Sample records for nasa gear dynamics

  1. NASA gear research and its probable effect on rotorcraft transmission design

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Townsend, D. P.; Coy, J. J.

    1979-01-01

    The NASA Lewis Research Center devised a comprehensive gear technology research program beginning in 1969, the results of which are being integrated into the NASA civilian Helicopter Transmission System Technology Program. Attention is given to the results of this gear research and those programs which are presently being undertaken. In addition, research programs studying pitting fatigue, gear steels and processing, life prediction methods, gear design and dynamics, elastohydrodynamic lubrication, lubrication methods and gear noise are presented. Finally, the impact of advanced gear research technology on rotorcraft transmission design is discussed.

  2. NASA gear research and its probable effect on rotorcraft transmission design

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Townsend, D. P.; Coy, J. J.

    1979-01-01

    The results of the NASA gear research is reviewed as well as those programs which are presently being undertaken. Research programs studying pitting fatigue, gear steels and processing, life prediction methods, gear design and dynamics, elastohydrodynamic lubrication, lubrication methods and gear noise are presented. The impact of advanced gear research technology on rotorcraft transmission design is discussed.

  3. Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi

    1996-01-01

    Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.

  4. Topics in landing gear dynamics research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.; Tanner, J. A.

    1986-01-01

    Four topics in landing gear dynamics are discussed. Three of these topics are subjects of recent research: tilt steering phenomenon, water spray ingestion on flooded runways, and actively controlled landing gear. The fourth topic is a description of a major facility recently enhanced in capability.

  5. Effect of contact ratio on spur gear dynamic load

    NASA Technical Reports Server (NTRS)

    Liou, Chuen-Huei; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1992-01-01

    A computer simulation is presented which shows how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented was performed using the NASA gear dynamics code, DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low contact ratio gears (contact ratio less than 2.0), increasing the contact ratio reduced the gear dynamic load. For high contact ratio gears (contact ratio = or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high contact ratio gears minimized dynamic load better than low contact ratio gears.

  6. Comparison of analysis and experiment for dynamics of low-contact-ratio spur gears

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Rebbechi, Brian; Zakrajsek, James J.; Townsend, Dennis P.; Lin, Hsiang Hsi

    1991-01-01

    Low-contact-ratio spur gears were tested in NASA gear-noise-rig to study gear dynamics including dynamic load, tooth bending stress, vibration, and noise. The experimental results were compared with a NASA gear dynamics code to validate the code as a design tool for predicting transmission vibration and noise. Analytical predictions and experimental data for gear-tooth dynamic loads and tooth-root bending stress were compared at 28 operating conditions. Strain gage data were used to compute the normal load between meshing teeth and the bending stress at the tooth root for direct comparison with the analysis. The computed and measured waveforms for dynamic load and stress were compared for several test conditions. These are very similar in shape, which means the analysis successfully simulates the physical behavior of the test gears. The predicted peak value of the dynamic load agrees with the measurement results within an average error of 4.9 percent except at low-torque, high-speed conditions. Predictions of peak dynamic root stress are generally within 10 to 15 percent of the measured values.

  7. The transfer function method for gear system dynamics applied to conventional and minimum excitation gearing designs

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1982-01-01

    A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.

  8. Summary of NASA landing-gear research

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Sleeper, R. K.; Stubbs, S. M.

    1978-01-01

    This paper presents a brief summary of the airplane landing gear research underway at NASA. The technology areas include: ground handling simulator, antiskid braking systems, space shuttle nose-gear shimmy, active control landing gear, wire brush skid landing gear, air cushion landing systems, tire/surface friction characteristics, tire mechanical properties, tire-tread materials, powered wheels for taxiing, and crosswind landing gear. This paper deals mainly with the programs on tire-tread materials, powered wheel taxiing, air cushion landing systems, and crosswind landing gear research with particular emphasis on previously unreported results of recently completed flight tests. Work in the remaining areas is only mentioned.

  9. Dynamic measurements of gear tooth friction and load

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1991-01-01

    As part of a program to study fundamental mechanisms of gear noise, static and dynamic gear tooth strain measurements were made on the NASA gear-noise rig. Tooth-fillet strains from low-contact ratio-spur gears were recorded for 28 operating conditions. A method is introduced whereby strain gage measurements taken from both the tension and compression sides of a gear tooth can be transformed into the normal and frictional loads on the tooth. This technique was applied to both the static and dynamic strain data. The static case results showed close agreement with expected results. For the dynamic case, the normal-force computation produced very good results, but the friction results, although promising, were not as accurate. Tooth sliding friction strongly affected the signal from the strain gage on the tensionside of the tooth. The compression gage was affected by friction to a much lesser degree. The potential of the method to measure friction force was demonstrated, but further refinement will be required before this technique can be used to measure friction forces dynamically with an acceptable degree of accuracy.

  10. Gear and Transmission Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1997-01-01

    This paper is a review of some of the research work of the NASA Lewis Research Center Mechanical Components Branch. It includes a brief review of the NASA Lewis Research Center and the Mechanical Components Branch. The research topics discussed are crack propagation of gear teeth, gear noise of spiral bevel and other gears, design optimization methods, methods we have investigated for transmission diagnostics, the analytical and experimental study of gear thermal conditions, the analytical and experimental study of split torque systems, the evaluation of several new advanced gear steels and transmission lubricants and the evaluation of various aircraft transmissions. The area of research needs for gearing and transmissions is also discussed.

  11. Balancing Dynamic Strength of Spur Gears Operated at Extended Center Distance

    NASA Technical Reports Server (NTRS)

    Lin, Hsiang Hsi; Liou, Chuen-Huei; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    This paper presents an analytical study on using hob offset to balance the dynamic tooth strength of spur gears operated at a center distance greater than the standard value. This study is an extension of a static study by Mabie and others. The study was limited to the offset values that assure the pinion and gear teeth will neither be undercut nor become pointed. The analysis presented in this paper was performed using DANST-PC, a new version of the NASA gear dynamics code. The operating speed of the transmission influences the amount of hob offset required to equalize the dynamic stresses in the pinion and gear. The optimum hob offset for the pinion was found to vary within a small range as the speed changes. The optimum value is generally greater than the optimum value found by static procedures. For gears that must operate over a wide range of speeds, an average offset value may be used.

  12. Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1986-01-01

    How dynamic load affects the surface pitting fatigue life of external spur gears was predicted by using the NASA computer program TELSGE. Parametric studies were performed over a range of various gear parameters modeling low-contact-ratio involute spur gears. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact. Gear mesh operating speed strongly affected predicted dynamic load and life. Meshes operating at a resonant speed or one-half the resonant speed had significantly shorter lives. Dynamic life factors for gear surface pitting fatigue were developed on the basis of the parametric studies. In general, meshes with higher contact ratios had higher dynamic life factors than meshes with lower contact ratios. A design chart was developed for hand calculations of dynamic life factors.

  13. Gear noise, vibration, and diagnostic studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Oswald, Fred B.; Townsend, Dennis P.; Coy, John J.

    1990-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command are involved in a joint research program to advance the technology of rotorcraft transmissions. This program consists of analytical as well as experimental efforts to achieve the overall goals of reducing weight, noise, and vibration, while increasing life and reliability. Recent analytical activities are highlighted in the areas of gear noise, vibration, and diagnostics performed in-house and through NASA and U.S. Army sponsored grants and contracts. These activities include studies of gear tooth profiles to reduce transmission error and vibration as well as gear housing and rotordynamic modeling to reduce structural vibration transmission and noise radiation, and basic research into current gear failure diagnostic methodologies. Results of these activities are presented along with an overview of near term research plans in the gear noise, vibration, and diagnostics area.

  14. A comparison between theoretical prediction and experimental measurement of the dynamic behavior of spur gears

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Forrester, B. David; Oswald, Fred B.; Townsend, Dennis P.

    1992-01-01

    A comparison was made between computer model predictions of gear dynamics behavior and experimental results. The experimental data were derived from the NASA gear noise rig, which was used to record dynamic tooth loads and vibration. The experimental results were compared with predictions from the DSTO Aeronautical Research Laboratory's gear dynamics code for a matrix of 28 load speed points. At high torque the peak dynamic load predictions agree with the experimental results with an average error of 5 percent in the speed range 800 to 6000 rpm. Tooth separation (or bounce), which was observed in the experimental data for light torque, high speed conditions, was simulated by the computer model. The model was also successful in simulating the degree of load sharing between gear teeth in the multiple tooth contact region.

  15. Dynamics of early planetary gear trains

    NASA Technical Reports Server (NTRS)

    August, R.; Kasuba, R.; Frater, J. L.; Pintz, A.

    1984-01-01

    A method to analyze the static and dynamic loads in a planetary gear train was developed. A variable-variable mesh stiffness (VVMS) model was used to simulate the external and internal spur gear mesh behavior, and an equivalent conventional gear train concept was adapted for the dynamic studies. The analysis can be applied either involute or noninvolute spur gearing. By utilizing the equivalent gear train concept, the developed method may be extended for use for all types of epicyclic gearing. The method is incorporated into a computer program so that the static and dynamic behavior of individual components can be examined. Items considered in the analysis are: (1) static and dynamic load sharing among the planets; (2) floating or fixed Sun gear; (3) actual tooth geometry, including errors and modifications; (4) positioning errors of the planet gears; (5) torque variations due to noninvolute gear action. A mathematical model comprised of power source, load, and planetary transmission is used to determine the instantaneous loads to which the components are subjected. It considers fluctuating output torque, elastic behavior in the system, and loss of contact between gear teeth. The dynamic model has nine degrees of freedom resulting in a set of simultaneous second order differential equations with time varying coefficients, which are solved numerically. The computer program was used to determine the effect of manufacturing errors, damping and component stiffness, and transmitted load on dynamic behavior. It is indicated that this methodology offers the designer/analyst a comprehensive tool with which planetary drives may be quickly and effectively evaluated.

  16. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Li, C. James; Lee, Hyungdae

    2005-07-01

    This paper presents a model-based method that predicts remaining useful life of a gear with a fatigue crack. The method consists of an embedded model to identify gear meshing stiffness from measured gear torsional vibration, an inverse method to estimate crack size from the estimated meshing stiffness; a gear dynamic model to simulate gear meshing dynamics and determine the dynamic load on the cracked tooth; and a fast crack propagation model to forecast the remaining useful life based on the estimated crack size and dynamic load. The fast crack propagation model was established to avoid repeated calculations of FEM and facilitate field deployment of the proposed method. Experimental studies were conducted to validate and demonstrate the feasibility of the proposed method for prognosis of a cracked gear.

  17. Investigation of Dynamic Force/Vibration Transmission Characteristics of Four-Square Type Gear Durability Test Machines

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet

    2002-01-01

    In this study, design requirements for a dynamically viable, four-square type gear test machine are investigated. Variations of four-square type gear test machines have been in use for durability and dynamics testing of both parallel- and cross-axis gear set. The basic layout of these machines is illustrated. The test rig is formed by two gear pairs, of the same reduction ratio, a test gear pair and a reaction gear pair, connected to each other through shafts of certain torsional flexibility to form an efficient, closed-loop system. A desired level of constant torque is input to the circuit through mechanical (a split coupling with a torque arm) or hydraulic (a hydraulic actuator) means. The system is then driven at any desired speed by a small DC motor. The main task in hand is the isolation of the test gear pair from the reaction gear pair under dynamic conditions. Any disturbances originated at the reaction gear mesh might potentially travel to the test gearbox, altering the dynamic loading conditions of the test gear mesh, and hence, influencing the outcome of the durability or dynamics test. Therefore, a proper design of connecting structures becomes a major priority. Also, equally important is the issue of how close the operating speed of the machine is to the resonant frequencies of the gear meshes. This study focuses on a detailed analysis of the current NASA Glenn Research Center gear pitting test machine for evaluation of its resonance and vibration isolation characteristics. A number of these machines as the one illustrated has been used over last 30 years to establish an extensive database regarding the influence of the gear materials, processes surface treatments and lubricants on gear durability. This study is intended to guide an optimum design of next generation test machines for the most desirable dynamic characteristics.

  18. Expansion of epicyclic gear dynamic analysis program

    NASA Technical Reports Server (NTRS)

    Boyd, Linda Smith; Pike, James A.

    1987-01-01

    The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.

  19. Effects of gear box vibration and mass imbalance on the dynamics of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, D. P.

    1991-01-01

    The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  20. Effects of gear box vibration and mass imbalance on the dynamics of multi-stage gear transmissions

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Tu, Yu K.; Zakrajsek, James J.; Townsend, Dennis P.

    1991-01-01

    The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  1. An Overview of Landing Gear Dynamics

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.

    1999-01-01

    One of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Shimmy and brake-induced vibrations can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. To increase understanding of these problems, a literature survey was performed. The major focus is on work from the last ten years. Some older publications are included to understand the longevity of the problem and the background from earlier researchers. The literature survey includes analyses, testing, modeling, and simulation of aircraft landing gear; and experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear. The paper presents an overview of the problem, background information, and a history of landing gear dynamics problems and solutions. Based on the survey an assessment and recommendations of the most critically needed enhancements to the state of the art will be presented. The status of Langley work contributing to this activity will be given.

  2. Linear dynamic coupling in geared rotor systems

    NASA Technical Reports Server (NTRS)

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  3. Effect of Bearing Dynamic Stiffness on Gear Vibration

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    2002-01-01

    Noise is a major consideration in the design of high performance geared transmissions, such as for helicopters. Transmission error, that is, the accuracy with which the driven gear follows the driver gear, is a common indicator of noise generation. It is well known that bearing properties have a strong influence on shaft dynamics. However, up to now the contribution of bearings to transmission error has received little attention. In this paper, a torsional-axial-lateral geared rotor analysis is used to determine dynamic transmission error as a function of bearing stiffness and damping. Bearings have a similar effect as found in shaft dynamics; transmission error can be reduced more than 10 decibels by appropriate selection of bearing properties.

  4. A locomotive-track coupled vertical dynamics model with gear transmissions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-02-01

    A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel-rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive-track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive-track dynamics system via the wheel-rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel-rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel-rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.

  5. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  6. Molecular Dynamics Simulation of Carbon Nanotube Based Gears

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.

  7. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  8. Nonlinear dynamics of planetary gears using analytical and finite element models

    NASA Astrophysics Data System (ADS)

    Ambarisha, Vijaya Kumar; Parker, Robert G.

    2007-05-01

    Vibration-induced gear noise and dynamic loads remain key concerns in many transmission applications that use planetary gears. Tooth separations at large vibrations introduce nonlinearity in geared systems. The present work examines the complex, nonlinear dynamic behavior of spur planetary gears using two models: (i) a lumped-parameter model, and (ii) a finite element model. The two-dimensional (2D) lumped-parameter model represents the gears as lumped inertias, the gear meshes as nonlinear springs with tooth contact loss and periodically varying stiffness due to changing tooth contact conditions, and the supports as linear springs. The 2D finite element model is developed from a unique finite element-contact analysis solver specialized for gear dynamics. Mesh stiffness variation excitation, corner contact, and gear tooth contact loss are all intrinsically considered in the finite element analysis. The dynamics of planetary gears show a rich spectrum of nonlinear phenomena. Nonlinear jumps, chaotic motions, and period-doubling bifurcations occur when the mesh frequency or any of its higher harmonics are near a natural frequency of the system. Responses from the dynamic analysis using analytical and finite element models are successfully compared qualitatively and quantitatively. These comparisons validate the effectiveness of the lumped-parameter model to simulate the dynamics of planetary gears. Mesh phasing rules to suppress rotational and translational vibrations in planetary gears are valid even when nonlinearity from tooth contact loss occurs. These mesh phasing rules, however, are not valid in the chaotic and period-doubling regions.

  9. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  10. A non-linear mathematical model for dynamic analysis of spur gears including shaft and bearing dynamics

    NASA Technical Reports Server (NTRS)

    Ozguven, H. Nevzat

    1991-01-01

    A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the nonlinear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the 'static transmission error method' developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.

  11. Dynamic Analysis of Geared Rotors by Finite Elements

    NASA Technical Reports Server (NTRS)

    Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.

    1992-01-01

    A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.

  12. Multi-mesh gear dynamics program evaluation and enhancements

    NASA Technical Reports Server (NTRS)

    Boyd, L. S.; Pike, J.

    1985-01-01

    A multiple mesh gear dynamics computer program was continually developed and modified during the last four years. The program can handle epicyclic gear systems as well as single mesh systems with internal, buttress, or helical tooth forms. The following modifications were added under the current funding: variable contact friction, planet cage and ring gear rim flexibility options, user friendly options, dynamic side bands, a speed survey option and the combining of the single and multiple mesh options into one general program. The modified program was evaluated by comparing calculated values to published test data and to test data taken on a Hamilton Standard turboprop reduction gear-box. In general, the correlation between the test data and the analytical data is good.

  13. Two stage gear tooth dynamics program

    NASA Technical Reports Server (NTRS)

    Boyd, Linda S.

    1989-01-01

    The epicyclic gear dynamics program was expanded to add the option of evaluating the tooth pair dynamics for two epicyclic gear stages with peripheral components. This was a practical extension to the program as multiple gear stages are often used for speed reduction, space, weight, and/or auxiliary units. The option was developed for either stage to be a basic planetary, star, single external-external mesh, or single external-internal mesh. The two stage system allows for modeling of the peripherals with an input mass and shaft, an output mass and shaft, and a connecting shaft. Execution of the initial test case indicated an instability in the solution with the tooth paid loads growing to excessive magnitudes. A procedure to trace the instability is recommended as well as a method of reducing the program's computation time by reducing the number of boundary condition iterations.

  14. A dynamic model to determine vibrations in involute helical gears

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Vedmar, L.

    2003-02-01

    A method to determine the dynamic load between two rotating elastic helical gears is presented. The stiffness of the gear teeth is calculated using the finite element method and includes the contribution from the elliptic distributed tooth load. To make sure that the new incoming contacts which are the main excitation source are properly simulated, the necessary deformation of the gears is determined by using the true geometry and positions of the gears for every time step of the dynamic calculation. This allows the contact to be positioned outside the plane of action. A numerical example is presented with figures that show the behaviour of the dynamic transmission error as well as the variation of the contact pressure due to the dynamic load for different rotational speeds.

  15. Hybrid Gear Preliminary Results-Application of Composites to Dynamic Mechanical Components

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Roberts Gary D.; Sinnamon, R.; Stringer, David B.; Dykas, Brian D.; Kohlman, Lee W.

    2012-01-01

    Composite spur gears were fabricated and then tested at NASA Glenn Research Center. The composite material served as the web of the gear between the gear teeth and a metallic hub for mounting to the torque-applying shaft. The composite web was bonded only to the inner and outer hexagonal features that were machined from an initially all-metallic aerospace quality spur gear. The Hybrid Gear was tested against an all-steel gear and against a mating Hybrid Gear. As a result of the composite to metal fabrication process used, the concentricity of the gears were reduced from their initial high-precision value. Regardless of the concentricity error, the hybrid gears operated successfully for over 300 million cycles at 10000 rpm and 490 in.*lbs torque. Although the design was not optimized for weight, the composite gears were found to be 20% lighter than the all-steel gears. Free vibration modes and vibration/noise tests were also conduct to compare the vibration and damping characteristic of the Hybrid Gear to all-steel gears. The initial results indicate that this type of hybrid design may have a dramatic effect on drive system weight without sacrificing strength.

  16. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  17. Dynamic Capacity and Surface Fatigue Life for Spur and Helical Gears

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Townsend, D. P.; Zaretsky, E. V.

    1975-01-01

    A mathematical model for surface fatigue life of gear, pinion, or entire meshing gear train is given. The theory is based on a previous statistical approach for rolling-element bearings. Equations are presented which give the dynamic capacity of the gear set. The dynamic capacity is the transmitted tangential load which gives a 90 percent probability of survival of the gear set for one million pinion revolutions. The analytical results are compared with test data for a set of AISI 9310 spur gears operating at a maximum Hertz stress of 1.71 billion N/sq m and 10,000 rpm. The theoretical life predictions are shown to be good when material constants obtained from rolling-element bearing tests were used in the gear life model.

  18. Locomotive dynamic performance under traction/braking conditions considering effect of gear transmissions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2018-07-01

    Traction or braking operations are usually applied to trains or locomotives for acceleration, speed adjustment, and stopping. During these operations, gear transmission equipment plays a very significant role in the delivery of traction or electrical braking power. Failures of the gear transmissions are likely to cause power loses and even threaten the operation safety of the train. Its dynamic performance is closely related to the normal operation and service safety of the entire train, especially under some emergency braking conditions. In this paper, a locomotive-track coupled vertical-longitudinal dynamics model is employed with considering the dynamic action from the gear transmissions. This dynamics model enables the detailed analysis and more practical simulation on the characteristics of power transmission path, namely motor-gear transmission-wheelset-longitudinal motion of locomotive, especially for traction or braking conditions. Multi-excitation sources, such as time-varying mesh stiffness and nonlinear wheel-rail contact excitations, are considered in this study. This dynamics model is then validated by comparing the simulated results with the experimental test results under braking conditions. The calculated results indicate that involvement of gear transmission could reveal the load reduction of the wheelset due to transmitted forces. Vibrations of the wheelset and the motor are dominated by variation of the gear dynamic mesh forces in the low speed range and by rail geometric irregularity in the higher speed range. Rail vertical geometric irregularity could also cause wheelset longitudinal vibrations, and do modulations to the gear dynamic mesh forces. Besides, the hauling weight has little effect on the locomotive vibrations and the dynamic mesh forces of the gear transmissions for both traction and braking conditions under the same running speed.

  19. Measurement of Gear Tooth Dynamic Friction

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.

  20. Geared power transmission technology

    NASA Technical Reports Server (NTRS)

    Coy, J. J.

    1983-01-01

    The historical path of the science and art of gearing is reviewed. The present state of gearing technology is discussed along with examples of some of the NASA-sponsored contributions to gearing technology. Future requirements in gearing are summarized.

  1. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-11-01

    Locomotive is used to drag trailers to move or supply the braking forces to slow the running speed of a train. The electromagnetic torque of the motor is always transmitted by the gear transmission system to the wheelset for generation of the tractive or braking forces at the wheel-rail contact interface. Consequently, gear transmission system is significant for power delivery of a locomotive. This paper develops a comprehensive locomotive-track vertical-longitudinal coupled dynamics model with dynamic effect of gear transmissions. This dynamics model enables considering the coupling interactions between the gear transmission motion, the vertical and the longitudinal motions of the vehicle, and the vertical vibration of the track structure. In this study, some complicated dynamic excitations, such as the gear time-varying mesh stiffness, nonlinear gear tooth backlash, the nonlinear wheel-rail normal contact force and creep force, and the rail vertical geometrical irregularity, are considered. Then, the dynamic responses of the locomotive under the tractive conditions are demonstrated by numerical simulations based on the established dynamics model and by experimental test. The developed dynamics model is validated by the good agreement between the experimental and the theoretical results. The calculated results reveal that the gear transmission system has strong dynamic interactions with the wheel-rail contact interface including both the vertical and the longitudinal motions, and it has negligible effect on the vibrations of the bogie frame and carbody.

  2. Analytical and experimental study of vibrations in a gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.

    1991-01-01

    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.

  3. A review of gear housing dynamics and acoustics literature

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Lim, Teik Chin

    1988-01-01

    A review of the available literature on gear housing vibration and noise reduction is presented. Analytical and experimental methodologies used for bearing dynamics, housing vibration and noise, mounts and suspensions, and the overall geared and housing system are discussed. Typical design guidelines as outlined by various investigators are given.

  4. Dynamic analysis of spiral bevel and hypoid gears with high-order transmission errors

    NASA Astrophysics Data System (ADS)

    Yang, J. J.; Shi, Z. H.; Zhang, H.; Li, T. X.; Nie, S. W.; Wei, B. Y.

    2018-03-01

    A new gear surface modification methodology based on curvature synthesis is proposed in this study to improve the transmission performance. The generated high-order transmission error (TE) for spiral bevel and hypoid gears is proved to reduce the vibration of geared-rotor system. The method is comprised of the following steps: Firstly, the fully conjugate gear surfaces with pinion flank modified according to the predesigned relative transmission movement are established based on curvature correction. Secondly, a 14-DOF geared-rotor system model considering backlash nonlinearity is used to evaluate the effect of different orders of TE on the dynamic performance a hypoid gear transmission system. For case study, numerical simulation is performed to illustrate the dynamic response of hypoid gear pair with parabolic, fourth-order and sixth-order transmission error derived. The results show that the parabolic TE curve has higher peak to peak amplitude compared to the other two types of TE. Thus, the excited dynamic response also shows larger amplitude at response peaks. Dynamic responses excited by fourth and sixth order TE also demonstrate distinct response components due to their different TE period which is expected to generate different sound quality or other acoustic characteristics.

  5. Dynamic load-sharing characteristic analysis of face gear power-split gear system based on tooth contact characteristics

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Hu, Yahui

    2018-04-01

    The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.

  6. Dynamic Analysis for a Geared Turbofan Engine with Variable Area Fan Nozzle

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Thomas, George L.

    2017-01-01

    Aggressive design goals have been set for future aero-propulsion systems with regards to fuel economy, noise, and emissions. To meet these challenging goals, advanced propulsion concepts are being explored and current operating margins are being re-evaluated to find additional concessions that can be made. One advanced propulsion concept being evaluated is a geared turbofan with a variable area fan nozzle (VAFN), developed by NASA. This engine features a small core, a fan driven by the low pressure turbine through a reduction gearbox, and a shape memory alloy (SMA)-actuated VAFN. The VAFN is designed to allow both a small exit area for efficient operation at cruise, while being able to open wider at high power conditions to reduce backpressure on the fan and ensure a safe level of stall margin is maintained. The VAFN is actuated via a SMA-based system instead of a conventional system to decrease overall weight of the system, however, SMA-based actuators respond relatively slowly, which introduces dynamic issues that are investigated in this work. This paper describes both a control system designed specifically for issues associated with SMAs, and dynamic analysis of the geared turbofan VAFN with the SMA actuators. Also, some future recommendations are provided for this type of propulsion system.

  7. A review of gear housing dynamics and acoustics literature

    NASA Technical Reports Server (NTRS)

    Lim, Teik Chin; Singh, Rajendra

    1989-01-01

    A review of the available literature on gear housing vibration and noise radiation is presented. Analytical and experimental methodologies used for bearing dynamics, housing vibration and noise, mounts and suspensions, and the overall gear and housing system are discussed. Typical design guidelines, as outlined by various investigators, are also included. Results of this review indicate that although many attempts were made to characterize the dynamics of gearbox system components, no comprehensive set of design criteria currently exist. Moreover, the literature contains conflicting reports concerning relevant design guidelines.

  8. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structures. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville Distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  9. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  10. Analytical and Experimental Vibration Analysis of a Faulty Gear System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-01-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  11. Nonlinear Dynamics of a Multistage Gear Transmission System with Multi-Clearance

    NASA Astrophysics Data System (ADS)

    Xiang, Ling; Zhang, Yue; Gao, Nan; Hu, Aijun; Xing, Jingtang

    The nonlinear torsional model of a multistage gear transmission system which consists of a planetary gear and two parallel gear stages is established with time-varying meshing stiffness, comprehensive gear error and multi-clearance. The nonlinear dynamic responses are analyzed by applying the reference of backlash bifurcation parameters. The motions of the system on the change of backlash are identified through global bifurcation diagram, largest Lyapunov exponent (LLE), FFT spectra, Poincaré maps, the phase diagrams and time series. The numerical results demonstrate that the system exhibits rich features of nonlinear dynamics such as the periodic motion, nonperiodic states and chaotic states. It is found that the sun-planet backlash has more complex effect on the system than the ring-planet backlash. The motions of the system with backlash of parallel gear are diverse including some different multi-periodic motions. Furthermore, the state of the system can change from chaos into quasi-periodic behavior, which means that the dynamic behavior of the system is composed of more stable components with the increase of the backlash. Correspondingly, the parameters of the system should be designed properly and controlled timely for better operation and enhancing the life of the system.

  12. Nonlinear dynamics analysis of the spur gear system for railway locomotive

    NASA Astrophysics Data System (ADS)

    Wang, Junguo; He, Guangyue; Zhang, Jie; Zhao, Yongxiang; Yao, Yuan

    2017-02-01

    Considering the factors such as the nonlinearity backlash, static transmission error and time-varying meshing stiffness, a three-degree-of-freedom torsional vibration model of spur gear transmission system for a typical locomotive is developed, in which the wheel/rail adhesion torque is considered as uncertain but bounded parameter. Meantime, the Ishikawa method is used for analysis and calculation of the time-varying mesh stiffness of the gear pair in meshing process. With the help of bifurcation diagrams, phase plane diagrams, Poincaré maps, time domain response diagrams and amplitude-frequency spectrums, the effects of the pinion speed and stiffness on the dynamic behavior of gear transmission system for locomotive are investigated in detail by using the numerical integration method. Numerical examples reveal various types of nonlinear phenomena and dynamic evolution mechanism involving one-period responses, multi-periodic responses, bifurcation and chaotic responses. Some research results present useful information to dynamic design and vibration control of the gear transmission system for railway locomotive.

  13. Non-linear dynamic analysis of geared systems. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet

    1990-01-01

    Under driving conditions, a typical geared system may be subjected to large dynamic loads. Also, the vibration level of the geared system is directly related to the noise radiated from the gear box. The steady state dynamic behavior of the system is examined in order to design reliable and quiet transmissions. The scope is limited to a system containing a spur gear pair with backlash and periodically time varying mesh stiffness, and rolling element bearings with clearance type nonlinearities. The internal static transmission error at the gear mesh, which is of importance from high frequency noise and vibration control view point, is considered in the formulation in sinusoidal or periodic form. A dynamic finite element model of the linear time invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and forced vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solutions with the finite element model results. Using the reduced order formulations, a three degree of freedom dynamic model is developed which includes nonlinearities associated with radical clearances in the radial rolling element bearings, backlash between a spur gear pair and periodically varying gear mesh stiffness. As a limiting case, a single degree of freedom model of the spur gear pair with backlash is considered and mathematical conditions for tooth separation and back collision are defined. Both digital simulation technique and analytical models such as method of harmonic balance and the method of multiple scales were used to develop the steady state frequency response characteristics for various nonlinear and/or time varying cases.

  14. Shuttle Rudder/Speed Brake Power Drive Unit (PDU) Gear Scuffing Tests With Flight Gears

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Oswald, Fred B.; Krants, Timothy L.

    2005-01-01

    Scuffing-like damage has been found on the tooth surfaces of gears 5 and 6 of the NASA space shuttle rudder/speed brake power drive unit (PDU) number 2 after the occurrence of a transient back-driving event in flight. Tests were conducted using a pair of unused spare flight gears in a bench test at operating conditions up to 2866 rpm and 1144 in.-lb at the input ring gear and 14,000 rpm and 234 in.-lb at the output pinion gear, corresponding to a power level of 52 hp. This test condition exceeds the maximum estimated conditions expected in a backdriving event thought to produce the scuffing damage. Some wear marks were produced, but they were much less severe than the scuffing damaged produced during shuttle flight. Failure to produce scuff damage like that found on the shuttle may be due to geometrical variations between the scuffed gears and the gears tested herein, more severe operating conditions during the flight that produced the scuff than estimated, the order of the test procedures, the use of new hydraulic oil, differences between the dynamic response of the flight gearbox and the bench-test gearbox, or a combination of these. This report documents the test gears, apparatus, and procedures, summarizes the test results, and includes a discussion of the findings, conclusions, and recommendations.

  15. Dynamic Analysis of Spur Gear Transmissions (DANST). PC Version 3.00 User Manual

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Lin, Hsiang Hsi; Delgado, Irebert R.

    1996-01-01

    DANST is a FORTRAN computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the static transmission error, dynamic load, tooth bending stress and other properties of spur gears as they are influenced by operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratios ranging from one to three. It was designed to be easy to use and it is extensively documented in several previous reports and by comments in the source code. This report describes installing and using a new PC version of DANST, covers input data requirements and presents examples.

  16. Dynamic characteristic of electromechanical coupling effects in motor-gear system

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-06-01

    Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.

  17. Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris

    2013-01-01

    Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.

  18. Application of tire dynamics to aircraft landing gear design analysis

    NASA Technical Reports Server (NTRS)

    Black, R. J.

    1983-01-01

    The tire plays a key part in many analyses used for design of aircraft landing gear. Examples include structural design of wheels, landing gear shimmy, brake whirl, chatter and squeal, complex combination of chatter and shimmy on main landing gear (MLG) systems, anti-skid performance, gear walk, and rough terrain loads and performance. Tire parameters needed in the various analyses are discussed. Two tire models are discussed for shimmy analysis, the modified Moreland approach and the von Schlippe-Dietrich approach. It is shown that the Moreland model can be derived from the Von Schlippe-Dietrich model by certain approximations. The remaining analysis areas are discussed in general terms and the tire parameters needed for each are identified. Accurate tire data allows more accurate design analysis and the correct prediction of dynamic performance of aircraft landing gear.

  19. Influence of Tooth Spacing Error on Gears With and Without Profile Modifications

    NASA Technical Reports Server (NTRS)

    Padmasolala, Giri; Lin, Hsiang H.; Oswald, Fred B.

    2000-01-01

    A computer simulation was conducted to investigate the effectiveness of profile modification for reducing dynamic loads in gears with different tooth spacing errors. The simulation examined varying amplitudes of spacing error and differences in the span of teeth over which the error occurs. The modification considered included both linear and parabolic tip relief. The analysis considered spacing error that varies around most of the gear circumference (similar to a typical sinusoidal error pattern) as well as a shorter span of spacing errors that occurs on only a few teeth. The dynamic analysis was performed using a revised version of a NASA gear dynamics code, modified to add tooth spacing errors to the analysis. Results obtained from the investigation show that linear tip relief is more effective in reducing dynamic loads on gears with small spacing errors but parabolic tip relief becomes more effective as the amplitude of spacing error increases. In addition, the parabolic modification is more effective for the more severe error case where the error is spread over a longer span of teeth. The findings of this study can be used to design robust tooth profile modification for improving dynamic performance of gear sets with different tooth spacing errors.

  20. Dynamic characteristics of motor-gear system under load saltations and voltage transients

    NASA Astrophysics Data System (ADS)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-02-01

    In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.

  1. Dynamic analysis of a geared rotor system considering a slant crack on the shaft

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Zhao, Jingshan; Chu, Fulei

    2012-12-01

    The vibration problems associated with geared systems have been the focus of research in recent years. As the torque is mainly transmitted by the geared system, a slant crack is more likely to appear on the gear shaft. Due to the slant crack and its breathing mechanism, the dynamic behavior of cracked geared system would differ distinctly with that of uncracked system. Relatively less work is reported on slant crack in the geared rotor system during the past research. Thus, the dynamic analysis of a geared rotor-bearing system with a breathing slant crack is performed in the paper. The finite element model of a geared rotor with slant crack is presented. Based on fracture mechanics, the flexibility matrix for the slant crack is derived that accounts for the additional stress intensity factors. Three methods for whirling analysis, parametric instability analysis and steady-state response analysis are introduced. Then, by taking a widely used one-stage geared rotor-bearing system as an example, the whirling frequencies of the equivalent time-invariant system, two types of instability regions and steady-state response under the excitations of unbalance forces and tooth transmission errors, are computed numerically. The effects of crack depth, position and type (transverse or slant) on the system dynamic behaviors are considered in the discussion. The comparative study with slant cracked geared rotor is carried out to explore distinctive features in their modal, parametric instability and frequency response behaviors.

  2. High Pressure Angle Gears: Comparison to Typical Gear Designs

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zabrajsek, Andrew J.

    2010-01-01

    A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).

  3. A method for landing gear modeling and simulation with experimental validation

    NASA Technical Reports Server (NTRS)

    Daniels, James N.

    1996-01-01

    This document presents an approach for modeling and simulating landing gear systems. Specifically, a nonlinear model of an A-6 Intruder Main Gear is developed, simulated, and validated against static and dynamic test data. This model includes nonlinear effects such as a polytropic gas model, velocity squared damping, a geometry governed model for the discharge coefficients, stick-slip friction effects and a nonlinear tire spring and damping model. An Adams-Moulton predictor corrector was used to integrate the equations of motion until a discontinuity caused by a stick-slip friction model was reached, at which point, a Runga-Kutta routine integrated past the discontinuity and returned the problem solution back to the predictor corrector. Run times of this software are around 2 mins. per 1 sec. of simulation under dynamic circumstances. To validate the model, engineers at the Aircraft Landing Dynamics facilities at NASA Langley Research Center installed one A-6 main gear on a drop carriage and used a hydraulic shaker table to provide simulated runway inputs to the gear. Model parameters were tuned to produce excellent agreement for many cases.

