and validate the optimal complement of countermeasures required to maintain astronaut health, safety, and functional ability during and after short- and long-duration space flight missions. The CEVP is the final element of the process in which ideas and concepts emerging from basic research evolve into operational countermeasures. The CEVP is accomplishing these objectives by conducting operational/clinical research to evaluate and validate countermeasures to mitigate these maladaptive responses. Evaluation is accomplished by testing in space flight analog facilities, and validation is accomplished by space flight testing. Both will utilize a standardized complement of integrated physiological and psychological tests, termed the Integrated Testing Regimen (ITR) to examine candidate countermeasure efficacy and intersystem effects. The CEVP emphasis is currently placed on validating the initial complement of ISS countermeasures targeting bone, muscle, and aerobic fitness; followed by countermeasures for neurological, psychological, immunological, nutrition and metabolism, and radiation risks associated with space flight. This presentation will review the processes, plans, and procedures that will enable CEVP to play a vital role in transitioning promising research results into operational countermeasures necessary to maintain crew health and performance during long duration space flight.

  3. NASA Quest.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2000-01-01

    Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)

  4. Funding anatomic pathology research: a retrospective analysis of an intramural funding mechanism.

    PubMed

    McDaniel, Andrew; Fullen, Douglas R; Cho, Kathleen R; Lucas, David R; Giordano, Thomas J; Greenson, Joel; Lieberman, Andrew P; Kunju, Lakshmi P; Myers, Jeffrey L; Roh, Michael H

    2013-09-01

    In 2006, the department of pathology at our institution established an intramural research funding mechanism to support anatomic pathology research projects for faculty and trainee development. A review committee consisting of faculty members with diverse academic interests evaluated applications; proposals were eligible for a maximum award amount of $30 000 per project with a maximum program cost of $150 000 annually. To report our experience based on a retrospective review of the research proposals submitted to the committee since the inception of the Anatomic Pathology Research Fund and evaluate the outcomes of the funded projects. We retrospectively analyzed all project applications that were received by the committee. Outcome data were collected by reviewing progress reports, abstracts for national and international meetings, PubMed search results, and/or direct communication with investigators. To date, a total of 59 individual projects have been awarded funding, for a total amount of $349 792, with an average award amount of $5381 per project. A total of 26 faculty members have secured funding for projects through this mechanism, and 27 resident and fellow trainees have been engaged in the funded projects. Spanning 11 subspecialty disciplines in anatomic pathology, 32 abstracts (54%) have been presented at national meetings and 26 (44%) have been published in the peer-reviewed literature to date. One project generated data used to secure an extramural (R01) grant. Our funding mechanism could serve as a model used by other academic departments to support research activities, thereby fostering faculty development through scholarly activities.

  5. 34 CFR 380.5 - What activities may the Secretary fund under community-based supported employment projects?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Secretary fund under community-based supported employment projects? (a) Authorized activities. The following activities are authorized under community-based projects: (1) Job search assistance. (2) Job... Community-Based Supported Employment projects for the provision of extended supported employment services...

  6. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  7. NASA Scientific Data Purchase Project: From Collection to User

    NASA Technical Reports Server (NTRS)

    Nicholson, Lamar; Policelli, Fritz; Fletcher, Rose

    2002-01-01

    NASA's Scientific Data Purchase (SDP) project is currently a $70 million operation managed by the Earth Science Applications Directorate at Stennis Space Center. The SDP project was developed in 1997 to purchase scientific data from commercial sources for distribution to NASA Earth science researchers. Our current data holdings include 8TB of remote sensing imagery consisting of 18 products from 4 companies. Our anticipated data volume is 60 TB by 2004, and we will be receiving new data products from several additional companies. Our current system capacity is 24 TB, expandable to 89 TB. Operations include tasking of new data collections, archive ordering, shipment verification, data validation, distribution, metrics, finances, customer feedback, and technical support. The program has been included in the Stennis Space Center Commercial Remote Sensing ISO 9001 registration since its inception. Our operational system includes automatic quality control checks on data received (with MatLab analysis); internally developed, custom Web-based interfaces that tie into commercial-off-the-shelf software; and an integrated relational database that links and tracks all data through operations. We've distributed nearly 1500 datasets, and almost 18,000 data files have been downloaded from our public web site; on a 10-point scale, our customer satisfaction index is 8.32 at a 23% response level. More information about the SDP is available on our Web site.

