Sample records for nasa iss science

  1. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Tara Ruttley, International Space Station Program Scientist, talks about the benefits of conducting science experiments on ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  2. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. In the foreground is pictured Veggie, a container used for growing plants on the ISS. Photo Credit: (NASA/Carla Cioffi)

  3. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    A NASA Social participant asks a question to the astronauts onboard the International Space Station in a live downlink from the ISS at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  4. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Marshall Porterfield, Life and Physical Sciences Division Director at NASA Headquarters, talks about the human body in microgravity and other life sciences at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  5. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    NASA Astronaut Don Pettit, speaks about his experience onboard the International Space Station at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  6. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    Expedition 33/34 astronauts onboard the International Space Station answer questions in a live downlink at a NASA Social exploring science on the ISS at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Seen from left to right are NASA astronauts Tom Marshburn, Kevin Ford and Canadian Space Agency (CSA) astronaut Chris Hadfield. Photo Credit: (NASA/Carla Cioffi)

  7. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  8. Five Years of NASA Research on ISS: A Continuing Saga

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2005-01-01

    The first NASA experiments reached ISS in September 2000, a very modest beginning to what later became a more robust, diverse and overall highly successful research program, continuing essentially uninterrupted since March 2001. Along the way, several major challenges had to be overcome. First, there were delays in the initial construction of the station. Second, maintenance of the station exceeded earlier assumptions resulting in less crew time being available for research. Third, the lengthy interruption of Shuttle flights after the Columbia accident significantly, but temporarily, reduced the research traffic to and from ISS. And fourth, the Vision of Space Exploration as caused a refocusing of NASA's research efforts on ISS from a multi-disciplinary basic and applied science program to one dedicated to solving the critical questions to enable exploration missions. The principal factors that allowed these challenges to be overcome have been flexibility and cooperation. Flexibility on the part of the ISS Program to minimize impacts to research from delays and resource bottlenecks, flexibility on the part of researchers to adapt their research to changing environments, and flexibility to be able to use existing and planned facilities not only for their original basic science purpose but also for new applications. And cooperation not only between the ISS Program and the research community, but also among NASA and its International Partners to continually strive to optimize the research conducted aboard ISS. Once the challenges were overcome, the research program has been remarkably successful, with an expanding on-orbit capability. Over 80 investigations have been completed, many resulting in publications.

  9. NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis; Szofran, Frank

    2008-01-01

    The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.

  10. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2016-01-01

    The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.

  11. Launch and landing site science processing for ISS utilization

    NASA Astrophysics Data System (ADS)

    Shao, Mimi; van Twest, Jacqueline; van den Ende, Oliver; Gruendel, Douglas; Wells, Deborah; Moyer, Jerry; Heuser, Jan; Etheridge, Guy

    2000-01-01

    Since 1986, Kennedy Space Center (KSC) has provided support to over 500 spaceflight experiments from NASA, international agencies, academic institutions, commercial entities, and the military sector. The experiments cover a variety of science disciplines including molecular, cellular, developmental biology, chemistry, physiology, and material sciences. KSC supports simulation, pre-flight, in-flight, and post-flight processing of flight hardware, specimens, and data at the primary and secondary landing sites. Science processing activities for spaceflight experiments occurs at the Life Science Support Facility (Hangar L) on the Cape Canaveral Air Station (CCAS) and select laboratories in the Industrial Area at KSC. Planning is underway to meet the challenges of the International Space Station (ISS). ISS support activities are expected to exceed the current launch site capability. KSC plans to replace the current facilities with Space Experiments Research and Processing Laboratory (SERPL), a collaborative effort between NASA and the State of Florida. This facility will be the cornerstone of a larger Research Park at KSC and is expected to foster relations between commercial industry and academia in areas related to space research. .

  12. NASA and ISS Winner of 2009 Collier Trophy

    NASA Image and Video Library

    2010-05-12

    NASA and the International Space Station (ISS) team is selected as the recipient of the 2009 Robert J. Collier Trophy on Thursday, May 13, 2010, in Arlington, VA. Lori Garver, fourth from left, Deputy Administrator of NASA accepts the Collier Trophy on behalf of NASA. The ISS Team nomination consisted NASA, The Boeing Company, Draper Laboratory, Honeywell, Lockheed Martin Corporation, United Space Alliance, and United Technologies/Hamilton Sunstrand. Seen from left are: Virginia Barnes, President and CEO, United Space Alliance; Alain Bellemare, President, United Technologies/Hamilton Sunstrand; James Crocker, VP and GM, Sensing & Exploration, Lockheed Martin; Lori Garver; Wayne Boyne, Chairman, National Aeronautic Association; Jonathan Gaffney, President, National Aeronautic Association; Jim Albaugh, Executive VP of The Boeing Company, President and CEO of Boeing Commercial Airplanes; Dennis Muilenberg, Executive Vice President, The Boeing Company, President and CEO, Boeing Defense, Space and Security; James Shields, President and CEO, Draper Laboratory and Dave Douglas, Vice President, Space, Missiles and Munitions, Honeywell. Photo Credit: (NASA/Carla Cioffi)

  13. ISS NASA Social

    NASA Image and Video Library

    2013-02-20

    William Gerstenmaier, Associate Administrator Human Exploration and Operations, speaks at a NASA Social on Science on the International Space Station at NASA Headquarters, Wednesday, Feb. 20, 2013 in Washington. Photo Credit: (NASA/Carla Cioffi)

  14. SAGEIII-ISS L2 Lunar Data Release

    Atmospheric Science Data Center

    2018-01-12

    ... Space Station (SAGE III-ISS) Science Team and the NASA Langley Atmospheric Science Data Center (ASDC), announces the public ... Lunar Event Species Profiles (HDF-EOS) V5 (g3bssp)      doi: 10.5067/ISS/SAGEIII/LUNAR_HDF4_L2-V5.0 SAGE III/ISS L2 Lunar Event ...

  15. iss009e23888

    NASA Image and Video Library

    2004-09-20

    ISS009-E-23888 (20 September 2004) --- Downtown Pittsburgh, with its swollen, muddy rivers, is featured in this image photographed from the International Space Station (ISS). Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, who is a native of Emsworth, captured this image with a digital camera at 5 p.m. on Monday, September 20, 2004.

  16. iss055e043245

    NASA Image and Video Library

    2018-04-30

    iss055e043245 (April 30, 2018) --- NASA astronaut Ricky Arnold transfers frozen biological samples from science freezers aboard the International Space Station to science freezers inside the SpaceX Dragon resupply ship. The research samples were returned to Earth aboard Dragon for retrieval by SpaceX engineers and analysis by NASA scientists.

  17. ISS Expedition 43 Soyuz Rollout

    NASA Image and Video Library

    2015-04-06

    NASA TV (NTV) video file of ISS Expedition 43 Soyuz rollout to launch pad. Includes footage of the rollout by train; Rocket hoisted into upright position; interview with Bob Behnken, Chief of Astronaut Office; Dr. John Charles, chief of the International Science Office of NASA's Human Research Program , Johnson Space Center; and family and friends speaking with and saying goodbye to ISS Expedition 43 - 46 One Year crewmember Scott Kelly .

  18. Exploration-Related Research on ISS: Connecting Science Results to Future Missions

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.

    2005-01-01

    In January, 2004, the U.S. President announced The Vision for Space Exploration, and charged the National Aeronautics and Space Administration (NASA) with using the International Space Station (ISS) for research and technology targeted at supporting U.S. space exploration goals. This paper describes: What we have learned from the first four years of research on ISS relative to the exploration mission; The on-going research being conducted in this regard; and Our current understanding of the major exploration mission risks that the ISS can be used to address. Specifically, we discuss research carried out on the ISS to determine the mechanisms by which human health is affected on long-duration missions, and to develop countermeasures to protect humans from the space environment. These bioastronautics experiments are key enablers of future long duration human exploration missions. We also discuss how targeted technological developments can enable mission design trade studies. We discuss the relationship between the ultimate number of human test subjects available on the ISS to the quality and quantity of scientific insight that can be used to reduce health risks to future explorers. We discuss the results of NASA's efforts over the past year to realign the ISS research programs to support a product-driven portfolio that is directed towards reducing the major risks of exploration missions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration relevant research must do more than be conceptually connected to design decisions - it must become a part of the mission design process.

  19. The NASA ISS-RapidScat Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.

    2013-12-01

    After NASA's QuikSCAT satellite stopped spinning on November 2009, an observational gap opened in the international ocean surface winds constellation of observing satellites that also includes EUMETSAT's ASCAT and ISRO's OSCAT. While QuikSCAT continues to provide calibration data to the ISRO OSCAT on OceanSat-2 scatterometer, these data are sorely limited due to the satellite's hampered capabilities. Recognizing this gap, NASA has put together in a matter of a few months the ISS-RapidScat mission, which is a partnership between JPL, the ISS, ESA, KSC, and SpaceX. This mission, expected to launch in spring of 2014, is a very low-cost mission, enabled by the creative use of spare parts and a very rapid development process that nevertheless has great benefit to the science and operational weather and marine support communities. Since it uses the QuikSCAT engineering model, the RapidScat data will be quite similar to QuikSAT's in terms of data quality and spatial resolution, although modest gains in the latter are foreseen. However, due to the lower orbit and inclination, the RapidScat swath will be approximately a factor of two smaller than QuikSCAT's, and its geographic coverage will be limited to latitudes smaller than about 55 deg. Nevertheless, the unique sampling capabilities of the ISS non-sun-synchronous orbit opens up new science applications not available for typical sun-synchronous scatterometers. Foremost among these, is the ability to provide many more data that are collocated in space and time with each of the satellites in the international scatterometer constellation. Sun-synchronous satellites typically see each other with a suitably small temporal separation at high latitudes, and therefore, cross-calibration is limited in terms of the conditions that occur. RapidScat's orbit enables coincident wind observations in nearly every orbit, with a global geographical distribution, which will enable the determination of the global patterns of wind biases

  20. An overview of NASA ISS human engineering and habitability: past, present, and future.

    PubMed

    Fitts, D; Architecture, B

    2000-09-01

    The International Space Station (ISS) is the first major NASA project to provide human engineering an equal system engineering an equal system engineering status to other disciplines. The incorporation and verification of hundreds of human engineering requirements applied across-the-board to the ISS has provided for a notably more habitable environment to support long duration spaceflight missions than might otherwise have been the case. As the ISS begins to be inhabited and become operational, much work remains in monitoring the effectiveness of the Station's built environment in supporting the range of activities required of a long-duration vehicle. With international partner participation, NASA's ISS Operational Habitability Assessment intends to carry human engineering and habitability considerations into the next phase of the ISS Program with constant attention to opportunities for cost-effective improvements that need to be and can be made to the on-orbit facility. Too, during its operations the ISS must be effectively used as an on-orbit laboratory to promote and expand human engineering/habitability awareness and knowledge to support the international space faring community with the data needed to develop future space vehicles for long-duration missions. As future space mission duration increases, the rise in importance of habitation issues make it imperative that lessons are captured from the experience of human engineering's incorporation into the ISS Program and applied to future NASA programmatic processes.

  1. Materials Science Experiment Module Accommodation within the Materials Science Research Rack (MSRR-1) on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Higgins, D. B.; Jayroe, R. R.; McCarley, K. S.

    2000-01-01

    The Materials Science Research Rack I (MSRR-1) of the Materials Science Research Facility (MSRF) is a modular facility designed to accommodate two Experiment Modules (EM) simultaneously on board the International Space Station (ISS). One of these EMs will be the NASA/ESA EM being, developed collaboratively by NASA and the European Space Agency. The other EM position will be occupied by various multi-user EMs that will be exchanged in-orbit to accommodate a variety of materials science investigations. This paper discusses the resources, services, and allocations available to the EMs and briefly describes performance capabilities of the EMs currently planned for flight.

