Sample records for nasa inflatable structures

  1. Structural Dynamics Experimental Activities in Ultra-Lightweight and Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Lassiter, John O.; Ross, Brian P.

    2001-01-01

    This paper reports recently completed structural dynamics experimental activities with new ultralightweight and inflatable space structures (a.k.a., "Gossamer" spacecraft) at NASA Langley Research Center, NASA Marshall Space Flight Center, and NASA Goddard Space Flight Center. Nine aspects of this work are covered, as follows: 1) inflated, rigidized tubes, 2) active control experiments, 3) photogrammetry, 4) laser vibrometry, 5) modal tests of inflatable structures, 6) in-vacuum modal tests, 7) tensioned membranes, 8) deployment tests, and 9) flight experiment support. Structural dynamics will play a major role in the design and eventual in-space deployment and performance of Gossamer spacecraft, and experimental R&D work such as this is required now to validate new analytical prediction methods. The activities discussed in the paper are pathfinder accomplishments, conducted on unique components and prototypes of future spacecraft systems.

  2. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, E. H.; Mnk, M. M.; James, B. F.; Moon, S. A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in-space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle's high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An

  3. Review of NASA In-Space Propulsion Technology Program Inflatable Decelerator Investments

    NASA Technical Reports Server (NTRS)

    Richardson, Erin H.; Munk, Michelle M.; James, Bonnie F.; Moon, Steve A.

    2005-01-01

    The NASA In-Space Propulsion Technology (ISPT) Program is managed by the NASA Headquarters Science Mission Directorate and is implemented by the Marshall Space Flight Center in Huntsville, Alabama. The ISPT objective is to fund development of promising in- space propulsion technologies that can decrease flight times, decrease cost, or increase delivered payload mass for future science missions. Before ISPT will invest in a technology, the Technology Readiness Level (TRL) of the concept must be estimated to be at TRL 3. A TRL 3 signifies that the technical community agrees that the feasibility of the concept has been proven through experiment or analysis. One of the highest priority technology investments for ISPT is Aerocapture. The aerocapture maneuver uses a planetary atmosphere to reduce or alter the speed of a vehicle allowing for quick, propellantless (or using very little propellant) orbit capture. The atmosphere is used as a brake, transferring the energy associated with the vehicle s high speed into thermal energy. The ISPT Aerocapture Technology Area (ATA) is currently investing in the development of advanced lightweight ablative thermal protection systems, high temperature composite structures, and heat-flux sensors for rigid aeroshells. The heritage of rigid aeroshells extends back to the Apollo era and this technology will most likely be used by the first generation aerocapture vehicle. As a second generation aerocapture technology, ISPT is investing in three inflatable aerodynamic decelerator concepts for planetary aerocapture. They are: trailing ballute (balloon-parachute), attached afterbody ballute, and an inflatable aeroshell. ISPT also leverages the NASA Small Business Innovative Research Program for additional inflatable decelerator technology development. In mid-2004 ISPT requested an independent review of the three inflatable decelerator technologies funded directly by ISPT to validate the TRL and to identify technology maturation concerns. An

  4. Structural testing and analysis of a braided, inflatable fabric torus structure

    NASA Astrophysics Data System (ADS)

    Young, Andrew C.; Davids, William G.; Whitney, Daniel J.; Clapp, Joshua D.; Goupee, Andrew J.

    2017-10-01

    Inflatable structural members have military, disaster relief, aerospace and other important applications as they possess low mass, can be stored in a relatively small volume and have significant load-carrying capacity once pressurized. Of particular interest to the present research is the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) structure under development by NASA. In order to make predictions about the structural response of the HIAD system, it is necessary to understand the response of individual inflatable tori composing the HIAD structure. These inflatable members present unique challenges to structural testing and modeling due to their internal inflation pressure and relative compliance. Structural testing was performed on a braided, inflatable, toroidal structural member with axial reinforcing cords. The internal inflation pressure, magnitude of enforced displacement and loading methodology were varied. In-plane and out-of-plane experimental results were compared to model predictions using a three dimensional, corotational, flexibility-based fiber-beam finite element model including geometric and material nonlinearities, as well as the effects of inflation pressure. It was found that in order to approximate the load-deformation response observed in experimentation it is necessary to carefully control the test and model boundary conditions and loading scheme.

  5. Evaluation of Strain Measurement Devices for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accuractly measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.

  6. Evaluation of Strain Measurement Devices for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Doug

    2017-01-01

    Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accurately measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.

  7. Damage Tolerance Testing of a NASA TransHab Derivative Woven Inflatable Module

    NASA Technical Reports Server (NTRS)

    Edgecombe, John; delaFuente, Horacio; Valle, Gerard

    2009-01-01

    Current options for Lunar habitat architecture include inflatable habitats and airlocks. Inflatable structures can have mass and volume advantages over conventional structures. However, inflatable structures carry different inherent risks and are at a lower Technical Readiness Level (TRL) than more conventional metallic structures. One of the risks associated with inflatable structures is in understanding the tolerance to induced damage. The Damage Tolerance Test (DTT) is designed to study the structural integrity of an expandable structure. TransHab (Figure 1) was an experimental inflatable module developed at the NASA/Johnson Space Center in the 1990 s. The TransHab design was originally envisioned for use in Mars Transits but was also studied as a potential habitat for the International Space Station (ISS). The design of the TransHab module was based on a woven design using an Aramid fabric. Testing of this design demonstrated a high level of predictability and repeatability with analytical predictions of stresses and deflections. Based on JSC s experience with the design and analysis of woven inflatable structures, the Damage Tolerance Test article was designed and fabricated using a woven design. The DTT article was inflated to 45 psig, representing 25% of the ultimate burst pressure, and one of the one-inch wide longitudinal structural members was severed by initiating a Linear Shaped Charge (LSC). Strain gage measurements, at the interface between the expandable elements (straps) and the nonexpandable metallic elements for pre-selected longitudinal straps, were taken throughout pressurization of the module and strap separation. Strain gage measurements show no change in longitudinal strap loading at the bulkhead interface after strap separation indicating loads in the restraint layer were re-distributed local to the damaged area due to the effects of friction under high internal pressure loading. The test completed all primary objectives with better than

  8. Aero-Structural Assessment of an Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Sheta, Essam F.; Venugopalan, Vinod; Tan, X. G.; Liever, Peter A.; Habchi, Sami D.

    2010-01-01

    NASA is conducting an Entry, Descent and Landing Systems Analysis (EDL-SA) Study to determine the key technology development projects that should be undertaken for enabling the landing of large payloads on Mars for both human and robotic missions. Inflatable Aerodynamic Decelerators (IADs) are one of the candidate technologies. A variety of EDL architectures are under consideration. The current effort is conducted for development and simulations of computational framework for inflatable structures.

  9. Instrumentation for the Characterization of Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith

    2012-01-01

    Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will

  10. The Potential for Imaging in Situ Damage in Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.; Seebo, Jeffrey P.; Studor, George; McMakin, Douglas L.; Nellums, Robert; Winfree, William P.

    2007-01-01

    NASA is investigating the use of inflatable habitat structures for orbital transfer and planetary applications. Since space structures are vulnerable to damage from micrometeoroid and orbital debris, it is important to investigate means of detecting such damage. This study is an investigation into methods for performing non-destructive evaluation (NDE) on inflatable habitat modules. Results of this work showed that various electromagnetic imaging modalities from microwaves to terahertz imaging have the greatest potential for a viable, portable, NDE tool which could possibly be deployed aboard an inflatable habitat module.

  11. Inflatable Structures Technology Handbook. Chapter 21; Inflatable Habitats

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.; Raboin, Jasen; Spexarth, Gary; Valle, Gerard

    2000-01-01

    The technologies required to design, fabricate, and utilize an inflatable module for space applications has been demonstrated and proven by the TransHab team during the development phase of the program. Through testing and hands-on development several issues about inflatable space structures have been addressed , such as: ease of manufacturing, structural integrity, micrometeorite protection, folding , and vacuum deployment. The TransHab inflatable technology development program has proven that not only are inflatable structures a viable option, but they also offer significant advantages over conventional metallic structures.

  12. Low-Mass Inflation Systems for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Thunnissen, Daniel P.; Webster, Mark S.; Engelbrecht, Carl S.

    1995-01-01

    The use of inflatable space structures has often been proposed for aerospace and planetary applications. Communication, power generation, and very-long-baseline interferometry are just three potential applications of inflatable technology. The success of inflatable structures depends on the development of an applications of inflatable technology. This paper describes two design studies performed to develop a low mass inflation system. The first study takes advantage of existing onboard propulsion gases to reduce the overall system mass. The second study assumes that there is no onboard propulsion system. Both studies employ advanced components developed for the Pluto fast flyby spacecraft to further reduce mass. The study examined four different types of systems: hydrazine, nitrogen and water, nitrogen, and xenon. This study shows that all of these systems can be built for a small space structure with masses lower than 0.5 kilograms.

  13. Inflatable nested toroid structure

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)

    2011-01-01

    An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.

  14. Structural Analysis and Testing of the Inflatable Re-entry Vehicle Experiment (IRVE)

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.; Hughes, Stephen J.; Dixon, Megan; Wiley, Cliff E.

    2006-01-01

    The Inflatable Re-entry Vehicle Experiment (IRVE) is a 3.0 meter, 60 degree half-angle sphere cone, inflatable aeroshell experiment designed to demonstrate various aspects of inflatable technology during Earth re-entry. IRVE will be launched on a Terrier-Improved Orion sounding rocket from NASA s Wallops Flight Facility in the fall of 2006 to an altitude of approximately 164 kilometers and re-enter the Earth s atmosphere. The experiment will demonstrate exo-atmospheric inflation, inflatable structure leak performance throughout the flight regime, structural integrity under aerodynamic pressure and associated deceleration loads, thermal protection system performance, and aerodynamic stability. Structural integrity and dynamic response of the inflatable will be monitored with photogrammetric measurements of the leeward side of the aeroshell during flight. Aerodynamic stability and drag performance will be verified with on-board inertial measurements and radar tracking from multiple ground radar stations. In addition to demonstrating inflatable technology, IRVE will help validate structural, aerothermal, and trajectory modeling and analysis techniques for the inflatable aeroshell system. This paper discusses the structural analysis and testing of the IRVE inflatable structure. Equations are presented for calculating fabric loads in sphere cone aeroshells, and finite element results are presented which validate the equations. Fabric material properties and testing are discussed along with aeroshell fabrication techniques. Stiffness and dynamics tests conducted on a small-scale development unit and a full-scale prototype unit are presented along with correlated finite element models to predict the in-flight fundamental mod

  15. Structural Test and Analysis of a Hybrid Inflatable Antenna

    NASA Technical Reports Server (NTRS)

    Gaspar, James L.; Mann, Troy; Sreekantamurthy, Tham; Behun, Vaughn

    2007-01-01

    NASA is developing ultra-lightweight structures technology for communication antennas for space missions. One of the research goals is to evaluate the structural characteristics of inflatable and rigidizable antennas through test and analysis. Being able to test and analyze the structural characteristics of a full scale antenna is important to enable the simulation of various mission scenarios to determine system performance in space. Recent work completed to evaluate a Hybrid Inflatable Antenna concept will be discussed. Tests were completed on a 2-m prototype to optimize its static shape and identify its modal dynamics that are important for analytical model validation. These test results were used to evaluate a preliminary finite element model of the antenna, and this model development and correlation activity is also described in the paper.

  16. Non-Axisymmetric Inflatable Pressure Structure (NAIPS) Full-Scale Pressure Test

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Warren, Jerry E.; Watson, Judith J.; Shariff, Khadijah; Makino, Alberto; Yount, Bryan C.

    2017-01-01

    Inflatable space structures have the potential to significantly reduce the required launch volume for large pressure vessels required for exploration applications including habitats, airlocks and tankage. In addition, mass savings can be achieved via the use of high specific strength softgoods materials, and the reduced design penalty from launching the structure in a densely packaged state. Large inclusions however, such as hatches, induce a high mass penalty at the interfaces with the softgoods and in the added rigid structure while reducing the packaging efficiency. A novel, Non-Axisymmetric Inflatable Pressure Structure (NAIPS) was designed and recently tested at NASA Langley Research Center to demonstrate an elongated inflatable architecture that could provide areas of low stress along a principal axis in the surface. These low stress zones will allow the integration of a flexible linear seal that substantially reduces the added mass and volume of a heritage rigid hatch structure. This paper describes the test of the first full-scale engineering demonstration unit (EDU) of the NAIPS geometry and a comparison of the results to finite element analysis.

  17. Application of inflatable aeroshell structures for Entry Descent and Landing

    NASA Astrophysics Data System (ADS)

    Jurewicz, David; Lichodziejewski, Leo; Tutt, Ben; Gilles, Brian; Brown, Glen

    Future space missions will require improvements in the Entry, Descent, and Landing (EDL) phases of the mission architecture. The focus of this paper is to discuss recent advances in analysis, fabrication techniques, ground testing, and flight testing of a stacked torus Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and its application to the future of EDL. The primary structure of a stacked torus HIAD consists of nested inflatable tori of increasing major diameter bonded and strapped to form a rigid structure after inflation. The underlying structure of the decelerator is covered with a flexible Thermal Protection System (TPS) capable of high heat flux. The inflatable aeroshell and TPS are packed around a centerbody within the launch fairing and deployed prior to atmospheric reentry. Recent fabrication of multiple HIADs between 3 and 6 meters has led to significant advances in process control and validation of the scalability of the technology. Progress has been made in generating and validating LS-DYNA FEA models to replicate flight loading in addition to analytical models of substructures. Coupon and component testing has improved the validation of modeling techniques and assumptions at the subsystem level. A ground testing campaign at the National Full-Scale Aerodynamics Center (NFAC) wind tunnel at NASA Ames Research center generated substantial aerodynamic and loading data to validate full system modeling with comparable dynamic pressures to a hypersonic reentry. The Inflatable Reentry Vehicle - 3 (IRVE-3) sounding rocket flight test was conducted with NASA Langley Research Center in July 2012. The IRVE-3 mission verified the structural and thermal performance of the stacked torus configuration. Further development of the stacked torus configuration is currently being conducted to increase the thermal capability, deceleration loads, and understanding of the interactions and effects of constituent components. The results of this research have expanded the

  18. Advanced Structural and Inflatable Hybrid Spacecraft Module

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)

    2001-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  19. Hatch Integration Testing of a NASA TransHab Derivative Woven Inflatable Module

    NASA Technical Reports Server (NTRS)

    Edgecombe, John; Valle, Gerald

    2009-01-01

    Current options for Lunar habitat architecture include inflatable habitats and airlocks. Inflatable structures can have mass and volume advantages over conventional structures. However, inflatable structures are also perceived to carry additional risk because they are at a lower Technical Readiness Level (TRL) than more conventional metallic structures. The use of inflatable structures for habitation will require large penetrations in the inflatable structure to accommodate hatches and/or windows The Hatch Integration Test is designed to study the structural integrity of an expandable structure with an integrated hatch, and to verify mathematical models of the structure. The TransHab project developed an experimental inflatable module at Johnson Space Center in the 1990's. The TransHab design was originally envisioned for use in Mars Transits but was also studied as a potential habitat for the International Space Station (ISS).

  20. Pathfinder Photogrammetry Research for Ultra-Lightweight and Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Giersch, Louis Roy Miller

    2001-01-01

    The defining characteristic of ultra-lightweight and inflatable space structures is that they are both very large and very low mass. This makes standard contacting methods of measurement (e.g. attaching accelerometers) impractical because the dynamics of the structure would be changed by the mass of the contacting instrument. Optical measurements are therefore more appropriate. Photogrammetry is a leading candidate for the optical analysis of gossamer structures because it allows for the measurement of a large number of points, is amenable to time sequences, and offers the potential for a high degree of accuracy. The purpose of this thesis is to develop the methodology and determine the effectiveness of a photogrammetry system in measuring ultra-lightweight and inflatable space structures. The results of this thesis will be considered in the design of an automated photogrammetry system for the l6m-diameter vacuum chamber at the NASA Langley Research Center.

  1. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil

    2005-01-01

    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural

  2. Inflatable Tubular Structures Rigidized with Foams

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Schnell, Andrew R.

    2010-01-01

    Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.

  3. Test and Analysis of an Inflatable Parabolic Dish Antenna

    NASA Technical Reports Server (NTRS)

    Gaspar, james L.; Sreekantamurthy, Tham; Mann, Troy; Behun, Vaughn; Romanofsky, Robert; Lambert, Kevin; Pearson, James

    2006-01-01

    NASA is developing ultra-lightweight structures technology for large communication antennas for application to space missions. With these goals in mind, SRS Technologies has been funded by NASA Glenn Research Center (GRC) to undertake the development of a subscale ultra-thin membrane inflatable antenna for deep-space applications. One of the research goals is to develop approaches for prediction of the radio frequency and structural characteristics of inflatable and rigidizable membrane antenna structures. GRC has teamed with NASA Langley Research Center (LaRC) to evaluate inflatable and rigidizable antenna concepts for potential space missions. GRC has completed tests to evaluate RF performance, while LaRC completed structural tests and analysis to evaluate the static shape and structural dynamic responses of a laboratory model of a 0.3 meter antenna. This paper presents the details of the tests and analysis completed to evaluate the radio frequency and structural characteristics of the antenna.

  4. Structural Testing of a 6m Hypersonic Inflatable Aerodynamic Decelerator System

    NASA Technical Reports Server (NTRS)

    Swanson, G. T.; Kazemba, C. D.; Johnson, R. K.; Hughes, S. J.; Calomino, A. M.

    2015-01-01

    NASA is developing low ballistic coefficient technologies to support the Nations long-term goal of landing humans on Mars. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current and future launch vehicle fairing limitations. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) are being developed to circumvent this limitation and are now considered a leading technology to enable landing of heavy payloads on Mars. At the beginning of 2014, a 6m diameter HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify its structural performance under flight-relevant loads. The inflatable structure was constructed into a 60 degree sphere-cone configuration using nine inflatable torus segments composed of fiber-reinforced thin films. The inflatable tori were joined together using adhesives and high-strength textile woven structural straps. These straps help distribute the load throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials that are designed to protect the inflatable structure from heat loads that would be seen in flight during atmospheric entry. A custom test fixture was constructed to perform the static load test series. The fixture consisted of a round structural tub with enough height and width to allow for displacement of the HIAD test article as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The rigid centerbody of the HIAD was mounted to a pedestal in the center of the structural tub. Using an impermeable membrane draped over the HIAD test article, an airtight seal was created with the top rim of the static load tub. This seal allowed partial vacuum to be pulled beneath the HIAD resulting in a uniform static pressure load applied to the outer surface. Using this technique, the test article

  5. A preliminary structural analysis of space-based inflatable tubular frame structures

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    The use of inflatable structures has often been proposed for aerospace and planetary applications. The advantages of such structures include low launch weight and easy assembly. The use of inflatables for applications requiring very large frame structures intended for aerospace use are proposed. In order to consider using an inflated truss, the structural behavior of the inflated frame must be examined. The statics of inflated tubes as beams was discussed in the literature, but the dynamics of these elements has not received much attention. In an effort to evaluate the vibration characteristics of the inflated beam a series of free vibration tests of an inflated fabric cantilevers were performed. Results of the tests are presented and models for system behavior posed.

  6. Multifunctional Inflatable Structure Being Developed for the PowerSphere Concept

    NASA Technical Reports Server (NTRS)

    Peterson, Todd T.

    2004-01-01

    NASA has funded a collaborative team of The Aerospace Corporation, ILC Dover, Lockheed Martin, and NASA Glenn Research Center to develop the Multifunctional Inflatable Structure (MIS) for a "PowerSphere" concept through a NASA Research Announcement. This power system concept has several advantages, including a high collection area, low weight and stowage volume, and the elimination of all solar array pointing mechanisms. The current 3-year effort will culminate with the fabrication and testing of a fully functional engineering development unit. The baseline design of the Power-Sphere consists of two opposing semispherical domes connected to a central spacecraft. Each semispherical dome consists of hexagonal and pentagonal solar cell panels that together form a geodetic sphere. Inflatable ultraviolet (UV) rigidizable tubular hinges between the solar cell panels and UV rigidizable isogrid center columns with imbedded flex circuitry form the MIS. The reference configuration for the PowerSphere is a 0.6-m-diameter (fully deployed) spacecraft with a total mass budget of 4 kg (1 kg for PowerSphere, 3 kg for spacecraft) capable of producing 29 W of electricity with 10-percent-efficient thin-film solar cells. In a stowed configuration, the solar cell panels will be folded sequentially to the outside of the instrument decks. The center column will be z-folded between the instrument decks and the spacecraft housing for packaging. The instrument panel will secure the z-folded stack with launch ties. After launch, once the release tie is triggered, the center column and hinge tubes will inflate and be rigidized in their final configurations by ultraviolet radiation. The overall PowerSphere deployment sequence is shown pictorially in the following illustration.

  7. Design and Experimental Verification of Deployable/Inflatable Ultra-Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank

    2004-01-01

    Because launch cost of a space structural system is often proportional to the launch volume and mass and there is no significant gravity in space, NASA's space exploration programs and various science missions have stimulated extensive use of ultra-lightweight deployable/inflatable structures. These structures are named here as Highly Flexible Structures (HFSs) because they are designed to undergo large displacements, rotations, and/or buckling without plastic deformation under normal operation conditions. Except recent applications to space structural systems, HFSs have been used in many mechanical systems, civil structures, aerospace vehicles, home appliances, and medical devices to satisfy space limitations, provide special mechanisms, and/or reduce structural weight. The extensive use of HFSs in today's structural engineering reveals the need of a design and analysis software and a database system with design guidelines for practicing engineers to perform computer-aided design and rapid prototyping of HFSs. Also to prepare engineering students for future structural engineering requires a new and easy-to- understand method of presenting the complex mathematics of the modeling and analysis of HFSs. However, because of the high flexibility of HFSs, many unique challenging problems in the modeling, design and analysis of HFSs need to be studied. The current state of research on HFSs needs advances in the following areas: (1) modeling of large rotations using appropriate strain measures, (2) modeling of cross-section warpings of structures, (3) how to account for both large rotations and cross- section warpings in 2D (two-dimensional) and 1D structural theories, (4) modeling of thickness thinning of membranes due to inflation pressure, pretension, and temperature change, (5) prediction of inflated shapes and wrinkles of inflatable structures, (6) development of efficient numerical methods for nonlinear static and dynamic analyses, and (7) filling the gap between

  8. Inflation Fossils in Cosmic Structure

    NASA Astrophysics Data System (ADS)

    Kamionkowski, Marc

    these models. In a somewhat different vein, we propose to study adaptive strategies for cosmological measurements. Considerable resources are being invested in the ongoing search for B modes in the CMB polarization. This search can be performed on a small patch of sky, but it is optimized by finding the patch of sky that is cleanest of foregrounds. We propose to develop adaptive survey strategies, using lessons learned from the analogous multi-armed bandit problem in probability theory, to optimize B mode searches. Preliminary estimates suggest that such a strategy can improve the sensitivity to primordial gravitational waves by factors of at least 2--3, and possibly much more. We then plan to study the possibility to apply similar strategies to the search for 21-cm fluctuations from the epoch of reionization (EoR) and also to identify an optimal field for a possible JWST deep field survey. Finally, CO intensity mapping has recently been identified as a new and promising probe of the EoR. However, CO intensity mapping may also be used to study large-scale structure at intermediate redshifts (z~1-6) that are important for inflation, dark-energy, and galaxy formation. We propose to calculate angular power spectra of the CO intensity at these redshifts and estimate sensitivities to signals and forecast parameter estimation for various experimental configurations. This work will be essential to guide the development of experiments to seek this signal. In summary, the proposed research will open new avenues to probe the beginning of time with the CMB and LSS, optimize several ongoing measurements, and lay the theoretical groundwork to open a new experimental avenue toward LSS. The proposed research is well aligned with the goals of NASA's Physics of the Cosmos Program. It will provide theoretical support to several current and in-the-pipeline NASA missions and help guide the development of new missions.

  9. The structural characteristics of inflatable beams

    NASA Astrophysics Data System (ADS)

    Wicker, William J.

    1992-08-01

    Two inflatable beams are designed and fabricated from polyethylene of ultrahigh molecular weight, and the structures are tested against similar composite and metal-alloy tubes. Specific attention is given to the choice of material that insures material stiffness, good strength-to-weight ratio, creep resistance, and durability. A cloth beam is built from a commercial extended-chain polyethylene fiber, and the inflated beams are tested by means of three- and four-point loading to measure bending and shear deformation. Comparing geometrically similar structures shows that the fabric beams can be about 35 percent as stiff as aluminum for small deflections. The inflatable beams have elastic stiffness coefficients five and two times higher than those for nylon and polyester tubes, respectively. Inflatable structures are concluded to hold promise for lightweight aerospace applications which demand small storage areas.

  10. A horizontal inflatable habitat for SEI

    NASA Astrophysics Data System (ADS)

    Kennedy, Kriss J.

    The inflatable habitat described in this paper is a horizontally-oriented cylindrical pneumatic structure. It is part of NASA's ongoing effort to study inflatables as alternative habitats for the Space Exploration Initiative. This inflatable habitat provides a living and working environment for a crew of 12. It is an 8-m diameter by 45.34-m cylinder containing 2145 cu m of volume. Two levels of living and working areas make up the 547 sq m of floor space.

  11. Overview of the 6 Meter HIAD Inflatable Structure and Flexible TPS Static Load Test Series

    NASA Technical Reports Server (NTRS)

    Swanson, Greg; Kazemba, Cole; Johnson, Keith; Calomino, Anthony; Hughes, Steve; Cassell, Alan; Cheatwood, Neil

    2014-01-01

    To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performance. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load

  12. Free-Flight Test of a Technique for Inflating an NASA 12-Foot-Diameter Sphere at High Altitudes

    NASA Technical Reports Server (NTRS)

    Kehlet, Alan B.; Patterson, Herbert G.

    1959-01-01

    A free-flight test has been conducted to check a technique for inflating an NASA 12-foot-diameter inflatable sphere at high altitudes. Flight records indicated that the nose section was successfully separated from the booster rocket, that the sphere was ejected, and that the nose section was jettisoned from the fully inflated sphere. On the basis of preflight and flight records, it is believed that the sphere was fully inflated by the time of peak altitude (239,000 feet). Calculations showed that during descent, jettison of the nose section occurred above an altitude of 150,000 feet. The inflatable sphere was estimated to start to deform during descent at an altitude of about 120,000 feet.

  13. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  14. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1997-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  15. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1996-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being Joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  16. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, James M.; Whinery, Larry D.; Gwinn, Kenneth W.; McBride, Donald D.; Luna, Daniel A.; Holder, Joseph P.; Bliton, Richard J.

    1996-01-01

    An apparatus and method for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion's ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion's ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored.

  17. Electrostatic Inflation of Membrane Space Structures

    NASA Astrophysics Data System (ADS)

    Stiles, Laura A.

    Membrane space structures provide a lightweight and cost effective alternative to traditional mechanical systems. The low-mass and high deployed-to-stored volume ratios allow for larger structures to be launched, expanding on-orbit science and technology capabilities. This research explores a novel method for deployment of membrane space structures using electrostatic pressure as the inflation mechanism. Applying electric charge to a layered gossamer structure provides an inflationary pressure due to the repulsive electrostatic forces between the charged layers. The electrostatic inflation of membrane structures (EIMS) concept is particularly applicable to non-precision structures such as sunshields or drag de-orbiting devices. This research addresses three fundamental topics: necessary conditions for EIMS in a vacuum, necessary conditions for EIMS in a plasma, and charging methods. Vacuum demonstrations show that less than 10 kiloVolts are required for electrostatic inflation of membrane structures in 1-g. On-orbit perturbation forces can be much smaller, suggesting feasible voltage requirements. Numerical simulation enables a relationship between required inflation pressure (to offset disturbances) and voltage. 100's of Volts are required for inflation in geosynchronous orbits (GEO) and a few kiloVolts in low Earth orbit (LEO). While GEO plasma has a small impact on the EIMS performance, Debye shielding at LEO reduces the electrostatic pressure. The classic Debye shielding prediction is far worse than actual shielding, raising the `effective' Debye length to the meter scale in LEO, suggesting feasibility for EIMS in LEO. Charged particle emission and remote charging methods are explored as inflation mechanisms. Secondary electron emission characteristics of EIMS materials were determined experimentally. Nonlinear fits to the Sternglass curve determined a maximum yield of 1.83 at 433 eV for Aluminized Kapton and a maximum yield of 1.78 at 511 eV for Aluminized

  18. Dynamic Deployment Simulations of Inflatable Space Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2005-01-01

    The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.

  19. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, J.M.; Whinery, L.D.; Gwinn, K.W.; McBride, D.D.; Luna, D.A.; Holder, J.P.; Bliton, R.J.

    1997-03-04

    An apparatus and method are disclosed for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored. 22 figs.

  20. Structurally efficient inflatable protective device

    DOEpatents

    Nelsen, J.M.; Whinery, L.D.; Gwinn, K.W.; McBride, D.D.; Luna, D.A.; Holder, J.P.; Bliton, R.J.

    1996-01-09

    An apparatus and method are disclosed for making a low cost, self-venting, inflatable protective cushion of simple and structurally efficient design with a shape and construction that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed which includes a sheet defined by at least one fold line and a plurality of flap portions, each flap portion having a base edge corresponding to a fold line and at least two side edges each extending outwardly from a base edge and ultimately converging to meet each other, the flap portions being folded at the fold line(s) and being joined at corresponding side edges to define an inflatable chamber. The inflatable protective cushion and method for making same may further include a lightweight, low permeability, fabric that optimizes the cushion`s ability to withstand inflation pressures and impact when deployed and minimizes the packed volume of the cushion when stored. 22 figs.

  1. Design of internal support structures for an inflatable lunar habitat

    NASA Technical Reports Server (NTRS)

    Cameron, Elizabeth A.; Duston, John A.; Lee, David D.

    1990-01-01

    NASA has a long range goal of constructing a fully equipped, manned lunar outpost on the near side of the moon by the year 2015. The proposed outpost includes an inflatable lunar habitat to support crews during missions longer that 12 months. A design for the internal support structures of the inflatable habitat is presented. The design solution includes material selection, substructure design, assembly plan development, and concept scale model construction. Alternate designs and design solutions for each component of the design are discussed. Alternate materials include aluminum, titanium, and reinforced polymers. Vertical support alternates include column systems, truss systems, suspension systems, and lunar lander supports. Horizontal alternates include beams, trusses, floor/truss systems, and expandable trusses. Feasibility studies on each alternate showed that truss systems and expandable trusses were the most feasible candidates for conceptual design. The team based the designs on the properties of 7075 T73 aluminum. The substructure assembly plan, minimizes assembly time and allows crews to construct the habitat without the use of EVA suits. In addition to the design solutions, the report gives conclusions and recommendations for further study of the inflatable habitat design.

  2. New Millenium Inflatable Structures Technology

    NASA Technical Reports Server (NTRS)

    Mollerick, Ralph

    1997-01-01

    Specific applications where inflatable technology can enable or enhance future space missions are tabulated. The applicability of the inflatable technology to large aperture infra-red astronomy missions is discussed. Space flight validation and risk reduction are emphasized along with the importance of analytical tools in deriving structurally sound concepts and performing optimizations using compatible codes. Deployment dynamics control, fabrication techniques, and system testing are addressed.

  3. AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE

    NASA Technical Reports Server (NTRS)

    Liever, P. A.; Sheta, E. F.; Habchi, S. D.

    2006-01-01

    A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.

  4. Structural Modeling of a Five-Meter Thin Film Inflatable Antenna/Concentrator

    NASA Technical Reports Server (NTRS)

    Smalley, Kurt B.; Tinker, Michael L.; Taylor, W. Scott; Brunty, Joseph A. (Technical Monitor)

    2002-01-01

    Inflatable structures have been the subject of renewed interest in recent years for space applications such as communications antennas, solar thermal propulsion, and space solar power. A major advantage of using inflatable structures in space is their extremely light weight. An obvious second advantage is on-orbit deployability and related space savings in the launch configuration. A recent technology demonstrator flight for inflatable structures was the Inflatable Antenna Experiment (IAE) that was deployed on orbit from the Shuttle Orbiter. Although difficulty was encountered in the inflation/deployment phase, the flight was successful overall and provided valuable experience in the use of such structures. Several papers on static structural analysis of inflated cylinders have been written, describing different techniques such as linear shell theory, and nonlinear and variational methods, but very little work had been done in dynamics of inflatable structures until recent years. In 1988 Leonard indicated that elastic beam bending modes could be utilized in approximating lower-order frequencies of inflatable beams. Main, et al. wrote a very significant 1995 paper describing results of modal tests of inflated cantilever beams and the determination of effective material properties. Changes in material properties for different pressures were also discussed, and the beam model was used in a more complex structure. The paper demonstrated that conventional finite element analysis packages could be very useful in the analysis of complex inflatable structures. The purposes of this paper are to discuss the methodology for dynamically characterizing a large 5-meter thin film inflatable reflector, and to discuss the test arrangement and results. Nonlinear finite element modal results are compared to modal test data. The work is significant and of considerable interest to researchers because of 1) the large size of the structure, making it useful for scaling studies, and 2

  5. Nonlinear Structural Analysis Methodology and Dynamics Scaling of Inflatable Parabolic Reflector Antenna Concepts

    NASA Technical Reports Server (NTRS)

    Sreekantamurthy, Tham; Gaspar, James L.; Mann, Troy; Behun, Vaughn; Pearson, James C., Jr.; Scarborough, Stephen

    2007-01-01

    Ultra-light weight and ultra-thin membrane inflatable antenna concepts are fast evolving to become the state-of-the-art antenna concepts for deep-space applications. NASA Langley Research Center has been involved in the structural dynamics research on antenna structures. One of the goals of the research is to develop structural analysis methodology for prediction of the static and dynamic response characteristics of the inflatable antenna concepts. This research is focused on the computational studies to use nonlinear large deformation finite element analysis to characterize the ultra-thin membrane responses of the antennas. Recently, structural analyses have been performed on a few parabolic reflector antennas of varying size and shape, which are referred in the paper as 0.3 meters subscale, 2 meters half-scale, and 4 meters full-scale antenna. The various aspects studied included nonlinear analysis methodology and solution techniques, ways to speed convergence in iterative methods, the sensitivities of responses with respect to structural loads, such as inflation pressure, gravity, and pretension loads in the ground and in-space conditions, and the ultra-thin membrane wrinkling characteristics. Several such intrinsic aspects studied have provided valuable insight into evaluation of structural characteristics of such antennas. While analyzing these structural characteristics, a quick study was also made to assess the applicability of dynamics scaling of the half-scale antenna. This paper presents the details of the nonlinear structural analysis results, and discusses the insight gained from the studies on the various intrinsic aspects of the analysis methodology. The predicted reflector surface characteristics of the three inflatable ultra-thin membrane parabolic reflector antenna concepts are presented as easily observable displacement fringe patterns with associated maximum values, and normal mode shapes and associated frequencies. Wrinkling patterns are

  6. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    NASA Technical Reports Server (NTRS)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  7. Passively Adaptive Inflatable Structure for the Shooting Star Experiment

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L..

    1998-01-01

    An inflatable structural system is described for the Shooting Star Experiment that is a technology demonstrator flight for solar thermal propulsion. The inflatable structure is a pressurized assembly used in orbit to support a fresnel lens for focusing sunlight into a thermal storage engine. When the engine temperature reaches a preset level, the propellant is injected into the storage engine, absorbs heat from a heat exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is an adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Further, the polyimide film material used for construction of the inflatable is highly nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. A series of tests is described for characterizing the structure in response to various operating conditions.

  8. Space Radiation Effects on Inflatable Habitat Materials Project

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Nichols, Charles

    2015-01-01

    The Space Radiation Effects on Inflatable Habitat Materials project provides much needed risk reduction data to assess space radiation damage of existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage will be quantified for materials used in inflatable structures (1st priority), as well as for habitable composite structures and space suits materials (2nd priority). The data acquired will have relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes. This project also will help to determine the service lifetimes for habitable inflatable, composite, and space suit materials.

  9. Development and Testing of an Inflatable, Rigidizable Space Structure Experiment

    DTIC Science & Technology

    2006-03-01

    successful, including physical dimension, weight , and cost. Inflatable structures have the potential to achieve greater efficiency in all of these...potential for low cost, high mechanical packaging efficiency, deployment reliability and low weight (13). The term inflatable structure indicates that a...back-up inflation gas a necessity for long term success. This addition can be very costly in terms of volume, weight , and expense due to added or

  10. Generation of Coherent Structures After Cosmic Inflation

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo

    2013-04-01

    The transition from inflation to power-law expansion is a rich nonlinear nonequilibrium physical process. For this reason, much is still unknown about this epoch in early universe physics, which has been dubbed the ``new big bang" by many colleagues. Here I describe results from the past few years of research, some of which in collaboration with Noah Graham and Nik Stamatopoulos, where we explored the generation on extended structures at the end of inflation known as oscillons. In particular, in hybrid inflation models we solve the coupled Einstein-Klein-Gordon equations to find that as the field responsible for inflating the universe rolls down to oscillate about its minimum, it triggers the formation of long-lived two-field oscillons, which can contribute up to 20% of the total energy density of the universe. We show that these oscillons emerge for a wide range of parameters consistent with WMAP 7-year data. These objects contain total energy of about 25x10^20 GeV, localized in a region of approximate radius 6x10-26 cm. We argue that these structures could have played a key role during the reheating of the universe, influencing the reheating temperature. We also explore the notion that these objects will appear in most symmetry-breaking phase transitions.

  11. In-step inflatable antenna experiment

    NASA Astrophysics Data System (ADS)

    Freeland, R. E.; Bilyeu, G.

    Large deployable space antennas are needed to accommodate a number of applications that include mobile communications, earth observation radiometry, active microwave sensing, space-orbiting very long baseline interferometry, and Department of Defense (DoD) space-based radar. The criteria for evaluating candidate structural concepts for essentially all the applications is the same; high deployment reliability, low cost, low weight, low launch volume, and high aperture precision. A new class of space structures, called inflatable deployable structures, have tremendous potential for completely satisfying the first four criteria and good potential for accommodating the longer wavelength applications. An inflatable deployable antenna under development by L'Garde Inc. of Tustin, California, represents such a concept. Its level of technology is mature enough to support a meaningful orbital technology experiment. The NASA Office of Aeronautics and Space Technology initiated the In-Space Technology Experiments Program (IN-STEP) specifically to sponsor the verification and/or validation of unique and innovative space technologies in the space environment. The potential of the L'Garde concept has been recognized and resulted in its selection for an IN-STEP experiment. The objective of the experiment is to (a) validate the deployment of a 14-meter, inflatable parabolic reflector structure, (b) measure the reflector surface accuracy, and (c) investigate structural damping characteristics under operational conditions. The experiment approach will be to use the NASA Spartan Spacecraft to carry the experiment on orbit. Reflector deployment will be monitored by two high-resolution video cameras. Reflector surface quality will be measured with a digital imaging radiometer. Structural damping will be based on measuring the decay of reflector structure amplitude. The experiment is being managed by the Jet Propulsion Laboratory. The experiment definition phase (Phase B) will be

  12. Foam rigidized inflatable structural assemblies

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L. (Inventor); Schnell, Andrew R. (Inventor)

    2010-01-01

    An inflatable and rigidizable structure for use as a habitat or a load bearing structure is disclosed. The structure consists of an outer wall and an inner wall defining a containment member and a bladder. The bladder is pressurized to erect the structure from an initially collapsed state. The containment member is subsequently injected with rigidizable fluid through an arrangement of injection ports. Exhaust gases from the curing rigidizable fluid are vented through an arrangement of exhaust ports. The rate of erection can be controlled by frictional engagement with a container or by using a tether. A method for fabricating a tubular structure is disclosed.