  8. Development of clinical pharmacy in Belgian hospitals through pilot projects funded by the government.

    PubMed

    Somers, A; Spinewine, A; Spriet, I; Steurbaut, S; Tulkens, P; Hecq, J D; Willems, L; Robays, H; Dhoore, M; Yaras, H; Vanden Bremt, I; Haelterman, M

    2018-04-30

    Objectives The goal is to develop clinical pharmacy in the Belgian hospitals to improve drug efficacy and to reduce drug-related problems. Methods From 2007 to 2014, financial support was provided by the Belgian federal government for the development of clinical pharmacy in Belgian hospitals. This project was guided by a national Advisory Working Group. Each funded hospital was obliged to describe yearly its clinical pharmacy activities. Results In 2007, 20 pharmacists were funded in 28 pilot hospitals; this number was doubled in 2009 to 40 pharmacists over 54 institutions, representing more than half of all acute Belgian hospitals. Most projects (72%) considered patient-related activities, whereas some projects (28%) had a hospital-wide approach. The projects targeted patients at admission (30%), during hospital stay (52%) or at discharge (18%). During hospital stay, actions were mainly focused on geriatric patients (20%), surgical patients (15%), and oncology patients (9%). Experiences, methods, and tools were shared during meetings and workshops. Structure, process, and outcome indicators were reported and strengths, weaknesses, opportunities, and threats were described. The yearly reports revealed that the hospital board was engaged in the project in 87% of the cases, and developed a vision on clinical pharmacy in 75% of the hospitals. In 2014, the pilot phase was replaced by structural financing for clinical pharmacy in all acute Belgian hospitals. Conclusion The pilot projects in clinical pharmacy funded by the federal government provided a unique opportunity to launch clinical pharmacy activities on a broad scale in Belgium. The results of the pilot projects showed clear implementation through case reports, time registrations, and indicators. Tools for clinical pharmacy activities were developed to overcome identified barriers. The engagement of hospital boards and the results of clinical pharmacy activities persuaded the government to start structural

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  10. NASA/DOE automotive Stirling engine project: Overview 1986

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  11. DOE/NASA automotive Stirling engine project - Overview 86

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100 hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  12. Annotated directory of US Government information system projects of potential interest to NASA/SSPO

    NASA Technical Reports Server (NTRS)

    Legrand, Sue

    1988-01-01

    The purpose of this research activity was to develop a list for NASA of major U.S. government information systems contacts who are able to cooperate with NASA on technical interchange. The list contains the names of appropriate managers involved in major information system projects, U.S. government office officials, and their hierarchy up to the highest officials whose major responsibilities include government information systems development.

  13. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into NASA Programs Associated With the Human Exploration and Operations Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.

  14. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III

    2014-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.

  15. Internal NASA Study: NASAs Protoflight Research Initiative

    NASA Technical Reports Server (NTRS)

    Coan, Mary R.; Hirshorn, Steven R.; Moreland, Robert

    2015-01-01

    The NASA Protoflight Research Initiative is an internal NASA study conducted within the Office of the Chief Engineer to better understand the use of Protoflight within NASA. Extensive literature reviews and interviews with key NASA members with experience in both robotic and human spaceflight missions has resulted in three main conclusions and two observations. The first conclusion is that NASA's Protoflight method is not considered to be "prescriptive." The current policies and guidance allows each Program/Project to tailor the Protoflight approach to better meet their needs, goals and objectives. Second, Risk Management plays a key role in implementation of the Protoflight approach. Any deviations from full qualification will be based on the level of acceptable risk with guidance found in NPR 8705.4. Finally, over the past decade (2004 - 2014) only 6% of NASA's Protoflight missions and 6% of NASA's Full qualification missions experienced a publicly disclosed mission failure. In other words, the data indicates that the Protoflight approach, in and of it itself, does not increase the mission risk of in-flight failure. The first observation is that it would be beneficial to document the decision making process on the implementation and use of Protoflight. The second observation is that If a Project/Program chooses to use the Protoflight approach with relevant heritage, it is extremely important that the Program/Project Manager ensures that the current project's requirements falls within the heritage design, component, instrument and/or subsystem's requirements for both the planned and operational use, and that the documentation of the relevant heritage is comprehensive, sufficient and the decision well documented. To further benefit/inform this study, a recommendation to perform a deep dive into 30 missions with accessible data on their testing/verification methodology and decision process to research the differences between Protoflight and Full Qualification