  2. Cold Stowage: An ISS Project

    NASA Technical Reports Server (NTRS)

    Hartley, Garen

    2018-01-01

    NASA's vision for humans pursuing deep space flight involves the collection of science in low earth orbit aboard the International Space Station (ISS). As a service to the science community, Johnson Space Center (JSC) has developed hardware and processes to preserve collected science on the ISS and transfer it safely back to the Principal Investigators. This hardware includes an array of freezers, refrigerators, and incubators. The Cold Stowage team is part of the International Space Station (ISS) program. JSC manages the operation, support and integration tasks provided by Jacobs Technology and the University of Alabama Birmingham (UAB). Cold Stowage provides controlled environments to meet temperature requirements during ascent, on-orbit operations and return, in relation to International Space Station Payload Science.

  3. MSFC ISS Resource Reel 2016

    NASA Image and Video Library

    2016-04-01

    International Space Station Resource Reel. This video describes shows the International Space Station components, such as the Destiny laboratory and the Quest Airlock, being manufactured at NASA's Marshall Space Flight Center in Huntsville, Ala. It provides manufacturing and ground testing video and in-flight video of key space station components: the Microgravity Science Glovebox, the Materials Science Research Facility, the Window Observational Research Facility, the Environmental Control Life Support System, and basic research racks. There is video of people working in Marshall's Payload Operations Integration Center where controllers operate experiments 24/7, 365 days a week. Various crews are shown conducting experiments on board the station. PAO Name:Jennifer Stanfield Phone Number:256-544-0034 Email Address: JENNIFER.STANFIELD@NASA.GOV Name/Title of Video: ISS Resource Reel Description: ISS Resource Reel Graphic Information: NASA PAO Name:Tracy McMahan Phone Number:256-544-1634 Email Address: tracy.mcmahan@nasa.gov

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.

  6. Evaluating the Potential of NASA's Earth Science Research Results for Improving Future Operational Systems

    NASA Astrophysics Data System (ADS)

    Frederick, M. E.; Cox, E. L.; Friedl, L. A.

    2006-12-01

    NASA's Earth Science Theme is charged with implementing NASA Strategic Goal 3A to "study Earth from space to advance scientific understanding and meet societal needs." In the course of meeting this objective, NASA produces research results, such as scientific observatories, research models, advanced sensor and space system technology, data active archives and interoperability technology, high performance computing systems, and knowledge products. These research results have the potential to serve society beyond their intended purpose of answering pressing Earth system science questions. NASA's Applied Sciences Program systematically evaluates the potential of the portfolio of research results to serve society by conducting projects in partnership with regional/national scale operational partners with the statutory responsibility to inform decision makers. These projects address NASA's National Applications and the societal benefit areas under the IEOS and GEOSS. Prototyping methods are used in two ways in NASA's Applied Sciences Program. The first is part of the National Applications program element, referred to as Integrated Systems Solutions (ISS) projects. The approach for these projects is to use high fidelity prototypes to benchmark the assimilation of NASA research results into our partners' decision support systems. The outcome from ISS projects is a prototype system that has been rigorously tested with the partner to understand the scientific uncertainty and improved value of their modified system. In many cases, these completed prototypes are adopted or adapted for use by the operational partners. The second falls under the Crosscutting Solutions program element, referred to as Rapid Prototyping (RP) experiments. The approach for RP experiments is to use low fidelity prototypes that are low cost and quickly produced to evaluate the potential of the breadth of NASA research results to serve society. The outcome from the set of RP experiments is an

  7. Thermal Design and Analysis of an ISS Science Payload - SAGE III on ISS

    NASA Technical Reports Server (NTRS)

    Liles, Kaitlin, A. K.; Amundsen, Ruth M.; Davis, Warren T.; Carrillo, Laurie Y.

    2017-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III will be launched in the SpaceX Dragon vehicle in 2017 and mounted to an external stowage platform on the International Space Station (ISS) to begin its three-year mission. The SAGE III thermal team at NASA Langley Research Center (LaRC) worked with ISS thermal engineers to ensure that SAGE III, as an ISS payload, would meet requirements specific to ISS and the Dragon vehicle. This document presents an overview of the SAGE III thermal design and analysis efforts, focusing on aspects that are relevant for future ISS payload developers. This includes development of detailed and reduced Thermal Desktop (TD) models integrated with the ISS and launch vehicle models, definition of analysis cases necessary to verify thermal requirements considering all mission phases from launch through installation and operation on-orbit, and challenges associated with thermal hardware selection including heaters, multi-layer insulation (MLI) blankets, and thermal tapes.

  8. The NASA Microgravity Fluid Physics Program: Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Kohl, Fred J.; Singh, Bhim S.; Shaw, Nancy J.; Chiaramonte, Francis P.

    2003-01-01

    Building on over four decades of research and technology development related to the behavior of fluids in low gravity environments, the current NASA Microgravity Fluid Physics Program continues the quest for knowledge to further understand and design better fluids systems for use on earth and in space. NASA's Biological and Physical Research Enterprise seeks to exploit the space environment to conduct research supporting human exploration of space (strategic research), research of intrinsic scientific importance and impact (fundamental research), and commercial research. The strategic research thrust will build the vital knowledge base needed to enable NASA's mission to explore the Universe and search for life. There are currently five major research areas in the Microgravity Fluid Physics Program: complex fluids, niultiphase flows and phase change, interfacial phenomena, biofluid mechanics, and dynamics and instabilities. Numerous investigations into these areas are being conducted in both ground-based laboratories and facilities and in the flight experiments program. Most of the future NASA- sponsored flight experiments in microgravity fluid physics and transport phenomena will be carried out on the International Space Station (ISS) in the Fluids Integrated Rack (FIR), in the Microgravity Science Glovebox (MSG), in EXPRESS racks, and in other facilities provided by international partners. This paper presents an overview of the near- and long-term visions for NASA's Microgravity Fluid Physics Research Program and brief descriptions of hardware systems planned to enable this research.

  9. Combustion Research Aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Otero, Angel M.; Urban, David L.

    2002-01-01

    The Physical Sciences Research Program of NASA sponsors a broad suite of peer-reviewed research investigating fundamental combustion phenomena and applied combustion research topics. This research is performed through both ground-based and on-orbit research capabilities. The International Space Station (ISS) and two facilities, the Combustion Integrated Rack and the Microgravity Science Glovebox, are key elements in the execution of microgravity combustion flight research planned for the foreseeable future. This paper reviews the Microgravity Combustion Science research planned for the International Space Station implemented from 2003 through 2012. Examples of selected research topics, expected outcomes, and potential benefits will be provided. This paper also summarizes a multi-user hardware development approach, recapping the progress made in preparing these research hardware systems. Within the description of this approach, an operational strategy is presented that illustrates how utilization of constrained ISS resources may be maximized dynamically to increase science through design decisions made during hardware development.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-25

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  11. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    NASA Technical Reports Server (NTRS)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.

  13. iss050e053700

    NASA Image and Video Library

    2017-03-01

    iss050e053700 (03/01/2017) --- Shane Kimbrough of NASA (left), Thomas Pesquet of ESA (European Space Agency) (middle) and Peggy Whitson of NASA (right) juggle some of the newly arrived fruit aboard the International Space Station. The fresh food was delivered on SpaceX’s tenth commercial resupply mission along with more than 5,600 pounds of supplies, science experiments and vehicle hardware.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating in the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  16. iss047e114046

    NASA Image and Video Library

    2016-05-11

    ISS047e114046 (05/11/2016) --- The SpaceX Dragon is seen ready to be released from the International Space Station for its journey back to the Earth. The vehicle was ultimately released by Expedition 47 robotic arm operator Tim Peake of ESA (European Space Agency) on May 11, 2016. Dragon returned to Earth carrying more than 3,700 pounds of NASA cargo and science samples from human research, biology and biotechnology studies, physical science investigations and education activities sponsored by NASA and the U.S. national laboratory.

  17. iss024-s-001

    NASA Image and Video Library

    2010-01-04

    ISS024-S-001 (January 2010) --- Science and Exploration are the cornerstones of NASA?s mission onboard the International Space Station (ISS). This emblem signifies the dawn of a new era in our program?s history. With each new expedition, as we approach assembly complete, our focus shifts toward the research nature of this world-class facility. Prominently placed in the foreground, the ISS silhouette leads the horizon. Each ray of the sun represents the five international partner organizations that encompass this cooperative program. Expedition 24 is one of the first missions expanding to a crew of six. These crews, symbolized here as stars arranged in two groups of three, will launch on Soyuz vehicles. The unbroken flight track symbolizes our continuous human presence in space, representing all who have and will dedicate themselves as crew and citizens of the International Space Station. The NASA insignia design for shuttle flights and station increments is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  18. ISS: A Science Classroom for America

    NASA Astrophysics Data System (ADS)

    McPherson, Alexander; Jenkins, Greg; Kenny, Nate

    2002-01-01

    Four years ago the scientific and engineering staff of our laboratory at the University of California Irvine initiated a student outreach program with the objective of teaching structural biology through involvement with scientific experiments on the International Space Station. That program is now active in 28 of the 50 United States, and has reached approximately 1100 middle and high school teachers, and 50,000 of their students. It will soon have a presence in every state through the support of NASA, The Space Grant Consortium, and a host of other private and public sector institutions. The program is based on a protein and virus crystallization experiment we are conducting at regular intervals of about 2-6 months on the International Space Station. The experiment utilizes a device called the Enhanced GN2 Dewar, and it has now been flown to Mir and the International Space Station more than ten times. The Enhanced GN2 Dewar is an extremely inexpensive, simple, high capacity system for the crystallization of macromolecules, including proteins, nucleic acids, and viruses, in a microgravity environment aboard the ISS (International Space Station). The samples, which are prepared by hand, are frozen by plunging them into liquid nitrogen and maintained in a common freezer until the time of mission launch. The Dewar keeps the samples frozen for periods up to twelve days, including that period during which they are placed on board the Space Shuttle, carried into space from Kennedy Space Center, and transferred to the ISS. We began the classroom experiments in November 1998 and the first workshop was given in January 1999. We have participated in four missions to the ISS. STS-106 on 9/8/2000, STS-98 on 2/7/2001, STS-104 on 7/12/2001, and STS-110 on 4/8/2002. To date we have conducted 28 teacher kit training workshops and 24-flight sample loading workshops. We have had 406 students and 266 teachers load actual flight samples. These participants selected through essay and

  19. iss055e036790

    NASA Image and Video Library

    2018-04-30

    iss055e036790 (April 30, 2018) --- NASA astronaut Drew Feustel conducts science operations inside the Multi-use Variable-g Platform Module which enables research into how small organisms such as fruit flies, flatworms, plants, fish, cells, protein crystals and many others adapt to different types of gravity scenarios.

  20. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  1. iss054e037647

    NASA Image and Video Library

    2018-02-08

    iss054e037647 (Feb. 8, 2018) --- NASA astronauts (from left) Joe Acaba, Mark Vande Hei and Scott Tingle talk to high school students and teachers who linked up to the International Space Station during a STEM (Science, Technology, Engineering and Mathematics) event from the Boise State University in Boise, Idaho.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  4. PromISS 4 hardware set up in the MSG during Expedition 12

    NASA Image and Video Library

    2006-01-18

    ISS012-E-16184 (18 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Jr., Expedition 12 commander and NASA space station science officer, sets up the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment hardware inside the Microgravity Science Glovebox (MSG) facility in the Destiny laboratory on the International Space Station.