  4. Analysis of the Effects of Surface Pitting and Wear on the Vibrations of a Gear Transmission System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Polyshchuk, V.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1994-01-01

    A comprehensive procedure to simulate and analyze the vibrations in a gear transmission system with surface pitting, 'wear' and partial tooth fracture of the gear teeth is presented. An analytical model was developed where the effects of surface pitting and wear of the gear tooth were simulated by phase and magnitude changes in the gear mesh stiffness. Changes in the gear mesh stiffness were incorporated into each gear-shaft model during the global dynamic simulation of the system. The overall dynamics of the system were evaluated by solving for the transient dynamics of each shaft system simultaneously with the vibration of the gearbox structure. In order to reduce the number of degrees-of-freedom in the system, a modal synthesis procedure was used in the global transient dynamic analysis of the overall transmission system. An FFT procedure was used to transform the averaged time signal into the frequency domain for signature analysis. In addition, the Wigner-Ville distribution was also introduced to examine the gear vibration in the joint time frequency domain for vibration pattern recognition. Experimental results obtained from a gear fatigue test rig at NASA Lewis Research Center were used to evaluate the analytical model.

  5. Experimental and analytical determination of characteristics affecting light aircraft landing-gear dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.

    1977-01-01

    An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.

  6. Linear and non-linear dynamic models of a geared rotor-bearing system

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet; Singh, Rajendra

    1990-01-01

    A three degree of freedom non-linear model of a geared rotor-bearing system with gear backlash and radial clearances in rolling element bearings is proposed here. This reduced order model can be used to describe the transverse-torsional motion of the system. It is justified by comparing the eigen solutions yielded by corresponding linear model with the finite element method results. Nature of nonlinearities in bearings is examined and two approximate nonlinear stiffness functions are proposed. These approximate bearing models are verified by comparing their frequency responses with the results given by the exact form of nonlinearity. The proposed nonlinear dynamic model of the geared rotor-bearing system can be used to investigate the dynamic behavior and chaos.

  7. Double Helical Gear Performance Results in High Speed Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2009-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  8. Double Helical Gear Performance Results in High Speed Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  9. Elasto-dynamic analysis of a gear pump-Part III: Experimental validation procedure and model extension to helical gears

    NASA Astrophysics Data System (ADS)

    Mucchi, E.; Dalpiaz, G.

    2015-01-01

    This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model's experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory globally, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure evolution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with the

  10. An Investigation of the Dynamic Response of Spur Gear Teeth with Moving Loads

    NASA Technical Reports Server (NTRS)

    Passerello, C. E.; Shuey, L. W.

    1987-01-01

    Two concepts relating to gear dynamics were studied. The first phase of the analysis involved the study of the effect of the speed of a moving load on the dynamic deflections of a gear tooth. A single spur gear tooth modelled using finite elements was subjected to moving loads with variable velocities. The tooth tip deflection time histories were plotted, from which it was seen that the tooth tip deflection consisted of a quasistatic response with an oscillatory response superimposed on it whose amplitude was dependent on the type of load engagement. Including the rim in the analysis added flexibility to the model but did not change the general behavior of the system. The second part of the analysis involved an investigation to determine the effect on the dynamic response of the inertia of the gear tooth. A simplified analysis using meshing cantilever beams was used. In one case, the beams were assumed massless. In the other, the mass (inertia) of the beams was included. From this analysis it was found that the inertia of the tooth did not affect the dynamic response of meshing cantilever beams.

  11. Non-linear dynamic analysis of geared systems, part 2

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet

    1990-01-01

    A good understanding of the steady state dynamic behavior of a geared system is required in order to design reliable and quiet transmissions. This study focuses on a system containing a spur gear pair with backlash and periodically time-varying mesh stiffness, and rolling element bearings with clearance type non-linearities. A dynamic finite element model of the linear time-invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and force vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solution with the finite element model results. Several key system parameters such as mean load and damping ratio are identified and their effects on the non-linear frequency response are evaluated quantitatively. Other fundamental issues such as the dynamic coupling between non-linear modes, dynamic interactions between component non-linearities and time-varying mesh stiffness, and the existence of subharmonic and chaotic solutions including routes to chaos have also been examined in depth.

  12. Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high contact ratio gears

    NASA Technical Reports Server (NTRS)

    Lee, Chinwai; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1990-01-01

    A computer simulation for the dynamic response of high-contact-ratio spur gear transmissions is presented. High contact ratio gears have the potential to produce lower dynamic tooth loads and minimum root stress but they can be sensitive to tooth profile errors. The analysis presented examines various profile modifications under realistic loading conditions. The effect of these modifications on the dynamic load (force) between mating gear teeth and the dynamic root stress is presented. Since the contact stress is dependent on the dynamic load, minimizing dynamic loads will also minimize contact stresses. It is shown that the combination of profile modification and the applied load (torque) carried by a gear system has a significant influence on gear dynamics. The ideal modification at one value of applied load will not be the best solution for a different load. High-contact-ratio gears were found to require less modification than standard low-contact-ratio gears. High-contact-ratio gears are more adversely affected by excess modification than by under modification. In addition, the optimal profile modification required to minimize the dynamic load (hence the contact stress) on a gear tooth differs from the optimal modification required to minimize the dynamic root (bending) stress. Computer simulation can help find the design tradeoffs to determine the best profile modification to satisfy the conflicting constraints of minimizing both the load and root stress in gears which must operate over a range of applied loads.

  13. Analysis of dynamic behavior of multiple-stage planetary gear train used in wind driven generator.

    PubMed

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator.

  14. Nonlinear dynamic model of a gear-rotor-bearing system considering the flash temperature

    NASA Astrophysics Data System (ADS)

    Gou, Xiangfeng; Zhu, Lingyun; Qi, Changjun

    2017-12-01

    The instantaneous flash temperature is an important factor for gears in service. To investigate the effect of the flash temperature of a tooth surface on the dynamics of the spur gear system, a modified nonlinear dynamic model of a gear-rotor-bearing system is established. The factors such as the contact temperature of the tooth surface, time-varying stiffness, tooth surface friction, backlash, the comprehensive transmission error and so on are considered. The flash temperature of a tooth surface of pinion and gear is formulated according to Blok's flash temperature theory. The mathematical expression of the contact temperature of the tooth surface varied with time is derived and the tooth profile deformation caused by the change of the flash temperature of the tooth surface is calculated. The expression of the mesh stiffness varied with the flash temperature of the tooth surface is derived based on Hertz contact theory. The temperature stiffness is proposed and added to the nonlinear dynamic model of the system. The influence of load on the flash temperature of the tooth surface is analyzed in the parameters plane. The variation of the flash temperature of the tooth surface is studied. The numerical results indicate that the calculated method of the flash temperature of the gear tooth surface is effective and it can reflect the rules for the change of gear meshing temperature and sliding of the gear tooth surface. The effects of frequency, backlash, bearing clearance, comprehensive transmission error and time-varying stiffness on the nonlinear dynamics of the system are analyzed according to the bifurcation diagrams, Top Lyapunov Exponent (TLE) spectrums, phase portraits and Poincaré maps. Some nonlinear phenomena such as periodic bifurcation, grazing bifurcation, quasi-periodic bifurcation, chaos and its routes to chaos are investigated and the critical parameters are identified. The results provide an understanding of the system and serve as a useful reference

  15. Analysis of Dynamic Behavior of Multiple-Stage Planetary Gear Train Used in Wind Driven Generator

    PubMed Central

    Wang, Jungang; Wang, Yong; Huo, Zhipu

    2014-01-01

    A dynamic model of multiple-stage planetary gear train composed of a two-stage planetary gear train and a one-stage parallel axis gear is proposed to be used in wind driven generator to analyze the influence of revolution speed and mesh error on dynamic load sharing characteristic based on the lumped parameter theory. Dynamic equation of the model is solved using numerical method to analyze the uniform load distribution of the system. It is shown that the load sharing property of the system is significantly affected by mesh error and rotational speed; load sharing coefficient and change rate of internal and external meshing of the system are of obvious difference from each other. The study provides useful theoretical guideline for the design of the multiple-stage planetary gear train of wind driven generator. PMID:24511295

  16. NASA/Army Rotorcraft Transmission Research, a Review of Recent Significant Accomplishments

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    1994-01-01

    A joint helicopter transmission research program between NASA Lewis Research Center and the U.S. Army Research Lab has existed since 1970. Research goals are to reduce weight and noise while increasing life, reliability, and safety. These research goals are achieved by the NASA/Army Mechanical Systems Technology Branch through both in-house research and cooperative research projects with university and industry partners. Some recent significant technical accomplishments produced by this cooperative research are reviewed. The following research projects are reviewed: oil-off survivability of tapered roller bearings, design and evaluation of high contact ratio gearing, finite element analysis of spiral bevel gears, computer numerical control grinding of spiral bevel gears, gear dynamics code validation, computer program for life and reliability of helicopter transmissions, planetary gear train efficiency study, and the Advanced Rotorcraft Transmission (ART) program.

  17. X-38 Landing Gear Skid Test Report

    NASA Technical Reports Server (NTRS)

    Gafka, George K.; Daugherty, Robert H.

    2000-01-01

    NASA incorporates skid-equipped landing gear on its series of X-38 flight test vehicles. The X-38 test program is the proving ground for the Crew Return Vehicle (CRV) a gliding parafoil-equipped vehicle designed to land at relatively low speeds. The skid-equipped landing gear is designed to attenuate the vertical landing energy of the vehicle at touchdown using crushable materials within the struts themselves. The vehicle then slides out as the vehicle horizontal energy is dissipated through the skids. A series of tests was conducted at Edwards Airforce Base (EAFB) in an attempt to quantify the drag force produced while "dragging" various X-38 landing gear skids across lakebed regions of varying surface properties. These data were then used to calculate coefficients of friction for each condition. Coefficient of friction information is critical for landing analyses as well as for landing gear load and interface load analysis. The skid specimens included full- and sub-scale V201 (space test vehicle) nose and main gear designs, a V131/V 132 (atmospheric flight test vehicles) main gear skid (actual flight hardware), and a newly modified, full-scale V201 nose -ear skid with substantially increased edge curvature as compared to its original design. Results of the testing are discussed along with comments on the relative importance of various parameters that influence skid stability and other dynamic behavior.

  18. Global dynamic modeling of a transmission system

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Qian, W.

    1993-01-01

    The work performed on global dynamic simulation and noise correlation of gear transmission systems at the University of Akron is outlined. The objective is to develop a comprehensive procedure to simulate the dynamics of the gear transmission system coupled with the effects of gear box vibrations. The developed numerical model is benchmarked with results from experimental tests at NASA Lewis Research Center. The modal synthesis approach is used to develop the global transient vibration analysis procedure used in the model. Modal dynamic characteristics of the rotor-gear-bearing system are calculated by the matrix transfer method while those of the gear box are evaluated by the finite element method (NASTRAN). A three-dimensional, axial-lateral coupled bearing model is used to couple the rotor vibrations with the gear box motion. The vibrations between the individual rotor systems are coupled through the nonlinear gear mesh interactions. The global equations of motion are solved in modal coordinates and the transient vibration of the system is evaluated by a variable time-stepping integration scheme. The relationship between housing vibration and resulting noise of the gear transmission system is generated by linear transfer functions using experimental data. A nonlinear relationship of the noise components to the fundamental mesh frequency is developed using the hypercoherence function. The numerically simulated vibrations and predicted noise of the gear transmission system are compared with the experimental results from the gear noise test rig at NASA Lewis Research Center. Results of the comparison indicate that the global dynamic model developed can accurately simulate the dynamics of a gear transmission system.

  19. Improved aircraft dynamic response and fatigue life during ground operations using an active control landing gear system

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Carden, H. D.; Edson, R.

    1978-01-01

    A three-degree-of-freedom aircraft landing analysis incorporating a series-hydraulic active control main landing gear has been developed and verified using preliminary experimental data from drop tests of a modified main landing gear from a 2722 kg (6000 lbm) class of airplane. The verified analysis was also employed to predict the landing dynamics of a supersonic research airplane with an active control main landing gear system. The results of this investigation have shown that this type of active gear is feasible and indicate a potential for improving airplane dynamic response and reducing structural fatigue damage during ground operations by approximately 90% relative to that incurred with the passive gear.

  20. Molecular Dynamics Simulation of a Multi-Walled Carbon Nanotube Based Gear

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We used molecular dynamics to investigate the properties of a multi-walled carbon nanotube based gear. Previous work computationally suggested that molecular gears fashioned from (14,0) single-walled carbon nanotubes operate well at 50-100 gigahertz. The gears were formed from nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. The gear in this study was based on the smallest multi-walled nanotube supported by some experimental evidence. Each gear was a (52,0) nanotube surrounding a (37,10) nanotube with approximate 20.4 and 16,8 A radii respectively. These sizes were chosen to be consistent with inter-tube spacing observed by and were slightly larger than graphite inter-layer spacings. The benzyne teeth were attached via 2+4 cycloaddition to exterior of the (52,0) tube. 2+4 bonds were used rather than the 2+2 bonds observed by Hoke since 2+4 bonds are preferred by naphthalene and quantum calculations by Jaffe suggest that 2+4 bonds are preferred on carbon nanotubes of sufficient diameter. One gear was 'powered' by forcing the atoms near the end of the outside buckytube to rotate to simulate a motor. A second gear was allowed to rotate by keeping the atoms near the end of its outside buckytube on a cylinder. The ends of both gears were constrained to stay in an approximately constant position relative to each other, simulating a casing, to insure that the gear teeth meshed. The stiff meshing aromatic gear teeth transferred angular momentum from the powered gear to the driven gear. The simulation was performed in a vacuum and with a software thermostat. Preliminary results suggest that the powered gear had trouble turning the driven gear without slip. The larger radius and greater mass of these gears relative to the (14,0) gears previously studied requires a

  1. Effects of tooth profile modification on dynamic responses of a high speed gear-rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Hu, Zehua; Tang, Jinyuan; Zhong, Jue; Chen, Siyu; Yan, Haiyan

    2016-08-01

    A finite element node dynamic model of a high speed gear-rotor-bearing system considering the time-varying mesh stiffness, backlash, gyroscopic effect and transmission error excitation is developed. Different tooth profile modifications are introduced into the gear pair and corresponding time-varying mesh stiffness curves are obtained. Effects of the tooth profile modification on mesh stiffness are analyzed, and the natural frequencies and mode shapes of the gear-rotor-bearing transmission system are given. The dynamic responses with respect to a wide input speed region including dynamic factor, vibration amplitude near the bearing and dynamic transmission error are obtained by introducing the time-varying mesh stiffness in different tooth profile modification cases into the gear-rotor-bearing dynamic system. Effects of the tooth profile modification on the dynamic responses are studied in detail. The numerical simulation results show that both the short profile modification and the long profile modification can affect the mutation of the mesh stiffness when the number of engaging tooth pairs changes. A short profile modification with an appropriate modification amount can improve the dynamic property of the system in certain work condition.

  2. Analysis of dynamic capacity of low-contact-ratio spur gears using Lundberg-Palmgren theory

    NASA Technical Reports Server (NTRS)

    Coy, J. J.

    1975-01-01

    A concise mathematical model is developed for surface fatigue life of low-contact-ratio spur gears. The expected fatigue life of the pinion, gear, or gear sets may be calculated from the model. An equation for the dynamic capacity of the gear set was also derived in terms of the transmitted tangential tooth load which will give a 10-percent fatigue life of one million pinion revolutions. The theoretical life was compared with experimental data for a set of VAR AISI 9310 gears operating at a Hertz stress of 1.71X10 to the 9th power newtons per square meter (248,000 psi) and 10 000 revolutions per minute. Good agreement was obtained between the experimental and theoretical surface fatigue life of the gears.

  3. Advanced Face Gear Surface Durability Evaluations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Heath, Gregory F.

    2016-01-01

    The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.

  4. A method of selecting grid size to account for Hertz deformation in finite element analysis of spur gears

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Chao, C. H. C.

    1981-01-01

    A method of selecting grid size for the finite element analysis of gear tooth deflection is presented. The method is based on a finite element study of two cylinders in line contact, where the criterion for establishing element size was that there be agreement with the classical Hertzian solution for deflection. The results are applied to calculate deflection for the gear specimen used in the NASA spur gear test rig. Comparisons are made between the present results and the results of two other methods of calculation. The results have application in design of gear tooth profile modifications to reduce noise and dynamic loads.

  5. Dynamics Modelling of Transmission Gear Rattle and Analysis on Influence Factors

    NASA Astrophysics Data System (ADS)

    He, Xiaona; Zhang, Honghui

    2018-02-01

    Based on the vibration dynamics modeling for the single stage gear of transmission system, this paper is to understand the mechanism of transmission rattle. The dynamic model response using MATLAB and Runge-Kutta algorithm is analyzed, and the ways for reducing the rattle noise of the automotive transmission is summarized.

  6. Computer-aided design of high-contact-ratio gears for minimum dynamic load and stress

    NASA Technical Reports Server (NTRS)

    Lin, Hsiang Hsi; Lee, Chinwai; Oswald, Fred B.; Townsend, Dennis P.

    1990-01-01

    A computer aided design procedure is presented for minimizing dynamic effects on high contact ratio gears by modification of the tooth profile. Both linear and parabolic tooth profile modifications of high contact ratio gears under various loading conditions are examined and compared. The effects of the total amount of modification and the length of the modification zone were systematically studied at various loads and speeds to find the optimum profile design for minimizing the dynamic load and the tooth bending stress. Parabolic profile modification is preferred over linear profile modification for high contact ratio gears because of its lower sensitivity to manufacturing errors. For parabolic modification, a greater amount of modification at the tooth tip and a longer modification zone are required. Design charts are presented for high contact ratio gears with various profile modifications operating under a range of loads. A procedure is illustrated for using the charts to find the optimum profile design.

  7. An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings

    PubMed Central

    Zhang, Xiaodong; Hou, Chenggang

    2017-01-01

    The strain of the ring gear can reflect the dynamic characteristics of planetary gearboxes directly, which makes it an ideal signal to monitor the health condition of the gearbox. To overcome the disadvantages of traditional methods, a new approach for the dynamic measurement of ring gear strains using fiber Bragg gratings (FBGs) is proposed in this paper. Firstly, the installation of FBGs is determined according to the analysis for the strain distribution of the ring gear. Secondly, the parameters of the FBG are determined in consideration of the accuracy and sensitivity of the measurement as well as the size of the ring gear. The strain measured by the FBG is then simulated under non-uniform strain field conditions. Thirdly, a dynamic measurement system is built and tested. Finally, the strains of the ring gear are measured in a planetary gearbox under normal and faulty conditions. The experimental results showed good agreement with the theoretical results in values, trends, and the fault features can be seen from the time domain of the measured strain signal, which proves that the proposed method is feasible for the measurement of the ring gear strains of planetary gearboxes. PMID:29258164

  8. An Approach for the Dynamic Measurement of Ring Gear Strains of Planetary Gearboxes Using Fiber Bragg Gratings.

    PubMed

    Niu, Hang; Zhang, Xiaodong; Hou, Chenggang

    2017-12-16

    The strain of the ring gear can reflect the dynamic characteristics of planetary gearboxes directly, which makes it an ideal signal to monitor the health condition of the gearbox. To overcome the disadvantages of traditional methods, a new approach for the dynamic measurement of ring gear strains using fiber Bragg gratings (FBGs) is proposed in this paper. Firstly, the installation of FBGs is determined according to the analysis for the strain distribution of the ring gear. Secondly, the parameters of the FBG are determined in consideration of the accuracy and sensitivity of the measurement as well as the size of the ring gear. The strain measured by the FBG is then simulated under non-uniform strain field conditions. Thirdly, a dynamic measurement system is built and tested. Finally, the strains of the ring gear are measured in a planetary gearbox under normal and faulty conditions. The experimental results showed good agreement with the theoretical results in values, trends, and the fault features can be seen from the time domain of the measured strain signal, which proves that the proposed method is feasible for the measurement of the ring gear strains of planetary gearboxes.

  9. Gear optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Chen, Xiang; Zhang, Ning-Tian

    1988-01-01

    The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future.

  10. Detecting gear tooth fracture in a high contact ratio face gear mesh

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Handschuh, Robert F.; Lewicki, David G.; Decker, Harry J.

    1995-01-01

    This paper summarized the results of a study in which three different vibration diagnostic methods were used to detect gear tooth fracture in a high contact ratio face gear mesh. The NASA spiral bevel gear fatigue test rig was used to produce unseeded fault, natural failures of four face gear specimens. During the fatigue tests, which were run to determine load capacity and primary failure mechanisms for face gears, vibration signals were monitored and recorded for gear diagnostic purposes. Gear tooth bending fatigue and surface pitting were the primary failure modes found in the tests. The damage ranged from partial tooth fracture on a single tooth in one test to heavy wear, severe pitting, and complete tooth fracture of several teeth on another test. Three gear fault detection techniques, FM4, NA4*, and NB4, were applied to the experimental data. These methods use the signal average in both the time and frequency domain. Method NA4* was able to conclusively detect the gear tooth fractures in three out of the four fatigue tests, along with gear tooth surface pitting and heavy wear. For multiple tooth fractures, all of the methods gave a clear indication of the damage. It was also found that due to the high contact ratio of the face gear mesh, single tooth fractures did not significantly affect the vibration signal, making this type of failure difficult to detect.

  11. Cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.; Vogler, William A.

    1989-01-01

    Tests of the Space Shuttle Orbiter nose-gear tire have been completed at NASA Langley's Aircraft Landing Dynamics Facility. The purpose of these tests was to determine the cornering and wear characteristics of the Space Shuttle Orbiter nose-gear tire under realistic operating conditions. The tire was tested on a simulated Kennedy Space Center runway surface at speeds from 100 to 180 kts. The results of these tests defined the cornering characteristics which included side forces and associated side force friction coefficient over a range of yaw angles from 0 deg to 12 deg. Wear characteristics were defined by tire tread and cord wear over a yaw angle range of 0 deg to 4 deg under dry and wet runway conditions. Wear characteristics were also defined for a 15 kt crosswind landing with two blown right main-gear tires and nose-gear steering engaged.

  12. Gear Performance Improved by Coating

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    2004-01-01

    Gears, bearings, and other mechanical elements transmit loads through contacting surfaces. Even if properly designed, manufactured, installed, and maintained, gears and bearings will eventually fail because of the fatigue of the working surfaces. Economical means for extending the fatigue lives of gears and bearings are highly desired, and coatings offer the opportunity to engineer surfaces to extend the fatigue lives of mechanical components. A tungsten-containing diamondlike-carbon coating exhibiting high hardness, low friction, and good toughness was evaluated for application to spur gears. Fatigue testing was done at the NASA Glenn Research Center on both uncoated and coated spur gears. The results showed that the coating extended the surface fatigue lives of the gears by a factor of about 5 relative to the uncoated gears. For the experiments, a lot of spur test gears made from AISI 9310 gear steel were case-carburized and ground to aerospace specifications. The geometries of the 28-tooth, 8-pitch gears were verified as meeting American Gear Manufacturing Association (AGMA) quality class 12. One-half of the gears were randomly selected for coating. The method of coating was selected to achieve desired adherence, toughness, hardness, and low-friction characteristics. First the gears to be coated were prepared by blasting (vapor honing) with Al2O3 particles and cleaning. Then, the gears were provided with a thin adhesion layer of elemental chromium followed by magnetron sputtering of the outer coating consisting of carbon (70 at.%), hydrogen (15 at.%), tungsten (12 at.%), and nickel (3 at.%) (atomic percent at the surface). In total, the coating thickness was about 2.5 to 3 microns. As compared with the steel substrate, the coated surface was harder by a factor of about 2 and had a smaller elastic modulus. All gears were tested using a 5-centistoke synthetic oil, a 10,000-rpm rotation speed, and a hertzian contact stress of at least 1.7 GPa (250 ksi). Tests were

  13. The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss - Test Results

    NASA Technical Reports Server (NTRS)

    Delgado, I. R.; Hurrell, M. J.

    2017-01-01

    Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth, and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data/analyses. Recommendations are made for future work.

  14. The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss Test Results

    NASA Technical Reports Server (NTRS)

    Delgado, I. R.; Hurrell, M. J.

    2017-01-01

    Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max. radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data analyses.

  15. New Gear Transmission Error Measurement System Designed

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2001-01-01

    The prime source of vibration and noise in a gear system is the transmission error between the meshing gears. Transmission error is caused by manufacturing inaccuracy, mounting errors, and elastic deflections under load. Gear designers often attempt to compensate for transmission error by modifying gear teeth. This is done traditionally by a rough "rule of thumb" or more recently under the guidance of an analytical code. In order for a designer to have confidence in a code, the code must be validated through experiment. NASA Glenn Research Center contracted with the Design Unit of the University of Newcastle in England for a system to measure the transmission error of spur and helical test gears in the NASA Gear Noise Rig. The new system measures transmission error optically by means of light beams directed by lenses and prisms through gratings mounted on the gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. A photodetector circuit converts the light to an analog electrical signal. To increase accuracy and reduce "noise" due to transverse vibration, there are parallel light paths at the top and bottom of the gears. The two signals are subtracted via differential amplifiers in the electronics package. The output of the system is 40 mV/mm, giving a resolution in the time domain of better than 0.1 mm, and discrimination in the frequency domain of better than 0.01 mm. The new system will be used to validate gear analytical codes and to investigate mechanisms that produce vibration and noise in parallel axis gears.

  16. A computer solution for the dynamic load, lubricant film thickness, and surface temperatures in spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Chao, H. C.; Baxter, M.; Cheng, H. S.

    1983-01-01

    A computer method for determining the dynamic load between spiral bevel pinion and gear teeth contact along the path of contact is described. The dynamic load analysis governs both the surface temperature and film thickness. Computer methods for determining the surface temperature, and film thickness are presented along with results obtained for a pair of typical spiral bevel gears.

  17. A computer solution for the dynamic load, lubricant film thickness and surface temperatures in spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Chao, H. C.; Cheng, H. S.

    1987-01-01

    A complete analysis of spiral bevel gear sets is presented. The gear profile is described by the movements of the cutting tools. The contact patterns of the rigid body gears are investigated. The tooth dynamic force is studied by combining the effects of variable teeth meshing stiffness, speed, damping, and bearing stiffness. The lubrication performance is also accomplished by including the effects of the lubricant viscosity, ambient temperature, and gear speed. A set of numerical results is also presented.

  18. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA Lewis Research Center, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  19. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA LRC, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  20. Gears Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  1. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    NASA Technical Reports Server (NTRS)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  2. Low-noise, high-strength, spiral-bevel gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.

    1993-01-01

    Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.

  3. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  4. Bearing, gearing, and lubrication technology

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1978-01-01

    Results of selected NASA research programs on rolling-element and fluid-film bearings, gears, and elastohydrodynamic lubrication are reported. Advances in rolling-element bearing material technology, which have resulted in a significant improvement in fatigue life, and which make possible new applications for rolling bearings, are discussed. Research on whirl-resistant, fluid-film bearings, suitable for very high-speed applications, is discussed. An improved method for predicting gear pitting life is reported. An improved formula for calculating the thickness of elastohydrodynamic films (the existence of which help to define the operating regime of concentrated contact mechanisms such as bearings, gears, and cams) is described.

  5. Gear Tooth Wear Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.

    2015-01-01

    Vibration-based condition indicators continue to be developed for Health Usage Monitoring of rotorcraft gearboxes. Testing performed at NASA Glenn Research Center have shown correlations between specific condition indicators and specific types of gear wear. To speed up the detection and analysis of gear teeth, an image detection program based on the Viola-Jones algorithm was trained to automatically detect spiral bevel gear wear pitting. The detector was tested using a training set of gear wear pictures and a blind set of gear wear pictures. The detector accuracy for the training set was 75 percent while the accuracy for the blind set was 15 percent. Further improvements on the accuracy of the detector are required but preliminary results have shown its ability to automatically detect gear tooth wear. The trained detector would be used to quickly evaluate a set of gear or pinion pictures for pits, spalls, or abrasive wear. The results could then be used to correlate with vibration or oil debris data. In general, the program could be retrained to detect features of interest from pictures of a component taken over a period of time.

  6. Evaluation of Carburized and Ground Face Gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Heath, Gregory F.; Sheth, Vijay

    1999-01-01

    Experimental durability tests were performed on carburized and ground AIS19310 steel face gears. The tests were in support of a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP) to enhance face-gear technology. The tests were conducted in the NASA Glenn spiral-bevel-gear/face-gear test facility. Tests were run at 2300 rpm face gear speed and at loads of 64, 76, 88, 100, and 112-percent of the design torque of 377 N-m (3340 in-lb). The carburized and ground face gears demonstrated the required durability when run for ten-million cycles at each of the applied loads. Proper installation was critical for the successful operation of the spur pinions and face gears. A large amount of backlash produced tooth contact patterns that approached the inner-diameter edge of the face-gear tooth. Low backlash produced tooth contact patterns that approached the outer-diameter edge of the face-gear tooth. Measured backlashes in the range of 0.178 to 0.254 mm (0.007 to 0.010 in) produced acceptable tooth contact patterns.

  7. Contact and Bending Durability Calculation for Spiral-Bevel Gears

    NASA Technical Reports Server (NTRS)

    Vijayakar, Sandeep

    2016-01-01

    The objective of this project is to extend the capabilities of the gear contact analysis solver Calyx, and associated packages Transmission3D, HypoidFaceMilled, HypoidFaceHobbed. A calculation process for the surface durability was implemented using the Dowson-Higginson correlation for fluid film thickness. Comparisons to failure data from NASA's Spiral Bevel Gear Fatigue rig were carried out. A bending fatigue calculation has been implemented that allows the use of the stress-life calculation at each individual fillet point. The gears in the NASA test rig did not exhibit any bending fatigue failure, so the bending fatigue calculations are presented in this report by using significantly lowered strength numbers.

  8. Vibro-acoustic propagation of gear dynamics in a gear-bearing-housing system

    NASA Astrophysics Data System (ADS)

    Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.; Parker, Robert G.

    2014-10-01

    This work developed a computational process to predict noise radiation from gearboxes. It developed a system-level vibro-acoustic model of an actual gearbox, including gears, bearings, shafts, and housing structure, and compared the results to experiments. The meshing action of gear teeth causes vibrations to propagate through shafts and bearings to the housing radiating noise. The vibration excitation from the gear mesh and the system response were predicted using finite element and lumped-parameter models. From these results, the radiated noise was calculated using a boundary element model of the housing. Experimental vibration and noise measurements from the gearbox confirmed the computational predictions. The developed tool was used to investigate the influence of standard rolling element and modified journal bearings on gearbox radiated noise.

  9. Research on the dynamic response of high-contact-ratio spur gears influenced by surface roughness under EHL condition

    NASA Astrophysics Data System (ADS)

    Huang, Kang; Xiong, Yangshou; Wang, Tao; Chen, Qi

    2017-01-01

    Employing high-contact-ratio (HCR) gear is an effective method of decreasing the load on a single tooth, as well as reducing vibration and noise. While the spindlier tooth leads to greater relative sliding, having more teeth participate in contact at the same time makes the HCR gear more sensitive to the surface quality. Available literature regarding HCR gear primarily investigates the geometrical optimization, load distribution, or efficiency calculation. Limited work has been conducted on the effect of rough surfaces on the dynamic performance of HCR gear. For this reason, a multi-degree-of-freedom (MDOF) model is presented mathematically to characterize the static transmission error based on fractal theory, investigate the relative sliding friction using an EHL-based friction coefficient formula, and detail the time-varying friction coefficient suitable for HCR gear. Based on numerical results, the surface roughness has little influence on system response in terms of the dynamic transmission error but has a large effect on the motion in off-line-of-action (OLOA) direction and friction force. The impact of shaft-bearing stiffness and damping ratio is also explored with results revealing that a greater shaft-bearing stiffness is beneficial in obtaining a more stable motion in OLOA direction, and a larger damping ratio results in a smaller effective friction force. The theory presented in this report outlines a new method of analyzing the dynamics of HCR gear in respect of introducing surface roughness into MDOF model directly, as well as establishing an indirect relationship between dynamic responses and surface roughness. This method is expected to guide surface roughness design and manufacturing in the future.

  10. NASA Langley's Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.

    1993-01-01

    The Aircraft Landing Dynamics Facility (ALDF) is a unique facility with the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A brief historical overview of the original Landing Loads Track (LLT) is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  11. Engineering science research issues in high power density transmission dynamics for aerospace applications. [rotorcraft geared rotors

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.

    1993-01-01

    This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.

  12. The NASA landing gear test airplane

    NASA Technical Reports Server (NTRS)

    Carter, John F.; Nagy, Christopher J.

    1995-01-01

    A tire and landing gear test facility has been developed and incorporated into a Convair 990 aircraft. The system can simulate tire vertical load profiles to 250,000 lb, sideslip angles to 15 degrees, and wheel braking on actual runways. Onboard computers control the preprogrammed test profiles through a feedback loop and also record three axis loads, tire slip angle, and tire condition. The aircraft to date has provided tire force and wear data for the Shuttle Orbiter tire on three different runways and at east and west coast landing sites. This report discusses the role of this facility in complementing existing ground tire and landing gear test facilities, and how this facility can simultaneously simulate the vertical load, tire slip, velocity, and surface for an entire aircraft landing. A description is given of the aircraft as well as the test system. An example of a typical test sequence is presented. Data collection and reduction from this facility are discussed, as well as accuracies of calculated parameters. Validation of the facility through ground and flight tests is presented. Tests to date have shown that this facility can operate at remote sites and gather complete data sets of load, slip, and velocity on actual runway surfaces. The ground and flight tests have led to a successful validation of this test facility.

  13. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.

    2000-01-01

    The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.

  14. Investigation of Sideband Index Response to Prototype Gear Tooth Damage

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2013-01-01

    The objective of this analysis was to evaluate the ability of gear condition indicators (CI) to detect contact fatigue damage on spiral bevel gear teeth. Tests were performed in the NASA Glenn Spiral Bevel Gear Fatigue Rig on eight prototype gear sets (pinion/gear). Damage was initiated and progressed on the gear and pinion teeth. Vibration data was measured during damage progression at varying torque values while varying damage modes to the gear teeth were observed and documented with inspection photos. Sideband indexes (SI) and root mean square (RMS) CIs were calculated from the time synchronous averaged vibration data. Results found that both CIs respond differently to varying torque levels, damage levels and damage modes

  15. Elasto-dynamic analysis of a gear pump-Part IV: Improvement in the pressure distribution modelling

    NASA Astrophysics Data System (ADS)

    Mucchi, E.; Dalpiaz, G.; Fernàndez del Rincòn, A.

    2015-01-01

    This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out by comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory global, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure distribution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with

  16. Enhanced model of gear transmission dynamics for condition monitoring applications: Effects of torque, friction and bearing clearance

    NASA Astrophysics Data System (ADS)

    Fernandez-del-Rincon, A.; Garcia, P.; Diez-Ibarbia, A.; de-Juan, A.; Iglesias, M.; Viadero, F.

    2017-02-01

    Gear transmissions remain as one of the most complex mechanical systems from the point of view of noise and vibration behavior. Research on gear modeling leading to the obtaining of models capable of accurately reproduce the dynamic behavior of real gear transmissions has spread out the last decades. Most of these models, although useful for design stages, often include simplifications that impede their application for condition monitoring purposes. Trying to filling this gap, the model presented in this paper allows us to simulate gear transmission dynamics including most of these features usually neglected by the state of the art models. This work presents a model capable of considering simultaneously the internal excitations due to the variable meshing stiffness (including the coupling among successive tooth pairs in contact, the non-linearity linked with the contacts between surfaces and the dissipative effects), and those excitations consequence of the bearing variable compliance (including clearances or pre-loads). The model can also simulate gear dynamics in a realistic torque dependent scenario. The proposed model combines a hybrid formulation for calculation of meshing forces with a non-linear variable compliance approach for bearings. Meshing forces are obtained by means of a double approach which combines numerical and analytical aspects. The methodology used provides a detailed description of the meshing forces, allowing their calculation even when gear center distance is modified due to shaft and bearing flexibilities, which are unavoidable in real transmissions. On the other hand, forces at bearing level were obtained considering a variable number of supporting rolling elements, depending on the applied load and clearances. Both formulations have been developed and applied to the simulation of the vibration of a sample transmission, focusing the attention on the transmitted load, friction meshing forces and bearing preloads.

  17. Testing of Face-milled Spiral Bevel Gears at High-speed and Load

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2001-01-01

    Spiral bevel gears are an important drive system components of rotorcraft (helicopters) currently in use. In this application the spiral bevel gears are required to transmit very high torque at high rotational speed. Available experimental data on the operational characteristics for thermal and structural behavior is relatively small in comparison to that found for parallel axis gears. An ongoing test program has been in place at NASA Glenn Research Center over the last ten years to investigate their operational behavior at operating conditions found in aerospace applications. This paper will summarize the results of the tests conducted on face-milled spiral bevel gears. The data from the pinion member (temperature and stress) were taken at conditions from slow-roll to 14400 rpm and up to 537 kW (720 hp). The results have shown that operating temperature is affected by the location of the lubricating jet with respect to the point it is injected and the operating conditions that are imposed. Also the stress measured from slow-roll to very high rotational speed, at various torque levels, indicated little dynamic affect over the rotational speeds tested.

  18. Investigation of Gear and Bearing Fatigue Damage Using Debris Particle Distributions

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.

    2004-01-01

    A diagnostic tool was developed for detecting fatigue damage to spur gears, spiral bevel gears, and rolling element bearings. This diagnostic tool was developed and evaluated experimentally by collecting oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig, Spiral Bevel Gear Test Facility, and the 500hp Helicopter Transmission Test Stand. During each test, data from an online, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of pitting damage. Results indicate oil debris alone cannot discriminate between bearing and gear fatigue damage.