  16. Overview of the NASA Dryden Flight Research Facility aeronautical flight projects

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    1992-01-01

    Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

  17. ENLIGHT and other EU-funded projects in hadron therapy.

    PubMed

    Dosanjh, M; Jones, B; Mayer, R; Meyer, R

    2010-10-01

    Following impressive results from early phase trials in Japan and Germany, there is a current expansion in European hadron therapy. This article summarises present European Union-funded projects for research and co-ordination of hadron therapy across Europe. Our primary focus will be on the research questions associated with carbon ion treatment of cancer, but these considerations are also applicable to treatments using proton beams and other light ions. The challenges inherent in this new form of radiotherapy require maximum interdisciplinary co-ordination. On the basis of its successful track record in particle and accelerator physics, the internationally funded CERN laboratories (otherwise known as the European Organisation for Nuclear Research) have been instrumental in promoting collaborations for research purposes in this area of radiation oncology. There will soon be increased opportunities for referral of patients across Europe for hadron therapy. Oncologists should be aware of these developments, which confer enhanced prospects for better cancer cure rates as well as improved quality of life in many cancer patients.

  18. Mission EarthFusing GLOBE with NASA Assets to Build SystemicInnovation in STEM Education

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.; Garik, P.; Padgett, D.; Darche, S.; Struble, J.; Adaktilou, N.

    2016-12-01

    Mission Earth is a project funded through the NASA CAN that is developing a systematic embedding of NASA assets that is being implemented by a partnership of organizations across the US. Mission Earth brings together scientists and science educators to develop a K-12 "Earth as a system" curriculum progression following research-based best practices. GLOBE and NASA assets will be infused into the curricula of schools along the K-12 continuum, leveraging existing partnerships and networks and supported through state departments of education and targeting underrepresented groups, as a systemic, effective, and sustainable approach to meeting NASA's science education objectives. This presentation will discuss plans for the Mission Earth project and successes and lessons learned in the first year. Mission Earth is developing curricular materials to support vertically integrated learning progressions. It develops models of professional development utilizing sustainable infrastructures. It will support STEM careers focusing on career technical education (CTE). And, it will engage undergraduate education majors through pre-service courses and engineering students through engineering challenges.

  19. Ames Infusion Stories for NASA Annual Technology Report

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Ethiraj

    2015-01-01

    These are short (2-page) high-level summaries of technologies that have been infused - i.e., taken the next level. For example, 3DMAT started off as a Center Innovation Fund (CIF) project and graduated to the Game-changing Program (GCD), where it is being prepared for use in Orion. The Nano Entry System similarly started as CIF and graduated to GCD. The High Tortuosity Carbon Dioxide Conversion Device also started off as CIF and then received an award for further development from the NASA Innovative Advanced Concepts program (NIAC).

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 34: Users and uses of DOD technical reports: A report from the field

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    The NASA/DoD Aerospace Knowledge Diffusion Research Project attempts to understand the information environment in which U.S. aerospace engineers and scientists work, the information-seeking behavior of U.S. aerospace engineers and scientists, and the factors that influence the use of scientific and technical information (STI) (Pinelli, Barclay, and Kennedy, 1991). Such an understanding could (1) lead to the development of practical theory, (2) contribute to the design and development of aerospace information systems, and (3) have practical implications for transferring the results of federally funded aerospace research and development (R&D) to the U.S. aerospace community. This paper presents data from two information-seeking behavior studies involving U.S. aerospace engineers and scientists that were undertaken as Phase 1 activities of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Responses from three groups of respondents - DoD, other government, and industry - are presented for two sets of selected questions. One set focuses on DoD technical reports: their use and importance, reasons for non-use, the factors affecting their use, the sources used to find out about them and the sources used to physically obtain them, and the quality of DoD technical reports. The second set focuses on information sources used in problem solving: the use of U.S. government technical reports in problem solving and the information sources used to find out about U.S. government technical reports.