  5. Hurricane Patricia Viewed by NASA ISS-RapidScat

    NASA Image and Video Library

    2015-10-23

    NASA's ISS-RapidScat passed over Hurricane Patricia at about 3:00 AM GMT on Oct. 23, 2015. A Hurricane Warning was in effect from San Blas to Punta San Telmo. A Hurricane Watch was in effect from east of Punta San Telmo to Lazaro Cardenas and a Tropical Storm Warning was in effect from east of Punta San Telmo to Lazaro Cardenas. Patricia was moving toward the north-northwest near 12 mph (19 kph) and a turn toward the north is expected later this morning, followed by a turn toward the north-northeast this afternoon. On the forecast track, the core of Patricia will make landfall in the hurricane warning area today, Oct. 23, 2015, during the afternoon or evening. http://photojournal.jpl.nasa.gov/catalog/PIA20031

  6. iss055e024310

    NASA Image and Video Library

    2018-04-17

    iss055e024310 (April 17, 2018) --- NASA astronauts Drew Feustel and Scott Tingle are at work inside the U.S. Destiny laboratory module. Feustel works on routing and installing ethernet cables throughout the International Space Station. Tingle conducts research for the Metabolic Tracking experiment inside the lab module's Microgravity Science Glovebox.

  7. PromISS 4 hardware set up in the MSG during Expedition 12

    NASA Image and Video Library

    2006-01-18

    ISS012-E-16162 (18 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, configures the Microgravity Science Glovebox (MSG) facility to prepare for the installation and activation of the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment in the Destiny laboratory on the International Space Station.

  8. PromISS 4 hardware set up in the MSG during Expedition 12

    NASA Image and Video Library

    2006-01-19

    ISS012-E-16237 (19 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, configures the Microgravity Science Glovebox (MSG) facility to prepare for the installation and activation of the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment in the Destiny laboratory on the International Space Station.

  9. PromISS 4 hardware set up in the MSG during Expedition 12

    NASA Image and Video Library

    2006-01-19

    ISS012-E-16245 (19 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Expedition 12 commander and NASA space station science officer, configures the Microgravity Science Glovebox (MSG) facility to prepare for the installation and activation of the Protein Crystal Growth Monitoring by Digital Holographic Microscope (PromISS) experiment in the Destiny laboratory on the International Space Station.

  10. iss014-s-001

    NASA Image and Video Library

    2006-05-01

    ISS014-S-001 (May 2006) --- This emblem embodies the past, present, and future of human space exploration. The Roman numeral XIV suspended above the Earth against the black background of space symbolizes the fourteenth expeditionary mission to the International Space Station (ISS). Elements of this symbol merge into a unified trajectory destined for the moon, Mars, and beyond, much as science and operations aboard the ISS today will pave the way for future missions to our celestial neighbors. The five stars honor the astronauts and cosmonauts of missions Apollo 1, Soyuz 1, Soyuz 11, Challenger, and Columbia, who gave their lives in the pursuit of knowledge and discovery. The NASA insignia for design for shuttle flights and station increments is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy which is not anticipated, it will be publicly announced.

  11. Overview of NASA's Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton

    2012-01-01

    The microgravity materials program was nearly eliminated in the middle of the aughts due to budget constraints. Hardware developments were eliminated. Some investigators with experiments that could be performed using ISS partner hardware received continued funding. Partnerships were established between US investigators and ESA science teams for several investigations. ESA conducted peer reviews on the proposals of various science teams as part of an ESA AO process. Assuming he or she was part of a science team that was selected by the ESA process, a US investigator would submit a proposal to NASA for grant funding to support their part of the science team effort. In a similar manner, a US materials investigator (Dr. Rohit Trivedi) is working as a part of a CNES selected science team. As funding began to increase another seven materials investigators were selected in 2010 through an NRA mechanism to perform research related to development of Materials Science Research Rack investigations. One of these has since been converted to a Glovebox investigation.

  12. Space Science Investigation: NASA ISS Stowage Simulator

    NASA Technical Reports Server (NTRS)

    Crawford, Gary

    2017-01-01

    During this internship the opportunity was granted to work with the Integrated, Graphics, Operations and Analysis Laboratory (IGOAL) team. The main assignment was to create 12 achievement patches for the Space Station training simulator called the "NASA ISS Stowage Training Game." This project was built using previous IGOAL developed software. To accomplish this task, Adobe Photoshop and Adobe Illustrator were used to craft the badges and other elements required. Blender, a 3D modeling software, was used to make the required 3D elements. Blender was a useful tool to make things such as a CTB bag for the "No More Bob" patch which shows a gentleman kicking a CTB bag into the distance. It was also used to pose characters to the positions that was optimal for their patches as in the "Station Sanitation" patch which portrays and astronaut waving on a U.S module on a truck. Adobe Illustrator was the main piece of software for this task. It was used to craft the badges and upload them when they were completed. The style of the badges were flat, meaning that they shouldn't look three dimensional in any way, shape or form. Adobe Photoshop was used when any pictures need brightening and was where the texture for the CTB bag was made. In order for the patches to be ready for the game's next major release, they have to go under some critical reviewing, revising and re-editing to make sure the other artists and the rest of the staff are satisfied with the final products. Many patches were created and revamped to meet the flat setting and incorporate suggestions from the IGOAL team. After the three processes were completed, the badges were implemented into the game (reference fig1 for badges). After a month of designing badges, the finished products were placed into the final game build via the programmers. The art was the final piece in showcasing the latest build to the public for testing. Comments from the testers were often exceptional and the feedback on the badges were

  13. Microgravity Combustion Science and Fluid Physics Experiments and Facilities for the ISS

    NASA Technical Reports Server (NTRS)

    Lauver, Richard W.; Kohl, Fred J.; Weiland, Karen J.; Zurawski, Robert L.; Hill, Myron E.; Corban, Robert R.

    2001-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program supports both ground-based and flight experiment research in the disciplines of Combustion Science and Fluid Physics. Combustion Science research includes the areas of gas jet diffusion flames, laminar flames, burning of droplets and misting fuels, solids and materials flammability, fire and fire suppressants, turbulent combustion, reaction kinetics, materials synthesis, and other combustion systems. The Fluid Physics discipline includes the areas of complex fluids (colloids, gels, foams, magneto-rheological fluids, non-Newtonian fluids, suspensions, granular materials), dynamics and instabilities (bubble and drop dynamics, magneto/electrohydrodynamics, electrochemical transport, geophysical flows), interfacial phenomena (wetting, capillarity, contact line hydrodynamics), and multiphase flows and phase changes (boiling and condensation, heat transfer, flow instabilities). A specialized International Space Station (ISS) facility that provides sophisticated research capabilities for these disciplines is the Fluids and Combustion Facility (FCF). The FCF consists of the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) and the Shared Accommodations Rack and is designed to accomplish a large number of science investigations over the life of the ISS. The modular, multiuser facility is designed to optimize the science return within the available resources of on-orbit power, uplink/downlink capacity, crew time, upmass/downmass, volume, etc. A suite of diagnostics capabilities, with emphasis on optical techniques, will be provided to complement the capabilities of the subsystem multiuser or principal investigator-specific experiment modules. The paper will discuss the systems concept, technical capabilities, functionality, and the initial science investigations in each discipline.

  14. Combustion Research aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Astrophysics Data System (ADS)

    Sutliff, T. J.; Otero, A. M.; Urban, D. L.

    2002-01-01

    The Physical Sciences Research Program of NASA has chartered a broad suite of peer-reviewed research investigating both fundamental combustion phenomena and applied combustion research topics. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). The applied research benefit humans living and working in space through its fire safety program. The Combustion Science Discipline is implementing a structured flight research program utilizing the International Space Station (ISS) and two of its premier facilities, the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox to conduct this space-based research. This paper reviews the current vision of Combustion Science research planned for International Space Station implementation from 2003 through 2012. A variety of research efforts in droplets and sprays, solid-fuels combustion, and gaseous combustion have been independently selected and critiqued through a series of peer-review processes. During this period, while both the ISS carrier and its research facilities are under development, the Combustion Science Discipline has synergistically combined research efforts into sub-topical areas. To conduct this research aboard ISS in the most cost effective and resource efficient manner, the sub-topic research areas are implemented via a multi-user hardware approach. This paper also summarizes the multi-user hardware approach and recaps the progress made in developing these research hardware systems. A balanced program content has been developed to maximize the production of fundamental and applied combustion research results within the current budgetary and ISS operational resource constraints. Decisions on utilizing the

  15. Photography of Coral Reefs from ISS

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2009-01-01

    This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.

  16. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  17. International Space Station (ISS)

    NASA Image and Video Library

    2007-02-09

    The STS-120 patch reflects the role of the mission in the future of the space program. The shuttle payload bay carries Node 2, Harmony, the doorway to the future international laboratory elements on the International Space Station (ISS). The star on the left represents the ISS; the red colored points represent the current location of the P6 solar array, furled and awaiting relocation when the crew arrives. During the mission, the crew will move P6 to its final home at the end of the port truss. The gold points represent the P6 solar array in its new location, unfurled and producing power for science and life support. On the right, the moon and Mars can be seen representing the future of NASA. The constellation Orion rises in the background, symbolizing NASA's new exploration vehicle. Through all, the shuttle rises up and away, leading the way to the future.

  18. New Crew Launches to the ISS on This Week @NASA - September 26, 2014

    NASA Image and Video Library

    2014-09-26

    On September 25, Eastern time, NASA astronaut Barry Wilmore and his Expedition 41/42 crewmates, Alexander Samokutyaev and Elena Serova of the Russian Federal Space Agency, launched to the International Space Station aboard a Russian Soyuz spacecraft, from the Baikonur Cosmodrome in Kazakhstan. They arrived six hours later and were welcomed by the crew onboard the station, including NASA’s Reid Wiseman. Expedition 41/42 will spend about five-and-a-half months on the ISS. Also, Clinton Global Initiative, SpaceX Dragon arrives at ISS, MAVEN’s first Mars images, Curiosity drills at Mt. Sharp, New aeronautics technologies and more!

  19. ISS Material Science Research Rack HWIL Interface Simulation

    NASA Technical Reports Server (NTRS)

    Williams, Philip J.; Ballard, Gary H.; Crumbley, Robert T. (Technical Monitor)

    2002-01-01

    In this paper, the first Material Science Research Rack (MSRR-1) hardware-in-the-loop (HWIL) interface simulation is described. Dynamic Concepts developed this HWIL simulation system with funding and management provided by the Flight Software group (ED14) of NASA-MSFC's Avionics Department. The HWIL system has been used both as a flight software development environment and as a software qualification tool. To fulfill these roles, the HWIL simulator accurately models the system dynamics of many MSRR-1 subsystems and emulates most of the internal interface signals. The modeled subsystems include the Experiment Modules, the Thermal Environment Control System, the Vacuum Access System, the Solid State Power Controller Module, and the Active Rack Isolation Systems. The emulated signals reside on three separate MIL-STD-1553B digital communication buses, the ISS Medium Rate Data Link, and several analog controller and sensor signals. To enhance the range of testing, it was necessary to simulate several off-nominal conditions that may occur in the interfacing subsystems.

  20. Duque works at the MSG for PromISS 2 in the Lab during Expedition Seven / 8 OPS

    NASA Image and Video Library

    2003-10-27

    ISS008-E-05026 (27 October 2003) --- European Space Agency (ESA) astronaut Pedro Duque (left) of Spain works with the Cervantes mission experiment PROMISS in the Microgravity Science Glovebox (MSG) in the Destiny laboratory on the International Space Station (ISS). This experiment will investigate the growth processes of proteins in weightless conditions. Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, is visible at right.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-16

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"

  2. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-16

    The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"

  3. Multi-User Hardware Solutions to Combustion Science ISS Research

    NASA Technical Reports Server (NTRS)

    Otero, Angel M.