  13. Wireless Applications for Structural Monitoring of Inflatable Habitats

    NASA Technical Reports Server (NTRS)

    Miller, Glenn J.

    2007-01-01

    A viewgraph presentation on wireless applications for structural health monitoring of inflatable space structures is shown. The topics include: 1) Background; 2) REquirements; 3) Implementation; and 4) strucutral health monitoring system summary.

  14. Inflatable Aeroponic System

    NASA Technical Reports Server (NTRS)

    Pelt, Jennifer Van

    2005-01-01

    Aeroponics Internationals (AI) innovation is a self-contained, self-supporting, flexible low mass aeroponic crop production unit with integral environmental systems for the control and delivery of a nutrient mist to the roots. This FLEX Aeroponic System model was developed for commercialization as a result of the NASA SBIR Phase I contract for the research and development of a low-mass, Inflatable Aeroponic System (IAS) for producing pesticide-free lettuces, grains, peppers, tomatoes and other vegetables. The innovation addresses the needs of water and nutrient delivery systems technologies for food production in space. The inflatable nature of the innovation makes it lightweight, allowing it to be deflated so it takes up less volume during transportation and storage. It improves upon AI's current aeroponic system design that uses more rigid structures and takes advantage of vertical inclines to increase bio-mass production by over 600%.

  15. An innovative methodology for measurement of stress distribution of inflatable membrane structures

    NASA Astrophysics Data System (ADS)

    Zhao, Bing; Chen, Wujun; Hu, Jianhui; Chen, Jianwen; Qiu, Zhenyu; Zhou, Jinyu; Gao, Chengjun

    2016-02-01

    The inflatable membrane structure has been widely used in the fields of civil building, industrial building, airship, super pressure balloon and spacecraft. It is important to measure the stress distribution of the inflatable membrane structure because it influences the safety of the structural design. This paper presents an innovative methodology for the measurement and determination of the stress distribution of the inflatable membrane structure under different internal pressures, combining photogrammetry and the force-finding method. The shape of the inflatable membrane structure is maintained by the use of pressurized air, and the internal pressure is controlled and measured by means of an automatic pressure control system. The 3D coordinates of the marking points pasted on the membrane surface are acquired by three photographs captured from three cameras based on photogrammetry. After digitizing the markings on the photographs, the 3D curved surfaces are rebuilt. The continuous membrane surfaces are discretized into quadrilateral mesh and simulated by membrane links to calculate the stress distributions using the force-finding method. The internal pressure is simplified to the external node forces in the normal direction according to the contributory area of the node. Once the geometry x, the external force r and the topology C are obtained, the unknown force densities q in each link can be determined. Therefore, the stress distributions of the inflatable membrane structure can be calculated, combining the linear adjustment theory and the force density method based on the force equilibrium of inflated internal pressure and membrane internal force without considering the mechanical properties of the constitutive material. As the use of the inflatable membrane structure is attractive in the field of civil building, an ethylene-tetrafluoroethylene (ETFE) cushion is used with the measurement model to validate the proposed methodology. The comparisons between the

  16. Inflatable Space Structures Technology Development for Large Radar Antennas

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith

    2004-01-01

    There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both

  17. Lunar In Situ Materials-Based Surface Structure Technology Development Efforts at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Fiske, M. R.; McGregor, W.; Pope, R.; McLemore, C. A.; Kaul, R.; Smithers, G.; Ethridge, E.; Toutanji, H.

    2007-01-01

    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them, including habitats, laboratories, berms, radiation shielding for surface reactors, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Surface Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and lessons learned will be presented, along with recommendations for future activities.

  18. Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2003-01-01

    Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.

  19. Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.

    1993-01-01

    Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.

  20. Inflatable Vessel and Method

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)

    2003-01-01

    An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.

  1. Structural zeroes and zero-inflated models.

    PubMed

    He, Hua; Tang, Wan; Wang, Wenjuan; Crits-Christoph, Paul

    2014-08-01

    In psychosocial and behavioral studies count outcomes recording the frequencies of the occurrence of some health or behavior outcomes (such as the number of unprotected sexual behaviors during a period of time) often contain a preponderance of zeroes because of the presence of 'structural zeroes' that occur when some subjects are not at risk for the behavior of interest. Unlike random zeroes (responses that can be greater than zero, but are zero due to sampling variability), structural zeroes are usually very different, both statistically and clinically. False interpretations of results and study findings may result if differences in the two types of zeroes are ignored. However, in practice, the status of the structural zeroes is often not observed and this latent nature complicates the data analysis. In this article, we focus on one model, the zero-inflated Poisson (ZIP) regression model that is commonly used to address zero-inflated data. We first give a brief overview of the issues of structural zeroes and the ZIP model. We then given an illustration of ZIP with data from a study on HIV-risk sexual behaviors among adolescent girls. Sample codes in SAS and Stata are also included to help perform and explain ZIP analyses.

  2. Modal Survey Test of the SOTV 2X3 Meter Off-Axis Inflatable Concentrator

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.; Lassiter, John O.; McGee, Jennie K.

    2000-01-01

    NASA's Marshall Space Flight Center has had several projects involving inflatable space structures. Projects in solar thermal propulsion have had the most involvement, primarily inflatable concentrators. A flight project called Shooting Star Experiment initiated the first detailed design, analysis and testing effort involving an inflatable concentrator that supported a Fresnel lens. The lens was to concentrate the sun's rays to provide an extremely large heat transfer for an experimental solar propulsion engine. Since the conclusion of this experiment, research and development activities for solar propulsion at Marshall Space Flight Center have continued both in the solar propulsion engine technology as well as inflatable space structures. Experience gained in conducting modal survey tests of inflatable structures for the Shooting Star Experiment has been used by dynamic test engineers at Marshall Space Flight Center to conduct a modal survey test on a Solar Orbital Transfer Vehicle (SOTV) off-axis inflatable concentrator. This paper describes how both previously learned test methods and new test methods that address the unique test requirements for inflatable structures were used. Effects of the inherent nonlinear response of the inflatable concentrator on test methods and test results are noted as well. Nine analytical mode shapes were successfully correlated to test mode shapes. The paper concludes with several "lessons learned" applicable to future dynamics testing and shows how Marshall Space Flight Center has utilized traditional and new methods for modal survey testing of inflatable space structures.

  3. Structural health monitoring of inflatable structures for MMOD impacts

    NASA Astrophysics Data System (ADS)

    Anees, Muhammad; Gbaguidi, Audrey; Kim, Daewon; Namilae, Sirish

    2017-04-01

    Inflatable structures for space habitat are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the space habitat, as well as predicting the repair needs and the remaining useful life of the habitat. In this paper, we propose a unique impact detection and health monitoring system based on hybrid nanocomposite sensors. The sensors are composed of two fillers, carbon nanotubes and coarse graphene platelets with an epoxy matrix material. The electrical conductivity of these flexible nanocomposite sensors is highly sensitive to strains as well as presence of any holes and damage in the structure. The sensitivity of the sensors to the presence of 3mm holes due to an event of impact is evaluated using four point probe electrical resistivity measurements. An array of these sensors when sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. An algorithm is developed to determine the event of impact, its severity and location on the sensing layer for active health monitoring.

  4. Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.

  5. Ground Testing A 20-Meter Inflation Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Mann, Troy; Behun, Vaughn; Lichodziejewski, David; Derbes, Billy; Sleight, David

    2006-01-01

    Solar sails have been proposed for a variety of future space exploration missions and provide a cost effective source of propellantless propulsion. Solar sails span very large areas to capture and reflect photons from the Sun and are propelled through space by the transfer of momentum from the photons to the solar sail. The thrust of a solar sail, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful space exploration missions utilizing solar sail propulsion. The team of L Garde, NASA Jet Propulsion Laboratory (JPL), Ball Aerospace, and NASA Langley Research Center, under the direction of the NASA In-Space Propulsion Office (ISP), has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The 100-m baseline solar sail concept was optimized around the one astronomical unit (AU) Geostorm mission, and features a Mylar sail membrane with a striped-net sail suspension architecture with inflation-deployed sail support beams consisting of inflatable sub-Tg (glass transition temperature) rigidizable semi-monocoque booms and a spreader system. The solar sail has vanes integrated onto the tips of the support beams to provide full 3-axis control of the solar sail. This same structural concept can be scaled to meet the requirements of a number of other NASA missions. Static and dynamic testing of a 20m scaled version of this solar sail concept have been completed in the Space Power Facility (SPF) at the NASA Glenn Plum Brook facility under vacuum and thermal conditions simulating the operation of a solar sail in space. This paper details the lessons learned from these and other similar ground based tests of gossamer structures during the three year solar sail project.

  6. Description of New Inflatable/Rigidizable Hexapod Structure Testbed for Shape and Vibration Control

    NASA Technical Reports Server (NTRS)

    Adetona, O.; Keel, L. H.; Horta, L. G.; Cadogan, D. P.; Sapna, G. H.; Scarborough, S. E.

    2002-01-01

    Larger and more powerful space based instruments are needed to meet increasingly sophisticated scientific demand. To support this need, concepts for telescopes with apertures of 100 meters are being investigated, but the required technologies are not in hand today. Due to the capacity limits of launch vehicles, the idea of deploying, erecting, or inflating large structures in space is being considered. Recently, rigidization concepts of large inflatable structures have demonstrated the capability of weight reductions of up to 50% from current concepts with packaging efficiencies near 80%. One of the important aspects of inflatable structures is vibration mitigation and line-of-sight control. Such control tasks are possible only after actuators/sensors are properly integrated into a rigidizable concept. To study these issues, we have developed an inflatable/rigidizable hexapod structure testbed. The testbed integrates state of the art piezo-electric self-sensing actuators into an inflatable/rigidizable structure and a flat membrane reflector. Using this testbed, we plan to experimentally demonstrate achievable vibration and line-of-sight control. This paper contains a description of the testbed and an outline of the test plan.

  7. The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerato

    NASA Image and Video Library

    2013-05-31

    The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerator, an inflatable spacecraft technology that allows payloads to survive the harsh conditions of atmospheric re-entry. This photo was taken at NASA Langley in Building 1250 when sensors were being applied.

  8. The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerato

    NASA Image and Video Library

    2013-04-25

    The HIAD stands for Hypersonic Inflatable Aerodynamic Decelerator, an inflatable spacecraft technology that allows payloads to survive the harsh conditions of atmospheric re-entry. This photo was taken at NASA Langley in Building 1250 when sensors were being applied.

  9. Inflation Tests of the Echo 1 Satellite in Weeksville, N.C.

    NASA Image and Video Library

    1958-08-13

    Inflation Tests of the Echo 1 Satellite in Weeksville, N.C. 1958-L-03603 Image Langley engineers Edwin Kilgore (center), Norman Crabill (right) and an unidentified man take a peek inside the vast balloon during inflation tests. Page. 183 Space Flight Revolution NASA Langley Research Center From Sputnik to Apollo. NASA SP-4308.

  10. Numerical modelling of Mars supersonic disk-gap-band parachute inflation

    NASA Astrophysics Data System (ADS)

    Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang

    2016-06-01

    The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.

  11. Deployment, Foam Rigidization, and Structural Characterization of Inflatable Thin-Film Booms

    NASA Technical Reports Server (NTRS)

    Schnell, Andrew R.; Leigh, Larry M., Jr.; Tinker, Michael L.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Detailed investigation of the construction, packaging/deployment, foam rigidization, and structural characterization of polyimide film inflatable booms is described. These structures have considerable potential for use in space with solar concentrators, solar sails, space power systems including solar arrays, and other future missions. Numerous thin-film booms or struts were successfully constructed, inflated, injected with foam, and rigidized. Both solid-section and annular test articles were fabricated, using Kapton polyimide film, various adhesives, Styrofoam end plugs, and polyurethane pressurized foam. Numerous inflation/deployment experiments were conducted and compared to computer simulations using the MSC/DYTRAN code. Finite element models were developed for several foam-rigidized struts and compared to model test results. Several problems encountered in the construction, deployment, and foam injection/rigidization process are described. Areas of difficulty included inadequate adhesive strength, cracking of the film arid leakage, excessive bending of the structure during deployment, problems with foam distribution and curing properties, and control of foam leakage following injection into the structure. Many of these problems were overcome in the course of the research.

  12. Thin Films and Inflatable Applications in Exploration Habitat Structures

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Paley, Mark S.; Strong, Janet D.

    2005-01-01

    NASA's vision to return to the Moon and then extend human exploration to Mars will benefit from human habitat technology development using new and creative applications of polymer materials and concepts. Thin Film and Inflatable (TFVI) materials are particularly interesting for exploration applications due to their light weight and low volume. Whereas TF/I materials can be launched and carried from Earth to multiple and distant exploration sites without the constraints of upmass limitations, eventually, with recycling and reclamation efforts, these materials may be developed using in-situ resources. These materials can be useful for fabricating, patching and repairing vehicles, replacement parts and even habitat structures, as well as for developing stand-alone habitat structure technologies and for nested and integrated applications. TF/Is can also be ideal environmental containment vessels within lunar or Martian regolith walls or as liners inside caves or raw regolith exterior structures for the provisions of atmosphere containment, debris protection and cleanliness. Further, TFOs can be specialized and matured for various and diverse applications. The desired range of applications will require materials specification for such properties as transparency, elasticity, thermal conductivity, mechanical strength, heat capacity, chemical resistance, and permeability. This paper will discuss Marshall Space Flight Center's plans to analyze and prioritize TF/I materials properties and classifications and to develop applications for these highly desirable materials in human habitat construction projects on the Moon and Mars.

  13. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  14. The Development of Large Inflatable Antenna for Deep-Space Communications

    NASA Technical Reports Server (NTRS)

    Huang, John; Fang, Houfei; Lovick, Richard; Lou, Michael

    2004-01-01

    NASA/JPL's deep-space exploration program has been placing emphasis on reducing the mass and stowage volume of its spacecraft's high-gain and large-aperture antennas. To achieve these goals, the concept of deployable flat reflectarray antenna using an inflatable/thin-membrane structure was introduced at JPL several years ago. A reflectarray is a flat array antenna space-fed by a low-gain feed located at its focal point in a fashion similar to that of a parabolic reflector. The ref1ectarray's elements, using microstrip technology, can be printed onto a flat thin-membrane surface and are each uniquely designed to compensate for the different phase delays due to different path lengths from the feed. Although the reflectarray suffers from limited bandwidth (typically < 10%), it offers a more reliably deployed and maintained flat "natural" surface. A recent hardware development at JPL has demonstrated that a 0.2mm rms surface tolerance (l/50th of a wavelength) was achieved on a 3-meter Ka-band inflatable reflectarray. Another recent development, to combat the reflectarray's narrow band characteristic, demonstrated that dual-band performance, such as X- and Ka-bands, with an aperture efficiency of above 50 percent is achievable by the reflectarray antenna. To mechanically deploy the antenna, the reflectarray's thin membrane aperture surface is supported, tensioned and deployed by an inflatable tubular structure. There are several critical elements and challenging issues associated with the inflatable tube structure. First, the inflatable tube must be made rigidizable so that, once the tube is fully deployed in space, it rigidizes itself and the inflation system is no longer needed. In addition, if the tube is penetrated by small space debris, the tube will maintain its rigidity and not cause deformation to the antenna structure. To support large apertures (e.g. 10m or beyond) without causing any buckling to the small-diameter inflatable tube during vibration, the tube

  15. Development of Inflatable Entry Systems Technologies

    NASA Technical Reports Server (NTRS)

    Player, Charles J.; Cheatwood, F. McNeil; Corliss, James

    2005-01-01

    Achieving the objectives of NASA s Vision for Space Exploration will require the development of new technologies, which will in turn require higher fidelity modeling and analysis techniques, and innovative testing capabilities. Development of entry systems technologies can be especially difficult due to the lack of facilities and resources available to test these new technologies in mission relevant environments. This paper discusses the technology development process to bring inflatable aeroshell technology from Technology Readiness Level 2 (TRL-2) to TRL-7. This paper focuses mainly on two projects: Inflatable Reentry Vehicle Experiment (IRVE), and Inflatable Aeroshell and Thermal Protection System Development (IATD). The objectives of IRVE are to conduct an inflatable aeroshell flight test that demonstrates exoatmospheric deployment and inflation, reentry survivability and stability, and predictable drag performance. IATD will continue the development of the technology by conducting exploration specific trade studies and feeding forward those results into three more flight tests. Through an examination of these projects, and other potential projects, this paper discusses some of the risks, issues, and unexpected benefits associated with the development of inflatable entry systems technology.

  16. Inflatable wing

    DOEpatents

    Priddy, Tommy G.

    1988-01-01

    An inflatable wing is formed from a pair of tapered, conical inflatable tubes in bonded tangential contact with each other. The tubes are further connected together by means of top and bottom reinforcement boards having corresponding longitudinal edges lying in the same central diametral plane passing through the associated tube. The reinforcement boards are made of a stiff reinforcement material, such as Kevlar, collapsible in a direction parallel to the spanwise wing axis upon deflation of the tubes. The stiff reinforcement material cooperates with the inflated tubes to impart structural I-beam characteristics to the composite structure for transferring inflation pressure-induced tensile stress from the tubes to the reinforcement boards. A plurality of rigid hoops shaped to provide airfoil definition are spaced from each other along the spanwise axis and are connected to the top and bottom reinforcement boards. Tension lines are employed for stabilizing the hoops along the trailing and leading edges thereof.

  17. Pseudosmooth tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Nolde, David; Rehman, Mansoor Ur

    2012-08-01

    We explore a new class of supersymmetric models of inflation where the inflaton is realised as a combination of a Higgs field and (gauge non-singlet) matter fields, using a ``tribrid'' structure of the superpotential. Inflation is associated with a phase transition around GUT scale energies. The inflationary trajectory already preselects the later vacuum after inflation, which has the advantage of automatically avoiding the production of dangerous topological defects at the end of inflation. While at first sight the models look similar to smooth inflation, they feature a waterfall and are therefore only pseudosmooth. The new class of models offers novel possibilities for realising inflation in close contact with particle physics, for instance with supersymmetric GUTs or with supersymmetric flavour models based on family symmetries.

  18. Deployment Simulation of Ultra-Lightweight Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Johnson, Arthur R.

    2002-01-01

    Dynamic deployment analyses of folded inflatable tubes are conducted to investigate modeling issues related to the deployment of solar sail booms. The analyses are necessary because ground tests include gravity effects and may poorly represent deployment in space. A control volume approach, available in the LS-DYNA nonlinear dynamic finite element code, and the ideal gas law are used to simulate the dynamic inflation deployment process. Three deployment issues are investigated for a tube packaged in a Z-fold configuration. The issues are the effect of the rate of inflation, the effect of residual air, and the effect of gravity. The results of the deployment analyses reveal that the time and amount of inflation gas required to achieve a full deployment are related to these issues.

  19. Space Radiation Effects in Inflatable and Composite Habitat Materials

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Rojdev, Kristina

    2015-01-01

    This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.

  20. Special Considerations in Selection of Fabric Film Laminates for Use in Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Said, Magdi A.

    1999-01-01

    Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of fabric/film laminates is being considered for use as a structural gas envelope. The emerging composite materials are a result of recent advances in the manufacturing of lightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barriers results in a wide range of materials suitable for various loading and environmental conditions. Polyester-based woven fabrics laminated to thin homogenous film of polyester are an example of this class. This fabric/film laminate is being considered for the development of a material suitable for building large gas envelopes for use in the NASA ultra long duration balloon program (ULDB). Compared to commercial homogenous films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation, The mechanical, creep and viscoelastic properties of these fabric film laminates have been studied to form a material model. Preliminary analysis indicates that the material is highly viscoelastic. The mechanical properties of this class of materials will be discussed in some details.

  1. Pseudo-beam method for compressive buckling characteristics analysis of space inflatable load-carrying structures

    NASA Astrophysics Data System (ADS)

    Wang, Changguo; Tan, Huifeng; Du, Xingwen

    2009-10-01

    This paper extends Le van’s work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a pre-stressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko’s beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our proposed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the load-carrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.

  2. Integrated fiber optic structural health sensors for inflatable space habitats

    NASA Astrophysics Data System (ADS)

    Ohanian, Osgar John; Garg, Naman; Castellucci, Matthew A.

    2017-04-01

    Inflatable space habitats offer many advantages for future space missions; however, the long term integrity of these flexible structures is a major concern in harsh space environments. Structural Health Monitoring (SHM) of these structures is essential to ensure safe operation, provide early warnings of damage, and measure structural changes over long periods of time. To address this problem, the authors have integrated distributed fiber optic strain sensors to measure loading and to identify the occurrence and location of damage in the straps and webbing used in the structural restraint layer. The fiber optic sensors employed use Rayleigh backscatter combined with optical frequency domain reflectometry to enable measurement of strain every 0.65 mm (0.026 inches) along the sensor. The Kevlar woven straps that were tested exhibited large permanent deformation during initial cycling and continued to exhibit hysteresis thereafter, but there was a consistent linear relationship between the sensor's measurement and the actual strain applied. Damage was intentionally applied to a tensioned strap, and the distributed strain measurement clearly identified a change in the strain profile centered on the location of the damage. This change in structural health was identified at a loading that was less than half of the ultimate loading that caused a structural failure. This sensing technique will be used to enable integrated SHM sensors to detect loading and damage in future inflatable space habitat structures.

  3. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  4. Development of Bonded Joint Technology for a Rigidizable-Inflatable Deployable Truss

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III

    2006-01-01

    Microwave and Synthetic Aperture Radar antenna systems have been developed as instrument systems using truss structures as their primary support and deployment mechanism for over a decade. NASA Langley Research Center has been investigating fabrication, modular assembly, and deployment methods of lightweight rigidizable/inflatable linear truss structures during that time for large spacecraft systems. The primary goal of the research at Langley Research Center is to advance these existing state-of-the-art joining and deployment concepts to achieve prototype system performance in a relevant space environment. During 2005, the development, fabrication, and testing of a 6.7 meter multi-bay, deployable linear truss was conducted at Langley Research Center to demonstrate functional and precision metrics of a rigidizable/inflatable truss structure. The present paper is intended to summarize aspects of bonded joint technology developed for the 6.7 meter deployable linear truss structure while providing a brief overview of the entire truss fabrication, assembly, and deployment methodology. A description of the basic joint design, surface preparation investigations, and experimental joint testing of component joint test articles will be described. Specifically, the performance of two room temperature adhesives were investigated to obtain qualitative data related to tube folding testing and quantitative data related to tensile shear strength testing. It was determined from the testing that a polyurethane-based adhesive best met the rigidizable/inflatable truss project requirements.

  5. Mars inflatable greenhouse analog.

    PubMed

    Sadler, Philip D; Giacomelli, Gene A

    2002-01-01

    Light intensities on the Martian surface can possibly support a bioregenerative life support system (BLSS) utilizing natural sunlight for hydroponic crop production, if a suitable controlled environment can be provided. Inflatable clear membrane structures offer low mass, are more easily transported than a rigid structure, and are good candidates for providing a suitable controlled environment for crop production. Cable culture is one hydroponic growing system that can take advantage of the beneficial attributes of the inflatable structure. An analog of a Mars inflatable greenhouse can provide researchers data on issues such as crew time requirements for operation, productivity for BLSS, human factors, and much more at a reasonable cost. This is a description of one such design.

  6. Structure analysis of tax revenue and inflation rate in Banda Aceh using vector error correction model with multiple alpha

    NASA Astrophysics Data System (ADS)

    Sofyan, Hizir; Maulia, Eva; Miftahuddin

    2017-11-01

    A country has several important parameters to achieve economic prosperity, such as tax revenue and inflation rate. One of the largest revenues of the State Budget in Indonesia comes from the tax sector. Meanwhile, the rate of inflation occurring in a country can be used as an indicator, to measure the good and bad economic problems faced by the country. Given the importance of tax revenue and inflation rate control in achieving economic prosperity, it is necessary to analyze the structure of tax revenue relations and inflation rate. This study aims to produce the best VECM (Vector Error Correction Model) with optimal lag using various alpha and perform structural analysis using the Impulse Response Function (IRF) of the VECM models to examine the relationship of tax revenue, and inflation in Banda Aceh. The results showed that the best model for the data of tax revenue and inflation rate in Banda Aceh City using alpha 0.01 is VECM with optimal lag 2, while the best model for data of tax revenue and inflation rate in Banda Aceh City using alpha 0.05 and 0,1 VECM with optimal lag 3. However, the VECM model with alpha 0.01 yielded four significant models of income tax model, inflation rate of Banda Aceh, inflation rate of health and inflation rate of education in Banda Aceh. While the VECM model with alpha 0.05 and 0.1 yielded one significant model that is income tax model. Based on the VECM models, then there are two structural analysis IRF which is formed to look at the relationship of tax revenue, and inflation in Banda Aceh, the IRF with VECM (2) and IRF with VECM (3).

  7. Inflatable antennas for microwave pwoer transmission

    NASA Technical Reports Server (NTRS)

    Williams, Geoff

    1989-01-01

    Operational phase of the inflatable radiator; inflatable space structures; advantages; inflated thin-film satellites; antenna configuration; 3 meter diameter test paraboloid (HAIR program); and weight breakdown for the 100 meter diameter reflector are outlined. This presentation is represented by viewgraphs only.

  8. Topological defects in extended inflation

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.

    1990-01-01

    The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.

  9. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.

    2013-01-01

    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the

  10. Preliminary Structural Sensitivity Study of Hypersonic Inflatable Aerodynamic Decelerator Using Probabilistic Methods

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.

    2014-01-01

    Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.

  11. High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, R. R.; Nelson, J. G.

    1999-01-01

    The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and Epsilon. The challenge was to find PZT compositions that maintained high d(sub ij) and Epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.

  12. High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, R. R.; Nelson, J. G.

    1999-01-01

    The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and epsilin. The challenge was to find PZT compositions that maintained high d(sub ij) and epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.

  13. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST... Inspections § 131.580 Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced...

  14. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST... Inspections § 131.580 Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced...

  15. Application of Ruze Equation for Inflatable Aperture Antennas

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Inflatable aperture reflector antennas are an emerging technology that NASA is investigating for potential uses in science and exploration missions. As inflatable aperture antennas have not been proven fully qualified for space missions, they must be characterized properly so that the behavior of the antennas can be known in advance. To properly characterize the inflatable aperture antenna, testing must be performed in a relevant environment, such as a vacuum chamber. Since the capability of having a radiofrequency (RF) test facility inside a vacuum chamber did not exist at NASA Glenn Research Center, a different methodology had to be utilized. The proposal to test an inflatable aperture antenna in a vacuum chamber entailed performing a photogrammetry study of the antenna surface by using laser ranging measurements. A root-mean-square (rms) error term was derived from the photogrammetry study to calculate the antenna surface loss as described by the Ruze equation. However, initial testing showed that problems existed in using the Ruze equation to calculate the loss due to errors on the antenna surface. This study utilized RF measurements obtained in a near-field antenna range and photogrammetry data taken from a laser range scanner to compare the expected performance of the test antenna (via the Ruze equation) with the actual RF patterns and directivity measurements. Results showed that the Ruze equation overstated the degradation in the directivity calculation. Therefore, when the photogrammetry study is performed on the test antennas in the vacuum chamber, a more complex equation must be used in light of the fact that the Ruze theory overstates the loss in directivity for inflatable aperture reflector antennas.

  16. Nonlinear Pressurization and Modal Analysis Procedure for Dynamic Modeling of Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Smalley, Kurt B.; Tinker, Michael L.; Saxon, Jeff (Technical Monitor)

    2002-01-01

    An introduction and set of guidelines for finite element dynamic modeling of nonrigidized inflatable structures is provided. A two-step approach is presented, involving 1) nonlinear static pressurization of the structure and updating of the stiffness matrix and 2) hear normal modes analysis using the updated stiffness. Advantages of this approach are that it provides physical realism in modeling of pressure stiffening, and it maintains the analytical convenience of a standard bear eigensolution once the stiffness has been modified. Demonstration of the approach is accomplished through the creation and test verification of an inflated cylinder model using a large commercial finite element code. Good frequency and mode shape comparisons are obtained with test data and previous modeling efforts, verifying the accuracy of the technique. Problems encountered in the application of the approach, as well as their solutions, are discussed in detail.

  17. An Overview: NASA LeRC Structures Programs

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1998-01-01

    A workshop on National Structures Programs was held, jointly sponsored by the AIAA Structures Technical Committee, the University of Virginia's Center for Advanced Computational Technology and NASA. The Objectives of the Workshop were to: provide a forum for discussion of current Government-sponsored programs in the structures area; identify high potential research areas for future aerospace systems; and initiate suitable interaction mechanisms with the managers of structures programs. The presentations covered structures programs at NASA, DOD (AFOSR, ONR, ARO and DARPA), and DOE. This publication is the presentation of the Structures and Acoustics Division of the NASA Lewis Research Center. The Structures and Acoustics Division has its genesis dating back to 1943. It is responsible for NASA research related to rotating structures and structural hot sections of both airbreathing and rocket engines. The work of the division encompasses but is not limited to aeroelasticity, structural life prediction and reliability, fatigue and fracture, mechanical components such as bearings, gears, and seals, and aeroacoustics. These programs are discussed and the names of responsible individuals are provided for future reference.

  18. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    NASA Deputy Administrator Lori Garver is given a tour of the Bigelow Aerospace facilities by the company's President Robert Bigelow on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  19. The NASA controls-structures interaction technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.

    1990-01-01

    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.

  20. Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Derbes, Billy; Reinert, Rich; Belvin, Keith; Slade, Kara; Mann, Troy

    2004-01-01

    This paper discusses the solar sail design and outlines the interim accomplishments to advance the technology readiness level (TRL) of the subsystem from 3 toward a technology readiness level of 6 in 2005. Under Phase II of the program many component test articles have been fabricated and tested successfully. Most notably an unprecedented section of the conically deployed rigidizable sail support beam, the heart of the inflatable rigidizable structure, has been deployed and tested in the NASA Goddard thermal vacuum chamber with good results. The development testing validated the beam packaging and deployment. The inflatable conically deployed, Sub Tg rigidizable beam technology is now in the TRL 5-6 range. The fabricated masses and structural test results of our beam components have met predictions and no changes to the mass estimates or design assumptions have been identified adding great credibility to the design. Several quadrants of the Mylar sail have also been fabricated and successfully deployed validating our design, manufacturing, and deployment techniques.

  1. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    Bigelow Aerospace President Robert Bigelow talks during a press conference shortly after he and NASA Deputy Administrator Lori Garver toured the Bigelow Aerospace facilities on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  2. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced... maintenance of inflatable rescue boats must follow the manufacturers' instructions. Each repair, except an...

  3. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced... maintenance of inflatable rescue boats must follow the manufacturers' instructions. Each repair, except an...

  4. 46 CFR 131.580 - Servicing of inflatable liferafts, inflatable lifejackets, inflatable buoyant apparatus, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... lifejackets, inflatable buoyant apparatus, and inflated rescue boats. 131.580 Section 131.580 Shipping COAST..., and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant apparatus must be serviced... maintenance of inflatable rescue boats must follow the manufacturers' instructions. Each repair, except an...

  5. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant... other standard specified by the Commandant. (e) Repair and maintenance of inflated rescue boats must be...

  6. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant... other standard specified by the Commandant. (e) Repair and maintenance of inflated rescue boats must be...

  7. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD..., inflatable life jackets, and inflated rescue boats. (a) An inflatable liferaft or inflatable buoyant... other standard specified by the Commandant. (e) Repair and maintenance of inflated rescue boats must be...

  8. A design pathfinder with material correlation points for inflatable systems

    NASA Astrophysics Data System (ADS)

    Fulcher, Jared Terrell

    The incorporation of inflatable structures into aerospace systems can produce significant advantages in stowed volume to mechanical effectiveness and overall weight. Many applications of these ultra-lightweight systems are designed to precisely control internal or external surfaces, or both, to achieve desired performance. The modeling of these structures becomes complex due to the material nonlinearities inherent to the majority of construction materials used in inflatable structures. Furthermore, accurately modeling the response and behavior of the interfacing boundaries that are common to many inflatable systems will lead to better understanding of the entire class of structures. The research presented involved using nonlinear finite element simulations correlated with photogrammetry testing to develop a procedure for defining material properties for commercially available polyurethane-coated woven nylon fabric, which is representative of coated materials that have been proven materials for use in many inflatable systems. Further, the new material model was used to design and develop an inflatable pathfinder system which employs only internal pressure to control an assembly of internal membranes. This canonical inflatable system will be used for exploration and development of general understanding of efficient design methodology and analysis of future systems. Canonical structures are incorporated into the design of the phased pathfinder system to allow for more universal insight. Nonlinear finite element simulations were performed to evaluate the effect of various boundary conditions, loading configurations, and material orientations on the geometric precision of geometries representing typical internal/external surfaces commonly incorporated into inflatable pathfinder system. The response of the inflatable system to possible damage was also studied using nonlinear finite element simulations. Development of a correlated material model for analysis of the

  9. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    NASA Deputy Administrator Lori Garver talks during a press conference shortly after she was given a tour of the Bigelow Aerospace facilities by the company's President Robert Bigelow on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  10. Inflatable Hangar for Assembly of Large Structures in Space

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    The NASA Human Space Flight program is interested in projects where humans, beyond low-Earth orbit (LEO), can make an important and unique contribution that cannot be reasonably accomplished purely by robotic means, and is commensurate with the effort and cost associated with human spaceflight. Robotic space telescope missions have been conceived and launched as completed assemblies (e.g., Hubble) or as jack-in-the-box one-time deployments (e.g., James Webb). If it were possible to assemble components of a very large telescope from one or two launches into a telescope that was vastly greater in light-gathering power and resolution, that would constitute a breakthrough. Large telescopes on Earth, like all one-off precision assembly tasks, are done by humans. Humans in shirtsleeves (or cleanroom bunny suits) can perform tasks of remarkable dexterity and precision. Unfortunately, astronauts in pressure suits cannot perform such dexterous and precise tasks because of the limitations of the pressurized gloves. If a large, inflatable hangar were placed in high orbit, along with all the components needed for a large assembly such as a large telescope, then humans in bunny suits could perform the same sorts of extremely precise and dexterous assembly that they could be expected to perform on Earth. Calculations show that such an inflatable hangar, and the necessary gas to make it safe to occupy by shirtsleeves humans wearing oxygen masks, fits within the mass and volume limitations of the proposed "Space Launch System" heavy-lift rocket. A second launch could bring up all the components of an approximately 100-meter-diameter or larger telescope. A large [200 ft (approximately 61 m) in diameter] inflated fabric sphere (or hangar) would contain four humans in bunny suits. The sphere would contain sufficient atmospheric pressure so that spacesuits would not be necessary [about 3.2 psi (approximately 22 kPa)]. The humans would require only oxygen masks and small backpacks

  11. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  12. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a) An... inflated rescue boats must be in accordance with the manufacturer's instructions. All repairs must be made...

  13. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a) An... inflated rescue boats must be in accordance with the manufacturer's instructions. All repairs must be made...

  14. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... liferafts, inflatable buoyant apparatus, inflatable life jackets, and inflated rescue boats. (a) An... inflated rescue boats must be in accordance with the manufacturer's instructions. All repairs must be made...

  15. Inflation physics from the cosmic microwave background and large scale structure

    NASA Astrophysics Data System (ADS)

    Abazajian, K. N.; Arnold, K.; Austermann, J.; Benson, B. A.; Bischoff, C.; Bock, J.; Bond, J. R.; Borrill, J.; Buder, I.; Burke, D. L.; Calabrese, E.; Carlstrom, J. E.; Carvalho, C. S.; Chang, C. L.; Chiang, H. C.; Church, S.; Cooray, A.; Crawford, T. M.; Crill, B. P.; Dawson, K. S.; Das, S.; Devlin, M. J.; Dobbs, M.; Dodelson, S.; Doré, O.; Dunkley, J.; Feng, J. L.; Fraisse, A.; Gallicchio, J.; Giddings, S. B.; Green, D.; Halverson, N. W.; Hanany, S.; Hanson, D.; Hildebrandt, S. R.; Hincks, A.; Hlozek, R.; Holder, G.; Holzapfel, W. L.; Honscheid, K.; Horowitz, G.; Hu, W.; Hubmayr, J.; Irwin, K.; Jackson, M.; Jones, W. C.; Kallosh, R.; Kamionkowski, M.; Keating, B.; Keisler, R.; Kinney, W.; Knox, L.; Komatsu, E.; Kovac, J.; Kuo, C.-L.; Kusaka, A.; Lawrence, C.; Lee, A. T.; Leitch, E.; Linde, A.; Linder, E.; Lubin, P.; Maldacena, J.; Martinec, E.; McMahon, J.; Miller, A.; Mukhanov, V.; Newburgh, L.; Niemack, M. D.; Nguyen, H.; Nguyen, H. T.; Page, L.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sehgal, N.; Seljak, U.; Senatore, L.; Sievers, J.; Silverstein, E.; Slosar, A.; Smith, K. M.; Spergel, D.; Staggs, S. T.; Stark, A.; Stompor, R.; Vieregg, A. G.; Wang, G.; Watson, S.; Wollack, E. J.; Wu, W. L. K.; Yoon, K. W.; Zahn, O.; Zaldarriaga, M.

    2015-03-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments-the theory of cosmic inflation-and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5 σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  16. Inflation Physics from the Cosmic Microwave Background and Large Scale Structure

    NASA Technical Reports Server (NTRS)

    Abazajian, K.N.; Arnold,K.; Austermann, J.; Benson, B.A.; Bischoff, C.; Bock, J.; Bond, J.R.; Borrill, J.; Buder, I.; Burke, D.L.; hide

    2013-01-01

    Fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments---the theory of cosmic inflation---and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1 of the sky to a depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5-sigma measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B-mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.