  1. 1997 NASA Academy in Aeronautics

    NASA Technical Reports Server (NTRS)

    Andrisani, Dominick, II

    1998-01-01

    The NASA Academy in Aeronautics at the Dryden Flight Research Center (DFRC) was a ten-week summer leadership training program conducted for the first time in the summer of 1997. Funding was provided by a contract between DFRC and Purdue University. Mr. Lee Duke of DFRC was the contract monitor, and Professor Dominick Andrisani was the principal investigator. Five student research associates participated in the program. Biographies of the research associates are given in Appendix 1. Dominick Andrisani served as Dean of the NASA Academy in Aeronautics. NASA Academy in Aeronautics is a unique summer institute of higher learning that endeavors to provide insight into all of the elements that make NASA aeronautical research possible. At the same time the Academy assigns the research associate to be mentored by one of NASA!s best researchers so that they can contribute towards an active flight research program. Aeronautical research and development are an investment in the future, and NASA Academy is an investment in aeronautical leaders of the future. The Academy was run by the Indiana Space Grant Consortium at Purdue in strategic partnership with the National Space Grant College and Fellowship Program. Research associates at the Academy were selected with help from the Space Grant Consortium that sponsored the research associate. Research associate stipend and travel to DFRC were paid by the students' Space Grant Consortium. All other student expenses were paid by the Academy. Since the Academy at DFRC had only five students the opportunity for individual growth and attention was unique in the country. About 30% of the working time and most of the social time of the students were be spent as a "group" or "team." This time was devoted to exchange of ideas, on forays into the highest levels of decision making, and in executing aeronautical research. This was done by interviewing leaders throughout the aerospace industry, seminars, working dinners, and informal

  2. The NASA/DOD aerospace knowledge diffusion research project: A research agenda

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The project has both immediate and long term purposes. In the first instance it provides a practical and pragmatic basis for understanding how the results of NASA/DoD research diffuse into the aerospace R and D process. Over the long term it provides an empirical basis for understanding the aerospace knowledge diffusion process itself, and its implications at the individual, organizational, national, and international levels. The project is studying the major barriers to effective knowledge diffusion. This project will provide descriptive and analytical data regarding the flow of scientific and technical information (STI). It will examine both channels used to communicate information and the social system of the aerospace knowledge diffusion process.

  3. Creating a Rackspace and NASA Nebula compatible cloud using the OpenStack project (Invited)

    NASA Astrophysics Data System (ADS)

    Clark, R.

    2010-12-01

    NASA and Rackspace have both provided technology to the OpenStack that allows anyone to create a private Infrastructure as a Service (IaaS) cloud using open source software and commodity hardware. OpenStack is designed and developed completely in the open and with an open governance process. NASA donated Nova, which powers the compute portion of NASA Nebula Cloud Computing Platform, and Rackspace donated Swift, which powers Rackspace Cloud Files. The project is now in continuous development by NASA, Rackspace, and hundreds of other participants. When you create a private cloud using Openstack, you will have the ability to easily interact with your private cloud, a government cloud, and an ecosystem of public cloud providers, using the same API.

  4. NASA technology applications team: Applications of aerospace technology

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two critical aspects of the Applications Engineering Program were especially successful: commercializing products of Application Projects; and leveraging NASA funds for projects by developing cofunding from industry and other agencies. Results are presented in the following areas: the excimer laser was commercialized for clearing plaque in the arteries of patients with coronary artery disease; the ultrasound burn depth analysis technology is to be licensed and commercialized; a phased commercialization plan was submitted to NASA for the intracranial pressure monitor; the Flexible Agricultural Robotics Manipulator System (FARMS) is making progress in the development of sensors and a customized end effector for a roboticized greenhouse operation; a dual robot are controller was improved; a multisensor urodynamic pressure catherer was successful in clinical tests; commercial applications were examined for diamond like carbon coatings; further work was done on the multichannel flow cytometer; progress on the liquid airpack for fire fighters; a wind energy conversion device was tested in a low speed wind tunnel; and the Space Shuttle Thermal Protection System was reviewed.

  5. The Eclipse Project

    NASA Technical Reports Server (NTRS)

    Tucker, Tom; Launius, Roger (Technical Monitor)

    2000-01-01

    The Eclipse Project by Tom Tucker provides a readable narrative and a number of documents that record an important flight research effort at NASA's Dryden Flight Research Center. Carried out by Kelly Space and Technology, Inc., in partnership with the Air Force and Dryden at Edwards Air Force Base in the Mojave Desert of California, this project tested and gathered data about a potential newer and less expensive way to launch satellites into space. Whether the new technology comes into actual use will depend on funding, market forces, and other factors at least partly beyond the control of the participants in the project. This is a familiar situation in the history of flight research.