  19. Experimental and Analytical Determinations of Spiral Bevel Gear-Tooth Bending Stress Compared

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2000-01-01

    Spiral bevel gears are currently used in all main-rotor drive systems for rotorcraft produced in the United States. Applications such as these need spiral bevel gears to turn the corner from the horizontal gas turbine engine to the vertical rotor shaft. These gears must typically operate at extremely high rotational speeds and carry high power levels. With these difficult operating conditions, an improved analytical capability is paramount to increasing aircraft safety and reliability. Also, literature on the analysis and testing of spiral bevel gears has been very sparse in comparison to that for parallel axis gears. This is due to the complex geometry of this type of gear and to the specialized test equipment necessary to test these components. To develop an analytical model of spiral bevel gears, researchers use differential geometry methods to model the manufacturing kinematics. A three-dimensional spiral bevel gear modeling method was developed that uses finite elements for the structural analysis. This method was used to analyze the three-dimensional contact pattern between the test pinion and gear used in the Spiral Bevel Gear Test Facility at the NASA Glenn Research Center at Lewis Field. Results of this analysis are illustrated in the preceding figure. The development of the analytical method was a joint endeavor between NASA Glenn, the U.S. Army Research Laboratory, and the University of North Dakota.

  20. A multi-purpose method for analysis of spur gear tooth loading

    NASA Technical Reports Server (NTRS)

    Kasuba, R.; Evans, J. W.; August, R.; Frater, J. L.

    1981-01-01

    A large digitized approach was developed for the static and dynamic load analysis of spur gearing. An iterative procedure was used to calculate directly the "variable-variable" gear mesh stiffness as a function of transmitted load, gear tooth profile errors, gear tooth deflections and gear hub torsional deformation, and position of contacting profile points. The developed approach can be used to analyze the loads, Hertz stresses, and PV for the normal and high contrast ratio gearing, presently the modeling is limited to the condition that for a given gear all teeth have identical spacing and profiles (with or without surface imperfections). Certain types of simulated sinusoidal profile errors and pitting can cause interruptions of the gear mesh stiffness function and, thus, increase the dynamic loads in spur gearing. In addition, a finite element stress and mesh subprogram was developed for future introduction into the main program for calculating the gear tooth bending stresses under dynamic loads.

  1. Face Gear Technology for Aerospace Power Transmission Progresses

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate

  2. Gear Durability Shown To Be Improved by Superfinishing

    NASA Technical Reports Server (NTRS)

    Krautz, Timothy L.

    2000-01-01

    Gears, bearings, and similar mechanical elements transmit loads through contacting surfaces. At the NASA Glenn Research Center at Lewis Field, we postulated that the fatigue lives of gears could be improved by providing smoother tooth surfaces. A superfinishing process was applied to a set of conventionally ground, aerospace-quality gears. This process produced a highly polished, mirrorlike surface as shown in the preceding photograph. The surface fatigue lives of both superfinished and conventionally ground gears were measured by experiments. The superfinished gears survived about four times longer than the conventionally ground gears. These superfinished gears were produced from conventionally ground, aerospace-quality gears whose geometry had been inspected. The gears were superfinished by placing them in a vibrating bath consisting of water, detergent, abrasive powder, and small pieces of zinc. Upon removal from the bath, the surfaces were highly polished, as depicted in the preceding photograph. The gears were again inspected, and dimensional measurements made before and after the superfinishing operation were compared. Superfinishing removed the peaks of the grinding marks and left a much smoother surface. Profile and spacing checks proved that the overall gear tooth shape was not affected in any harmful way. Superfinishing uniformly removed approximately 2.5 microns from each surface.

  3. Dynamic analysis of flexible gear trains/transmissions - An automated approach

    NASA Technical Reports Server (NTRS)

    Amirouche, F. M. L.; Shareef, N. H.; Xie, M.

    1992-01-01

    In this paper an automated algorithmic method is presented for the dynamic analysis of geared trains/transmissions. These are treated as a system of interconnected flexible bodies. The procedure developed explains the switching of constraints with time as a result of the change in the contacting areas at the gear teeth. The elastic behavior of the system is studied through the employment of three-dimensional isoparametric elements having six degrees-of-freedom at each node. The contact between the bodies is assumed at the various nodes, which could be either a line or a plane. The kinematical expressions, together with the equations of motion using Kane's method, strain energy concepts, are presented in a matrix form suitable for computer implementation. The constraint Jacobian matrices are generated automatically based on the contact information between the bodies. The concepts of the relative velocity at the contacting points at the tooth pairs and the subsequent use of the transmission ratios in the analysis is presented.

  4. Natural Characteristics of The Herringbone Gear Transmission System

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxing; Sun, Wenlei; Cao, Li

    2018-03-01

    According to the structure characteristics of herringbone gear transmission, a more realistic dynamic model of the transmission system is built in consideration of the inner excitation, herringbone gears axial positioning and sliding bearing etc. The natural frequencies of the system are calculated, and the vibration mode is divided into symmetric vibration modes and asymmetric vibration modes. The time history of system dynamic force is obtained by solving the dynamic model. The effects of the connection stiffness of left and right sides of herringbone gears and axial support stiffness on natural characteristics are discussed.

  5. Experimental investigation of active loads control for aircraft landing gear

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Dreher, R. C.

    1982-01-01

    Aircraft dynamic loads and vibrations resulting from landing impact and from runway and taxiway unevenness are recognized as significant in causing fatigue damage, dynamic stress on the airframe, crew and passenger discomfort, and reduction of the pilot's ability to control the aircraft during ground operations. One potential method for improving operational characteistics of aircraft on the ground is the application of active control technology to the landing gears to reduce ground loads applied to the airframe. An experimental investigation was conducted which simulated the landing dynamics of a light airplane to determine the feasibility and potential of a series hydraulic active control main landing gear. The experiments involved a passive gear and an active control gear. Results of this investigation show that a series hydraulically controlled gear is feasible and that such a gear is very effective in reducing the loads transmitted by the gear to the airframe during ground operations.

  6. A Computational Investigation of Gear Windage

    NASA Technical Reports Server (NTRS)

    Hill, Matthew J.; Kunz, Robert F.

    2012-01-01

    A CFD method has been developed for application to gear windage aerodynamics. The goals of this research are to develop and validate numerical and modeling approaches for these systems, to develop physical understanding of the aerodynamics of gear windage loss, including the physics of loss mitigation strategies, and to propose and evaluate new approaches for minimizing loss. Absolute and relative frame CFD simulation, overset gridding, multiphase flow analysis, and sub-layer resolved turbulence modeling were brought to bear in achieving these goals. Several spur gear geometries were studied for which experimental data are available. Various shrouding configurations and free-spinning (no shroud) cases were studied. Comparisons are made with experimental data from the open literature, and data recently obtained in the NASA Glenn Research Center Gear Windage Test Facility. The results show good agreement with experiment. Interrogation of the validative and exploratory CFD results have led, for the first time, to a detailed understanding of the physical mechanisms of gear windage loss, and have led to newly proposed mitigation strategies whose effectiveness is computationally explored.

  7. A method for gear fatigue life prediction considering the internal flow field of the gear pump

    NASA Astrophysics Data System (ADS)

    Shen, Haidong; Li, Zhiqiang; Qi, Lele; Qiao, Liang

    2018-01-01

    Gear pump is the most widely used volume type hydraulic pump, and it is the main power source of the hydraulic system. Its performance is influenced by many factors, such as working environment, maintenance, fluid pressure and so on. It is different from the gear transmission system, the internal flow field of gear pump has a greater impact on the gear life, therefore it needs to consider the internal hydraulic system when predicting the gear fatigue life. In this paper, a certain aircraft gear pump as the research object, aim at the typical failure forms, gear contact fatigue, of gear pump, proposing the prediction method based on the virtual simulation. The method use CFD (Computational fluid dynamics) software to analyze pressure distribution of internal flow field of the gear pump, and constructed the unidirectional flow-solid coupling model of gear to acquire the contact stress of tooth surface on Ansys workbench software. Finally, employing nominal stress method and Miner cumulative damage theory to calculated the gear contact fatigue life based on modified material P-S-N curve. Engineering practice show that the method is feasible and efficient.

  8. Video Imaging System Particularly Suited for Dynamic Gear Inspection

    NASA Technical Reports Server (NTRS)

    Broughton, Howard (Inventor)

    1999-01-01

    A digital video imaging system that captures the image of a single tooth of interest of a rotating gear is disclosed. The video imaging system detects the complete rotation of the gear and divide that rotation into discrete time intervals so that each tooth of interest of the gear is precisely determined when it is at a desired location that is illuminated in unison with a digital video camera so as to record a single digital image for each tooth. The digital images are available to provide instantaneous analysis of the tooth of interest, or to be stored and later provide images that yield a history that may be used to predict gear failure, such as gear fatigue. The imaging system is completely automated by a controlling program so that it may run for several days acquiring images without supervision from the user.

  9. Thermal elastohydrodynamic lubrication of spur gears

    NASA Technical Reports Server (NTRS)

    Wang, K. L.; Cheng, H. S.

    1980-01-01

    An analysis and computer program called TELSGE were developed to predict the variations of dynamic load, surface temperature, and lubricant film thickness along the contacting path during the engagement of a pair of involute spur gears. The analysis of dynamic load includes the effect of gear inertia, the effect of load sharing of adjacent teeth, and the effect of variable tooth stiffness which are obtained by a finite-element method. Results obtained from TELSGE for the dynamic load distributions along the contacting path for various speeds of a pair of test gears show patterns similar to that observed experimentally. Effects of damping ratio, contact ratio, tip relief, and tooth error on the dynamic load were examined. In addition, two dimensionless charts are included for predicting the maximum equilibrium surface temperature, which can be used to estimate directly the lubricant film thickness based on well established EHD analysis.

  10. Hybrid Gear Performance Under Loss-of-Lubrication Conditions

    NASA Technical Reports Server (NTRS)

    Laberge, Kelsen E.; Berkebile, Stephen P.; Handschuh, Robert F.; Roberts, Gary D.

    2017-01-01

    Hybrid composite gear technology is being investigated to increase power density in rotorcraft drive systems. These gears differ from conventional steel gears in that the structural web material is replaced with a lightweight carbon fiber composite. Past studies have focused on performance of this technology under normal operating conditions, however, for this technology to be viable it must also withstand adverse conditions. The study presented here evaluates the performance of hybrid gears under loss-of-lubrication conditions in NASA Glenn Research Centers Contact Fatigue Test Facility. Two experiments are presented using small-scale 3.5 inch (8.9 cm) pitch diameter hybrid gears and compared to a baseline steel gear pair. Results of these tests show that there are limitations to the use of a hexagonal interlock pattern between the steel and composite. There is also evidence that the presence of polymer in the gear during an oil out event has a potential to increase time to failure. Further studies are planned to expand on these initial findings.

  11. Technology Innovation of Power Transmission Gearing in Aviation

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2009-01-01

    An overview of rotary wing evolution and innovations over the last 20 years was presented. This overview is provided from a drive system perspective. Examples of technology innovations that have changed and advanced drive systems of rotary wing vehicles will be provided. These innovations include full 6-axis CNC gear manufacture, face gear development to aerospace standards, health and usage monitoring, and gear geometry and bearing improvements. Also, an overview of current state-of-the-art activities being conducted at NASA Glenn is presented with a short look to fixed and rotary wing aircraft and systems needed for the future.

  12. Gear tooth stress measurements of two helicopter planetary stages

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    1992-01-01

    Two versions of the planetary reduction stages from U.S. Army OH-58 helicopter main rotor transmissions were tested at NASA Lewis. One sequential and one nonsequential planetary were tested. Sun gear and ring gear teeth strains were measured, and stresses were calculated from the strains. The alternating stress at the fillet of both the loaded and unloaded sides of the teeth and at the root of the sun gear teeth are reported. Typical stress variations as the gear tooth moves through mesh are illustrated. At the tooth root location of the thin rimmed sun gear, a significant stress was produced by a phenomenon other than the passing of a planet gear. The load variation among the planets was studied. Each planet produced its own distinctive load distribution on the ring and sun gears. The load variation was less for a three planet, nonsequential design as compared to that of a four planet, sequential design. The reported results enhance the data base for gear stress levels and provide data for the validation of analytical methods.

  13. Data Fusion Tool for Spiral Bevel Gear Condition Indicator Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Antolick, Lance J.; Branning, Jeremy S.; Thomas, Josiah

    2014-01-01

    Tests were performed on two spiral bevel gear sets in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig to simulate the fielded failures of spiral bevel gears installed in a helicopter. Gear sets were tested until damage initiated and progressed on two or more gear or pinion teeth. During testing, gear health monitoring data was collected with two different health monitoring systems. Operational parameters were measured with a third data acquisition system. Tooth damage progression was documented with photographs taken at inspection intervals throughout the test. A software tool was developed for fusing the operational data and the vibration based gear condition indicator (CI) data collected from the two health monitoring systems. Results of this study illustrate the benefits of combining the data from all three systems to indicate progression of damage for spiral bevel gears. The tool also enabled evaluation of the effectiveness of each CI with respect to operational conditions and fault mode.

  14. Design optimization of aircraft landing gear assembly under dynamic loading

    NASA Astrophysics Data System (ADS)

    Wong, Jonathan Y. B.

    As development cycles and prototyping iterations begin to decrease in the aerospace industry, it is important to develop and improve practical methodologies to meet all design metrics. This research presents an efficient methodology that applies high-fidelity multi-disciplinary design optimization techniques to commercial landing gear assemblies, for weight reduction, cost savings, and structural performance dynamic loading. Specifically, a slave link subassembly was selected as the candidate to explore the feasibility of this methodology. The design optimization process utilized in this research was sectioned into three main stages: setup, optimization, and redesign. The first stage involved the creation and characterization of the models used throughout this research. The slave link assembly was modelled with a simplified landing gear test, replicating the behavior of the physical system. Through extensive review of the literature and collaboration with Safran Landing Systems, dynamic and structural behavior for the system were characterized and defined mathematically. Once defined, the characterized behaviors for the slave link assembly were then used to conduct a Multi-Body Dynamic (MBD) analysis to determine the dynamic and structural response of the system. These responses were then utilized in a topology optimization through the use of the Equivalent Static Load Method (ESLM). The results of the optimization were interpreted and later used to generate improved designs in terms of weight, cost, and structural performance under dynamic loading in stage three. The optimized designs were then validated using the model created for the MBD analysis of the baseline design. The design generation process employed two different approaches for post-processing the topology results produced. The first approach implemented a close replication of the topology results, resulting in a design with an overall peak stress increase of 74%, weight savings of 67%, and no apparent

  15. Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.

  16. A Method for Determining Spiral-Bevel Gear Tooth Geometry for Finite Element Analysis

    DTIC Science & Technology

    1991-08-01

    to0itated Ins.pecttion aind Pceci.i’i (;Irtdtite Lit Spiral Betel pp 1i7 33;4. Gear.. NA.SA- CR 4083.AASCONI FR 87 -C’ 1 1,I98-1 4 ((taint. SB H...ti-io..n. NASA 1t) 27115. A .NSC( (Nt IR [,It\\. 1ii. 1... ei al, Nietlid 1h1 irCiciteatin Lit Spiral Betel Gear.. W%’itl 86 (’-42. 1987. C𔃻...P.C , Silrlace Geiiiitetr. ’I StraiLght lintl Spiril A.SM1 ilpaper X4-DET:- 169. Oct. 1984 Betel Gear... j NCIec trait.. Nutittlat. Dc... .o iIlt

  17. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    NASA Technical Reports Server (NTRS)

    Laberge, Kelsen E.; Handschuh, Robert F.; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program, allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite) configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp (2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Further studies are planned to determine the cause of this behavior.

  18. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    NASA Technical Reports Server (NTRS)

    LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.

  19. Integrating Condition Indicators and Usage Parameters for Improved Spiral Bevel Gear Health Monitoring

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Delgado, Irebert R.

    2013-01-01

    The objective of this study was to illustrate the importance of combining Health Usage Monitoring Systems (HUMS) data with usage monitoring system data when detecting rotorcraft transmission health. Six gear sets were tested in the NASA Glenn Spiral Bevel Gear Fatigue Rig. Damage was initiated and progressed on the gear and pinion teeth. Damage progression was measured by debris generation and documented with inspection photos at varying torque values. A contact fatigue analysis was applied to the gear design indicating the effect temperature, load and reliability had on gear life. Results of this study illustrated the benefits of combining HUMS data and actual usage data to indicate progression of damage for spiral bevel gears.

  20. Integrating Condition Indicators and Usage Parameters for Improved Spiral Bevel Gear Health Monitoring

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Delgado, Irebert, R.

    2013-01-01

    The objective of this study was to illustrate the importance of combining Health Usage Monitoring Systems (HUMS) data with usage monitoring system data when detecting rotorcraft transmission health. Three gear sets were tested in the NASA Glenn Spiral Bevel Gear Fatigue Rig. Damage was initiated and progressed on the gear and pinion teeth. Damage progression was measured by debris generation and documented with inspection photos at varying torque values. A contact fatigue analysis was applied to the gear design indicating the effect temperature, load and reliability had on gear life. Results of this study illustrated the benefits of combining HUMS data and actual usage data to indicate progression of damage for spiral bevel gears.

  1. Surface Fatigue Lives of Case-Carburized Gears With an Improved Surface Finish

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Alanou, M. P.; Evans, H. P.; Snidle, R. W.; Krantz, T. L. (Technical Monitor)

    2000-01-01

    Previous research provides qualitative evidence that an improved surface finish can increase the surface fatigue lives of gears. To quantify the influence of surface roughness on life, a set of AISI 93 10 steel gears was provided with a nearmirror finish by superfinishing. The effects of the superfinishing on the quality of the gear tooth surfaces were determined using data from metrology, profilometry, and interferometric microscope inspections. The superfinishing reduced the roughness average by about a factor of 5. The superfinished gears were subjected to surface fatigue testing at 1.71 -GPa (248-ksi) Hertz contact stress, and the data were compared with the NASA Glenn gear fatigue data base. The lives of gears with superfinished teeth were about four times greater compared with the lives of gears with ground teeth but with otherwise similar quality.

  2. Gear Design Effects on the Performance of High Speed Helical Gear Trains as Used in Aerospace Drive Systems

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Kilmain, D.; Ehinger, R.; Sinusas, E.

    2013-01-01

    The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction/torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 F) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.

  3. Gear Design Effects on the Performance of High Speed Helical Gear Trains as Used in Aerospace Drive Systems

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Kilmain, C.; Ehinger, R.; Sinusas, E.

    2013-01-01

    The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction / torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 degF) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.

  4. Fault feature analysis of cracked gear based on LOD and analytical-FE method

    NASA Astrophysics Data System (ADS)

    Wu, Jiateng; Yang, Yu; Yang, Xingkai; Cheng, Junsheng

    2018-01-01

    At present, there are two main ideas for gear fault diagnosis. One is the model-based gear dynamic analysis; the other is signal-based gear vibration diagnosis. In this paper, a method for fault feature analysis of gear crack is presented, which combines the advantages of dynamic modeling and signal processing. Firstly, a new time-frequency analysis method called local oscillatory-characteristic decomposition (LOD) is proposed, which has the attractive feature of extracting fault characteristic efficiently and accurately. Secondly, an analytical-finite element (analytical-FE) method which is called assist-stress intensity factor (assist-SIF) gear contact model, is put forward to calculate the time-varying mesh stiffness (TVMS) under different crack states. Based on the dynamic model of the gear system with 6 degrees of freedom, the dynamic simulation response was obtained for different tooth crack depths. For the dynamic model, the corresponding relation between the characteristic parameters and the degree of the tooth crack is established under a specific condition. On the basis of the methods mentioned above, a novel gear tooth root crack diagnosis method which combines the LOD with the analytical-FE is proposed. Furthermore, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) are contrasted with the LOD by gear crack fault vibration signals. The analysis results indicate that the proposed method performs effectively and feasibility for the tooth crack stiffness calculation and the gear tooth crack fault diagnosis.

  5. Correlation of Gear Surface Fatigue Lives to Lambda Ratio (Specific Film Thickness)

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy Lewis

    2013-01-01

    The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness being the ratio of lubricant film thickness to the composite surface roughness. Three studies done at NASA to investigate gearing pitting life are revisited in this work. All tests were done at a common load. In one study, ground gears were tested using a variety of lubricants that included a range of viscosities, and therefore the gears operated with differing film thicknesses. In a second and third study, the performance of gears with ground teeth and superfinished teeth were assessed. Thicker oil films provided longer lives as did improved surface finish. These datasets were combined into a common dataset using the concept of specific film thickness. This unique dataset of more 258 tests provides gear designers with some qualitative information to make gear design decisions.

  6. The effects of gear reduction on robot dynamics

    NASA Technical Reports Server (NTRS)

    Chen, J.

    1989-01-01

    The effect of the joint drive system with gear reduction for a generic two-link system is studied. It is done by comparing the kinetic energy of such a system with that of a direct drive two-link system. The only difference are two terms involving the inertia of the motor rotor and gear ratio. Modifications of the equations of motion from a direct drive system are then developed and generalized to various cases encountered in robot manipulators.

  7. Gear Damage Detection Using Oil Debris Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2001-01-01

    The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.

  8. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Credit: NASA/GSFC

  9. Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.

  10. Investigation for Molecular Attraction Impact Between Contacting Surfaces in Micro-Gears

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Li, Xialong; Zhao, Yanfang; Yang, Haiying; Wang, Shuting; Yang, Jianming

    2013-10-01

    The aim of this research work is to provide a systematic method to perform molecular attraction impact between contacting surfaces in micro-gear train. This method is established by integrating involute profile analysis and molecular dynamics simulation. A mathematical computation of micro-gear involute is presented based on geometrical properties, Taylor expression and Hamaker assumption. In the meantime, Morse potential function and the cut-off radius are introduced with a molecular dynamics simulation. So a hybrid computational method for the Van Der Waals force between the contacting faces in micro-gear train is developed. An example is illustrated to show the performance of this method. The results show that the change of Van Der Waals force in micro-gear train has a nonlinear characteristic with parameters change such as the modulus of the gear and the tooth number of gear etc. The procedure implies a potential feasibility that we can control the Van Der Waals force by adjusting the manufacturing parameters for gear train design.

  11. Gearing

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Townsend, D. P.; Zaretsky, E. V.

    1985-01-01

    Gearing technology in its modern form has a history of only 100 years. However, the earliest form of gearing can probably be traced back to fourth century B.C. Greece. Current gear practice and recent advances in the technology are drawn together. The history of gearing is reviewed briefly in the Introduction. Subsequent sections describe types of gearing and their geometry, processing, and manufacture. Both conventional and more recent methods of determining gear stress and deflections are considered. The subjects of life prediction and lubrication are additions to the literature. New and more complete methods of power loss predictions as well as an optimum design of spur gear meshes are described. Conventional and new types of power transmission systems are presented.

  12. Automated acoustic intensity measurements and the effect of gear tooth profile on noise

    NASA Technical Reports Server (NTRS)

    Atherton, William J.; Pintz, Adam; Lewicki, David G.

    1987-01-01

    Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.

  13. Journal Bearing Analysis Suite Released for Planetary Gear System Evaluation

    NASA Technical Reports Server (NTRS)

    Brewe, David E.; Clark, David A.

    2005-01-01

    Planetary gear systems are an efficient means of achieving high reduction ratios with minimum space and weight. They are used in helicopter, aerospace, automobile, and many industrial applications. High-speed planetary gear systems will have significant dynamic loading and high heat generation. Hence, they need jet lubrication and associated cooling systems. For units operating in critical applications that necessitate high reliability and long life, that have very large torque loading, and that have downtime costs that are significantly greater than the initial cost, hydrodynamic journal bearings are a must. Computational and analytical tools are needed for sufficiently accurate modeling to facilitate optimal design of these systems. Sufficient physics is needed in the model to facilitate parametric studies of design conditions that enable optimal designs. The first transient journal bearing code to implement the Jacobsson-Floberg-Olsson boundary conditions, using a mass-conserving algorithm devised by Professor Emeritus Harold Elrod of Columbia University, was written by David E. Brewe of the U.S. Army at the NASA Lewis Research Center1 in 1983. Since then, new features and improved modifications have been built into the code by several contributors supported through Army and NASA funding via cooperative agreements with the University of Toledo (Professor Ted Keith, Jr., and Dr. Desikakary Vijayaraghavan) and National Research Council Programs (Dr. Vijayaraghavan). All this was conducted with the close consultation of Professor Elrod and the project management of David Brewe.

  14. Development of a Model Based Technique for Gear Diagnostics using the Wigner-Ville method

    NASA Technical Reports Server (NTRS)

    Choy, F.; Xu, A.; Polyshchuk, V.

    1997-01-01

    Imperfections in gear tooth geometry often result from errors in the manufacturing process or excessive material wear during operation. Such faults in the gear tooth geometry can result in large vibrations in the transmission system, and, in some cases, may lead to early failure of the gear transmission system. This report presents the study of the effects of imperfection in gear tooth geometry on the dynamic characteristics of a gear transmission system. The faults in the gear tooth geometry are modeled numerically as the deviation of the tooth profile from its original involute geometry. The changes in gear mesh stiffness due to various profile and pattern variations are evaluated numerically. The resulting changes in the mesh stiffness are incorporated into a computer code to simulate the dynamics of the gear transmission system. A parametric study is performed to examine the sensitivity of gear tooth geometry imperfections on the vibration of a gear transmission system. The parameters variations in this study consist of the magnitude of the imperfection, the pattern of the profile variation, and the total number of teeth affected. Numerical results from the dynamic simulations are examined in both the time and the frequency domains. A joint time-frequency analysis procedure using the Wigner-Ville Distribution is also introduced to identify the location of the damaged tooth from the vibration signature. Numerical simulations of the system dynamics with gear faults were compared to experimental results. An optimal tracker was introduced to quantify the level of damage in the gear mesh system. Conclusions are drawn from the results of this numerical study.

  15. Vibration Based Sun Gear Damage Detection

    NASA Technical Reports Server (NTRS)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  16. Three new models for evaluation of standard involute spur gear mesh stiffness

    NASA Astrophysics Data System (ADS)

    Liang, Xihui; Zhang, Hongsheng; Zuo, Ming J.; Qin, Yong

    2018-02-01

    Time-varying mesh stiffness is one of the main internal excitation sources of gear dynamics. Accurate evaluation of gear mesh stiffness is crucial for gear dynamic analysis. This study is devoted to developing new models for spur gear mesh stiffness evaluation. Three models are proposed. The proposed model 1 can give very accurate mesh stiffness result but the gear bore surface must be assumed to be rigid. Enlighted by the proposed model 1, our research discovers that the angular deflection pattern of the gear bore surface of a pair of meshing gears under a constant torque basically follows a cosine curve. Based on this finding, two other models are proposed. The proposed model 2 evaluates gear mesh stiffness by using angular deflections at different circumferential angles of an end surface circle of the gear bore. The proposed model 3 requires using only the angular deflection at an arbitrary circumferential angle of an end surface circle of the gear bore but this model can only be used for a gear with the same tooth profile among all teeth. The proposed models are accurate in gear mesh stiffness evaluation and easy to use. Finite element analysis is used to validate the accuracy of the proposed models.

  17. Hybrid Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  18. Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.

    2010-01-01

    Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.

  19. Study on vibration characteristic of the marine beveloid gear RV reducer

    NASA Astrophysics Data System (ADS)

    Wen, Jianmin; Cui, Haiyue; Yang, Tong

    2018-05-01

    The paper focuses on the vibration characteristic of the marine beveloid gear RV reducer and provides the theoretical guidance for vibration reduction. The cycloid gears are replaced by the beveloid gears in the transmission system. Considering the impact of the backlash, time-varying meshing stiffness and transmission error, a three-dimensional lumped parameter dynamic model of the marine beveloid gear RV reducer is established. The dynamic differential equations are solved through the 4th-5th order Runge-Kutta numerical integration method. By comparing the change of the time-displacement curves and amplitude curves, the impact of the external and internal excitation on the system vibration characteristic is investigated.

  20. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  1. Test Facility Simulation Results for Aerospace Loss-of-Lubrication of Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Gargano, Lucas J.

    2014-01-01

    Prior to receiving airworthiness certification, extensive testing is required during the development of rotary wing aircraft drive systems. Many of these tests are conducted to demonstrate the drive system's ability to operate at extreme conditions, beyond that called for in the normal to maximum power operating range. One of the most extreme tests is referred to as the loss-of-lubrication or run dry test. During this test, the drive system is expected to last at least 30 min without failure while the primary lubrication system is disabled for predetermined, scripted flight conditions. Failure of this test can lead to a partial redesign of the drive system or the addition of an emergency lubrication system. Either of these solutions can greatly increase the aircraft drive system cost and weight and extend the schedule for obtaining airworthiness certification. Recent work at NASA Glenn Research Center focused on performing tests, in a relevant aerospace environment, to simulate the behavior of spur gears under loss-of-lubrication conditions. Tests were conducted using a test facility that was used in the past for spur gear contact fatigue testing. A loss-oflubrication test is initiated by shutting off the single into mesh lubricating jet. The test proceeds until the gears fail and can no longer deliver the applied torque. The observed failures are typically plastically deformed gear teeth, due to the high tooth temperatures, that are no longer in mesh. The effect of several different variables to gear tooth condition during loss-of-lubrication have been tested such as gear pitch, materials, shrouding, lubrication condition, and emergency supplied mist lubrication in earlier testing at NASA. Recent testing has focused on newer aerospace gear steels and imbedding thermocouples in the shrouding to measure the air-oil temperatures flung off the gear teeth. Along with the instrumented shrouding, an instrumented spur gear was also tested. The instrumented spur gear had

  2. Vibration Signature Analysis of a Faulted Gear Transmission System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1994-01-01

    A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.

  3. Experimental and analytical transonic flutter characteristics of a geared-elevator configuration

    NASA Technical Reports Server (NTRS)

    Ruhlin, C. L.; Doggett, R. V., Jr.; Gregory, R. A.

    1980-01-01

    The flutter model represented the aft fuselage and empennage of a proposed supersonic transport airplane and had an all movable horizontal tail with a geared elevator. It was tested mounted from a sting in the transonic dynamics tunnel. Symmetric flutter boundaries were determined experimentally at Mach numbers from 0.7 to 1.14 for a geared elevator configuration (gear ratio of 2.8 to 1.0) and an ungeared elevator configuration (gear ratio of 1.0 to 1.0). Gearing the elevator increased the experimental flutter dynamic pressures about 20 percent. Flutter calculations were made for the geared elevator configuration by using two analytical methods based on subsonic lifting surface theory. Both methods analyzed the stabilizer and elevator as a single, deforming surface, but one method also allowed the elevator to be analyzed as hinged from the stabilizer. All analyses predicted lower flutter dynamic pressures than experiment with best agreement (within 12 percent) for the hinged elevator method. Considering the model as mounted from a flexible rather than rigid sting in the analyses, had only a slight effect on the flutter results but was significant in that a sting related vibration mode was identified as a potentially flutter critical mode.

  4. Helical Face Gear Development Under the Enhanced Rotorcraft Drive System Program

    NASA Technical Reports Server (NTRS)

    Heath, Gregory F.; Slaughter, Stephen C.; Fisher, David J.; Lewicki, David G.; Fetty, Jason

    2011-01-01

    U.S. Army goals for the Enhanced Rotorcraft Drive System Program are to achieve a 40 percent increase in horsepower to weight ratio, a 15 dB reduction in drive system generated noise, 30 percent reduction in drive system operating, support, and acquisition cost, and 75 percent automatic detection of critical mechanical component failures. Boeing s technology transition goals are that the operational endurance level of the helical face gearing and related split-torque designs be validated to a TRL 6, and that analytical and manufacturing tools be validated. Helical face gear technology is being developed in this project to augment, and transition into, a Boeing AH-64 Block III split-torque face gear main transmission stage, to yield increased power density and reduced noise. To date, helical face gear grinding development on Northstar s new face gear grinding machine and pattern-development tests at the NASA Glenn/U.S. Army Research Laboratory have been completed and are described.

  5. Effect of extended tooth contact on the modeling of spur gear transmissions

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Coy, John J.; Lin, Hsiang Hsi; Wang, Jifeng

    1993-01-01

    In some gear dynamic models, the effect of tooth flexibility is ignored when the model determines which pairs of teeth are in contact. Deflection of loaded teeth is not introduced until the equations of motion are solved. This means the zone of tooth contact and average tooth meshing stiffness are underestimated and the individual tooth load is overstated, especially for heavily-loaded gears. The static transmission error and dynamic load of heavily-loaded, low-contact-ratio spur gears is compared with this effect both neglected and included. Neglecting the effect yields an underestimate of resonance speeds and an overestimate of the dynamic load.

  6. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Here, scientists are showing an animation from Walt Feimer, lead animator for the Heliophysics team. Credit: NASA/GSFC

  7. Gear Mesh Loss-of-Lubrication Experiments and Analytical Simulation

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Polly, Joseph; Morales, Wilfredo

    2011-01-01

    An experimental program to determine the loss-of-lubrication (LOL) characteristics of spur gears in an aerospace simulation test facility has been completed. Tests were conducted using two different emergency lubricant types: (1) an oil mist system (two different misted lubricants) and (2) a grease injection system (two different grease types). Tests were conducted using a NASA Glenn test facility normally used for conducting contact fatigue. Tests were run at rotational speeds up to 10000 rpm using two different gear designs and two different gear materials. For the tests conducted using an air-oil misting system, a minimum lubricant injection rate was determined to permit the gear mesh to operate without failure for at least 1 hr. The tests allowed an elevated steady state temperature to be established. A basic 2-D heat transfer simulation has been developed to investigate temperatures of a simulated gear as a function of frictional behavior. The friction (heat generation source) between the meshing surfaces is related to the position in the meshing cycle, the load applied, and the amount of lubricant in the contact. Experimental conditions will be compared to those from the 2-D simulation.

  8. Spur Gear Wear Investigated in Support of Space Shuttle Return-To-Flight Efforts

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Oswald, Fred B.

    2005-01-01

    As part of NASA s Return-To-Flight efforts, the Space Operations Program investigated the condition of actuators for the orbiter s rudder speed brake. The actuators control the position of the rudder panels located in the tail of the orbiter, providing both steering control and braking during reentry, approach, and landing. Inspections of flight hardware revealed fretting and wear damage to the critical working surfaces of the actuator gears. To best understand the root cause of the observed damage and to help establish an appropriate reuse and maintenance plan for these safety critical parts, researchers completed a set of gear wear experiments at the NASA Glenn Research Center.

  9. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  10. Study on Nonlinear Vibration Analysis of Gear System with Random Parameters

    NASA Astrophysics Data System (ADS)

    Tong, Cao; Liu, Xiaoyuan; Fan, Li

    2018-03-01

    In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.

  11. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Philip H. Scherrer (left) principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, while colleagues Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters (right) look on Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  12. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2005-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook are solicited from the spacecraft structural dynamics testing community.

  13. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2004-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook is solicited from the spacecraft structural dynamics testing community.

  14. Modeling of automotive driveline system for reducing gear rattles

    NASA Astrophysics Data System (ADS)

    Shangguan, Wen-Bin; Liu, Xue-Lai; Yin, Yuming; Rakheja, Subhash

    2018-03-01

    A nonlinear torsional model for a driveline system with 4 degrees of freedom is proposed for studying gear rattle if a car is at idle. The time-varying meshing stiffness of geared teeth, gear backlash, and the damping from oil film are included in the model. The dynamic responses of the driveline system, such as clutch angular displacement, meshing force and relative displacement between geared teeth, are calculated using the presented model. The influences of stiffness and damping of a clutch on gear rattle of geared teeth in a generic transmission are investigated. Based on the calculation and analysis results, a design guideline to select clutch's stiffness and damping is developed to reduce gear rattle for a car at idle. Taking a generic driveline system of a passenger car as an example, the developed method is experimentally validated by comparing the baseline clutch and revised clutch, in terms of the measured noise inside engine compartment and cab and vibrations at transmission housing.

  15. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Tom Woods, (second from right), principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  16. Life and reliability modeling of bevel gear reductions

    NASA Technical Reports Server (NTRS)

    Savage, M.; Brikmanis, C. K.; Lewicki, D. G.; Coy, J. J.

    1985-01-01

    A reliability model is presented for bevel gear reductions with either a single input pinion or dual input pinions of equal size. The dual pinions may or may not have the same power applied for the analysis. The gears may be straddle mounted or supported in a bearing quill. The reliability model is based on the Weibull distribution. The reduction's basic dynamic capacity is defined as the output torque which may be applied for one million output rotations of the bevel gear with a 90 percent probability of reduction survival.

  17. An Experimental Investigation of Damaged Arresting Gear Tapes for the Langley Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Mason, Angela J.

    1999-01-01

    An experimental investigation was performed on damaged arresting gear tapes at the Langley Aircraft Landing Dynamics Facility. The arrestment system uses five pairs of tapes to bring the test carriage to a halt. The procedure used to determine when to replace the tapes consists of a close evaluation of each of the 10 tapes after each run. During this evaluation, each tape is examined thoroughly and any damage observed on the tape is recorded. If the damaged tape does not pass the inspection, the tape is replaced with a new one. For the past 13 years, the most commonly seen damage types are edge fray damage and transverse damage. Tests were conducted to determine the maximum tensile strength of a damaged arresting gear tape specimen. The data indicate that tapes exhibiting transverse damage can withstand higher loads than tapes with edge fray damage.