  17. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-06-10

    STS077-705-051 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour and its subsequent inflation process, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over mountains. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  18. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-010 (20 May 1996) --- Soon after leaving the cargo bay of the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload goes through its inflation process, backdropped over clouds. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  19. NASA Deputy Administrator Tours Bigelow Aerospace

    NASA Image and Video Library

    2011-02-04

    NASA Deputy Administrator Lori Garver views the inside of a full scale mockup of Bigelow Aerospace's Space Station Alpha during a tour of the Bigelow Aerospace facilities by the company's President Robert Bigelow on Friday, Feb. 4, 2011, in Las Vegas. NASA has been discussing potential partnership opportunities with Bigelow for its inflatable habitat technologies as part of NASA's goal to develop innovative technologies to ensure that the U.S. remains competitive in future space endeavors. Photo Credit: (NASA/Bill Ingalls)

  20. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    An inflatable scale model of the SLS rocket is seen on Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  1. Inflation in the standard cosmological model

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe

    2015-12-01

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"

  2. Topological inflation with graceful exit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marunović, Anja; Prokopec, Tomislav, E-mail: a.marunovic@uu.nl, E-mail: t.prokopec@uu.nl

    We investigate a class of models of topological inflation in which a super-Hubble-sized global monopole seeds inflation. These models are attractive since inflation starts from rather generic initial conditions, but their not so attractive feature is that, unless symmetry is again restored, inflation never ends. In this work we show that, in presence of another nonminimally coupled scalar field, that is both quadratically and quartically coupled to the Ricci scalar, inflation naturally ends, representing an elegant solution to the graceful exit problem of topological inflation. While the monopole core grows during inflation, the growth stops after inflation, such that themore » monopole eventually enters the Hubble radius, and shrinks to its Minkowski space size, rendering it immaterial for the subsequent Universe's dynamics. Furthermore, we find that our model can produce cosmological perturbations that source CMB temperature fluctuations and seed large scale structure statistically consistent (within one standard deviation) with all available data. In particular, for small and (in our convention) negative nonminimal couplings, the scalar spectral index can be as large as n {sub s} ≅ 0.955, which is about one standard deviation lower than the central value quoted by the most recent Planck Collaboration.« less

  3. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-06-10

    STS077-705-012 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Inflatable Antenna Experiment (IAE) portion of the Spartan 207 payload is backdropped over Earth as it continues its inflation process. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  4. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-06-10

    STS077-705-016 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Inflatable Antenna Experiment (IAE) part of the Spartan 207 payload nears completion of its inflation process over California?s Pacific Coast near Santa Barbara and Point Conception. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  5. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-044 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over the Grand Canyon. After the IAE completed its inflation process in free-flight, this view was photographed with a large format still camera. The activity came on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  6. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-06-10

    STS077-705-004 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Inflatable Antenna Experiment (IAE) portion of the Spartan 207 payload begins to inflate, backdropped against clouds over the Pacific Ocean. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  7. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-022 (20 May 1996) --- After leaving the cargo bay of the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload goes through the final stages its inflation process, backdropped over clouds and blue water. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  8. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inflatable liferaft or inflatable buoyant apparatus must be serviced at a facility specifically approved by... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... Operational Readiness, Maintenance, and Inspection of Lifesaving Equipment § 185.730 Servicing of inflatable...

  9. 46 CFR 185.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inflatable liferaft or inflatable buoyant apparatus must be serviced at a facility specifically approved by... apparatus, inflatable life jackets, and inflated rescue boats. 185.730 Section 185.730 Shipping COAST GUARD... Operational Readiness, Maintenance, and Inspection of Lifesaving Equipment § 185.730 Servicing of inflatable...

  10. Inflatable habitation for the lunar base

    NASA Technical Reports Server (NTRS)

    Roberts, M.

    1992-01-01

    Inflatable structures have a number of advantages over rigid modules in providing habitation at a lunar base. Some of these advantages are packaging efficiency, convenience of expansion, flexibility, and psychological benefit to the inhabitants. The relatively small, rigid cylinders fitted to the payload compartment of a launch vehicle are not as efficient volumetrically as a collapsible structure that fits into the same space when packaged, but when deployed is much larger. Pressurized volume is a valuable resource. By providing that resource efficiently, in large units, labor intensive external expansion (such as adding additional modules to the existing base) can be minimized. The expansive interior in an inflatable would facilitate rearrangement of the interior to suite the evolving needs of the base. This large, continuous volume would also relieve claustrophobia, enhancing habitability and improving morale. The purpose of this paper is to explore some of the aspects of inflatable habitat design, including structural, architectural, and environmental considerations. As a specific case, the conceptual design of an inflatable lunar habitat, developed for the Lunar Base Systems Study at the Johnson Space Center, is described.

  11. Testing Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2010-01-01

    The Cosmic Microwave Background (CMB) has provided a wealth of information about the history and physics of the early Universe. Much progress has been made on uncovering the emerging Standard Model of Cosmology by such experiments as COBE and WMAP, and ESA's Planck Surveyor will likely increase our knowledge even more. Despite the success of this model, mysteries remain. Currently understood physics does not offer a compelling explanation for the homogeneity, flatness, and the origin of structure in the Universe. Cosmic Inflation, a brief epoch of exponential expansion, has been posted to explain these observations. If inflation is a reality, it is expected to produce a background spectrum of gravitational waves that will leave a small polarized imprint on the CMB. Discovery of this signal would give the first direct evidence for inflation and provide a window into physics at scales beyond those accessible to terrestrial particle accelerators. I will briefly review aspects of the Standard Model of Cosmology and discuss our current efforts to design and deploy experiments to measure the polarization of the CMB with the precision required to test inflation.

  12. Accidental Kähler moduli inflation

    NASA Astrophysics Data System (ADS)

    Maharana, Anshuman; Rummel, Markus; Sumitomo, Yoske

    2015-09-01

    We study a model of accidental inflation in type IIB string theory where inflation occurs near the inflection point of a small Kähler modulus. A racetrack structure helps to alleviate the known concern that string-loop corrections may spoil Kähler Moduli Inflation unless having a significant suppression via the string coupling or a special brane setup. Also, the hierarchy of gauge group ranks required for the separation between moduli stabilization and inflationary dynamics is relaxed. The relaxation becomes more significant when we use the recently proposed D-term generated racetrack model.

  13. Initial '80s Development of Inflated Antennas

    NASA Technical Reports Server (NTRS)

    Friese, G. J.; Bilyeu, G. D.; Thomas, M.

    1983-01-01

    State of the art technology was considered in the definition and documentation of a membrane surface suitable for use in a space reflector system for long durations in orbit. Requirements for a metal foil-plastic laminate structural element were determined and a laboratory model of a rigidized element to test for strength characteristics was constructed. Characteristics of antennas ranging from 10 meters to 1000 meters were determined. The basic antenna configuration studied consists of (1) a thin film reflector, (2) a thin film cone, (3) a self-rigidizing structural torus at the interface of the cone and reflector; and (4) an inflation system. The reflector is metallized and, when inflated, has a parabolic shape. The cone not only completes the enclosure of the inflatant, but also holds the antenna feed at its apex. The torus keeps the inflated cone-reflector from collapsing inward. Laser test equipment determined the accuracy of the inflated paraboloids.

  14. The deployable, inflatable wing technology demonstrator experiment aircraft looks good during a flig

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The deployable, inflatable wing technology demonstrator experiment aircraft looks good during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  15. 46 CFR 131.865 - Inflatable liferafts and inflatable buoyant apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inflatable liferafts and inflatable buoyant apparatus... SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.865 Inflatable liferafts and inflatable buoyant apparatus. The number of the inflatable liferaft or inflatable buoyant...

  16. 46 CFR 131.865 - Inflatable liferafts and inflatable buoyant apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Inflatable liferafts and inflatable buoyant apparatus... SUPPLY VESSELS OPERATIONS Markings for Fire Equipment and Emergency Equipment § 131.865 Inflatable liferafts and inflatable buoyant apparatus. The number of the inflatable liferaft or inflatable buoyant...

  17. Damage Detection and Self-Repair in Inflatable/Deployable Structures

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Studor, George; Banks, DAvid; Curry, Mark; Broccato, Robert; Jackson, Tom; Champaigne, Kevin; Sottos, Nancy

    2009-01-01

    Inflatable/deployable structures are under consideration for applications as varied as expansion modules for the International Space Station to destinations for space tourism to habitats for the lunar surface. Monitoring and maintaining the integrity of the physical structure is critical, particularly since these structures rely on non-traditional engineering materials such as fabrics, foams, and elastomeric polymers to provide the primary protection for the human crew. The closely related prior concept of monitoring structural integrity by use of built-in or permanently attached sensors has been applied to structures made of such standard engineering materials as metals, alloys, and rigid composites. To effect monitoring of flexible structures comprised mainly of soft goods, however, it will be necessary to solve a different set of problems - especially those of integrating power and data-transfer cabling that can withstand, and not unduly interfere with, stowage and subsequent deployment of the structures. By incorporating capabilities for self-repair along with capabilities for structural health monitoring, successful implementation of these technologies would be a significant step toward semi-autonomous structures, which need little human intervention to maintain. This would not only increase the safety of these structures, but also reduce the inspection and maintenance costs associated with more conventional structures.

  18. Goldstone inflation

    NASA Astrophysics Data System (ADS)

    Croon, Djuna; Sanz, Verónica; Setford, Jack

    2015-10-01

    Identifying the inflaton with a pseudo-Goldstone boson explains the flatness of its potential. Successful Goldstone Inflation should also be robust against UV corrections, such as from quantum gravity: in the language of the effective field theory this implies that all scales are sub-Planckian. In this paper we present scenarios which realise both requirements by examining the structure of Goldstone potentials arising from Coleman-Weinberg contributions. We focus on single-field models, for which we notice that both bosonic and fermionic contributions are required and that spinorial fermion representations can generate the right potential shape. We then evaluate the constraints on non-Gaussianity from higher-derivative interactions, finding that axiomatic constraints on Goldstone boson scattering prevail over the current CMB measurements. The fit to CMB data can be connected to the UV completions for Goldstone Inflation, finding relations in the spectrum of new resonances. Finally, we show how hybrid inflation can be realised in the same context, where both the inflaton and the waterfall fields share a common origin as Goldstones.

  19. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Inspection of Lifesaving Equipment § 122.730 Servicing of inflatable liferafts, inflatable buoyant apparatus... apparatus must be serviced at a facility specifically approved by the Commandant for the particular brand... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD...

  20. 46 CFR 122.730 - Servicing of inflatable liferafts, inflatable buoyant apparatus, inflatable life jackets, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Inspection of Lifesaving Equipment § 122.730 Servicing of inflatable liferafts, inflatable buoyant apparatus... apparatus must be serviced at a facility specifically approved by the Commandant for the particular brand... apparatus, inflatable life jackets, and inflated rescue boats. 122.730 Section 122.730 Shipping COAST GUARD...

  1. INFLATE: INFlate Landing Apparatus Technology

    NASA Astrophysics Data System (ADS)

    Koryanov, V. V. K.; Da-Poian, V. D. P.

    2018-02-01

    Our project, named INFLATE (INFlatable Landing Apparatus Technology), aims at reducing space landing risks and constraints and so optimizing space missions (reducing cost, mass, and risk and in the same time improving performance).

  2. Engineers Jim Murray and Joe Pahle prepare a deployable, inflatable wing technology demonstrator exp

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Engineers Jim Murray and Joe Pahle prepare a deployable, inflatable wing technology demonstrator experiment flown by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  3. The I2000, a deployable, inflatable wing technology demonstrator experiment aircraft, leaves the gro

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The deployable, inflatable wing technology demonstrator experiment aircraft leaves the ground during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.

  4. Dynamic Characterization of an Inflatable Concentrator for Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Leigh, Larry; Hamidzadeh, Hamid; Tinker, Michael L.; Rodriguez, Pedro I. (Technical Monitor)

    2001-01-01

    An inflatable structural system that is a technology demonstrator for solar thermal propulsion and other applications is characterized for structural dynamic behavior both experimentally and computationally. The inflatable structure is a pressurized assembly developed for use in orbit to support a Fresnel lens or inflatable lenticular element for focusing sunlight into a solar thermal rocket engine. When the engine temperature reaches a pre-set level, the propellant is injected into the engine, absorbs heat from an exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is a passively adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Modeling and test activities are complicated by the fact that the polyimide film material used for construction of the inflatable is nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. Modal vibration testing and finite element modeling are described in detail in this paper. The test database is used for validation and modification of the model. This work is highly significant because of the current interest in inflatable structures for space application, and because of the difficulty in accurately modeling such systems.

  5. The Inflatable Poster

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.

    2004-12-01

    Inflatable devices are frequently used in advertising in order to grab the attention of consumers: one sees, for example, 20 foot tall inflatable drink containers, inflatable cell phones, inflatable bubble gum packets, as well as blimps wafting majestically over major sports events. More usefully, inflatable representations of scientifically-interesting items are widely available, including astronauts, space shuttles, dinosaurs and globes and can help to build and inspire the interest of the general public, and in particular children, in such ideas. How can such concepts be adapted to improve poster presentations? Possibility one is to use relevant existing commercially-available inflatables to dress the poster: skeletons, astronauts, globes and so forth. More exciting is to develop custom inflatables that represent three-dimensional renderings of objects that the poster is describing. Examples of individual objects might be an inflatable slab, inflatable avalanche, inflatable plume, or it's larger cousin, the 10 foot high inflatable superplume or 20 foot high inflatable megaplume. More elaborately, inflatables might represent isosurfaces in three-dimensional spherical convection, although other fabrication methods may be more suitable. More simply, inflatable spheres could be imprinted with the planform of convection, geoid, or other spherical fields of geophysical interest. Finally, it should be possible to put an entire poster on an inflatable object, possibly small ones (balloons) to hand out. A major concern, however, is that the presenter may use such techniques to inflate their scientific findings, or to present overblown ideas.

  6. Inflatable Antenna Experiment (IAE)

    NASA Image and Video Library

    1996-05-20

    S77-E-5022 (20 May 1996)--- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  7. Inflatable Antenna Experiment (IAE)

    NASA Image and Video Library

    1996-05-20

    S77-E-5027 (20 May 1996)--- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  8. NASA/DOD Control/Structures Interaction Technology, 1986

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Compiler)

    1987-01-01

    Papers presented at the CSI Technology Conference are given. The conference was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense. The conference is the beginning of a series of annual conferences whose purpose is to report to industry, academia, and government agencies the current status of Control/Structures Interaction technology. The conference program was divided into five sessions: (1) Future spacecraft requirements; Technology issues and impact; (2) DOD special topics; (3) Large space systems technology; (4) Control of flexible structures, and (5) Selected NASA research in control structures interaction.

  9. Soft inflation

    NASA Technical Reports Server (NTRS)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Junichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  10. The Challenges of Integrating Instrumentation with Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.

    2013-01-01

    To realize the National Aeronautics and Space Administration s (NASA) goal of landing humans on Mars, development of technologies to facilitate the landing of heavy payloads are being explored. Current entry, decent, and landing technologies are not practical when utilizing these heavy payloads due to mass and volume constraints dictated by limitations imposed by current launch vehicle fairings. Therefore, past and present technologies are now being considered to provide a mass and volume efficient solution, including Inflatable Aerodynamic Decelerators (IADs) [1]. IAD ground and flight tests are currently being conducted to develop and characterize their performance under flight-like conditions. The integrated instrumentation systems, which are key to the performance characterization in each of these tests, have proven to be a challenge compared to the instrumentation of traditional rigid aeroshells. To overcome these challenges, flexible and embedded sensing systems have been developed, along with improved instrumenting techniques. This development opportunity faces many difficult aspects specific to inflatable structures in extreme environments. These include but are not limited to: physical flexibility, packaging, temperature, structural integration and data acquisition [2]. To better define the instrumentation challenges posed by IAD technology development, a survey was conducted to identify valuable measurements for ground and flight testing. From this survey many sensing technologies were explored, resulting in a down-selection to the most viable prospects. These systems were then iterated upon in design to determine the best integration techniques specific to a 3m and 6m stacked torus IAD. Each sensing system was then integrated and employed to support the IAD testing in the National Full-Scale Aerodynamics Complex 40 x 80 wind tunnel at NASA Ames Research Center in the summer of 2012. Another challenge that has been explored is the data acquisition of IAD

  11. The development of inflatable array antennas

    NASA Technical Reports Server (NTRS)

    Huang, J.

    2001-01-01

    Inflatable array antennas are being developed to significantly reduce the mass, the launch vehicle's stowage volume, and the cost of future spacecraft systems. Three inflatable array antennas, recently developed for spacecraft applications, are a 3.3 m x 1.0 m L-band synthetic-aperture radar (SAR) array, a 1.0 m-diameter X-band telecom reflectarray, and a 3 m-diameter Ka-band telecom reflectarray. All three antennas are similar in construction, and each consists of an inflatable tubular frame that supports and tensions a multi-layer thin-membrane RF radiating surface with printed microstrip patches. The L-band SAR array achieved a bandwidth of 80 MHz, an aperture efficiency of 74%, and a total mass of 15 kg. The X-band reflectarray achieved an aperture efficiency of 37%, good radiation patterns, and a total mass of 1.2 kg (excluding the inflation system). The 3 m Ka-band reflectarray achieved a surface flatness of 0.1 mm RMS, good radiation patterns, and a total mass of 12.8 kg (excluding the inflation system). These antennas demonstrated that inflatable arrays are feasible across the microwave and millimeter-wave spectrums. Further developments of these antennas are deemed necessary, in particular, in the area of qualifying the inflatable structures for space-environment usage.

  12. Inflatable Aerocapture Decelerators for Mars Orbiters

    NASA Technical Reports Server (NTRS)

    Brown, Glen J.; Lingard, J. Stephen; Darley, Matthew G.; Underwood, John C.

    2007-01-01

    A multi-disciplinary research program was recently completed, sponsored by NASA Marshall Space Flight Center, on the subject of aerocapture of spacecraft weighing up to 5 metric tons at Mars. Heavier spacecraft will require deployable drag area beyond the dimensional limits of current and planned launch fairings. This research focuses on the approach of lightweight inflatable decelerators constructed with thin films, using fiber reinforcement and having a temperature limitation of 500 C. Trajectory analysis defines trajectories for a range of low ballistic coefficients for which convective heat flux is compatible with the material set. Fluid-Structure Interaction (FSI) tools are expanded to include the rarified flow regime. Several non-symmetrical configurations are evaluated for their capability to develop lift as part of the necessary trajectory control strategy. Manufacturing technology is developed for 3-D stretch forming of polyimide films and for tailored fiber reinforcement of thin films. Finally, the mass of the decelerator is estimated and compared to the mass of a traditional rigid aeroshell.

  13. First-order inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this talk I will discuss some models for first-order inflation, and emphasize unique signatures that result if inflation is realized in a first-order transition. Before discussing first-order inflation, I will briefly review some of the history of inflation to demonstrate how first-order inflation differs from other models.

  14. Inflatable Antenna Experiment (IAE)

    NASA Image and Video Library

    1996-05-20

    S77-E-5033 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped against a wall of grayish clouds. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  15. Validation of a unique concept for a low-cost, lightweight space-deployable antenna structure

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Bilyeu, G. D.; Veal, G. R.

    1993-01-01

    An experiment conducted in the framework of a NASA In-Space Technology Experiments Program based on a concept of inflatable deployable structures is described. The concept utilizes very low inflation pressure to maintain the required geometry on orbit and gravity-induced deflection of the structure precludes any meaningful ground-based demonstrations of functions performance. The experiment is aimed at validating and characterizing the mechanical functional performance of a 14-m-diameter inflatable deployable reflector antenna structure in the orbital operational environment. Results of the experiment are expected to significantly reduce the user risk associated with using large space-deployable antennas by demonstrating the functional performance of a concept that meets the criteria for low-cost, lightweight, and highly reliable space-deployable structures.

  16. High-Resolution AUV Mapping Reveals Structural Details of Submarine Inflated Lava Flows

    NASA Astrophysics Data System (ADS)

    Paduan, J.; Clague, D. A.; Caress, D. W.; Thomas, H.; Thompson, D.; Conlin, D.

    2009-12-01

    The MBARI mapping AUV D. Allan B. has now been used to map volcanic terrain at mid-ocean ridges, back-arc spreading centers, and seamounts. These include the summit caldera and upper south rift zone at Axial Volcano, the summit of Davidson Seamount, the Endeavour hydrothermal fields, the Northeast Lau Spreading Center and West Mata Volcano, and, most recently, the CoAxial, North Cleft and North Gorda historic eruption sites on the Juan de Fuca and Gorda Ridges. ROV and submersible dives at most of these sites have provided groundtruth for the textures and features revealed in the roughly 1-m resolution maps. A prominent feature in the maps from four of the sites are inflated flows that did not deflate or drain. These resemble subaerial tumuli but differ in being located on level terrain, apparently atop or very near eruptive vents instead of being in the distal portions of flows. The largest inflated flow at Axial Volcano is on the caldera floor. The main part is 500 by 300 m, and up to 30 m high, with a lobe that extends another 750 m in a sinuous path. It and two nearby, medium-sized inflated flows were first described from sidescan imagery and a submersible dive by Appelgate and Embley (Bull. Volcanol., 54, 447-458, 1992). The AUV maps show clearly the smooth, gently domed relief of the large inflated flow and its sinuous shape on the seafloor, the medium-sized nearby inflated flows, and several additional smaller ones. Particularly striking is a network of 4 to 10 m deep cracks along the crest of each inflation. The cracks occur 30 to 50 m from the margins on all sides of the wider parts of the inflated flows, and become medial cracks along the entire length of the narrow parts, which are nearly triangular in cross-section. An inflation pit 35 m in diameter has a depth equal to the surrounding lava fields. ROV Doc Ricketts dove on these flows in August 2009 and photographed the deeply cracked, uplifted, once flat-lying lineated and ropy sheet flows that form

  17. Creep Burst Testing of a Woven Inflatable Module

    NASA Technical Reports Server (NTRS)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  18. Apparatus for integrating a rigid structure into a flexible wall of an inflatable structure

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor); Patterson, Ross M. (Inventor); Spexarth, Gary R. (Inventor)

    2009-01-01

    For an inflatable structure having a flexible outer shell or wall structure having a flexible restraint layer comprising interwoven, load-bearing straps, apparatus for integrating one or more substantially rigid members into the flexible shell. For each rigid member, a corresponding opening is formed through the flexible shell for receiving the rigid member. A plurality of connection devices are mounted on the rigid member for receiving respective ones of the load-bearing straps. In one embodiment, the connection devices comprise inner connecting mechanisms and outer connecting mechanisms, the inner and outer connecting mechanisms being mounted on the substantially rigid structure and spaced along a peripheral edge portion of the structure in an interleafed array in which respective outer connecting mechanisms are interposed between adjacent pairs of inner connecting mechanisms, the outer connecting mechanisms projecting outwardly from the peripheral edge portion of the substantially rigid structure beyond the adjacent inner connecting mechanisms to form a staggered array of connecting mechanisms extending along the panel structure edge portion. In one embodiment, the inner and outer connecting mechanisms form part of an integrated, structure rotatably mounted on the rigid member peripheral edge portion.

  19. Reliability Testing of NASA Piezocomposite Actuators

    NASA Technical Reports Server (NTRS)

    Wilkie, W.; High, J.; Bockman, J.

    2002-01-01

    NASA Langley Research Center has developed a low-cost piezocomposite actuator which has application for controlling vibrations in large inflatable smart space structures, space telescopes, and high performance aircraft. Tests show the NASA piezocomposite device is capable of producing large, directional, in-plane strains on the order of 2000 parts-per-million peak-to-peak, with no reduction in free-strain performance to 100 million electrical cycles. This paper describes methods, measurements, and preliminary results from our reliability evaluation of the device under externally applied mechanical loads and at various operational temperatures. Tests performed to date show no net reductions in actuation amplitude while the device was moderately loaded through 10 million electrical cycles. Tests were performed at both room temperature and at the maximum operational temperature of the epoxy resin system used in manufacture of the device. Initial indications are that actuator reliability is excellent, with no actuator failures or large net reduction in actuator performance.

  20. The Development of Solar Sail Propulsion for NASA Science Missions to the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E, IV; Johnson, Charles Les

    2004-01-01

    This paper examines recent assessments of the technology challenges facing solar sails, identifies the systems and technologies needing development, and the approach employed by NASA's In-space Propulsion Program in NASA to achieve near term products that move this important technology from low technology readiness level (TRL) toward the goal of application to science missions in near earth space and beyond. The status of on-going efforts to design, build, and test ground demonstrators of alternate approaches to structures (inflatable versus rigid), membrane materials, optical shape sensing, and attitude control will be presented along with planned future investments.

  1. Lunar In Situ Materials-Based Habitat Technology Development Efforts at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Bodiford, Melanie P.; Burks, K. H.; Perry M. R.; Cooper, R. W.; Fiske, M. R.

    2006-01-01

    For long duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them including habitats, laboratories, berms, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Habitat Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and planned efforts for FY06 will also be presented.

  2. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-094 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over the Mississippi River and metropolitan St. Louis. The metropolitan area lies just below the gold-colored Spartan at bottom of photo. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  3. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2005-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook are solicited from the spacecraft structural dynamics testing community.

  4. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2004-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook is solicited from the spacecraft structural dynamics testing community.

  5. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  6. IAE - Inflatable Antenna Experiment

    NASA Image and Video Library

    1996-05-20

    STS077-150-129 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over the Atlantic Ocean and Hampton Roads, Virginia. (Hold photograph vertically with land mass at top.) Virginia Beach and part of Newport News can be delineated in the upper left quadrant of the frame. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.

  7. Application of Finite Element Method to Analyze Inflatable Waveguide Structures

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.

    1998-01-01

    A Finite Element Method (FEM) is presented to determine propagation characteristics of deformed inflatable rectangular waveguide. Various deformations that might be present in an inflatable waveguide are analyzed using the FEM. The FEM procedure and the code developed here are so general that they can be used for any other deformations that are not considered in this report. The code is validated by applying the present code to rectangular waveguide without any deformations and comparing the numerical results with earlier published results.

  8. Analysis of the structural behaviour of colonic segments by inflation tests: Experimental activity and physio-mechanical model.

    PubMed

    Carniel, Emanuele L; Mencattelli, Margherita; Bonsignori, Gabriella; Fontanella, Chiara G; Frigo, Alessandro; Rubini, Alessandro; Stefanini, Cesare; Natali, Arturo N

    2015-11-01

    A coupled experimental and computational approach is provided for the identification of the structural behaviour of gastrointestinal regions, accounting for both elastic and visco-elastic properties. The developed procedure is applied to characterize the mechanics of gastrointestinal samples from pig colons. Experimental data about the structural behaviour of colonic segments are provided by inflation tests. Different inflation processes are performed according to progressively increasing top pressure conditions. Each inflation test consists of an air in-flow, according to an almost constant increasing pressure rate, such as 3.5 mmHg/s, up to a prescribed top pressure, which is held constant for about 300 s to allow the development of creep phenomena. Different tests are interspersed by 600 s of rest to allow the recovery of the tissues' mechanical condition. Data from structural tests are post-processed by a physio-mechanical model in order to identify the mechanical parameters that interpret both the non-linear elastic behaviour of the sample, as the instantaneous pressure-stretch trend, and the time-dependent response, as the stretch increase during the creep processes. The parameters are identified by minimizing the discrepancy between experimental and model results. Different sets of parameters are evaluated for different specimens from different pigs. A statistical analysis is performed to evaluate the distribution of the parameters and to assess the reliability of the experimental and computational activities. © IMechE 2015.

  9. Quantitative NDE of Composite Structures at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.

    2015-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.

  10. Hill crossing during preheating after hilltop inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antusch, Stefan; Nolde, David; Orani, Stefano, E-mail: stefan.antusch@unibas.ch, E-mail: david.nolde@unibas.ch, E-mail: stefano.orani@unibas.ch

    2015-06-01

    In ''hilltop inflation'', inflation takes place when the inflaton field slowly rolls from close to a maximum of its potential (i.e. the ''hilltop'') towards its minimum. When the inflaton potential is associated with a phase transition, possible topological defects produced during this phase transition, such as domain walls, are efficiently diluted during inflation. It is typically assumed that they also do not reform after inflation, i.e. that the inflaton field stays on its side of the ''hill'', finally performing damped oscillations around the minimum of the potential. In this paper we study the linear and the non-linear phases of preheatingmore » after hilltop inflation. We find that the fluctuations of the inflaton field during the tachyonic oscillation phase grow strong enough to allow the inflaton field to form regions in position space where it crosses ''over the top of the hill'' towards the ''wrong vacuum''. We investigate the formation and behaviour of these overshooting regions using lattice simulations: rather than durable domain walls, these regions form oscillon-like structures (i.e. localized bubbles that oscillate between the two vacua) which should be included in a careful study of preheating in hilltop inflation.« less

  11. Wirelessly Controllable Inflated Electroactive Polymer (EAP) Reflectors

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea

    2005-01-01

    Inflatable membrane reflectors are attractive for deployable, large aperture, lightweight optical and microwave systems in micro-gravity space environment. However, any fabrication flaw or temperature variation may results in significant aberration of the surface. Even for a perfectly fabricated inflatable membrane mirror with uniform thickness, theory shows it will form a Hencky curve surface but a desired parabolic or spherical surface. Precision control of the surfaceshape of extremely flexible membrane structures is a critical challenge for the success of this technology. Wirelessly controllable inflated reflectors made of electroactive polymers (EAP) are proposed in this paper. A finite element model was configured to predict the behavior of the inflatable EAP membranes under pre-strains, pressures and distributed electric charges on the surface. To explore the controllability of the inflatable EAP reflectors, an iteration algorism was developed to find the required electric actuation for correcting the aberration of the Hencky curve to the desired parabolic curve. The correction capability of the reflectors with available EAP materials was explored numerically and is presented in this paper.

  12. NASA Work Breakdown Structure (WBS) Handbook

    NASA Technical Reports Server (NTRS)

    Fleming, Jon F.; Poole, Kenneth W.

    2016-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements. The WBS and WBS dictionary are effective management processes for planning, organizing, and administering NASA programs and projects. The guidance contained in this document is applicable to both in-house, NASA-led effort and contracted effort. It assists management teams from both entities in fulfilling necessary responsibilities for successful accomplishment of project cost, schedule, and technical goals. Benefits resulting from the use of an effective WBS include, but are not limited to: providing a basis for assigned project responsibilities, providing a basis for project schedule and budget development, simplifying a project by dividing the total work scope into manageable units, and providing a common reference for all project communication.

  13. Bigelow Expandable Activity Module (BEAM) - ISS Inflatable Module Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Dasgupta, Rajib; Munday, Steve; Valle, Gerard D.

    2014-01-01

    INNOVATION: BEAM is a pathway project demonstrating the design, fabrication, test, certification, integration, operation, on-orbit performance, and disposal of the first ever man-rated space inflatable structure. The groundwork laid through the BEAM project will support developing and launching a larger inflatable space structure with even greater mass per volume (M/V) advantages need for longer space missions. OVERVIEW: Inflatable structures have been shown to have much lower mass per volume ratios (M/V) when compared with conventional space structures. BEAM is an expandable structure, launched in a packed state, and then expanded once on orbit. It is a temporary experimental module to be used for gathering structural, thermal, and radiation data while on orbit. BEAM will be launched on Space X-8, be extracted from the dragon trunk, and will attach to ISS at Node 3- Aft. BEAM performance will be monitored over a two-year period and then BEAM will be jettison using the SSRMS.

  14. Operation of a Thin-Film Inflatable Concentrator System Demonstrated in a Solar Thermal Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Thin-film inflatable solar concentrators offer significant advantages in comparison to stateof- the-art rigid panel concentrators, including low weight, low stowage volume, and simple gas deployment. From June 10 to 22, 2001, the ElectroMagnetic Radiation Control Experiment (EMRCE) Team used simulated solar energy to demonstrate the operation of an inflatable concentrator system at NASA Glenn Research Center's Tank 6 thermal vacuum facility. The joint Government/industry test team was composed of engineers and technicians from Glenn, the Air Force Research Laboratory, SRS Technologies, and ATK Thiokol Propulsion. The research hardware consisted of the following: 1) A thin-film inflatable concentrator; 2) The hexapod pointing and focus control system; 3) Two rigidized support struts using two candidate technologies - ultraviolet-rigidized glass and radiation-cured isographite.

  15. Development of hydrogen resistant structural alloy NASA-23

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.; Mcpherson, W. B.; Kuruvilla, A. K.; Chen, P. S.; Panda, B.

    1993-01-01

    Hydrogen-resistant alloy NASA-23 was developed specifically as a structural alloy for application in liquid propulsion systems that use hydrogen fuel. NASA-23 was designed to be similar to Alloy 718 in strength, ductility, and corrosion resistance, but with superior resistance to hydrogen environment embrittlement. The alloy is readily processed; it can be both hot and cold worked and is castable and weldable. A material property data base is being generated for both cast and wrought NASA-23. This paper will present the status of alloy development and discuss potential applications in propulsion systems.

  16. Static and Dynamic Model Update of an Inflatable/Rigidizable Torus Structure

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, mercedes C.

    2006-01-01

    The present work addresses the development of an experimental and computational procedure for validating finite element models. A torus structure, part of an inflatable/rigidizable Hexapod, is used to demonstrate the approach. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with optimization is used to modify key model parameters. Static test results are used to update stiffness parameters and dynamic test results are used to update the mass distribution. Updated parameters are computed using gradient and non-gradient based optimization algorithms. Results show significant improvements in model predictions after parameters are updated. Lessons learned in the areas of test procedures, modeling approaches, and uncertainties quantification are presented.

  17. The interactive bending wrinkling behaviour of inflated beams

    PubMed Central

    Liu, Y. P.; Tan, H. F.; Wadee, M. K.

    2016-01-01

    A model is proposed based on a Fourier series method to analyse the interactive bending wrinkling behaviour of inflated beams. The whole wrinkling evolution is tracked and divided into three stages by identifying the bifurcations of the equilibrium path. The critical wrinkling and failure moments of the inflated beam can then be predicted. The global–local interactive buckling pattern is elucidated by the proposed theoretical model and also verified by non-contact experimental tests. The effects of geometric parameters, internal pressure and boundary conditions on the buckling of inflated beams are investigated finally. The results reveal that the interactive buckling characteristics of an inflated beam under bending are more sensitive to the dimensions of the structure and boundary conditions. We find that for beams which are simply supported at both ends or clamped and simply supported, boundary conditions may prevent the wrinkling formation. The results provide significant support for our understanding of the bending wrinkling behaviour of inflated beams. PMID:27713665

  18. Regulation of exocytotic fusion by cell inflation.

    PubMed Central

    Solsona, C; Innocenti, B; Fernández, J M

    1998-01-01

    We have inflated patch-clamped mast cells by 3.8 +/- 1.6 times their volume by applying a hydrostatic pressure of 5-15 cm H2O to the interior of the patch pipette. Inflation did not cause changes in the cell membrane conductance and caused only a small reversible change in the cell membrane capacitance (36 +/- 5 fF/cm H2O). The specific cell membrane capacitance of inflated cells was found to be 0.5 microF/cm2. High-resolution capacitance recordings showed that inflation reduced the frequency of exocytotic fusion events by approximately 70-fold, with the remaining fusion events showing an unusual time course. Shortly after the pressure was returned to 0 cm H2O, mast cells regained their normal size and appearance and degranulated completely, even after remaining inflated for up to 60 min. We interpret these observations as an indication that inflated mast cells reversibly disassemble the structures that regulate exocytotic fusion. Upon returning to its normal size, the cell cytosol reassembles the fusion pore scaffolds and allows exocytosis to proceed, suggesting that exocytotic fusion does not require soluble proteins. Reassembly of the fusion pore can be prevented by inflating the cells with solutions containing the protease pronase, which completely blocked exocytosis. We also interpret these results as evidence that the activity of the fusion pore is sensitive to the tension of the plasma membrane. PMID:9533718

  19. Distinguishing between extra natural inflation and natural inflation after BICEP2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohri, Kazunori; Lim, C.S.; Lin, Chia-Min, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp

    2014-08-01

    In this paper, we carefully calculated the tensor-to-scalar ratio, the running spectral index, and the running of running spectrum for (extra) natural inflation in order to compare with recent BICEP2 data, PLANCK satellite data and future 21 cm data. We discovered that the prediction for running spectral index and the running of running spectrum in natural inflation is different from that in the case of extra natural inflation. Near future observation for the running spectral index can only provide marginal accuracy which may not allow us distinguishing between extra natural inflation from natural inflation clearly unless the experimental accuracy canmore » be further improved.« less

  20. Open inflation in the landscape

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Linde, Andrei; Naruko, Atsushi; Sasaki, Misao; Tanaka, Takahiro

    2011-08-01

    the structure of the string theory potentials and the duration of the last stage of inflation.

  1. The Other Inflation

    ERIC Educational Resources Information Center

    Aristides

    1976-01-01

    The other inflation is grade inflation, the label affixed to the indisputable rise in the grade-point averages of undergraduates at public and private, elite and community colleges and universities across the country. The effects of grade inflation upon academic performance were assessed. (Author/RK)

  2. Inflation physics from the cosmic microwave background and large scale structure

    DOE PAGES

    Abazajian, K. N.; Arnold, K.; Austermann, J.; ...

    2014-06-26

    Here, fluctuations in the intensity and polarization of the cosmic microwave background (CMB) and the large-scale distribution of matter in the universe each contain clues about the nature of the earliest moments of time. The next generation of CMB and large-scale structure (LSS) experiments are poised to test the leading paradigm for these earliest moments—the theory of cosmic inflation—and to detect the imprints of the inflationary epoch, thereby dramatically increasing our understanding of fundamental physics and the early universe. A future CMB experiment with sufficient angular resolution and frequency coverage that surveys at least 1% of the sky to amore » depth of 1 uK-arcmin can deliver a constraint on the tensor-to-scalar ratio that will either result in a 5σ measurement of the energy scale of inflation or rule out all large-field inflation models, even in the presence of foregrounds and the gravitational lensing B -mode signal. LSS experiments, particularly spectroscopic surveys such as the Dark Energy Spectroscopic Instrument, will complement the CMB effort by improving current constraints on running of the spectral index by up to a factor of four, improving constraints on curvature by a factor of ten, and providing non-Gaussianity constraints that are competitive with the current CMB bounds.« less

  3. Space Structure Development

    NASA Technical Reports Server (NTRS)

    Smith, Thomas

    2015-01-01

    The duration of my Summer 2015 Internship Tour at NASA's Johnson Space Center was spent working in the Structural Engineering Division's Structures Branch. One of the two main roles of the Structures Branch, ES2, is to ensure the structural integrity of spacecraft vehicles and the structural subsystems needed to support those vehicles. The other main objective of this branch is to develop the lightweight structures that are necessary to take humans beyond Low-Earth Orbit. Within ES2, my four projects involved inflatable space structure air bladder material testing; thermal and impact material testing for spacecraft windows; structural analysis on a joint used in the Boeing CST-100 airbag system; and an additive manufacturing design project.

  4. Supernatural inflation: inflation from supersymmetry with no (very) small parameters

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; SoljačiĆ, Marin; Guth, Alan H.

    1996-02-01

    Most models of inflation have small parameters, either to guarantee sufficient inflation or the correct magnitude of the density perturbations. In this paper we show that, in supersymmetric theories with weak-scale supersymmetry breaking, one can construct viable inflationary models in which the requisite parameters appear naturally in the form of the ratio of mass scales that are already present in the theory. Successful inflationary models can be constructed from the flat-direction fields of a renormalizable supersymmetric potential, and such models can be realized even in the context of a simple GUT extension of the MSSM. We evade naive ``naturalness'' arguments by allowing for more than one field to be relevant to inflation, as in ``hybrid inflation'' models, and we argue that this is the most natural possibility if inflation fields are to be associated with flat direction fields of a supersymmetric theory. Such models predict a very low Hubble constant during inflation, of order 103-104 GeV, a scalar density perturbation index n which is very close to or greater than unity, and negligible tensor perturbations. In addition, these models lead to a large spike in the density perturbation spectrum at short wavelengths.

  5. Thermal history of the universe after inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Scott, E-mail: gswatson@syr.edu

    When did the universe thermalize? In this talk I review the status of this issue and its importance in establishing the expected properties of dark matter, the growth of large-scale structure, and the viability of inflation models when confronted with CMB observations. I also present a novel approach to tackling the theoretical challenges surrounding inflationary (p)reheating, which seeks to extend past work on the Effective Field Theory of Inflation to the time of reheating.