  6. Project Georgia High School/High Tech

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The High School/High Tech initiative of the President's Committee on Employment of Disabilities, Georgia's application of the collaborative "Georgia Model" and NASA's commitment of funding have shown that opportunities for High School/High Tech students are unlimited. In Georgia, the partnership approach to meeting the needs of this program has opened doors previously closed. As the program grows and develops, reflecting the needs of our students and the marketplace, more opportunities will be available. Our collaboratives are there to provide these opportunities and meet the challenge of matching our students with appropriate education and career goals. Summing up the activities and outcomes of Project Georgia High School/High Tech is not difficult. Significant outcomes have already occurred in the Savannah area as a result of NASA's grant. The support of NASA has enabled Georgia Committee to "grow" High School/High Tech throughout the region-and, by example, the state. The success of the Columbus pilot project has fostered the proliferation of projects, resulting in more than 30 Georgia High School High Tech programs-with eight in the Savannah area.

  7. National Project III, Elevating the Importance of Teaching. Fund Associate's Final Report.

    ERIC Educational Resources Information Center

    Seibert, Warren F.

    Purdue University's participation as a fund associate in National Project III (NP III) for elevating the importance of teaching has its origins in a flexible and diagnostic instructional evaluation system called "CAFETERIA." CAFETERIA services include test development, scoring, and analysis; social surveys on topics of importance in…

  8. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Programs and Projects for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial projects managers can also find this useful.

  9. Structures and Design Phase I Summary for the NASA Composite Cryotank Technology Demonstration Project

    NASA Technical Reports Server (NTRS)

    Johnson, Ted; Sleight, David W.; Martin, Robert A.

    2013-01-01

    A description of the Phase I structures and design work of the Composite Cryotank Technology Demonstration (CCTD) Project is in this paper. The goal of the CCTD Project in the Game Changing Development (GCD) Program is to design and build a composite liquid-hydrogen cryogenic tank that can save 30% in weight and 25% in cost compared to state-of-the-art aluminum metallic cryogenic tank technology when the wetted composite skin wall is at an allowable strain of 5000 in/in. Three Industry teams developed composite cryogenic tank concepts that are compared for weight to an aluminum-lithium (Al-Li) cryogenic tank designed by NASA in Phase I of the CCTD Project. The requirements used to design all of the cryogenic tanks in Phase I will be discussed and the resulting designs, analyses, and weight of the concepts developed by NASA and Industry will be reviewed and compared.

  10. Developing Young Researchers: 15 Years of Authentic Science Experiences for K-12 with NASA's S'COOL Project

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Crecelius, S.; Rogerson, T.; Lewis, P. M.; Moore, S.; Madigan, J. J.; Deller, C.; Taylor, J.

    2012-12-01

    In late 1996, members of the Atmospheric Science Directorate at NASA's Langley Research Center decided that there had to be a better way to share the excitement of our research than black and white, text-heavy Fact Sheets. We invited a group of local teachers to a half-day session on Center to help guide an improved approach. We suggested a variety of approaches to them, and asked for feedback. They were eager for anything other than black and white Fact Sheets! Fortunately, one local middle school science teacher took us up on the offer to stick around and talk over lunch. In that conversation, she said that anything that would connect the science her kids studied in the classroom to the outside world - especially to NASA! - would be very motivating to her students. From that conversation was born the Students' Cloud Observations On-Line (S'COOL Project), now a nearly 16-year experiment in K-12 science, technology, engineering, and math (STEM) engagement. S'COOL is the Education and Public Outreach (EPO) arm of the Clouds and the Earth's Radiant Energy System (CERES) project, and involves K-12 students as a source of ground truth for satellite cloud retrievals. It was designed from the beginning as a 2-way project, with communication of information from the students to NASA, but also from NASA back to the students. With technology evolution since the project began, we have continued to enhance this focus on 2-way interaction. S'COOL involves students with observation skills, math skills (to compute cloud cover from multiple observers or convert units), geography skills (locating their school on a map and comparing to satellite imagery), and exposes them to cutting edge engineering in the form of a series of NASA satellites. As a priority Earth Observing Instrument, CERES currently flies on Terra, Aqua and NPP, with an additional instrument in development for JPSS. Students are involved in occasional Intensive Observing Periods (as with the launch of NPP), and are

  11. Research capacity building integrated into PHIT projects: leveraging research and research funding to build national capacity.