  18. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. Photo Credit: (NASA/Carla Cioffi)

  19. Spin-up studies of the Space Shuttle Orbiter main gear tire

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1988-01-01

    One of the factors needed to describe the wear behavior of the Space Shuttle Orbiter main gear tires is their behavior during the spin-up process. An experimental investigation of tire spin-up processes was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility. During the investigation, the influence of various parameters such as forward speed and sink speed on tire spin-up forces were evaluated. A mathematical model was developed to estimate drag forces and spin-up times and is presented. The effect of prerotation was explored and is discussed. Also included is a means of determining the sink speed of the orbiter at touchdown based upon the appearance of the rubber deposits left on the runway during spinup.

  20. Precision Measurement of Gear Lubricant Load-Carrying Capacity (Feasibility Study)

    DTIC Science & Technology

    1981-11-01

    ratio of sliding to rolling is much greater in the second group than in the first. This difference has a great influence on the characteristics which...largest angle, the direction of sliding is more parallel to the contact line than normal to it. This is the major difference in conditions of contact...flow to and over the gear teeth, are quite different matters . The ef- fects of gear dynamics and lubricant flow dynamics on lubrication re- lated

  1. An experimental simulation study of four crosswind landing gear concepts

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Byrdsong, T. A.; Sleeper, R. K.

    1975-01-01

    An experimental investigation was conducted in order to evaluate several crosswind landing-gear concepts which have a potential application to tricycle-gear-configured, short take-off and landing (STOL) aircraft landing at crab or heading angles up to 30 deg. In this investigation, the landing gears were installed on a dynamic model which had a scaled mass distribution and gear spacing but no aerodynamic similarities when compared with a typical STOL aircraft. The model was operated as a free body with radio-control steering and was launched onto a runway sloped laterally in order to provide a simulated crosswind side force. During the landing rollout, the gear forces and the model trajectory were measured and the various concepts were compared with each other. Within the test limitations, the landing gear system, in which the gears were alined by the pilot and locked in the direction of motion prior to touchdown, gave the smoothest runout behavior with the vehicle maintaining its crab angle throughout the landing runout.

  2. A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab

    2015-01-01

    The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.

  3. Proposed solution methodology for the dynamically coupled nonlinear geared rotor mechanics equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L. D.; David, J. W.

    1983-01-01

    The equations which describe the three-dimensional motion of an unbalanced rigid disk in a shaft system are nonlinear and contain dynamic-coupling terms. Traditionally, investigators have used an order analysis to justify ignoring the nonlinear terms in the equations of motion, producing a set of linear equations. This paper will show that, when gears are included in such a rotor system, the nonlinear dynamic-coupling terms are potentially as large as the linear terms. Because of this, one must attempt to solve the nonlinear rotor mechanics equations. A solution methodology is investigated to obtain approximate steady-state solutions to these equations. As an example of the use of the technique, a simpler set of equations is solved and the results compared to numerical simulations. These equations represent the forced, steady-state response of a spring-supported pendulum. These equations were chosen because they contain the type of nonlinear terms found in the dynamically-coupled nonlinear rotor equations. The numerical simulations indicate this method is reasonably accurate even when the nonlinearities are large.

  4. Anti-backlash gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gear bearing having a first gear and a second gear, each having a plurality of teeth. Each gear operates on two non-parallel surfaces of the opposing gear teeth to perform both gear and bearing functions simultaneously. The gears are moving at substantially the same speed at their contact points. The gears may be roller gear bearings or phase-shifted gear bearings, and may be arranged in a planet/sun system or used as a transmission. One preferred embodiment discloses and describes an anti-backlash feature to counter ''dead zones'' in the gear bearing movement.

  5. Theory of Gearing

    DTIC Science & Technology

    1989-12-01

    motion of rigid bodies and their kinematical and dynamic characteristics, which are associated with different coordinate systems. In the theory of...rigidly connected surfaces EF and Ep with respect to gears I and 2 may be represented as the motion of a rigid body . However, we assume that in the... rigid body . Coordinate tran:;formation will be considered for systems with (1) common origin and noncoincident coordinate axes and (2) noncoincident

  6. Effects of random tooth profile errors on the dynamic behaviors of planetary gears

    NASA Astrophysics Data System (ADS)

    Xun, Chao; Long, Xinhua; Hua, Hongxing

    2018-02-01

    In this paper, a nonlinear random model is built to describe the dynamics of planetary gear trains (PGTs), in which the time-varying mesh stiffness, tooth profile modification (TPM), tooth contact loss, and random tooth profile error are considered. A stochastic method based on the method of multiple scales (MMS) is extended to analyze the statistical property of the dynamic performance of PGTs. By the proposed multiple-scales based stochastic method, the distributions of the dynamic transmission errors (DTEs) are investigated, and the lower and upper bounds are determined based on the 3σ principle. Monte Carlo method is employed to verify the proposed method. Results indicate that the proposed method can be used to determine the distribution of the DTE of PGTs high efficiently and allow a link between the manufacturing precision and the dynamical response. In addition, the effects of tooth profile modification on the distributions of vibration amplitudes and the probability of tooth contact loss with different manufacturing tooth profile errors are studied. The results show that the manufacturing precision affects the distribution of dynamic transmission errors dramatically and appropriate TPMs are helpful to decrease the nominal value and the deviation of the vibration amplitudes.

  7. Shifting gears: Diversification, intensification, and effort increases in small-scale fisheries (1950-2010)

    PubMed Central

    Gergel, Sarah E.; Vincent, Amanda C. J.

    2018-01-01

    Locally sustainable resource extraction activities, at times, transform into ecologically detrimental enterprises. Understanding such transitions is a primary challenge for conservation and management of many ecosystems. In marine systems, over-exploitation of small-scale fisheries creates problems such as reduced biodiversity and lower catches. However, long-term documentation of how governance and associated changes in fishing gears may have contributed to such declines is often lacking. Using fisher interviews, we characterized fishing gear dynamics over 60 years (1950–2010) in a coral reef ecosystem in the Philippines subject to changing fishing regulations. In aggregate fishers greatly diversified their use of fishing gears. However, most individual fishers used one or two gears at a time (mean number of fishing gears < 2 in all years). Individual fishing effort (days per year) was fairly steady over the study period, but cumulative fishing effort by all fishers increased 240%. In particular, we document large increases in total effort by fishers using nets and diving. Other fishing gears experienced less pronounced changes in total effort over time. Fishing intensified through escalating use of non-selective, active, and destructive fishing gears. We also found that policies promoting higher production over sustainability influenced the use of fishing gears, with changes in gear use persisting decades after those same policies were stopped. Our quantitative evidence shows dynamic changes in fishing gear use over time and indicates that gears used in contemporary small-scale fisheries impact oceans more than those used in earlier decades. PMID:29538370

  8. Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo

    2017-07-01

    Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.

  9. Modeling and monitoring of tooth fillet crack growth in dynamic simulation of spur gear set

    NASA Astrophysics Data System (ADS)

    Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc

    2015-05-01

    This study integrates a linear elastic fracture mechanics analysis of the tooth fillet crack propagation into a nonlinear dynamic model of spur gear sets. An original formulation establishes the rigidity of sound and damaged teeth. The formula incorporates the contribution of the flexible gear body and real crack trajectories in the fillet zone. The work also develops a KI prediction formula. A validation of the equation estimates shows that the predicted KI are in close agreement with published numerical and experimental values. The representation also relies on the Paris-Erdogan equation completed with crack closure effects. The analysis considers that during dN fatigue cycles, a harmonic mean of ΔK assures optimal evaluations. The paper evaluates the influence of the mesh frequency distance from the resonances of the system. The obtained results indicate that while the dependence may demonstrate obvious nonlinearities, the crack progression rate increases with a mesh frequency augmentation. The study develops a tooth fillet crack propagation detection procedure based on residual signals (RS) prepared in the frequency domain. The proposed approach accepts any gear conditions as reference signature. The standard deviation and mean values of the RS are evaluated as gear condition descriptors. A trend tracking of their responses obtained from a moving linear regression completes the analysis. Globally, the results show that, regardless of the reference signal, both descriptors are sensitive to the tooth fillet crack and sharply react to tooth breakage. On average, the mean value detected the crack propagation after a size increase of 3.69 percent as compared to the reference condition, whereas the standard deviation required crack progressions of 12.24 percent. Moreover, the mean descriptor shows evolutions closer to the crack size progression.

  10. Effect of interaction on landing-gear behavior and dynamic loads in a flexible airplane structure

    NASA Technical Reports Server (NTRS)

    Cook, Francis E; Milwitzky, Benjamin

    1956-01-01

    The effects of interaction between a landing gear and a flexible airplane structure on the behavior of the landing gear and the loads in the structure have been studied by treating the equations of motion of the airplane and the landing gear as a coupled system. The landing gear is considered to have nonlinear characteristics typical of conventional gears, namely, velocity-squared damping, polytropic air-compression springing, and exponential tire force-deflection characteristics. For the case where only two modes of the structure are considered, an equivalent three-mass system is derived for representing the airplane and landing-gear combination, which may be used to simulate the effects of structural flexibility in jig drop tests of landing gears. As examples to illustrate the effects of interaction, numerical calculations, based on the structural properties of two large airplanes having considerably different mass and flexibility characteristics, are presented.

  11. Subsynchronous instability of a geared centrifugal compressor of overhung design

    NASA Technical Reports Server (NTRS)

    Hudson, J. H.; Wittman, L. J.

    1980-01-01

    The original design analysis and shop test data are presented for a three stage (poster) air compressor with impellers mounted on the extensions of a twin pinion gear, and driven by an 8000 hp synchronous motor. Also included are field test data, subsequent rotor dynamics analysis, modifications, and final rotor behavior. A subsynchronous instability existed on a geared, overhung rotor. State-of-the-art rotor dynamics analysis techniques provided a reasonable analytical model of the rotor. A bearing modification arrived at analytically eliminated the instability.

  12. Vibration characteristics of two-stage planetary transmission system with thin-walled ring gear on elastic supports

    NASA Astrophysics Data System (ADS)

    Li, JianYing; Hu, QingChun; Zong, ChangFu; Zhu, TianJun; Zhang, ZeXing

    2018-03-01

    A dual-clutch and dual-speed planetary gears mechanism of a hybrid car coupled-system is taken as research subject, in which the ring gear of planet set II is a thin-walled structure and the clutch friction plates of planet set II are used as its elastic supports. Based on the lumped parameter-rigid elastic coupled dynamic model of two-stage planetary transmission system with thin-walled ring gear on elastic supports, the motion differential equations are established and the dynamic responses are solved by the Runge-Kutta method considering each stage internal and external time-varying mesh stiffness. The vibration displacements of each stage ring gear have been affected differently in time-domain, the translational vibration displacement of the ring gear of planet set I are obviously more than the torsional vibration displacement, but it is opposite for the ring gear of planet set II; The translational and torsional vibration responses of each stage ring gear arrive the peak in low-frequency. The analysis results of this paper can enrich the theoretical research of multistage planetary transmission and provide guidance for dynamic design.

  13. Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)

    2001-01-01

    Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The

  14. Vertical Drop Testing and Analysis of the Wasp Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.

    2007-01-01

    This report describes an experimental program to assess the impact performance of a skid gear for use on the Wasp kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. In total, five vertical drop tests were performed. The test article consisted of a skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The test article also included ballast weights to ensure the correct position of the Center-of-Gravity (CG). Twenty-six channels of acceleration data were collected per test at 50,000 samples per second. The five drop tests were conducted on two different gear configurations. The details of these test programs are presented, as well as an occupant injury assessment. Finally, a finite element model of the skid gear test article was developed for execution in LS-DYNA, an explicit nonlinear transient dynamic code, for predicting the skid gear and occupant dynamic responses due to impact.

  15. Gear tooth stress measurements on the UH-60A helicopter transmission

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    1987-01-01

    The U.S. Army UH-60A (Black Hawk) 2200-kW (3000-hp) class twin-engine helicopter transmission was tested at the NASA Lewis Research Center. Results from these experimental (strain-gage) stress tests will enhance the data base for gear stress levels in transmissions of a similar power level. Strain-gage measurements were performed on the transmission's spiral-bevel combining pinions, the planetary Sun gear, and ring gear. Tests were performed at rated speed and at torque levels 25 to 100 percent that of rated. One measurement series was also taken at a 90 percent speed level. The largest stress found was 760 MPa (110 ksi) on the combining pinion fillet. This is 230 percent greater than the AGMA index stress. Corresponding mean and alternating stresses were 300 and 430 MPa (48 and 62 ksi). These values are within the range of successful test experience reported for other transmissions. On the fillet of the ring gear, the largest stress found was 410 MPa (59 ksi). The ring-gear peak stress was found to be 11 percent less than an analytical (computer simulation) value and it is 24 percent greater than the AGMA index stress. A peak compressive stress of 650 MPa (94 ksi) was found at the center of the Sun gear tooth root.

  16. Shifting gears: dynamic muscle shape changes and force-velocity behavior in the medial gastrocnemius.

    PubMed

    Dick, Taylor J M; Wakeling, James M

    2017-12-01

    When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling. Copyright © 2017 the American Physiological Society.

  17. Investigation of Gear Dynamics Signal Analysis

    DTIC Science & Technology

    1975-01-01

    TEETH, PART 1, The Engineer, pp. 187-190, August 9, 1957. 37. Trbojevic , M. D ., LOAD DISTRIBUTION ON HELICAL GEAR TEETH, PART 2, The Engineer, pp...used in this study, load distribution factors were found to be negligible. A number of investigators, e.g., Poritsky et al,,34 Weber,35 Trbojevic ... D o o •8 aS < D O taO $3 •H £ o GO -P 00 -P W 0 EH 0) •H ptn 32 Figure 15. Generator Loading System. 33 . * t. Figure 17

  18. Common problems and pitfalls in gear design

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1986-01-01

    There are several pitfalls and problems associated with the successful design of a new gear transmission. A new design will require the knowledge and experience of several technical areas of engineering. Most of the pitfalls and problems associated with a new design are related to an inadequate evaluation of several areas, such as, the lubrication and cooling requirements, complete static and dynamic load analysis, evaluation of materials and heat treatment and the latest manufacturing technology. Some of the common problems of the gear design process are discussed with recommendations made for avoiding these conditions.

  19. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. On Feb. 11, 2010, NASA launched the SDO spacecraft, which is the most advanced spacecraft ever designed to study the sun. Seated left to right are: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md.; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment Instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  20. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, far right, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Pictured from left of Dr. Guhathakurta's are: Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  1. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. Pictured right to left are: Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  2. Comparison of Experimental and Analytical Tooth Bending Stress of Aerospace Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bibel, George D.

    1999-01-01

    An experimental study to investigate the bending stress in aerospace-quality spiral bevel gears was performed. Tests were conducted in the NASA Lewis Spiral Bevel Gear Test Facility. Multiple teeth on the spiral bevel pinion were instrumented with strain gages and tests were conducted from static (slow roll) to 14400 RPM at power levels to 540kW (720 hp). Effects of changing speed and load on the bending stress were measured. Experimental results are compared to those found by three-dimensional finite element analysis.

  3. The Georgians Experience Astronomy Research in Schools (GEARS) High School Galaxy Unit

    NASA Astrophysics Data System (ADS)

    Higdon, Sarah; Higdon, J.; Aguilar, J.

    2012-01-01

    The Georgians Experience Astronomy Research in Schools (GEARS) project aims to provide a rigorous and inquiry-based astronomy curriculum to GA's public schools. Exposure to data mining and research activities using the astronomy archives can be the trigger for the next generation of scientists, and it improves a student's ability to solve problems. Students then consolidate their findings and improve their communication skills by writing scientific reports and creating video presentations. The GEARS curriculum has units on the solar system, life in the Universe, stars, galaxies and cosmology. Here we present some of the activities in the Galaxy Unit. The GEARS material is freely available. Please email shigdon_AT_georgiasouthern.edu if you would like more details. NASA Grant NNX09AH83A through the GADOE funds this project.

  4. Gear Crack Propagation Path Studies-- Guidelines Developed for Ultrasafe Design

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2002-01-01

    Effective gear designs balance strength, durability, reliability, size, weight, and cost. However, unexpected gear failures may occur even with adequate gear tooth design. To design an extremely safe system, the designer must ask and address the question "What happens when a failure occurs?" With regard to gear-tooth bending fatigue, tooth or rim fractures may occur. For aircraft, a crack that propagated through a rim would be catastrophic, leading to the disengagement of a rotor or propeller, the loss of an aircraft, and possible fatalities. This failure mode should be avoided. However, a crack that propagated through a tooth might or might not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode might be possible because of advances in modern diagnostic systems. An analysis was performed at the NASA Glenn Research Center to develop design guidelines to prevent catastrophic rim fracture failure modes in the event of gear-tooth bending fatigue. The finite element method was used with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear-tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth and rim fracture modes, including the effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant-pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 degree

  5. Landing Gear Noise Prediction and Analysis for Tube-and-Wing and Hybrid-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.

    2016-01-01

    Improvements and extensions to landing gear noise prediction methods are developed. New features include installation effects such as reflection from the aircraft, gear truck angle effect, local flow calculation at the landing gear locations, gear size effect, and directivity for various gear designs. These new features have not only significantly improved the accuracy and robustness of the prediction tools, but also have enabled applications to unconventional aircraft designs and installations. Systematic validations of the improved prediction capability are then presented, including parametric validations in functional trends as well as validations in absolute amplitudes, covering a wide variety of landing gear designs, sizes, and testing conditions. The new method is then applied to selected concept aircraft configurations in the portfolio of the NASA Environmentally Responsible Aviation Project envisioned for the timeframe of 2025. The landing gear noise levels are on the order of 2 to 4 dB higher than previously reported predictions due to increased fidelity in accounting for installation effects and gear design details. With the new method, it is now possible to reveal and assess the unique noise characteristics of landing gear systems for each type of aircraft. To address the inevitable uncertainties in predictions of landing gear noise models for future aircraft, an uncertainty analysis is given, using the method of Monte Carlo simulation. The standard deviation of the uncertainty in predicting the absolute level of landing gear noise is quantified and determined to be 1.4 EPNL dB.

  6. Aeroacoustic Evaluation of Flap and Landing Gear Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.; Ravetta, Patricio A.

    2014-01-01

    Aeroacoustic measurements for a semi-span, 18% scale, high-fidelity Gulfstream aircraft model are presented. The model was used as a test bed to conduct detailed studies of flap and main landing gear noise sources and to determine the effectiveness of numerous noise mitigation concepts. Using a traversing microphone array in the flyover direction, an extensive set of acoustic data was obtained in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the information was acquired with the model in a landing configuration with the flap deflected 39 deg and the main landing gear alternately installed and removed. Data were obtained at Mach numbers of 0.16, 0.20, and 0.24 over directivity angles between 56 deg and 116 deg, with 90 deg representing the overhead direction. Measured acoustic spectra showed that several of the tested flap noise reduction concepts decrease the sound pressure levels by 2 - 4 dB over the entire frequency range at all directivity angles. Slightly lower levels of noise reduction from the main landing gear were obtained through the simultaneous application of various gear devices. Measured aerodynamic forces indicated that the tested gear/flap noise abatement technologies have a negligible impact on the aerodynamic performance of the aircraft model.

  7. Offset Compound Gear Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2010-01-01

    The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.

  8. Future Opportunities for Dynamic Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    2007-01-01

    Dynamic power systems have the potential to be used in Radioisotope Power Systems (RPS) and Fission Surface Power Systems (FSPS) to provide high efficiency, reliable and long life power generation for future NASA applications and missions. Dynamic power systems have been developed by NASA over the decades, but none have ever operated in space. Advanced Stirling convertors are currently being developed at the NASA Glenn Research Center. These systems have demonstrated high efficiencies to enable high system specific power (>8 W(sub e)/kg) for 100 W(sub e) class Advanced Stirling Radioisotope Generators (ASRG). The ASRG could enable significant extended and expanded operation on the Mars surface and on long-life deep space missions. In addition, advanced high power Stirling convertors (>150 W(sub e)/kg), for use with surface fission power systems, could provide power ranging from 30 to 50 kWe, and would be enabling for both lunar and Mars exploration. This paper will discuss the status of various energy conversion options currently under development by NASA Glenn for the Radioisotope Power System Program for NASA s Science Mission Directorate (SMD) and the Prometheus Program for the Exploration Systems Mission Directorate (ESMD).

  9. Magnetic Gearing Versus Conventional Gearing in Actuators for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Puchhammer, Gregor

    2014-01-01

    Magnetic geared actuators (MGA) are designed to perform highly reliable, robust and precise motion on satellite platforms or aerospace vehicles. The design allows MGA to be used for various tasks in space applications. In contrast to conventional geared drives, the contact and lubrication free force transmitting elements lead to a considerable lifetime and range extension of drive systems. This paper describes the fundamentals of magnetic wobbling gears (MWG) and the deduced inherent characteristics, and compares conventional and magnetic gearing.

  10. An Assessment of Flap and Main Landing Gear Noise Abatement Concepts

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.

    2015-01-01

    A detailed assessment of the acoustic performance of several noise reduction concepts for aircraft flaps and landing gear is presented. Consideration is given to the best performing concepts within the suite of technologies that were evaluated in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel using an 18 percent scale, semi-span, high-fidelity Gulfstream aircraft model as a test bed. Microphone array measurements were obtained with the model in a landing configuration (flap deflected 39 degrees and the main landing gear deployed or retracted). The effectiveness of each concept over the range of pitch angles, speeds, and directivity angles tested is presented. Comparison of the acoustic spectra, obtained from integration of the beamform maps between the untreated baseline and treated configurations, clearly demonstrates that the flap and gear concepts maintain noise reduction benefits over the entire range of the directivity angles tested.

  11. Experimental Comparison of Face-Milled and Face-Hobbed Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Nanlawala, Michael; Hawkins, John M.; Mahan, Danny

    2001-01-01

    An experimental comparison of face-milled and face-hobbed spiral bevel gears was accomplished. The two differently manufactured spiral bevel gear types were tested in a closed-loop facility at NASA Glenn Research Center. Strain, vibration, and noise testing were completed at various levels of rotational speed and load. Tests were conducted from static (slow-roll) to 12600 rpm and up to 269 N-m (2380 in.-lb) pinion speed and load conditions. The tests indicated that the maximum stress recorded at the root locations had nearly the same values, however the stress distribution was different from the toe to the heel. Also, the alternating stress measured was higher for the face-milled pinion than that attained for the face-hobbed pinion (larger minimum stress). The noise and vibration results indicated that the levels measured for the face-hobbed components were less than those attained for the face-milled gears tested.

  12. Gear Drive Testing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Philadelphia Gear Corporation used two COSMIC computer programs; one dealing with shrink fit analysis and the other with rotor dynamics problems in computerized design and test work. The programs were used to verify existing in-house programs to insure design accuracy by checking its company-developed computer methods against procedures developed by other organizations. Its specialty is in custom units for unique applications, such as Coast Guard ice breaking ships, steel mill drives, coal crusher, sewage treatment equipment and electricity.

  13. Gear bearing drive

    NASA Technical Reports Server (NTRS)

    Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor); Weinberg, Brian (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  14. STEPPED GEAR SYNCHRONIZERS,

    DTIC Science & Technology

    The book concerns Soviet and foreign experience in the design and use of synchronizers in the step gear boxes of transport vehicles. Side by side...with description of the basic steps in the development of the gear engagement mechanisms and of the design used in synchronizers of domestic and foreign...manufacture, in this work much attention is devoted to the theory of gear engagement in gear boxes equipped with synchronizers , and to figuring out

  15. Dynamic characteristics of two new vibration modes of the disk-shell shaped gear

    NASA Astrophysics Data System (ADS)

    Yan, Litang; Qiu, Shijung; Gao, Xiangqung

    1992-10-01

    Two new vibration modes of the disk-shell-shaped big medium gears placed on three separate medium shafts of a turboprop engine have been found. They have the same nodal diameters as the conventional ones, but their frequencies are higher. The tooth ring vibrates both radially and axially and has greater deflection than the gear hub. The resonance of these two new nodal diameter modes is much more dangerous than that of the conventional nodal diameter modes. Moreover, they occur nearly at the upper and the lower bounds of the gear operating speed range. A special detuning method is developed for removing the resonance of these two new modes out of the upper and the lower bounds, respectively, and the effectiveness of the damping rings in this case has been researched. The vibration responses measured on the reductor casing have been then reduced to a quite low level after the damping rings were applied to the three big medium gears.

  16. Gear Tooth Root Stresses of a Very Heavily Loaded Gear Pair-Case Study: Orbiter Body Flap Actuator Pinion and Ring Gear

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Handschuh, Robert F.

    2015-01-01

    The space shuttle orbiter's body flap actuator gearing was assessed as a case study of the stresses for very heavily loaded external-internal gear pairs (meshing pinion and ring gear). For many applications, using the high point of single tooth contact (HPSTC) to locate the position of the tooth force is adequate for assessing the maximum tooth root stress condition. But for aerospace gearing such an approach may be inadequate for assessing the stress condition while also simultaneously minimizing mass. In this work specialized contact analyses and finite element methods were used to study gear tooth stresses of body flap actuator gears. The analytical solutions considered the elastic deformations as an inherent part of the solutions. The ratio for the maximum tooth stresses using the HPSTC approach solutions relative to the contact analysis and finite element solutions were 1.40 for the ring gear and 1.28 for the pinion gear.

  17. The design and analysis of single flank transmission error tester for loaded gears

    NASA Technical Reports Server (NTRS)

    Bassett, Duane E.; Houser, Donald R.

    1987-01-01

    To strengthen the understanding of gear transmission error and to verify mathematical models which predict them, a test stand that will measure the transmission error of gear pairs under design loads has been investigated. While most transmission error testers have been used to test gear pairs under unloaded conditions, the goal of this report was to design and perform dynamic analysis of a unique tester with the capability of measuring the transmission error of gears under load. This test stand will have the capability to continuously load a gear pair at torques up to 16,000 in-lb at shaft speeds from 0 to 5 rpm. Error measurement will be accomplished with high resolution optical encoders and the accompanying signal processing unit from an existing unloaded transmission error tester. Input power to the test gear box will be supplied by a dc torque motor while the load will be applied with a similar torque motor. A dual input, dual output control system will regulate the speed and torque of the system. This control system's accuracy and dynamic response were analyzed and it was determined that proportional plus derivative speed control is needed in order to provide the precisely constant torque necessary for error-free measurement.

  18. School Counseling Programs: Comparing GEAR UP Schools with Non-GEAR UP Schools

    ERIC Educational Resources Information Center

    Thorngren, Jill M.; Nelson, Mark D.; Baker, Larry J.

    2004-01-01

    A survey was conducted using qualitative means to assess school counseling programs in Montana. Schools that were demonstration schools in a federal initiative, Gaining Early Awareness and Readiness for Undergraduate Programs (GEAR UP) were compared to non-GEAR UP schools. Several differences between GEAR UP and non-GEAR UP schools are noted and…

  19. Flow-Field Investigation of Gear-Flap Interaction on a Gulfstream Aircraft Model

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Jenkins, Luther N.; Bartram, Scott M.; Harris, Jerome; Khorrami, Mehdi R.; Mace, W. Derry

    2014-01-01

    Off-surface flow measurements of a high-fidelity 18% scale Gulfstream aircraft model in landing configuration with the main landing gear deployed are presented. Particle Image Velocimetry (PIV) and Laser Velocimetry (LV) were used to measure instantaneous velocities in the immediate vicinity of the main landing gear and its wake and near the inboard tip of the flap. These measurements were made during the third entry of a series of tests conducted in the NASA Langley Research Center (LaRC) 14- by 22-Foot Subsonic Tunnel (14 x 22) to obtain a comprehensive set of aeroacoustic measurements consisting of both aerodynamic and acoustic data. The majority of the off-body measurements were obtained at a freestream Mach number of 0.2, angle of attack of 3 degrees, and flap deflection angle of 39 degrees with the landing gear on. A limited amount of data was acquired with the landing gear off. LV was used to measure the velocity field in two planes upstream of the landing gear and to measure two velocity profiles in the landing gear wake. Stereo and 2-D PIV were used to measure the velocity field over a region extending from upstream of the landing gear to downstream of the flap trailing edge. Using a special traverse system installed under the tunnel floor, the velocity field was measured at 92 locations to obtain a comprehensive picture of the pertinent flow features and characteristics. The results clearly show distinct structures in the wake that can be associated with specific components on the landing gear and give insight into how the wake is entrained by the vortex at the inboard tip of the flap.

  20. Progress on Fault Mechanisms for Gear Transmissions in Coal Cutting Machines: From Macro to Nano Models.

    PubMed

    Jiang, Yu; Zhang, Xiaogang; Zhang, Chao; Li, Zhixiong; Sheng, Chenxing

    2017-04-01

    Numerical modeling has been recognized as the dispensable tools for mechanical fault mechanism analysis. Techniques, ranging from macro to nano levels, include the finite element modeling boundary element modeling, modular dynamic modeling, nano dynamic modeling and so forth. This work firstly reviewed the progress on the fault mechanism analysis for gear transmissions from the tribological and dynamic aspects. Literature review indicates that the tribological and dynamic properties were separately investigated to explore the fault mechanism in gear transmissions. However, very limited work has been done to address the links between the tribological and dynamic properties and scarce researches have been done for coal cutting machines. For this reason, the tribo-dynamic coupled model was introduced to bridge the gap between the tribological and dynamic models in fault mechanism analysis for gear transmissions in coal cutting machines. The modular dynamic modeling and nano dynamic modeling techniques are expected to establish the links between the tribological and dynamic models. Possible future research directions using the tribo dynamic coupled model were summarized to provide potential references for researchers in the field.

  1. Computer fluid dynamics (CFD) study of a micro annular gear pump

    NASA Astrophysics Data System (ADS)

    Stan, Liviu-Constantin; Cǎlimǎnescu, Ioan

    2016-12-01

    Micro technology makes it possible to design products simply, efficiently and sustainably and at the same time, opens up the creation of new functionalities. The field of application of the micro annular gear pumps lies in analytical instrumentation, mechanical and plant engineering, chemical and pharmaceutical process engineering as well as in new markets like fuel cells or biotechnology, organic electronics or aerospace. The purpose of this paper is to investigate by using the powerful ANSYS 16 CFX module the hydrodynamic behavior of an 8/9 teeth annular gear pump. The solving of solids evolving inside fluids was very cumbersome until the advent of the Ansys immersed solid technology. By deploying this technology for very special topics like the CFD analysis of Micro annular gear pumps, credible and reliable results may be pulled leading thus the way for more in depth studies like geometrical a functional optimization of the existing devices. This paper is a valuable guide for the professionals working in the design field of micro pumps handing them a new and powerful design tool.

  2. Evaluation of a Low-Noise Formate Spiral-Bevel Gear Set

    NASA Technical Reports Server (NTRS)

    Lewicki, David g.; Woods, Ron L.; Litvin, Faydor L.; Fuentes, Alfonso

    2007-01-01

    Studies to evaluate low-noise Formate spiral-bevel gears were performed. Experimental tests were performed on the OH-58D helicopter main-rotor transmission in the NASA Glenn 500-hp Helicopter Transmission Test Stand. Low-noise Formate spiral-bevel gears were compared to the baseline OH-58D spiral-bevel gear design, a high-strength design, and previously tested low-noise designs (including an original low-noise design and an improved-bearing-contact low-noise design). Noise, vibration, and tooth strain tests were performed. The Formate design showed a decrease in noise and vibration compared to the baseline OH-58D design, and was similar to that of the previously tested improved-bearing contact low-noise design. The pinion tooth stresses for the Formate design significantly decreased in comparison to the baseline OH-58D design. Also similar to that of the improved bearing-contact low-noise design, the maximum stresses of the Formate design shifted toward the heel, compared to the center of the face width for the baseline, high-strength, and previously tested low-noise designs.

  3. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection

    NASA Astrophysics Data System (ADS)

    Xue, Song; Howard, Ian

    2018-02-01

    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  4. Reliability optimization design of the gear modification coefficient based on the meshing stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Qianqian; Wang, Hui

    2018-04-01

    Since the time varying meshing stiffness of gear system is the key factor affecting gear vibration, it is important to design the meshing stiffness to reduce vibration. Based on the effect of gear modification coefficient on the meshing stiffness, considering the random parameters, reliability optimization design of the gear modification is researched. The dimension reduction and point estimation method is used to estimate the moment of the limit state function, and the reliability is obtained by the forth moment method. The cooperation of the dynamic amplitude results before and after optimization indicates that the research is useful for the reduction of vibration and noise and the improvement of the reliability.

  5. The shock-absorbed system of the airplane landing gear

    NASA Technical Reports Server (NTRS)

    Callerio, Pietro

    1940-01-01

    A discussion is given of the behavior of the shock-absorbing system, consisting of elastic struts and tires, under landing, take-off, and taxying conditions, and a general formula derived for obtaining the minimum stroke required to satisfy the conditions imposed on the landing gear. Finally, the operation of some typical shock-absorbing systems are examined and the necessity brought out for taking into account, in dynamic landing-gear tests, the effect of the wing lift at the instant of contact with the ground.

  6. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1982-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory.

  7. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Abeysinghe, Amal (Inventor); Kwan, Hwa-Wan (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  8. Analysis of mixed model in gear transmission based on ADAMS

    NASA Astrophysics Data System (ADS)

    Li, Xiufeng; Wang, Yabin

    2012-09-01

    The traditional method of mechanical gear driving simulation includes gear pair method and solid to solid contact method. The former has higher solving efficiency but lower results accuracy; the latter usually obtains higher precision of results while the calculation process is complex, also it is not easy to converge. Currently, most of the researches are focused on the description of geometric models and the definition of boundary conditions. However, none of them can solve the problems fundamentally. To improve the simulation efficiency while ensure the results with high accuracy, a mixed model method which uses gear tooth profiles to take the place of the solid gear to simulate gear movement is presented under these circumstances. In the process of modeling, build the solid models of the mechanism in the SolidWorks firstly; Then collect the point coordinates of outline curves of the gear using SolidWorks API and create fit curves in Adams based on the point coordinates; Next, adjust the position of those fitting curves according to the position of the contact area; Finally, define the loading conditions, boundary conditions and simulation parameters. The method provides gear shape information by tooth profile curves; simulates the mesh process through tooth profile curve to curve contact and offer mass as well as inertia data via solid gear models. This simulation process combines the two models to complete the gear driving analysis. In order to verify the validity of the method presented, both theoretical derivation and numerical simulation on a runaway escapement are conducted. The results show that the computational efficiency of the mixed model method is 1.4 times over the traditional method which contains solid to solid contact. Meanwhile, the simulation results are more closely to theoretical calculations. Consequently, mixed model method has a high application value regarding to the study of the dynamics of gear mechanism.

  9. Flexibility effects on tooth contact location in spiral bevel gear transmissions

    NASA Technical Reports Server (NTRS)

    Altidis, P. C.; Savage, M.

    1987-01-01

    An analytical method to predict the shift of the contact ellipse between the meshing teeth in a spiral bevel gear set is presented in this report. The contact ellipse shift of interest is the motion of the nominal tooth contact location on each tooth from the ideal pitch point to the point of contact between the two teeth considering the elastic motions of the gears and their supporting shafts. This is the shift of the pitch point from the ideal, unloaded position on each tooth to the nominal contact location on the tooth when the gears are fully loaded. It is assumed that the major contributors of this motion are the elastic deflections of the gear shafts, the slopes of the shafts under load and the radial deflections of the four gear shaft bearings. The motions of the two pitch point locations on the pinion and the gear tooth surfaces are calculated in a FORTRAN program which also calculates the size and orientation of the Hertzian contact ellipse on the tooth faces. Based on the curvatures of the two spiral bevel gear teeth and the size of the contact ellipse, the program also predicts the basic dynamic capacity of the tooth pair. A complete numerical example is given to illustrate the use of the program.

  10. Gearing Up for Mountain Biking.

    ERIC Educational Resources Information Center

    Jahnke, Thomas; Hamson, Mike

    1999-01-01

    Examines the gear system of a mountain bike to discover any redundancy in the many gear settings available to the cyclist. Suggests a best strategy for changing up through the gears on a typical 21-gear system and an adjustment to the available gears that would result in a smoother change. (Author/ASK)

  11. Noise Spectra and Directivity For a Scale-Model Landing Gear

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Brooks, Thomas F.

    2007-01-01

    An extensive experimental study has been conducted to acquire detailed noise spectra and directivity data for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. The measurements were conducted in the NASA Langley Quiet Flow Facility using a 41-microphone directional array system positioned at a range of polar and azimuthal observer angles with respect to the model. DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) array processing as well as straightforward individual microphone processing were employed to compile unique flyover and sideline directivity databases for a range of freestream Mach numbers (0.11 - 0.17) covering typical approach conditions. Comprehensive corrections were applied to the test data to account for shear layer ray path and amplitude variations. This allowed proper beamforming at different measurement orientations, as well as directivity presentation in free-field emission coordinates. Four different configurations of the landing gear were tested: a baseline configuration with and without an attached side door, and a noise reduction concept "toboggan" truck fairing with and without side door. DAMAS noise source distributions were determined. Spectral analyses demonstrated that individual microphones could establish model spectra. This finding permitted the determination of unique, spatially-detailed directivity contours of spectral band levels over a hemispherical surface. Spectral scaling for the baseline model confirmed that the acoustic intensity scaled with the expected sixth-power of the Mach number. Finally, comparison of spectra and directivity between the baseline gear and the gear with an attached toboggan indicated that the toboggan fairing may be of some value in reducing gear noise over particular frequency ranges.