  6. Thermal history of the universe after inflation

    NASA Astrophysics Data System (ADS)

    Watson, Scott

    2016-06-01

    When did the universe thermalize? In this talk I review the status of this issue and its importance in establishing the expected properties of dark matter, the growth of large-scale structure, and the viability of inflation models when confronted with CMB observations. I also present a novel approach to tackling the theoretical challenges surrounding inflationary (p)reheating, which seeks to extend past work on the Effective Field Theory of Inflation to the time of reheating.

  7. Environmental Effects on Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Kenner, WInfred S.; Jones, Thomas C.; Doggett, William R.; Duncan, Quinton; Plant, James

    2015-01-01

    An experimental study of the effects of environmental temperature and humidity conditions on long-term creep displacement data of high strength Kevlar and VectranTM woven fabric webbings under constant load for inflatable structures is presented. The restraint layer of an inflatable structure for long-duration space exploration missions is designed to bear load and consists of an assembly of high strength webbings. Long-term creep displacement data of webbings can be utilized by designers to validate service life parameters of restraint layers of inflatable structures. Five groups of high-strength webbings were researched over a two year period. Each group had a unique webbing length, load rating, applied load, and test period. The five groups consisted of 1.) 6K Vectran webbings loaded to 49% ultimate tensile strength (UTS), 2.) 6K Vectran webbings loaded to 55% UTS, 3.) 12.5K Vectran webbings loaded to 22% UTS, 4.) 6K Kevlar webbings loaded to 40% and 43% UTS, and 5.) 6K Kevlar webbings loaded to 48% UTS. Results show that all webbing groups exhibit the initial two stages of three of a typical creep curve of an elastic material. Results also show that webbings exhibit unique local wave patterns over the duration of the test period. Data indicate that the local pattern is primarily generated by daily variations in relative humidity values within the test facility. Data indicate that after a three to six month period, where webbings reach a steady-state creep condition, an annual sinusoidal displacement pattern is exhibited, primarily due to variations in annual mean temperature values. Data indicates that variations in daily temperature values and annual mean humidity values have limited secondary effects on creep displacement behavior. Results show that webbings in groups 2 and 5 do not exhibit well defined annual displacement patterns because the magnitude of the applied loads cause large deformations, and data indicate that material yielding within a webbing

  8. Soft inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Berkin, Andrew L.; Maeda, Kei-Ichi; Yokoyama, Jun'ichi

    1990-01-01

    The cosmology resulting from two coupled scalar fields was studied, one which is either a new inflation or chaotic type inflation, and the other which has an exponentially decaying potential. Such a potential may appear in the conformally transformed frame of generalized Einstein theories like the Jordan-Brans-Dicke theory. The constraints necessary for successful inflation are examined. Conventional GUT models such as SU(5) were found to be compatible with new inflation, while restrictions on the self-coupling constant are significantly loosened for chaotic inflation.

  9. Self-Healing, Inflatable, Rigidizable Shelter

    NASA Technical Reports Server (NTRS)

    Haight, Andrea; Gosau, Jan-Michael; Dixit, Anshu; Gleeson, Dan

    2012-01-01

    An inflatable, rigidizable shelter system was developed based on Rigi dization on Command (ROC) technology incorporating not only the requ ired low-stowage volume and lightweight character achieved from an i nflatable/rigidizable system, but also a self-healing foam system inc orporated between the rigidizable layers of the final structure to m inimize the damage caused by any punctures to the structure.

  10. An Overview-NASA LeRC Structures Program

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1997-01-01

    The Structures and Acoustics Division of the NASA Lewis Research Center has its genesis dating back to 1943. It has been an independent Division at Lewis since 1979. Its two primary capabilities are performance and life analysis of static and dynamic systems such as those found in aircraft and spacecraft propulsion systems and experimental verification of these analyses. Research is conducted in-house, through university grants and contracts, and through cooperative programs with industry. Our work directly supports NASA's Advanced Subsonic Technology (AST), Smart Green Engine, Fast Quiet Engine, High-Temperature Materials and Processing (HiTEMP), Hybrid Hyperspeed Propulsion, Rotorcraft, High-Speed Research (HSR), and Aviation Safety Program (AvSP). A general overview is given discussing these programs and other technologies that are being developed at NASA LeRC.

  11. Design and Flight Testing of an Inflatable Sunshield for the NGST

    NASA Technical Reports Server (NTRS)

    Adams, Michael L.; Culver, Harry L.; Kaufman, David M.; Pacini, Linda K.; Sturm, James; Lienard, Sebastien

    2000-01-01

    The Next Generation Space Telescope (NGST) mission is scheduled to launch in 2007 and be stationed at L2 for a mission life of ten years. The large aperture mirror and optical detectors aboard NGST require shielding from the constant solar energy seen at this orbit. The government reference NGST design, called the Yardstick, baselined a sunshield using an inflation deployment system. During the formulation phase, NGST is spending approximately 25% of the overall budget to foster the development of new technology. The goal is to develop and demonstrate enabling or enhancing technology and provide innovative solutions for the design of the NGST observatory. Inflatable technology falls in the category of enhancing technology due to its advantages in weight, stowed volume and cost. The Inflatable Sunshield in Space (ISIS) flight experiment will provide a realistic space flight demonstration of an inflatable sunshield. The supporting technology development program will provide an information base for the design, manufacture, assembly and testing of large thin membranes and inflatable structural elements for space structures. The ISIS experiment will demonstrate the feasibility of using inflatable technology to passively cool optical systems for NGST and provide correlation between analytical predictions and on orbit results. The experiment will be performed on a Hitchhiker/Space Shuttle mission in late 2001. The ISIS mission is an effort to address several major technical challenges of the NGST inflatable sunshield, namely controlled inflation deployment, plenarity and separation of large stretched membranes, space rigidization of inflatable booms, and dynamic modeling and simulation. This paper will describe the design of the flight experiment and the testing to be performed on-orbit.

  12. Probing Inflation via Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2008-01-01

    The Cosmic Microwave Background (CMB) has been a rich source of information about the early Universe. Detailed measurements of its spectrum and spatial distribution have helped solidify the Standard Model of Cosmology. However, many questions still remain. Standard Cosmology does not explain why the early Universe is geometrically flat, expanding, homogenous across the horizon, and riddled with a small anisotropy that provides the seed for structure formation. Inflation has been proposed as a mechanism that naturally solves these problems. In addition to solving these problems, inflation is expected to produce a spectrum of gravitational waves that will create a particular polarization pattern on the CMB. Detection of this polarized signal is a key test of inflation and will give a direct measurement of the energy scale at which inflation takes place. This polarized signature of inflation is expected to be -9 orders of magnitude below the 2.7 K monopole level of the CMB. This measurement will require good control of systematic errors, an array of many detectors having the requisite sensitivity, and a reliable method for removing polarized foregrounds, and nearly complete sky coverage. Ultimately, this measurement is likely to require a space mission. To this effect, technology and mission concept development are currently underway.

  13. First-order inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In the original proposal, inflation occurred in the process of a strongly first-order phase transition. This model was soon demonstrated to be fatally flawed. Subsequent models for inflation involved phase transitions that were second-order, or perhaps weakly first-order; some even involved no phase transition at all. Recently the possibility of inflation during a strongly first-order phase transition has been revived. In this paper, some models for first-order inflation are discussed, and unique signatures that result if inflation is realized in a first-order transition are emphasized. Some of the history of inflation is reviewed to demonstrate how first-order inflation differs from other models.

  14. Structural Analysis and Test Comparison of a 20-Meter Inflation-Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Mann, Troy; Lichodziejewski, David; Derbes, Billy

    2006-01-01

    Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive test program was implemented to advance the technology readiness level of the solar sail design. These tests consisted of solar sail component, subsystem, and sub-scale system ground tests that simulated the aspects of the space environment such as vacuum and thermal conditions. In July 2005, a 20-m four-quadrant solar sail system test article was tested in the NASA Glenn Research Center s Space Power Facility to measure its static and dynamic structural responses. Key to the maturation of solar sail technology is the development of validated finite element analysis (FEA) models that can be used for design and analysis of solar sails. A major objective of the program was to utilize the test data to validate the FEA models simulating the solar sail ground tests. The FEA software, ABAQUS, was used to perform the structural analyses to simulate the ground tests performed on the 20-m solar sail test article. This paper presents the details of the FEA modeling, the structural analyses simulating the ground tests, and a comparison of the pretest and post-test analysis predictions with the ground test results for the 20-m solar sail system test article. The structural responses that are compared in the paper include load-deflection curves and natural frequencies for the beam structural assembly and static shape, natural frequencies, and mode shapes for the solar sail membrane. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were unmeasured initial conditions in the test set-up.

  15. Structural Modeling of a Five-Meter Thin Film Inflatable Antenna/Concentrator With Rigidized Support Struts

    NASA Technical Reports Server (NTRS)

    Smalley, Kurt B.; Tinker, Michael L.

    2001-01-01

    Dynamic characterization of a non-rigidized thin film inflatable antenna/solar concentrator structure with rigidized composite support struts is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of: (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large 5-m lightweight inflatable are identified, including considerable difficulty in obtaining convergence in the nonlinear pressurization solution. It was found that the extremely thin polyimide film material (.001 in or I mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. It was concluded that the ratios of film thickness to other geometric dimensions such as torus cross-sectional and ring diameter and lenticular diameter are the critical parameters for convergence of the pressurization procedure. Comparison of finite element predictions for frequency and mode shapes with experimental results indicated reasonable agreement considering the complexity of the structure, the film-to-air interaction, and the nonlinear material properties of the film. It was also concluded that analysis should be done using different finite element to codes to determine if a more robust and stable solution can be obtained.

  16. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  17. The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, part 2

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R. (Compiler)

    1993-01-01

    This publication is a compilation of the papers presented at the Fifth NASA/DoD Controls-Structures Interaction (CSI) Technology Conference held in Lake Tahoe, Nevada, March 3-5, 1992. The conference, which was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense, was organized by the NASA Langley Research Center. The purpose of this conference was to report to industry, academia, and government agencies on the current status of controls-structures interaction technology. The agenda covered ground testing, integrated design, analysis, flight experiments and concepts.

  18. The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, part 1

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R. (Compiler)

    1993-01-01

    This publication is a compilation of the papers presented at the Fifth NASA/DoD Controls-Structures Interaction (CSI) Technology Conference held in Lake Tahoe, Nevada, March 3-5, 1992. The conference, which was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense, was organized by the NASA Langley Research Center. The purpose of this conference was to report to industry, academia, and government agencies on the current status of controls-structures interaction technology. The agenda covered ground testing, integrated design, analysis, flight experiments and concepts.

  19. How thermal inflation can save minimal hybrid inflation in supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimopoulos, Konstantinos; Owen, Charlotte

    2016-10-12

    Minimal hybrid inflation in supergravity has been ruled out by the 2015 Planck observations because the spectral index of the produced curvature perturbation falls outside observational bounds. To resurrect the model, a number of modifications have been put forward but many of them spoil the accidental cancellation that resolves the η-problem and require complicated Kähler constructions to counterbalance the lost cancellation. In contrast, in this paper the model is rendered viable by supplementing the scenario with a brief period of thermal inflation, which follows the reheating of primordial inflation. The scalar field responsible for thermal inflation requires a large non-zeromore » vacuum expectation value (VEV) and a flat potential. We investigate the VEV of such a flaton field and its subsequent effect on the inflationary observables. We find that, for large VEV, minimal hybrid inflation in supergravity produces a spectral index within the 1-σ Planck bound and a tensor-to-scalar ratio which may be observable in the near future. The mechanism is applicable to other inflationary models.« less

  20. Attractors, universality, and inflation

    NASA Astrophysics Data System (ADS)

    Downes, Sean; Dutta, Bhaskar; Sinha, Kuver

    2012-11-01

    Studies of the initial conditions for inflation have conflicting predictions from exponential suppression to inevitability. At the level of phase space, this conflict arises from the competing intuitions of CPT invariance and thermodynamics. After reviewing this conflict, we enlarge the ensemble beyond phase space to include scalar potential data. We show how this leads to an important contribution from inflection point inflation, enhancing the likelihood of inflation to a power law, 1/Ne3. In the process, we emphasize the attractor dynamics of the gravity-scalar system and the existence of universality classes from inflection point inflation. Finally, we comment on the predictivity of inflation in light of these results.

  1. Inflatable lenses for space photovoltaic concentrator arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Neill, M.J.; Piszczor, M.F.

    1997-12-31

    For 12 years, ENTECH and NASA Lewis have been developing Fresnel lens concentrator technology for space power applications. ENTECH provided the point-focus mini-dome lenses for the PASP+ array, launched in 1994. These silicone lenses performed well on orbit, with only about 3% optical performance loss after 1 year in elliptical orbit, with high radiation, atomic oxygen, and ultraviolet exposure. The only protection for these silicone lenses was a thin-film coating provided by OCLI. ENTECH also provided the line-focus lenses for the SCARLET 1 and SCARLET 2 arrays in 1995 and 1997, respectively. These lenses are laminated assemblies, with protective ceriamore » glass superstrates over the silicone lens. In March 1997, ENTECH and NASA Lewis began development of inflatable Fresnel lenses, to achieve lower weight, smaller launch volume, reduced cost, less fragility, and other advantages. This paper summarizes the new concentrator approach, including key program results to date.« less

  2. A Review of Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acostia, Roberto J.

    2006-01-01

    NASA s plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna

  3. A Review of Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acosta, J.

    2007-01-01

    NASA's plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna

  4. A Low Cost Inflatable CubeSat Drag Brake Utilizing Sublimation

    NASA Astrophysics Data System (ADS)

    Horn, Adam Charles

    The United Nations Inter-Agency Debris Coordination Committee has adopted a 25-year post-mission lifetime requirement for any satellite orbiting below 2000 km in order to mitigate the growing orbital debris threat. Low-cost CubeSats have become important satellite platforms with startling capabilities, but this guideline restricts them to altitudes below 600 km because they remain in orbit too long. In order to enable CubeSat deployments at higher release altitudes, a low-cost, ultra-reliable deorbit device is needed. This thesis reports on efforts to develop a deployable and passively inflatable drag brake that can deorbit from higher orbital altitudes, thereby complying with the 25-year orbital lifetime guideline. On the basis of concepts first implemented during the NASA Echo Satellite Project, this study investigated the design of an inflatable CubeSat drag device that utilizes sublimating benzoic acid powder as the inflation propellant. Testing has focused on demonstrating the functionality of charging a Mylar drag brake bladder with appropriate quantities of benzoic acid powder, and the exposure to a controlled-temperature vacuum chamber causing the bladder to inflate. Although results show a measureable increase in internal pressure when introduced to anticipated orbital temperatures, a significant air-derived expansion prior to sublimation was encountered due to the undetectable volume of ambient residual air in the fabricated membrane bladders. These tests have demonstrated the feasibility of this approach, thereby demonstrating that this concept can create a potentially smaller and less expensive drag device, eliminating inflation gas tanks and valves. In that way, this system can provide a low-cost, miniaturized system that reduces a CubeSat's orbital lifetime to less than 25 years, when placed at higher orbital altitude.

  5. Quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1998-04-01

    We show that a large class of two-field models of single-bubble open inflation does not lead to infinite open universes, as was previously thought, but to an ensemble of very large but finite inflating ``islands.'' The reason is that the quantum tunneling responsible for the nucleation of the bubble does not occur simultaneously along both field directions and equal-time hypersurfaces in the open universe are not synchronized with equal-density or fixed-field hypersurfaces. The most probable tunneling trajectory corresponds to a zero value of the inflaton field; large values, necessary for the second period of inflation inside the bubble, only arise as localized fluctuations. The interior of each nucleated bubble will contain an infinite number of such inflating regions of comoving size of order γ-1, where γ is the supercurvature eigenvalue, which depends on the parameters of the model. Each one of these islands will be a quasi-open universe. Since the volume of the hyperboloid is infinite, inflating islands with all possible values of the field at their center will be realized inside of a single bubble. We may happen to live in one of those patches of comoving size d<~γ-1, where the universe appears to be open. In particular, we consider the ``supernatural'' model proposed by Linde and Mezhlumian. There, an approximate U(1) symmetry is broken by a tunneling field in a first order phase transition, and slow-roll inflation inside the nucleated bubble is driven by the pseudo Goldstone field. We find that the excitations of the pseudo Goldstone field produced by the nucleation and subsequent expansion of the bubble place severe constraints on this model. We also discuss the coupled and uncoupled two-field models.

  6. Modulus D-term inflation

    NASA Astrophysics Data System (ADS)

    Kadota, Kenji; Kobayashi, Tatsuo; Saga, Ikumi; Sumita, Keigo

    2018-04-01

    We propose a new model of single-field D-term inflation in supergravity, where the inflation is driven by a single modulus field which transforms non-linearly under the U(1) gauge symmetry. One of the notable features of our modulus D-term inflation scenario is that the global U(1) remains unbroken in the vacuum and hence our model is not plagued by the cosmic string problem which can exclude most of the conventional D-term inflation models proposed so far due to the CMB observations.

  7. Kähler-driven tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Nolde, David

    2012-11-01

    We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kähler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in "pseudosmooth" tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kähler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and "pseudosmooth") regimes.

  8. Durability of ITO-MgF2 Films for Space-Inflatable Polymer Structures

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Waters, Deborah L.; Schieman, David A.; Hambourger, Paul D.

    2003-01-01

    This paper presents results from ITO-MgF2 film durability evaluations that included tape peel, fold, thermal cycle, and AO exposure testing. Polymer coupon preparation is described as well as ITO-MgF2 film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed visually, microscopically, and electrically. Results show that at 500 ITO - 9 vol% MgF2 film is suitable to protect polymer surfaces, such as those used in space-inflatable structures of the PowerSphere microsatellite concept, during a 1-year Earth orbiting mission. Future plans for ground-based and orbital testing of this film are also discussed.

  9. No-scale inflation

    NASA Astrophysics Data System (ADS)

    Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; Olive, Keith A.

    2016-05-01

    Supersymmetry is the most natural framework for physics above the TeV scale, and the corresponding framework for early-Universe cosmology, including inflation, is supergravity. No-scale supergravity emerges from generic string compactifications and yields a non-negative potential, and is therefore a plausible framework for constructing models of inflation. No-scale inflation yields naturally predictions similar to those of the Starobinsky model based on R+{R}2 gravity, with a tilted spectrum of scalar perturbations: {n}s∼ 0.96, and small values of the tensor-to-scalar perturbation ratio r\\lt 0.1, as favoured by Planck and other data on the cosmic microwave background (CMB). Detailed measurements of the CMB may provide insights into the embedding of inflation within string theory as well as its links to collider physics.

  10. Ground and Flight Evaluation of a Small-Scale Inflatable-Winged Aircraft

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Pahle, Joseph W.; Thornton, Stephen V.; Vogus, Shannon; Frackowiak, Tony; Mello, Joe; Norton, Brook; Bauer, Jeff (Technical Monitor)

    2002-01-01

    A small-scale, instrumented research aircraft was flown to investigate the night characteristics of innersole wings. Ground tests measured the static structural characteristics of the wing at different inflation pressures, and these results compared favorably with analytical predictions. A research-quality instrumentation system was assembled, largely from commercial off-the-shelf components, and installed in the aircraft. Initial flight operations were conducted with a conventional rigid wing having the same dimensions as the inflatable wing. Subsequent flights were conducted with the inflatable wing. Research maneuvers were executed to identify the trim, aerodynamic performance, and longitudinal stability and control characteristics of the vehicle in its different wing configurations. For the angle-of-attack range spanned in this flight program, measured flight data demonstrated that the rigid wing was an effective simulator of the lift-generating capability of the inflatable wing. In-flight inflation of the wing was demonstrated in three flight operations, and measured flight data illustrated the dynamic characteristics during wing inflation and transition to controlled lifting flight. Wing inflation was rapid and the vehicle dynamics during inflation and transition were benign. The resulting angles of attack and of sideslip ere small, and the dynamic response was limited to roll and heave motions.

  11. Structural Analysis of an Inflation-Deployed Solar Sail With Experimental Validation

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Michii, Yuki; Lichodziejewski, David; Derbes, Billy; Mann, Troy O.

    2005-01-01

    Under the direction of the NASA In-Space Propulsion Technology Office, the team of L Garde, NASA Jet Propulsion Laboratory, Ball Aerospace, and NASA Langley Research Center has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. Prior to a flight experiment of a full-scale solar sail, a comprehensive phased test plan is currently being implemented to advance the technology readiness level of the solar sail design. These tests consist of solar sail component, subsystem, and sub-scale system ground tests that simulate the vacuum and thermal conditions of the space environment. Recently, two solar sail test articles, a 7.4-m beam assembly subsystem test article and a 10-m four-quadrant solar sail system test article, were tested in vacuum conditions with a gravity-offload system to mitigate the effects of gravity. This paper presents the structural analyses simulating the ground tests and the correlation of the analyses with the test results. For programmatic risk reduction, a two-prong analysis approach was undertaken in which two separate teams independently developed computational models of the solar sail test articles using the finite element analysis software packages: NEiNastran and ABAQUS. This paper compares the pre-test and post-test analysis predictions from both software packages with the test data including load-deflection curves from static load tests, and vibration frequencies and mode shapes from structural dynamics tests. The analysis predictions were in reasonable agreement with the test data. Factors that precluded better correlation of the analyses and the tests were uncertainties in the material properties, test conditions, and modeling assumptions used in the analyses.

  12. Gravitational waves from warm inflation

    NASA Astrophysics Data System (ADS)

    Li, Xi-Bin; Wang, He; Zhu, Jian-Yang

    2018-03-01

    A fundamental prediction of inflation is a nearly scale-invariant spectrum of gravitational wave. The features of such a signal provide extremely important information about the physics of the early universe. In this paper, we focus on several topics about warm inflation. First, we discuss the stability property about warm inflation based on nonequilibrium statistical mechanics, which gives more fundamental physical illustrations to thermal property of such model. Then, we calculate the power spectrum of gravitational waves generated during warm inflation, in which there are three components contributing to such spectrum: thermal term, quantum term, and cross term combining the both. We also discuss some interesting properties about these terms and illustrate them in different panels. As a model different from cold inflation, warm inflation model has its individual properties in observational practice, so we finally give a discussion about the observational effect to distinguish it from cold inflation.

  13. Staggering Inflation To Stabilize Attitude of a Solar Sail

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; West, John

    2007-01-01

    A document presents computational-simulation studies of a concept for stabilizing the attitude of a spacecraft during deployment of such structures as a solar sail or other structures supported by inflatable booms. Specifically, the solar sail considered in this paper is a square sail with inflatable booms and attitude control vanes at the corners. The sail inflates from its stowed configuration into a square sail with four segments and four vanes at the tips. Basically, the concept is one of controlling the rates of inflation of the booms to utilize in mass-distribution properties to effect changes in the system s angular momentum. More specifically, what was studied were the effects of staggering inflation of each boom by holding it at constant length for specified intervals between intervals of increasing length until full length is reached. The studies included sensitivity analyses of effects of variations in mass properties, boom lengths, rates of increase in boom length, initial rates of rotation of the spacecraft, and several asymmetries that could arise during deployment. The studies led to the conclusion that the final attitude of the spacecraft could be modified by varying the parameters of staggered inflation. Computational studies also showed that by feeding back attitude and attitude-rate measurements so that corrective action is taken during the deployment, the final attitude can be maintained very closely to the initial attitude, thus mitigating the attitude changes incurred during deployment and caused by modeling errors. Moreover, it was found that by optimizing the ratio between the holding and length-increasing intervals in deployment of a boom, one could cause deployment to track a desired deployment profile to place the entire spacecraft in a desired attitude at the end of deployment.

  14. The use of inflatable structures for re-entry of orbiting vehicles

    NASA Astrophysics Data System (ADS)

    Kendall, Robert T.; Maddox, Arthur R.

    1990-10-01

    Inflatable recovery systems offer the unique advantage that a large high-drag shape can be stored initially in a relatively small package. The resulting shapes decelerate rapidly with lower heating inputs than other types of re-entry vehicles. Recent developments have led to some light-weight materials, with little thermal protection, can withstand the heating inputs to such vehicles. As a result, inflatable recovery vehicles offer a simple, reliable and economical way to return various vehicles from orbit. This paper examines the application of this concept to a large and a small vehicle with the accompanying dynamics that might be expected. More complex systems could extend the concept to emergency personnel escape systems, payload abort and satellite recovery systems.

  15. Comparison of Dynamic Characteristics for an Inflatable Solar Concentrator in Atmospheric and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Slade, Kara N.; Tinker, Michael L.; Lassiter, John O.; Engberg, Robert

    2000-01-01

    Dynamic testing of an inflatable solar concentrator structure in a thermal vacuum chamber as well as in ambient laboratory conditions is described in detail. Unique aspects of modal testing for the extremely lightweight inflatable are identified, including the use of a noncontacting laser vibrometer measurement system. For the thermal vacuum environment, mode shapes and frequency response functions are compared for three different test article inflation pressures at room temperature. Modes that persist through all the inflation pressure regimes are identified, as well as modes that are unique for each pressure. In atmospheric pressure and room temperature conditions, dynamic measurements were obtained for the expected operational inflation pressure of 0.5 psig. Experimental mode shapes and frequency response functions for ambient conditions are described and compared to the 0.5 psig results from the thermal vacuum tests. Only a few mode shapes were identified that occurred in both vacuum and atmospheric environments. This somewhat surprising result is discussed in detail, and attributed at least partly to 1.) large differences in modal damping, and 2.) significant differences in the mass of air contained by the structure, in the two environments. Results of this investigation point out the necessity of testing inflatable space structures in vacuum conditions before they can be launched. Ground testing in atmospheric pressure is not sufficient for predicting on-orbit dynamics of non-rigidized inflatable systems.

  16. Bubbles in extended inflation and multi-production of universes

    NASA Astrophysics Data System (ADS)

    Sakai, Nobuyuki; Maeda, Kei-ichi

    Developing the thin-wall method of Israel, we present a formalism to investigate bubble dynamics in generalized Einstein theories. We derive the equations of motion for a bubble, finding that the space-time inside a bubble is always inhomogeneous. Applying this formalism to extended inflation, we find the following two results: (1) Any true vacuum bubble expands, contrary to the results of Goldwirth-Zaglauer, who claim that bubbles created initially later collapse. We show that their initial conditions for collapsing bubbles are physically inconsistent. (2) Concerning the global space-time structure of the Universe in extended inflation, we show that worm-holes are produced as in old inflation, resulting in the multi-production of universes.

  17. Gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  18. Zero-inflated count models for longitudinal measurements with heterogeneous random effects.

    PubMed

    Zhu, Huirong; Luo, Sheng; DeSantis, Stacia M

    2017-08-01

    Longitudinal zero-inflated count data arise frequently in substance use research when assessing the effects of behavioral and pharmacological interventions. Zero-inflated count models (e.g. zero-inflated Poisson or zero-inflated negative binomial) with random effects have been developed to analyze this type of data. In random effects zero-inflated count models, the random effects covariance matrix is typically assumed to be homogeneous (constant across subjects). However, in many situations this matrix may be heterogeneous (differ by measured covariates). In this paper, we extend zero-inflated count models to account for random effects heterogeneity by modeling their variance as a function of covariates. We show via simulation that ignoring intervention and covariate-specific heterogeneity can produce biased estimates of covariate and random effect estimates. Moreover, those biased estimates can be rectified by correctly modeling the random effects covariance structure. The methodological development is motivated by and applied to the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study, the largest clinical trial of alcohol dependence performed in United States with 1383 individuals.

  19. Alchemical inflation: inflaton turns into Higgs

    NASA Astrophysics Data System (ADS)

    Nakayama, Kazunori; Takahashi, Fuminobu

    2012-11-01

    We propose a new inflation model in which a gauge singlet inflaton turns into the Higgs condensate after inflation. The inflationary path is characterized by a moduli space of supersymmetric vacua spanned by the inflaton and Higgs field. The inflation energy scale is related to the soft supersymmetry breaking, and the Hubble parameter during inflation is smaller than the gravitino mass. The initial condition for the successful inflation is naturally realized by the pre-inflation in which the Higgs plays a role of the waterfall field.

  20. Testing Inflation with Large Scale Structure: Connecting Hopes with Reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Marcello; Baldauf, T.; Bond, J. Richard

    2014-12-15

    The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large-scale structure is, however, from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude fmore » $$loc\\atop{NL}$$ (f$$eq\\atop{NL}$$), natural target levels of sensitivity are Δf$$loc, eq\\atop{NL}$$ ≃ 1. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.« less

  1. Sharp predictions from eternal inflation patches in D-brane inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertog, Thomas; Janssen, Oliver, E-mail: thomas.hertog@fys.kuleuven.be, E-mail: opj202@nyu.edu

    We numerically generate the six-dimensional landscape of D3-brane inflation and identify patches of eternal inflation near sufficiently flat inflection points of the potential. We show that reasonable measures that select patches of eternal inflation in the landscape yield sharp predictions for the spectral properties of primordial perturbations on observable scales. These include a scalar tilt of .936, a running of the scalar tilt −.00103, undetectably small tensors and non-Gaussianity, and no observable spatial curvature. Our results explicitly demonstrate that precision cosmology probes the combination of the statistical properties of the string landscape and the measure implied by the universe's quantummore » state.« less

  2. NASA CST aids U.S. industry. [computational structures technology

    NASA Technical Reports Server (NTRS)

    Housner, Jerry M.; Pinson, Larry D.

    1993-01-01

    The effect of NASA's computational structures Technology (CST) research on aerospace vehicle design and operation is discussed. The application of this research to proposed version of a high-speed civil transport, to composite structures in aerospace, to the study of crack growth, and to resolving field problems is addressed.

  3. NASA Work Breakdown Structure (WBS) Handbook

    NASA Technical Reports Server (NTRS)

    Terrell, Stefanie M.

    2018-01-01

    The purpose of this document is to provide program/project teams necessary instruction and guidance in the best practices for Work Breakdown Structure (WBS) and WBS dictionary development and use for project implementation and management control. This handbook can be used for all types of NASA projects and work activities including research, development, construction, test and evaluation, and operations. The products of these work efforts may be hardware, software, data, or service elements (alone or in combination). The aim of this document is to assist project teams in the development of effective work breakdown structures that provide a framework of common reference for all project elements.

  4. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  5. Stochastic inflation lattice simulations - Ultra-large scale structure of the universe

    NASA Technical Reports Server (NTRS)

    Salopek, D. S.

    1991-01-01

    Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients, a (exp -1), small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a toy model with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Gaussian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits.

  6. The effect of rare variants on inflation of the test statistics in case-control analyses.

    PubMed

    Pirie, Ailith; Wood, Angela; Lush, Michael; Tyrer, Jonathan; Pharoah, Paul D P

    2015-02-20

    The detection of bias due to cryptic population structure is an important step in the evaluation of findings of genetic association studies. The standard method of measuring this bias in a genetic association study is to compare the observed median association test statistic to the expected median test statistic. This ratio is inflated in the presence of cryptic population structure. However, inflation may also be caused by the properties of the association test itself particularly in the analysis of rare variants. We compared the properties of the three most commonly used association tests: the likelihood ratio test, the Wald test and the score test when testing rare variants for association using simulated data. We found evidence of inflation in the median test statistics of the likelihood ratio and score tests for tests of variants with less than 20 heterozygotes across the sample, regardless of the total sample size. The test statistics for the Wald test were under-inflated at the median for variants below the same minor allele frequency. In a genetic association study, if a substantial proportion of the genetic variants tested have rare minor allele frequencies, the properties of the association test may mask the presence or absence of bias due to population structure. The use of either the likelihood ratio test or the score test is likely to lead to inflation in the median test statistic in the absence of population structure. In contrast, the use of the Wald test is likely to result in under-inflation of the median test statistic which may mask the presence of population structure.

  7. Observing the inflation potential. [in models of cosmological inflation

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.; Lidsey, James E.

    1993-01-01

    We show how observations of the density perturbation (scalar) spectrum and the gravitational wave (tensor) spectrum allow a reconstruction of the potential responsible for cosmological inflation. A complete functional reconstruction or a perturbative approximation about a single scale are possible; the suitability of each approach depends on the data available. Consistency equations between the scalar and tensor spectra are derived, which provide a powerful signal of inflation.

  8. 48 CFR 1815.404-471 - NASA structured approach for profit or fee objective.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false NASA structured approach for profit or fee objective. 1815.404-471 Section 1815.404-471 Federal Acquisition Regulations System... NEGOTIATION Contract Pricing 1815.404-471 NASA structured approach for profit or fee objective. ...

  9. 48 CFR 1815.404-471 - NASA structured approach for profit or fee objective.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false NASA structured approach for profit or fee objective. 1815.404-471 Section 1815.404-471 Federal Acquisition Regulations System... NEGOTIATION Contract Pricing 1815.404-471 NASA structured approach for profit or fee objective. ...

  10. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

    1998-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption

  11. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.

    1997-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

  12. Vacuum Deployment and Testing of a 4-Quadrant Scalable Inflatable Solar Sail System

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Derbes, Billy; Galena, Daisy; Friese, Dave

    2005-01-01

    Solar sails reflect photons streaming from the sun and transfer momentum to the sail. The thrust, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful missions utilizing solar sail propulsion. The team of L'Garde, Jet Propulsion Laboratories, Ball Aerospace, and Langley Research Center, under the direction of the NASA In-Space Propulsion office, has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The baseline design currently in development and testing was optimized around the 1 AU solar sentinel mission. Featuring inflatably deployed sub-T(sub g), rigidized beam components, the 10,000 sq m sail and support structure weighs only 47.5 kg, including margin, yielding an areal density of 4.8 g/sq m. Striped sail architecture, net/membrane sail design, and L'Garde's conical boom deployment technique allows scalability without high mass penalties. This same structural concept can be scaled to meet and exceed the requirements of a number of other useful NASA missions. This paper discusses the interim accomplishments of phase 3 of a 3-phase NASA program to advance the technology readiness level (TRL) of the solar sail system from 3 toward a technology readiness level of 6 in 2005. Under earlier phases of the program many test articles have been fabricated and tested successfully. Most notably an unprecedented 4-quadrant 10 m solar sail ground test article was fabricated, subjected to launch environment tests, and was successfully deployed under simulated space conditions at NASA Plum Brook s 30m vacuum facility. Phase 2 of the program has seen much development and testing of this design validating assumptions, mass estimates, and predicted mission scalability. Under Phase 3 a much larger 20 m square test article including subscale vane has been fabricated and tested. A 20 m system

  13. Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data

    PubMed Central

    Xu, Lizhen; Paterson, Andrew D.; Turpin, Williams; Xu, Wei

    2015-01-01

    Typical data in a microbiome study consist of the operational taxonomic unit (OTU) counts that have the characteristic of excess zeros, which are often ignored by investigators. In this paper, we compare the performance of different competing methods to model data with zero inflated features through extensive simulations and application to a microbiome study. These methods include standard parametric and non-parametric models, hurdle models, and zero inflated models. We examine varying degrees of zero inflation, with or without dispersion in the count component, as well as different magnitude and direction of the covariate effect on structural zeros and the count components. We focus on the assessment of type I error, power to detect the overall covariate effect, measures of model fit, and bias and effectiveness of parameter estimations. We also evaluate the abilities of model selection strategies using Akaike information criterion (AIC) or Vuong test to identify the correct model. The simulation studies show that hurdle and zero inflated models have well controlled type I errors, higher power, better goodness of fit measures, and are more accurate and efficient in the parameter estimation. Besides that, the hurdle models have similar goodness of fit and parameter estimation for the count component as their corresponding zero inflated models. However, the estimation and interpretation of the parameters for the zero components differs, and hurdle models are more stable when structural zeros are absent. We then discuss the model selection strategy for zero inflated data and implement it in a gut microbiome study of > 400 independent subjects. PMID:26148172

  14. Assessment and Selection of Competing Models for Zero-Inflated Microbiome Data.

    PubMed

    Xu, Lizhen; Paterson, Andrew D; Turpin, Williams; Xu, Wei

    2015-01-01

    Typical data in a microbiome study consist of the operational taxonomic unit (OTU) counts that have the characteristic of excess zeros, which are often ignored by investigators. In this paper, we compare the performance of different competing methods to model data with zero inflated features through extensive simulations and application to a microbiome study. These methods include standard parametric and non-parametric models, hurdle models, and zero inflated models. We examine varying degrees of zero inflation, with or without dispersion in the count component, as well as different magnitude and direction of the covariate effect on structural zeros and the count components. We focus on the assessment of type I error, power to detect the overall covariate effect, measures of model fit, and bias and effectiveness of parameter estimations. We also evaluate the abilities of model selection strategies using Akaike information criterion (AIC) or Vuong test to identify the correct model. The simulation studies show that hurdle and zero inflated models have well controlled type I errors, higher power, better goodness of fit measures, and are more accurate and efficient in the parameter estimation. Besides that, the hurdle models have similar goodness of fit and parameter estimation for the count component as their corresponding zero inflated models. However, the estimation and interpretation of the parameters for the zero components differs, and hurdle models are more stable when structural zeros are absent. We then discuss the model selection strategy for zero inflated data and implement it in a gut microbiome study of > 400 independent subjects.

  15. Tribrid Inflation in Supergravity

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.

    We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the η-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kähler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third "driving" field which contributes the large vacuum energy during inflation by its F-term. In contrast to the "standard" hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (Winf = 0) during inflation. Quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.

  16. Stochastic effects in hybrid inflation

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Vennin, Vincent

    2012-02-01

    Hybrid inflation is a two-field model where inflation ends due to an instability. In the neighborhood of the instability point, the potential is very flat and the quantum fluctuations dominate over the classical motion of the inflaton and waterfall fields. In this article, we study this regime in the framework of stochastic inflation. We numerically solve the two coupled Langevin equations controlling the evolution of the fields and compute the probability distributions of the total number of e-folds and of the inflation exit point. Then, we discuss the physical consequences of our results, in particular, the question of how the quantum diffusion can affect the observable predictions of hybrid inflation.

  17. Inflatable robotics for planetary applications

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2001-01-01

    Space Inflatable vehicles have been finding popularity in recent years for applications as varied as spacecraft antennas, space-based telescopes, solar sails, and manned habitats [1]. Another branch of space inflatable technology has also considered developing ambient gasfilled, solar balloons for Mars as well as ambient gasfilled inflatable rovers [2]. More recently, some other intriguing space-inflatable vehicles have been proposed for the gas planets and Pluto, as well as for Saturn's moon, Titan, Neptune's moon, Triton, and Jupiter's moon, Io [3].

  18. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edger A., Jr.

    1996-01-01

    This progress report covers achievements made between January 1 and June 30, 1966 on the NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. . The accomplishments presented in this report are: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures. Collective accomplishments between January and June of 1996 include: 4 journal or proceedings publications, 1 NASA progress report, 4 presentations at national technical meetings, and 2 PhD dissertations published.

  19. ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

  20. Inflated concepts for the earth science geostationary platform and an associated flight experiment

    NASA Technical Reports Server (NTRS)

    Friese, G.

    1992-01-01

    Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.

  1. 12 CFR 19.240 - Inflation adjustments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Inflation adjustments. 19.240 Section 19.240... PROCEDURE Civil Money Penalty Inflation Adjustments § 19.240 Inflation adjustments. (a) The maximum amount... Civil Penalties Inflation Adjustment Act of 1990 (28 U.S.C. 2461 note) as follows: ER10NO08.001 (b) The...