    PubMed

    Hedt-Gauthier, Bethany L; Chilengi, Roma; Jackson, Elizabeth; Michel, Cathy; Napua, Manuel; Odhiambo, Jackline; Bawah, Ayaga

    2017-12-21

    Inadequate research capacity impedes the development of evidence-based health programming in sub-Saharan Africa. However, funding for research capacity building (RCB) is often insufficient and restricted, limiting institutions' ability to address current RCB needs. The Doris Duke Charitable Foundation's African Health Initiative (AHI) funded Population Health Implementation and Training (PHIT) partnership projects in five African countries (Ghana, Mozambique, Rwanda, Tanzania and Zambia) to implement health systems strengthening initiatives inclusive of RCB. Using Cooke's framework for RCB, RCB activity leaders from each country reported on RCB priorities, activities, program metrics, ongoing challenges and solutions. These were synthesized by the authorship team, identifying common challenges and lessons learned. For most countries, each of the RCB domains from Cooke's framework was a high priority. In about half of the countries, domain specific activities happened prior to PHIT. During PHIT, specific RCB activities varied across countries. However, all five countries used AHI funding to improve research administrative support and infrastructure, implement research trainings and support mentorship activities and research dissemination. While outcomes data were not systematically collected, countries reported holding 54 research trainings, forming 56 mentor-mentee relationships, training 201 individuals and awarding 22 PhD and Masters-level scholarships. Over the 5 years, 116 manuscripts were developed. Of the 59 manuscripts published in peer-reviewed journals, 29 had national first authors and 18 had national senior authors. Trainees participated in 99 conferences and projects held 37 forums with policy makers to facilitate research translation into policy. All five PHIT projects strongly reported an increase in RCB activities and commended the Doris Duke Charitable Foundation for prioritizing RCB, funding RCB at adequate levels and time frames and for allowing

  12. NASA/Goddard Thermal Technology Overview 2012

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Swanson, Ted

    2012-01-01

    New Technology program is underway at NASA NASA/GSFC's primary mission of science satellite development is healthy and vibrant, although new missions are scarce Future mission applications promise to be thermally challenging Direct technology funding is still very restricted

  13. The NASA Herschel Science Center

    NASA Astrophysics Data System (ADS)

    Helou, G.

    2005-12-01

    NASA has set aside resources in support of US-based scientists working on analysis and interpretation of data from Herschel, and has designated IPAC as the home of the NASA Herschel Science Center (NHSC). In supporting the US-based Herschel community, NHSC will draw on its experience (ISO, Spitzer and other missions) as well as a close working relation with the Herschel mission and instrument expertise both in Europe and in the U.S. The support covers technical and logistical aspects as well as data analysis funding, to be handled in large measure following the Spitzer funding model.

  14. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  15. [Research progresses of the completed pediatrics projects funded by National Natural Science Foundation of China from 2002 to 2006].

    PubMed

    Xu, Ling; Hao, Jie; Deng, Min; Xu, Yan-ying

    2009-05-01

    To understand the projects completion and research progresses in pediatrics which were funded by the National Natural Science Foundation of China (NSFC), and evaluate the accomplishment objectively and justly. The completion status of projects in pediatrics funded by department of clinical medicine II from 2002 to 2006 was analysed retrospectively, and important research achievement and outstanding development in some projects were reported. During the period between 2002 and 2006, 420 articles were published, and the average was 8.1 papers per project, which included 56 papers that were published in journals indexed by SCI (the average was 1.1 papers per project). The completion of general project was better than that of "the Young Researchers Fund" and small grant project. Ten post-doctors, 102 doctors and 109 masters were trained. Two projects were awarded with the first grade prize and another 2 with the second grade prize at the provincial and ministerial level, 4 items applied for patent and 1 was granted. These completed projects, which were mainly related to 7 of 12 subspecialties in the field of pediatrics, such as the respiratory disease, nephrology, neurology, cardiology, endocrinology, hematology, neonatology, are the major portion of the application projects and subsidized projects funded by NSFC, and achieved great research progresses. During the period between 2002 and 2006, the 52 completed projects in pediatrics showed difference in the distribution and quality of accomplishment among subspecialties and among types of supported projects; there are some gaps between pediatrics and some other clinical basic subspecialties II, this situation released the research status and problems in development of pediatrics in China. The general projects completion was good, and many projects obtained research achievements, which reflect the leading function of NSFC in pediatric research.