  12. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory. Previously announced in STAR as N82-32733

  13. Precision of spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    The kinematic errors in spiral bevel gear trains caused by the generation of nonconjugate surfaces, by axial displacements of the gears during assembly, and by eccentricity of the assembled gears were determined. One mathematical model corresponds to the motion of the contact ellipse across the tooth surface, (geometry I) and the other along the tooth surface (geometry II). The following results were obtained: (1) kinematic errors induced by errors of manufacture may be minimized by applying special machine settings, the original error may be reduced by order of magnitude, the procedure is most effective for geometry 2 gears, (2) when trying to adjust the bearing contact pattern between the gear teeth for geometry I gears, it is more desirable to shim the gear axially; for geometry II gears, shim the pinion axially; (3) the kinematic accuracy of spiral bevel drives are most sensitive to eccentricities of the gear and less sensitive to eccentricities of the pinion. The precision of mounting accuracy and manufacture are most crucial for the gear, and less so for the pinion. Previously announced in STAR as N82-30552

  14. Precision of spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1982-01-01

    The kinematic errors in spiral bevel gear trains caused by the generation of nonconjugate surfaces, by axial displacements of the gears during assembly, and by eccentricity of the assembled gears were determined. One mathematical model corresponds to the motion of the contact ellipse across the tooth surface, (geometry I) and the other along the tooth surface (geometry II). The following results were obtained: (1) kinematic errors induced by errors of manufacture may be minimized by applying special machine settings, the original error may be reduced by order of magnitude, the procedure is most effective for geometry 2 gears, (2) when trying to adjust the bearing contact pattern between the gear teeth for geometry 1 gears, it is more desirable to shim the gear axially; for geometry II gears, shim the pinion axially; (3) the kinematic accuracy of spiral bevel drives are most sensitive to eccentricities of the gear and less sensitive to eccentricities of the pinion. The precision of mounting accuracy and manufacture are most crucial for the gear, and less so for the pinion.

  15. Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling

    NASA Astrophysics Data System (ADS)

    Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo

    2017-06-01

    Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.

  16. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  17. A Review of Transmission Diagnostics Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakajsek, James J.

    1994-01-01

    This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.

  18. The NASA Langley Isolator Dynamics Research Lab

    NASA Technical Reports Server (NTRS)

    Middleton, Troy F.; Balla, Robert J.; Baurle, Robert A.; Humphreys, William M.; Wilson, Lloyd G.

    2010-01-01

    The Isolator Dynamics Research Lab (IDRL) is under construction at the NASA Langley Research Center in Hampton, Virginia. A unique test apparatus is being fabricated to support both wall and in-stream measurements for investigating the internal flow of a dual-mode scramjet isolator model. The test section is 24 inches long with a 1-inch by 2-inch cross sectional area and is supplied with unheated, dry air through a Mach 2.5 converging-diverging nozzle. The test section is being fabricated with two sets (glass and metallic) of interchangeable sidewalls to support flow visualization and laser-based measurement techniques as well as static pressure, wall temperature, and high frequency pressure measurements. During 2010, a CFD code validation experiment will be conducted in the lab in support of NASA s Fundamental Aerodynamics Program. This paper describes the mechanical design of the Isolator Dynamics Research Lab test apparatus and presents a summary of the measurement techniques planned for investigating the internal flow field of a scramjet isolator model.

  19. Control of a haptic gear shifting assistance device utilizing a magnetorheological clutch

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Choi, Seung-Bok

    2014-10-01

    This paper proposes a haptic clutch driven gear shifting assistance device that can help when the driver shifts the gear of a transmission system. In order to achieve this goal, a magnetorheological (MR) fluid-based clutch is devised to be capable of the rotary motion of an accelerator pedal to which the MR clutch is integrated. The proposed MR clutch is then manufactured, and its transmission torque is experimentally evaluated according to the magnetic field intensity. The manufactured MR clutch is integrated with the accelerator pedal to transmit a haptic cue signal to the driver. The impending control issue is to cue the driver to shift the gear via the haptic force. Therefore, a gear-shifting decision algorithm is constructed by considering the vehicle engine speed concerned with engine combustion dynamics, vehicle dynamics and driving resistance. Then, the algorithm is integrated with a compensation strategy for attaining the desired haptic force. In this work, the compensator is also developed and implemented through the discrete version of the inverse hysteretic model. The control performances, such as the haptic force tracking responses and fuel consumption, are experimentally evaluated.

  20. Experimental and analytical assessment of the thermal behavior of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Kicher, Thomas P.

    1995-01-01

    An experimental and analytical study of spiral bevel gears operating in an aerospace environment has been performed. Tests were conducted within a closed loop test stand at NASA Lewis Research Center. Tests were conducted to 537 kW (720 hp) at 14,400 rpm. The effects of various operating conditions on spiral bevel gear steady state and transient temperature are presented. Also, a three-dimensional analysis of the thermal behavior was conducted using a nonlinear finite element analysis computer code. The analysis was compared to the experimental results attained in this study. The results agreed well with each other for the cases compared and were no more than 10 percent different in magnitude.

  1. 3000-HP Roller Gear Transmission Development Program. Volume 3. Roller Gear Manufacture

    DTIC Science & Technology

    1975-07-01

    power is fed through the ramp roller clutch type free- wheel units to spur gears which mesh with the combining spur gear whose centerline is common...when the engine tends to turn faster than the main rotor shaft. It is in the free- wheel mode when the main rotor shaft tends to turn faster than the...gears are cut progrind at this time. Check face runout on each end of largo gears. Not to exceed .002" TIR 30 EBW one end 40 EBW opposite end

  2. Detail View looking at the protected structure and landing gear ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail View looking at the protected structure and landing gear housing in the void created by the removal of the Forward Reaction Control System Module from the forward section of the Orbiter Discovery. This view was taken from the service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Alan Title, second from left, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. Pictured from left to right: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md., Alan Title, Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  4. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse gear...

  5. Quantification of Gear Tooth Damage by Optimal Tracking of Vibration Signatures

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Veillette, R. J.; Polyshchuk, V.; Braun, M. J.; Hendricks, R. C.

    1996-01-01

    This paper presents a technique for quantifying the wear or damage of gear teeth in a transmission system. The procedure developed in this study can be applied as a part of either an onboard machine health-monitoring system or a health diagnostic system used during regular maintenance. As the developed methodology is based on analysis of gearbox vibration under normal operating conditions, no shutdown or special modification of operating parameters is required during the diagnostic process. The process of quantifying the wear or damage of gear teeth requires a set of measured vibration data and a model of the gear mesh dynamics. An optimization problem is formulated to determine the profile of a time-varying mesh stiffness parameter for which the model output approximates the measured data. The resulting stiffness profile is then related to the level of gear tooth wear or damage. The procedure was applied to a data set generated artificially and to another obtained experimentally from a spiral bevel gear test rig. The results demonstrate the utility of the procedure as part of an overall health-monitoring system.

  6. Evaluation of Standard Gear Metrics in Helicopter Flight Operation

    NASA Technical Reports Server (NTRS)

    Mosher, M.; Pryor, A. H.; Huff, E. M.

    2002-01-01

    Each false alarm made by a machine monitoring system carries a high price tag. The machine must be taken out of service, thoroughly inspected with possible disassembly, and then made ready for service. Loss of use of the machine and the efforts to inspect it are costly. In addition, if a monitoring system is prone to false alarms, the system will soon be turned off or ignored. For aircraft applications, one growing concern is that the dynamic flight environment differs from the laboratory environment where fault detection methods are developed and tested. Vibration measurements made in flight are less stationary than those made in a laboratory, or test facility, and thus a given fault detection method may produce more false alarms in flight than might be anticipated. In 1977. Stewart introduced several metrics, including FM0 and FM4, for evaluating the health of a gear. These metrics are single valued functions of the vibration signal that indicate if the signal deviates from an ideal model of the signal. FM0 is a measure of the ratio of the peak-to-peak level to the harmonic energy in the signal. FM4 is the kurtosis of the signal with the gear mesh harmonics and first order side bands removed. The underlying theory is that a vibration signal from a gear in good condition is expected to be dominated by a periodic signal at the gear mesh frequency. If one or a small number of gear teeth contain damage or faults, the signal will change, possibly showing increased amplitude, local phase changes or both near the damaged region of the gear. FM0 increases if a signal contains a local increase in amplitude. FM4 increases if a signal contains a local increase in amplitude or local phase change in a periodic signal. Over the years, other single value metrics were also introduced to detect the onset and growth of damage in gears. These various metrics have detected faults in several gear tests in experimental test rigs. Conditions in these tests have been steady state in the

  7. AGFATL- ACTIVE GEAR FLEXIBLE AIRCRAFT TAKEOFF AND LANDING ANALYSIS

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.

    1994-01-01

    The Active Gear, Flexible Aircraft Takeoff and Landing Analysis program, AGFATL, was developed to provide a complete simulation of the aircraft takeoff and landing dynamics problem. AGFATL can represent an airplane either as a rigid body with six degrees of freedom or as a flexible body with multiple degrees of freedom. The airframe flexibility is represented by the superposition of up to twenty free vibration modes on the rigid-body motions. The analysis includes maneuver logic and autopilots programmed to control the aircraft during glide slope, flare, landing, and takeoff. The program is modular so that performance of the aircraft in flight and during landing and ground maneuvers can be studied separately or in combination. A program restart capability is included in AGFATL. Effects simulated in the AGFATL program include: (1) flexible aircraft control and performance during glide slope, flare, landing roll, and takeoff roll under conditions of changing winds, engine failures, brake failures, control system failures, strut failures, restrictions due to runway length, and control variable limits and time lags; (2) landing gear loads and dynamics for up to five gears; (3) single and multiple engines (maximum of four) including selective engine reversing and failure; (4) drag chute and spoiler effects; (5) wheel braking (including skid-control) and selective brake failure; (6) aerodynamic ground effects; (7) aircraft carrier operations; (8) inclined runways and runway perturbations; (9) flexible or rigid airframes; 10) rudder and nose gear steering; and 11) actively controlled landing gear shock struts. Input to the AGFATL program includes data which describe runway roughness; vehicle geometry, flexibility and aerodynamic characteristics; landing gear(s); propulsion; and initial conditions such as attitude, attitude change rates, and velocities. AGFATL performs a time integration of the equations of motion and outputs comprehensive information on the airframe

  8. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may... vehicles/submersibles. (b) Mariana coral reef ecosystem MUS may not be taken by means of poisons... subpart who is established to be fishing for Mariana coral reef ecosystem MUS in the management area is...

  9. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may... vehicles/submersibles. (b) Mariana coral reef ecosystem MUS may not be taken by means of poisons... subpart who is established to be fishing for Mariana coral reef ecosystem MUS in the management area is...

  10. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may... vehicles/submersibles. (b) Mariana coral reef ecosystem MUS may not be taken by means of poisons... subpart who is established to be fishing for Mariana coral reef ecosystem MUS in the management area is...

  11. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may... vehicles/submersibles. (b) Mariana coral reef ecosystem MUS may not be taken by means of poisons... subpart who is established to be fishing for Mariana coral reef ecosystem MUS in the management area is...

  12. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may... vehicles/submersibles. (b) Mariana coral reef ecosystem MUS may not be taken by means of poisons... subpart who is established to be fishing for Mariana coral reef ecosystem MUS in the management area is...

  13. NASA/Army Rotorcraft Technology. Volume 1: Aerodynamics, and Dynamics and Aeroelasticity

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Conference Proceedings is a compilation of over 30 technical papers presented at this milestone event which reported on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry rotorcraft research programs over the last 5 to 10 years. The Conference brought together over 230 government, industry, and allied nation conferees to exchange technical information and hear invited technical papers by prominent NASA, Army, and industry researchers covering technology topics which included: aerodynamics, dynamics and elasticity, propulsion and drive systems, flight dynamics and control, acoustics, systems integration, and research aircraft.

  14. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be.../submersibles. (b) PRIA coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) PRIA coral...

  15. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken.../submersibles. (b) Hawaii coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for Hawaii coral reef ecosystem MUS in the Hawaii management area is prohibited. (c...

  16. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be.../submersibles. (b) PRIA coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) PRIA coral...

  17. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken.../submersibles. (b) Hawaii coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for Hawaii coral reef ecosystem MUS in the Hawaii management area is prohibited. (c...

  18. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be.../submersibles. (b) PRIA coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) PRIA coral...

  19. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken.../submersibles. (b) Hawaii coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for Hawaii coral reef ecosystem MUS in the Hawaii management area is prohibited. (c...

  20. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be.../submersibles. (b) PRIA coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) PRIA coral...

  1. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be.../submersibles. (b) PRIA coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) PRIA coral...

  2. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken.../submersibles. (b) Hawaii coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for Hawaii coral reef ecosystem MUS in the Hawaii management area is prohibited. (c...

  3. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken.../submersibles. (b) Hawaii coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for Hawaii coral reef ecosystem MUS in the Hawaii management area is prohibited. (c...

  4. Results of NASA/Army transmission research

    NASA Technical Reports Server (NTRS)

    Coy, John J.; Townsend, Dennis P.; Coe, Harold H.

    1988-01-01

    Since 1970 the NASA Lewis Research Center and the U.S. Army Aviation Systems Command have shared an interest in advancing the technology for helicopter propulsion systems. In particular, that portion of the program that applies to the drive train and its various mechanical components are outlined. The major goals of the program were (and continue to be) to increase the life, reliability, and maintainability, reduce the weight, noise, and vibration, and maintain the relatively high mechanical efficiency of the gear train. Major historical milestones are reviewed, significant advances in technology for bearings, gears, and transmissions are discussed, and the outlook for the future is presented. The reference list is comprehensive.

  5. A new approach to complete aircraft landing gear noise prediction

    NASA Astrophysics Data System (ADS)

    Lopes, Leonard V.

    by the landing gear geometry. This thesis compares predictions with data from a recent wind tunnel experiment conducted at NASA Langley Research Center, and demonstrates that including the acoustic scattering can improve the predictions by LGMAP at all observer positions. In this way, LGMAP provides more information about the actual noise propagation than simple empirical schemes. Two-dimensional FLUENT calculations of approximate wing cross-sections are used by LGMAP to compute the change in noise due to the change in local flow velocity in the vicinity of the landing gear due to circulation around the wing. By varying angle of attack and flap deflection angle in the CFD calculations, LGMAP is able to predict the noise level change due to the change in local flow velocity in the landing gear vicinity. A brief trade study is performed on the angle of attack of the wing and flap deflection angle of the flap system. It is shown that increasing the angle of attack or flap deflection angle reduces the flow velocity in the vicinity of the landing gear, and therefore the predicted noise. Predictions demonstrate the ability of the prediction system to quickly estimate the change in landing gear noise caused by a change in wing configuration. A three-dimensional immersed boundary CFD calculation of simplified landing gear geometries provides relatively quick estimates of the mean flow around the landing gear. The mean flow calculation provides the landing gear wake geometry for the prediction of trailing edge noise associated with the interaction of the landing gear wake with the high lift devices. Using wind tunnel experiments that relate turbulent intensity to wake size and the Ffowcs Williams and Hall trailing edge noise equation for the acoustic calculation, LGMAP is able to predict the landing gear wake generated trailing edge noise. In this manner, LGMAP includes the effect of the interaction of the landing gear's wake with the wing/flap system on the radiated noise

  6. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be.../submersibles. (b) American Samoa coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) Existing FEP...

  7. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be.../submersibles. (b) American Samoa coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) Existing FEP...

  8. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be.../submersibles. (b) American Samoa coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) Existing FEP...

  9. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be.../submersibles. (b) American Samoa coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) Existing FEP...

  10. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be.../submersibles. (b) American Samoa coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) Existing FEP...

  11. Stuck in gear: age-related loss of variable gearing in skeletal muscle.

    PubMed

    Holt, Natalie C; Danos, Nicole; Roberts, Thomas J; Azizi, Emanuel

    2016-04-01

    Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force-velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (P<0.05) from 19.1±5.0 kPa and 188.5±24.2 MPa, respectively, in young rats to 39.1±4.2 kPa and 328.0±48.3 MPa in old rats, indicating a mechanical change in the interaction between contractile and connective tissues. Gear ratio decreased with increasing force in young (P<0.001) but not old (P=0.72) muscles, indicating that variable gearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age. © 2016. Published by The Company of Biologists Ltd.

  12. Planetary gear profile modification design based on load sharing modelling

    NASA Astrophysics Data System (ADS)

    Iglesias, Miguel; Fernández Del Rincón, Alfonso; De-Juan, Ana Magdalena; Garcia, Pablo; Diez, Alberto; Viadero, Fernando

    2015-07-01

    In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.

  13. DYNAMIC: A Decadal Survey and NASA Roadmap Mission

    NASA Astrophysics Data System (ADS)

    Paxton, L. J.; Oberheide, J.

    2016-12-01

    In this talk we will review the DYNAMIC mission science and implementation plans. DYNAMIC is baselined as a two satellite mission to delineate the dynamical behavior and structure of the ionosphere, thermosphere and mesosphere system. DYNAMIC was considered the top priority in the Decadal Survey upper atmosphere missions by the AIMI panel. The NASA Heliophysics Roadmap recommended that consideration be given to flying DYNAMIC as the STP 5 (next STP mission) rather than IMAP given the time-lag between the Decadal Survey recommendations and the flight of the STP 5 mission. It certainly seems as though STP 5 will be the IMAP mission. In that case what is the status of DYNAMIC? DYNAMIC could be STP 6 or some portion of the DYNAMIC mission could be executed as the next MidEx mission. In this talk we discuss the DYNAMIC science questions and goals and how they might be addressed. We note that DYNAMIC is not a mission just for the space community. DYNAMIC will enable new groundbased investigations and provide a global context for the long and rich history of groundbased observations of the dynamical state of the ITM system. Issues include: How and to what extent do waves and tides in the lower atmosphere contribute to the variability and mean state of the IT system? [Mission driver: Must have two spacecraft separated in local solar time in near polar orbits] How does the AIM system respond to outside forcing? [Mission Driver: Must measure high latitude inputs] How do neutral-plasma interactions produce neutral and ionospheric density changes over regional and global scales? [Mission Driver: Must measure all major species (O, N2, O2, H, He) and their ions] What part of the IT response occurs in the form of aurorally generated waves? [Mission Driver: Must measure small and mesoscale phenomena at high latitudes] What is the relative importance of thermal expansion, upwelling and advection in defining total mass density changes? [Mission Driver: Must determine the mid

  14. NASA Celebrates the World Year of Physics

    NASA Technical Reports Server (NTRS)

    Szofran, Frank; Schneider, Twila

    2004-01-01

    One of the goals of NASA's Exploration Systems Education and Outreach team is to provide educators and students authentic, relevant opportunities and activities. In celebration of the World Year of Physics 2005, there will be several NASA-sponsored events and classroom activities geared to the teaching and learning of physics. Proposed events and activities include a contest for high school classes to design a reduced gravity experiment or demonstration for flight on an aircraft executing a parabolic flight path, amusement park activities with a NASA twist, and a symposium bringing together prominent leaders in the diverse areas of physics research.

  15. Geared Electromechanical Rotary Joint

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1994-01-01

    Geared rotary joint provides low-noise ac or dc electrical contact between electrical subsystems rotating relative to each other. Designed to overcome some disadvantages of older electromechanical interfaces, especially intermittency of sliding-contact and rolling-contact electromechanical joints. Hollow, springy planetary gears provide continuous, redundant, low-noise electrical contact between inner and outer gears.

  16. Interlocking Molecular Gear Chains Built on Surfaces.

    PubMed

    Zhao, Rundong; Qi, Fei; Zhao, Yan-Ling; Hermann, Klaus E; Zhang, Rui-Qin; Van Hove, Michel A

    2018-05-17

    Periodic chains of molecular gears in which molecules couple with each other and rotate on surfaces have been previously explored by us theoretically using ab initio simulation tools. On the basis of the knowledge and experience gained about the interactions between neighboring molecular gears, we here explore the transmission of rotational motion and energy over larger distances, namely, through a longer chain of gear-like passive "slave" molecules. Such microscopic gears exhibit quite different behaviors compared to rigid cogwheels in the macroscopic world due to their structural flexibility affecting intermolecular interaction. Here, we investigate the capabilities of such gear chains and reveal the mechanisms of the transmission process in terms of both quantum-level density functional theory (DFT) and simple classical mechanics. We find that the transmission of rotation along gear chains depends strongly on the gear-gear distance: short distances can cause tilting of gears and even irregular "creep-then-jump" (or "stick-slip") motion or expulsion of gears; long gear-gear distances cause weak coupling between gears, slipping and skipping. More importantly, for transmission of rotation at intermediate gear-gear distances, our modeling clearly exhibits the relative roles of several important factors: flexibility of gear arms, axles, and supports, as well as resulting rotational delays, slippages, and thermal and other effects. These studies therefore allow better informed design of future molecular machine components involving motors, gears, axles, etc.

  17. Cornering and wear behavior of the Space Shuttle Orbiter main gear tire

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1987-01-01

    One of the factors needed to describe the handling characteristics of the Space Shuttle Orbiter during the landing rollout is the response of the vehicle's tires to variations in load and yaw angle. An experimental investigation of the cornering characteristics of the Orbiter main gear tires was conducted at the NASA Langley Research Center Aircraft Landing Dynamics Facility. This investigation compliments earlier work done to define the Orbiter nose tire cornering characteristics. In the investigation, the effects of load and yaw angle were evaluated by measuring parameters such as side load and drag load, and obtaining measurements of aligning torque. Because the tire must operate on an extremely rough runway at the Shuttle Landing Facility at Kennedy Space Center (KSC), tests were also conducted to describe the wear behavior of the tire under various conditions on a simulated KSC runway surface. Mathematical models for both the cornering and the wear behavior are discussed.

  18. Analysis of NASA Common Research Model Dynamic Data

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Acheson, Michael J.

    2011-01-01

    Recent NASA Common Research Model (CRM) tests at the Langley National Transonic Facility (NTF) and Ames 11-foot Transonic Wind Tunnel (11-foot TWT) have generated an experimental database for CFD code validation. The database consists of force and moment, surface pressures and wideband wing-root dynamic strain/wing Kulite data from continuous sweep pitch polars. The dynamic data sets, acquired at 12,800 Hz sampling rate, are analyzed in this study to evaluate CRM wing buffet onset and potential CRM wing flow separation.

  19. Displaceable Gear Torque Controlled Driver

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  20. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  1. NASA, Engineering, and Swarming Robots

    NASA Technical Reports Server (NTRS)

    Leucht, Kurt

    2015-01-01

    This presentation is an introduction to NASA, to science and engineering, to biologically inspired robotics, and to the Swarmie ant-inspired robot project at KSC. This presentation is geared towards elementary school students, middle school students, and also high school students. This presentation is suitable for use in STEM (science, technology, engineering, and math) outreach events. The first use of this presentation will be on Oct 28, 2015 at Madison Middle School in Titusville, Florida where the author has been asked by the NASA-KSC Speakers Bureau to speak to the students about the Swarmie robots.

  2. Toward a four-toothed molecular bevel gear with C2-symmetrical rotors.

    PubMed

    Kao, Chen-Yi; Hsu, Ya-Ting; Lu, Hsiu-Feng; Chao, Ito; Huang, Shou-Ling; Lin, Ying-Chih; Sun, Wei-Ting; Yang, Jye-Shane

    2011-07-15

    The design, synthesis, conformational analysis, and variable-temperature NMR studies of pentiptycene-based molecular gears Pp(2)X, where Pp is the unlabeled (in 1H) or methoxy groups-labeled (in 1OM) pentiptycene rotor and X is the phenylene stator containing ortho-bridged ethynylene axles, are reported. The approach of using shape-persistent rotors of four teeth but C(2) symmetry for constructing four-toothed molecular gears is unprecedented. In addition, the first example of enantioresolution of chiral pentiptycene scaffolds is demonstrated. Density functional theory (DFT) and AM1 calculations on these Pp(2)X systems suggest two possible correlated torsional motions, geared rocking and four-toothed geared rotations, which compete with the uncorrelated gear slippage. The DFT-derived torsional barriers in 1H for rocking, four-toothed rotation, and gear slippage are approximately 2.9, 5.5, and 4.7 kcal mol(-1), respectively. The low energy barriers for these torsional motions result from the low energy cost of bending the ethynylene axles. Comparison of the NMR spectra of 1OM in a mixture of stereoisomers (1OM-mix) and in an enantiopure form (1OM-op) confirms a fast gear slippage in these Pp(2)X systems. The effect of the methoxy labels on rotational potential energy surface and inter-rotor dynamics is also discussed.

  3. Astronaut Curtis Brown suspended by simulated parachute gear during training

    NASA Image and Video Library

    1994-06-28

    S94-37516 (28 June 1994) --- Astronaut Curtis L. Brown is suspended by a simulated parachute gear during an emergency bailout training exercise in the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Making his second flight in space, Brown will join four other NASA astronauts and a European mission specialist for a week and a half in space aboard the Space Shuttle Atlantis in support of the Atmospheric Laboratory for Applications and Science (ATLAS-3) mission.

  4. Aerodynamics of a Gulfstream G550 Nose Landing Gear Model

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Khorrami, Mehdi R.; Choudhari, Meelan M.

    2009-01-01

    In this paper we discuss detailed steady and unsteady aerodynamic measurements of a Gulfstream G550 nose landing gear model. The quarter-scale, high-fidelity model includes part of the lower fuselage and the gear cavity. The full model configuration allowed for removal of various gear components (e.g. light cluster, steering mechanism, hydraulic lines, etc.) in order to document their effects on the local flow field. The measurements were conducted at a Reynolds number of 7.3 x 10(exp 4) based on the shock strut (piston) diameter and a freestream Mach number of 0.166. Additional data were also collected at lower Mach numbers of 0.12 and 0.145 and correspondingly lower Reynolds numbers. The boundary layer on the piston was tripped to enable turbulent flow separation, so as to better mimic the conditions encountered during flight. Steady surface pressures were gathered from an extensive number of static ports on the wheels, door, fuselage, and within the gear cavity. To better understand the resultant flow interactions between gear components, surface pressure fluctuations were collected via sixteen dynamic pressure sensors strategically placed on various subcomponents of the gear. Fifteen of the transducers were flush mounted on the gear surface at fixed locations, while the remaining one was a mobile transducer that could be placed at numerous varying locations. The measured surface pressure spectra are mainly broadband in nature, lacking any local peaks associated with coherent vortex shedding. This finding is in agreement with off-surface flow measurements using PIV that revealed the flow field to be a collection of separated shear layers without any dominant vortex shedding processes.

  5. Model studies of crosswind landing-gear configurations for STOL aircraft

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Byrdsong, T. A.

    1973-01-01

    A dynamic model was used to directly compare four different crosswind landing gear mechanisms. The model was landed as a free body onto a laterally sloping runway used to simulate a crosswind side force. A radio control system was used for steering to oppose the side force as the model rolled to a stop. The configuration in which the landing gears are alined by the pilot and locked in the direction of motion prior to touchdown gave the smoothest runout behavior with the vehicle maintaining its crab angle throughout the landing roll. Nose wheel steering was confirmed to be better than steering with nose and main gears differentially or together. Testing is continuing to obtain quantitative data to establish an experimental data base for validation of an analytical program that will be capable of predicting full scale results.

  6. NASA Armstrong Flight Research Center Dynamics and Controls Branch

    NASA Technical Reports Server (NTRS)

    Jacobson, Steve

    2015-01-01

    NASA Armstrong continues its legacy of exciting work in the area of Dynamics and Control of advanced vehicle concepts. This presentation describes Armstrongs research in control of flexible structures, peak seeking control and adaptive control in the Spring of 2015.

  7. Visualization of fluid dynamics at NASA Ames

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1989-01-01

    The hardware and software currently used for visualization of fluid dynamics at NASA Ames is described. The software includes programs to create scenes (for example particle traces representing the flow over an aircraft), programs to interactively view the scenes, and programs to control the creation of video tapes and 16mm movies. The hardware includes high performance graphics workstations, a high speed network, digital video equipment, and film recorders.

  8. A simplified computer solution for the flexibility matrix of contacting teeth for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Hsu, C. Y.; Cheng, H. S.

    1987-01-01

    A computer code, FLEXM, was developed to calculate the flexibility matrices of contacting teeth for spiral bevel gears using a simplified analysis based on the elementary beam theory for the deformation of gear and shaft. The simplified theory requires a computer time at least one order of magnitude less than that needed for the complete finite element method analysis reported earlier by H. Chao, and it is much easier to apply for different gear and shaft geometries. Results were obtained for a set of spiral bevel gears. The teeth deflections due to torsion, bending moment, shearing strain and axial force were found to be in the order 10(-5), 10(-6), 10(-7), and 10(-8) respectively. Thus, the torsional deformation was the most predominant factor. In the analysis of dynamic load, response frequencies were found to be larger when the mass or moment of inertia was smaller or the stiffness was larger. The change in damping coefficient had little influence on the resonance frequency, but has a marked influence on the dynamic load at the resonant frequencies.

  9. Structural dynamics technology research in NASA: Perspective on future needs

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The perspective of a NASA ad hoc study group on future research needs in structural dynamics within the aerospace industry is presented. The common aspects of the design process across the industry are identified and the role of structural dynamics is established through a discussion of various design considerations having their basis in structural dynamics. The specific structural dynamics issues involved are identified and assessed as to their current technological status and trends. Projections of future requirements based on this assessment are made and areas of research to meet them are identified.

  10. Investigation of Spiral Bevel Gear Condition Indicator Validation Via AC-29-2C Using Damage Progression Tests

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2014-01-01

    This report documents the results of spiral bevel gear rig tests performed under a NASA Space Act Agreement with the Federal Aviation Administration (FAA) to support validation and demonstration of rotorcraft Health and Usage Monitoring Systems (HUMS) for maintenance credits via FAA Advisory Circular (AC) 29-2C, Section MG-15, Airworthiness Approval of Rotorcraft (HUMS) (Ref. 1). The overarching goal of this work was to determine a method to validate condition indicators in the lab that better represent their response to faults in the field. Using existing in-service helicopter HUMS flight data from faulted spiral bevel gears as a "Case Study," to better understand the differences between both systems, and the availability of the NASA Glenn Spiral Bevel Gear Fatigue Rig, a plan was put in place to design, fabricate and test comparable gear sets with comparable failure modes within the constraints of the test rig. The research objectives of the rig tests were to evaluate the capability of detecting gear surface pitting fatigue and other generated failure modes on spiral bevel gear teeth using gear condition indicators currently used in fielded HUMS. Nineteen final design gear sets were tested. Tables were generated for each test, summarizing the failure modes observed on the gear teeth for each test during each inspection interval and color coded based on damage mode per inspection photos. Gear condition indicators (CI) Figure of Merit 4 (FM4), Root Mean Square (RMS), +/- 1 Sideband Index (SI1) and +/- 3 Sideband Index (SI3) were plotted along with rig operational parameters. Statistical tables of the means and standard deviations were calculated within inspection intervals for each CI. As testing progressed, it became clear that certain condition indicators were more sensitive to a specific component and failure mode. These tests were clustered together for further analysis. Maintenance actions during testing were also documented. Correlation coefficients were

  11. NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Presentations given at the NASA Computational Fluid Dynamics (CFD) Conference held at the NASA Ames Research Center, Moffett Field, California, March 7-9, 1989 are given. Topics covered include research facility overviews of CFD research and applications, validation programs, direct simulation of compressible turbulence, turbulence modeling, advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations, grid generation and invicid flow computation around aircraft geometries, numerical simulation of rotorcraft, and viscous drag prediction for rotor blades.

  12. Systems and Methods for Implementing Bulk Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)

    2016-01-01

    Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.

  13. Aircraft Landing Dynamics Facility - A unique facility with new capabilities

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Stubbs, S. M.; Tanner, J. A.

    1985-01-01

    The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.

  14. Analysis of Landing-Gear Behavior

    NASA Technical Reports Server (NTRS)

    Milwitzky, Benjamin; Cook, Francis E

    1953-01-01

    This report presents a theoretical study of the behavior of the conventional type of oleo-pneumatic landing gear during the process of landing impact. The basic analysis is presented in a general form and treats the motions of the landing gear prior to and subsequent to the beginning of shock-strut deflection. The applicability of the analysis to actual landing gears has been investigated for the particular case of a vertical landing gear in the absence of drag loads by comparing calculated results with experimental drop-test data for impacts with and without tire bottoming. The calculated behavior of the landing gear was found to be in good agreement with the drop-test data.

  15. Gear comparison for sampling age-0 Mountain Whitefish in the Madison River, Montana

    USGS Publications Warehouse

    Boyer, Jan K.; Guy, Christopher S.; Webb, Molly A.H.; Horton, Travis B.; McMahon, Thomas E.

    2017-01-01

    The efficacy of various sampling gears for age-0 Mountain Whitefish Prosopium williamsoni is largely unknown, which makes it difficult to investigate recruitment and early life history dynamics for the species. We compared four gears: seine, backpack electrofisher, minnow trap, and lighted minnow trap. Gears were tested in backwaters, large channels, and small channels in the Madison River, Montana. No age-0 Mountain Whitefish were captured in minnow traps or lighted minnow traps. Mean CPUE of age-0 Mountain Whitefish was higher for seining (0.18 fish/m2; SD, 0.39) than for electrofishing (0.01 fish/m2; SD, 0.03), and the CV was lower for seining. A broader length distribution was sampled by seining (17–41 mm) than with electrofishing (21–36 mm). Age-0 Mountain Whitefish CPUE in seines was highest in backwaters. In channel sites, Mountain Whitefish presence was associated with areas of still or slow water ≥2 m2. Relative to the other sampling gears we evaluated, seining was the most efficient gear for sampling age-0 Mountain Whitefish in a lotic ecosystem.

  16. Technologies for the marking of fishing gear to identify gear components entangled on marine animals and to reduce abandoned, lost or otherwise discarded fishing gear.

    PubMed

    He, Pingguo; Suuronen, Petri

    2018-04-01

    Fishing gears are marked to establish and inform origin, ownership and position. More recently, fishing gears are marked to aid in capacity control, reduce marine litter due to abandoned, lost or otherwise discarded fishing gear (ALDFG) and assist in its recovery, and to combat illegal, unreported and unregulated (IUU) fishing. Traditionally, physical marking, inscription, writing, color, shape, and tags have been used for ownership and capacity purposes. Buoys, lights, flags, and radar reflectors are used for marking of position. More recently, electronic devices have been installed on marker buoys to enable easier relocation of the gear by owner vessels. This paper reviews gear marking technologies with focus on coded wire tags, radio frequency identification tags, Automatic Identification Systems, advanced electronic buoys for pelagic longlines and fish aggregating devices, and re-location technology if the gear becomes lost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Wabble gear drive mechanism. [for aerospace environments

    NASA Technical Reports Server (NTRS)

    Winiarski, F. J. (Inventor)

    1967-01-01

    The wabble gear principle was applied in the design of a driving mechanism for controlling spacecraft solar panels. The moving elements, other than the output gear, are contained within a hermetically sealed package to prevent escape of lubricants and ingestion of contaminant particles. The driving gear contains one more tooth than the output gear on a concave, conical pitch surface of slightly larger apex angle. The two gears mesh face to face such that engagement takes place at one point along the circumference. The driving gear is not permitted to rotate by virtue of its attachment through the bellows which permits flexure in the pitch and yaw position, but not in roll. As the bearing carrier rotates, the inclined mounting of the bearing causes the driving gear to perform a wabbling, irrotational motion. This wabbling motion causes the contact point between the output gear and the driving gear to traverse around the circumference of the gears once per revolution of the bearing carrier.

  18. 50 CFR 648.123 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear restrictions. 648.123 Section 648.123... § 648.123 Gear restrictions. (a) Trawl vessel gear restrictions—(1) Minimum mesh size. No owner or... and paragraph (a)(1) of this section shall not use any device, gear, or material, including, but not...

  19. The NASA Computational Fluid Dynamics (CFD) program - Building technology to solve future challenges

    NASA Technical Reports Server (NTRS)

    Richardson, Pamela F.; Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1993-01-01

    This paper presents the NASA Computational Fluid Dynamics program in terms of a strategic vision and goals as well as NASA's financial commitment and personnel levels. The paper also identifies the CFD program customers and the support to those customers. In addition, the paper discusses technical emphasis and direction of the program and some recent achievements. NASA's Ames, Langley, and Lewis Research Centers are the research hubs of the CFD program while the NASA Headquarters Office of Aeronautics represents and advocates the program.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  2. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  3. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  4. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  5. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  6. Design and pilot validation of A-gear: a novel wearable dynamic arm support.