    2001-01-01

    In response to the budget environment and to expand on the International Space Station (ISS) Fluids and Combustion Facility (FCF) Combustion Integrated Rack (CIR), common hardware approach, the NASA Combustion Science Program shifted focus in 1999 from single investigator PI (Principal Investigator)-specific hardware to multi-user 'Minifacilities'. These mini-facilities would take the CIR common hardware philosophy to the next level. The approach that was developed re-arranged all the investigations in the program into sub-fields of research. Then common requirements within these subfields were used to develop a common system that would then be complemented by a few PI-specific components. The sub-fields of research selected were droplet combustion, solids and fire safety, and gaseous fuels. From these research areas three mini-facilities have sprung: the Multi-user Droplet Combustion Apparatus (MDCA) for droplet research, Flow Enclosure for Novel Investigations in Combustion of Solids (FEANICS) for solids and fire safety, and the Multi-user Gaseous Fuels Apparatus (MGFA) for gaseous fuels. These mini-facilities will develop common Chamber Insert Assemblies (CIA) and diagnostics for the respective investigators complementing the capability provided by CIR. Presently there are four investigators for MDCA, six for FEANICS, and four for MGFA. The goal of these multi-user facilities is to drive the cost per PI down after the initial development investment is made. Each of these mini-facilities will become a fixture of future Combustion Science NASA Research Announcements (NRAs), enabling investigators to propose against an existing capability. Additionally, an investigation is provided the opportunity to enhance the existing capability to bridge the gap between the capability and their specific science requirements. This multi-user development approach will enable the Combustion Science Program to drive cost per investigation down while drastically reducing the time

  4. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  5. iss014e14500

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14500 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  6. iss014e14502

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14502 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-20

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  8. The Science@NASA Websites

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Phillips. Tony; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Science@NASA websites represent a significant stride forward in communicating NASA science to the general public via the Internet. Using a family of websites aimed at science-attentive adults, high school students, middle school students and educators, the Science@NASA activity presents selected stories of on-going NASA science, giving context to otherwise dry press releases and scientific reports.

  9. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some

  10. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  11. iss051e041841

    NASA Image and Video Library

    2017-05-12

    iss051e041841 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  12. iss051e041847

    NASA Image and Video Library

    2017-05-12

    iss051e041847 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  13. iss051e041836

    NASA Image and Video Library

    2017-05-12

    iss051e041836 (05/12/2017) -- NASA astronaut Peggy Whitson is seen prior to the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  14. iss051e041849

    NASA Image and Video Library

    2017-05-12

    iss051e041849 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  15. iss051e041844

    NASA Image and Video Library

    2017-05-12

    iss051e041844 (05/12/2017) -- NASA astronaut Jack Fischer is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  16. iss051e041860

    NASA Image and Video Library

    2017-05-12

    iss051e041860 (05/12/2017) -- NASA astronaut Peggy Whitson is seen during the 200th spacewalk in support of the International Space Station. Expedition 51 Commander Peggy Whitson and Flight Engineer Jack Fischer of NASA successfully replaced a large avionics box that supplies electricity and data connections to the science experiments. The astronauts also completed additional tasks to install a connector that will route data to the Alpha Magnetic Spectrometer, repair insulation at the connecting point of the Japanese robotic arm, and install a protective shield on the Pressurized Mating Adapter-3. This adapter will host a new international docking port for the arrival of commercial crew spacecraft.

  17. Contrasting Perspectives Of Junior versus Senior NASA ISS Flight Controllers On Leadership And Cultural Issues

    NASA Technical Reports Server (NTRS)

    Clement, James L.; Boyd, J. E.; Saylor, S.; Kanas, N.

    2007-01-01

    NASA flight controllers have always worked in a very demanding environment, but the International Space Station (ISS) poses even more challenges than prior missions. A recent NASA/Ames survey by Parke and Orasanu of NASA/Johnson flight controllers uncovered concerns about communications problems between American personnel and their international counterparts. To better understand these problems, we interviewed 14 senior and 12 junior ISS flight controllers at NASA/Johnson about leadership and cultural challenges they face and strategies for addressing these challenges. The qualitative interview data were coded and tabulated. Here we present quantitative analyses testing for differences between junior and senior controllers. Based on nonparametric statistical tests comparing responses across groups, the senior controllers were significantly more aware of the impact of working in dispersed teams, the context of constant change, and the upcoming multilateral challenges, while junior controllers were more aware of language and cultural issues. We consider our findings in light of other studies of controllers and other known differences between senior and junior controllers. For example, the fact that senior controllers had their formative early experience controlling pre-ISS short-duration Shuttle missions seems to have both positive and negative aspects, which are supported by our data. Our findings may also reflect gender differences, but we cannot unconfound this effect in our data because all the senior respondents were males. Many of the junior-senior differences are not only due to elapsed time on the job, but also due to a cohort effect. The findings of this study should be used for training curricula tailored differently for junior and senior controllers.

  18. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  19. The NASA Materials Science Research Program - It's New Strategic Goals and Plans

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.

    2003-01-01

    In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.

  20. iss050e042164

    NASA Image and Video Library

    2017-02-13

    iss050e042164 (02/13/2017) --- NASA astronaut Peggy Whitson (right) and ESA (European Space Agency) astronaut Thomas Pesquet setup the Microgravity Science Glovebox (MSG) for the Microgravity Expanded Stem Cells (MESC) experiment. MESC cultivates human stem cells aboard the International Space Station for use in clinical trials to evaluate their use in treating disease. Results also advance future studies on how to scale up expansion of stem cells for treating stroke and other conditions.

  1. Russian Earth Science Research Program on ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armand, N. A.; Tishchenko, Yu. G.

    1999-01-22

    Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements tomore » the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.« less

  2. Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hasbrook, Pete

    2016-01-01

    The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging

  3. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Stewart, M. F.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.

    2014-01-01

    In recent years, NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to provide global observations of total lightning after 17 years on-orbit. In April 2013, a space-qualified LIS built as the flight spare for TRMM, was selected for flight as a science mission on the International Space Station. The ISS LIS (or I-LIS as Hugh Christian prefers) will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of global lightning. More specifically, it measures lightning during both day and night, with storm scale resolution, millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that the characteristics of lightning that LIS measures can be quantitatively coupled to both thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will be exploring

  4. Public Participation in Earth Science from the ISS

    NASA Technical Reports Server (NTRS)

    Willis, Kimberly J.; Runco, Susan K.; Stefanov, William L.

    2010-01-01

    The Gateway to Astronaut Photography of Earth (GAPE) is an online database (http://eol.jsc.nasa.gov) of terrestrial astronaut photography that enables the public to experience the astronaut s view from orbit. This database of imagery includes all NASA human-directed missions from the Mercury program of the early 1960 s to the current International Space Station (ISS). To date, the total number of images taken by astronauts is 1,025,333. Of the total, 621,316 images have been "cataloged" (image geographic center points determined and descriptive metadata added). The remaining imagery provides an opportunity for the citizen-scientist to become directly involved with NASA through cataloging of astronaut photography, while simultaneously experiencing the wonder and majesty of our home planet as seen by astronauts on board the ISS every day. We are currently developing a public cataloging interface for the GAPE website. When complete, the citizen-scientist will be able to access a selected subset of astronaut imagery. Each candidate will be required to pass a training tutorial in order to receive certification as a cataloger. The cataloger can then choose from a selection of images with basic metadata that is sorted by difficulty levels. Some guidance will be provided (template/pull down menus) for generation of geographic metadata required from the cataloger for each photograph. Each cataloger will also be able to view other contributions and further edit that metadata if they so choose. After the public inputs their metadata the images will be posted to an internal screening site. Images with similar geographic metadata and centerpoint coordinates from multiple catalogers will be reviewed by NASA JSC Crew Earth Observations (CEO) staff. Once reviewed and verified, the metadata will be entered into the GAPE database with the contributors identified by their chosen usernames as having cataloged the frame.

  5. Public Participation in Earth Science from the Iss

    NASA Astrophysics Data System (ADS)

    Willis, K. J.; Runco, S.; Stefanov, W. L.

    2010-12-01

    The Gateway to Astronaut Photography of Earth (GAPE) is an online database (http://eol.jsc.nasa.gov) of terrestrial astronaut photography that enables the public to experience the astronaut’s view from orbit. This database of imagery includes all NASA human-directed missions from the Mercury program of the early 1960’s to the current International Space Station (ISS). To date, the total number of images taken by astronauts is 1,025,333. Of the total, 621,316 images have been “cataloged” (image geographic center points determined and descriptive metadata added). The remaining imagery provides an opportunity for the citizen-scientist to become directly involved with NASA through cataloging of astronaut photography, while simultaneously experiencing the wonder and majesty of our home planet as seen by astronauts on board the ISS every day. We are currently developing a public cataloging interface for the GAPE website. When complete, the citizen-scientist will be able to access a selected subset of astronaut imagery. Each candidate will be required to pass a training tutorial in order to receive certification as a cataloger. The cataloger can then choose from a selection of images with basic metadata that is sorted by difficulty levels. Some guidance will be provided (template/pull down menus) for generation of geographic metadata required from the cataloger for each photograph. Each cataloger will also be able to view other contributions and further edit that metadata if they so choose. After the public inputs their metadata the images will be posted to an internal screening site. Images with similar geographic metadata and centerpoint coordinates from multiple catalogers will be reviewed by NASA JSC Crew Earth Observations (CEO) staff. Once reviewed and verified, the metadata will be entered into the GAPE database with the contributors identified by their chosen usernames as having cataloged the frame.

  6. The ISS flight of Richard Garriott: a template for medicine and science investigation on future spaceflight participant missions.

    PubMed

    Jennings, Richard T; Garriott, Owen K; Bogomolov, Valery V; Pochuev, Vladimir I; Morgun, Valery V; Garriott, Richard A

    2010-02-01

    A total of eight commercial spaceflight participants have launched to the International Space Station (ISS) on Soyuz vehicles. Based on an older mean age compared to career astronauts and an increased prevalence of medical conditions, spaceflight participants have provided the opportunity to learn about the effect of space travel on crewmembers with medical problems. The 12-d Soyuz TMA-13/12 ISS flight of spaceflight participant Richard Garriott included medical factors that required preflight intervention, risk mitigation strategies, and provided the opportunity for medical study on-orbit. Equally important, Mr. Garriott conducted extensive medical, scientific, and educational payload operations during the flight. These included 7 medical experiments and a total of 15 scientific projects such as protein crystal growth, Earth observations/photography, educational projects with schools, and amateur radio. The medical studies included the effect of microgravity on immune function, sleep, bone loss, corneal refractive surgery, low back pain, motion perception, and intraocular pressure. The overall mission success resulted from non-bureaucratic agility in mission planning, cooperation with investigators from NASA, ISS, International Partners, and the Korean Aerospace Research Institute, in-flight support and leadership from a team with spaceflight and Capcom experience, and overall mission support from the ISS program. This article focuses on science opportunities that suborbital and orbital spaceflight participant flights offer and suggests that the science program on Richard Garriott's flight be considered a model for future orbital and suborbital missions. The medical challenges are presented in a companion article.

  7. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  8. STS-106 ISS Overview Briefing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dwayne Brown, NASA Public Affairs, introduces Bob Cabana of NASA, Mikhail Sinelshikov of PKA, Vasily Tsibliev of GCTC, Steve Mozes of CSA, Ian Pryke of ESA, and Masaaki Komatsu of NASDA. Each man gives an overview of the status of the International Space Station (ISS), including details on the current configuration, future missions and what they will bring to the ISS, and each space agency's contribution to the ISS. They then answer questions from the press.