  16. Recent Experiences of the NASA Engineering and Safety Center (NESC) GN and C Technical Discipline Team (TDT)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2010-01-01

    The NASA Engineering and Safety Center (NESC), initially formed in 2003, is an independently funded NASA Program whose dedicated team of technical experts provides objective engineering and safety assessments of critical, high risk projects. The GN&C Technical Discipline Team (TDT) is one of fifteen such discipline-focused teams within the NESC organization. The TDT membership is composed of GN&C specialists from across NASA and its partner organizations in other government agencies, industry, national laboratories, and universities. This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA projects. This paper will then describe selected recent experiences, over the period 2007 to present, of the GN&C TDT in which they directly performed or supported a wide variety of NESC assessments and consultations.

  17. Developing Systems Engineering Skills Through NASA Summer Intern Project

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  18. NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal

    Atmospheric Science Data Center

    2018-03-01

    The Prediction Of Worldwide Energy Resource (POWER) Project facilitates access to NASA's satellite and modeling analysis for Renewable Energy, Sustainable Buildings and Agroclimatology applications.  A   new ...

  19. 50 CFR 80.23 - Allocation of funds between marine and freshwater fishery projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM ADMINISTRATIVE REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH... apportionment of the Dingell-Johnson Sport Fish Restoration funds, between projects having recreational benefits...

  20. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  1. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  2. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-03-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  3. 76 FR 73615 - FFP Project 91 LLC; Riverbank Hydro No. 23 LLC; Lock Hydro Friends Fund III; Notice of Competing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14275-000; 14279-000; 14282-000] FFP Project 91 LLC; Riverbank Hydro No. 23 LLC; Lock Hydro Friends Fund III; Notice of... LLC (Riverbank), and Lock Hydro Friends Fund III (Lock Hydro), filed preliminary permit applications...

  4. Structural equation model for the evaluation of national funding on R&D project of SMEs in consideration with MBNQA criteria.

    PubMed

    Sohn, S Y; Gyu Joo, Yong; Kyu Han, Hong

    2007-02-01

    Financial support on the R&D in Science & Technology for SMEs at the governmental level plays a crucial role on the improvement of the national competitiveness. Korea Science & Engineering Foundation (KOSEF) has supported the R&D projects of SMEs with the competitive technology ability by way of the Science and Technology Promotion Fund. In this paper, we propose a structural equation model (SEM) to evaluate the performance of such a funding program in terms of three aspects: output, outcome and impact under given funding inputs, R&D environment of a recipient company, and external evaluation programs of funding organization. We adopt Malcolm Baldrige National Quality Award (MBNQA) criteria to assess the R&D environmental factors of recipient companies. In addition, we test the effect of interim evaluation of the funded project. The proposed model is applied to the real case and is used to identify the best practices as well as to provide feedback information for the improvement of the government funding programs of the R&D projects of SMEs.

  5. Project LASER

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  6. USL/DBMS NASA/PC R and D project system testing standards

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Kavi, Srinu; Moreau, Dennis R.; Yan, Lin

    1984-01-01

    A set of system testing standards to be used in the development of all C software within the NASA/PC Research and Development Project is established. Testing will be considered in two phases: the program testing phase and the system testing phase. The objective of these standards is to provide guidelines for the planning and conduct of program and software system testing.

  7. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    NASA Technical Reports Server (NTRS)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  8. 76 FR 73616 - Lock Hydro Friends Fund VIII, FFP Project 92 LLC, Riverbank Hydro No. 24 LLC; Notice of Competing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14262-000; 14276-000; 14280-000] Lock Hydro Friends Fund VIII, FFP Project 92 LLC, Riverbank Hydro No. 24 LLC; Notice of..., and Competing Applications On September 1, 2011, Lock Hydro Friends Fund VIII (Lock Hydro), FFP...

  9. NASA's In-Situ Resource Utilization Project: Current Accomplishments and Exciting Future Plans

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Sanders, Gerald B.; Sacksteder, Kurt R.