    PubMed

    Kooren, Peter N; Dunning, Alje G; Janssen, Mariska M H P; Lobo-Prat, Joan; Koopman, Bart F J M; Paalman, Micha I; de Groot, Imelda J M; Herder, Just L

    2015-09-18

    Persons suffering from progressive muscular weakness, like those with Duchenne muscular dystrophy (DMD), gradually lose the ability to stand, walk and to use their arms. This hinders them from performing daily activities, social participation and being independent. Wheelchairs are used to overcome the loss of walking. However, there are currently few efficient functional substitutes to support the arms. Arm supports or robotic arms can be mounted to wheelchairs to aid in arm motion, but they are quite visible (stigmatizing), and limited in their possibilities due to their fixation to the wheelchair. The users prefer inconspicuous arm supports that are comfortable to wear and easy to control. In this paper the design, characterization, and pilot validation of a passive arm support prototype, which is worn on the body, is presented. The A-gear runs along the body from the contact surface between seat and upper legs via torso and upper arm to the forearm. Freedom of motion is accomplished by mechanical joints, which are nearly aligned with the human joints. The system compensates for the arm weight, using elastic bands for static balance, in every position of the arm. As opposed to existing devices, the proposed kinematic structure allows trunk motion and requires fewer links and less joint space without compromising balancing precision. The functional prototype has been validated in three DMD patients, using 3D motion analysis. Measurements have shown increased arm performance when the subjects were wearing the prototype. Upward and forward movements were easier to perform. The arm support is easy to put on and remove. Moreover, the device felt comfortable for the subjects. However, downward movements were more difficult, and the patients would prefer the device to be even more inconspicuous. The A-gear prototype is a step towards inconspicuousness and therefore well-received dynamic arm supports for people with muscular weakness.

  7. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  8. 50 CFR 648.203 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear restrictions. 648.203 Section 648.203... Herring Fishery § 648.203 Gear restrictions. (a) Midwater trawl gear may only be used by a vessel issued a... Lightship Area as described in § 648.81(c)(1), provided it complies with the midwater trawl gear exemption...

  9. RDS-21 Face-Gear Surface Durability Tests

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Heath, Gregory F.; Filler, Robert R.; Slaughter, Stephen C.; Fetty, Jason

    2007-01-01

    Experimental fatigue tests were performed to determine the surface durability life of a face gear in mesh with a tapered spur involute pinion. Twenty-four sets of gears were tested at three load levels: 7200, 8185, and 9075 lb-in face gear torque, and 2190 to 3280 rpm face gear speed. The gears were carburized and ground, shot-peened and vibro-honed, and made from VIM-VAR Pyrowear 53 steel per AMS 6308. The tests produced 17 gear tooth spalling failures and 7 suspensions. For all the failed sets, spalling occurred on at least one tooth of all the pinions. In some cases, the spalling initiated a crack in the pinion teeth which progressed to tooth fracture. Also, spalling occurred on some face gear teeth. The AGMA endurance allowable stress for a tapered spur involute pinion in mesh with a face gear was determined to be 275 ksi for the material tested. For the application of a tapered spur involute pinion in mesh with a face gear, proper face gear shim controlled the desired gear tooth contact pattern while proper pinion shim was an effective way of adjusting backlash without severely affecting the contact pattern.

  10. Precise low cost chain gears for heliostats

    NASA Astrophysics Data System (ADS)

    Liedke, Phillip; Lewandowski, Arkadiusz; Pfahl, Andreas; Hölle, Erwin

    2016-05-01

    This work investigates the potential of chain gears as precise and low cost driving systems for rim drive heliostats. After explaining chain gear basics the polygon effect and chain lengthening are investigated. The polygon effect could be measured by a heliostat with chain rim gear and the chain lengthening with an accordant test set up. Two gear stages are scope of this work: a rim gear and an intermediate gear. Dimensioning, pretensioning and designing for both stages are explained.

  11. 50 CFR 697.23 - Restricted gear areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Measures § 697.23 Restricted gear areas. (a) Resolution of lobster gear conflicts with fisheries managed... all mobile gear is on board the vessel while inside the area. (ii) Lobster trap gear. From June 16 through September 30 of each fishing year, no fishing vessel with lobster trap gear or person on a fishing...

  12. 50 CFR 697.23 - Restricted gear areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Measures § 697.23 Restricted gear areas. (a) Resolution of lobster gear conflicts with fisheries managed... all mobile gear is on board the vessel while inside the area. (ii) Lobster trap gear. From June 16 through September 30 of each fishing year, no fishing vessel with lobster trap gear or person on a fishing...

  13. Investigation on wear characteristic of biopolymer gear

    NASA Astrophysics Data System (ADS)

    Ghazali, Wafiuddin Bin Md; Daing Idris, Daing Mohamad Nafiz Bin; Sofian, Azizul Helmi Bin; Basrawi, Mohamad Firdaus bin; Khalil Ibrahim, Thamir

    2017-10-01

    Polymer is widely used in many mechanical components such as gear. With the world going to a more green and sustainable environment, polymers which are bio based are being recognized as a replacement for conventional polymers based on fossil fuel. The use of biopolymer in mechanical components especially gear have not been fully explored yet. This research focuses on biopolymer for spur gear and whether the conventional method to investigate wear characteristic is applicable. The spur gears are produced by injection moulding and tested on several speeds using a custom test equipment. The wear formation such as tooth fracture, tooth deformation, debris and weight loss was observed on the biopolymer spur gear. It was noted that the biopolymer gear wear mechanism was similar with other type of polymer spur gears. It also undergoes stages of wear which are; running in, linear and rapid. It can be said that the wear mechanism of biopolymer spur gear is comparable to fossil fuel based polymer spur gear, thus it can be considered to replace polymer gears in suitable applications.

  14. Evolution and Reengineering of NASA's Flight Dynamics Facility (FDF)

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas; Hoge, Susan

    2008-01-01

    The NASA Goddard Space Flight Center's Flight Dynamics Facility (FDF) is a multimission support facility that performs ground navigation and spacecraft trajectory design services for a wide range of scientific satellites. The FDF also supports the NASA Space Network by providing orbit determination and tracking data evaluation services for the Tracking Data Relay Satellite System (TDRSS). The FDF traces its history to early NASA missions in the 1960's, including navigation support to the Apollo lunar missions. Over its 40 year history, the FDF has undergone many changes in its architecture, services offered, missions supported, management approach, and business operation. As a fully reimbursable facility (users now pay 100% of all costs for FDF operations and sustaining engineering activities), the FDF has faced significant challenges in recent years in providing mission critical products and services at minimal cost while defining and implementing upgrades necessary to meet future mission demands. This paper traces the history of the FDF and discusses significant events in the past that impacted the FDF infrastructure and/or business model, and the events today that are shaping the plans for the FDF in the next decade. Today's drivers for change include new mission requirements, the availability of new technology for spacecraft navigation, and continued pressures for cost reduction from FDF users. Recently, the FDF completed an architecture study based on these drivers that defines significant changes planned for the facility. This paper discusses the results of this study and a proposed implementation plan. As a case study in how flight dynamics operations have evolved and will continue to evolve, this paper focuses on two periods of time (1992 and the present) in order to contrast the dramatic changes that have taken place in the FDF. This paper offers observations and plans for the evolution of the FDF over the next ten years. Finally, this paper defines the

  15. A fuzzy gear shifting strategy for manual transmissions

    NASA Astrophysics Data System (ADS)

    Mashadi, B.; Kazemkhani, A.

    2005-12-01

    Governing parameters in decision making for gear changing of an automated manual transmission are discussed based on two different criteria, namely engine working conditions and driver's intention. By taking into consideration the effects of these parameters, gear shifting strategy is designed with the application of Fuzzy control method. The controller structure is formed in two layers. In the first layer two fuzzy inference modules are used to determine necessary outputs. In second layer a fuzzy inference module makes the decision of shifting by up-shift, downshift or maintain commands. The quality of Fuzzy controller behavior is examined by making use of ADVISOR software. It is shown that at different driving conditions the controller makes correct decisions for gear shifting accounting for dynamical requirements of vehicle. It is also shown that the controller based on both engine state and driver's intention eliminates unnecessary shiftings that are present when the intention is ignored. A micro-trip is designed in which a required speed in the form of a step function is demanded for the vehicle. Starting from rest both strategies change the gear to reach maximum speed more or less in a similar fashion. In deceleration phase, however, large differences are observed between the two strategies. The engine-state strategy is less sensitive to downshift, taking even unnecessary up shift decisions. The state-intention strategy, however, correctly interprets the driver's intention for decreasing speed and utilizes engine brake torque to reduce vehicle speed in a shorter time.

  16. A Comparative Study of a 1/4-Scale Gulfstream G550 Aircraft Nose Gear Model

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Neuhart, Dan H.; Zawodny, Nikolas S.; Liu, Fei; Yardibi, Tarik; Cattafesta, Louis; Van de Ven, Thomas

    2009-01-01

    A series of fluid dynamic and aeroacoustic wind tunnel experiments are performed at the University of Florida Aeroacoustic Flow Facility and the NASA-Langley Basic Aerodynamic Research Tunnel Facility on a high-fidelity -scale model of Gulfstream G550 aircraft nose gear. The primary objectives of this study are to obtain a comprehensive aeroacoustic dataset for a nose landing gear and to provide a clearer understanding of landing gear contributions to overall airframe noise of commercial aircraft during landing configurations. Data measurement and analysis consist of mean and fluctuating model surface pressure, noise source localization maps using a large-aperture microphone directional array, and the determination of far field noise level spectra using a linear array of free field microphones. A total of 24 test runs are performed, consisting of four model assembly configurations, each of which is subjected to three test section speeds, in two different test section orientations. The different model assembly configurations vary in complexity from a fully-dressed to a partially-dressed geometry. The two model orientations provide flyover and sideline views from the perspective of a phased acoustic array for noise source localization via beamforming. Results show that the torque arm section of the model exhibits the highest rms pressures for all model configurations, which is also evidenced in the sideline view noise source maps for the partially-dressed model geometries. Analysis of acoustic spectra data from the linear array microphones shows a slight decrease in sound pressure levels at mid to high frequencies for the partially-dressed cavity open model configuration. In addition, far field sound pressure level spectra scale approximately with the 6th power of velocity and do not exhibit traditional Strouhal number scaling behavior.

  17. Numerical Simulation Of Cutting Of Gear Teeth

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Huston, Ronald L.; Mavriplis, Dimitrios

    1994-01-01

    Shapes of gear teeth produced by gear cutters of specified shape simulated computationally, according to approach based on principles of differential geometry. Results of computer simulation displayed as computer graphics and/or used in analyses of design, manufacturing, and performance of gears. Applicable to both standard and non-standard gear-tooth forms. Accelerates and facilitates analysis of alternative designs of gears and cutters. Simulation extended to study generation of surfaces other than gears. Applied to cams, bearings, and surfaces of arbitrary rolling elements as well as to gears. Possible to develop analogous procedures for simulating manufacture of skin surfaces like automobile fenders, airfoils, and ship hulls.

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVIII, I--UNDERSTAND ENGINE GEARS AND GEARING PRINCIPLES, II--MACK INTER-AXLE POWER DIVIDER.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE GEARS AND GEARING PRINCIPLES AND THE OPERATING PRINCIPLES AND MAINTENANCE OF POWER DIVIDERS (GEAR BOXES) USED IN DIESEL ENGINE POWER TRANSMISSION. TOPICS ARE (1) THE PURPOSE OF THE ENGINE GEARS, (2) INSPECTING FOR GEAR FAILURES, (3) INSPECTING FOR SHAFT…

  19. Computational Fluid Dynamics Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1989-01-01

    The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.

  20. Gear systems for advanced turboprops

    NASA Technical Reports Server (NTRS)

    Wagner, Douglas A.

    1987-01-01

    A new generation of transport aircraft will be powered by efficient, advanced turboprop propulsion systems. Systems that develop 5,000 to 15,000 horsepower have been studied. Reduction gearing for these advanced propulsion systems is discussed. Allison Gas Turbine Division's experience with the 5,000 horsepower reduction gearing for the T56 engine is reviewed and the impact of that experience on advanced gear systems is considered. The reliability needs for component design and development are also considered. Allison's experience and their research serve as a basis on which to characterize future gear systems that emphasize low cost and high reliability.

  1. NASA / Pratt and Whitney Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Chris; Lord, Wed

    2008-01-01

    Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.

  2. A Comparative Study of Simulated and Measured Main Landing Gear Noise for Large Civil Transports

    NASA Technical Reports Server (NTRS)

    Konig, Benedikt; Fares, Ehab; Ravetta, Patricio; Khorrami, Mehdi R.

    2017-01-01

    Computational results for the NASA 26%-scale model of a six-wheel main landing gear with and without a toboggan-shaped noise reduction fairing are presented. The model is a high-fidelity representation of a Boeing 777-200 aircraft main landing gear. A lattice Boltzmann method was used to simulate the unsteady flow around the model in isolation. The computations were conducted in free-air at a Mach number of 0.17, matching a recent acoustic test of the same gear model in the Virginia Tech Stability Wind Tunnel in its anechoic configuration. Results obtained on a set of grids with successively finer spatial resolution demonstrate the challenge in resolving/capturing the flow field for the smaller components of the gear and their associated interactions, and the resulting effects on the high-frequency segment of the farfield noise spectrum. Farfield noise spectra were computed based on an FWH integral approach, with simulated pressures on the model solid surfaces or flow-field data extracted on a set of permeable surfaces enclosing the model as input. Comparison of these spectra with microphone array measurements obtained in the tunnel indicated that, for the present complex gear model, the permeable surfaces provide a more accurate representation of farfield noise, suggesting that volumetric effects are not negligible. The present study also demonstrates that good agreement between simulated and measured farfield noise can be achieved if consistent post-processing is applied to both physical and synthetic pressure records at array microphone locations.

  3. Procedure for Tooth Contact Analysis of a Face Gear Meshing With a Spur Gear Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Bibel, George; Lewicki, David G. (Technical Monitor)

    2002-01-01

    A procedure was developed to perform tooth contact analysis between a face gear meshing with a spur pinion using finite element analysis. The face gear surface points from a previous analysis were used to create a connected tooth solid model without gaps or overlaps. The face gear surface points were used to create a five tooth face gear Patran model (with rim) using Patran PCL commands. These commands were saved in a series of session files suitable for Patran input. A four tooth spur gear that meshes with the face gear was designed and constructed with Patran PCL commands. These commands were also saved in a session files suitable for Patran input. The orientation of the spur gear required for meshing with the face gear was determined. The required rotations and translations are described and built into the session file for the spur gear. The Abaqus commands for three-dimensional meshing were determined and verified for a simplified model containing one spur tooth and one face gear tooth. The boundary conditions, loads, and weak spring constraints were determined to make the simplified model work. The load steps and load increments to establish contact and obtain a realistic load was determined for the simplified two tooth model. Contact patterns give some insight into required mesh density. Building the two gears in two different local coordinate systems and rotating the local coordinate systems was verified as an easy way to roll the gearset through mesh. Due to limitation of swap space, disk space and time constraints of the summer period, the larger model was not completed.

  4. Overview of Dynamic Test Techniques for Flight Dynamics Research at NASA LaRC (Invited)

    NASA Technical Reports Server (NTRS)

    Owens, D. Bruce; Brandon, Jay M.; Croom, Mark A.; Fremaux, C. Michael; Heim, Eugene H.; Vicroy, Dan D.

    2006-01-01

    An overview of dynamic test techniques used at NASA Langley Research Center on scale models to obtain a comprehensive flight dynamics characterization of aerospace vehicles is presented. Dynamic test techniques have been used at Langley Research Center since the 1920s. This paper will provide a partial overview of the current techniques available at Langley Research Center. The paper will discuss the dynamic scaling necessary to address the often hard-to-achieve similitude requirements for these techniques. Dynamic test techniques are categorized as captive, wind tunnel single degree-of-freedom and free-flying, and outside free-flying. The test facilities, technique specifications, data reduction, issues and future work are presented for each technique. The battery of tests conducted using the Blended Wing Body aircraft serves to illustrate how the techniques, when used together, are capable of characterizing the flight dynamics of a vehicle over a large range of critical flight conditions.

  5. Worm Gear With Hydrostatic Engagement

    NASA Technical Reports Server (NTRS)

    Chaiko, Lev I.

    1994-01-01

    In proposed worm-gear transmission, oil pumped at high pressure through meshes between teeth of gear and worm coil. Pressure in oil separates meshing surfaces slightly, and oil reduces friction between surfaces. Conceived for use in drive train between gas-turbine engine and rotor of helicopter. Useful in other applications in which weight critical. Test apparatus simulates and measures some loading conditions of proposed worm gear with hydrostatic engagement.

  6. Aeroacoustic Analysis of a Simplified Landing Gear

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Khorrami, Mehdi, R.; Li, Fei

    2004-01-01

    A hybrid approach is used to investigate the noise generated by a simplified landing gear without small scale parts such as hydraulic lines and fasteners. The Ffowcs Williams and Hawkings equation is used to predict the noise at far-field observer locations from flow data provided by an unsteady computational fluid dynamics calculation. A simulation with 13 million grid points has been completed, and comparisons are made between calculations with different turbulence models. Results indicate that the turbulence model has a profound effect on the levels and character of the unsteadiness. Flow data on solid surfaces and a set of permeable surfaces surrounding the gear have been collected. Noise predictions using the porous surfaces appear to be contaminated by errors caused by large wake fluctuations passing through the surfaces. However, comparisons between predictions using the solid surfaces with the near-field CFD solution are in good agreement giving confidence in the far-field results.

  7. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall be...

  8. Characteristics of Reduction Gear in Electric Agricultural Vehicle

    NASA Astrophysics Data System (ADS)

    Choi, W. S.; Pratama, P. S.; Supeno, D.; Jeong, S. W.; Byun, J. Y.; Woo, J. H.; Lee, E. S.; Park, C. S.

    2018-03-01

    In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

  9. Application of Face-Gear Drives in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.

    1992-01-01

    The use of face gears in helicopter transmissions was explored. A light-weight, split torque transmission design utilizing face gears was described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. Analytical study of transmission error showed face-gear drives were relatively insensitive to gear misalignment, but tooth contact was affected by misalignment. A method of localizing bearing contact to compensate for misalignment was explored. The proper choice of shaft support stiffness enabled good load sharing in the split torque transmission design. Face-gear experimental studies were also included and the feasibility of face gears in high-speed, high-load applications such as helicopter transmissions was demonstrated.

  10. 50 CFR 665.664 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.664 Section 665.664 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... § 665.664 Gear restrictions. Only selective gear may be used to harvest coral from any precious coral...

  11. 50 CFR 665.464 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.464 Section 665.464 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... Gear restrictions. Only selective gear may be used to harvest coral from any precious coral permit area. ...

  12. Automated Inspection And Precise Grinding Of Gears

    NASA Technical Reports Server (NTRS)

    Frint, Harold; Glasow, Warren

    1995-01-01

    Method of precise grinding of spiral bevel gears involves automated inspection of gear-tooth surfaces followed by adjustments of machine-tool settings to minimize differences between actual and nominal surfaces. Similar to method described in "Computerized Inspection of Gear-Tooth Surfaces" (LEW-15736). Yields gears of higher quality, with significant reduction in manufacturing and inspection time.

  13. Functioning of reduction gears on airplane engines

    NASA Technical Reports Server (NTRS)

    Matteucci, Raffaelli

    1926-01-01

    In undertaking to analyze the functioning conditions of a reduction gear on an aviation engine, we will consider an ordinary twelve-cylinder V-engine. The reduction gear employed consists either of a pair of spur gears, one of which is integral with the engine shaft and the other with the propeller shaft, or of a planetary system of gears.

  14. Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.

    PubMed

    Sun, Yuanxi; Ge, Wenjie; Zheng, Jia; Dong, Dianbiao

    2015-11-01

    This paper presents the mechanical design, dynamics analysis and ankle trajectory analysis of a prosthetic knee joint using the geared five-bar mechanism. Compared with traditional four-bar or six-bar mechanisms, the geared five-bar mechanism is better at performing diverse movements and is easy to control. This prosthetic knee joint with the geared five-bar mechanism is capable of fine-tuning its relative instantaneous center of rotation and ankle trajectory. The centrode of this prosthetic knee joint, which is mechanically optimized according to the centrode of human knee joint, is better in the bionic performance than that of a prosthetic knee joint using the four-bar mechanism. Additionally, the stability control of this prosthetic knee joint during the swing and stance phase is achieved by a motor. By adjusting the gear ratio of this prosthetic knee joint, the ankle trajectories of both unilateral and bilateral amputees show less deviations from expected than that of the four-bar knee joint.

  15. Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop

    NASA Technical Reports Server (NTRS)

    Creduer, Leonard (Editor); Perry, R. Brad (Editor)

    1997-01-01

    A Government and Industry workshop on wake vortex dynamic spacing systems was conducted on May 13-15, 1997, at the NASA Langley Research Center. The purpose of the workshop was to disclose the status of ongoing NASA wake vortex R&D to the international community and to seek feedback on the direction of future work to assure an optimized research approach. Workshop sessions examined wake vortex characterization and physics, wake sensor technologies, aircraft/wake encounters, terminal area weather characterization and prediction, and wake vortex systems integration and implementation. A final workshop session surveyed the Government and Industry perspectives on the NASA research underway and related international wake vortex activities. This document contains the proceedings of the workshop including the presenters' slides, the discussion following each presentation, the wrap-up panel discussion, and the attendees' evaluation feedback.

  16. 50 CFR 660.506 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 660.506 Section 660.506..., DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Coastal Pelagics Fisheries § 660.506 Gear restrictions. The only fishing gear authorized for use in the reduction fishery for northern anchovy off...

  17. 50 CFR 648.163 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear restrictions. 648.163 Section 648.163... Bluefish Fishery § 648.163 Gear restrictions. If the Council determines through its annual review or framework adjustment process that gear restrictions are necessary to assure that the fishing mortality rate...

  18. 50 CFR 665.206 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.206 Section 665.206..., DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Hawaii Fisheries § 665.206 Gear... MUS with bottom trawls and bottom set gillnets is prohibited. (b) Possession of gear. Possession of a...

  19. 50 CFR 665.264 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.264 Section 665.264..., DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Hawaii Fisheries § 665.264 Gear restrictions. Only selective gear may be used to harvest coral from any precious coral permit area. ...

  20. 50 CFR 665.164 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.164 Section 665.164..., DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC American Samoa Fisheries § 665.164 Gear restrictions. Only selective gear may be used to harvest coral from any precious coral permit area. ...

  1. 50 CFR 665.804 - Gear identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear identification. 665.804 Section 665... Fisheries § 665.804 Gear identification. (a) Identification. The operator of each permitted vessel in the... action. Longline gear not marked in compliance with paragraph (a) of this section and found deployed in...

  2. Improving applied roughness measurement of involute helical gears

    NASA Astrophysics Data System (ADS)

    Koulin, G.; Zhang, J.; Frazer, R. C.; Wilson, S. J.; Shaw, B. A.

    2017-12-01

    With improving gear design and manufacturing technology, improvement in metrology is necessary to provide reliable feedback to the designer and manufacturer. A recommended gear roughness measurement method is applied to a micropitting contact fatigue test gear. The development of wear and micropitting is reliably characterised at the sub-micron roughness level. Changes to the features of the localised surface texture are revealed and are related to key gear meshing positions. The application of the recommended methodology is shown to provide informative feedback to the gear designer in reference to the fundamental gear coordinate system, which is used in gear performance simulations such as tooth contact analysis.

  3. A manufacturing error measurement methodology for a rotary vector reducer cycloidal gear based on a gear measuring center

    NASA Astrophysics Data System (ADS)

    Li, Tianxing; Zhou, Junxiang; Deng, Xiaozhong; Li, Jubo; Xing, Chunrong; Su, Jianxin; Wang, Huiliang

    2018-07-01

    A manufacturing error of a cycloidal gear is the key factor affecting the transmission accuracy of a robot rotary vector (RV) reducer. A methodology is proposed to realize the digitized measurement and data processing of the cycloidal gear manufacturing error based on the gear measuring center, which can quickly and accurately measure and evaluate the manufacturing error of the cycloidal gear by using both the whole tooth profile measurement and a single tooth profile measurement. By analyzing the particularity of the cycloidal profile and its effect on the actual meshing characteristics of the RV transmission, the cycloid profile measurement strategy is planned, and the theoretical profile model and error measurement model of cycloid-pin gear transmission are established. Through the digital processing technology, the theoretical trajectory of the probe and the normal vector of the measured point are calculated. By means of precision measurement principle and error compensation theory, a mathematical model for the accurate calculation and data processing of manufacturing error is constructed, and the actual manufacturing error of the cycloidal gear is obtained by the optimization iterative solution. Finally, the measurement experiment of the cycloidal gear tooth profile is carried out on the gear measuring center and the HEXAGON coordinate measuring machine, respectively. The measurement results verify the correctness and validity of the measurement theory and method. This methodology will provide the basis for the accurate evaluation and the effective control of manufacturing precision of the cycloidal gear in a robot RV reducer.

  4. 50 CFR 665.605 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.605 Section 665.605... § 665.605 Gear restrictions. (a) Bottom trawls and bottom set gillnets. Fishing for PRIA bottomfish MUS with bottom trawls and bottom set gillnets is prohibited. (b) Possession of gear. Possession of a...

  5. Test facilities of the structural dynamics branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.; Kielb, Robert E.

    1988-01-01

    The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

  6. Scaled centrifugal compressor, collector and running gear program

    NASA Technical Reports Server (NTRS)

    Kenehan, J. G.

    1983-01-01

    The Scaled Centrifugal Compressor, Collector and Running gear Program was conducted in support of an overall NASA strategy to improve small-compressor performance, durability, and reliability while reducing initial and life-cycle costs. Accordingly, Garrett designed and provided a test rig, gearbox coupling, and facility collector for a new NASA facility, and provided a scaled model of an existing, high-performance impeller for evaluation scaling effects on aerodynamic performance and for obtaining other performance data. Test-rig shafting was designed to operate smoothly throughout a speed range up to 60,000 rpm. Pressurized components were designed to operate at pressures up to 300 psia and at temperatures to 1000 F. Nonrotating components were designed to provide a margin-of-safety of 0.05 or greater; rotating components, for a margin-of-safety based on allowable yield and ultimate strengths. Design activities were supported by complete design analysis, and the finished hardware was subjected to check-runs to confirm proper operation. The test rig will support a wide range of compressor tests and evaluations.

  7. Closeup view of the nose and landing gear on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the nose and landing gear on the forward section of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The Orbiter is being supported by jack stands in the left and right portion of the view. The jack stands attach to the Orbiter at the four hoist attach points, two located on the forward fuselage and two on the aft fuselage. Note the access platforms that surround and nearly touch the orbiter. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Lubrication and cooling for high speed gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  9. Design of Spur Gears for Improved Efficiency

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1981-01-01

    A method to calculate spur gear system loss for a wide range of gear geometries and operating conditions was used to determine design requirements for an efficient gearset. The effects of spur gear size, pitch, ratio, pitch line velocity and load on efficiency were determined. Peak efficiencies were found to be greater for large diameter and fine pitched gears and tare (no-load) losses were found to be significant.

  10. Computer simulation of gear tooth manufacturing processes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  11. Gear distortion analysis due to heat treatment process

    NASA Astrophysics Data System (ADS)

    Guterres, Natalino F. D. S.; Rusnaldy, Widodo, Achmad

    2017-01-01

    One way to extend the life time of the gear is minimizing the distortion during the manufacturing process. One of the most important processes in manufacturing to produce gears is heat treatment process. The purpose of this study is to analyze the distortion of the gear after heat treatment process. The material of gear is AISI 1045, and it was designed with the module (m) 1.75, and a number of teeth (z) 29. Gear was heat-treated in the furnace at a temperature of 800°C, holding time of 30 minutes, and then quenched in water. Furthermore, surface hardening process was also performed on gear teeth at a temperature of 820°C and holding time of 35 seconds and the similar procedure of analysis was conducted. The hardness of gear after heat treatment average 63.2 HRC and the teeth surface hardness after gear to induction hardening was 64.9 HRC at the case depth 1 mm. The microstructure of tested gear are martensitic and pearlite. The highest distortion on tooth thickness to upper than 0.063 can cause high precision at the tooth contact is not appropriate. Besides the shrinkage of tooth thickness will also affect to contact angle because the size of gear tolerance was not standardized.

  12. Vibration Transmission through Rolling Element Bearings in Geared Rotor Systems

    DTIC Science & Technology

    1990-11-01

    147 4.8 Concluding Remarks ........................................................... 153 V STATISTICAL ENERGY ANALYSIS ............................................ 155...and dynamic finite element techniques are used to develop the discrete vibration models while statistical energy analysis method is used for the broad...bearing system studies, geared rotor system studies, and statistical energy analysis . Each chapter is self sufficient since it is written in a

  13. Engagement of Metal Debris into a Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.

    2009-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined. INTRODUCTION In some space mechanisms the loading can be so high that there is some possibility that a gear chip might be liberated while in operation of the mechanism [1-5]. Also, due to the closely packed nature of some space mechanisms and the fact that a space grease is used for lubrication, chips that are released can then be introduced to other gear meshes within this mechanism. In this instance, it is desirable to know the consequences of a gear chip entering in between meshing gear teeth. To help provide some understanding, a series of bench-top experiments was conducted to engage chips of simulated and gear material fragments into a meshing gear pair. One purpose of the experiments was to determine the relationship of chip size to the torque required to rotate the gear set through the mesh cycle. The second purpose was to determine the condition of the gear chip material after engagement by the meshing gears, primarily to determine if the chip would break into pieces and to observe the motion of the chip as the engagement was completed. This document also presents preliminary testing done with metal debris other than chips from gears, namely steel shim stock and drill bits of various sizes and diameters.

  14. Design of aircraft turbine fan drive gear transmission system

    NASA Technical Reports Server (NTRS)

    Dent, E.; Hirsch, R. A.; Peterson, V. W.

    1970-01-01

    The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts.

  15. Dual lead-crowning for helical gears with anti-twist tooth flanks on the internal gear honing machine

    NASA Astrophysics Data System (ADS)

    Tran, Van-Quyet; Wu, Yu-Ren

    2017-12-01

    For some specific purposes, a helical gear with wide face-width is applied for meshing with two other gears simultaneously, such as the idle pinions in the vehicle differential. However, due to the fact of gear deformation, the tooth edge contact and stress concentration might occur. Single lead-crowning is no more suitable for such a case to get the appropriate position of contact pattern and improve the load distribution on tooth surfaces. Therefore, a novel *Email: method is proposed in this paper to achieve the wide-face-width helical gears with the dual lead-crowned and the anti-twisted tooth surfaces by controlling the swivel angle and the rotation angle of the honing wheel respectively on an internal gear honing machine. Numerical examples are practiced to illustrate and verified the merits of the proposed method.

  16. A 23.2:1 ratio, 300-watt, 26 N-m output torque, planetary roller-gear robotic transmission: Design and evaluation

    NASA Technical Reports Server (NTRS)

    Newman, Wyatt S.; Anderson, William J.; Shipitalo, William; Rohn, Douglas

    1992-01-01

    The design philosophy and measurements performed on a new roller-gear transmission prototype for a robotic manipulator are described. The design incorporates smooth rollers in a planetary configuration integrated with conventional toothed gears. The rollers were designed to handle low torque with low backlash and friction while the complementary gears support higher torques and prevent accumulated creep or slip of the rollers. The introduction of gears with finite numbers of teeth to function in parallel with the rollers imposes severe limits on available designs. Solutions for two-planet row designs are discussed. A two-planet row, four-planet design was conceived, fabricated, and tested. Detailed calculations of cluster geometry, gear stresses, and gear geometry are given. Measurement data reported here include transmission linearity, static and dynamic friction, inertia, backlash, stiffness, and forward and reverse efficiency. Initial test results are reported describing performance of the transmission in a servomechanism with torque feedback.

  17. Development in Geared Turbofan Aeroengine

    NASA Astrophysics Data System (ADS)

    Mohd Tobi, A. L.; Ismail, A. E.

    2016-05-01

    This paper looks into the implementation of epicyclic gear system to the aeroengine in order to increase the efficiency of the engine. The improvement made is in the direction of improving fuel consumption, reduction in pollutant gasses and perceived noise. Introduction of epicyclic gear system is capable to achieve bypass ratio of up to 15:1 with the benefits of weight and noise reduction. Radical new aircraft designs and engine installation are being studied to overcome some of the challenges associated with the future geared turbofan and open-rotor engine.

  18. New procedure for gear fault detection and diagnosis using instantaneous angular speed

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Xining; Wu, Jili

    2017-02-01

    Besides the extreme complexity of gear dynamics, the fault diagnosis results in terms of vibration signal are sometimes easily misled and even distorted by the interference of transmission channel or other components like bearings, bars. Recently, the research field of Instantaneous Angular Speed (IAS) has attracted significant attentions due to its own advantages over conventional vibration analysis. On the basis of IAS signal's advantages, this paper presents a new feature extraction method by combining the Empirical Mode Decomposition (EMD) and Autocorrelation Local Cepstrum (ALC) for fault diagnosis of sophisticated multistage gearbox. Firstly, as a pre-processing step, signal reconstruction is employed to address the oversampled issue caused by the high resolution of the angular sensor and the test speed. Then the adaptive EMD is used to acquire a number of Intrinsic Mode Functions (IMFs). Nevertheless, not all the IMFs are needed for the further analysis since different IMFs have different sensitivities to fault. Hence, the cosine similarity metric is introduced to select the most sensitive IMF. Even though, the sensitive IMF is still insufficient for the gear fault diagnosis due to the weakness of the fault component related to the gear fault. Therefore, as the final step, ALC is used for the purpose of signal de-noising and feature extraction. The effectiveness and robustness of the new approach has been validated experimentally on the basis of two gear test rigs with gears under different working conditions. Diagnosis results show that the new approach is capable of effectively handling the gear fault diagnosis i.e., the highlighted quefrency and its rahmonics corresponding to the rotary period and its multiple are displayed clearly in the cepstrum record of the proposed method.

  19. Benefit from NASA

    NASA Image and Video Library

    2004-04-15

    Firefighters are like astronauts. They both face dangerous, even hostile environments such as a building full of fire and the vacuum of space. They are both get breathing air from tanks on their backs. Early in the 1970's, NASA began working to improve firefighter breathing systems, which had hardly changed since the 1940s. NASA's Johnson Space Center conducted a 4-year program that applied technology from the portable life support systems used by Apollo astronauts on the moon. The new breathing system is made up of an air bottle, a frame and harness, a face mask, and a warning device. The new system weighs less than 20 pounds, one-third less than the old gear. The new air bottle provides 30 minutes of breathing air, as much as the old system. Like a good hiker's backpack, the new system puts the weight on the firefighter's hips rather than the shoulders. The face mask provides better visibility and the warning device lets the firefighter know when air in the bottle is low. Though they have made many design modifications and refinements, manufacturers of breathing apparatus still incorporate the original NASA technology.

  20. The relative noise levels of parallel axis gear sets with various contact ratios and gear tooth forms

    NASA Technical Reports Server (NTRS)

    Drago, Raymond J.; Lenski, Joseph W., Jr.; Spencer, Robert H.; Valco, Mark; Oswald, Fred B.

    1993-01-01

    The real noise reduction benefits which may be obtained through the use of one gear tooth form as compared to another is an important design parameter for any geared system, especially for helicopters in which both weight and reliability are very important factors. This paper describes the design and testing of nine sets of gears which are as identical as possible except for their basic tooth geometry. Noise measurements were made at various combinations of load and speed for each gear set so that direct comparisons could be made. The resultant data was analyzed so that valid conclusions could be drawn and interpreted for design use.

  1. A two-phase control algorithm for gear-shifting in a novel multi-speed transmission for electric vehicles

    NASA Astrophysics Data System (ADS)

    Roozegar, M.; Angeles, J.

    2018-05-01

    In light of the current low energy-storage capacity of electric batteries, multi-speed transmissions (MSTs) are being considered for applications in electric vehicles (EVs), since MSTs decrease the energy consumption of the EV via gear-shifting. Nonetheless, swiftness and seamlessness are the major concerns in gear-shifting. This study focuses on developing a gear-shifting control scheme for a novel MST designed for EVs. The main advantages of the proposed MST are simplicity and modularity. Firstly, the dynamics model of the transmission is formulated. Then, a two-phase algorithm is proposed for shifting between each two gear ratios, which guarantees a smooth and swift shift. In other words, a separate control set is applied for shifting between each gear pair, which includes two independent PID controllers, tuned using trial-and-error and a genetic algorithm (GA), for the two steps of the algorithm and a switch. A supervisory controller is also employed to choose the proper PID gains, called PID gain-scheduling. Simulation results for various controllers and conditions are reported and compared, indicating that the proposed scheme is highly promising for a desired gear-shifting even in the presence of an unknown external disturbance.

  2. Vertical Drop Testing and Analysis of the WASP Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Fuchs, Yvonne T.; Jackson, Karen E.

    2008-01-01

    Human occupant modeling and injury risk assessment have been identified as areas of research for improved prediction of rotorcraft crashworthiness within the NASA Aeronautics Program's Subsonic Rotary Wing Project. As part of this effort, an experimental program was conducted to assess the impact performance of a skid gear for use on the WASP kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. Test data from a drop test at an impact velocity of 8.4 feet-per-second were used to assess a finite element model of the skid gear test article. This assessment included human occupant analytic models developed for execution in LS-DYNA. The test article consisted of an aluminum skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Aerospace Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The goal of the test-analysis correlation is to further the understanding of LS-DYNA ATD occupant models and responses in the vertical (or spinal) direction. By correlating human occupant experimental test data for a purely vertical impact with the LS-DYNA occupant responses, improved confidence in the use of these tools and better understanding of the limitations of the automotive-based occupant models for aerospace application can begin to be developed.