  2. Aerocapture Inflatable Decelerator (AID)

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator not only enables an increase in the spacecraft payload mass fraction and but may also eliminate the need for a spacecraft backshell and cruise stage. This document is the viewgraph slides for the paper's presentation.

  3. Mutated hilltop inflation revisited

    NASA Astrophysics Data System (ADS)

    Pal, Barun Kumar

    2018-05-01

    In this work we re-investigate pros and cons of mutated hilltop inflation. Applying Hamilton-Jacobi formalism we solve inflationary dynamics and find that inflation goes on along the {W}_{-1} branch of the Lambert function. Depending on the model parameter mutated hilltop model renders two types of inflationary solutions: one corresponds to small inflaton excursion during observable inflation and the other describes large field inflation. The inflationary observables from curvature perturbation are in tune with the current data for a wide range of the model parameter. The small field branch predicts negligible amount of tensor to scalar ratio r˜ O(10^{-4}), while the large field sector is capable of generating high amplitude for tensor perturbations, r˜ O(10^{-1}). Also, the spectral index is almost independent of the model parameter along with a very small negative amount of scalar running. Finally we find that the mutated hilltop inflation closely resembles the α -attractor class of inflationary models in the limit of α φ ≫ 1.

  4. Dynamic analysis of an inflatable dam subjected to a flood

    NASA Astrophysics Data System (ADS)

    Lowery, K.; Liapis, S.

    A dynamic simulation of the response of an inflatable dam subjected to a flood is carried out to determine the survivability envelope of the dam where it can operate without rupture, or overflow. The free-surface flow problem is solved in two dimensions using a fully nonlinear mixed Eulerian-Lagrangian formulation. The dam is modeled as an elastic shell inflated with air and simply supported from two points. The finite element method is employed to determine the dynamic response of the structure using ABAQUS with a shell element. The problem is solved in the time domain which allows the prediction of a number of transient phenomena such as the generation of upstream advancing waves, the dynamic structural response and structural failure. Failure takes place when the dam either ruptures or overflows. Stresses in the dam material were monitored to determine when rupture occurs. An iterative study was performed to find the serviceability envelope of the dam in terms of the internal pressure and the flood Froude number for two flood depths. It was found that existing inflatable dams are quite effective in suppressing floods for a relatively wide range of flood velocities.

  5. Non scale-invariant density perturbations from chaotic extended inflation

    NASA Technical Reports Server (NTRS)

    Mollerach, Silvia; Matarrese, Sabino

    1991-01-01

    Chaotic inflation is analyzed in the frame of scalar-tensor theories of gravity. Fluctuations in the energy density arise from quantum fluctuations of the Brans-Dicke field and of the inflation field. The spectrum of perturbations is studied for a class of models: it is non scale-invarient and, for certain values of the parameters, it has a peak. If the peak appears at astrophysically interesting scales, it may help to reconcile the Cold Dark Matter scenario for structure formation with large scale observations.

  6. No-scale ripple inflation revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V., E-mail: tli@itp.ac.cn, E-mail: lizhijin@physics.tamu.edu, E-mail: dimitri@physics.tamu.edu

    We revisit the no-scale ripple inflation model, where no-scale supergravity is modified by an additional term for the inflaton field in the Kähler potential. This term not only breaks one SU(N,1) symmetry explicitly, but also plays an important role for inflation. We generalize the superpotential in the no-scale ripple inflation model slightly. There exists a discrete Z{sub 2} symmetry/parity in the scalar potential in general, which can be preserved or violated by the non-canonical nomalized inflaton kinetic term. Thus, there are three inflation paths: one parity invariant path, and the left and right paths for parity violating scenario. We showmore » that the inflations along the parity invariant path and right path are consistent with the Planck results. However, the gavitino mass for the parity invariant path is so large that the inflation results will be invalid if we consider the inflaton supersymmetry breaking soft mass term. Thus, only the inflation along the right path gives the correct and consistent results. Notably, the tensor-to-scalar ratio in such case can be large, with a value around 0.05, which may be probed by the future Planck experiment.« less

  7. Vesicular komatiites, 3.5-Ga Komati Formation, Barberton Greenstone Belt, South Africa: inflation of submarine lavas and origin of spinifex zones

    NASA Astrophysics Data System (ADS)

    Dann, Jesse

    2001-08-01

    Komatiites of the 3.5-Ga Komati Formation are ultramafic lavas (>23% MgO) erupted in a submarine, lava plain environment. Newly discovered vesicular komatiites have vesicular upper crusts disrupted by synvolcanic structures that are similar to inflation-related structures of modern lava flows. Detailed outcrop maps reveal flows with upper vesicular zones, 2-15 m thick, which were (1) rotated by differential inflation, (2) intruded by dikes from the interior of the flow, (3) extended, forming a flooded graben, and/or (4) entirely engulfed. The largest inflated structure is a tumulus with 20 m of surface relief, which was covered by a compound flow unit of spinifex flow lobes. The lava that inflated and rotated the upper vesicular crust did not vesiculate, but crystallized as a thick spinifex zone with fist-size skeletal olivine. Instead of representing rapidly cooled lava, the spinifex zone cooled slowly beneath an insulating upper crust during inflation. Overpressure of the inflating lava may have inhibited vesiculation. This work describes the oldest vesicular komatiites known, illustrates the first field evidence for inflated structures in komatiite flows, proposes a new factor in the development of spinifex zones, and concludes that the inflation model is useful for understanding the evolution of komatiite submarine flow fields.

  8. NASA Launches Parachute Test Platform from Wallops

    NASA Image and Video Library

    2017-10-04

    NASA tested a parachute platform during the flight of a Terrier-Black Brant IX suborbital sounding rocket on Oct. 4, from the agency’s Wallops Flight Facility in Virginia. The rocket carried the Advanced Supersonic Parachute Inflation Research Experiment (ASPIRE) from NASA’s Jet Propulsion Laboratory in Pasadena, Calif. The mission will evaluate the performance of the ASPIRE payload, which is designed to test parachute systems in a low-density, supersonic environment.

  9. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. CHAMBER “R” ELEVATION. Sheet 4 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  10. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. WORK PLATFORM DETAIL. Sheet 6 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  11. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. CHAMBER “L” ELEVATION. Sheet 3 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  12. First-order inflation. [in cosmology

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1992-01-01

    I discuss the most recent model of inflation. In first-order inflation the inflationary epoch is associated with a first-order phase transition, with the most likely candidate being GUT symmetry breaking. The transition from the false-vacuum inflationary phase to the true-vacuum radiation-dominated phase proceeds through the nucleation and percolation of true-vacuum bubbles. The first successful and simplest model of first-order inflation, extended inflation, is discussed in some detail: evolution of the cosmic-scale factor, reheating, density perturbations, and the production of gravitational waves both from quantum fluctuations and bubble collisions. Particular attention is paid to the most critical issue in any model of first-order inflation: the requirements on the nucleation rate to ensure a graceful transition from the inflationary phase to the radiation-dominated phase.

  13. Inflatable Habitat Health Monitoring: Implementation, Lessons Learned, and Application to Lunar or Martian Habitat Health Monitoring

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Hong, Todd; Hafermalz, Scott; Hunkins, Robert; Valle, Gerald; Toups, Larry

    2009-01-01

    NASA's exploration mission is to send humans to the Moon and Mars, in which the purpose is to learn how to live and work safely in those harsh environments. A critical aspect of living in an extreme environment is habitation, and within that habitation element there are key systems which monitor the habitation environment to provide a safe and comfortable living and working space for humans. Expandable habitats are one of the options currently being considered due to their potential mass and volume efficiencies. This paper discusses a joint project between the National Science Foundation (NSF), ILC Dover, and NASA in which an expandable habitat was deployed in the extreme environment of Antarctica to better understand the performance and operations over a one-year period. This project was conducted through the Innovative Partnership Program (IPP) where the NSF provided the location at McMurdo Station in Antarctica and support at the location, ILC Dover provided the inflatable habitat, and NASA provided the instrumentation and data system for monitoring the habitat. The outcome of this project provided lessons learned in the implementation of an inflatable habitat and the systems that support that habitat. These lessons learned will be used to improve current habitation capabilities and systems to meet the objectives of exploration missions to the moon and Mars.

  14. Microwave background anisotropies in quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  15. Cosmological perturbations and noncommutative tachyon inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Daojun; Li Xinzhou

    2004-12-15

    The motivation for studying the rolling tachyon and noncommutative inflation comes from string theory. In the tachyon inflation scenario, metric perturbations are created by tachyon field fluctuations during inflation. We drive the exact mode equation for scalar perturbations of the metric and investigate the cosmological perturbations in the commutative and noncommutative inflationary spacetime driven by the tachyon field which have a Born-Infeld Lagrangian. Although at lowest order the predictions of tachyon inflation are no different than those from standard slow-roll inflation, due to the modified inflationary dynamics there exists modifications to the power spectra of fluctuations generated during inflation. Inmore » the noncommutative tachyon inflation scenario, the stringy noncommutativity of spacetime results in corrections to the primordial power spectrum that lead to a spectral index that is greater than 1 on large scales and less than 1 on small scales as the first-year results of the Wilkinson Microwave Anisotropy Probe indicate.« less

  16. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, March, 1971. DOOR LATCH MECHANISM & DOOR LATCHING RATCHET. Sheet 14 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  17. Attachment device for an inflatable protective cushion

    DOEpatents

    Nelsen, J.M.; Luna, D.A.; Gwinn, K.W.

    1997-11-18

    An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening. 22 figs.

  18. Attachment device for an inflatable protective cushion

    DOEpatents

    Nelsen, J.M.; Luna, D.A.; Gwinn, K.W.

    1998-12-08

    An inflatable cushion assembly for use with an inflator comprises an inflatable cushion having an inner surface, outer surface, and at least one protrusion extending from one of the inner or outer surfaces. The inflatable cushion defines an opening between the inner surface and the outer surface for receiving the inflator. An attachment member contacts the one of the inner or outer surfaces adjacent the opening and includes a groove for receiving the protrusion, the attachment member securing the inflator within the opening. 22 figs.

  19. ISAAC: Inflatable Satellite of an Antenna Array for Communications, volume 6

    NASA Technical Reports Server (NTRS)

    Lodgard, Deborah; Ashton, Patrick; Cho, Margaret; Codiana, Tom; Geith, Richard; Mayeda, Sharon; Nagel, Kirsten; Sze, Steven

    1988-01-01

    The results of a study to design an antenna array satellite using rigid inflatable structure (RIS) technology are presented. An inflatable satellite allows for a very large structure to be compacted for transportation in the Space Shuttle to the Space Station where it is assembled. The proposed structure resulting from this study is a communications satellite for two-way communications with many low-power stations on the ground. Total weight is 15,438 kilograms which is within the capabilities of the Space Shuttle. The satellite will have an equivalent aperture greater than 100 meters in diameter and will be operable in K and C band frequencies, with a total power requirement of 10,720 watts.

  20. Inflation at the electroweak scale

    NASA Technical Reports Server (NTRS)

    Knox, Lloyd; Turner, Michael S.

    1993-01-01

    We present a model for slow-rollover inflation where the vacuum energy that drives inflation is of the order of G(F) exp -2; unlike most models, the conversion of vacuum energy to radiation ('reheating') is moderately efficient. The scalar field responsible for inflation is a standard-model singlet, develops a vacuum expectation value of 4 x 10 exp 6 GeV, has a mass of about 1 GeV, and can play a role in electroweak phenomena. We also discuss models where the energy scale of inflation is somewhat larger, but still well below the unification scale.

  1. Analysis of Accelerometer Data from a Woven Inflatable Creep Burst Test

    NASA Technical Reports Server (NTRS)

    James, George H.; Grygier, Michael; Selig, Molly M.

    2015-01-01

    Accelerometers were used to montor an inflatable test article during a creep test to failure. The test article experienced impulse events that were classified based on the response of the sensors and their time-dependent manifestation. These impulse events required specialized techniques to process the structural dynamics data. However, certain phenomena were defined as worthy of additional study. An assessment of one phenomena (a frequency near 1000Hz) showed a time dependent frequency and an amplitude that increased significantly near the end of the test. Hence, these observations are expected to drive future understanding of and utility in inflatable space structures.

  2. The relationship between inflation and inflation uncertainty. Empirical evidence for the newest EU countries.

    PubMed

    Viorica, Daniela; Jemna, Danut; Pintilescu, Carmen; Asandului, Mircea

    2014-01-01

    The objective of this paper is to verify the hypotheses presented in the literature on the causal relationship between inflation and its uncertainty, for the newest EU countries. To ensure the robustness of the results, in the study four models for inflation uncertainty are estimated in parallel: ARCH (1), GARCH (1,1), EGARCH (1,1,1) and PARCH (1,1,1). The Granger method is used to test the causality between two variables. The working hypothesis is that groups of countries with a similar political and economic background in 1990 and are likely to be characterized by the same causal relationship between inflation and inflation uncertainty. Empirical results partially confirm this hypothesis. C22, E31, E37.

  3. Tribrid Inflation in Supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antusch, Stefan; Dutta, Koushik; Kostka, Philipp M.

    2010-02-10

    We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the eta-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kaehler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third 'driving' field which contributes the large vacuum energy during inflation by its F-term. In contrast to the 'standard' hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (W{sub inf} = 0) during inflation. While the symmetries of the Kaehler potential ensure a flat inflatonmore » potential at tree-level, quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.« less

  4. Thermalized axion inflation: Natural and monomial inflation with small r

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo Z.; Notari, Alessio

    2018-03-01

    A safe way to reheat the Universe, in models of natural and quadratic inflation, is through shift symmetric couplings between the inflaton ϕ and the Standard Model (SM), since they do not generate loop corrections to the potential V (ϕ ). We consider such a coupling to SM gauge fields, of the form ϕ F F ˜/f , with sub-Planckian f . In this case, gauge fields can be exponentially produced already during inflation and thermalize via interactions with charged particles, as pointed out in previous work. This can lead to a plasma of temperature T during inflation, and the thermal masses g T of the gauge bosons can equilibrate the system. In addition, inflaton perturbations δ ϕ can also have a thermal spectrum if they have sufficiently large cross sections with the plasma. In this case, inflationary predictions are strongly modified: (1) scalar perturbations are thermal, and so enhanced over the vacuum, leading to a generic way to suppress the tensor-to-scalar ratio r ; (2) the spectral index is ns-1 =η -4 ɛ . After presenting the relevant conditions for thermalization, we show that thermalized natural and monomial models of inflation agree with present observations and have r ≈10-3-10-2, which is within reach of next generation CMB experiments.

  5. Negative running can prevent eternal inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, William H.; Freese, Katherine, E-mail: whkinney@buffalo.edu, E-mail: ktfreese@umich.edu

    Current data from the Planck satellite and the BICEP2 telescope favor, at around the 2 σ level, negative running of the spectral index of curvature perturbations from inflation. We show that for negative running α < 0, the curvature perturbation amplitude has a maximum on scales larger than our current horizon size. A condition for the absence of eternal inflation is that the curvature perturbation amplitude always remain below unity on superhorizon scales. For current bounds on n{sub S} from Planck, this corresponds to an upper bound of the running α < −9 × 10{sup −5}, so that even tiny running of the scalar spectral index ismore » sufficient to prevent eternal inflation from occurring, as long as the running remains negative on scales outside the horizon. In single-field inflation models, negative running is associated with a finite duration of inflation: we show that eternal inflation may not occur even in cases where inflation lasts as long as 10{sup 4} e-folds.« less

  6. Primordial anisotropies in gauged hybrid inflation

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  7. Nonthermal gravitino production in tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Dutta, Koushik

    2015-10-01

    We investigate nonthermal gravitino production after tribrid inflation in supergravity, which is a variant of supersymmetric hybrid inflation where three fields are involved in the inflationary model and where the inflaton field resides in the matter sector of the theory. In contrast to conventional supersymmetric hybrid inflation, where nonthermal gravitino production imposes severe constraints on the inflationary model, we find that the "nonthermal gravitino problem" is generically absent in models of tribrid inflation, mainly due to two effects: (i) With the inflaton in tribrid inflation (after inflation) being lighter than the waterfall field, the latter has a second decay channel with a much larger rate than for the decay into gravitinos. This reduces the branching ratio for the decay of the waterfall field into gravitinos. (ii) The inflaton generically decays later than the waterfall field, and it does not produce gravitinos when it decays. This leads to a dilution of the gravitino population from the decays of the waterfall field. The combination of both effects generically leads to a strongly reduced gravitino production in tribrid inflation.

  8. A smooth exit from eternal inflation?

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hertog, Thomas

    2018-04-01

    The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.

  9. Modular invariant inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-08

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile,more » a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential V{sub ht}, but it also has a non-negligible deviation from V{sub ht}. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.« less

  10. The effect of inflation rate on the cost of medical waste management system

    NASA Astrophysics Data System (ADS)

    Jolanta Walery, Maria

    2017-11-01

    This paper describes the optimization study aimed to analyse the impact of the parameter describing the inflation rate on the cost of the system and its structure. The study was conducted on the example of the analysis of medical waste management system in north-eastern Poland, in the Podlaskie Province. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. the inflation rate on the economic efficiency index (E) and the spatial structure of the system was determined. With the assumed inflation rate in the range of 1.00 to 1.12, the highest cost of the system was achieved at the level of PLN 2022.20/t (increase of economic efficiency index E by ca. 27% in comparison with run 1, with inflation rate = 1.12).

  11. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...

  12. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...

  13. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...

  14. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accessible to the ship's company and guests approved placards containing instructions for launching and inflating inflatable liferafts. The number and location of such placards for a particular vessel shall be...

  15. The Relationship between Inflation and Inflation Uncertainty. Empirical Evidence for the Newest EU Countries

    PubMed Central

    Viorica, Daniela; Jemna, Danut; Pintilescu, Carmen; Asandului, Mircea

    2014-01-01

    The objective of this paper is to verify the hypotheses presented in the literature on the causal relationship between inflation and its uncertainty, for the newest EU countries. To ensure the robustness of the results, in the study four models for inflation uncertainty are estimated in parallel: ARCH (1), GARCH (1,1), EGARCH (1,1,1) and PARCH (1,1,1). The Granger method is used to test the causality between two variables. The working hypothesis is that groups of countries with a similar political and economic background in 1990 and are likely to be characterized by the same causal relationship between inflation and inflation uncertainty. Empirical results partially confirm this hypothesis. Jel Classification C22, E31, E37. PMID:24633073

  16. The Probe of Inflation and Cosmic Origins

    NASA Astrophysics Data System (ADS)

    Hanany, Shaul; Inflation Probe Mission Study Team

    2018-01-01

    The Probe of Inflation and Cosmic Origins will map the polarization of the cosmic microwave background over the entire sky with unprecedented sensitivity. It will search for gravity wave signals from the inflationary epoch, thus probing quantum gravity and constraining the energy scale of inflation; it will test the standard model of particle physics by measuring the number of light particles in the Universe and the mass of the neutrino; it will elucidate the nature of dark matter and search for new forms of matter in the early Universe; it will constrain star formation history over cosmic time; and it will determine the mechanisms of structure formation from galaxy cluster to stellar scales. I will review the status of design of this probe-scale mission.

  17. Grade Inflation: Faculty Lived-Experiences and Perceptions

    ERIC Educational Resources Information Center

    Schroeder, Nan

    2016-01-01

    The research area of this study is the phenomenon of grade inflation in higher educational organizations. Using a qualitative phenomenological research design, seven faculty members from a higher educational organization were purposefully selected to participate in a semi-structured, face-to-face interview. The participants were of various ages,…

  18. Sustained inflation during neonatal resuscitation.

    PubMed

    Keszler, Martin

    2015-04-01

    Sustained inflation performed shortly after birth to help clear lung fluid and establish functional residual capacity in preterm infants is gaining popularity, but definitive evidence for its effectiveness is lacking. Although there is a sound physiologic basis for this approach, and much preclinical experimental evidence of effectiveness, the results of recent animal studies and clinical trials have been inconsistent. The most recent data from a multicenter randomized trial suggest a modest benefit of sustained inflation in reducing the need for mechanical ventilation in extremely-low-birth-weight infants. However, the impact may be more modest than earlier retrospective cohort comparisons suggested. The trend toward more airleak and a higher rate of intraventricular hemorrhage is worrisome. Sustained inflation may be ineffective unless some spontaneous respiratory effort is present. Several on-going trials should further clarify the putative benefits of sustained inflation. Delivery room sustained inflation is an attractive concept that holds much promise, but widespread clinical application should await definitive evidence from on-going clinical trials.

  19. Inflation from extra dimensions

    NASA Astrophysics Data System (ADS)

    Levin, Janna J.

    1995-02-01

    A gravity-driven inflation is shown to arise from a simple higher-dimensional universe. In vacuum, the shear of n > 1 contracting dimensions is able to inflate the remaining three spatial dimensions. Said another way, the expansion of the 3-volume is accelerated by the contraction of the n-volume. Upon dimensional reduction, the theory is equivalent to a four-dimensional cosmology with a dynamical Planck mass. A connection can therefore be made to recent examples of inflation powered by a dilaton kinetic energy. Unfortunately, the graceful exit problem encountered in dilaton cosmologies will haunt this cosmology as well.

  20. Numerical Simulation of Parachute Inflation Process by IB Method

    NASA Astrophysics Data System (ADS)

    Miyoshi, Masaya; Mori, Koichi; Nakamura, Yoshiaki

    In the present study the deformation and motion of a parachute in the process of inflation are simulated by applying the immersed boundary technique in a fluid-structure coupling solver. It was found from simulated results that the canopy is first inflated in the normal direction to the uniform flow (in the lateral direction), and then its apex is pulled by a vortex ring generated near the canopy's outer surface due to its negative pressure. After the end of this inflation process, the canopy moves in the tangential direction to the spherical surface, the center of which is located at the payload location. This motion is caused by the breakup of an initial axisymmetric vortex, where many vortices are generated from the shear layer. The predicted maximum parachute opening force is twice as large as the payload force in the steady state, which is in good agreement with experiment.

  1. Gigantic self-confined pahoehoe inflated lava flows in Argentina

    NASA Astrophysics Data System (ADS)

    Pasquare', G.; Bistacchi, A.

    2007-05-01

    The largest lava flows on Earth are pahoehoe basalts emplaced by inflation, a process which can change lava lobes initially a few decimetres thick into large lava sheets several metres thick. Inflation involves the initial formation of a thin, solidified, viscoelastic crust, under which liquid lava is continually added. This thermally efficient endogenous growth process explains the spread of huge volumes of lava over large, almost flat areas, as in the sheet flows which characterise the distal portions of Hawaiian volcanoes or some continental flood basalt provinces. Long, narrow, inflated pahoehoe flows have occasionally been described, either emplaced along pre-existing river channels or confined within topographic barriers. In this contribution we present previously unknown inflated pahoehoe lava flows following very long, narrow pathways over an almost flat surface, with no topographic confinement. Lava, which erupted in Late Quaternary times from the eastern tip of a 60 km long volcanic fissure in Argentina, formed several discrete flows extending as far as 180 km from the source. This fissure was characterized by a long-lasting and complex activity. Alkali-basaltic lava flows were emitted at the two extremities of the fissure system. In the intermediate section of the fissure, the Payun Matru, a great trachitic composite volcano, developed, giving rise to a large caldera which produced large pyroclastic flows. Alkali-basalts predate and postdate the trachitic activity, in fact at the end of the trachitic activity, new basaltic lava flows (mainly aa) were emitted from both ends of the fissure. We studied in details the youngest of the gigantic flows (Pampas Onduladas lava flow), which progressively develops through differing thermally-efficient flow mechanisms. The flow created a large shield volcanic structure at the eastern tip of the E-W fissure and spread to the E forming a very large and thick inflated pahoehoe sheet flow. Leaving the flanks of the

  2. Plausible double inflation

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun

    1991-01-01

    It is likely that extended inflation is followed by an epoch of slowroll inflation. Such a sequence of events may lead to a very interesting perturbation spectrum with significant power on the scale of the transition between the extended and slowroll phase, superimposed upon a power-law spectrum with deviations from the Harrison-Zeldovich slope. Normalization of the spectra above and below the transition scale is expected to differ.

  3. Accidental inflation from Kähler uplifting

    NASA Astrophysics Data System (ADS)

    Ben-Dayan, Ido; Jing, Shenglin; Westphal, Alexander; Wieck, Clemens

    2014-03-01

    We analyze the possibility of realizing inflation with a subsequent dS vacuum in the Käahler uplifting scenario. The inclusion of several quantum corrections to the 4d effective action evades previous no-go theorems and allows for construction of simple and successful models of string inflation. The predictions of several benchmark models are in accord with current observations, i.e., a red spectral index, negligible non-gaussianity, and spectral distortions similar to the simplest models of inflation. A particularly interesting subclass of models are ``left-rolling" ones, where the overall volume of the compactified dimensions shrinks during inflation. We call this phenomenon ``inflation by deflation" (IBD), where deflation refers to the internal manifold. This subclass has the appealing features of being insensitive to initial conditions, avoiding the overshooting problem, and allowing for observable running α ~ 0.012 and enhanced tensor-to-scalar ratio r ~ 10-5. The latter results differ significantly from many string inflation models.

  4. Inflatable Launch and Recovery System

    DTIC Science & Technology

    2014-07-31

    clamping fixture connects the ramp structure to the vessel. A snubber element dampens vibrations and transient tow loads. Unclassified Unclassified...integrated dynamic snubber element to dampen out vibrations and transient tow loads. The main air fill line from the handling system to the inflatable ramp...of the vessel A with standard container cam locks 12a (two of which are shown in phantom in FIG. 1). The system 10 can connect to a vessel power

  5. The NASA NASTRAN structural analysis computer program - New content

    NASA Technical Reports Server (NTRS)

    Weidman, D. J.

    1978-01-01

    Capabilities of a NASA-developed structural analysis computer program, NASTRAN, are evaluated with reference to finite-element modelling. Applications include the automotive industry as well as aerospace. It is noted that the range of sub-programs within NASTRAN has expanded, while keeping user cost low.

  6. Structural Element Testing in Support of the Design of the NASA Composite Crew Module

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Jackson, Wade C.; Thesken, John C.; Schleicher, Eric; Wagner, Perry; Kirsch, Michael T.

    2012-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center (NESC) to design, build, and test a full-scale Composite Crew Module (CCM). For the design and manufacturing of the CCM, the team adopted the building block approach where design and manufacturing risks were mitigated through manufacturing trials and structural testing at various levels of complexity. Following NASA's Structural Design Verification Requirements, a further objective was the verification of design analysis methods and the provision of design data for critical structural features. Test articles increasing in complexity from basic material characterization coupons through structural feature elements and large structural components, to full-scale structures were evaluated. This paper discusses only four elements tests three of which include joints and one that includes a tapering honeycomb core detail. For each test series included are specimen details, instrumentation, test results, a brief analysis description, test analysis correlation and conclusions.

  7. Bispectrum from open inflation

    NASA Astrophysics Data System (ADS)

    Sugimura, Kazuyuki; Komatsu, Eiichiro

    2013-11-01

    We calculate the bispectrum of primordial curvature perturbations, ζ, generated during ``open inflation.'' Inflation occurs inside a bubble nucleated via quantum tunneling from the background false vacuum state. Our universe lives inside the bubble, which can be described as a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) universe with negative spatial curvature, undergoing slow-roll inflation. We pay special attention to the issue of an initial state for quantum fluctuations. A ``vacuum state'' defined by a positive-frequency mode in de Sitter space charted by open coordinates is different from the Euclidean vacuum (which is equivalent to the so-called ``Bunch-Davies vacuum'' defined by a positive-frequency mode in de Sitter space charted by flat coordinates). Quantum tunneling (bubble nucleation) then modifies the initial state away from the original Euclidean vacuum. While most of the previous study on modifications of the initial quantum state introduces, by hand, an initial time at which the quantum state is modified as well as the form of the modification, an effective initial time naturally emerges and the form is fixed by quantum tunneling in open inflation models. Therefore, open inflation enables a self-consistent computation of the effect of a modified initial state on the bispectrum. We find a term which goes as langleζk1ζk2ζk3ranglepropto1/k12k34 in the so-called squeezed configurations, k3 << k1 ≈ k2, in agreement with the previous study on modifications of the initial state. The bispectrum in the exact folded limit, e.g., k1 = k2+k3, is also enhanced and remains finite. However, these terms are exponentially suppressed when the wavelength of ζ is smaller than the curvature radius of the universe. The leading-order bispectrum is equal to the usual one from single-field slow-roll inflation; the terms specific for open inflation arise only in the sub-leading order when the wavelength of ζ is smaller than the curvature radius.

  8. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic

  9. 46 CFR 169.849 - Posting placards containing instructions for launching and inflating inflatable liferafts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Inspections § 169.849 Posting placards containing instructions for launching and inflating inflatable... accessible to the ship's company and guests approved placards containing instructions for launching and... determined by the Officer in Charge, Marine Inspection. ...

  10. Developments in Nano-Satellite Structural Subsystem Design at NASA-GSFC

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter; Panetta, Peter V.

    1999-01-01

    The NASA-GSFC Nano-satellite Technology Development Program will enable flying constellations of tens to hundreds of nano-satellites for future NASA Space and Earth Science missions. Advanced technology components must be developed to make these future spacecraft compact, lightweight, low-power, low-cost, and survivable to a radiation environment over a two-year mission lifetime. This paper describes the efforts underway to develop lightweight, low cost, and multi-functional structures, serviceable designs, and robust mechanisms. As designs shrink, the integration of various subsystems becomes a vital necessity. This paper also addresses structurally integrated electrical power, attitude control, and thermal systems. These innovations bring associated fabrication, integration, and test challenges. Candidate structural materials and processes are examined and the merits of each are discussed. Design and fabrication processes include flat stock composite construction, cast aluminum-beryllium alloy, and an injection molded fiber-reinforced plastic. A viable constellation deployment scenario is described as well as a Phase-A Nano-satellite Pathfinder study.

  11. Terraced margins of inflated lava flows on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crumpler, L. S.

    2011-12-01

    lava flows on both Earth and Mars indicates that the terracing mechanism is intimately associated with the lava flow inflation process. This work was supported by grants from the Planetary Geology and Geophysics program of NASA (NNX09AD88G) and the Scholarly Studies program of the Smithsonian Institution.

  12. NASA Lewis Research Center/university graduate research program on engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.

  13. NASA Lewis Research Center/University Graduate Research Program on Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.

  14. 12 CFR 1780.80 - Inflation adjustments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Inflation adjustments. 1780.80 Section 1780.80... DEVELOPMENT RULES OF PRACTICE AND PROCEDURE RULES OF PRACTICE AND PROCEDURE Civil Money Penalty Inflation Adjustments § 1780.80 Inflation adjustments. The maximum amount of each civil money penalty within OFHEO's...

  15. Unified Computational Methods for Regression Analysis of Zero-Inflated and Bound-Inflated Data

    PubMed Central

    Yang, Yan; Simpson, Douglas

    2010-01-01

    Bounded data with excess observations at the boundary are common in many areas of application. Various individual cases of inflated mixture models have been studied in the literature for bound-inflated data, yet the computational methods have been developed separately for each type of model. In this article we use a common framework for computing these models, and expand the range of models for both discrete and semi-continuous data with point inflation at the lower boundary. The quasi-Newton and EM algorithms are adapted and compared for estimation of model parameters. The numerical Hessian and generalized Louis method are investigated as means for computing standard errors after optimization. Correlated data are included in this framework via generalized estimating equations. The estimation of parameters and effectiveness of standard errors are demonstrated through simulation and in the analysis of data from an ultrasound bioeffect study. The unified approach enables reliable computation for a wide class of inflated mixture models and comparison of competing models. PMID:20228950

  16. Comments on SUSY Inflation Models on the Brane

    NASA Astrophysics Data System (ADS)

    Lee, Lu-Yun; Cheung, Kingman; Lin, Chia-Min

    In this paper we consider a class of inflation models on the brane where the dominant part of the inflaton scalar potential does not depend on the inflaton field value during inflation. In particular, we consider supernatural inflation, its hilltop version, A-term inflation, and supersymmetric (SUSY) D- and F-term hybrid inflation on the brane. We show that the parameter space can be broadened, the inflation scale generally can be lowered, and still possible to have the spectral index ns = 0.96.

  17. Inflation and Rural Society.

    ERIC Educational Resources Information Center

    Pitt, David

    Inflation is both a cause and consequence of changes in power and status. Competitive status activities create spiral situations which have an economic correlate. Ultimately, inflation leads to the creation of economically deprived and depressed social groups. Deflation can be achieved to some extent by redistribution of wealth dictated from…

  18. Inflation model selection meets dark radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tram, Thomas; Vallance, Robert; Vennin, Vincent, E-mail: thomas.tram@port.ac.uk, E-mail: robert.vallance@student.manchester.ac.uk, E-mail: vincent.vennin@port.ac.uk

    2017-01-01

    We investigate how inflation model selection is affected by the presence of additional free-streaming relativistic degrees of freedom, i.e. dark radiation. We perform a full Bayesian analysis of both inflation parameters and cosmological parameters taking reheating into account self-consistently. We compute the Bayesian evidence for a few representative inflation scenarios in both the standard ΛCDM model and an extension including dark radiation parametrised by its effective number of relativistic species N {sub eff}. Using a minimal dataset (Planck low-ℓ polarisation, temperature power spectrum and lensing reconstruction), we find that the observational status of most inflationary models is unchanged. The exceptionsmore » are potentials such as power-law inflation that predict large values for the scalar spectral index that can only be realised when N {sub eff} is allowed to vary. Adding baryon acoustic oscillations data and the B-mode data from BICEP2/Keck makes power-law inflation disfavoured, while adding local measurements of the Hubble constant H {sub 0} makes power-law inflation slightly favoured compared to the best single-field plateau potentials. This illustrates how the dark radiation solution to the H {sub 0} tension would have deep consequences for inflation model selection.« less

  19. Primordial black holes from single field models of inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Ruiz Morales, Ester

    2017-12-01

    Primordial black holes (PBH) have been shown to arise from high peaks in the matter power spectra of multi-field models of inflation. Here we show, with a simple toy model, that it is also possible to generate a peak in the curvature power spectrum of single-field inflation. We assume that the effective dynamics of the inflaton field presents a near-inflection point which slows down the field right before the end of inflation and gives rise to a prominent spike in the fluctuation power spectrum at scales much smaller than those probed by Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) observations. This peak will give rise, upon reentry during the radiation era, to PBH via gravitational collapse. The mass and abundance of these PBH is such that they could constitute the totality of the Dark Matter today. We satisfy all CMB and LSS constraints and predict a very broad range of PBH masses. Some of these PBH are light enough that they will evaporate before structure formation, leaving behind a large curvature fluctuation on small scales. This broad mass distribution of PBH as Dark Matter will be tested in the future by AdvLIGO and LISA interferometers.

  20. The inflation sector of extended inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1991-01-01

    In extended inflation, the inflationary era is brought to a close by the process of percolation of true vacuum bubbles produced in a first-order phase transition. This paper discusses several effects that might obtain if the universe undergoes an inflationary first-order phase transition.

  1. Report of the NASA Ad Hoc Committee on failure of high strength structural materials

    NASA Technical Reports Server (NTRS)

    Brown, W. F., Jr. (Editor)

    1972-01-01

    An analysis of structural failures that have occurred in NASA programs was conducted. Reports of 231 examples of structural failure were reviewed. Attempts were made to identify those factors which contributed to the failures, and recommendations were formulated for actions which would minimize their effects on future NASA programs. Two classes of factors were identified: (1) those associated with deficiencies in existing materials and structures technology and (2) those attributable to inadequate documentation or communication of that technology.

  2. Grade Inflation: Metaphor and Reality

    ERIC Educational Resources Information Center

    Kamber, Richard; Biggs, Mary

    2003-01-01

    Grade inflation has become a general term for teachers and administrators in recent times and is an ambiguous denomination which needs to be identified. The allegory and reality of grade inflation is discussed.

  3. Developing an Inflatable Solar Array

    NASA Technical Reports Server (NTRS)

    Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.

    1992-01-01

    Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.

  4. Accidental inflation from Kähler uplifting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben-Dayan, Ido; Westphal, Alexander; Wieck, Clemens

    2014-03-01

    We analyze the possibility of realizing inflation with a subsequent dS vacuum in the Käahler uplifting scenario. The inclusion of several quantum corrections to the 4d effective action evades previous no-go theorems and allows for construction of simple and successful models of string inflation. The predictions of several benchmark models are in accord with current observations, i.e., a red spectral index, negligible non-gaussianity, and spectral distortions similar to the simplest models of inflation. A particularly interesting subclass of models are ''left-rolling'' ones, where the overall volume of the compactified dimensions shrinks during inflation. We call this phenomenon ''inflation by deflation''more » (IBD), where deflation refers to the internal manifold. This subclass has the appealing features of being insensitive to initial conditions, avoiding the overshooting problem, and allowing for observable running α ∼ 0.012 and enhanced tensor-to-scalar ratio r ∼ 10{sup −5}. The latter results differ significantly from many string inflation models.« less

  5. When Parents' Praise Inflates, Children's Self-Esteem Deflates.

    PubMed

    Brummelman, Eddie; Nelemans, Stefanie A; Thomaes, Sander; Orobio de Castro, Bram

    2017-11-01

    Western parents often give children overly positive, inflated praise. One perspective holds that inflated praise sets unattainable standards for children, eventually lowering children's self-esteem (self-deflation hypothesis). Another perspective holds that children internalize inflated praise to form narcissistic self-views (self-inflation hypothesis). These perspectives were tested in an observational-longitudinal study (120 parent-child dyads from the Netherlands) in late childhood (ages 7-11), when narcissism and self-esteem first emerge. Supporting the self-deflation hypothesis, parents' inflated praise predicted lower self-esteem in children. Partly supporting the self-inflation hypothesis, parents' inflated praise predicted higher narcissism-but only in children with high self-esteem. Noninflated praise predicted neither self-esteem nor narcissism. Thus, inflated praise may foster the self-views it seeks to prevent. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  6. Thermal Analysis and Testing of Candidate Materials for PAIDAE Inflatable Aeroshell

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Bruce, Walter E., III; Liles, Kaitlin A.; Hughes, Stephen J.

    2009-01-01

    The Program to Advance Inflatable-Decelerators for Atmospheric Entry (PAIDAE) is a NASA project tasked with developing and evaluating viable inflatable-decelerator aeroshell geometries and materials. Thermal analysis of material layups supporting an inflatable aeroshell was completed in order to identify expected material response, failure times, and to establish an experimental test matrix to keep barrier layer materials from reaching critical temperature limits during thermal soak. Material layups were then tested in the 8- foot High Temperature Tunnel (8'HTT), where they were subjected to hypersonic aerothermal heating conditions, similar to those expected for a Mars entry. This paper presents a broad overview of the thermal analysis supporting multiple materials, and layup configurations tested in the 8'HTT at flight conditions similar to those that would be experienced during Mars entry trajectories. Direct comparison of TPS samples tested in the 8'HTT verify that the thermal model accurately predicted temperature profiles when there are up to four materials in the test layup. As the number of material layers in each test layup increase (greater than 4), the accuracy of the prediction decreases significantly. The inaccuracy of the model predictions for layups with more than four material layers is believed to be a result of the contact resistance values used throughout the model being inaccurate. In addition, the harsh environment of the 8'HTT, including hot gas penetrating through the material layers, could also be a contributing factor.