    2010-01-01

    The utilization of Space resources has been identified in publications for over 40 years for its potential as a "game changing" technology for the human exploration of Space. It is called "game changing" because of the mass leverage possible when local resources at the exploration destination arc used to reduce or even eliminate resources that are brought from the Earth. NASA, under the Exploration Technology Development Program has made significant investments in the development of Space resource utilization technologies as a part of the In-Situ Resource Utilization (ISRU) project. Over the last four years, the ISRU project has taken what was essentially an academic topic with lots of experimentation but little engineering and produced near-full-scale systems that have been demonstrated. In 2008 & again in early 2010, systems that could produce oxygen from lunar soils (or their terrestrial analogs) were tested at a lunar analog site on a volcano in Hawaii. These demonstrations included collaborations with International Partners that made significant contributions to the tests. The proposed federal budget for Fiscal Year 2011 encourages the continued development and demonstration of ISRU. However it goes beyond what the project is currently doing and directs that the scope of the project be expanded to cover destinations throughout the inner solar system with the potential for night demonstrations. This paper will briefly cover the past accomplishments of the ISRU project then move to a di scussion of the plans for the project's future as NASA moves to explore a new paradigm for Space Exploration that includes orbital fuel depots and even refueling on other planetary bodies in the solar system.

  10. Evaluation of a funded FY00 ITS integration component of the ITS deployment program "Traveler Information Integration Project" within the East Bay SMART Corridors project

    DOT National Transportation Integrated Search

    2004-12-07

    The project originally was granted funding from the earmark in an application dated June 1, 2000. A revised application received approval on May 19, 2003 to reflect a different proposed implementation of the project, while still achieving the project...

  11. Demonstrating Cooperation: Lessons from Federally-Funded Projects in Vocational Education. Final Report.

    ERIC Educational Resources Information Center

    Bateman, Peter; And Others

    The Cooperative Demonstration Program (High Technology) was the largest demonstration program supported under the Carl D. Perkins Vocational Education Act of 1984. The program funded projects to try new approaches, to increase access to high-quality programs for special populations, and to improve the overall quality of vocational education. An…

  12. Federal Research and Development Funding: FY2013

    DTIC Science & Technology

    2013-12-05

    microbial contamination.31 In FY2012, four agencies—NSF, NIH, NASA , and USDA —issued a joint solicitation to provide research funding for next-generation...35 Table 11. NASA R&D...primarily the National Institutes of Health), 22.3%; Department of Energy (DOE), 8.5%; National Aeronautics and Space Administration ( NASA ), 6.8%; National

  13. NASA Human Health and Performance Center: Open innovation successes and collaborative projects

    NASA Astrophysics Data System (ADS)

    Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-11-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, setting the course for development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the successful execution of the strategy, driving organizational change through open innovation efforts and collaborative projects, including efforts of the NASA Human Health and Performance Center (NHHPC).

  14. 77 FR 10741 - Lock+ Hydro Friends Fund XII, BOST2, LLC, Riverbank Hydro No. 21, LLC, FFP Project 96, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14260-000, 14264-000, 14267-000, 14273-000] Lock+ Hydro Friends Fund XII, BOST2, LLC, Riverbank Hydro No. 21, LLC, FFP Project... Greene and Hale counties, Alabama. The applications were filed by Lock+ Hydro Friends Fund XII for...

  15. 24 CFR 965.305 - Funding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Funding. 965.305 Section 965.305... LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.305 Funding. (a... modernization program, for funding from any available development funds in the case of projects still in...

  16. 24 CFR 965.305 - Funding.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false Funding. 965.305 Section 965.305... LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.305 Funding. (a... modernization program, for funding from any available development funds in the case of projects still in...

  17. 24 CFR 965.305 - Funding.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false Funding. 965.305 Section 965.305... LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.305 Funding. (a... modernization program, for funding from any available development funds in the case of projects still in...

  18. 24 CFR 965.305 - Funding.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Funding. 965.305 Section 965.305... LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.305 Funding. (a... modernization program, for funding from any available development funds in the case of projects still in...

  19. 24 CFR 965.305 - Funding.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Funding. 965.305 Section 965.305... LEASED PROJECTS-GENERAL PROVISIONS Energy Audits and Energy Conservation Measures § 965.305 Funding. (a... modernization program, for funding from any available development funds in the case of projects still in...

  20. NASA's Planetary Aeolian Laboratory: Status and Update

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Smith, J. K.

    2017-05-01

    This presentation provides a status update on the operational capabilities and funding plans by NASA for the Planetary Aeolian Laboratory located at NASA Ames Research Center, including details for those proposing future wind tunnel experiments.