  9. iss009e22465

    NASA Image and Video Library

    2004-09-13

    ISS009-E-22465 (13 September 2004) --- Hurricane Ivan was photographed as it entered the Gulf of Mexico late Monday (22:36:24 GMT, Sept. 13) by astronaut Edward M. (Mike) Fincke aboard the International Space Station, 230 miles above Earth. At the time, Ivan was a category 5 hurricane with winds of 160 mph. Fincke, the NASA Station Science Officer, and Station Commander Gennady Padalka are in the final month of a six-month mission aboard the research platform.

  10. iss009e22466

    NASA Image and Video Library

    2004-09-26

    ISS009-E-22466 (13 September 2004) --- Hurricane Ivan was photographed as it entered the Gulf of Mexico late Monday (22:36:31 GMT, Sept. 13) by astronaut Edward M. (Mike) Fincke aboard the International Space Station, 230 miles above Earth. At the time, Ivan was a category 5 hurricane with winds of 160 mph. Fincke, the NASA Station Science Officer, and Station Commander Gennady Padalka are in the final month of a six-month mission aboard the research platform.

  11. iss009e22497

    NASA Image and Video Library

    2004-09-13

    ISS009-E-22497 (13 September 2004) --- Hurricane Ivan was photographed as it entered the Gulf of Mexico late Monday (22:39:23 GMT, Sept. 13) by astronaut Edward M. (Mike) Fincke aboard the International Space Station, 230 miles above Earth. At the time, Ivan was a category 5 hurricane with winds of 160 mph. Fincke, the NASA Station Science Officer, and Station Commander Gennady Padalka are in the final month of a six-month mission aboard the research platform.

  12. iss009e22471

    NASA Image and Video Library

    2004-09-13

    ISS009-E-22471 (13 September 2004) --- Hurricane Ivan was photographed as it entered the Gulf of Mexico late Monday (22:36:49 GMT, Sept. 13) by astronaut Edward M. (Mike) Fincke aboard the International Space Station, 230 miles above Earth. At the time, Ivan was a category 5 hurricane with winds of 160 mph. Fincke, the NASA Station Science Officer, and Station Commander Gennady Padalka are in the final month of a six-month mission aboard the research platform.

  13. Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.

    NASA Astrophysics Data System (ADS)

    Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.

    2016-12-01

    The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.

  14. NASA ISS Portable Fan Assembly Acoustics

    NASA Technical Reports Server (NTRS)

    Boone, Andrew; Allen, Christopher S.; Hess, Linda F.

    2018-01-01

    The Portable Fan Assembly (PFA) is a variable speed fan that can be used to provide additional ventilation inside International Space Station (ISS) modules as needed for crew comfort or for enhanced mixing of the ISS atmosphere. This fan can also be configured with a Shuttle era lithium hydroxide (LiOH) canister for CO2 removal in confined areas partially of fully isolated from the primary Environmental Control and Life Support System (ECLSS) on ISS which is responsible for CO2 removal. This report documents noise emission levels of the PFA at various speed settings and configurations. It also documents the acoustic attenuation effects realized when circulating air through the PFA inlet and outlet mufflers and when operating in its CO2 removal configuration (CRK) with a LiOH canister (sorbent bed) installed over the fan outlet.

  15. Recent NASA research accomplishments aboard the ISS

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; North, Regina M.

    2004-01-01

    The activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space. In addition, it evokes unexpected questions and results while experiments are still being conducted, affording time for changes and further investigation. While building and outfitting the ISS is the main priority during the current ISS assembly phase, seven different space station crews have already spent more than 2000 crew hours on approximately 80 scientific investigations, technology development activities, and educational demonstrations. Published by Elsevier Ltd.

  16. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Lueders, Kathryn L. (Compiler)

    2015-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document with its sister documents, Crew Transportation Technical Management Processes (CCT-PLN-1120), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), and Crew Transportation Operations Standards (CCT-STD-1150), and International Space Station (ISS) to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase of the NASA Commercial Crew Program (CCP).

  17. ISS External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  18. Expedition 24 Docks to ISS

    NASA Image and Video Library

    2010-06-17

    The Soyuz TMA-19 nears its docking with the International Space Station (ISS) as seen in the video monitor at Russian Mission Control Center in Korolev, Russia on Friday, June 18, 2010. The TMA-19 delivered the crew of Expedition 24 Soyuz Commander Fyodor Yurchikhin, and NASA Flight Engineers Doug Wheelock and Shannon Walker to the ISS. Photo Credit: (NASA/Carla Cioffi)

  19. Expedition 6 Crew Interviews: Don Pettit, Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 member Don Pettit (Flight Engineer 2/ International Space Station (ISS) Science Officer (SO)) is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. Pettit, who had been training as a backup crewmember, discusses the importance of training backups for ISS missions. He gives details on the goals and significance of the ISS, regarding experiments in various scientific disciplines such as the life sciences and physical sciences. Pettit also comments on the value of conducting experiments under microgravity. He also gives an overview of the ISS program to date, including the ongoing construction, international aspects, and the routines of ISS crewmembers who inhabit the station for four months at a time. He gives a cursory description of crew transfer procedures that will take place when STS-113 docks with ISS to drop off Pettit and the rest of Expedition 6, and retrieve the Expedition 5 crew.

  20. Expedition Seven Science Officer Lu with laptop

    NASA Image and Video Library

    2003-07-16

    ISS007-E-10478 (16 July 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, uses a computer in the Destiny laboratory on the International Space Station (ISS).

  1. iss048e041836

    NASA Image and Video Library

    2016-07-20

    ISS048e041836 (07/20/2016) --- NASA astronauts Kate Rubins (left) and Jeff Williams (right) prepare to grapple the SpaceX Dragon supply spacecraft from aboard the International Space Station. The nearly 5,000 pounds of supplies and equipment includes science supplies and hardware, including instruments to perform the first-ever DNA sequencing in space, and the first of two identical international docking adapters (IDA.) The IDAs will provide a means for commercial crew spacecraft to dock to the station in the near future as part of NASA’s Commercial Crew Program. Dragon is scheduled to depart the space station Aug. 29 when it will return critical science research back to Earth.

  2. McArthur runs the Half Marathon onboard the ISS on Expedition 12

    NASA Image and Video Library

    2006-01-15

    ISS012-E-15158 (15 Jan. 2006) --- Astronaut William S. (Bill) McArthur, Jr., Expedition 12 commander and NASA space station science officer, exercises on the Treadmill Vibration Isolation System (TVIS) in the Zvezda Service Module of the International Space Station.

  3. Preparation and Launch of the JEM ISS Elements - A NASA Mission Manager's Perspective

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott A.

    2016-01-01

    The pre-flight launch site preparations and launch of the Japanese Experiment Module (JEM) elements of the International Space Station required an intense multi-year, international collaborative effort between US and Japanese personnel at the Kennedy Space Center (KSC). This presentation will provide a brief overview of KSC, a brief overview of the ISS, and a summary of authors experience managing the NASA team responsible that supported and conducted the JEM element operations.

  4. SpaceX Dragon returns on This Week @NASA- October 31, 2014

    NASA Image and Video Library

    2014-10-31

    The SpaceX Dragon cargo capsule was recently detached from the International Space Station for its return to Earth, just over a month after delivering about 5,000 pounds of supplies and experiments to the ISS. Dragon safely returned to Earth with more than 3,200 pounds of NASA cargo and science samples – completing the company’s fourth resupply mission to the station. Also, Destination Station ISS Tech Forum, Orbital Sciences investigating accident, Russian supply ships to and from the ISS, Next ISS crew trains in Russia, Wind tunnel tests of SLS model and more!

  5. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Szofran, Frank R. (Compiler); McCauley, D. (Compiler); Walker, C. (Compiler)

    1996-01-01

    The Microgravity Materials Science Conference was held June 10-11, 1996 at the Von Braun Civic Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Science and Applications Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications (AMMSA). It was the second NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 80 investigations and 69 principal investigators in FY96, all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement (NRA) scheduled for release in late 1996 by the Microgravity Science and Applications Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the MSFC microgravity research facilities was held on June 12, 1996. This volume is comprised of the research reports submitted by the principal investigators after the conference and presentations made by various NASA microgravity science managers.

  6. Plans and Recent Developments for Fluid Physics Experiments Aboard the ISS

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Motil, Brian J.

    2016-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensable laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for Fluid Physics, NASA GRC is developing and testing the Pack Bed Reactor Experiment (PBRE), Zero Boil Off (ZBOT) Two Phase Flow Separator Experiment (TPFSE), Multiphase Flow Heat Transfer (MFHT) Experiment and the Electro-HydroDynamic (EHD) experiment. An overview each experiment, including its objectives, concept and status will be presented. In addition, data will be made available after a nominal period to NASAs Physical Science Informatics PSI database to the scientific community to enable additional analyses of results.

  7. GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.

    2015-01-01

    NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.

  8. Microgravity Science Glovebox (MSG) Space Sciences's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jordan, Lee P.

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.

  9. Life sciences.

    PubMed

    Martin-Brennan, Cindy; Joshi, Jitendra

    2003-12-01

    Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.

  10. Microgravity Science Glovebox - Glove

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows a rubber glove and its attachment ring for the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  11. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2016-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) and its Optical Transient Detector (OTD) predecessor that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) spanning a period from May 1995 through April 2015. As an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense (DoD) Space Test Program-Houston 5 (STP-H5) mission. The STP-H5 payload containing LIS is scheduled launch from NASA's Kennedy Space Center to the ISS in November 2016, aboard the SpaceX Cargo Resupply Services-10 (SpaceX-10) mission, installed in the unpressurized "trunk" of the Dragon spacecraft. After the Dragon is berth to ISS Node 2, the payload will be removed from the trunk and robotically installed in a nadir-viewing location on the external truss of the ISS. Following installation on the ISS, the LIS Operations Team will work with the STP-H5 and ISS Operations Teams to power-on LIS and begin instrument checkout and commissioning. Following successful activation, LIS orbital operations will commence, managed from the newly established LIS Payload Operations Control Center (POCC) located at the National Space Science Technology Center (NSSTC) in Huntsville, AL. The well-established and robust processing, archival, and distribution infrastructure used for TRMM was easily adapted to the ISS mission, assuring that lightning

  12. Human Behavior and Performance Support for ISS Operations and Astronaut Selections: NASA Operational Psychology for Six-Crew Operations

    NASA Technical Reports Server (NTRS)

    VanderArk, Steve; Sipes, Walter; Holland, Albert; Cockrell, Gabrielle

    2010-01-01

    The Behavioral Health and Performance group at NASA Johnson Space Center provides psychological support services and behavioral health monitoring for ISS astronauts and their families. The ISS began as an austere outpost with minimal comforts of home and minimal communication capabilities with family, friends, and colleagues outside of the Mission Control Center. Since 1998, the work of international partners involved in the Space Flight Human Behavior and Performance Working Group has prepared high-level requirements for behavioral monitoring and support. The "buffet" of services from which crewmembers can choose has increased substantially. Through the process of development, implementation, reviewing effectiveness and modifying as needed, the NASA and Wyle team have proven successful in managing the psychological health and well being of the crews and families with which they work. Increasing the crew size from three to six brought additional challenges. For the first time, all partners had to collaborate at the planning and implementation level, and the U.S. served as mentor to extrapolate their experiences to the others. Parity in available resources, upmass, and stowage had to be worked out. Steady progress was made in improving off-hours living and making provisions for new technologies within a system that has difficulty moving quickly on certifications. In some respect, the BHP support team fell victim to its previous successes. With increasing numbers of crewmembers in training, requests to engage our services spiraled upward. With finite people and funds, a cap had to placed on many services to ensure that parity could be maintained. The evolution of NASA BHP services as the ISS progressed from three- to six-crew composition will be reviewed, and future challenges that may be encountered as the ISS matures in its assembly-complete state will be discussed.