  7. Constant-roll tachyon inflation and observational constraints

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  8. Modal Test of Six-Meter Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Abraham, Nijo; Buehrle, Ralph; Templeton, Justin; Lindell, Mike; Hancock, Sean M.

    2014-01-01

    A modal test was performed on the six-meter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) test article to gain a firm understanding of the dynamic characteristics of the unloaded structure within the low frequency range. The tests involved various configurations of the HIAD to understand the influence of the tri-torus, the varying pressure within the toroids and the influence of straps. The primary test was conducted utilizing an eletrodynamic shaker and the results were verified using a step relaxation technique. The analysis results show an increase in the structure's stiffness with respect to increasing pressure. The results also show the rise of coupled modes with the tri-torus configurations. During the testing activity, the attached straps exhibited a behavior that is similar to that described as fuzzy structures in the literature. Therefore extensive tests were also performed by utilizing foam to mitigate these effects as well as understand the modal parameters of these fuzzy sub structures. Results are being utilized to update the finite element model of the six-meter HIAD and to gain a better understanding of the modeling of complex inflatable structures.

  9. Inflation data clustering of some cities in Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, Adi; Susanto, Bambang; Mahatma, Tundjung

    2017-06-01

    In this paper, it is presented how to cluster inflation data of cities in Indonesia by using k-means cluster method and fuzzy c-means method. The data that are used is limited to the monthly inflation data from 15 cities across Indonesia which have highest weight of donations and is supplemented with 5 cities used in the calculation of inflation in Indonesia. When they are applied into two clusters with k = 2 for k-means cluster method and c = 2, w = 1.25 for fuzzy c-means cluster method, Ambon, Manado and Jayapura tend to become one cluster (high inflation) meanwhile other cities tend to become members of other cluster (low inflation). However, if they are applied into two clusters with c=2, w=1.5, Surabaya, Medan, Makasar, Samarinda, Makasar, Manado, Ambon dan Jayapura tend to become one cluster (high inflation) meanwhile other cities tend to become members of other cluster (low inflation). Furthermore, when we use two clusters with k=3 for k-means cluster method and c=3, w = 1.25 for fuzzy c-means cluster method, Ambon tends to become member of first cluster (high inflation), Manado and Jayapura tend to become member of second cluster (moderate inflation), other cities tend to become members of third cluster (low inflation). If it is applied c=3, w = 1.5, Ambon, Manado and Jayapura tend to become member of first cluster (high inflation), Surabaya, Bandung, Medan, Makasar, Banyuwangi, Denpasar, Samarinda dan Mataram tend to become members of second cluster (moderate inflation), meanwhile other cities tend to become members of third cluster (low inflation). Similarly, interpretation can be made to the results of applying 5 clusters.

  10. A Reconfigurable Pneumatic Bending Actuator with Replaceable Inflation Modules.

    PubMed

    Natividad, Rainier; Del Rosario, Manuel; Chen, Peter C Y; Yeow, Chen-Hua

    2018-06-01

    A fully reconfigurable, pneumatic bending actuator is fabricated by implementing the concept of modularity to soft robotics. The actuator features independent, removable, fabric inflation modules that are attached to a common flexible but non-inflating plastic spine. The fabric modules are individually fabricated by heat sealing a thermoplastic polyurethane-coated nylon fabric, whereas the spine is manufactured through fused deposition modeling 3D printing; the components can be assembled and dismantled without the aid of any external tools. The replacement of specific modules along the array facilitates the reconfiguration of the actuator's bending trajectory and torque output; likewise, the combination of inflation modules with dissimilar geometries translates to several different trajectories on a single spine and allows the actuator to bend into assorted, unique structures. A detailed description of the actuator's design is thoroughly presented. We explored how reconfiguration of the actuator's modular geometry affected both the steady state and the dynamic characteristics of the actuator. The torque output of the actuator is proportional to the magnitude of the pressure applied. The actuator was excited by sinusoidal and square pressure inputs, and a second-order linear fit was performed. There were no perceived changes in its performance even after 100,000 inflation and deflation cycles.

  11. Overview of the NASA Entry, Descent and Landing Systems Analysis Exploration Feed-Forward Study

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Zang, Thomas A.; Sostaric, Ronald R.; McGuire, M. Kathy

    2011-01-01

    Technology required to land large payloads (20 to 50 mt) on Mars remains elusive. In an effort to identify the most viable investment path, NASA and others have been studying various concepts. One such study, the Entry, Descent and Landing Systems Analysis (EDLSA) Study [1] identified three potential options: the rigid aeroshell, the inflatable aeroshell and supersonic retropropulsion (SRP). In an effort to drive out additional levels of design detail, a smaller demonstrator, or exploration feed-forward (EFF), robotic mission was devised that utilized two of the three (inflatable aeroshell and SRP) high potential technologies in a configuration to demonstrate landing a two to four metric ton payload on Mars. This paper presents and overview of the maximum landed mass, inflatable aeroshell controllability and sensor suite capability assessments of the selected technologies and recommends specific technology areas for additional work.

  12. Lightweight Inflatable Solar Array: Providing a Flexible, Efficient Solution to Space Power Systems for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Fabisinski, Leo; Justice, Stefanie

    2014-01-01

    Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.

  13. Scalar-tensor linear inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artymowski, Michał; Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee

    2017-04-01

    We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead tomore » linear inflation in the strong coupling limit.« less

  14. Murine pulmonary acinar mechanics during quasi-static inflation using synchrotron refraction-enhanced computed tomography.

    PubMed

    Sera, Toshihiro; Yokota, Hideo; Tanaka, Gaku; Uesugi, Kentaro; Yagi, Naoto; Schroter, Robert C

    2013-07-15

    We visualized pulmonary acini in the core regions of the mouse lung in situ using synchrotron refraction-enhanced computed tomography (CT) and evaluated their kinematics during quasi-static inflation. This CT system (with a cube voxel of 2.8 μm) allows excellent visualization of not just the conducting airways, but also the alveolar ducts and sacs, and tracking of the acinar shape and its deformation during inflation. The kinematics of individual alveoli and alveolar clusters with a group of terminal alveoli is influenced not only by the connecting alveolar duct and alveoli, but also by the neighboring structures. Acinar volume was not a linear function of lung volume. The alveolar duct diameter changed dramatically during inflation at low pressures and remained relatively constant above an airway pressure of ∼8 cmH2O during inflation. The ratio of acinar surface area to acinar volume indicates that acinar distension during low-pressure inflation differed from that during inflation over a higher pressure range; in particular, acinar deformation was accordion-like during low-pressure inflation. These results indicated that the alveoli and duct expand differently as total acinar volume increases and that the alveolar duct may expand predominantly during low-pressure inflation. Our findings suggest that acinar deformation in the core regions of the lung is complex and heterogeneous.

  15. Beyond Inflation:. A Cyclic Universe Scenario

    NASA Astrophysics Data System (ADS)

    Turok, Neil; Steinhardt, Paul J.

    2005-08-01

    Inflation has been the leading early universe scenario for two decades, and has become an accepted element of the successful 'cosmic concordance' model. However, there are many puzzling features of the resulting theory. It requires both high energy and low energy inflation, with energy densities differing by a hundred orders of magnitude. The questions of why the universe started out undergoing high energy inflation, and why it will end up in low energy inflation, are unanswered. Rather than resort to anthropic arguments, we have developed an alternative cosmology, the cyclic universe [1], in which the universe exists in a very long-lived attractor state determined by the laws of physics. The model shares inflation's phenomenological successes without requiring an epoch of high energy inflation. Instead, the universe is made homogeneous and flat, and scale-invariant adiabatic perturbations are generated during an epoch of low energy acceleration like that seen today, but preceding the last big bang. Unlike inflation, the model requires low energy acceleration in order for a periodic attractor state to exist. The key challenge facing the scenario is that of passing through the cosmic singularity at t = 0. Substantial progress has been made at the level of linearised gravity, which is reviewed here. The challenge of extending this to nonlinear gravity and string theory remains.

  16. Beyond Inflation: A Cyclic Universe Scenario

    NASA Astrophysics Data System (ADS)

    Turok, Neil; Steinhardt, Paul J.

    2005-01-01

    Inflation has been the leading early universe scenario for two decades, and has become an accepted element of the successful `cosmic concordance' model. However, there are many puzzling features of the resulting theory. It requires both high energy and low energy inflation, with energy densities differing by a hundred orders of magnitude. The questions of why the universe started out undergoing high energy inflation, and why it will end up in low energy inflation, are unanswered. Rather than resort to anthropic arguments, we have developed an alternative cosmology, the cyclic universe, in which the universe exists in a very long-lived attractor state determined by the laws of physics. The model shares inflation's phenomenological successes without requiring an epoch of high energy inflation. Instead, the universe is made homogeneous and flat, and scale-invariant adiabatic perturbations are generated during an epoch of low energy acceleration like that seen today, but preceding the last big bang. Unlike inflation, the model requires low energy acceleration in order for a periodic attractor state to exist. The key challenge facing the scenario is that of passing through the cosmic singularity at t = 0. Substantial progress has been made at the level of linearised gravity, which is reviewed here. The challenge of extending this to nonlinear gravity and string theory remains.

  17. Robustness of inflation to inhomogeneous initial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clough, Katy; Lim, Eugene A.; DiNunno, Brandon S.

    We consider the effects of inhomogeneous initial conditions in both the scalar field profile and the extrinsic curvature on different inflationary models. In particular, we compare the robustness of small field inflation to that of large field inflation, using numerical simulations with Einstein gravity in 3+1 dimensions. We find that small field inflation can fail in the presence of subdominant gradient energies, suggesting that it is much less robust to inhomogeneities than large field inflation, which withstands dominant gradient energies. However, we also show that small field inflation can be successful even if some regions of spacetime start out inmore » the region of the potential that does not support inflation. In the large field case, we confirm previous results that inflation is robust if the inflaton occupies the inflationary part of the potential. Furthermore, we show that increasing initial scalar gradients will not form sufficiently massive inflation-ending black holes if the initial hypersurface is approximately flat. Finally, we consider the large field case with a varying extrinsic curvature K , such that some regions are initially collapsing. We find that this may again lead to local black holes, but overall the spacetime remains inflationary if the spacetime is open, which confirms previous theoretical studies.« less

  18. Robustness of inflation to inhomogeneous initial conditions

    NASA Astrophysics Data System (ADS)

    Clough, Katy; Lim, Eugene A.; DiNunno, Brandon S.; Fischler, Willy; Flauger, Raphael; Paban, Sonia

    2017-09-01

    We consider the effects of inhomogeneous initial conditions in both the scalar field profile and the extrinsic curvature on different inflationary models. In particular, we compare the robustness of small field inflation to that of large field inflation, using numerical simulations with Einstein gravity in 3+1 dimensions. We find that small field inflation can fail in the presence of subdominant gradient energies, suggesting that it is much less robust to inhomogeneities than large field inflation, which withstands dominant gradient energies. However, we also show that small field inflation can be successful even if some regions of spacetime start out in the region of the potential that does not support inflation. In the large field case, we confirm previous results that inflation is robust if the inflaton occupies the inflationary part of the potential. Furthermore, we show that increasing initial scalar gradients will not form sufficiently massive inflation-ending black holes if the initial hypersurface is approximately flat. Finally, we consider the large field case with a varying extrinsic curvature K, such that some regions are initially collapsing. We find that this may again lead to local black holes, but overall the spacetime remains inflationary if the spacetime is open, which confirms previous theoretical studies.

  19. Item Response Modeling of Multivariate Count Data with Zero Inflation, Maximum Inflation, and Heaping

    ERIC Educational Resources Information Center

    Magnus, Brooke E.; Thissen, David

    2017-01-01

    Questionnaires that include items eliciting count responses are becoming increasingly common in psychology. This study proposes methodological techniques to overcome some of the challenges associated with analyzing multivariate item response data that exhibit zero inflation, maximum inflation, and heaping at preferred digits. The modeling…

  20. Self-reproduction in k-inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmer, Ferdinand; Winitzki, Sergei

    2006-09-15

    We study cosmological self-reproduction in models of inflation driven by a scalar field {phi} with a noncanonical kinetic term (k-inflation). We develop a general criterion for the existence of attractors and establish conditions selecting a class of k-inflation models that admit a unique attractor solution. We then consider quantum fluctuations on the attractor background. We show that the correlation length of the fluctuations is of order c{sub s}H{sup -1}, where c{sub s} is the speed of sound. By computing the magnitude of field fluctuations, we determine the coefficients of Fokker-Planck equations describing the probability distribution of the spatially averaged fieldmore » {phi}. The field fluctuations are generally large in the inflationary attractor regime; hence, eternal self-reproduction is a generic feature of k-inflation. This is established more formally by demonstrating the existence of stationary solutions of the relevant Fokker-Planck equations. We also show that there exists a (model-dependent) range {phi}{sub R}<{phi}<{phi}{sub max} within which large fluctuations are likely to drive the field towards the upper boundary {phi}={phi}{sub max}, where the semiclassical consideration breaks down. An exit from inflation into reheating without reaching {phi}{sub max} will occur almost surely (with probability 1) only if the initial value of {phi} is below {phi}{sub R}. In this way, strong self-reproduction effects constrain models of k-inflation.« less

  1. Deployment and Drop Test of Inflatable Aeroshell for Atmospheric Entry Capsule with using Large Scientific Balloon

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Suzuki, Kojiro; Honma, Naohiko; Abe, Daisuke; Makino, Hitoshi; Nagata, Yasunori; Kimura, Yusuke; Koyama, Masashi; Akita, Daisuke; Hayashi, Koichi; Abe, Takashi

    A deployable and flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system in the near future, because the large-area, low-mass aeroshell dramatically reduces aerodynamic heating and achieves a soft landing without a conventional parachute system thanks to its low ballistic coefficient. Various concepts of flexible aeroshell have been proposed in the past. Our group are researching and developing a flare-type membrane aeroshell sustained by inflatable torus. As a part of the development, a deployment and drop test of a capsule-type experimental vehicle with a 1.264-m-diameter flare-type membrane aeroshell sustained by inflatable torus was carried out using a large scientific balloon in August, 2009. The objectives of this experiment are 1) to demonstrate the remote inflation system of inflatable aeroshell, 2) to acquire aerodynamic performance of a low ballistic coefficient vehicle including an inflatable structure in subsonic region, and 3) to observe behavior and deformation of the flexible aeroshell during free flight. In this test, the inflatable aeroshell was deployed at an altitude 24.6km by radio command from ground station. After deployment, the experimental vehicle was dropped from the balloon and underwent free flight. The flight data and images of the aeroshell collected using onboard sensors were transmitted successfully during the flight by the telemetry system. The data showed that the vehicle was almost stable in free flight condition and the inflatable aeroshell was collapsed at expected altitude. This deployment and drop test was very successful and useful data for design of actual atmospheric-entry vehicles with inflatable structure was acquired as planned.

  2. Inflatable Dark Matter.

    PubMed

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  3. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  4. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  5. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, the International Space Station, Uninhabited Aerial Vehicles, and Expendable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  6. Model with two periods of inflation

    NASA Astrophysics Data System (ADS)

    Schettler, Simon; Schaffner-Bielich, Jürgen

    2016-01-01

    A scenario with two subsequent periods of inflationary expansion in the very early Universe is examined. The model is based on a potential motivated by symmetries being found in field theory at high energy. For various parameter sets of the potential, the spectra of scalar and tensor perturbations that are expected to originate from this scenario are calculated. Also the beginning of the reheating epoch connecting the second inflation with thermal equilibrium is studied. Perturbations with wavelengths leaving the horizon around the transition between the two inflations are special: It is demonstrated that the power spectrum at such scales deviates significantly from expectations based on measurements of the cosmic microwave background. This supports the conclusion that parameters for which this part of the spectrum leaves observable traces in the cosmic microwave background must be excluded. Parameters entailing a very efficient second inflation correspond to standard small-field inflation and can meet observational constraints. Particular attention is paid to the case where the second inflation leads solely to a shift of the observable spectrum from the first inflation. A viable scenario requires this shift to be small.

  7. Inflatable Personal Flotation Device Study.

    DTIC Science & Technology

    1981-02-01

    late. t, h Iw . No cood (1) - CVider would not Ipu, tore 1t) - ( I\\ inder d idn ’t punk t n- t . Tried several times. Lost belt in lake, Lr ic - caIIt...dii not respond as expected (1) 6. (C) - When C02 cylinder is used to inflate, all the snaps do not pop open (1) - No event (1) - When inflated it is...Upon inflation, the snap closest to my face popped , striking my hand and face (1) - Device rode up over back of head in rough water (1) - None (1

  8. Aerocapture Inflatable Decelerator for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen

    2007-01-01

    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.

  9. Structural dynamics technology research in NASA: Perspective on future needs

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The perspective of a NASA ad hoc study group on future research needs in structural dynamics within the aerospace industry is presented. The common aspects of the design process across the industry are identified and the role of structural dynamics is established through a discussion of various design considerations having their basis in structural dynamics. The specific structural dynamics issues involved are identified and assessed as to their current technological status and trends. Projections of future requirements based on this assessment are made and areas of research to meet them are identified.

  10. Primordial perturbations in multi-scalar inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedi, Habib; Abbassi, Amir M., E-mail: h.abedi@ut.ac.ir, E-mail: amabasi@khayam.ut.ac.ir

    2017-07-01

    Multiple field models of inflation exhibit new features than single field models. In this work, we study the hierarchy of parameters based on Hubble expansion rate in curved field space and derive the system of flow equations that describe their evolutions. Then we focus on obtaining derivatives of number of e-folds with respect to scalar fields during inflation and at hypersurface of the end of inflation.

  11. Inflation of Unreefed and Reefed Extraction Parachutes

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Varela, Jose G.

    2015-01-01

    Data from the Orion and several other test programs have been used to reconstruct inflation parameters for 28 ft Do extraction parachutes as well as the parent aircraft pitch response during extraction. The inflation force generated by extraction parachutes is recorded directly during tow tests but is usually inferred from the payload accelerometer during Low Velocity Airdrop Delivery (LVAD) flight test extractions. Inflation parameters are dependent on the type of parent aircraft, number of canopies, and standard vs. high altitude extraction conditions. For standard altitudes, single canopy inflations are modeled as infinite mass, but the non-symmetric inflations in a cluster are modeled as finite mass. High altitude extractions have necessitated reefing the extraction parachutes, which are best modeled as infinite mass for those conditions. Distributions of aircraft pitch profiles and inflation parameters have been generated for use in Monte Carlo simulations of payload extractions.

  12. Clockwork inflation

    NASA Astrophysics Data System (ADS)

    Kehagias, Alex; Riotto, Antonio

    2017-04-01

    We investigate the recently proposed clockwork mechanism delivering light degrees of freedom with suppressed interactions and show, with various examples, that it can be efficiently implemented in inflationary scenarios to generate flat inflaton potentials and small density perturbations without fine-tunings. We also study the clockwork graviton in de Sitter and, interestingly, we find that the corresponding clockwork charge is site-dependent. As a consequence, the amount of tensor modes is generically suppressed with respect to the standard cases where the clockwork set-up is not adopted. This point can be made a virtue in resurrecting models of inflation which were supposed to be ruled out because of the excessive amount of tensor modes from inflation.

  13. Trapped Inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel; Horn, Bart; /SLAC /Stanford U., Phys. Dept.

    2009-06-19

    We analyze a distinctive mechanism for inflation in which particle production slows down a scalar field on a steep potential, and show how it descends from angular moduli in string compactifications. The analysis of density perturbations - taking into account the integrated effect of the produced particles and their quantum fluctuations - requires somewhat new techniques that we develop. We then determine the conditions for this effect to produce sixty e-foldings of inflation with the correct amplitude of density perturbations at the Gaussian level, and show that these requirements can be straightforwardly satisfied. Finally, we estimate the amplitude of themore » non-Gaussianity in the power spectrum and find a significant equilateral contribution.« less

  14. Seeded hot dark matter models with inflation

    NASA Technical Reports Server (NTRS)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  15. Symmetry breaking patterns for inflation

    NASA Astrophysics Data System (ADS)

    Klein, Remko; Roest, Diederik; Stefanyszyn, David

    2018-06-01

    We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.

  16. Gravitational waves and large field inflation

    NASA Astrophysics Data System (ADS)

    Linde, Andrei

    2017-02-01

    According to the famous Lyth bound, one can confirm large field inflation by finding tensor modes with sufficiently large tensor-to-scalar ratio r. Here we will try to answer two related questions: is it possible to rule out all large field inflationary models by not finding tensor modes with r above some critical value, and what can we say about the scale of inflation by measuring r? However, in order to answer these questions one should distinguish between two different definitions of the large field inflation and three different definitions of the scale of inflation. We will examine these issues using the theory of cosmological α-attractors as a convenient testing ground.

  17. A Methane Balloon Inflation Chamber

    ERIC Educational Resources Information Center

    Czerwinski, Curtis J.; Cordes, Tanya J.; Franek, Joe

    2005-01-01

    The various equipments, procedure and hazards in constructing the device for inflating a methane balloon using a standard methane outlet in a laboratory are described. This device is fast, safe, inexpensive, and easy to use as compared to a hydrogen gas cylinder for inflating balloons.

  18. Natural inflation and quantum gravity.

    PubMed

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.

  19. Inflatable stretcher to transport patients

    NASA Technical Reports Server (NTRS)

    Clark, C. C.; Gordon, F. T., Jr.; Schmidt, C. B.

    1970-01-01

    Inflatable plastic bag inside strong, inflexible outer bag facilitates emergency transport of seriously burned or disabled patients. When the bag is inflated the patient is completely immobilized and cushioned from external shock. Air for breathing, temperature controls and communications may be provided by appropriate plug-in connections.

  20. An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2017-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.

  1. Fibre inflation and α-attractors

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Linde, Andrei; Roest, Diederik; Westphal, Alexander; Yamada, Yusuke

    2018-02-01

    Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an \\overline{D3} uplift term with a nilpotent superfield. Specific moduli dependent \\overline{D3} induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.

  2. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1994. These results were presented at the Fifth Annual NASA LA2ST Grant Review Meeting held at the Langley Research Center in July of 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, lightweight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  3. Inflatable Dark Matter

    DOE PAGES

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-22

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUTmore » or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.« less

  4. Seven lessons from manyfield inflation in random potentials

    NASA Astrophysics Data System (ADS)

    Dias, Mafalda; Frazer, Jonathan; Marsh, M. C. David

    2018-01-01

    We study inflation in models with many interacting fields subject to randomly generated scalar potentials. We use methods from non-equilibrium random matrix theory to construct the potentials and an adaption of the `transport method' to evolve the two-point correlators during inflation. This construction allows, for the first time, for an explicit study of models with up to 100 interacting fields supporting a period of `approximately saddle-point' inflation. We determine the statistical predictions for observables by generating over 30,000 models with 2–100 fields supporting at least 60 efolds of inflation. These studies lead us to seven lessons: i) Manyfield inflation is not single-field inflation, ii) The larger the number of fields, the simpler and sharper the predictions, iii) Planck compatibility is not rare, but future experiments may rule out this class of models, iv) The smoother the potentials, the sharper the predictions, v) Hyperparameters can transition from stiff to sloppy, vi) Despite tachyons, isocurvature can decay, vii) Eigenvalue repulsion drives the predictions. We conclude that many of the `generic predictions' of single-field inflation can be emergent features of complex inflation models.

  5. Does Education Corrupt? Theories of Grade Inflation

    ERIC Educational Resources Information Center

    Oleinik, Anton

    2009-01-01

    Several theories of grade inflation are discussed in this review article. It is argued that grade inflation results from the substitution of criteria specific to the search for truth by criteria of quality control generated outside of academia. Particular mechanisms of the grade inflation that occurs when a university is transformed into a…

  6. Consistency condition for inflation from (broken) conformal symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schalm, Koenraad; Aalst, Ted van der; Shiu, Gary, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: shiu@physics.wisc.edu, E-mail: vdaalst@lorentz.leidenuniv.nl

    2013-03-01

    We investigate the symmetry constraints on the bispectrum, i.e. the three-point correlation function of primordial density fluctuations, in slow-roll inflation. It follows from the defining property of slow-roll inflation that primordial correlation functions inherit most of their structure from weakly broken de Sitter symmetries. Using holographic techniques borrowed from the AdS/CFT correspondence, the symmetry constraints on the bispectrum can be mapped to a set of stress-tensor Ward identities in a weakly broken 2+1-dimensional Euclidean CFT. We construct the consistency condition from these Ward identities using conformal perturbation theory. This requires a second order Ward identity and the use of themore » evolution equation. Our result also illustrates a subtle difference between conformal perturbation theory and the slow-roll expansion.« less

  7. The chaotic regime of D-term inflation

    NASA Astrophysics Data System (ADS)

    Buchmüller, W.; Domcke, V.; Schmitz, K.

    2014-11-01

    We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of `chaotic inflation'.

  8. Method and apparatus for an inflatable shell

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher J. (Inventor)

    2012-01-01

    A method of assembling an inflatable shell of a structure comprises folding a plurality of shell sections about a set of fold lines and integrating the plurality of shell sections together with one another to form the shell. In another embodiment, an inflatable shell comprises a plurality of shell sections, each shell section having two pairs of fold lines for folding into stowage comprising a first gore section having a plurality of first gore panels layered and collectively folded about at a first set of fold lines. Each layer of the first gore panels and second gore panels are configured such that, once the first gore panel and second gore panel are attached to one another at the respective side edges of each panel, the lines of attachment forming a second set of fold lines for the shell section. A system and method for fabricating gore panels is also disclosed.

  9. A novel stent inflation protocol improves long-term outcomes compared with rapid inflation/deflation deployment method.

    PubMed

    Vallurupalli, Srikanth; Kasula, Srikanth; Kumar Agarwal, Shiv; Pothineni, Naga Venkata K; Abualsuod, Amjad; Hakeem, Abdul; Ahmed, Zubair; Uretsky, Barry F

    2017-08-01

    High-pressure inflation for coronary stent deployment is universally performed. However, the duration of inflation is variable and does not take into account differences in lesion compliance. We developed a standardized "pressure optimization protocol" (POP) using inflation pressure stability rather than an arbitrary inflation time or angiographic balloon appearance for stent deployment. Whether this approach improves long-term outcomes is unknown. 792 patients who underwent PCI using either rapid inflation/deflation (n = 376) or POP (n = 416) between January 2009 and March 2014 were included. Exclusion criteria included PCI for acute myocardial infarction, in-stent restenosis, chronic total occlusion, left main, and saphenous vein graft lesions. Primary endpoint was target vessel failure [TVF = combined end point of target vessel revascularization (TVR), myocardial infarction, and cardiac death]. Outcomes were analyzed in the entire cohort and in a propensity analysis. Stent implantation using POP with a median follow-up of 1317 days was associated with lower TVF compared with rapid inflation/deflation (10.1 vs. 17.8%, P < 0.0001). This difference was driven by a decrease in TVR (7 vs. 10.6%, P = 0.0016) and cardiac death (2.9 vs. 5.8%, P = 0.017) while there was no difference in myocardial infarction (1 vs. 1.9%, P = 0.19). In the Cox regression model, deployment using POP was the only independent predictor of reduced TVF (HR 0.43; 0.29-0.64; P < 0.0001). In the propensity analysis (330 patients per group) TVF remained lower with POP vs. rapid inflation/deflation (10 vs. 18%, P < 0.0001). Stent deployment using POP led to reduced TVF compared to rapid I/D. These results recommend this method to improve long-term outcomes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Inflatable Vehicles for In-Situ Exploration of Titan

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    2001-01-01

    Space Inflatable vehicles have been finding popularity in recent years for applications as varied as spacecraft antennas, space-based telescopes, solar sails, and manned habitats. Another branch of space inflatable technology has also considered developing ambient-filled, solar balloons for Mars as well as ambient-filled inflatable rovers. More recently, some of these inflatable technologies have been applied to the outer solar system bodies with the result that there are some rather unique and compelling inflatable mission capabilities for in situ explorations of Titan, Triton, Uranus, and Neptune. Additional information is contained in the original extended abstract.

  11. Interest and Inflation Risk: Investor Behavior

    PubMed Central

    González, María de la O; Jareño, Francisco; Skinner, Frank S.

    2016-01-01

    We examine investor behavior under interest and inflation risk in different scenarios. To that end, we analyze the relation between stock returns and unexpected changes in nominal and real interest rates and inflation for the US stock market. This relation is examined in detail by breaking the results down from the US stock market level to sector, sub-sector, and to individual industries as the ability of different industries to absorb unexpected changes in interest rates and inflation can vary by industry and by contraction and expansion sub-periods. While most significant relations are conventionally negative, some are consistently positive. This suggests some relevant implications on investor behavior. Thus, investments in industries with this positive relation can form a safe haven from unexpected changes in real and nominal interest rates. Gold has an insignificant beta during recessionary conditions hinting that Gold can be a safe haven during recessions. However, Gold also has a consistent negative relation to unexpected changes in inflation thereby damaging the claim that Gold is a hedge against inflation. PMID:27047418

  12. Interest and Inflation Risk: Investor Behavior.

    PubMed

    González, María de la O; Jareño, Francisco; Skinner, Frank S

    2016-01-01

    We examine investor behavior under interest and inflation risk in different scenarios. To that end, we analyze the relation between stock returns and unexpected changes in nominal and real interest rates and inflation for the US stock market. This relation is examined in detail by breaking the results down from the US stock market level to sector, sub-sector, and to individual industries as the ability of different industries to absorb unexpected changes in interest rates and inflation can vary by industry and by contraction and expansion sub-periods. While most significant relations are conventionally negative, some are consistently positive. This suggests some relevant implications on investor behavior. Thus, investments in industries with this positive relation can form a safe haven from unexpected changes in real and nominal interest rates. Gold has an insignificant beta during recessionary conditions hinting that Gold can be a safe haven during recessions. However, Gold also has a consistent negative relation to unexpected changes in inflation thereby damaging the claim that Gold is a hedge against inflation.

  13. CMB spectral distortion constraints on thermal inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Kihyun; Stewart, Ewan D.; Hong, Sungwook E.

    2017-08-01

    Thermal inflation is a second epoch of exponential expansion at typical energy scales V {sup 1/4} ∼ 10{sup 6} {sup ∼} {sup 8} GeV. If the usual primordial inflation is followed by thermal inflation, the primordial power spectrum is only modestly redshifted on large scales, but strongly suppressed on scales smaller than the horizon size at the beginning of thermal inflation, k > k {sub b} = a {sub b} H {sub b}. We calculate the spectral distortion of the cosmic microwave background generated by the dissipation of acoustic waves in this context. For k {sub b} || 10{sup 3}more » Mpc{sup −1}, thermal inflation results in a large suppression of the μ-distortion amplitude, predicting that it falls well below the standard value of μ ≅ 2× 10{sup −8}. Thus, future spectral distortion experiments, similar to PIXIE, can place new limits on the thermal inflation scenario, constraining k {sub b} ∼> 10{sup 3} Mpc{sup −1} if μ ≅ 2× 10{sup −8} were found.« less

  14. Inflatable Antennas Support Emergency Communication

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  15. A preliminary design of interior structure and foundation of an inflatable lunar habitat

    NASA Technical Reports Server (NTRS)

    Yin, Paul K.

    1989-01-01

    A preliminary structural design and analysis of an inflatable habitat for installation on the moon was completed. The concept takes the shape of a sphere with a diameter of approximately 16 meters. The interior framing provides five floor levels and is enclosed by a spherical air-tight membrane holding an interior pressure of 14.7 psi (101.4kpa). The spherical habitat is to be erected on the lunar surface with the lower one third below grade and the upper two thirds covered with a layer of lunar regolith for thermal insulation and shielding against radiation and meteoroids. The total dead weight (earth weight) of the structural aluminum, which is of vital interest for the costly space transportation, is presented. This structural dead weight represents a preliminary estimate without including structural details. The design results in two versions: one supports the weight of the radiation shielding in case of deflation of the fabric enclosure and the other assumes that the radiation shielding is self supporting. To gain some indication of the amount of structural materials needed if the identical habitat were installed on Mars and Earth, three additional design versions were generated where the only difference is in gravity. These additional design versions are highly academic since the difference will be much more than in gravity alone. The lateral loading due to dust storms on Mars and wind loads on Earth are some examples. The designs under the lunar gravity are realistic. They may not be adequate for final material procurement and fabrication, however, as the connection details, among other reasons, may effect the sizes of the structural members.

  16. Dynamics of a 4x6-Meter Thin Film Elliptical Inflated Membrane for Space Applications

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew J.; Hamidzadeh, Hamid R.; Tinker, Michael L.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Dynamic characterization of a thin film inflatable elliptical structure is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large Hexameter lightweight inflatable arc identified, including considerable difficulty in obtaining convergence in the nonlinear finite element pressurization solution. It was found that the extremely thin polyimide film material (.001 in or 1 mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. Approaches utilized to overcome these difficulties are described. Comparison of finite element predictions for frequency and mode shapes of the inflated structure with closed-form solutions for a flat pre-tensioned membrane indicate reasonable agreement.

  17. Seeing Double with K2: Testing Re-inflation with Two Remarkably Similar Planets around Red Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Grunblatt, Samuel K.; Huber, Daniel; Gaidos, Eric; Lopez, Eric D.; Howard, Andrew W.; Isaacson, Howard T.; Sinukoff, Evan; Vanderburg, Andrew; Nofi, Larissa; Yu, Jie; North, Thomas S. H.; Chaplin, William; Foreman-Mackey, Daniel; Petigura, Erik; Ansdell, Megan; Weiss, Lauren; Fulton, Benjamin; Lin, Douglas N. C.

    2017-12-01

    Despite more than 20 years since the discovery of the first gas giant planet with an anomalously large radius, the mechanism for planet inflation remains unknown. Here, we report the discovery of K2-132b, an inflated gas giant planet found with the NASA K2 Mission, and a revised mass for another inflated planet, K2-97b. These planets orbit on ≈9 day orbits around host stars that recently evolved into red giants. We constrain the irradiation history of these planets using models constrained by asteroseismology and Keck/High Resolution Echelle Spectrometer spectroscopy and radial velocity measurements. We measure planet radii of 1.31 ± 0.11 R J and 1.30 ± 0.07 R J, respectively. These radii are typical for planets receiving the current irradiation, but not the former, zero age main-sequence irradiation of these planets. This suggests that the current sizes of these planets are directly correlated to their current irradiation. Our precise constraints of the masses and radii of the stars and planets in these systems allow us to constrain the planetary heating efficiency of both systems as 0.03{ % }-0.02 % +0.03 % . These results are consistent with a planet re-inflation scenario, but suggest that the efficiency of planet re-inflation may be lower than previously theorized. Finally, we discuss the agreement within 10% of the stellar masses and radii, and the planet masses, radii, and orbital periods of both systems, and speculate that this may be due to selection bias in searching for planets around evolved stars.

  18. Homogeneous cosmological models and new inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Widrow, Lawrence M.

    1986-01-01

    The promise of the inflationary-universe scenario is to free the present state of the universe from extreme dependence upon initial data. Paradoxically, inflation is usually analyzed in the context of the homogeneous and isotropic Robertson-Walker cosmological models. It is shown that all but a small subset of the homogeneous models undergo inflation. Any initial anisotropy is so strongly damped that if sufficient inflation occurs to solve the flatness and horizon problems, the universe today would still be very isotropic.

  19. Therapeutic Play at Inflatable Playgrounds

    ERIC Educational Resources Information Center

    Yavorcik, Carin

    2009-01-01

    The environment at indoor inflatable playgrounds, featuring giant bounce houses and slides, can become an ideal place for children with autism to receive helpful sensations. This is the reasoning behind Sensory Nights hosted by the Autism Society of America and Pump It Up, a national franchise of giant, indoor inflatable playgrounds. The private…

  20. 46 CFR 506.3 - Civil monetary penalty inflation adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Civil monetary penalty inflation adjustment. 506.3... PENALTY INFLATION ADJUSTMENT § 506.3 Civil monetary penalty inflation adjustment. The Commission shall... each civil monetary penalty provided by law within the jurisdiction of the Commission by the inflation...

  1. Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace Structures at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2016-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

  2. NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.

  3. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  4. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Astrophysics Data System (ADS)

    Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1994-03-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.

  5. Updates in inflatable penile prostheses.

    PubMed

    Henry, Gerard D; Wilson, Steven K

    2007-11-01

    Throughout history, many attempts to correct erectile dysfunction (ED) have been recorded. For the last 35 years, intracavernosal inflatable prostheses have been used, and these devices have undergone almost constant enhancement. The three-piece inflatable penile prosthesis has the highest patient satisfaction rates and lowest mechanical revision rates of almost any medically implanted device.

  6. Macroeconomic susceptibility, inflation, and aggregate supply

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.

    2017-03-01

    We unify aggregate-supply dynamics as a time-dependent susceptibility-mediated relationship between inflation and aggregate economic output. In addition to representing well various observations of inflation-output dynamics this parsimonious formalism provides a straightforward derivation of popular representations of aggregate-supply dynamics and a natural basis for economic-agent expectations as an element of inflation formation. Our formalism also illuminates questions of causality and time-correlation that challenge central banks for whom aggregate-supply dynamics is a key constraint in their goal of achieving macroeconomic stability.

  7. How NASA KSC Controls Interfaces with the use of Motion Skeletons and Product Structure

    NASA Technical Reports Server (NTRS)

    Jones, Corey

    2013-01-01

    This presentation will show how NASA KSC controls interfaces for Modular Product Architecture (MPA) using Locator Skeletons, Interface Skeletons, and Product Structure, to be combined together within a Motion Skeleton. The user will learn how to utilize skeleton models to communicate interface data, as successfully done at NASA KSC in their use of Motion Skeletons to control interfaces for multi-launch systems. There will be discussion of the methodology used to control design requirements through WTParts, and how to utilize product structure for non-CAD documents.

  8. Deployable and Inflatable Fendering Apparatus and Method

    DTIC Science & Technology

    2009-09-25

    for information should be addressed to: TECHNOLOGY PARTNERSHIP ENTERPRISE OFFICE NAVAL UNDERSEA WARFARE CENTER 117 6 HOWELL ST. CODE 07TP, BLDG...can result in impact and abrasion damage to a watercraft’s hull or other marine structures. [0005] Many types of watercraft fender designs ...cause inflation of the bladder, the same air also creates additional pressure maintaining the bladder coupled to the base. An air compressor and

  9. In Brief: NASA Advisory Council structure

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-11-01

    NASA Administrator Charles Bolden has added four new committees to the NASA Advisory Council in the areas of commercial space, education and public outreach, information technology infrastructure, and technology and innovation, the agency announced on 2 November. Other committees are in the areas of aeronautics; audit, finance, and analysis; exploration; science; and space operations. The council, which provides advice and makes recommendations to the administrator about agency programs, policies, plans, financial controls, and other matters, holds its next meeting on 18-19 February 2010. For more information, visit http://www.nasa.gov/offices/nac/home/index.html.