  3. Vertical Drop Testing and Analysis of the WASP Helicopter Skid Gear

    NASA Technical Reports Server (NTRS)

    Fuchs, Yvonne T.; Jackson, Karen E.

    2008-01-01

    Human occupant modeling and injury risk assessment have been identified as areas of research for improved prediction of rotorcraft crashworthiness within the NASA Aeronautics Program s Subsonic Rotary Wing Project. As part of this effort, an experimental program was conducted to assess the impact performance of a skid gear for use on the WASP kit-built helicopter, which is marketed by HeloWerks, Inc. of Hampton, Virginia. Test data from a drop test at an impact velocity of 8.4 feet-per-second were used to assess a finite element model of the skid gear test article. This assessment included human occupant analytic models developed for execution in LS-DYNA. The test article consisted of an aluminum skid gear mounted beneath a steel plate. A seating platform was attached to the upper surface of the steel plate, and two 95th percentile Hybrid III male Aerospace Anthropomorphic Test Devices (ATDs) were seated on the platform and secured using a four-point restraint system. The goal of the test-analysis correlation is to further the understanding of LS-DYNA ATD occupant models and responses in the vertical (or spinal) direction. By correlating human occupant experimental test data for a purely vertical impact with the LS-DYNA occupant responses, improved confidence in the use of these tools and better understanding of the limitations of the automotive-based occupant models for aerospace application can begin to be developed.

  4. 50 CFR 622.31 - Prohibited gear and methods.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Prohibited gear and methods. 622.31... Management Measures § 622.31 Prohibited gear and methods. In addition to the prohibited gear/methods specified in this section, see §§ 622.33, 622.34, and 622.35 for seasonal/area prohibited gear/methods and...

  5. 50 CFR 622.46 - Prevention of gear conflicts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Prevention of gear conflicts. 622.46... Management Measures § 622.46 Prevention of gear conflicts. (a) No person may knowingly place in the Gulf EEZ... zones for shrimp trawling and the use of fixed gear to prevent gear conflicts. Necessary prohibitions or...

  6. Altus I aircraft in flight, retracting landing gear after takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The landing gear of the remotely piloted Altus I aircraft retracts into the fuselage after takeoff from Rogers Dry Lake adjacent to NASA's Dryden Flight Research Center, Edwards, Calif. The short series of test flights sponsored by the Naval Postgraduate School in early August, 1997, was designed to demonstrate the ability of the experimental craft to cruise at altitudes above 40,000 feet for sustained durations. On its final flight Aug. 15, the Altus I reached an altitude of 43,500 feet. The Altus I and its sister ship, the Altus II, are variants of the Predator surveillance drone built by General Atomics/Aeronautical Systems, Inc. They are designed for high-altitude, long-duration scientific sampling missions. The Altus I incorporates a single-stage turbocharger, while the Altus II, built for NASA's Environmental Research Aircraft and Sensor Technology project, sports a two-stage turbocharger to enable the craft to fly at altitudes above 55,000 feet.

  7. Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Li, Chao-Feng; Zhou, Shi-Hua; Liu, Jie; Wen, Bang-Chun

    2014-10-01

    Considering the axial and radial loads, a mathematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of different parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dissipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system.

  8. Bearing and gear steels for aerospace applications

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1990-01-01

    Research in metallurgy and processing for bearing and gear steels has resulted in improvements in rolling-element bearing and gear life for aerospace application by a factor of approximately 200 over that obtained in the early 1940's. The selection and specification of a bearing or gear steel is dependent on the integration of multiple metallurgical and physical variables. For most aerospace bearings, through-hardened VIM-VAR AISI M-50 steel is the material of preference. For gears, the preferential material is case-carburized VAR AISI 9310. However, the VAR processing for this material is being replaced by VIM-VAR processing. Since case-carburized VIM-VAR M-50NiL incorporates the desirable qualities of both the AISI M-50 and AISI 9310 materials, optimal life and reliability can be achieved in both bearings and gears with a single steel. Hence, this material offers the promise of a common steel for both bearings and gears for future aerospace applications.

  9. The reduction of takeoff ground roll by the application of a nose gear jump strut

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Maisel, Martin D.; Mcclain, J. Greer; Luce, W.

    1994-01-01

    A series of flight tests were conducted to evaluate the reduction of takeoff ground roll distance obtainable from a rapid extension of the nose gear strut. The NASA Quiet Short-haul Research Aircraft (QSRA) used for this investigation is a transport-size short take off and landing (STOL) research vehicle with a slightly swept wing that employs the upper surface blowing (USB) concept to attain the high lift levels required for its low-speed, short-field performance. Minor modifications to the conventional nose gear assembly and the addition of a high-pressure pneumatic system and a control system provided the extendable nose gear, or jump strut, capability. The limited flight test program explored the effects of thrust-to-weight ratio, wing loading, storage tank initial pressure, and control valve open time duration on the ground roll distance. The data show that a reduction of takeoff ground roll on the order of 10 percent was achieved with the use of the jump strut, as predicted. Takeoff performance with the jump strut was also found to be essentially independent of the pneumatic supply pressure and was only slightly affected by control valve open time within the range of the parameters examined.

  10. Fishing gear-related injury in California marine wildlife.

    PubMed

    Dau, Brynie Kaplan; Gilardi, Kirsten V K; Gulland, Frances M; Higgins, Ali; Holcomb, Jay B; Leger, Judy St; Ziccardi, Michael H

    2009-04-01

    We reviewed medical records from select wildlife rehabilitation facilities in California to determine the prevalence of injury in California Brown Pelicans (Pelecanus occidentalis), gulls (Larus spp.), and pinniped species (Zalophus californianus, Mirounga angustirostris, and Phoca vitulina) due to fishing gear entanglement and ingestion from 2001 to 2006. Of 9,668 Brown Pelican, gull, and pinniped cases described during the 6-yr study period (2001-06), 1,090 (11.3%) were fishing gear-related. Pelican injuries caused by fishing gear were most common in the Monterey Bay region, where 59.6% of the pelicans rescued in this area and admitted to a rehabilitation center were injured by fishing gear over the 6-yr period. The highest prevalence of fishing gear-related injury in gulls was documented in the Los Angeles/Orange County region (16.1%), whereas the highest prevalences in pinnipeds were seen in the San Diego region (3.7%). Despite these higher prevalences of gull and pinniped fishing gear-related injuries in these specific regions, there was no statistical significance in these trends. Juvenile gulls and pinnipeds were more commonly injured by fishing gear than adults (gulls: P = 0.03, odds ratio = 1.29; pinnipeds: P = 0.01, odds ratio = 2.07). Male pinnipeds were twice as likely to be injured by fishing gear as females (P < 0.01, odds ratio = 2.19). The proportion of fishing gear-related injury cases that were successfully rehabilitated and released (percentage of cases successfully rehabilitated to the point of release out of the total number of fishing gear-related injury cases) was high in all three species groups (pelicans: 63%; gulls: 54%; pinnipeds: 70%). Fishing gear-related injuries in Brown Pelicans and gulls were highest in the fall, but there was only a significant difference between seasons for fishing gear-related injuries in pelicans. Fishing gear-related injuries in pinnipeds most commonly occurred in summer; however, a statistical difference was

  11. Design of spur gears for improved efficiency

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1981-01-01

    A method to calculate spur gear system power loss for a wide range of gear geometries and operating conditions is used to determine design requirements for an efficient gearset. The effects of spur gear size, pitch, ratio, pitch-line-velocity and load on efficiency are shown. A design example is given to illustrate how the method is to be applied. In general, peak efficiencies were found to be greater for larger diameter and fine pitched gears and tare (no-load) losses were found to be significant.

  12. Offset Compound Gear Inline Two-Speed Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A. (Inventor); Handschuh, Robert F. (Inventor); Lewicki, David G. (Inventor)

    2012-01-01

    A two-speed transmission having an input shaft and an output shaft, the transmission being capable of transitioning between fixed ratios, the high-range ratio being direct 1:1 and the low-range ratio being about 2:1. The transmission is a simple lightweight, yet robust, configuration utilizing only two gear meshes, being comprised of an input gear, a cluster gear, and an output gear. The transmission is controlled with a clutch and a sprag and with the input and output shafts turning in the same direction.

  13. Offset Compound Gear Inline Two-Speed Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A. (Inventor); Handschuh, Robert F. (Inventor); Lewicki, David G. (Inventor)

    2014-01-01

    A two-speed transmission having an input shaft and an output shaft, the transmission being capable of transitioning between fixed ratios, the high-range ratio being direct 1:1 and the low-range ratio being about 2:1. The transmission is a simple lightweight, yet robust, configuration utilizing only two gear meshes, being comprised of an input gear, a cluster gear, and an output gear. The transmission is controlled with a clutch and a sprag and with the input and output shafts turning in the same direction.

  14. Dynamic tests on the NASA Langley CSI evolutionary model

    NASA Technical Reports Server (NTRS)

    Troidl, H.; Elliott, K. B.

    1993-01-01

    A modal analysis study, representing one of the anticipated 'Cooperative Spacecraft Structural Dynamics Experiments on the NASA Langley CSI Evolutionary Model', was carried out as a sub-task under the NASA/DLR collaboration in dynamics and control of large space systems. The CSI evolutionary testbed (CEM) is designed for the development of Controls-Structures Interaction (CSI) technology to improve space science platform pointing. For orbiting space structures like large flexible trusses, new identification challenges arise due to their specific dynamic characteristics (low frequencies and high modal density) on the one hand, and the limited possibilities of exciting such structures and measuring their responses on orbit on the other. The main objective was to investigate the modal identification potential of several different types of forcing functions that could possibly be realized with on-board excitation equipment using a minimum number of exciter locations as well as response locations. These locations were defined in an analytical test prediction process used to study the implications of measuring and analyzing the responses thus produced. It turned out that broadband excitation is needed for a general modal survey, but if only certain modes are of particular interest, combinations of exponentially decaying sine functions provide favorable excitation conditions as they allow to concentrate the available energy on the modes being of special interest. From a practical point-of-view structural nonlinearities as well as noisy measurements make the analysis more difficult, especially in the low frequency range and when the modes are closely spaced.

  15. Experimental testing of prototype face gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Lewicki, D.; Bossler, R.

    1992-01-01

    An experimental program to test the feasibility of using face gears in a high-speed and high-power environment was conducted. Four face gear sets were tested, two sets at a time, in a closed-loop test stand at pinion rotational speeds to 19,100 rpm and to 271 kW. The test gear sets were one-half scale of the helicopter design gear set. Testing the gears at one-eighth power, the test gear set had slightly increased bending and compressive stresses when compared to the full scale design. The tests were performed in the LeRC spiral bevel gear test facility. All four sets of gears successfully ran at 100 percent of design torque and speed for 30 million pinion cycles, and two sets successfully ran at 200 percent of torque for an additional 30 million pinion cycles. The results, although limited, demonstrated the feasibility of using face gears for high-speed, high-load applications.

  16. Gear materials for high-production light-deputy service

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1973-01-01

    The selection of a material for high volume, low cost gears requires careful consideration of all the requirements and the processes used to manufacture the gears. The wrong choice in material selection could very well mean the difference between success and failure. A summary of the cost that might be expected for different materials and processes is presented; it can be seen that the cost can span nearly three order of magnitudes from the molded plastic gear to the machined gear with stamped and powder metal gears falling in between these extremes.

  17. RTAPS (Research and Technology for Aerospace Propulsion Systems): Simulation of Structural Loads within a Hybrid Gear Resulting From Loading at the Gear Teeth

    NASA Technical Reports Server (NTRS)

    Naffin, Richard K.; Ulun, Umut; Garmel, Charles D.; McManus, Nika; Hu, Zhenning; Ohlerking, Westin B.; Myers, David E.

    2017-01-01

    This report investigates the practical usage of hybrid structures for rotorcraft gearing. The primary driver for utilizing hybrid structures for rotorcraft gearing is to reduce the drive system weight. The hybrid structure concept featured in this study for rotorcraft gearing consists of a metallic gear tooth-rim, a web section manufactured from composite materials, and a metallic hub. The metallic gear tooth-rim is manufactured from conventional gear steel alloys, such as AISI 9310. The gear tooth-rim attaches to the outer diameter of the web section made from composite materials. The inner diameter of the composite web can then attach to a metallic hub, completing the assembly. It is assumed that areas of the shafting or hub where rolling element bearings may ride must remain as gear steel alloys for this study.

  18. Bending strength model for internal spur gear teeth

    NASA Technical Reports Server (NTRS)

    Savage, Michael; Rubadeux, K. L.; Coe, H. H.

    1995-01-01

    Internal spur gear teeth are normally stronger than pinion teeth of the same pitch and face width since external teeth are smaller at the base. However, ring gears which are narrower have an unequal addendum or are made of a material with a lower strength than that of the meshing pinion may be loaded more critically in bending. In this study, a model for the bending strength of an internal gear tooth as a function of the applied load pressure angle is presented which is based on the inscribed Lewis constant strength parabolic beam. The bending model includes a stress concentration factor and an axial compression term which are extensions of the model for an external gear tooth. The geometry of the Lewis factor determination is presented, the iteration to determine the factor is described, and the bending strength J factor is compared to that of an external gear tooth. This strength model will assist optimal design efforts for unequal addendum gears and gears of mixed materials.

  19. 46 CFR 61.20-1 - Steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steering gear. 61.20-1 Section 61.20-1 Shipping COAST... Periodic Tests of Machinery and Equipment § 61.20-1 Steering gear. (a) The marine inspector must inspect the steering gear at each inspection for certification for vessels whose Certificate of Inspections...

  20. 50 CFR 648.296 - Gear restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear restricted areas. 648.296 Section 648... Tilefish Fishery § 648.296 Gear restricted areas. No vessel of the United States may fish with bottom-tending mobile gear within the areas bounded by the following coordinates: Canyon N. Lat. Degrees Min...

  1. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Solar Dynamics Observatory)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from NASA’s Solar Dynamics Observatory.

  2. NASA LaRC Workshop on Guidance, Navigation, Controls, and Dynamics for Atmospheric Flight, 1993

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S. (Editor)

    1993-01-01

    This publication is a collection of materials presented at a NASA workshop on guidance, navigation, controls, and dynamics (GNC&D) for atmospheric flight. The workshop was held at the NASA Langley Research Center on March 18-19, 1993. The workshop presentations describe the status of current research in the GNC&D area at Langley over a broad spectrum of research branches. The workshop was organized in eight sessions: overviews, general, controls, military aircraft, dynamics, guidance, systems, and a panel discussion. A highlight of the workshop was the panel discussion which addressed the following issue: 'Direction of guidance, navigation, and controls research to ensure U.S. competitiveness and leadership in aerospace technologies.'

  3. New Design and Improvement of Planetary Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert (Technical Monitor); Litvin, Faydor L.; Fuentes, Alfonso; Vecchiato, Daniele; Gonzalez-Perez, Ignacio

    2004-01-01

    The development of new types of planetary and planetary face-gear drives is proposed. The new designs are based on regulating backlash between the gears and modifying the tooth surfaces to improve the design. The goal of this work is to obtain a nearly uniform distribution of load between the planet gears. In addition, a new type of planetary face-gear drive was developed in this project.

  4. 14 CFR 29.477 - Landing gear arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing gear arrangement. 29.477 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.477 Landing gear arrangement. Sections 29.235, 29.479 through 29.485, and 29.493 apply to landing gear with two wheels aft, and...

  5. 14 CFR 27.477 - Landing gear arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing gear arrangement. 27.477 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.477 Landing gear arrangement. Sections 27.235, 27.479 through 27.485, and 27.493 apply to landing gear with two wheels aft, and...

  6. 14 CFR 27.477 - Landing gear arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing gear arrangement. 27.477 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.477 Landing gear arrangement. Sections 27.235, 27.479 through 27.485, and 27.493 apply to landing gear with two wheels aft, and...

  7. 14 CFR 29.477 - Landing gear arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing gear arrangement. 29.477 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.477 Landing gear arrangement. Sections 29.235, 29.479 through 29.485, and 29.493 apply to landing gear with two wheels aft, and...

  8. 46 CFR 182.610 - Main steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Main steering gear. 182.610 Section 182.610 Shipping...) MACHINERY INSTALLATION Steering Systems § 182.610 Main steering gear. (a) A vessel must be provided with a main steering gear that is: (1) Of adequate strength and capable of steering the vessel at all service...

  9. NASA Ambassadors: A Speaker Outreach Program

    NASA Technical Reports Server (NTRS)

    McDonald, Malcolm W.

    1998-01-01

    The work done on this project this summer has been geared toward setting up the necessary infrastructure and planning to support the operation of an effective speaker outreach program. The program has been given the name, NASA AMBASSADORS. Also, individuals who become participants in the program will be known as "NASA AMBASSADORS". This summer project has been conducted by the joint efforts of this author and those of Professor George Lebo who will be issuing a separate report. The description in this report will indicate that the NASA AMBASSADOR program operates largely on the contributions of volunteers, with the assistance of persons at the Marshall Space Flight Center (MSFC). The volunteers include participants in the various summer programs hosted by MSFC as well as members of the NASA Alumni League. The MSFC summer participation programs include: the Summer Faculty Fellowship Program for college and university professors, the Science Teacher Enrichment Program for middle- and high-school teachers, and the NASA ACADEMY program for college and university students. The NASA Alumni League members are retired NASA employees, scientists, and engineers. The MSFC offices which will have roles in the operation of the NASA AMBASSADORS include the Educational Programs Office and the Public Affairs Office. It is possible that still other MSFC offices may become integrated into the operation of the program. The remainder of this report will establish the operational procedures which will be necessary to sustain the NASA AMBASSADOR speaker outreach program.

  10. New generation methods for spur, helical, and spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1986-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  11. New generation methods for spur, helical, and spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1987-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  12. High Speed Gear Sized and Configured to Reduce Windage Loss

    NASA Technical Reports Server (NTRS)

    Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)

    2013-01-01

    A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.

  13. One Approach to the Synthesis, Design and Manufacture of Hyperboloid Gear Sets With Face Mating Gears. Part 1: Basic Theoretical and Cad Experience

    NASA Astrophysics Data System (ADS)

    Abadjiev, Valentin; Abadjieva, Emilia

    2016-06-01

    Hyperboloid gear drives with face mating gears are used to transform rotations between shafts with non-parallel and non-intersecting axes. A special case of these transmissions are Spiroid and Helicon gear drives. The classical gear drives of this type are the Archimedean ones. The objective of this study are hyperboloid gear drives with face meshing, when the pinion possesses threads of conic convolute, Archimedean and involute types, or the pinion has threads of cylindrical convolute, Archimedean and involute types. For simplicity, all three types transmis- sions with face mating gears and a conic pinion are titled Spiroid and all three types transmissions with face mating gears and a cylindrical pinion are titled Helicon. Principles of the mathematical modelling of tooth contact synthesis are discussed in this study. The presented research shows that the synthesis is realized by application of two mathematical models: pitch contact point and mesh region models. Two approaches for synthesis of the gear drives in accordance with Olivier's principles are illustrated. The algorithms and computer programs for optimization synthesis and design of the studied hyperboloid gear drives are presented.

  14. Space mechanisms needs for future NASA long duration space missions

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1991-01-01

    Future NASA long duration missions will require high performance, reliable, long lived mechanical moving systems. In order to develop these systems, high technology components, such as bearings, gears, seals, lubricants, etc., will need to be utilized. There has been concern in the NASA community that the current technology level in these mechanical component/tribology areas may not be adequate to meet the goals of long duration NASA mission such as Space Exploration Initiative (SEI). To resolve this concern, NASA-Lewis sent a questionnaire to government and industry workers (who have been involved in space mechanism research, design, and implementation) to ask their opinion if the current space mechanisms technology (mechanical components/tribology) is adequate to meet future NASA Mission needs and goals. In addition, a working group consisting of members from each NASA Center, DoD, and DOE was established to study the technology status. The results of the survey and conclusions of the working group are summarized.

  15. Surface micromachined microengine as the driver for micromechanical gears

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, E.J.; Sniegowski, J.J.

    1995-05-01

    The transmission of mechanical power is often accomplished through the use of gearing. The recently developed surface micromachined microengine provides us with an actuator which is suitable for driving surface micromachined geared systems. In this paper we will present aspects of the microengine as they relate to the driving of geared mechanisms, issues relating to the design of micro gear mechanisms, and details of a design of a microengine-driven geared shutter mechanism.

  16. Interlocking Mechanism between Molecular Gears Attached to Surfaces.

    PubMed

    Zhao, Rundong; Zhao, Yan-Ling; Qi, Fei; Hermann, Klaus E; Zhang, Rui-Qin; Van Hove, Michel A

    2018-03-27

    While molecular machines play an increasingly significant role in nanoscience research and applications, there remains a shortage of investigations and understanding of the molecular gear (cogwheel), which is an indispensable and fundamental component to drive a larger correlated molecular machine system. Employing ab initio calculations, we investigate model systems consisting of molecules adsorbed on metal or graphene surfaces, ranging from very simple triple-arm gears such as PF 3 and NH 3 to larger multiarm gears based on carbon rings. We explore in detail the transmission of slow rotational motion from one gear to the next by these relatively simple molecules, so as to isolate and reveal the mechanisms of the relevant intermolecular interactions. Several characteristics of molecular gears are discussed, in particular the flexibility of the arms and the slipping and skipping between interlocking arms of adjacent gears, which differ from familiar macroscopic rigid gears. The underlying theoretical concepts suggest strongly that other analogous structures may also exhibit similar behavior which may inspire future exploration in designing large correlated molecular machines.

  17. Applied Computational Fluid Dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  18. NASA Releases 'NASA App HD' for iPad

    NASA Image and Video Library

    2012-07-06

    The NASA App HD invites you to discover a wealth of NASA information right on your iPad. The application collects, customizes and delivers an extensive selection of dynamically updated mission information, images, videos and Twitter feeds from various online NASA sources in a convenient mobile package. Come explore with NASA, now on your iPad. 2012 Updated Version - HD Resolution and new features. Original version published on Sept. 1, 2010.

  19. Economic method for helical gear flank surface characterisation

    NASA Astrophysics Data System (ADS)

    Koulin, G.; Reavie, T.; Frazer, R. C.; Shaw, B. A.

    2018-03-01

    Typically the quality of a gear pair is assessed based on simplified geometric tolerances which do not always correlate with functional performance. In order to identify and quantify functional performance based parameters, further development of the gear measurement approach is required. Methodology for interpolation of the full active helical gear flank surface, from sparse line measurements, is presented. The method seeks to identify the minimum number of line measurements required to sufficiently characterise an active gear flank. In the form ground gear example presented, a single helix and three profile line measurements was considered to be acceptable. The resulting surfaces can be used to simulate the meshing engagement of a gear pair and therefore provide insight into functional performance based parameters. Therefore the assessment of the quality can be based on the predicted performance in the context of an application.

  20. Bevel gear driver and method having torque limit selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  1. Effect of tooth profile modification on wear in internal gears

    NASA Astrophysics Data System (ADS)

    Tunalioglu, M. S.; Tuc, B.

    2018-05-01

    Internal gears are often used in the automotive industry when two gears are required to rotate in the same direction. Tooth shapes, slippage speeds at the beginning and end of meshing are different according to the external gears. Manufacturing of internal gears is more difficult than external gears. Thus, it is necessary to determine the working conditions and wear behavior of internal gears carefully. The profile modification method in terms of strength and surface tension of the gear mechanism are performed in order to increase the load-carrying capability. In this study, profile modification method was performed in the internal gears to reduce the wear on the teeth. For this purpose, the wear of the internal gears was theoretically investigated by adapting the Archard wear equation to the internal gears. Closed circuit power circulation system was designed and manufactured to experimentally investigate the wear in internal gears. With this system, wear tests of gears made of St 50 material without profile modification and different profile modifications were made and the results were compared. Experimental study was performed in the same loading and cycle time conditions to validate the theoretical results and it was seen that the results are compatible. According to the experimental results, it is seen that in the internal gears, when profile modification done the wear is decreased in the teeth tip region.

  2. One Approach to the Synthesis, Design and Manufacture of Hyperboloid Gear Sets with Face Mating Gears. Part 2: Review of Practical Realization

    NASA Astrophysics Data System (ADS)

    Abadjiev, Valentin; Abadjieva, Emilia

    2016-09-01

    Hyperboloid gear drives with face mating gears are used to transform rotations between shafts with non-parallel and non-intersecting axes. A special case of these transmissions are Spiroid1 and Helicon gear drives. The classical gear drives of this type are Archimedean ones. The objective of this study are hyperboloid gear drives with face meshing, when the pinion has threads of conic convolute, Archimedean and involute types, or the pinion has threads of cylindrical convolute, Archimedean and involute types. For simplicity, all three type transmissions with face mating gears and a conic pinion are titled Spiroid and all three type trans- missions with face mating gears and a cylindrical pinion are titled Helicon. Principles of the mathematical modelling of tooth contact synthesis are discussed in Part 1: Basic theoretical and CAD experience of this study. The second part of this article is a brief overview of the innovations and inventions created in this field at the Institute of Mechanics - Bulgarian Academy of Sciences in the last three decades. This study is also dedicated on elaboration of the specialized face gear sets for implementation into bio-robot hand. It is based on the application of 3D software technology, using 3D print for the realization of the physical models of the gear drives.

  3. Gear Fault Diagnosis Based on BP Neural Network

    NASA Astrophysics Data System (ADS)

    Huang, Yongsheng; Huang, Ruoshi

    2018-03-01

    Gear transmission is more complex, widely used in machinery fields, which form of fault has some nonlinear characteristics. This paper uses BP neural network to train the gear of four typical failure modes, and achieves satisfactory results. Tested by using test data, test results have an agreement with the actual results. The results show that the BP neural network can effectively solve the complex state of gear fault in the gear fault diagnosis.

  4. The application of elastohydrodynamic lubrication in gear tooth contacts

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1972-01-01

    An analytical method is presented for determining elastohydrodynamic film thickness in gears from theory and how the film affects gear failure and life. The practical aspects of gear lubrication are presented, including mechanical and service variables which must be considered to obtain optimum gear performance under severe operating conditions.

  5. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  6. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  7. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  8. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  9. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  10. 46 CFR 108.641 - Instructions for changing steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Instructions for changing steering gear. 108.641 Section... steering gear. Instructions stating, in order, the different steps to be taken for changing to emergency and secondary steering gear must be posted in the steering gear room and at each secondary steering...

  11. Efficiency of nonstandard and high contact ratio involute spur gears

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1984-01-01

    A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.

  12. Efficiency of nonstandard and high contact ratio involute spur gears

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1986-01-01

    A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.

  13. The Influence of Roughness on Gear Surface Fatigue

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy

    2005-01-01

    Gear working surfaces are subjected to repeated rolling and sliding contacts, and often designs require loads sufficient to cause eventual fatigue of the surface. This research provides experimental data and analytical tools to further the understanding of the causal relationship of gear surface roughness to surface fatigue. The research included evaluations and developments of statistical tools for gear fatigue data, experimental evaluation of the surface fatigue lives of superfinished gears with a near-mirror quality, and evaluations of the experiments by analytical methods and surface inspections. Alternative statistical methods were evaluated using Monte Carlo studies leading to a final recommendation to describe gear fatigue data using a Weibull distribution, maximum likelihood estimates of shape and scale parameters, and a presumed zero-valued location parameter. A new method was developed for comparing two datasets by extending the current methods of likelihood-ratio based statistics. The surface fatigue lives of superfinished gears were evaluated by carefully controlled experiments, and it is shown conclusively that superfinishing of gears can provide for significantly greater lives relative to ground gears. The measured life improvement was approximately a factor of five. To assist with application of this finding to products, the experimental condition was evaluated. The fatigue life results were expressed in terms of specific film thickness and shown to be consistent with bearing data. Elastohydrodynamic and stress analyses were completed to relate the stress condition to fatigue. Smooth-surface models do not adequately explain the improved fatigue lives. Based on analyses using a rough surface model, it is concluded that the improved fatigue lives of superfinished gears is due to a reduced rate of near-surface micropitting fatigue processes, not due to any reduced rate of spalling (sub-surface) fatigue processes. To complete the evaluations, surface

  14. A Circularly Arranged Sextuple Triptycene Gear Molecule.

    PubMed

    Ube, Hitoshi; Yamada, Ryo; Ishida, Jun-Ichi; Sato, Hiroyasu; Shiro, Motoo; Shionoya, Mitsuhiko

    2017-11-22

    Herein we report the synthesis of a circularly arranged sextuple triptycene gear molecule, hexakis(10-dodecyloxy-9-triptycyl)ethynylbenzene, via the trimerization of the corresponding triyne with a cobalt catalyst. The six triptycene gears are closely engaged with each other as confirmed by single crystal X-ray structure analysis, and their motion in solution was established by NMR spectroscopy. Notably, when one bulky RuCp* complex was attached to one triptycene gear, the whole movement of the six gears was highly restricted via their mechanical engagement. Development of such a multigear molecule would provide a structural basis for molecular motion transmission systems with a switching function.

  15. 33 CFR 183.710 - Start-in-gear protection required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Start-in-gear protection required... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Start-in-Gear Protection § 183.710 Start-in-gear... starting must have a built-in start-in-gear protection device. (2) Outboard motors designed for remote...

  16. Theory of gearing

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.

    1989-01-01

    Basic mathematical problems on the theory of gearing are covered in this book, such as the necessary and sufficient conditions of envelope existence, relations between principal curvatures and directions for surfaces of mating gears. Also included are singularities of surfaces accompanied by undercutting the process of generation, the phenomena of envelope of lines of contact, and the principles for generation of conjugate surfaces. Special attention is given to the algorithms for computer aided simulation of meshing and tooth contact. This edition was complemented with the results of research recently performed by the author and his doctoral students. The book contains sample problems and also problems for the reader to solve.

  17. Experience with Geared Propeller Drives for Aviation Engines

    NASA Technical Reports Server (NTRS)

    Kutzbach, K

    1920-01-01

    I. The development of the gear wheels: (a) bending stresses; (b) compressive stresses; (c) heating; (d) precision of manufacture. II. General arrangement of the gearing. III. Vibration in the shaft transmission. An overview is given of experience with geared propeller drives for aviation engines. The development of gear wheels is discussed with emphasis upon bending stresses, compressive stresses, heating, and precision in manufacturing. With respect to the general arrangement of gear drives for airplanes, some principal rules of mechanical engineering that apply with special force are noted. The primary vibrations in the shaft transmission are discussed. With respect to vibration, various methods for computing vibration frequency and the influence of elastic couplings are discussed.

  18. Bevel Gear Driver and Method Having Torque Limit Selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including an axially displaceable gear with a biasing assembly to bias the displaceable gear into an engagement position. A rotatable cap is provided with a micrometer dial to select a desired output torque. An intermediate bevel gear assembly is disposed between an input gear and an output gear. A gear tooth profile provides a separation force that overcomes the bias to limit torque at a desired torque limit. The torque limit is adjustable and may be adjusted manually or automatically depending on the type of biasing assembly provided. A clutch assembly automatically limits axial force applied to a fastener by the operator to avoid alteration of the desired torque limit.

  19. Cornering characteristics of the main-gear tire of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.; Robinson, Martha P.

    1988-01-01

    An experimental investigation was conducted at the NASA Langley Research Center to study the effects of various vertical load and yaw angle conditions on the cornering behavior of the Space Shuttle Orbiter main gear tire. Measured parameters included side and drag force, side and drag force coefficients, aligning torque, and overturning torque. Side force coefficient was found to increase as yaw angle was increased, but decreased as the vertical load was increased. Drag force was found to increase as vertical load was increased at constant yaw angles. Aligning torque measurements indicated that the tire is stable in yaw.

  20. A Comparison of Vibration and Oil Debris Gear Damage Detection Methods Applied to Pitting Damage

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2000-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) must provide reliable, real-time performance monitoring of helicopter operating parameters to prevent damage of flight critical components. Helicopter transmission diagnostics are an important part of a helicopter HUMS. In order to improve the reliability of transmission diagnostics, many researchers propose combining two technologies, vibration and oil monitoring, using data fusion and intelligent systems. Some benefits of combining multiple sensors to make decisions include improved detection capabilities and increased probability the event is detected. However, if the sensors are inaccurate, or the features extracted from the sensors are poor predictors of transmission health, integration of these sensors will decrease the accuracy of damage prediction. For this reason, one must verify the individual integrity of vibration and oil analysis methods prior to integrating the two technologies. This research focuses on comparing the capability of two vibration algorithms, FM4 and NA4, and a commercially available on-line oil debris monitor to detect pitting damage on spur gears in the NASA Glenn Research Center Spur Gear Fatigue Test Rig. Results from this research indicate that the rate of change of debris mass measured by the oil debris monitor is comparable to the vibration algorithms in detecting gear pitting damage.

  1. Handbook on Face Gear Drives with a Spur Involute Pinion

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Egelja, A.; Tan, J.; Chen, D. Y.-D.; Heath, G.

    2000-01-01

    The use of face gears in power transmission and drive systems has a significant number of benefits. Face gears allow a variety of new transmission arrangements as well as high reduction ratio capability. This leads to drive system weight reduction and improvements in performance. In this work, basic information about the design and analysis of face gear drives is presented. The work considers face gears in mesh with spur involute pinions for both intersecting axes and offset drives. Tooth geometry, kinematics, generation of face gears with localized bearing contact by cutting and grinding, avoidance of tooth undercutting, avoidance of tooth pointing, tooth contact analysis, and algorithms for the simulation of meshing and contact arc all topics which are discussed. In addition, applications of face gear drives are presented. Included are design uses in aerospace applications such as helicopter transmissions, split-torque face gear arrangements, comparisons of face gears with bevel gears, and general design considerations.

  2. Displaceable Spur Gear Torque Controlled Driver and Method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1996-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driven members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  3. Displaceable spur gear torque controlled driver and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driver members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  4. Surface micromachined counter-meshing gears discrimination device

    DOEpatents

    Polosky, Marc A.; Garcia, Ernest J.; Allen, James J.

    2000-12-12

    A surface micromachined Counter-Meshing Gears (CMG) discrimination device which functions as a mechanically coded lock. Each of two CMG has a first portion of its perimeter devoted to continuous driving teeth that mesh with respective pinion gears. Each EMG also has a second portion of its perimeter devoted to regularly spaced discrimination gear teeth that extend outwardly on at least one of three levels of the CMG. The discrimination gear teeth are designed so as to pass each other without interference only if the correct sequence of partial rotations of the CMG occurs in response to a coded series of rotations from the pinion gears. A 24 bit code is normally input to unlock the device. Once unlocked, the device provides a path for an energy or information signal to pass through the device. The device is designed to immediately lock up if any portion of the 24 bit code is incorrect.

  5. An Overview: NASA LeRC Structures Programs

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1998-01-01

    A workshop on National Structures Programs was held, jointly sponsored by the AIAA Structures Technical Committee, the University of Virginia's Center for Advanced Computational Technology and NASA. The Objectives of the Workshop were to: provide a forum for discussion of current Government-sponsored programs in the structures area; identify high potential research areas for future aerospace systems; and initiate suitable interaction mechanisms with the managers of structures programs. The presentations covered structures programs at NASA, DOD (AFOSR, ONR, ARO and DARPA), and DOE. This publication is the presentation of the Structures and Acoustics Division of the NASA Lewis Research Center. The Structures and Acoustics Division has its genesis dating back to 1943. It is responsible for NASA research related to rotating structures and structural hot sections of both airbreathing and rocket engines. The work of the division encompasses but is not limited to aeroelasticity, structural life prediction and reliability, fatigue and fracture, mechanical components such as bearings, gears, and seals, and aeroacoustics. These programs are discussed and the names of responsible individuals are provided for future reference.

  6. Effects of rim thickness on spur gear bending stress

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S. K.; Savage, M.; Handschuh, R. F.

    1991-01-01

    Thin rim gears find application in high-power, light-weight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.

  7. 50 CFR 654.25 - Prevention of gear conflicts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Prevention of gear conflicts. 654.25... Measures § 654.25 Prevention of gear conflicts. (a) No person may knowingly place in the management area... necessary and appropriate to prevent gear conflicts. Necessary prohibitions or restrictions will be...

  8. Optimal design of compact spur gear reductions

    NASA Technical Reports Server (NTRS)

    Savage, M.; Lattime, S. B.; Kimmel, J. A.; Coe, H. H.

    1992-01-01

    The optimal design of compact spur gear reductions includes the selection of bearing and shaft proportions in addition to gear mesh parameters. Designs for single mesh spur gear reductions are based on optimization of system life, system volume, and system weight including gears, support shafts, and the four bearings. The overall optimization allows component properties to interact, yielding the best composite design. A modified feasible directions search algorithm directs the optimization through a continuous design space. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for optimization. After finding the continuous optimum, the designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearings on the optimal configurations.

  9. Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears

    USGS Publications Warehouse

    Kraus, Richard T.; Knight, Carey T.; Farmer, Troy M.; Gorman, Ann Marie; Collingsworth, Paris D.; Warren, Glenn J.; Kocovsky, Patrick M.; Conroy, Joseph D.