  13. iss049e012018

    NASA Image and Video Library

    2016-09-27

    ISS049e012018 (09/27/2016) --- Expedition 49 crewmember Kate Rubins of NASA works with the airlock inside of Kibo, the Japanese Experiment Module. Rubins was installing the Robotics External Leak Locator (RELL), a technology demonstration designed to locate external ISS ammonia (NH3) leaks.

  14. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  15. Microgravity Science Glovebox - Interior Reach

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the interior reach in the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  16. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  17. Research Progress and Accomplishments on ISS

    NASA Technical Reports Server (NTRS)

    Roe, Lesa B.; Uri, John J.

    2002-01-01

    The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. The first research payloads arrived at ISS more than two years ago, and continuous science has been ongoing for more than one and a half years. During this time, the research capabilities have been tremendously increased, even as assembly of the overall platform continues. Despite significant challenges along the way, ISS continues to successfully support a large number of investigations in a variety of research disciplines. The results of some of the early investigations are reaching the publication stage. The near future looms with new challenges, but experience to date and dedicated efforts give reason to be optimistic that the challenges will be overcome and that new and greater successes will be added to past ones.

  18. iss050e057428

    NASA Image and Video Library

    2017-03-15

    iss050e057428 (03/15/2017) --- NASA astronaut Shane Kimbrough removes a storage locker in the Minus Eighty-degree Laboratory Freezer for ISS (MELFI) to store samples from an experiment. MELFI is a cold storage unit that maintains experiment samples at ultra-cold temperatures throughout a mission.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  20. Science@NASA: Direct to People!

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Adams, Mitzi; Gallagher, Dennis; Whitaker, Ann (Technical Monitor)

    2002-01-01

    Science@NASA is a science communication effort sponsored by NASA's Marshall Space Flight Center. It is the result of a four year research project between Marshall, the University of Florida College of Journalism and Communications and the internet communications company, Bishop Web Works. The goals of Science@NASA are to inform, inspire, and involve people in the excitement of NASA science by bringing that science directly to them. We stress not only the reporting of the facts of a particular topic, but also the context and importance of the research. Science@NASA involves several levels of activity from academic communications research to production of content for 6 websites, in an integrated process involving all phases of production. A Science Communications Roundtable Process is in place that includes scientists, managers, writers, editors, and Web technical experts. The close connection between the scientists and the writers/editors assures a high level of scientific accuracy in the finished products. The websites each have unique characters and are aimed at different audience segments: 1. http://science.nasa.gov. (SNG) Carries stories featuring various aspects of NASA science activity. The site carries 2 or 3 new stories each week in written and audio formats for science-attentive adults. 2. http://liftoff.msfc.nasa.gov. Features stories from SNG that are recast for a high school level audience. J-Track and J-Pass applets for tracking satellites are our most popular product. 3. http://kids. msfc.nasa.gov. This is the Nursemaids site and is aimed at a middle school audience. The NASAKids Club is a new feature at the site. 4. http://www.thursdaysclassroom.com . This site features lesson plans and classroom activities for educators centered around one of the science stories carried on SNG. 5. http://www.spaceweather.com. This site gives the status of solar activity and its interactions with the Earth's ionosphere and magnetosphere.

  1. iss050e056553

    NASA Image and Video Library

    2017-03-09

    iss050e056553 (03/09/2017) --- NASA astronaut Peggy Whitson unloads spaceflight hardware delivered on SpaceX CRS-10 that was built as part of the NASA High School Students United with NASA to Create Hardware (HUNCH) program. Students in the HUNCH program receive valuable experience creating goods for NASA from hardware to the culinary arts, while NASA receives the creativity of the High School students.

  2. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the access through the internal airlock (bottom right) on the Microgravity Science Glovebox (MSG) being developed by the European Space Agency (ESA) and NASA for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  3. Microgravity Science Glovebox - Labels

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Labels are overlaid on a photo (0003837) of the Microgravity Science Glovebox (MSG). The MSG is being developed by the European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  4. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.

  5. NASA science communications strategy

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In 1994, the Clinton Administration issued a report, 'Science in the National Interest', which identified new national science goals. Two of the five goals are related to science communications: produce the finest scientists and engineers for the 21st century, and raise scientific and technological literacy of all Americans. In addition to the guidance and goals set forth by the Administration, NASA has been mandated by Congress under the 1958 Space Act to 'provide for the widest practicable and appropriate dissemination concerning its activities and the results thereof'. In addition to addressing eight Goals and Plans which resulted from a January 1994 meeting between NASA and members of the broader scientific, education, and communications community on the Public Communication of NASA's Science, the Science Communications Working Group (SCWG) took a comprehensive look at the way the Agency communicates its science to ensure that any changes the Agency made were long-term improvements. The SCWG developed a Science Communications Strategy for NASA and a plan to implement the Strategy. This report outlines a strategy from which effective science communications programs can be developed and implemented across the agency. Guiding principles and strategic themes for the strategy are provided, with numerous recommendations for improvement discussed within the respective themes of leadership, coordination, integration, participation, leveraging, and evaluation.

  6. jsc2018m000189_ISS_As_Art-MP4

    NASA Image and Video Library

    2018-03-13

    International Space Station as Art------- The International Space Station has been humanity’s outpost in space for nearly two decades, hosting astronauts from around the globe working on groundbreaking science to push the boundaries in a variety of fields. NASA astronaut Randy Bresnik sought to capture the beauty of the immense spacecraft amidst the endless tangle of cables and hardware in this series of photos taken during his most recent stay onboard. Follow Randy Bresnik on social media at: https://twitter.com/astrokomrade https://www.instagram.com/astrokomrade _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  7. VON and Its Use in NASA's International Space Station Science Operation

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Chamberlain, Jim

    1999-01-01

    This presentation will provide a brief overview of a International Space Station (ISS) remote user (scientist/experimenter) operation. Specifically, the presentation will show how Voice over IP (VoIP) is integrated into the ISS science payload operation and in the mission voice system. Included will be the details on how a scientist, using VON, will talk to the ISS onboard crew and ground based cadre from a scientist's home location (lab, office or garage) over tile public Internet and science nets. Benefit(s) to tile ISS Program (and taxpayer) and of VoIP versus other implementations also will be presented.

  8. NASA Microgravity Materials Science Conference

    NASA Technical Reports Server (NTRS)

    Gillies, D. C. (Compiler); McCauley, D. E. (Compiler)

    1999-01-01

    The Microgravity Materials Science Conference was held July 14-16, 1998 at the Von Braun Center in Huntsville, AL. It was organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Microgravity Research Division at NASA Headquarters, and hosted by the NASA Marshall Space Flight Center and the Alliance for Microgravity Materials Science and Applications. It was the third NASA conference of this type in the microgravity materials science discipline. The microgravity science program sponsored approximately 125 investigations and 100 principal investigators in FY98, almost all of whom made oral or poster presentations at this conference. The conference's purpose was to inform the materials science community of research opportunities in reduced gravity in preparation for a NASA Research Announcement scheduled for release in late 1998 by the Microgravity Research Division at NASA Headquarters. The conference was aimed at materials science researchers from academia, industry, and government. A tour of the Marshall Space Flight Center microgravity research facilities was held on July 16, 1998. This volume is comprised of the research reports submitted by the principal investigators after the conference.

  9. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Dudley, Stephanie R. B.

    2014-01-01

    With an increase in the utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS realtime operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art media wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management

  10. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  11. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  12. iss031-s-001

    NASA Image and Video Library

    2011-08-12

    ISS031-S-001 (September 2011) --- Thin crescents along the horizons of Earth and its moon depict International Space Station (ISS) Expedition 31. The shape of the patch represents a view of our galaxy. The black background symbolizes the research into dark matter, one of the scientific objectives of Expedition 31. At the heart of the patch are Earth, its moon, Mars, and asteroids, the focus of current and future exploration. The ISS is shown in an orbit around Earth, with a collection of stars for the Expedition 30 and 31 crews. The small stars symbolize the visiting vehicles that will dock with the complex during this expedition. The NASA insignia design for shuttle and space station flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA and Its International Partners

  13. Enhanced science capability on the International Space Station

    NASA Astrophysics Data System (ADS)

    Felice, Ronald R.; Kienlen, Mike

    2002-12-01

    It is inevitable that the International Space Station (ISS) will play a significant role in the conduct of science in space. However, in order to provide this service to a wide and broad community and to perform it cost effectively, alternative concepts must be considered to complement NASA"s Institutional capability. Currently science payload forward and return data services must compete for higher priority ISS infrastructure support requirements. Furthermore, initial astronaut crews will be limited to a single shift. Much of their time and activities will be required to meet their physical needs (exercise, recreation, etc.), station maintenance, and station operations, leaving precious little time to actively conduct science payload operations. ISS construction plans include the provisioning of several truss mounted, space-hardened pallets, both zenith and nadir facing. The ISS pallets will provide a platform to conduct both earth and space sciences. Additionally, the same pallets can be used for life and material sciences, as astronauts could place and retrieve sealed canisters for long-term micro-gravity exposure. Thus the pallets provide great potential for enhancing ISS science return. This significant addition to ISS payload capacity has the potential to exacerbate priorities and service contention factors within the exiting institution. In order to have it all, i.e., more science and less contention, the pallets must be data smart and operate autonomously so that NASA institutional services are not additionally taxed. Specifically, the "Enhanced Science Capability on the International Space Station" concept involves placing data handling and spread spectrum X-band communications capabilities directly on ISS pallets. Spread spectrum techniques are considered as a means of discriminating between different pallets as well as to eliminate RFI. The data and RF systems, similar to that of "free flyers", include a fully functional command and data handling system

  14. Science on the International Space Station: Stepping Stones for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    This viewgraph presentation reviews the state of science research on the International Space Station (ISS). The shuttle and other missions that have delivered science research facilities to the ISS are shown. The different research facilities provided by both NASA and partner organizations available for use and future facilities are reviewed. The science that has been already completed is discussed. The research facilitates the Vision for Space Exploration, in Human Life Sciences, Biological Sciences, Materials Science, Fluids Science, Combustion Science, and all other sciences. The ISS Focus for NASA involves: Astronaut health and countermeasure, development to protect crews from the space environment during long duration voyages, Testing research and technology developments for future exploration missions, Developing and validating operational procedures for long-duration space missions. The ISS Medical Project (ISSMP) address both space systems and human systems. ISSMP has been developed to maximize the utilization of ISS to obtain solutions to the human health and performance problems and the associated mission risks of exploration class missions. Including complete programmatic review with medical operations (space medicine/flight surgeons) to identify: (1) evidence base on risks (2) gap analysis.