  10. Inflation and Growth: Positive or Negative Relationship?

    NASA Astrophysics Data System (ADS)

    Berument, Hakan; Inamlik, Ali; Olgun, Hasan

    This study has been motivated by two developments. Firstly, by the vast literature on the relationship between inflation and growth which is abundantly endowed with diverse theoretical explanations and contradictory evidence and by the unique experience of the Turkish economy with inflation and growth. A preliminary examination of the Turkish data pointed to a negative relation between inflation and growth. Moreover, there is a unanimous agreement among the students of the Turkish economy that many factors have contributed to inflation in this country. In view of these facts this paper employs a VAR model which will enable us to identify the sources of the shocks and control for external factors. In addition VAR models have a high predictive power and enable the researcher to observe the impulse response functions. The study employs Generalised Impulse Response analysis. In the empirical experiments oil prices, money supply, government spending and taxes have been taken as the most likely determinants of inflation. The study shows that there is a negative relationship between inflation and output growth in Turkey and that the underlying explanatory factor is the real exchange rate. This result is robust.

  11. The observational constraint on constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Gao, Qing

    2018-07-01

    We discuss the constant-roll inflation with constant ɛ2 and constant \\bar η . By using the method of Bessel function approximation, the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts, and the tensor to scalar ratio are derived up to the first order of ɛ1. The model with constant ɛ2 is ruled out by the observations at the 3σ confidence level, and the model with constant \\bar η is consistent with the observations at the 1σ confidence level. The potential for the model with constant \\bar η is also obtained from the Hamilton-Jacobi equation. Although the observations constrain the constant-roll inflation to be the slow-roll inflation, the n s- r results from the constant-roll inflation are not the same as those from the slow-roll inflation even when \\bar η 0.01.

  12. Fuller Employment with Less Inflation.

    ERIC Educational Resources Information Center

    Siegel, Irving H.

    This series of 10 essays, written at various times since the mid-1960s, explores the U.S. economy's proneness to both high inflation and high unemployment during this period. The essays present ideas that the author believes could have reined in price increases in the early stages, and that presently could speed the reduction of inflation and…

  13. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1996-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.

  14. Toward inflation models compatible with the no-boundary proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Dong-il; Yeom, Dong-han, E-mail: dongil.j.hwang@gmail.com, E-mail: innocent.yeom@gmail.com

    2014-06-01

    In this paper, we investigate various inflation models in the context of the no-boundary proposal. We propose that a good inflation model should satisfy three conditions: observational constraints, plausible initial conditions, and naturalness of the model. For various inflation models, we assign the probability to each initial condition using the no-boundary proposal and define a quantitative standard, typicality, to check whether the model satisfies the observational constraints with probable initial conditions. There are three possible ways to satisfy the typicality criterion: there was pre-inflation near the high energy scale, the potential is finely tuned or the inflationary field space ismore » unbounded, or there are sufficient number of fields that contribute to inflation. The no-boundary proposal rejects some of naive inflation models, explains some of traditional doubts on inflation, and possibly, can have observational consequences.« less

  15. New Old Inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvali, Gia

    2003-10-03

    We propose a new class of inflationary solutions to the standard cosmological problems (horizon, flatness, monopole,...), based on a modification of old inflation. These models do not require a potential which satisfies the normal inflationary slow-roll conditions. Our universe arises from a single tunneling event as the inflaton leaves the false vacuum. Subsequent dynamics (arising from either the oscillations of the inflaton field or thermal effects) keep a second field trapped in a false minimum, resulting in an evanescent period of inflation (with roughly 50 e-foldings) inside the bubble. This easily allows the bubble to grow sufficiently large to containmore » our present horizon volume. Reheating is accomplished when the inflaton driving the last stage of inflation rolls down to the true vacuum, and adiabatic density perturbations arise from moduli-dependent Yukawa couplings of the inflaton to matter fields. Our scenario has several robust predictions, including virtual absence of gravity waves, a possible absence of tilt in scalar perturbations, and a higher degree of non-Gaussianity than other models. It also naturally incorporates a solution to the cosmological moduli problem.« less

  16. A general framework of automorphic inflation

    NASA Astrophysics Data System (ADS)

    Schimmrigk, Rolf

    2016-05-01

    Automorphic inflation is an application of the framework of automorphic scalar field theory, based on the theory of automorphic forms and representations. In this paper the general framework of automorphic and modular inflation is described in some detail, with emphasis on the resulting stratification of the space of scalar field theories in terms of the group theoretic data associated to the shift symmetry, as well as the automorphic data that specifies the potential. The class of theories based on Eisenstein series provides a natural generalization of the model of j-inflation considered previously.

  17. Control-Structure-Interaction (CSI) technologies and trends to future NASA missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Control-structure-interaction (CSI) issues which are relevant for future NASA missions are reviewed. This goal was achieved by: (1) reviewing large space structures (LSS) technologies to provide a background and survey of the current state of the art (SOA); (2) analytically studying a focus mission to identify opportunities where CSI technology may be applied to enhance or enable future NASA spacecraft; and (3) expanding a portion of the focus mission, the large antenna, to provide in-depth trade studies, scaling laws, and methodologies which may be applied to other NASA missions. Several sections are presented. Section 1 defines CSI issues and presents an overview of the relevant modeling and control issues for LLS. Section 2 presents the results of the three phases of the CSI study. Section 2.1 gives the results of a CSI study conducted with the Geostationary Platform (Geoplat) as the focus mission. Section 2.2 contains an overview of the CSI control design methodology available in the technical community. Included is a survey of the CSI ground-based experiments which were conducted to verify theoretical performance predictions. Section 2.3 presents and demonstrates a new CSI scaling law methodology for assessing potential CSI with large antenna systems.

  18. Inflation in a closed universe

    NASA Astrophysics Data System (ADS)

    Ratra, Bharat

    2017-11-01

    To derive a power spectrum for energy density inhomogeneities in a closed universe, we study a spatially-closed inflation-modified hot big bang model whose evolutionary history is divided into three epochs: an early slowly-rolling scalar field inflation epoch and the usual radiation and nonrelativistic matter epochs. (For our purposes it is not necessary to consider a final dark energy dominated epoch.) We derive general solutions of the relativistic linear perturbation equations in each epoch. The constants of integration in the inflation epoch solutions are determined from de Sitter invariant quantum-mechanical initial conditions in the Lorentzian section of the inflating closed de Sitter space derived from Hawking's prescription that the quantum state of the universe only include field configurations that are regular on the Euclidean (de Sitter) sphere section. The constants of integration in the radiation and matter epoch solutions are determined from joining conditions derived by requiring that the linear perturbation equations remain nonsingular at the transitions between epochs. The matter epoch power spectrum of gauge-invariant energy density inhomogeneities is not a power law, and depends on spatial wave number in the way expected for a generalization to the closed model of the standard flat-space scale-invariant power spectrum. The power spectrum we derive appears to differ from a number of other closed inflation model power spectra derived assuming different (presumably non de Sitter invariant) initial conditions.

  19. 76 FR 74625 - Civil Monetary Penalties Inflation Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ...-2011] RIN 1125-AA69 Civil Monetary Penalties Inflation Adjustment AGENCIES: U.S. Customs and Border... adjust for inflation certain civil monetary penalties assessed under the Immigration and Nationality Act... assessed under the INA. The Federal Civil Penalties Inflation Adjustment Act of 1990 (Adjustment Act...

  20. Grade Inflation in Higher Education: A Comparative Study.

    ERIC Educational Resources Information Center

    Kolevzon, Michael S.

    1981-01-01

    Ten departments with high grade inflation rates during a seven-year period were compared with 10 departments within the same university displaying lower grade inflation rates. Higher grade inflation rates were related to perceived increases in the demands placed upon the academicians' role. (Author/MLW)

  1. Cytomegalovirus Reinfections Stimulate CD8 T-Memory Inflation.

    PubMed

    Trgovcich, Joanne; Kincaid, Michelle; Thomas, Alicia; Griessl, Marion; Zimmerman, Peter; Dwivedi, Varun; Bergdall, Valerie; Klenerman, Paul; Cook, Charles H

    2016-01-01

    Cytomegalovirus (CMV) has been shown to induce large populations of CD8 T-effector memory cells that unlike central memory persist in large quantities following infection, a phenomenon commonly termed "memory inflation". Although murine models to date have shown very large and persistent CMV-specific T-cell expansions following infection, there is considerable variability in CMV-specific T-memory responses in humans. Historically such memory inflation in humans has been assumed a consequence of reactivation events during the life of the host. Because basic information about CMV infection/re-infection and reactivation in immune competent humans is not available, we used a murine model to test how primary infection, reinfection, and reactivation stimuli influence memory inflation. We show that low titer infections induce "partial" memory inflation of both mCMV specific CD8 T-cells and antibody. We show further that reinfection with different strains can boost partial memory inflation. Finally, we show preliminary results suggesting that a single strong reactivation stimulus does not stimulate memory inflation. Altogether, our results suggest that while high titer primary infections can induce memory inflation, reinfections during the life of a host may be more important than previously appreciated.

  2. Intermediate inflation from a non-canonical scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezazadeh, K.; Karami, K.; Karimi, P., E-mail: rezazadeh86@gmail.com, E-mail: KKarami@uok.ac.ir, E-mail: parvin.karimi67@yahoo.com

    2015-09-01

    We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. M{sub P} ∼ 10{sup 18}GeV. We will see that after a short period of time, inflation entersmore » in the slow-roll regime that its energy scale is of order M{sub P}/100 ∼ 10{sup 16}GeV and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.« less

  3. How likely are constituent quanta to initiate inflation?

    DOE PAGES

    Berezhiani, Lasha; Trodden, Mark

    2015-08-06

    In this study, we propose an intuitive framework for studying the problem of initial conditions in slow-roll inflation. In particular, we consider a universe at high, but sub-Planckian energy density and analyze the circumstances under which it is plausible for it to become dominated by inflated patches at late times, without appealing to the idea of self-reproduction. Our approach is based on defining a prior probability distribution for the constituent quanta of the pre-inflationary universe. To test the idea that inflation can begin under very generic circumstances, we make specific – yet quite general and well grounded – assumptions onmore » the prior distribution. As a result, we are led to the conclusion that the probability for a given region to ignite inflation at sub-Planckian densities is extremely small. Furthermore, if one chooses to use the enormous volume factor that inflation yields as an appropriate measure, we find that the regions of the universe which started inflating at densities below the self-reproductive threshold nevertheless occupy a negligible physical volume in the present universe as compared to those domains that have never inflated.« less

  4. Evading the Lyth bound in hybrid natural inflation

    NASA Astrophysics Data System (ADS)

    Hebecker, A.; Kraus, S. C.; Westphal, A.

    2013-12-01

    Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axionlike shift symmetry keeps the inflaton potential flat (up to nonperturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter ɛ can be sizable during an early period (relevant for the cosmic microwave background spectrum). Subsequently, ɛ quickly becomes very small before the tachyonic instability eventually terminates the slow-roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While nonobservation of tensors by Planck is certainly not a problem, a discovery in the medium- to long-term future is realistic.

  5. Optical Design and Sensitivity of the Probe of Inflation and Cosmic Origins

    NASA Astrophysics Data System (ADS)

    Young, Karl S.; Hanany, Shaul; Wen, Qi

    2018-01-01

    The Probe of Inflation and Cosmic Origins (PICO) is a NASA probe-class mission concept being studied in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. PICO will detect, or place new limits on, the energy scale of inflation and the physics of quantum gravity, determine the effective number of neutrino species and constrain the sum of neutrino masses, measure the optical depth to reionization to the cosmic variance limit, and shed new light on the role of magnetic fields in galactic evolution and star formation by making polarimetric maps of the full mm-wave sky with sensitivity 70 times higher than the Planck space mission. The maps made by PICO will provide a catalog of thousands of new proto clusters and infrared galaxies as well as tens of thousands of galaxy clusters which will further constrain cosmological parameters.PICO will have a 1.4 meter aperture telescope with 21 bands from 20 to 800 Ghz. We show the current PICO optics and discuss trade-offs between types of optical systems, limits imposed by scan strategies, and maximizing the number of detectors on sky. We present the instrument’s focal plane and the expected mission sensitivity.

  6. 46 CFR 185.518 - Inflatable survival craft placards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Inflatable survival craft placards. 185.518 Section 185... 100 GROSS TONS) OPERATIONS Preparations for Emergencies § 185.518 Inflatable survival craft placards. (a) Every vessel equipped with an inflatable survival craft must have approved placards or other...

  7. The Observational Status of Cosmic Inflation After Planck

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme

    The observational status of inflation after the Planck 2013 and 2015 results and the BICEP2/Keck Array and Planck joint analysis is discussed. These pedagogical lecture notes are intended to serve as a technical guide filling the gap between the theoretical articles on inflation and the experimental works on astrophysical and cosmological data. After a short discussion of the central tenets at the basis of inflation (negative self-gravitating pressure) and its experimental verifications, it reviews how the most recent Cosmic Microwave Background (CMB) anisotropy measurements constrain cosmic inflation. The fact that vanilla inflationary models are, so far, preferred by the observations is discussed and the reason why plateau-like potential versions of inflation are favored within this subclass of scenarios is explained. Finally, how well the future measurements, in particular of B-Mode CMB polarization or primordial gravity waves, will help to improve our knowledge about inflation is also investigated.

  8. Supernatural A-Term Inflation

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Min; Cheung, Kingman

    Following Ref. 10, we explore the parameter space of the case when the supersymmetry (SUSY) breaking scale is lower, for example, in gauge mediated SUSY breaking model. During inflation, the form of the potential is V0 plus MSSM (or A-term) inflation. We show that the model works for a wide range of the potential V0 with the soft SUSY breaking mass m O(1) TeV. The implication to MSSM (or A-term) inflation is that the flat directions which is lifted by the non-renormalizable terms described by the superpotential W=λ p φ p-1/Mp-3 P with p = 4 and p = 5 are also suitable to be an inflaton field for λp = O(1) provided there is an additional false vacuum term V0 with appropriate magnitude. The flat directions correspond to p = 6 also works for 0 < ˜ V0/M_ P4 < ˜ 10-40.

  9. Individual differences in imagination inflation.

    PubMed

    Heaps, C; Nash, M

    1999-06-01

    Garry, Manning, Loftus, and Sherman (1996) found that when adult subjects imagined childhood events, these events were subsequentlyjudged as more likely to have occurred than were not-imagined events. The authors termed this effect imagination inflation. We replicated the effect, using a novel set of Life Events Inventory events. Further, we tested whether the effect is related to four subject characteristics possibly associated with false memory creation. The extent to which subjects inflated judged likelihood following imagined events was associated with indices of hypnotic suggestibility and dissociativity, but not with vividness of imagery or interrogative suggestibility. Results suggest that imagination plays a role in subsequent likelihood judgments regarding childhood events, and that some individuals are more likely than others to experience imagination inflation.

  10. Inflation in random Gaussian landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masoumi, Ali; Vilenkin, Alexander; Yamada, Masaki, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: Masaki.Yamada@tufts.edu

    2017-05-01

    We develop analytic and numerical techniques for studying the statistics of slow-roll inflation in random Gaussian landscapes. As an illustration of these techniques, we analyze small-field inflation in a one-dimensional landscape. We calculate the probability distributions for the maximal number of e-folds and for the spectral index of density fluctuations n {sub s} and its running α {sub s} . These distributions have a universal form, insensitive to the correlation function of the Gaussian ensemble. We outline possible extensions of our methods to a large number of fields and to models of large-field inflation. These methods do not suffer frommore » potential inconsistencies inherent in the Brownian motion technique, which has been used in most of the earlier treatments.« less

  11. London equation for monodromy inflation

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Lawrence, Albion

    2017-03-01

    We focus on the massive gauge theory formulation of axion monodromy inflation. We argue that a gauge symmetry hidden in these models is the key mechanism protecting inflation from dangerous field theory and quantum gravity corrections. The effective theory of large-field inflation is dual to a massive U (1 ) 4-form gauge theory, which is similar to a massive gauge theory description of superconductivity. The gauge theory explicitly realizes the old Julia-Toulouse proposal for a low-energy description of a gauge theory in a defect condensate. While we work mostly with the example of quadratic axion potential induced by flux monodromy, we discuss how other types of potentials can arise from the inclusion of gauge-invariant corrections to the theory.

  12. Antenna Technologies for Future NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2006-01-01

    NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable

  13. 46 CFR 122.518 - Inflatable survival craft placards.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inflatable survival craft placards. 122.518 Section 122... Preparations for Emergencies § 122.518 Inflatable survival craft placards. (a) Every vessel equipped with an inflatable survival craft must have approved placards or other cards containing instructions for launching...

  14. Observational constraints on monomial warm inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visinelli, Luca, E-mail: Luca.Visinelli@studio.unibo.it

    Warm inflation is, as of today, one of the best motivated mechanisms for explaining an early inflationary period. In this paper, we derive and analyze the current bounds on warm inflation with a monomial potential U ∝ φ {sup p} , using the constraints from the PLANCK mission. In particular, we discuss the parameter space of the tensor-to-scalar ratio r and the potential coupling λ of the monomial warm inflation in terms of the number of e-folds. We obtain that the theoretical tensor-to-scalar ratio r ∼ 10{sup −8} is much smaller than the current observational constrain r ∼< 0.12, despitemore » a relatively large value of the field excursion Δ φ ∼ 0.1 M {sub Pl}. Warm inflation thus eludes the Lyth bound set on the tensor-to-scalar ratio by the field excursion.« less

  15. Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:12:50.

  16. Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:04:38.

  17. Issues on generating primordial anisotropies at the end of inflation

    NASA Astrophysics Data System (ADS)

    Emami, Razieh; Firouzjahi, Hassan

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.

  18. Last stand of single small field inflation

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Lehman, Landon; Martin, Adam; Downes, Sean

    2014-07-01

    By incorporating both the tensor-to-scalar ratio and the measured value of the spectral index, we set a bound on solo small field inflation of Δϕ/mPl≥1.00√r/0.1 . Unlike previous bounds which require monotonic ɛV, |ηV|<1, and 60 e-folds of inflation, the bound remains valid for nonmonotonic ɛV, |ηV|≳1, and for inflation which occurs only over the eight e-folds which have been observed on the cosmic microwave background. The negative value of the spectral index over the observed eight e-folds is what makes the bound strong; we illustrate this by surveying single field models and finding that for r ≳0.1 and eight e-folds of inflation, there is no simple potential which reproduces observed cosmic microwave background perturbations and remains sub-Planckian. Models that are sub-Planckian after eight e-folds must be patched together with a second epoch of inflation that fills out the remaining ˜50 e-folds. This second, post-cosmic microwave background epoch is characterized by extremely small ɛV and therefore an increasing scalar power spectrum. Using the fact that large power can overabundantly produce primordial black holes, we bound the maximum energy level of the second phase of inflation.

  19. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 1

    NASA Technical Reports Server (NTRS)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA conference on Fibrous Composites in structural Design. Presentations were made in the following areas of composite structural design: perspectives in composites; design methodology; design applications; design criteria; supporting technology; damage tolerance; and manufacturing.

  20. 78 FR 5722 - Civil Monetary Penalty Inflation Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... our Class I penalties to account for inflation since 2004, we are making a second round of penalty... Class I civil penalties under the Clean Water Act and the National Fishing Enhancement Act to account for inflation. The adjustment of civil penalties to account for inflation is required by the Federal...

  1. Attractor behaviour in multifield inflation

    NASA Astrophysics Data System (ADS)

    Carrilho, Pedro; Mulryne, David; Ronayne, John; Tenkanen, Tommi

    2018-06-01

    We study multifield inflation in scenarios where the fields are coupled non-minimally to gravity via ξI(phiI)n gμνRμν, where ξI are coupling constants, phiI the fields driving inflation, gμν the space-time metric, Rμν the Ricci tensor, and n>0. We consider the so-called α-attractor models in two formulations of gravity: in the usual metric case where Rμν=Rμν(gμν), and in the Palatini formulation where Rμν is an independent variable. As the main result, we show that, regardless of the underlying theory of gravity, the field-space curvature in the Einstein frame has no influence on the inflationary dynamics at the limit of large ξI, and one effectively retains the single-field case. However, the gravity formulation does play an important role: in the metric case the result means that multifield models approach the single-field α-attractor limit, whereas in the Palatini case the attractor behaviour is lost also in the case of multifield inflation. We discuss what this means for distinguishing between different models of inflation.

  2. Test facilities of the structural dynamics branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.; Kielb, Robert E.

    1988-01-01

    The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

  3. Optimization of stent implantation using a high pressure inflation protocol.

    PubMed

    Vallurupalli, Srikanth; Bahia, Amit; Ruiz-Rodriguez, Ernesto; Ahmed, Zubair; Hakeem, Abdul; Uretsky, Barry F

    2016-01-01

    High-pressure inflation is the universal standard for stent deployment but a specific protocol for its use is lacking. We developed a standardized "pressure optimization protocol" (POP) using time to inflation pressure stability as an endpoint for determining the required duration of stent inflation. The primary study purpose was to determine the stent inflation time (IT) in a large patient cohort using the standardized inflation protocol, to correlate various patient and lesion characteristics with IT, and ascertain in an in vitro study the time for pressure accommodation within an inflation system. Six hundred fifteen stent implants in 435 patients were studied. Multivariate analysis was performed to determine predictors of longer ITs. In an in vitro study, various stents and balloons were inflated in air to determine the pressure accommodation time of the inflation system. The mean stent IT was 104 ± 41 sec (range 30-380 sec). Stent length was the only predictor of prolonged stent inflation. The "accommodation time" in vitro of the stent inflation system itself was 33 ± 24 sec. The protocol was safe requiring premature inflation termination in <3% of stent implants. No serious adverse events occurred. Achieving stable inflation pressure requires on average over 100 sec and may require several minutes in individual cases. Stent length increases IT. These results suggest that the widespread practice of rapid inflation/deflation may not be sufficient to fully expand the stent and that the use of a pressure stability protocol will allow for safe, predictable, and more complete stent deployment. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Influence of ordering change on the optical and thermal properties of inflation polyethylene films

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Orie, Akihiro; Hikima, Yuta; Hashimoto, Toshimasa; Juodkazis, Saulius

    2011-04-01

    Changes of thermal diffusivity inside femtosecond laser-structured volumes as small as few percent were reliably determined (with standard deviation less than 1%) with miniaturized sensors. An increase of thermal diffusivity of a crystalline high-density polyethylene (HDPE) inflation films by 10-20% from the measured (1.16 ± 0.01) × 10 -7 m 2 s -1 value in regions not structured by femtosecond laser pulses is considerably larger than that of non-crystalline polymers, 0-3%. The origin of the change of thermal diffusivity are interplay between the laser induced disordering, voids' formation, compaction, and changes in molecular orientation. It is shown that laser structuring can be used to modify thermal and optical properties. The birefringence and infrared spectroscopy with thermal imaging of CH 2 vibrations are confirming inter-relation between structural, optical, and thermal properties of the laser-structured crystalline HDPE inflation films. Birefringence modulation as high as Δ n ˜ ± 1 × 10 -3 is achieved with grating structures.

  5. New type of hill-top inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barvinsky, A.O.; Department of Physics, Tomsk State University,Lenin Ave. 36, Tomsk 634050; Department of Physics and Astronomy, Pacific Institue for Theoretical Physics,University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1

    2016-01-20

    We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on themore » background of a slowly varying inflaton, which guarantees smallness of slow roll parameters ϵ and η of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and R{sup 2}-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.« less

  6. New type of hill-top inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barvinsky, A.O.; Nesterov, D.V.; Kamenshchik, A.Yu., E-mail: barvin@td.lpi.ru, E-mail: Alexander.Kamenshchik@bo.infn.it, E-mail: nesterov@td.lpi.ru

    2016-01-01

    We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on themore » background of a slowly varying inflaton, which guarantees smallness of slow roll parameters ε and η of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and R{sup 2}-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.« less

  7. 77 FR 65100 - Adjustment of Civil Monetary Penalties for Inflation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ... Penalties for Inflation AGENCY: Commodity Futures Trading Commission ACTION: Final rule. SUMMARY: The... civil monetary penalties, to adjust for inflation. This rule sets forth the maximum, inflation-adjusted... Federal Civil Penalties Inflation Adjustment Act of 1990, as amended by the Debt Collection Improvement...

  8. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1993-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program continues a high level of activity. Progress achieved between 1 Jan. and 30 Jun. 1993 is reported. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The following projects are addressed: environmental fatigue of Al-Li-Cu alloys; mechanisms of localized corrosion and environmental fracture in Al-Cu-Li-Mg-Ag alloy X2095 and compositional variations; the effect of zinc additions on the precipitation and stress corrosion cracking behavior of alloy 8090; hydrogen interactions with Al-Li-Cu alloy 2090 and model alloys; metastable pitting of aluminum alloys; cryogenic fracture toughness of Al-Cu-Li + In alloys; the fracture toughness of Weldalite (TM); elevated temperature cracking of advanced I/M aluminum alloys; response of Ti-1100/SCS-6 composites to thermal exposure; superplastic forming of Weldalite (TM); research to incorporate environmental effects into fracture mechanics fatigue life prediction codes such as NASA FLAGRO; and thermoviscoplastic behavior.

  9. Analysis of aggregate impact factor inflation in ophthalmology.

    PubMed

    Caramoy, Albert; Korwitz, Ulrich; Eppelin, Anita; Kirchhof, Bernd; Fauser, Sascha

    2013-01-01

    To analyze the aggregate impact factor (AIF) in ophthalmology, its inflation rate, and its relation to other subject fields. A retrospective, database review of all subject fields in the Journal Citation Reports (JCR), Science edition. Citation data, AIF, number of journals and citations from the years 2003-2011 were analyzed. Data were retrieved from JCR. Future trends were calculated using a linear regression method. The AIF varies considerably between subjects. It shows also an inflation rate, which varies annually. The AIF inflation rate in ophthalmology was not as high as the background AIF inflation rate. The AIF inflation rate caused the AIF to increase annually. Not considering these variations in the AIF between years and between fields will make the AIF as a bibliometric tool inappropriate. Copyright © 2012 S. Karger AG, Basel.

  10. 26 CFR 1.1286-2 - Stripped inflation-protected debt instruments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 11 2013-04-01 2013-04-01 false Stripped inflation-protected debt instruments... Losses § 1.1286-2 Stripped inflation-protected debt instruments. Stripped inflation-protected debt instruments. If a Treasury Inflation-Protected Security is stripped under the Department of the Treasury's...

  11. 26 CFR 1.1286-2 - Stripped inflation-protected debt instruments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 11 2014-04-01 2014-04-01 false Stripped inflation-protected debt instruments... Losses § 1.1286-2 Stripped inflation-protected debt instruments. Stripped inflation-protected debt instruments. If a Treasury Inflation-Protected Security is stripped under the Department of the Treasury's...

  12. 48 CFR 1815.404-471 - NASA structured approach for profit or fee objective.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 1815.404-471 NASA structured approach for profit or fee objective. ...

  13. The Effects of Inflation/Recession on Higher Education.

    ERIC Educational Resources Information Center

    Bowen, William G.

    This document discusses the effects of inflation on colleges and universities. It attempts to explain the basic nature of the current financial problem so that more informed policy decisions can be made. The document discusses the effect of inflation on costs and the effects of inflation/recession on revenues. Chart 1 indicated the Halstead Higher…

  14. 26 CFR 1.1286-2 - Stripped inflation-indexed debt instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Stripped inflation-indexed debt instruments. 1....1286-2 Stripped inflation-indexed debt instruments. Stripped inflation-indexed debt instruments. If a Treasury Inflation-Indexed Security is stripped under the Department of the Treasury's Separate Trading of...

  15. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  16. Curvaton as dark matter with secondary inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jinn-Ouk; Kitajima, Naoya; Terada, Takahiro, E-mail: jinn-ouk.gong@apctp.org, E-mail: naoya.kitajima@apctp.org, E-mail: terada@kias.re.kr

    2017-03-01

    We consider a novel cosmological scenario in which a curvaton is long-lived and plays the role of cold dark matter (CDM) in the presence of a short, secondary inflation. Non-trivial evolution of the large scale cosmological perturbation in the curvaton scenario can affect the duration of the short term inflation, resulting in the inhomogeneous end of inflation. Non-linear parameters of the curvature perturbation are predicted to be f {sub NL} ≈ 5/4 and g {sub NL} ≈ 0. The curvaton abundance can be well diluted by the short-term inflation and accordingly, it does not have to decay into the Standardmore » Model particles. Then the curvaton can account for the present CDM with the isocurvature perturbation being sufficiently suppressed because both the adiabatic and CDM isocurvature perturbations have the same origin. As an explicit example, we consider the thermal inflation scenario and a string axion as a candidate for this curvaton-dark matter. We further discuss possibilities to identify the curvaton-dark matter with the QCD axion.« less

  17. Origin of density fluctuations in extended inflation

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Salopek, David S.; Turner, Michael S.

    1990-01-01

    The density fluctuations (both curvature and isocurvature) that arise due to quantum fluctuations in a simple model of extended inflation based upon the Jordan-Brans-Dicke theory are calculated. Curvature fluctuations arise due to quantum fluctuations in the Brans-Dicke field, in general have a nonscale-invariant spectrum, and can have an amplitude that is cosmologically acceptable and interesting without having to tune any coupling constant to a very small value. The density perturbations that arise due to the inflation field are subdominant. If there are other massless fields in the theory, e.g., an axion or an ilion, then isocurvature fluctuations arise in these fields too. Production of gravitational waves and the massless particles associated with excitations of the Brans-Dicke field are also discussed. Several attempts at more realistic models of extended inflation are also analyzed. The importance of the Einstein conformal frame in calculating curvature fluctuations is emphasized. When viewed in this frame, extended inflation closely resembles slow-rollover inflation with an exponential potential and the usual formula for the amplitude of curvature perturbations applies.

  18. Inflation with a constant rate of roll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi, E-mail: motohashi@kicp.uchicago.edu, E-mail: alstar@landau.ac.ru, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs formore » unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.« less

  19. What Is Wrong with Grade Inflation (If Anything)?

    ERIC Educational Resources Information Center

    Finefter-Rosenbluh, Ilana; Levinson, Meira

    2015-01-01

    Grade inflation is a global phenomenon that has garnered widespread condemnation among educators, researchers, and the public. Yet, few have deliberated over the ethics of grading, let alone the ethics of grade inflation. The purpose of this paper is to map out and examine the ethics of grade inflation. By way of beginning, we clarify why grade…

  20. Air Tight: Building Inflatables/Inflatable Construction: Planning and Details

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2016-01-01

    A design-build seminar consisting of students from Physics, Mechanical and Civil Engineering, Robotic, Material Science, Art, and Architecture who will work together on a deployable "closed-loop" inflatable greenhouse for Mars in theory, and an Earth analogue physical mockup on campus.

  1. All puffed out: do pufferfish hold their breath while inflated?

    PubMed Central

    McGee, Georgia Evelyn; Clark, Timothy Darren

    2014-01-01

    The inflation response of pufferfishes is one of the most iconic predator defence strategies in nature. Current dogma suggests that pufferfish inflation represents a breath-holding response, whereby gill oxygen uptake ceases for the duration of inflation and cutaneous respiration increases to compensate. Here, we show that the black-saddled pufferfish (Canthigaster valentini) has an excellent capacity for oxygen uptake while inflated, with uptake rates increasing to five-times that of resting levels. Moreover, we show that this species has negligible capacity for cutaneous respiration, concluding that the gills are the primary site of oxygen uptake while inflated. Despite this, post-deflation recovery of aerobic metabolism took an average of 5.6 h, suggesting a contribution of anaerobic metabolism during pre-inflation activity and during the act of ingesting water to achieve inflation. PMID:25472941

  2. A picture for the coupling of unemployment and inflation

    NASA Astrophysics Data System (ADS)

    Safdari, H.; Hosseiny, A.; Vasheghani Farahani, S.; Jafari, G. R.

    2016-02-01

    The aim of this article is to illustrate the scaling features of two well heard characters in the media; unemployment and inflation. We carry out a scaling analysis on the coupling between unemployment and inflation. This work is based on the wavelet analysis as well as the detrended fluctuation analysis (DFA). Through our analysis we state that while unemployment is time scale invariant, inflation is bi-scale. We show that inflation possess a five year time scale where it experiences different behaviours before and after this scale period. This behaviour of inflation provides basis for the coupling to inherit the stated time interval. Although inflation is bi-scale, it is unemployment that shows a strong multifractality feature. Owing to the cross wavelet analysis we provide a picture that illustrates the dynamics of coupling between unemployment and inflation regarding intensity, direction, and scale. The fact of the matter is that the coupling between inflation and unemployment is not equal in one way compared to the opposite. Regarding the scaling; coupling exhibits different features in various scales. In a sense that although in one scale its correlation behaves in a positive/negative manner, at the same time it can be negative/positive for another scale.

  3. Dark energy from gravitoelectromagnetic inflation?

    NASA Astrophysics Data System (ADS)

    Membiela, F. A.; Bellini, M.

    2008-02-01

    Gravitoectromagnetic Inflation (GI) was introduced to describe in an unified manner, electromagnetic, gravitatory and inflaton fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields $B_i=A_i/a$ produced during inflation, could be the source of dark energy in the universe.

  4. Inflation, Reionization, and All That: The Primordial Inflation Explorer

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2011-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r less than l0^{-3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  5. Inflation, Reionization, and All That: The Primordial Inflation Explorer

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2012-01-01

    The Primordial Inflation Explorer is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. PIXIE uses an innovative optical design to achieve background-limited sensitivity in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 micron wavelength). The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10(exp -3) at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy. I describe the PIXIE instrument and mission architecture needed to detect the inflationary signature using only 4 semiconductor bolometers.

  6. Replenishment policy for an inventory model under inflation

    NASA Astrophysics Data System (ADS)

    Singh, Vikramjeet; Saxena, Seema; Singh, Pushpinder; Mishra, Nitin Kumar

    2017-07-01

    The purpose of replenishment is to keep the flow of inventory in the system. To determine an optimal replenishment policy is a great challenge in developing an inventory model. Inflation is defined as the rate at which the prices of goods and services are rising over a time period. The cost parameters are affected by the rate of inflation. High rate of inflation affects the organizations financial conditions. Based on the above backdrop the present paper proposes the retailers replenishment policy for deteriorating items with different cycle lengths under inflation. The shortages are partially backlogged. At last numerical examples validate the results.

  7. First observational tests of eternal inflation.

    PubMed

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2011-08-12

    The eternal inflation scenario predicts that our observable Universe resides inside a single bubble embedded in a vast inflating multiverse. We present the first observational tests of eternal inflation, performing a search for cosmological signatures of collisions with other bubble universes in cosmic microwave background data from the WMAP satellite. We conclude that the WMAP 7-year data do not warrant augmenting the cold dark matter model with a cosmological constant with bubble collisions, constraining the average number of detectable bubble collisions on the full sky N(s) < 1.6 at 68% C.L. Data from the Planck satellite can be used to more definitively test the bubble-collision hypothesis.

  8. On inflating magnetic fields, and the backreactions thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Federico R., E-mail: urban@phas.ubc.ca

    2011-12-01

    We investigate in more depth the issue of backreaction in models that attempt at generating cosmological magnetic fields at inflation. By choosing different, physically motivated, parametrisations, we are able to isolate the heart of the problem, namely the existence, alongside the wanted magnetic field, of its electric counterpart, which turns out quite generally to be stronger and redder. We were also able to identify a few more interwoven weak spots (the typically very high scale of inflation, the width of the spectrum of modes processed by inflation, the blindness of the amplification mechanism to the energy scale processed), in amore » way independent on the specifications of the coupling between inflation and electromagnetism. Despite having stripped down the problem to the core, the obstacles encountered appear insurmountable, thereby posing a challenge to inflation as the incubator of cosmological magnetism.« less

  9. NASA Webb Telescope

    NASA Image and Video Library

    2017-12-08

    NASA image release September 17, 2010 In preparation for a cryogenic test NASA Goddard technicians install instrument mass simulators onto the James Webb Space Telescope ISIM structure. The ISIM Structure supports and holds the four Webb telescope science instruments : the Mid-Infrared Instrument (MIRI), the Near-Infrared Camera (NIRCam), the Near-Infrared Spectrograph (NIRSpec) and the Fine Guidance Sensor (FGS). Credit: NASA/GSFC/Chris Gunn To learn more about the James Webb Space Telescope go to: www.jwst.nasa.gov/ NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  10. Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped against a wall of grayish clouds. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:14:57.

  11. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL balloon inflates on the launch pad at Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The first BARREL balloon is inflated just before its launch on Aug. 13, 2016, from Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The BARREL team inflates the balloon to launch their fifth scientific payload from Esrange Space Center near Kiruna, Sweden, on Aug. 24, 2016. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Gravitational waves in axion inflation: implications for CMB and small-scales interferometer measurements

    NASA Astrophysics Data System (ADS)

    Unal, Caner; Peloso, Marco; Sorbo, Lorenzo; Garcia-Bellido, Juan

    2017-01-01

    A strong experimental effort is ongoing to detect the primordial gravitational waves (GW) generated during inflation from their impact on the Cosmic Microwave Background (CMB). This effort is motivated by the direct relation between the amplitude of GW signal and the energy scale of inflation, in the standard case of GW production from vacuum. I will discuss the robustness of this relation and the conditions under which particle production mechanisms during inflation can generate a stronger GW signal than the vacuum one. I will present a concrete model employing a coupling between a rolling axion and a gauge field, that can produce a detectable GW signal for an arbitrarily small inflation scale, respecting bounds from back-reaction, perturbativity, and the gaussianity of the measured density perturbations. I will show how the GW produced by this mechanism can be distinguished from the vacuum ones by their spectral dependence and statistical properties. I will finally discuss the possibility of detecting an inflationary GW signal at terrestrial (AdvLIGO) and space (LISA) interferometers. Such experiments are sensitive to the modes much smaller than the ones corresponding to CMB and Large Scale Structure, presenting a unique observational window on the final stages of inflation. The work of C.U. is s supported by a Doctoral Dissertation Fellowship from the Graduate School of the University of Minnesota.

  15. Rapid roll inflation with conformal coupling

    NASA Astrophysics Data System (ADS)

    Kofman, Lev; Mukohyama, Shinji

    2008-02-01

    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-D¯3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low-energy scales 1 100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S3 of Klebanov-Strassler (KS) geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.

  16. Inflation expels runaways

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.

    2016-12-01

    We argue that moduli stabilization generically restricts the evolution following transitions between weakly coupled de Sitter vacua and can induce a strong selection bias towards inflationary cosmologies. The energy density of domain walls between vacua typically destabilizes Kähler moduli and triggers a runaway towards large volume. This decompactification phase can collapse the new de Sitter region unless a minimum amount of inflation occurs after the transition. A stable vacuum transition is guaranteed only if the inflationary expansion generates overlapping past light cones for all observable modes originating from the reheating surface, which leads to an approximately flat and isotropic universe. High scale inflation is vastly favored. Our results point towards a framework for studying parameter fine-tuning and inflationary initial conditions in flux compactifications.

  17. Partially massless fields during inflation

    NASA Astrophysics Data System (ADS)

    Baumann, Daniel; Goon, Garrett; Lee, Hayden; Pimentel, Guilherme L.

    2018-04-01

    The representation theory of de Sitter space allows for a category of partially massless particles which have no flat space analog, but could have existed during inflation. We study the couplings of these exotic particles to inflationary perturbations and determine the resulting signatures in cosmological correlators. When inflationary perturbations interact through the exchange of these fields, their correlation functions inherit scalings that cannot be mimicked by extra massive fields. We discuss in detail the squeezed limit of the tensor-scalar-scalar bispectrum, and show that certain partially massless fields can violate the tensor consistency relation of single-field inflation. We also consider the collapsed limit of the scalar trispectrum, and find that the exchange of partially massless fields enhances its magnitude, while giving no contribution to the scalar bispectrum. These characteristic signatures provide clean detection channels for partially massless fields during inflation.