    2015-01-01

    Seasonal degradation of aquatic habitats from hypoxia occurs in numerous freshwater and coastal marine systems and can result in direct mortality or displacement of fish. Yet, fishery landings from these systems are frequently unresponsive to changes in the severity and extent of hypoxia, and population-scale effects have been difficult to measure except in extreme hypoxic conditions with hypoxia-sensitive species. We investigated fine-scale temporal and spatial variability in dissolved oxygen in Lake Erie as it related to fish distribution and catch efficiencies of both active (bottom trawls) and passive (trap nets) fishing gears. Temperature and dissolved oxygen loggers placed near the edge of the hypolimnion exhibited much higher than expected variability. Hypoxic episodes of variable durations were frequently punctuated by periods of normoxia, consistent with high-frequency internal waves. High-resolution interpolations of water quality and hydroacoustic surveys suggest that fish habitat is compressed during hypoxic episodes, resulting in higher fish densities near the edges of hypoxia. At fixed locations with passive commercial fishing gear, catches with the highest values occurred when bottom waters were hypoxic for intermediate proportions of time. Proximity to hypoxia explained significant variation in bottom trawl catches, with higher catch rates near the edge of hypoxia. These results emphasize how hypoxia may elevate catch rates in various types of fishing gears, leading to a lack of association between indices of hypoxia and fishery landings. Increased catch rates of fish at the edges of hypoxia have important implications for stock assessment models that assume catchability is spatially homogeneous.

  10. Actively Controlled Landing Gear for Aircraft Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  11. DC-8 Airborne Laboratory arrival at NASA Dryden

    NASA Image and Video Library

    1997-12-29

    NASA's DC-8 Airborne Science platform landed at Edwards Air Force Base, California, to join the fleet of aircraft at NASA's Dryden Flight Research Center. The white aircraft with a blue stripe running horizontally from the nose to the tail is shown with its main landing gear just above the runway. The former airliner is a "dash-72" model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces.

  12. Vapor/Mist Used to Lubricate Gears After Loss of Primary Lubrication System

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Morales, Wilfredo

    2001-01-01

    Loss of lubrication in rotorcraft drive systems is a demanding requirement placed on drive system manufacturers. The drive system must operate for at least 30 minutes once the primary lubrication system has failed. This test is a military requirement that must be passed prior to certification of the aircraft. As new aircraft engines, operating at higher speeds, are fielded, the requirements for the drive system become increasingly more difficult. Also, the drive system must be lightweight, which minimizes the opportunity to use the gear bodies to absorb the tremendous amount of heating that takes place. In many cases, the amount of heat generated because of the high speed and load requires an emergency lubrication system that negatively impacts the aircraft's weight, complexity, and cost. A single mesh spur gear test rig is being used at the NASA Glenn Research Center to investigate possible emergency lubrication system improvements that will minimize the impact of having these systems onboard rotorcraft. A technique currently being investigated uses a vapor/mist system to lubricate the contacting surfaces after the primary lubrication system has been shut down. A number of tests were conducted in which the vapor/mist used the same lubricant as the primary system, but at a greatly reduced flow rate. Each test was initiated with the primary lubrication system operational and at steady-state conditions for a given speed and load. Then the primary lubrication system was shut down, and the vapor/mist lubrication system was initiated. An example of the tests conducted is shown in the figures. These preliminary tests have uncovered a mechanism that provides a lubricious, carbonaceous solid on the surface that actually reduces the surface temperature of the meshing gear teeth during operation. Surface analysis of the carbonaceous solid revealed it was graphitic. This mechanism is the synthetic lubricant "coking" on the active profile of the gears, which reduces the

  13. Modal simulation of gearbox vibration with experimental correlation

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.

    1992-01-01

    A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predictions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.

  14. Frequency domain averaging based experimental evaluation of gear fault without tachometer for fluctuating speed conditions

    NASA Astrophysics Data System (ADS)

    Sharma, Vikas; Parey, Anand

    2017-02-01

    In the purview of fluctuating speeds, gear fault diagnosis is challenging due to dynamic behavior of forces. Various industrial applications employing gearbox which operate under fluctuating speed conditions. For diagnostics of a gearbox, various vibrations based signal processing techniques viz FFT, time synchronous averaging and time-frequency based wavelet transform, etc. are majorly employed. Most of the time, theories about data or computational complexity limits the use of these methods. In order to perform fault diagnosis of a gearbox for fluctuating speeds, frequency domain averaging (FDA) of intrinsic mode functions (IMFs) after their dynamic time warping (DTW) has been done in this paper. This will not only attenuate the effect of fluctuating speeds but will also extract the weak fault feature those masked in vibration signal. Experimentally signals were acquired from Drivetrain Diagnostic Simulator for different gear health conditions i.e., healthy pinion, pinion with tooth crack, chipped tooth and missing tooth and were analyzed for the different fluctuating profiles of speed. Kurtosis was calculated for warped IMFs before DTW and after DTW of the acquired vibration signals. Later on, the application of FDA highlights the fault frequencies present in the FFT of faulty gears. The result suggests that proposed approach is more effective towards the fault diagnosing with fluctuating speed.

  15. 50 CFR 635.6 - Vessel and gear identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Vessel and gear identification. 635.6... ADMINISTRATION, DEPARTMENT OF COMMERCE ATLANTIC HIGHLY MIGRATORY SPECIES General § 635.6 Vessel and gear... gear, or any other material on board obstructs the view of the vessel's number from an enforcement...

  16. 50 CFR 600.510 - Gear avoidance and disposal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fishery in which the FFV is engaged. (b) Gear conflicts. The operator of each FFV that is involved in a conflict or that retrieves the gear of another vessel must immediately notify the appropriate USCG..., including the amount, type of gear, condition, and identification markings. (3) The location of the incident...

  17. Performance determinants of fixed gear cycling during criteriums.

    PubMed

    Babault, Nicolas; Poisson, Maxime; Cimadoro, Guiseppe; Cometti, Carole; Païzis, Christos

    2018-06-17

    Nowadays, fixed gear competitions on outdoor circuits such as criteriums are regularly organized worldwide. To date, no study has investigated this alternative form of cycling. The purpose of the present study was to examine fixed gear performance indexes and to characterize physiological determinants of fixed gear cyclists. This study was carried out in two parts. Part 1 (n = 36) examined correlations between performance indexes obtained during a real fixed gear criterium (time trial, fastest laps, averaged lap time during races, fatigue indexes) and during a sprint track time trial. Part 2 (n = 9) examined correlations between the recorded performance indexes and some aerobic and anaerobic performance outputs (VO 2max , maximal aerobic power, knee extensor and knee flexor maximal voluntary torque, vertical jump height and performance during a modified Wingate test). Results from Part 1 indicated significant correlations between fixed gear final performance (i.e. average lap time during the finals) and single lap time (time trial, fastest lap during races and sprint track time trial). In addition, results from Part 2 revealed significant correlations between fixed gear performance and aerobic indicators (VO 2max and maximal aerobic power). However, no significant relationship was obtained between fixed gear cycling and anaerobic qualities such as strength. Similarly to traditional cycling disciplines, we concluded that fixed gear cycling is mainly limited by aerobic capacity, particularly criteriums final performance. However, specific skills including technical competency should be considered.

  18. Computer-aided design of bevel gear tooth surfaces

    NASA Technical Reports Server (NTRS)

    Shuo, Hung Chang; Huston, Ronald L.; Coy, John J.

    1989-01-01

    This paper presents a computer-aided design procedure for generating bevel gears. The development is based on examining a perfectly plastic, cone-shaped gear blank rolling over a cutting tooth on a plane crown rack. The resulting impression on the plastic gear blank is the envelope of the cutting tooth. This impression and envelope thus form a conjugate tooth surface. Equations are presented for the locus of points on the tooth surface. The same procedures are then extended to simulate the generation of a spiral bevel gear. The corresponding governing equations are presented.

  19. Computer aided design of bevel gear tooth surfaces

    NASA Technical Reports Server (NTRS)

    Chang, S. H.; Huston, R. L.; Coy, J. J.

    1989-01-01

    This paper presents a computer-aided design procedure for generating bevel gears. The development is based on examining a perfectly plastic, cone-shaped gear blank rolling over a cutting tooth on a plane crown rack. The resulting impression on the plastic gear blank is the envelope of the cutting tooth. This impression and envelope thus form a conjugate tooth surface. Equations are presented for the locus of points on the tooth surface. The same procedures are then extended to simulate the generation of a spiral bevel gear. The corresponding governing equations are presented.

  20. Quasi-Static and Dynamic Response Characteristics of F-4 Bias-Ply and Radial-Belted Main Gear Tires

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.

    1997-01-01

    An investigation was conducted at Langley Research Center to determine the quasi-static and dynamic response characteristics of F-4 military fighter 30x11.5-14.5/26PR bias-ply and radial-belted main gear tires. Tire properties were measured by the application of vertical, lateral, and fore-and-aft loads. Mass moment-of-inertia data were also obtained. The results of the study include quasi-static load-deflection curves, free-vibration time-history plots, energy loss associated with hysteresis, stiffness and damping characteristics, footprint geometry, and inertia properties of each type of tire. The difference between bias-ply and radial-belted tire construction is given, as well as the advantages and disadvantages of each tire design. Three simple damping models representing viscous, structural, and Coulomb friction are presented and compared with the experimental data. The conclusions discussed contain a summary of test observations.

  1. 14 CFR 25.483 - One-gear landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false One-gear landing conditions. 25.483 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.483 One-gear landing conditions. For the one-gear landing conditions, the airplane is assumed to be in the level attitude and to...

  2. 50 CFR 665.246 - Gear identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear identification. 665.246 Section 665.246 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Gear identification. In Permit Area 1, the vessel's official number must be marked legibly on all traps...

  3. Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Corliss, James M.; Cole, Stanley, R.

    1998-01-01

    The heavy gas test medium has recently been changed in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center. A NASA Construction of Facilities project has converted the TDT heavy gas from dichlorodifluoromethane (R12) to 1,1,1,2 tetrafluoroethane (R134a). The facility s heavy gas processing system was extensively modified to implement the conversion to R134a. Additional system modifications have improved operator interfaces, hardware reliability, and quality of the research data. The facility modifications included improvements to the heavy gas compressor and piping, the cryogenic heavy gas reclamation system, and the heavy gas control room. A series of wind tunnel characterization and calibration tests are underway. Results of the flow characterization tests show the TDT operating envelope in R134a to be very similar to the previous operating envelope in R12.

  4. Recent Advances in the Analysis of Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1997-01-01

    A review of recent progress for the analysis of spiral bevel gears will be described. The foundation of this work relies on the description of the gear geometry of face-milled spiral bevel gears via the approach developed by Litvin. This methodology was extended by combining the basic gear design data with the manufactured surfaces using a differential geometry approach, and provides the data necessary for assembling three-dimensional finite element models. The finite element models have been utilized to conduct thermal and structural analysis of the gear system. Examples of the methods developed for thermal and structural/contact analysis are presented.

  5. The effect of runway surface and braking on Shuttle Orbiter main gear tire wear

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1992-01-01

    In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented. Also, in an ongoing program to evaluate the origin of various tire wear phenomenon, a series of tests was conducted to evaluate the effect of braking on tire wear. Finally, a modified tire is discussed in terms of its wear performance under rollout and braking operations.

  6. Dynamic characterization and microprocessor control of the NASA/UVA proof mass actuator

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. C.; Inman, D. J.; Horner, G. C.

    1984-01-01

    The self-contained electromagnetic-reaction-type force-actuator system developed by NASA/UVA for the verification of spacecraft-structure vibration-control laws is characterized and demonstrated. The device is controlled by a dedicated microprocessor and has dynamic characteristics determined by Fourier analysis. Test data on a cantilevered beam are shown.

  7. 50 CFR 648.84 - Gear-marking requirements and gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... magnetic south through west to, and including, north) of the gear displays a standard 12-inch (30.5-cm.... The easternmost end (meaning the half compass circle from magnetic north through east to, and...

  8. Face-gear drives: Design, analysis, and testing for helicopter transmission applications

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.

    1992-01-01

    The use of face-gears in helicopter transmissions was explored. A light-weight, split-torque transmission design utilizing face-gears is described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, grinding, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. An analytical study showed that the face-gear drive is relatively insensitive to gear misalignment with respect to transmission errors, but the tooth contact is affected by misalignment. A method of localizing the bearing contact to permit operation with misalignment was explored. Two new methods for grinding of the face-gear tooth surfaces were also investigated. The proper choice of shaft stiffness enabled good load sharing in the split-torque transmission design. Face-gear experimental studies were also conducted. These tests demonstrated the feasibility of face-gears in high-speed, high-load applications such as helicopter transmissions.

  9. 29 CFR 1918.54 - Rigging gear.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Vessel's Cargo Handling Gear § 1918.54 Rigging gear. (a... provided, the guys shall be so placed as to produce a minimum stress and not permit the boom to jackknife...

  10. From design to manufacturing of asymmetric teeth gears using computer application

    NASA Astrophysics Data System (ADS)

    Suciu, F.; Dascalescu, A.; Ungureanu, M.

    2017-05-01

    The asymmetric cylindrical gears, with involutes teeth profiles having different base circle diameters, are nonstandard gears, used with the aim to obtain better function parameters for the active profile. We will expect that the manufacturing of these gears became possible only after the design and realization of some specific tools. The paper present how the computer aided design and applications developed in MATLAB, for obtain the geometrical parameters, in the same time for calculation some functional parameters like stress and displacements, transmission error, efficiency of the gears and the 2D models, generated with AUTOLISP applications, are used for computer aided manufacturing of asymmetric gears with standard tools. So the specific tools considered one of the disadvantages of these gears are not necessary and implicitly the expected supplementary costs are reduced. The calculus algorithm established for the asymmetric gear design application use the „direct design“ of the spur gears. This method offers the possibility of determining first the parameters of the gears, followed by the determination of the asymmetric gear rack’s parameters, based on those of the gears. Using original design method and computer applications have been determined the geometrical parameters, the 2D and 3D models of the asymmetric gears and on the base of these models have been manufacturing on CNC machine tool asymmetric gears.

  11. Balloons on Ice: NASA Launches Antarctica Scientific Balloon Campaign

    NASA Image and Video Library

    2017-12-08

    Cosmic rays and the chemicals and atoms that make up the interstellar space between stars are the focus of this year’s NASA Antarctica Long Duration Balloon Flight Campaign, which kicked into high gear with the launch of the Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) payload Nov. 28. The University of Maryland’s BACCUS mission is the first of three payloads taking flight from a balloon launch site on Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Read more: go.nasa.gov/2gCMtyP NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. 46 CFR 58.25-80 - Automatic pilots and ancillary steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-80 Automatic pilots and ancillary steering gear. (a) Automatic pilots and ancillary steering gear, and steering-gear control systems, must be arranged to allow immediate resumption of manual operation of the steering-gear control system required in...

  13. 46 CFR 58.25-80 - Automatic pilots and ancillary steering gear.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-80 Automatic pilots and ancillary steering gear. (a) Automatic pilots and ancillary steering gear, and steering-gear control systems, must be arranged to allow immediate resumption of manual operation of the steering-gear control system required in...

  14. Effects of lubrication on the performance of high speed spur gears

    NASA Technical Reports Server (NTRS)

    Mizutani, Hachiro; Isikawa, Yuuichi; Townsend, Dennis P.

    1989-01-01

    An experimental analysis was conducted to determine power loss and gear noise of high speed spur gears with long addendum under various conditions of load, speed, and oil jet pressure for into mesh lubrication. Power losses were calculated from temperature measurements of lubricating oil, gears, gear box, and oil flow rate. Furthermore, power loss was divided into windage loss, friction loss and churning loss. The results show that windage loss and churning loss were the main components of gear power loss of high gear speed. In addition, lubricating conditions had some influences on gear noise especially under low oil temperature or high viscosity.

  15. Empirical Prediction of Aircraft Landing Gear Noise

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Guo, Yue-Ping

    2005-01-01

    This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.

  16. NASA Administrator Goldin talks with STS-93 Commander Collins at the SLF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Shuttle Landing Facility, NASA Administrator Daniel Goldin (foreground) talks with STS-93 Commander Eileen Collins beside the Space Shuttle orbiter Columbia following the successful completion of her mission. Marshall Space Flight Center Director Arthur G. Stephenson (far left) looks on. Landing occurred on runway 33 with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X- ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Collins became the first woman to serve as a Shuttle commander.

  17. Geometrical analysis of circular-cut spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Huston, R. L.

    1983-01-01

    Geometrical studies of circular cut spiral bevel gears are reported. Tooth profile changes heel to toe are studied in the transverse plane. Pressure angle changes are determined. The radiuses of curvature of the tooth surfaces generated by various cutter profiles are also determined. The consequences of cutter profile changes are explored. Crown gears are emphasized and the implications for conical gears are discussed.

  18. Computer numerical control grinding of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Scott, H. Wayne

    1991-01-01

    The development of Computer Numerical Control (CNC) spiral bevel gear grinding has paved the way for major improvement in the production of precision spiral bevel gears. The object of the program was to decrease the setup, maintenance of setup, and pattern development time by 50 percent of the time required on conventional spiral bevel gear grinders. Details of the process are explained.

  19. DEAN: A program for dynamic engine analysis

    NASA Technical Reports Server (NTRS)

    Sadler, G. G.; Melcher, K. J.

    1985-01-01

    The Dynamic Engine Analysis program, DEAN, is a FORTRAN code implemented on the IBM/370 mainframe at NASA Lewis Research Center for digital simulation of turbofan engine dynamics. DEAN is an interactive program which allows the user to simulate engine subsystems as well as a full engine systems with relative ease. The nonlinear first order ordinary differential equations which define the engine model may be solved by one of four integration schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, an Adams Predictor-Corrector, or Gear's method for still systems. The numerical data generated by the model equations are displayed at specified intervals between which the user may choose to modify various parameters affecting the model equations and transient execution. Following the transient run, versatile graphics capabilities allow close examination of the data. DEAN's modeling procedure and capabilities are demonstrated by generating a model of simple compressor rig.

  20. Research on the impact of surface properties of particle on damping effect in gear transmission under high speed and heavy load

    NASA Astrophysics Data System (ADS)

    Xiao, Wangqiang; Chen, Zhiwei; Pan, Tianlong; Li, Jiani

    2018-01-01

    The vibration and noise from gear transmission have great damage on the mechanical equipment and operators. Through inelastic collisions and friction between particles, the energy can be dissipated in gear transmission. A dynamic model of particle dampers in gear transmission was put forward in this paper. The performance of particle dampers in centrifugal fields under different rotational speeds and load was investigated. The surface properties such as the impact of coefficient of restitution and friction coefficient of the particle on the damping effect were analyzed and the total energy loss was obtained by discrete element method (DEM). The vibration from time-varying mesh stiffness was effectively reduced by particle dampers and the optimum coefficient of restitution was discovered under different rotational speeds and load. Then, a test bench for gear transmission was constructed, and the vibration of driven gear and driving gear were measured through a three-directional wireless acceleration sensor. The research results agree well with the simulation results. While at relatively high speed, smaller coefficient of restitution achieves better damping effect. As to friction coefficient, at relatively high speed, the energy dissipation climbs up and then declines with the increase of the friction coefficient. The results can provide guidelines for the application of particle damper in gear transmission.

  1. Torque Splitting by a Concentric Face Gear Transmission

    NASA Technical Reports Server (NTRS)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  2. 46 CFR 58.25-10 - Main and auxiliary steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main and auxiliary steering gear. 58.25-10 Section 58.25... AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-10 Main and auxiliary steering gear. (a) Power-operated main and auxiliary steering gear must be separate systems that are independent throughout their...

  3. 46 CFR 97.37-33 - Instructions for changing steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Instructions for changing steering gear. 97.37-33... steering gear. (a) Instructions in at least 1/2 inch letters and figures shall be posted in the steering... gear. Each clutch, gear, wheel, lever, valve, or switch which is used during the changeover shall be...

  4. Surface Fatigue Life of High Temperature Gear Materials

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1994-01-01

    Three high temperature gear materials were evaluated using spur gear surface fatigue tests. These materials were, VASCO max 350, VASCO matrix 2, and nitralloy N and were evaluated for possible use in high temperature gear applications. The fatigue life of the three high temperature gear materials were compared with the life of the standard AISI 9310 aircraft gear material. Surface fatigue tests were conducted at a lubricant inlet temperature of 321 K (120 F), a lubricant outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), a speed of 10,000 rpm, and with a synthetic paraffinic lubricant. The life of the nitralloy N was approximately the same as the AISI 9310, the life of the VASCO max 350 was much less than the AISI 9310 while the life of the VASCO matrix 2 was several times the life of the AISI 9310. The VASCO max 350 also showed very low fracture toughness with approximately half of the gears failed by tooth fracture through the fatigue spall. The VASCO matrix 2 had approximately 10-percent fracture failure through the fatigue spalls indicating moderate to good fracture toughness.

  5. Influence of tooth profile on the noncircular gear tooth contact

    NASA Astrophysics Data System (ADS)

    Cristescu, A.; Andrei, L.; Cristescu, B.

    2017-02-01

    With noncircular gears, the continuous modification of the tooth meshing, in terms of variation of the tooth profiles and the line of action position and inclination, makes difficult the implementation of a general standard procedure for the analysis of the noncircular gears tooth contact. In this paper, the authors present a graphical approach that enables the tooth contact static pattern to be produced and evaluated in case of a noncircular gear with complex geometry of the pitch curve. The study is virtually developed, in AutoCAD environment, by animating and investigating the gear solid models in mesh. The tooth static contact analysis enables the path of contact area and distribution to be evaluated in correlation with the following variable initial data: gear pitch curve geometry, tooth profile geometry, as a consequence of different generating procedures, and the gear pressure angle. It was found out that the noncircular gear tooth contact could be improved by choosing different procedures for the tooth flank generation in concave and convex zones and by increasing the gear pressure angle.

  6. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  7. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  8. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  9. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  10. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  11. 50 CFR 622.31 - Buoy gear identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Reef Fish Resources of the Gulf of Mexico § 622.31 Buoy gear identification. (a) Buoy gear. In the Gulf EEZ, if buoy...

  12. Fault Analysis on Bevel Gear Teeth Surface Damage of Aeroengine

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Chen, Lishun; Li, Silu; Liang, Tao

    2017-12-01

    Aiming at the trouble phenomenon for bevel gear teeth surface damage of Aero-engine, Fault Tree of bevel gear teeth surface damage was drawing by logical relations, the possible cause of trouble was analyzed, scanning electron-microscope, energy spectrum analysis, Metallographic examination, hardness measurement and other analysis means were adopted to investigate the spall gear tooth. The results showed that Material composition, Metallographic structure, Micro-hardness, Carburization depth of the fault bevel gear accord with technical requirements. Contact fatigue spall defect caused bevel gear teeth surface damage. The small magnitude of Interference of accessory gearbox install hole and driving bevel gear bearing seat was mainly caused. Improved measures were proposed, after proof, Thermoelement measures are effective.

  13. Study of novel concepts of power transmission gears

    NASA Technical Reports Server (NTRS)

    Rivin, Eugene I.

    1991-01-01

    Two concepts in power transmission gear design are proposed which provide a potential for large noise reduction and for improving weight to payload ratio due to use of advanced fiber reinforced and ceramic materials. These concepts are briefly discussed. Since both concepts use ultrathin layered rubber-metal laminates for accommodating limited travel displacements, properties of the laminates, such as their compressive strength, compressive and shear moduli were studied. Extensive testing and computational analysis were performed on the first concept gears (laminate coated conformal gears). Design and testing of the second conceptual design (composite gear with separation of sliding and rolling motions) are specifically described.

  14. Roller-gear drives for robotic manipulators design, fabrication and test

    NASA Technical Reports Server (NTRS)

    Anderson, William J.; Shipitalo, William

    1991-01-01

    Two single axis planetary roller-gear drives and a two axis roller-gear drive with dual inputs were designed for use as robotic transmissions. Each of the single axis drives is a two planet row, four planet arrangement with spur gears and compressively loaded cylindrical rollers acting in parallel. The two axis drive employs bevel gears and cone rollers acting in parallel. The rollers serve a dual function: they remove backlash from the system, and they transmit torque when the gears are not fully engaged.

  15. Unique Testing Capabilities of the NASA Langley Transonic Dynamics Tunnel, an Exercise in Aeroelastic Scaling

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.

    2013-01-01

    NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.

  16. New Methods for Improved Double Circular-Arc Helical Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Lu, Jian

    1997-01-01

    The authors have extended the application of double circular-arc helical gears for internal gear drives. The geometry of the pinion and gear tooth surfaces has been determined. The influence of errors of alignment on the transmission errors and the shift of the bearing contact have been investigated. Application of a predesigned parabolic function for the reduction of transmission errors was proposed. Methods of grinding of the pinion-gear tooth surfaces by a disk-shaped tool and a grinding worm were proposed.

  17. 50 CFR 648.84 - Gear-marking requirements and gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) tetrahedral corner radar reflector and a pennant positioned on a staff at least 6 ft (1.8 m) above the buoy... including, south) of the gear need display only the standard 12-inch (30.5-cm) tetrahedral radar reflector...

  18. Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Lewicki, David G.

    1996-01-01

    Results of using vibration-based methods to detect gear tooth fatigue cracks are presented. An experimental test rig was used to fail a number of spur gear specimens through bending fatigue. The gear tooth fatigue crack in each test was initiated through a small notch in the fillet area of a tooth on the gear. The primary purpose of these tests was to verify analytical predictions of fatigue crack propagation direction and rate as a function of gear rim thickness. The vibration signal from a total of three tests was monitored and recorded for gear fault detection research. The damage consisted of complete rim fracture on the two thin rim gears and single tooth fracture on the standard full rim test gear. Vibration-based fault detection methods were applied to the vibration signal both on-line and after the tests were completed. The objectives of this effort were to identify methods capable of detecting the fatigue crack and to determine how far in advance of total failure positive detection was given. Results show that the fault detection methods failed to respond to the fatigue crack prior to complete rim fracture in the thin rim gear tests. In the standard full rim gear test all of the methods responded to the fatigue crack in advance of tooth fracture; however, only three of the methods responded to the fatigue crack in the early stages of crack propagation.

  19. Engagement of Metal Debris into Gear Mesh

    NASA Technical Reports Server (NTRS)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  20. An Integrated Approach for Gear Health Prognostics

    NASA Technical Reports Server (NTRS)

    He, David; Bechhoefer, Eric; Dempsey, Paula; Ma, Jinghua

    2012-01-01

    In this paper, an integrated approach for gear health prognostics using particle filters is presented. The presented method effectively addresses the issues in applying particle filters to gear health prognostics by integrating several new components into a particle filter: (1) data mining based techniques to effectively define the degradation state transition and measurement functions using a one-dimensional health index obtained by whitening transform; (2) an unbiased l-step ahead RUL estimator updated with measurement errors. The feasibility of the presented prognostics method is validated using data from a spiral bevel gear case study.

  1. Effects of Planetary Gear Ratio on Mean Service Life

    NASA Technical Reports Server (NTRS)

    Savage, M.; Rubadeux, K. L.; Coe, H. H.

    1996-01-01

    Planetary gear transmissions are compact, high-power speed reductions which use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single plane transmission, the planet gear has no size at a ratio of two. As the ratio increases, so does the size of the planets relative to the sizes of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary with a fixed size, gear ratio, input speed power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives which point to an optimal planetary reduction ratio in the neighborhood of four to five.

  2. Gearing.

    DTIC Science & Technology

    1985-12-01

    trichloroethyl phosphite and a phosphate ester containing a pentachlorphenyl radical. Most of the Asperity heights phosphorous compounds in gear oils...108) found that phosphorous compounds chemisorption. These boundary films can be thinner than ( 1 0 u ts n 0.025 pm (I in ) or several microinches thick...Pinion 1 .. dibutylxanthic acid disulfide. Ŗ %- Lead soaps have been used in lubricants for many 02 years. They resist the wiping and sliding action in

  3. 30 CFR 75.1404 - Automatic brakes; speed reduction gear.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic brakes; speed reduction gear. 75.1404... Automatic brakes; speed reduction gear. [Statutory Provisions] Each locomotive and haulage car used in an... permit automatic brakes, locomotives and haulage cars shall be subject to speed reduction gear, or other...

  4. 30 CFR 75.1404 - Automatic brakes; speed reduction gear.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic brakes; speed reduction gear. 75.1404... Automatic brakes; speed reduction gear. [Statutory Provisions] Each locomotive and haulage car used in an... permit automatic brakes, locomotives and haulage cars shall be subject to speed reduction gear, or other...

  5. Turbine Engine with Differential Gear Driven Fan and Compressor

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Pagluica, Gino J. (Inventor); Duong, Loc Quang (Inventor); Portlock, Lawrence E. (Inventor)

    2013-01-01

    A gas turbine engine provides a differential gear system coupling the turbine to the bypass fan and the compressor. In this manner, the power/speed split between the bypass fan and the compressor can be optimized under all conditions. In the example shown, the turbine drives a sun gear, which drives a planet carrier and a ring gear in a differential manner. One of the planet carrier and the ring gear is coupled to the bypass fan, while the other is coupled to the compressor.

  6. Landing Gear Door Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)

    2014-01-01

    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  7. Manufacturing Technology Research Needs of the Gear Industry.

    DTIC Science & Technology

    1987-12-31

    Management Shortcomings within the U.S. Precision Gear Industry ........... 33 2.2.7 European Gear and Machine Tool Companies ....... .. 35 2.2.8 German...manufacturing becomes more sophisticated, workers are running numerically con- trolled computer equipment requiring an understanding of math. 2.2.6.9 Management ...inefficiencies of the job shop environ- ment by managing the gear business as a backward integra- tion of the assembly line. o Develop and maintain

  8. Evaluation of CBS 600 carburized steel as a gear material

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Parker, R. J.; Zaretsky, E. V.

    1979-01-01

    Gear endurance tests were conducted with one lot of consumable-electrode vacuum-melted (CVM) AISI 9310 gears and one lot of air-melt CBS 600 gears. The gears were 8 pitch with a pitch diameter of 8.89 centimeters (3.5 in.). Bench-type rolling-element fatigue tests were also conducted with one lot of CVM AISI 9310, three lots of CVM CBS 600, and one of air-melt CBS 600 material. The rolling-element bars were 0.952 centimeter (0.375 in.) in diameter. The CBS 600 material exhibited pitting fatigue lives in both rolling-element specimens and gears at least equivalent to that of CVM AISI 9310. Tooth fracture failure occurred with the CBS 600 gears after overrunning a fatigue spall, but it did not occur with the CVM AISI 9310 gears. Tooth fracture in the CBS 600 was attributed to excessive carbon content in the case, excessive case depth, and a higher than normal core hardness.

  9. Analysis of the vibratory excitation arising from spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Mark, William D.

    1987-01-01

    Tools required to understand and predict in terms of its underlying causes the vibratory excitation arising from meshing spiral bevel gears are developed. A generalized three component transmission error of meshing spiral bevel gears is defined. Equations are derived that yield the three components of the generalized transmission error in terms of deviations of tooth running surfaces from equispaced perfect spherical involute surfaces and tooth/gearbody elastic deformations arising from the three components of the generalized force transmitted by the meshing gears. A method for incorporating these equations into the equations of motion of a gear system is described. Equations are derived for the three components of the generalized force transmitted by the gears which are valid whenever inertial effects of the meshing gears and their supports are negligible. Bearing offsets from the positions occupied by the shaft centerlines of perfect spherical involute bevel gears and bearing/bearing support flexibilities enter into the computation of these forces.

  10. Survey of NASA research on crash dynamics

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Carden, H. D.; Hayduk, R. J.

    1984-01-01

    Ten years of structural crash dynamics research activities conducted on general aviation aircraft by the National Aeronautics and Space Administration (NASA) are described. Thirty-two full-scale crash tests were performed at Langley Research Center, and pertinent data on airframe and seat behavior were obtained. Concurrent with the experimental program, analytical methods were developed to help predict structural behavior during impact. The effects of flight parameters at impact on cabin deceleration pulses at the seat/occupant interface, experimental and analytical correlation of data on load-limiting subfloor and seat configurations, airplane section test results for computer modeling validation, and data from emergency-locator-transmitter (ELT) investigations to determine probable cause of false alarms and nonactivations are assessed. Computer programs which provide designers with analytical methods for predicting accelerations, velocities, and displacements of collapsing structures are also discussed.

  11. 50 CFR 660.372 - Fixed gear sablefish fishery management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Fixed gear sablefish fishery management... West Coast Groundfish Fisheries § 660.372 Fixed gear sablefish fishery management. This section applies to the primary season for the fixed gear limited entry sablefish fishery north of 36° N. lat., except...

  12. 50 CFR 648.234 - Gear restrictions. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear restrictions. [Reserved] 648.234 Section 648.234 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Measures for the Spiny Dogfish Fishery § 648.234 Gear restrictions. [Reserved] ...

  13. Method for Manufacturing Bulk Metallic Glass-Based Strain Wave Gear Components

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian H. (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a method of fabricating a strain wave gear includes: shaping a BMG-based material using a mold in conjunction with one of a thermoplastic forming technique and a casting technique; where the BMG-based material is shaped into one of: a wave generator plug, an inner race, an outer race, a rolling element, a flexspline, a flexspline without a set of gear teeth, a circular spline, a circular spline without a set of gear teeth, a set of gear teeth to be incorporated within a flexspline, and a set of gear teeth to be incorporated within a circular spline.

  14. Spur-Gear-System Efficiency at Part and Full Load

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1980-01-01

    A simple method for predicting the part- and full-load power loss of a steel spur gearset of arbitrary geometry supported by ball bearings is described. The analysis algebraically accounts for losses due to gear sliding, rolling traction, and windage in addition to support-ball-bearing losses. The analysis compares favorably with test data. A theoretical comparison of the component losses indicates that losses due to gear rolling traction, windage, and support bearings are significant and should be included along with gear sliding loss in a calculation of gear-system power loss.

  15. Selection criteria of the addendum modification coefficients of spur gear pairs with smaller number of pinion teeth

    NASA Astrophysics Data System (ADS)

    Atanasiu, V.; Oprişan, C.; Leohchi, D.

    2016-08-01

    A design procedure for the optimum distribution of the addendum modification coefficients of spur gear pairs with smaller number of pinion teeth is presented for the case of a fixed centred distance. The geometrical, kinematics and load capacity criteria are considered in the design analysis. The geometric and kinematics criteria are used to prevent the negative phenomena of the generating and engagement processes. The relation between the contact pressure of meshing teeth and specific sliding are analysed in relation with addendum modification coefficients. A dynamic model is developed to simulate the load sharing characteristics through a mesh cycle. The specific phenomenon of contact tooth pairs alternation during mesh cycle is integrated in this dynamic load modelling. A comparative study is included, which shows the effects of the distribution factor of the addendum modification coefficients on the contact surface characteristics of the gear pairs.

  16. Vibration transmission through rolling element bearings in geared rotor system, part 1. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Lim, Teik Chin

    1989-01-01

    A mathematical model is proposed to examine the vibration transmission through rolling element bearings in geared rotor systems. Current bearing models, based on either ideal boundary conditions for the shaft or purely translational stiffness element description, cannot explain how the vibratory motion may be transmitted from the rotating shaft to the casing. This study clarifies this issue qualitatively and quantitatively by developing a comprehensive bearing stiffness matrix of dimension 6 model for the precision rolling element bearings from basic principles. The proposed bearing formulation is extended to analyze the overall geared rotor system dynamics including casing and mounts. The bearing stiffness matrix is included in discrete system models using lumped parameter and/or dynamic finite element techniques. Eigensolution and forced harmonic response due to rotating mass unbalance or kinematic transmission error excitation for a number of examples are computed.

  17. Non-Standard Gearing as the Possibility of Increasing Resistance to Pitting

    NASA Astrophysics Data System (ADS)

    Kopiláková, Beáta; Bošanský, Miroslav

    2014-12-01

    In this article are shown the influence of the type non-standard gearing to reduce damage to the pitting. The introduction of the article describes a fundamental difference between the involute and non-involute gearing and the influence of some parameters, especially of the slip ratio to damage of gearing. The paper describes the principle of evaluation pitting by makrofoto graphical method, too and also shows the basic results of the experiment, which was executed on two types of gearing (HCR gearing and C-C gearing) on the Niemanńs stend in term of the damage to pitting.

  18. Manufacturing Technology Research Needs of the Gear Industry

    DTIC Science & Technology

    1987-12-31

    Precision Gear Industry, . .... 31 2.2.6.8 Availability’of Skilied Craftsmen. o.... 32 2.2.6.9 Management Shortcomings within the U.S. Precision Gear...becomes more sophisticated, workers are running numerically con- trolled computer equipment requiring an understanding of math. I 2.2.6.9 Management ...inefficiencies of the job shop environ- ment by managing the gear business as a backward integra- tion of the assembly line. o Develop and maintain employee

  19. 14 CFR 25.477 - Landing gear arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing gear arrangement. 25.477 Section 25.477 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.477 Landing gear arrangement...

  20. 14 CFR 25.477 - Landing gear arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing gear arrangement. 25.477 Section 25.477 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.477 Landing gear arrangement...