  15. The NASA Materials Science Research Program: It's New Strategic Goals and Opportunities

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stagg, Elizabeth

    2004-01-01

    In the past year, the NASA s Office of Biological and Physical Research (OBPR) has formulated a long term plan to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for current and future agency mission goals. Materials Science is one of basic disciplines within the Enterprise s Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) and various world class ground laboratory facilities to solve new scientific and technology questions and transfer these results for public and agency benefits. The program has recently targeted new investigative research in strategic areas necessary to expand NASA knowledge base for exploration of the universe and some of these experiments will need access to the microgravity of space. The program is implementing a wide variety of traditional ground and flight based research related types of fundamental science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. , In addition new initiatives in radiation protection, materials for propulsion and In-space fabrication and repair focus on research helping the agency solve problems needed for future transportation into the solar system. A summary of the types and sources for this research is presented including those experiments planned for a low gravity environment. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned

  16. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans speaks with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  17. NASA Science Institutes Plan. Report of the NASA Science Institutes Team: Final Publication (Incorporating Public Comments and Revisions)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This NASA Science Institute Plan has been produced in response to direction from the NASA Administrator for the benefit of NASA Senior Management, science enterprise leaders, and Center Directors. It is intended to provide a conceptual framework for organizing and planning the conduct of science in support of NASA's mission through the creation of a limited number of science Institutes. This plan is the product of the NASA Science Institute Planning Integration Team (see Figure A). The team worked intensively over a three-month period to review proposed Institutes and produce findings for NASA senior management. The team's activities included visits to current NASA Institutes and associated Centers, as well as approximately a dozen non-NASA research Institutes. In addition to producing this plan, the team published a "Benchmarks" report. The Benchmarks report provides a basis for comparing NASA's proposed activities with those sponsored by other national science agencies, and identifies best practices to be considered in the establishment of NASA Science Institutes. Throughout the team's activities, a Board of Advisors comprised of senior NASA officials (augmented as necessary with other government employees) provided overall advice and counsel.

  18. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    NASA Technical Reports Server (NTRS)

    Dudley, Stephanie R. B.; Marsh, Angela L.

    2014-01-01

    With an increase in utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four-month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS real-time operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art Video Wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of

  19. SPHERES: From Ground Development to Operations on ISS

    NASA Technical Reports Server (NTRS)

    Katterhagen, A.

    2015-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of

  20. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  1. Microgravity Science Glovebox - Working Volume

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Interior lights give the Microgravity Science Glovebox (MSG) the appearance of a high-tech juke box. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  2. NASA's Applied Sciences for Water Resources

    NASA Technical Reports Server (NTRS)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  3. BFCR during Expedition 6 space walk on ISS

    NASA Image and Video Library

    2003-01-15

    JSC2003-E-02167 (15 January 2003) --- Astronaut Stanley G. Love, spacecraft communicator (CAPCOM), monitors data at his console in the station flight control room (BFCR) in Houston’s Mission Control Center (MCC). At the time this photo was taken, astronauts Kenneth D. Bowersox and Donald R. Pettit, Expedition Six mission commander and NASA ISS science officer, respectively, were participating in the mission’s only scheduled session of extravehicular activity (EVA).

  4. Smokey the Bear Toy floating in ISS Hatchway

    NASA Image and Video Library

    2012-08-03

    ISS032-E-011678 (3 Aug. 2012) --- Smokey Bear floats freely near a hatchway on the International Space Station. On May 15, 2012, Smokey traveled aboard the Soyuz spacecraft with NASA astronaut Joe Acaba and Russian cosmonauts Gennady Padalka and Sergei Revin to the space station. As a recognized symbol for wildland fire prevention, his presence on the orbiting complex also highlights the many areas of active space station research related to Earth observations, plant growth and combustion and materials sciences, as well as existing spinoff technologies in these areas. NASA, the U.S. Forest Service (USFS) and the Texas Forest Service are teaming up to celebrate Smokey's 68th birthday Aug. 9 at NASA's Johnson Space Center in Houston.

  5. Science Comes Alive at NASA Goddard

    NASA Image and Video Library

    2017-05-17

    Science Comes Alive at NASA Goddard: Welcome to the NASA Goddard Space Flight Center. Where innovation and science never sleep and new discoveries never get old... At NASA Goddard. For Higher Resolutions and Other Versions: https://svs.gsfc.nasa.gov/12533

  6. Microgravity Science Glovebox - Interior Lamps

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An array of miniature lamps will provide illumination to help scientists as they conduct experiments inside the Microgravity Science Glovebox (MSG). The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  7. International Space Station (ISS)

    NASA Image and Video Library

    2000-09-08

    This is the insignia for STS-98, which marks a major milestone in assembly of the International Space Station (ISS). Atlantis' crew delivered the United States Laboratory, Destiny, to the ISS. Destiny will be the centerpiece of the ISS, a weightless laboratory where expedition crews will perform unprecedented research in the life sciences, materials sciences, Earth sciences, and microgravity sciences. The laboratory is also the nerve center of the Station, performing guidance, control, power distribution, and life support functions. With Destiny's arrival, the Station will begin to fulfill its promise of returning the benefits of space research to Earth's citizens. The crew patch depicts the Space Shuttle with Destiny held high above the payload bay just before its attachment to the ISS. Red and white stripes, with a deep blue field of white stars, border the Shuttle and Destiny to symbolize the continuing contribution of the United States to the ISS. The constellation Hercules, seen just below Destiny, captures the Shuttle and Station's team efforts in bringing the promise of orbital scientific research to life. The reflection of Earth in Destiny's window emphasizes the connection between space exploration and life on Earth.

  8. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans discusses an image of Saturn's moon Daphnis with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. NASA Vision

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

  10. NASA Science Served Family Style

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Mitchell, S.; Drobnes, E.

    2010-01-01

    Family oriented innovative programs extend the reach of many traditional out-of-school venues to involve the entire family in learning in comfortable and fun environments. Research shows that parental involvement is key to increasing student achievement outcomes, and family-oriented programs have a direct impact on student performance. Because families have the greatest influence on children's attitudes towards education and career choices, we have developed a Family Science program that provides families a venue where they can explore the importance of science and technology in our daily lives by engaging in learning activities that change their perception and understanding of science. NASA Family Science Night strives to change the way that students and their families participate in science, within the program and beyond. After three years of pilot implementation and assessment, our evaluation data shows that Family Science Night participants have positive change in their attitudes and involvement in science.  Even after a single session, families are more likely to engage in external science-related activities and are increasingly excited about science in their everyday lives.  As we enter our dissemination phase, NASA Family Science Night will be compiling and releasing initial evaluation results, and providing facilitator training and online support resources. Support for NASA Family Science Nights is provided in part through NASA ROSES grant NNH06ZDA001N.

  11. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  12. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    NASA Astrophysics Data System (ADS)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  13. Psychological Support Operations and the ISS One-Year Mission

    NASA Technical Reports Server (NTRS)

    Beven, G.; Vander Ark, S. T.; Holland, A. W.

    2016-01-01

    Since NASA began human presence on the International Space Station (ISS) in November 1998, crews have spent two to seven months onboard. In March 2015 NASA and Russia embarked on a new era of ISS utilization, with two of their crewmembers conducting a one-year mission onboard ISS. The mission has been useful for both research and mission operations to better understand the human, technological, mission management and staffing challenges that may be faced on missions beyond Low Earth Orbit. The work completed during the first 42 ISS missions provided the basis for the pre-flight, in-flight and post-flight work completed by NASA's Space Medicine Operations Division, while our Russian colleagues provided valuable insights from their long-duration mission experiences with missions lasting 10-14 months, which predated the ISS era. Space Medicine's Behavioral Health and Performance Group (BHP) provided pre-flight training, evaluation, and preparation as well as in-flight psychological support for the NASA crewmember. While the BHP team collaboratively planned for this mission with the help of all ISS international partners within the Human Behavior and Performance Working Group to leverage their collective expertise, the US and Russian BHP personnel were responsible for their respective crewmembers. The presentation will summarize the lessons and experience gained within the areas identified by this Working Group as being of primary importance for a one-year mission.

  14. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  15. ISS-RapidScat

    NASA Image and Video Library

    2014-01-22

    Artist rendering of NASA ISS-RapidScat instrument inset, which will launch to the International Space Station in 2014 to measure ocean surface wind speed and direction and help improve weather forecasts, including hurricane monitoring.

  16. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door removed. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  17. Microgravity Science Glovebox - Airlock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  18. iss047e066248

    NASA Image and Video Library

    2016-04-19

    ISS047e066248 (04/19/2016) --- NASA astronaut and Expedition 47 Flight Engineer Jeff Williams works with the Wet Lab RNA SmartCycler on-board the International Space Station. Wetlab RNA SmartCycler is a research platform for conducting real-time quantitative gene expression analysis aboard the ISS. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space.

  19. ISS Asset Tracking Using SAW RFID Technology

    NASA Technical Reports Server (NTRS)

    Schellhase, Amy; Powers, Annie

    2004-01-01

    A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.

  20. KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  1. NASA Experience with UAS Science Applications

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Jennison, Chris

    2007-01-01

    Viewgraphs of NASA's Unmanned Aerial Systems (UAS) as it applies to Earth science missions is presented. The topics include: 1) Agenda; 2) Background; 3) NASA Science Aircraft Endurance; 4) Science UAS Development Challenges; 5) USCG Alaskan Maritime Surveillance; 6) NOAA/NASA UAV Demonstration Project; 7) Western States Fire Mission; 8) Esperanza Fire Emergency Response; 9) Ikhana (Predator B); 10) UAV Synthetic Aperture Radar (UAVSAR); 11) Global Hawk; and 12) Related Technologies

  2. Near Real Time Tools for ISS Plasma Science and Engineering Applications

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Willis, E. M.; Parker, L. N.; Shim, J.; Kuznetsova, M. M.; Pulkkinen, A. A.

    2013-12-01

    The International Space Station (ISS) program utilizes a plasma environment forecast for estimating electrical charging hazards for crews during extravehicular activity (EVA). The process uses ionospheric electron density and temperature measurements from the ISS Floating Potential Measurement Unit (FPMU) instrument suite with the assumption that the plasma conditions will remain constant for one to fourteen days with a low probability for a space weather event which would significantly change the environment before an EVA. FPMU data is typically not available during EVA's, therefore, the most recent FPMU data available for characterizing the state of the ionosphere during EVA is typically a day or two before the start of an EVA or after the EVA has been completed. In addition to EVA support, information on ionospheric plasma densities is often needed for support of ISS science payloads and anomaly investigations during periods when the FPMU is not operating. This presentation describes the application of space weather tools developed by MSFC using data from near real time satellite radio occultation and ground based ionosonde measurements of ionospheric electron density and a first principle ionosphere model providing electron density and temperature run in a real time mode by GSFC. These applications are used to characterize the space environment during EVA periods when FPMU data is not available, monitor for large charges in ionosphere density that could render the ionosphere forecast and plasma hazard assessment invalid, and validate the assumption of 'persistence of conditions' used in deriving the hazard forecast. In addition, the tools are used to provide space environment input to science payloads on ISS and anomaly investigations during periods the FPMU is not operating.

  3. ISS Payload Operations: The Need for and Benefit of Responsive Planning

    NASA Technical Reports Server (NTRS)

    Nahay, Ed; Boster, Mandee

    2000-01-01

    International Space Station (ISS) payload operations are controlled through implementation of a payload operations plan. This plan, which represents the defined approach to payload operations in general, can vary in terms of level of definition. The detailed plan provides the specific sequence and timing of each component of a payload's operations. Such an approach to planning was implemented in the Spacelab program. The responsive plan provides a flexible approach to payload operations through generalization. A responsive approach to planning was implemented in the NASA/Mir Phase 1 program, and was identified as a need during the Skylab program. The current approach to ISS payload operations planning and control tends toward detailed planning, rather than responsive planning. The use of detailed plans provides for the efficient use of limited resources onboard the ISS. It restricts flexibility in payload operations, which is inconsistent with the dynamic nature of the ISS science program, and it restricts crew desires for flexibility and autonomy. Also, detailed planning is manpower intensive. The development and implementation of a responsive plan provides for a more dynamic, more accommodating, and less manpower intensive approach to planning. The science program becomes more dynamic and responsive as the plan provides flexibility to accommodate real-time science accomplishments. Communications limitations and the crew desire for flexibility and autonomy in plan implementation are readily accommodated with responsive planning. Manpower efficiencies are accomplished through a reduction in requirements collection and coordination, plan development, and maintenance. Through examples and assessments, this paper identifies the need to transition from detailed to responsive plans for ISS payload operations. Examples depict specific characteristics of the plans. Assessments identify the following: the means by which responsive plans accommodate the dynamic nature of

  4. Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/Unity

    NASA Image and Video Library

    2005-04-17

    ISS011-E-05161 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, uses the ISS wet/dry vacuum cleaner assembly to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).