  18. Chameleon field dynamics during inflation

    NASA Astrophysics Data System (ADS)

    Saba, Nasim; Farhoudi, Mehrdad

    By studying the chameleon model during inflation, we investigate whether it can be a successful inflationary model, wherein we employ the common typical potential usually used in the literature. Thus, in the context of the slow-roll approximations, we obtain the e-folding number for the model to verify the ability of resolving the problems of standard big bang cosmology. Meanwhile, we apply the constraints on the form of the chosen potential and also on the equation of state parameter coupled to the scalar field. However, the results of the present analysis show that there is not much chance of having the chameleonic inflation. Hence, we suggest that if through some mechanism the chameleon model can be reduced to the standard inflationary model, then it may cover the whole era of the universe from the inflation up to the late time.

  19. Multifunctional Inflatable Structure Being Developed for the PowerSphere Concept

    NASA Technical Reports Server (NTRS)

    Peterson, Todd T.

    2003-01-01

    The continuing development of microsatellites and nanosatellites for low Earth orbits requires the collection of sufficient power for instruments onboard a low-weight, low-volume spacecraft. Because the overall surface area of a microsatellite or nanosatellite is small, body-mounted solar cells cannot provide enough power. The deployment of traditional, rigid, solar arrays necessitates larger satellite volumes and weights, and also requires extra apparatus for pointing. One solution to this power choke problem is the deployment of a spherical, inflatable power system. This power system, termed the "PowerSphere," has several advantages, including a high collection area, low weight and stowage volume, and the elimination of solar array pointing mechanisms.

  20. An Update on Structural Seal Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Dunlap, Pat; Steinetz, Bruce; Finkbeiner, Josh; DeMange, Jeff; Taylor, Shawn; Daniels, Chris; Oswald, Jay

    2006-01-01

    A viewgraph presentation describing advanced structural seal development for NASA exploration is shown. The topics include: 1) GRC Structural Seals Team Research Areas; 2) Research Areas & Objective; 3) Wafer Seal Geometry/Flow Investigations; 4) Wafer Seal Installation DOE Study; 5) Results of Wafer Seal Installation DOE Study; 6) Wafer Geometry Study: Thickness Variations; 7) Wafer Geometry Study: Full-Size vs. Half-Size Wafers; 8) Spring Tube Seal Development; 9) Resiliency Improvement for Rene 41 Spring Tube; 10) Spring Tube Seals: Go-Forward Plan; 11) High Temperature Seal Preloader Development: TZM Canted Coil Spring; 12) TZM Canted Coil Spring Development; 13) Arc Jet Test Rig Development; and 14) Arc Jet Test Rig Status.

  1. NASA Astrophysics Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Strategic Technology Development Program

    NASA Astrophysics Data System (ADS)

    Pham, Thai; Seery, Bernard D.

    2015-01-01

    The COR and PCOS Program Offices (PO) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions.The PO is guided by the National Research Council's 'New Worlds, New Horizons in Astronomy and Astrophysics' Decadal Survey report, and NASA's Astrophysics Implementation Plan. Strategic goals include dark energy; gravitational waves; X-ray observatories, e.g., US participation in ATHENA; Inflation probe; and a large UV/Visible telescope.To date, 51 COR and 65 PCOS SAT proposals have been received, of which 11 COR and 18 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2 that allowed measurement of B-mode polarization in the CMB signal, a possible signature of Inflation; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and guiding investment decisions. We also present results of this year's technology gap prioritization and showcase our current portfolio of technology development projects. These include five newly selected projects, kicking off in FY 2015.For more information, visit the COR Program website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  2. MHz gravitational waves from short-term anisotropic inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Asuka; Soda, Jiro

    2016-04-18

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10{sup −26}∼10{sup −27} are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  3. Revisiting CMB constraints on warm inflation

    NASA Astrophysics Data System (ADS)

    Arya, Richa; Dasgupta, Arnab; Goswami, Gaurav; Prasad, Jayanti; Rangarajan, Raghavan

    2018-02-01

    We revisit the constraints that Planck 2015 temperature, polarization and lensing data impose on the parameters of warm inflation. To this end, we study warm inflation driven by a single scalar field with a quartic self interaction potential in the weak dissipative regime. We analyse the effect of the parameters of warm inflation, namely, the inflaton self coupling λ and the inflaton dissipation parameter QP on the CMB angular power spectrum. We constrain λ and QP for 50 and 60 number of e-foldings with the full Planck 2015 data (TT, TE, EE + lowP and lensing) by performing a Markov-Chain Monte Carlo analysis using the publicly available code CosmoMC and obtain the joint as well as marginalized distributions of those parameters. We present our results in the form of mean and 68 % confidence limits on the parameters and also highlight the degeneracy between λ and QP in our analysis. From this analysis we show how warm inflation parameters can be well constrained using the Planck 2015 data.

  4. Sustained inflation: Prophylactic or rescue maneuver?

    PubMed

    Lista, G; Cavigioli, F; Castoldi, F; Zimmermann, L J I

    2016-06-01

    Application of nasal continuous positive airway pressure (nCPAP) in the delivery room is a valid alternative to mechanical ventilation in the management of respiratory failure of preterm infants, with reduced occurrence of bronchopulmonary dysplasia and death. nCPAP at birth is still burdened by a high failure rate. Sustained inflation appears to be an intriguing approach to allow the respiratory transition at birth by clearing the lung fluid, thus obtaining an adequate functional residual capacity. This may enhance nCPAP success. Sustained inflation reduces the need for mechanical ventilation in the first 72 h of life, with no changes in the incidence of bronchopulmonary dysplasia and death. The efficacy of sustained inflation seems to be related to the presence of open glottis with active breathing of the infant. Further studies are needed to recommend the application of sustained inflation during delivery room management of preterm infants at risk of respiratory distress or with clinical signs of respiratory failure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.

  6. Recent Inflation of Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Miklius, A.; Poland, M.; Desmarais, E.; Sutton, A.; Orr, T.; Okubo, P.

    2006-12-01

    Over the last three years, geodetic monitoring networks and satellite radar interferometry have recorded substantial inflation of Kilauea's magma system, while the Pu`u `O`o eruption on the east rift zone has continued unabated. Combined with the approximate doubling of carbon dioxide emission rates at the summit during this period, these observations indicate that the magma supply rate to the volcano has increased. Since late 2003, the summit area has risen over 20 cm, and a 2.5 km-long GPS baseline across the summit area has extended almost half a meter. The center of inflation has been variable, with maximum uplift shifting from an area near the center of the caldera to the southeastern part of the caldera in 2004-2005. In 2006, the locus of inflation shifted again, to the location of the long-term magma reservoir in the southern part of the caldera - the same area that had subsided more than 1.5 meters during the last 23 years of the ongoing eruption. In addition, the southwest rift zone reversed its long-term trend of subsidence and began uplifting in early 2006. The east rift zone has shown slightly accelerated rates of extension, but with a year-long hiatus following the January 2005 south flank aseismic slip event. Inflation rates have varied greatly. Accelerated rates of extension and uplift in early 2005 and 2006 were also associated with increased seismicity. Seismicity occurred not only at inflation centers, but was also triggered on the normal faulting area northwest of the caldera and the strike-slip faulting area in the upper east rift zone. In early 2006, at about the time that we started recording uplift on the southwest rift zone, the rate of earthquakes extending from the summit into the southwest rift zone at least quadrupled. The most recent previous episode of inflation at Kilauea, in 2002, may have resulted from reduced lava- transport capacity, as it was associated with decreased outflow at the eruption site. In contrast, eruption volumes

  7. Higgs Inflation in f(Φ, r) Theory

    NASA Astrophysics Data System (ADS)

    Chakravarty, Girish Kumar; Mohanty, Subhendra; Singh, Naveen K.

    2014-02-01

    We generalize the scalar-curvature coupling model ξΦ2R of Higgs inflation to ξΦaRb to study inflation. We compute the amplitude and spectral index of curvature perturbations generated during inflation and fix the parameters of the model by comparing these with the Planck + WP data. We find that if the scalar self-coupling λ is in the range 10-5-0.1, parameter a in the range 2.3-3.6 and b in the range 0.77-0.22 at the Planck scale, one can have a viable inflation model even for ξ ≃ 1. The tensor to scalar ratio r in this model is small and our model with scalar-curvature couplings is not ruled out by observational limits on r unlike the pure (λ )/(4) Φ 4 theory. By requiring the curvature coupling parameter to be of order unity, we have evaded the problem of unitarity violation in scalar-graviton scatterings which plague the ξΦ2R Higgs inflation models. We conclude that the Higgs field may still be a good candidate for being the inflaton in the early universe if one considers higher-dimensional curvature coupling.

  8. Generic analysis of kinetically driven inflation

    NASA Astrophysics Data System (ADS)

    Saitou, Rio

    2018-04-01

    We perform a model-independent analysis of kinetically driven inflation (KDI) which (partially) includes generalized G-inflation and ghost inflation. We evaluate the background evolution splitting into the inflationary attractor and the perturbation around it. We also consider the quantum fluctuation of the scalar mode with a usual scaling and derive the spectral index, ignoring the contribution from the second-order products of slow-roll parameters. Using these formalisms, we find that within our generic framework the models of KDI which possess the shift symmetry of scalar field cannot create the quantum fluctuation consistent with the observation. Breaking the shift symmetry, we obtain a few essential conditions for viable models of KDI associated with the graceful exit.

  9. A dynamical weak scale from inflation

    NASA Astrophysics Data System (ADS)

    You, Tevong

    2017-09-01

    Dynamical scanning of the Higgs mass by an axion-like particle during inflation may provide a cosmological component to explaining part of the hierarchy problem. We propose a novel interplay of this cosmological relaxation mechanism with inflation, whereby the backreaction of the Higgs vacuum expectation value near the weak scale causes inflation to end. As Hubble drops, the relaxion's dissipative friction increases relative to Hubble and slows it down enough to be trapped by the barriers of its periodic potential. Such a scenario raises the natural cut-off of the theory up to ~ 1010 GeV, while maintaining a minimal relaxion sector without having to introduce additional scanning scalars or new physics coincidentally close to the weak scale.

  10. Clustering fossils in solid inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhshik, Mohammad, E-mail: m.akhshik@ipm.ir

    In solid inflation the single field non-Gaussianity consistency condition is violated. As a result, the long tenor perturbation induces observable clustering fossils in the form of quadrupole anisotropy in large scale structure power spectrum. In this work we revisit the bispectrum analysis for the scalar-scalar-scalar and tensor-scalar-scalar bispectrum for the general parameter space of solid. We consider the parameter space of the model in which the level of non-Gaussianity generated is consistent with the Planck constraints. Specializing to this allowed range of model parameter we calculate the quadrupole anisotropy induced from the long tensor perturbations on the power spectrum ofmore » the scalar perturbations. We argue that the imprints of clustering fossil from primordial gravitational waves on large scale structures can be detected from the future galaxy surveys.« less

  11. 17 CFR 143.8 - Inflation-adjusted civil monetary penalties.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Inflation-adjusted civil... JURISDICTION General Provisions § 143.8 Inflation-adjusted civil monetary penalties. (a) Unless otherwise amended by an act of Congress, the inflation-adjusted maximum civil monetary penalty for each violation of...

  12. 8 CFR 280.53 - Civil monetary penalties inflation adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Civil monetary penalties inflation... REGULATIONS IMPOSITION AND COLLECTION OF FINES § 280.53 Civil monetary penalties inflation adjustment. (a) In general. In accordance with the requirements of the Federal Civil Penalties Inflation Adjustment Act of...

  13. Primordial gravitational waves for universality classes of pseudoscalar inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domcke, Valerie; Pieroni, Mauro; Binétruy, Pierre, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: mpieroni@apc.univ-paris7.fr, E-mail: binetruy@apc.in2p3.fr

    Current bounds from the polarization of the CMB predict the scale-invariant gravitational wave (GW) background of inflation to be out of reach for upcoming GW interferometers. This prospect dramatically changes if the inflaton is a pseudoscalar, in which case its generic coupling to any abelian gauge field provides a new source of GWs, directly related to the dynamics of inflation. This opens up new ways of probing the scalar potential responsible for cosmic inflation. Dividing inflation models into universality classes, we analyze the possible observational signatures. One of the most promising scenarios is Starobinsky inflation, which may lead to observationalmore » signatures both in direct GW detection as well as in upcoming CMB detectors. In this case, the complementarity between the CMB and direct GW detection, as well as the possibility of a multi-frequency analysis with upcoming ground and space based GW interferometers, may provide a first clue to the microphysics of inflation.« less

  14. Inflation Metaphor in Contemporary American English

    ERIC Educational Resources Information Center

    Hu, Chunyu; Chen, Zhi

    2015-01-01

    Inflation is often regarded as a dangerous phenomenon which poses a potential threat to economies in the world. It is thus an entity that demands the constant attention of economists, policymakers and the general public. In order to make this abstract entry more concrete and vivid, a number of metaphorical expressions are used to depict inflation.…

  15. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 2

    NASA Technical Reports Server (NTRS)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  16. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 3

    NASA Technical Reports Server (NTRS)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  17. Mathematical issues in eternal inflation

    NASA Astrophysics Data System (ADS)

    Singh Kohli, Ikjyot; Haslam, Michael C.

    2015-04-01

    In this paper, we consider the problem of the existence and uniqueness of solutions to the Einstein field equations for a spatially flat Friedmann-Lemaître-Robertson-Walker universe in the context of stochastic eternal inflation, where the stochastic mechanism is modelled by adding a stochastic forcing term representing Gaussian white noise to the Klein-Gordon equation. We show that under these considerations, the Klein-Gordon equation actually becomes a stochastic differential equation. Therefore, the existence and uniqueness of solutions to Einstein’s equations depend on whether the coefficients of this stochastic differential equation obey Lipschitz continuity conditions. We show that for any choice of V(φ ), the Einstein field equations are not globally well-posed, hence, any solution found to these equations is not guaranteed to be unique. Instead, the coefficients are at best locally Lipschitz continuous in the physical state space of the dynamical variables, which only exist up to a finite explosion time. We further perform Feller’s explosion test for an arbitrary power-law inflaton potential and prove that all solutions to the Einstein field equations explode in a finite time with probability one. This implies that the mechanism of stochastic inflation thus considered cannot be described to be eternal, since the very concept of eternal inflation implies that the process continues indefinitely. We therefore argue that stochastic inflation based on a stochastic forcing term would not produce an infinite number of universes in some multiverse ensemble. In general, since the Einstein field equations in both situations are not well-posed, we further conclude that the existence of a multiverse via the stochastic eternal inflation mechanism considered in this paper is still very much an open question that will require much deeper investigation.

  18. 8 CFR 1280.53 - Civil monetary penalties inflation adjustment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Civil monetary penalties inflation... penalties inflation adjustment. (a) In general. In accordance with the requirements of the Federal Civil Penalties Inflation Adjustment Act of 1990, Pub. L. 101-410, 104 Stat. 890, as amended by the Debt...

  19. Inflation expels runaways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachlechner, Thomas C.

    We argue that moduli stabilization generically restricts the evolution following transitions between weakly coupled de Sitter vacua and can induce a strong selection bias towards inflationary cosmologies. The energy density of domain walls between vacua typically destabilizes Kähler moduli and triggers a runaway towards large volume. This decompactification phase can collapse the new de Sitter region unless a minimum amount of inflation occurs after the transition. A stable vacuum transition is guaranteed only if the inflationary expansion generates overlapping past light cones for all observable modes originating from the reheating surface, which leads to an approximately flat and isotropic universe.more » High scale inflation is vastly favored. Finally, our results point towards a framework for studying parameter fine-tuning and inflationary initial conditions in flux compactifications.« less

  20. G-warm inflation

    NASA Astrophysics Data System (ADS)

    Herrera, Ramón

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G(phi,X)=g(phi) X. As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R<1+3gHdot phi, and the strong regime in which 1inflation, assuming the condition for warm inflation in which the temperature T>H, the conditions or the weak and strong regimes, together with the consistency relation r=r(ns) from Planck data.

  1. Inflation expels runaways

    DOE PAGES

    Bachlechner, Thomas C.

    2016-12-30

    We argue that moduli stabilization generically restricts the evolution following transitions between weakly coupled de Sitter vacua and can induce a strong selection bias towards inflationary cosmologies. The energy density of domain walls between vacua typically destabilizes Kähler moduli and triggers a runaway towards large volume. This decompactification phase can collapse the new de Sitter region unless a minimum amount of inflation occurs after the transition. A stable vacuum transition is guaranteed only if the inflationary expansion generates overlapping past light cones for all observable modes originating from the reheating surface, which leads to an approximately flat and isotropic universe.more » High scale inflation is vastly favored. Finally, our results point towards a framework for studying parameter fine-tuning and inflationary initial conditions in flux compactifications.« less

  2. The decay of NASA's technical culture

    NASA Technical Reports Server (NTRS)

    Mccurdy, Howard E.

    1989-01-01

    Changes in the organization structure and technical research activities of NASA since 1970 are evaluated. The creation of NASA and the original organizational structure and operation of NASA are reviewed. The relationship between organization and advanced technology is discussed and suggestions are given for ways of maintaining NASA as a high reliability organization.

  3. Inflatable antenna for earth observing systems

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Jian; Guan, Fu-ling; Xu, Yan; Yi, Min

    2010-09-01

    This paper describe mechanical design, dynamic analysis, and deployment demonstration of the antenna , and the photogrammetry detecting RMS of inflatable antenna surface, the possible errors results form the measurement are also analysed. Ticra's Grasp software are used to predict the inflatable antenna pattern based on the coordinates of the 460 points on the parabolic surface, the final results verified the whole design process.

  4. Inflation and the Capital Budgeting Process.

    DTIC Science & Technology

    1985-04-01

    model . [10:22] Friend, Landskroner and Losq assert that the traditional capital asset pricing model *( CAPM ...value (NPV) capital budgeting model is used extensively in this report and the Consumer Price Index - Urban (CPI-U) and the Wholesale Price Index (WPI...general price level adjustments into the capital budgeting model . The consideration of inflation risk is also warranted. The effects of inflation

  5. The hybrid inflation waterfall and the primordial curvature perturbation

    NASA Astrophysics Data System (ADS)

    Lyth, David H.

    2012-05-01

    Without demanding a specific form for the inflaton potential, we obtain an estimate of the contribution to the curvature perturbation generated during the linear era of the hybrid inflation waterfall. The spectrum of this contribution peaks at some wavenumber k = k*, and goes like k3 for k Lt k*, making it typically negligible on cosmological scales. The scale k* can be outside the horizon at the end of inflation, in which case ζ = -(g2-langg2rang) with g gaussian. Taking this into account, the cosmological bound on the abundance of black holes is likely to be satisfied if the curvaton mass m much bigger than the Hubble parameter H, but is likely to be violated if mlsimH. Coming to the contribution to ζ from the rest of the waterfall, we are led to consider the use of the `end-of-inflation' formula, giving the contribution to ζ generated during a sufficiently sharp transition from nearly-exponential inflation to non-inflation, and we state for the first time the criterion for the transition to be sufficiently sharp. Our formulas are applied to supersymmetric GUT inflation and to supernatural/running-mass inflation. A preliminary version of this paper appeared as arXiv:1107.1681.

  6. Complex hybrid inflation and baryogenesis.

    PubMed

    Delepine, David; Martínez, Carlos; Ureña-López, L Arturo

    2007-04-20

    We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U(1) global symmetry associated with the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry. The latter strongly depends on the vacuum expectation value of the waterfall field, which is well constrained by diverse cosmological observations.

  7. IRT-ZIP Modeling for Multivariate Zero-Inflated Count Data

    ERIC Educational Resources Information Center

    Wang, Lijuan

    2010-01-01

    This study introduces an item response theory-zero-inflated Poisson (IRT-ZIP) model to investigate psychometric properties of multiple items and predict individuals' latent trait scores for multivariate zero-inflated count data. In the model, two link functions are used to capture two processes of the zero-inflated count data. Item parameters are…

  8. A dynamical weak scale from inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Tevong, E-mail: tty20@cam.ac.uk

    Dynamical scanning of the Higgs mass by an axion-like particle during inflation may provide a cosmological component to explaining part of the hierarchy problem. We propose a novel interplay of this cosmological relaxation mechanism with inflation, whereby the backreaction of the Higgs vacuum expectation value near the weak scale causes inflation to end. As Hubble drops, the relaxion's dissipative friction increases relative to Hubble and slows it down enough to be trapped by the barriers of its periodic potential. Such a scenario raises the natural cut-off of the theory up to ∼ 10{sup 10} GeV, while maintaining a minimal relaxionmore » sector without having to introduce additional scanning scalars or new physics coincidentally close to the weak scale.« less

  9. Extended inflation from higher dimensional theories

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Kolb, Edward W.; Vadas, Sharon L.; Wang, Yun

    1990-01-01

    The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation.

  10. Cosmic Microwave Background Polarization and Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2011-01-01

    Measurements of the cosmic microwave background (CMB) offer a means to explore the universe at a very early epoch. Specifically, if the universe went through a brief period of exponential expansion called inflation as current data suggest, gravitational waves from this period would polarize the CMB in a specific pattern. At GSFC, we are currently working towards two experiments that work in concert to measure this polarization pattern in search of evidence for inflation. The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization at frequencies between 40 and 150 GHz from the Atacama Desert in Chile. The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment that will make similar measurements at frequencies between 200 and 600 GHz.

  11. Proceedings of the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures : Part 1

    DOT National Transportation Integrated Search

    1997-07-01

    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of Aircraft Structure...

  12. Proceedings of the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures : Part 2

    DOT National Transportation Integrated Search

    1997-07-01

    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of Aircraft Structure...

  13. The patient inflating valve in anaesthesia and resuscitation breathing systems.

    PubMed

    Fenton, P M; Bell, G

    2013-03-01

    Patient inflating valves combined with self-inflating bags are known to all anaesthetists as resuscitation devices and are familiar as components of draw-over anaesthesia systems. Their variants are also commonplace in transfer and home ventilators. However, the many variations in structure and function have led to difficulties in their optimal use, definition and classification. After reviewing the relevant literature, we defined a patient inflating valve as a one-way valve that closes an exit port to enable lung inflation, also permitting exhalation and spontaneous breathing, the actions being automatic. We present a new classification based on the mechanism of valve opening/closure; namely elastic recoil of a flexible flap/diaphragm, sliding spindle opened by a spring/magnet or a hollow balloon collapsed by external pressure. The evolution of these valves has been driven by the difficulties documented in critical incidents, which we have used along with information from modern International Organization for Standardization standards to identify 13 ideal properties, the top six of which are non-jamming, automatic, no bypass effect, no rebreathing or air entry at patient end, low resistance, robust and easy to service. The Ambu and the Laerdal valves have remained popular due to their simplicity and reliability. Two new alternatives, the Fenton and Diamedica valves, offer the benefits of location away from the patient while retaining a small functional dead space. They also offer the potential for greater use of hybrid continuous flow/draw-over systems that can operate close to atmospheric pressure. The reliable application of positive end-expiratory pressure/continuous positive airway pressure remains a challenge.

  14. Large inflated-antenna system

    NASA Technical Reports Server (NTRS)

    Hinson, W. F.; Keafer, L. S.

    1984-01-01

    It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.

  15. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1992-01-01

    The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.

  16. Initial conditions for critical Higgs inflation

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto

    2018-05-01

    It has been pointed out that a large non-minimal coupling ξ between the Higgs and the Ricci scalar can source higher derivative operators, which may change the predictions of Higgs inflation. A variant, called critical Higgs inflation, employs the near-criticality of the top mass to introduce an inflection point in the potential and lower drastically the value of ξ. We here study whether critical Higgs inflation can occur even if the pre-inflationary initial conditions do not satisfy the slow-roll behavior (retaining translation and rotation symmetries). A positive answer is found: inflation turns out to be an attractor and therefore no fine-tuning of the initial conditions is necessary. A very large initial Higgs time-derivative (as compared to the potential energy density) is compensated by a moderate increase in the initial field value. These conclusions are reached by solving the exact Higgs equation without using the slow-roll approximation. This also allows us to consistently treat the inflection point, where the standard slow-roll approximation breaks down. Here we make use of an approach that is independent of the UV completion of gravity, by taking initial conditions that always involve sub-planckian energies.

  17. The NASA Organization

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This Handbook, effective 13 September 1994, documents the NASA organization, defines terms, and sets forth the policy and requirements for establishing, modifying, and documenting the NASA organizational structure and for assigning organizational responsibilities.

  18. Results of wind simulations in the mesosphere using precision C-band radars and the inflatable falling sphere technique

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Northam, E. T.; Michel, W. R.

    1985-01-01

    The inflatable sphere technique represents a relatively inexpensive approach for obtaining density and wind data between 30 and 90 km. The procedure in its current form is adequate for operational rocket network type application. However, detailed information is lost because of oversmoothing. The present study had the objective to determine whether more detailed wind profiles could be obtained using the inflatable falling sphere and Hirobin. Hirobin is the name for the sphere reduction program used at NASA Wallops Island, VA. In connection with the aim of the study, information had to be obtained regarding the precision of the radar used to track the sphere. For this purpose, data from three C-band radars, each with a different tracking precision, were simulated. On the basis of the results of the investigation, it is concluded that, given a radar with a known precision and a perfectly performing sphere, the Hirobin filters can be adjusted to provide small-scale wind information to about 70 km.

  19. Photogrammetry Methodology Development for Gossamer Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Jones, Thomas W.; Walford, Alan; Black, Jonathan T.; Robson, Stuart; Shortis, Mark R.

    2002-01-01

    Photogrammetry--the science of calculating 3D object coordinates from images-is a flexible and robust approach for measuring the static and dynamic characteristics of future ultralightweight and inflatable space structures (a.k.a., Gossamer structures), such as large membrane reflectors, solar sails, and thin-film solar arrays. Shape and dynamic measurements are required to validate new structural modeling techniques and corresponding analytical models for these unconventional systems. This paper summarizes experiences at NASA Langley Research Center over the past three years to develop or adapt photogrammetry methods for the specific problem of measuring Gossamer space structures. Turnkey industrial photogrammetry systems were not considered a cost-effective choice for this basic research effort because of their high purchase and maintenance costs. Instead, this research uses mainly off-the-shelf digital-camera and software technologies that are affordable to most organizations and provide acceptable accuracy.

  20. Photogrammetry Methodology Development for Gossamer Spacecraft Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Jones, Thomas W.; Black, Jonathan T.; Walford, Alan; Robson, Stuart; Shortis, Mark R.

    2002-01-01

    Photogrammetry--the science of calculating 3D object coordinates from images--is a flexible and robust approach for measuring the static and dynamic characteristics of future ultra-lightweight and inflatable space structures (a.k.a., Gossamer structures), such as large membrane reflectors, solar sails, and thin-film solar arrays. Shape and dynamic measurements are required to validate new structural modeling techniques and corresponding analytical models for these unconventional systems. This paper summarizes experiences at NASA Langley Research Center over the past three years to develop or adapt photogrammetry methods for the specific problem of measuring Gossamer space structures. Turnkey industrial photogrammetry systems were not considered a cost-effective choice for this basic research effort because of their high purchase and maintenance costs. Instead, this research uses mainly off-the-shelf digital-camera and software technologies that are affordable to most organizations and provide acceptable accuracy.

  1. Demystify Learning Expectations to Address Grade Inflation

    ERIC Educational Resources Information Center

    Hodges, Linda C.

    2014-01-01

    This article describes the subject of "grade inflation," a reference to educators giving higher grades to student work than their expectations for student achievement warrant. Of the many reasons why this practice happens, Hodges specifically discusses inflating grades as "a natural consequence" when the faculty really…

  2. Horizon feedback inflation

    NASA Astrophysics Data System (ADS)

    Fairbairn, Malcolm; Markkanen, Tommi; Rodriguez Roman, David

    2018-04-01

    We consider the effect of the Gibbons-Hawking radiation on the inflaton in the situation where it is coupled to a large number of spectator fields. We argue that this will lead to two important effects - a thermal contribution to the potential and a gradual change in parameters in the Lagrangian which results from thermodynamic and energy conservation arguments. We present a scenario of hilltop inflation where the field starts trapped at the origin before slowly experiencing a phase transition during which the field extremely slowly moves towards its zero temperature expectation value. We show that it is possible to obtain enough e-folds of expansion as well as the correct spectrum of perturbations without hugely fine-tuned parameters in the potential (albeit with many spectator fields). We also comment on how initial conditions for inflation can arise naturally in this situation.

  3. NASA-UVA light aerospace alloy and structures technology program (LA2ST)

    NASA Technical Reports Server (NTRS)

    Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.

    1995-01-01

    The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.

  4. Inflation in the mixed Higgs-R2 model

    NASA Astrophysics Data System (ADS)

    He, Minxi; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2018-05-01

    We analyze a two-field inflationary model consisting of the Ricci scalar squared (R2) term and the standard Higgs field non-minimally coupled to gravity in addition to the Einstein R term. Detailed analysis of the power spectrum of this model with mass hierarchy is presented, and we find that one can describe this model as an effective single-field model in the slow-roll regime with a modified sound speed. The scalar spectral index predicted by this model coincides with those given by the R2 inflation and the Higgs inflation implying that there is a close relation between this model and the R2 inflation already in the original (Jordan) frame. For a typical value of the self-coupling of the standard Higgs field at the high energy scale of inflation, the role of the Higgs field in parameter space involved is to modify the scalaron mass, so that the original mass parameter in the R2 inflation can deviate from its standard value when non-minimal coupling between the Ricci scalar and the Higgs field is large enough.

  5. Inflation in Brazil: The Principles of Monetary Correction

    ERIC Educational Resources Information Center

    Campos, Roberto de Oliveira

    1975-01-01

    The evils of inflation and Brazil's attempts to minimize inflation by a generalized indexation for all forms of saving, wage adjustments, tax reform, a mini-devaluation, and saving incentives are examined. (DE)

  6. 77 FR 19937 - Inflatable Personal Flotation Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Advancement Act OMB Office of Management and Budget PFD Personal flotation device STP Standards Technical... using existing inflatable PFDs, and would enable marketing of existing inflatable PFDs to youth. The... approved, and thus does not affect the availability, use, or marketing of existing PFDs to or by the youth...

  7. 21 CFR 878.3900 - Inflatable extremity splint.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Inflatable extremity splint. 878.3900 Section 878.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3900 Inflatable extremity...

  8. 21 CFR 878.3900 - Inflatable extremity splint.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Inflatable extremity splint. 878.3900 Section 878.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3900 Inflatable extremity...

  9. 21 CFR 878.3900 - Inflatable extremity splint.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Inflatable extremity splint. 878.3900 Section 878.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3900 Inflatable extremity...

  10. 21 CFR 878.3900 - Inflatable extremity splint.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Inflatable extremity splint. 878.3900 Section 878.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3900 Inflatable extremity...

  11. 21 CFR 878.3900 - Inflatable extremity splint.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Inflatable extremity splint. 878.3900 Section 878.3900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3900 Inflatable extremity...

  12. NASA Thesaurus. Volume 1: Alphabetical listing

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The NASA Thesaurus -- Volume 1, Alphabetical Listing -- contains all subject terms (postable and nonpostable) approved for use in the NASA scientific and technical information system. Included are the subject terms of the Preliminary Edition of the NASA Thesaurus (NASA SP-7030, December 1967); of the NASA Thesaurus Alphabetical Update (NASA SP-7040, September 1971); and terms approved, added or changed through May 31, 1975. Thesaurus structuring, including scope notes, a generic structure with broader-term/narrower-term (BT-NT) relationships displayed in embedded hierarchies, and other cross references, is provided for each term, as appropriate.

  13. A comparative study of internally and externally capped balloons using small scale test balloons

    NASA Technical Reports Server (NTRS)

    Bell, Douglas P.

    1994-01-01

    Caps have been used to structurally reinforce scientific research balloons since the late 1950's. The scientific research balloons used by the National Aeronautics and Space Administration (NASA) use internal caps. A NASA cap placement specification does not exist since no empirical information exisits concerning cap placement. To develop a cap placement specification, NASA has completed two in-hangar inflation tests comparing the structural contributions of internal caps and external caps. The tests used small scale test balloons designed to develop the highest possible stresses within the constraints of the hangar and balloon materials. An externally capped test balloon and an internally capped test balloon were designed, built, inflated and simulated to determine the structural contributions and benefits of each. The results of the tests and simulations are presented.

  14. Global embedding of fibre inflation models

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Muia, Francesco; Shukla, Pramod

    2016-11-01

    We present concrete embeddings of fibre inflation models in globally consistent type IIB Calabi-Yau orientifolds with closed string moduli stabilisation. After performing a systematic search through the existing list of toric Calabi-Yau manifolds, we find several examples that reproduce the minimal setup to embed fibre inflation models. This involves Calabi-Yau manifolds with h 1,1 = 3 which are K3 fibrations over a ℙ1 base with an additional shrinkable rigid divisor. We then provide different consistent choices of the underlying brane set-up which generate a non-perturbative superpotential suitable for moduli stabilisation and string loop corrections with the correct form to drive inflation. For each Calabi-Yau orientifold setting, we also compute the effect of higher derivative contributions and study their influence on the inflationary dynamics.

  15. Effects of a sustained inflation in preterm infants at birth.

    PubMed

    van Vonderen, Jeroen J; Hooper, Stuart B; Hummler, Helmut D; Lopriore, Enrico; te Pas, Arjan B

    2014-11-01

    To assess the clinical effect of an initial sustained inflation of 10 seconds and 25 cmH2O in preterm infants at birth. In this observational study inflation pressures and tidal volumes were recorded with the use of respiratory function monitoring of preterm infants <32 weeks' gestation receiving a sustained inflation. Inspiratory tidal volume (Vti) and expiratory tidal volume (Vte) of sustained inflation and cumulative Vti and Vte of breaths during sustained inflation were determined. Heart rate and oxygen saturation were measured before and after the sustained inflation. Seventy infants were included (median [IQR]: gestational age 29 [27-30] weeks). Mean (SD) sustained inflation duration was 10.5 seconds (2.9 seconds) with positive inflation pressure 24.2 cmH2O (2.3 cmH2O) and positive end-expiratory pressure 6.0 cmH2O (1.8 cmH2O). In 20 of 70 infants, no volumes were delivered during the sustained inflation because of mask leak. No leak occurred in 50 of 70 infants, of whom 36 of 50 breathed during the sustained inflation. In 14 of the infants who did not breathe, Vti and Vte were 0.9 mL/kg (0.4-2.7 mL/kg) and 0.6 mL/kg (0.1-2.0 mL/kg) with a functional residual capacity (FRC) gain of 0.0 (-0.5 to 0.6) mL/kg. In 36 of 50 infants who breathed during the sustained inflation, Vti was 2.9 mL/kg (0.9-9.2 mL/kg) and Vte 3.8 mL/kg (1.0-5.9 mL/kg), whereas cumulative Vti of breaths was 16.4 mL/kg (6.8-23.3 mL/kg) and cumulative Vte of breaths was 5.8 mL/kg (1.2-16.8 mL/kg) with an FRC gain of 7.1 mL/kg (1.7-15.9 mL/kg). Heart rate and oxygen saturation did not increase immediately after the sustained inflation. A sustained inflation of 10 seconds and 25 cmH2O in preterm infants at birth was not effective unless infants breathed. Although large mask leak accounted for approximately one-third of failures, as FRC gain was only associated with breathing, we speculate that active glottic adduction may be responsible for most failures. Copyright © 2014 Elsevier Inc. All

  16. RE-INFLATED WARM JUPITERS AROUND RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Eric D.; Fortney, Jonathan J.

    2016-02-10

    Since the discovery of the first transiting hot Jupiters, models have sought to explain the anomalously large radii of highly irradiated gas giants. We now know that the size of hot Jupiter radius anomalies scales strongly with a planet's level of irradiation and numerous models like tidal heating, ohmic dissipation, and thermal tides have since been developed to help explain these inflated radii. In general, however, these models can be grouped into two broad categories: models that directly inflate planetary radii by depositing a fraction of the incident irradiation into the interior and models that simply slow a planet's radiativemore » cooling, allowing it to retain more heat from formation and thereby delay contraction. Here we present a new test to distinguish between these two classes of models. Gas giants orbiting at moderate orbital periods around post-main-sequence stars will experience enormous increases to their irradiation as their host stars move up the sub-giant and red-giant branches. If hot Jupiter inflation works by depositing irradiation into the planet's deep interiors then planetary radii should increase in response to the increased irradiation. This means that otherwise non-inflated gas giants at moderate orbital periods of >10 days can re-inflate as their host stars evolve. Here we explore the circumstances that can lead to the creation of these “re-inflated” gas giants and examine how the existence or absence of such planets can be used to place unique constraints on the physics of the hot Jupiter inflation mechanism. Finally, we explore the prospects for detecting this potentially important undiscovered population of planets.« less

  17. Constraints on single-field inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico

    2016-06-28

    Many alternatives to canonical slow-roll inflation have been proposed over the years, one of the main motivations being to have a model, capable of generating observable values of non-Gaussianity. In this work, we (re-)explore the physical implications of a great majority of such models within a single, effective field theory framework (including novel models with large non-Gaussianity discussed for the first time below). The constraints we apply — both theoretical and experimental — are found to be rather robust, determined to a great extent by just three parameters: the coefficients of the quadratic EFT operators (δN){sup 2} and δNδE, andmore » the slow-roll parameter ε. This allows to significantly limit the majority of single-field alternatives to canonical slow-roll inflation. While the existing data still leaves some room for most of the considered models, the situation would change dramatically if the current upper limit on the tensor-to-scalar ratio decreased down to r<10{sup −2}. Apart from inflationary models driven by plateau-like potentials, the single-field model that would have a chance of surviving this bound is the recently proposed slow-roll inflation with weakly-broken galileon symmetry. In contrast to canonical slow-roll inflation, the latter model can support r<10{sup −2} even if driven by a convex potential, as well as generate observable values for the amplitude of non-Gaussianity.« less

  18. Biaxial Testing of High-Strength Fabric Improves Design of Inflatable Radar Domes

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Bartolotta, Paul A.

    2001-01-01

    Large radar installations around the globe continuously watch the skies, unobtrusively providing security to the United States; these systems have been in active use for the past 50 years. Often situated in extreme environments, the radar dishes require shielding from the harsh elements. Air-inflated domes (over 100 ft in diameter) are one structure of choice for providing this essential protection. The radomes are constructed from highstrength fabric that is strong enough to withstand the inflation pressure, high winds, and other environmental loads, yet transparent to the microwave signal to allow precise radar mapping. This fabric is woven from glass fibers for high strength and embedded in a polytetrafluoroethylene resin matrix, akin to the nonstick coatings used on cookware.

  19. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Dwyer Ciancio, Alicia; Collins, Tim; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. NASA's Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed to sustain human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. Understanding how these choices affect the performance of the lander will allow a balanced optimization of this complex system of systems problem. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators, one of several entry system technologies currently considered for human missions.

  20. Spacetime Curvature and Higgs Stability after Inflation.

    PubMed

    Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A

    2015-12-11

    We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.