  5. The Cloud-Aerosol Transport System (CATS): A New Earth Science Capability for ISS (Invited)

    NASA Astrophysics Data System (ADS)

    McGill, M. J.; Yorks, J. E.; Scott, S.; Kupchock, A.; Selmer, P.

    2013-12-01

    The Cloud-Aerosol Transport System (CATS) is a lidar remote sensing instrument developed for deployment to the International Space Station (ISS). The CATS lidar will provide range-resolved profile measurements of atmospheric aerosol and cloud distributions and properties. The CATS instrument uses a high repetition rate laser operating at three wavelengths (1064, 532, and 355 nm) to derive properties of cloud/aerosol layers including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The CATS mission was designed to capitalize on the Space Station's unique orbit and facilities to continue existing Earth Science data records, to provide observational data for use in forecast models, and to demonstrate new technologies for use in future missions. The CATS payload will be installed on the Japanese Experiment Module - Exposed Facility (JEM-EF). The payload is designed to operate on-orbit for at least six months, and up to three years. The payload is completed and currently scheduled for a mid-2014 launch. The ISS and, in particular, the JEM-EF, is an exciting new platform for spaceborne Earth observations. The ability to leverage existing aircraft instrument designs coupled with the lower cost possible for ISS external attached payloads permits rapid and cost effective development of spaceborne sensors. The CATS payload is based on existing instrumentation built and operated on the high-altitude NASA ER-2 aircraft. The payload is housed in a 1.5 m x 1 m x 0.8 m volume that attaches to the JEM-EF. The allowed volume limits the maximum size for the collecting telescope to 60 cm diameter. Figure 1 shows a schematic layout of the CATS payload, with the primary instrument components identified. Figure 2 is a photo of the completed payload. CATS payload cut-away view. Completed CATS payload assembly.

  6. iss053e180280

    NASA Image and Video Library

    2017-11-12

    iss053e180280 (Nov. 12, 2017) --- The six-member Expedition 53 crew poses inside the shirt-sleeve environment of the Japanese Kibo laboratory module. In the front row (from left) are European Space Agency astronaut Paolo Nespoli, Expedition 53 Commander Randy Bresnik of NASA and cosmonaut Sergey Ryazanskiy of Roscosmos. In the back row (from left) is NASA astronaut Joe Acaba, cosmonaut Alexander Misurkin of Roscosmos and NASA astronaut Mark Vande Hei.

  7. Evaluating Bone Loss in ISS Astronauts.

    PubMed

    Sibonga, Jean D; Spector, Elisabeth R; Johnston, Smith L; Tarver, William J

    2015-12-01

    The measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) is the Medical Assessment Test used at the NASA Johnson Space Center to evaluate whether prolonged exposure to spaceflight increases the risk for premature osteoporosis in International Space Station (ISS) astronauts. The DXA scans of crewmembers' BMD during the first decade of the ISS existence showed precipitous declines in BMD for the hip and spine after the typical 6-mo missions. However, a concern exists that skeletal integrity cannot be sufficiently assessed solely by DXA measurement of BMD. Consequently, use of relatively new research technologies is being proposed to NASA for risk surveillance and to enhance long-term management of skeletal health in long-duration astronauts. Sibonga JD, Spector ER, Johnston SL, Tarver WJ. Evaluating bone loss in ISS astronauts.

  8. Expedition Seven Science Officer Lu works with IRED hardware in Node 1/Unity

    NASA Image and Video Library

    2003-06-23

    ISS007-E-08023 (23 June 2003) --- Astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer, performs maintenance on the Interim Resistive Exercise Device (IRED) Assembly in the Unity node on the International Space Station (ISS).

  9. Advanced Methodologies for NASA Science Missions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Feigelson, E.; Mentzel, C.

    2017-12-01

    Most of NASA's commitment to computational space science involves the organization and processing of Big Data from space-based satellites, and the calculations of advanced physical models based on these datasets. But considerable thought is also needed on what computations are needed. The science questions addressed by space data are so diverse and complex that traditional analysis procedures are often inadequate. The knowledge and skills of the statistician, applied mathematician, and algorithmic computer scientist must be incorporated into programs that currently emphasize engineering and physical science. NASA's culture and administrative mechanisms take full cognizance that major advances in space science are driven by improvements in instrumentation. But it is less well recognized that new instruments and science questions give rise to new challenges in the treatment of satellite data after it is telemetered to the ground. These issues might be divided into two stages: data reduction through software pipelines developed within NASA mission centers; and science analysis that is performed by hundreds of space scientists dispersed through NASA, U.S. universities, and abroad. Both stages benefit from the latest statistical and computational methods; in some cases, the science result is completely inaccessible using traditional procedures. This paper will review the current state of NASA and present example applications using modern methodologies.

  10. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    PubMed Central

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. PMID:27130692

  11. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    PubMed

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  12. Highlighting Your Science to NASA

    NASA Astrophysics Data System (ADS)

    Sharkey, C.

    2003-12-01

    An effort is underway to provide greater visibility within NASA headquarters, and to those who provide funding to NASA, of the outstanding work that is being performed by scientists involved in the Solar System Exploration Research and Analysis Programs, most of whom are DPS members. In support of this effort, a new feature has been developed for the NASA Headquarters Solar System Exploration Division web site whereby researchers can provide a synopsis of their current research results. The site (http://solarsystem.nasa.gov/spotlight/ - Username: your email address Password: sse) is an online submission area where NASA-funded scientists can upload the results of their research. There they provide their contact information, briefly describe their research, and upload any associated images or graphics. The information is available to a limited number of reviewers and writers at JPL. Each month, one researcher's work will be chosen as a science spotlight. After a writer interviews the scientist, a brief Power Point presentation that encapsulates their work will be given to Dr. Colleen Hartman at NASA headquarters. She will then present the exciting findings to Associate Administrator for Space Science, Dr. Ed Weiler. The information from some of these highlights can serve as a basis to bring Principal Investigators to NASA Headquarters for exposure to media through Space Science Updates on NASA television. In addition, the science results may also be incorporated into briefing material for the Office of Management and Budget and congressional staffers. Some spotlights will also be converted into feature stories for the Solar System Exploration website so the public, too, can learn about exciting new research. The site, http://solarsystem.nasa.gov/, is one of NASA's most visited. Over the past decade, there has been a trend of flat budgets for Research and Analysis activities. By giving more visibility to results of Solar System research, our goal is to encourage

  13. ISS020-S-001A

    NASA Image and Video Library

    2009-02-27

    ISS020-S-001A (December 2008) --- The Expedition 20 patch symbolizes a new era in space exploration with the first six-person crew living and working onboard ISS and represents the significance of the ISS to the exploration goals of NASA and its international partners. The six gold stars signify the men and women of the crew. The astronaut symbol extends from the base of the patch to the star at the top to represent the international team, both on the ground and on orbit, that are working together to further our knowledge of living and working in space. The space station in the foreground represents where we are now and the important role it is playing towards meeting our exploration goals. The knowledge and expertise developed from these advancements will enable us to once again leave low earth orbit for the new challenges of establishing a permanent presence on the moon and then on to Mars. The blue, gray and red arcs represent our exploration goals as symbols of Earth, the moon and Mars. The NASA insignia design for ISS expedition crews is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced.

  14. ISS020-S-001B

    NASA Image and Video Library

    2009-02-27

    ISS020-S-001B (December 2008) --- The Expedition 20 patch symbolizes a new era in space exploration with the first six-person crew living and working onboard ISS and represents the significance of the ISS to the exploration goals of NASA and its international partners. The six gold stars signify the men and women of the crew. The astronaut symbol extends from the base of the patch to the star at the top to represent the international team, both on the ground and on orbit, that are working together to further our knowledge of living and working in space. The space station in the foreground represents where we are now and the important role it is playing towards meeting our exploration goals. The knowledge and expertise developed from these advancements will enable us to once again leave low earth orbit for the new challenges of establishing a permanent presence on the moon and then on to Mars. The blue, gray and red arcs represent our exploration goals as symbols of Earth, the moon and Mars. The NASA insignia design for ISS expedition crews is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced.

  15. Understanding MSFC/Earth Science Office Within NASA

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2010-01-01

    This slide presentation reviews the role of the Marshal's Earth Science Office (ESO) and the relationship of the office to the NASA administration, the National Research Council and NASA's Science Directorate. The presentation also reviews the strategic goals for Earth Science, and briefly reviews the ESO's international partners that NASA is cooperating with.

  16. ISS Expedition 6 Crew Patch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    JOHNSON SPACE CENTER, HOUSTON, TEXAS -- (ISS006-S-001) Revised -- The International Space Station (ISS) Expedition 6 crew patch depicts the Station orbiting the Earth on its mission of international cooperation and scientific research. The Earth is placed in the center of the patch to emphasize that work conducted aboard this orbiting laboratory is intended to improve life on our home planet. The shape of the Space Station's orbit symbolizes the role that experience gained from ISS will have on future exploration of our solar system and behond. The American and Russian flags encircling the Earth represent the native countries of the Expedition 6 crew members, which are just two of the many participant countries contributing to the ISS and committed to the peaceful exploration of space. The NASA insignia design for International Space Station missions is reserved for use by the crew members and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced.

  17. ISS Expedition 42 / 43 Soyuz Rollout

    NASA Image and Video Library

    2014-11-26

    NASA TV (NTV) video file of ISS Expedition 42 / 43 Soyuz Spacecraft rollout on a train to the launch pad by the Baikonur Cosmodrome in Kazakhstan. Includes footage of the rollout, the rocket being raised to upright position and interviews with Astronaut Mike Fossum, ISS Assistant Director of Operations and Astronaut Sunita Williams.

  18. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Jordan, Lee P.

    2013-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers

  19. Near Real Time Tools for ISS Plasma Science and Engineering Applications

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard; Shim, Ja Soon; Kuznetsova, Maria M.; Pulkkinen, Antti, A.

    2013-01-01

    The International Space Station (ISS) program utilizes a plasma environment forecast for estimating electrical charging hazards for crews during extravehicular activity (EVA). The process uses ionospheric electron density (Ne) and temperature (Te) measurements from the ISS Floating Potential Measurement Unit (FPMU) instrument suite with the assumption that the plasma conditions will remain constant for one to fourteen days with a low probability for a space weather event which would significantly change the environment before an EVA. FPMU data is typically not available during EVA's, therefore, the most recent FPMU data available for characterizing the state of the ionosphere during EVA is typically a day or two before the start of an EVA or after the EVA has been completed. Three near real time space weather tools under development for ISS applications are described here including: (a) Ne from ground based ionosonde measurements of foF2 (b) Ne from near real time satellite radio occultation measurements of electron density profiles (c) Ne, Te from a physics based ionosphere model These applications are used to characterize the ISS space plasma environment during EVA periods when FPMU data is not available, monitor for large changes in ionosphere density that could render the ionosphere forecast and plasma hazard assessment invalid, and validate the "persistence of conditions" forecast assumption. In addition, the tools are useful for providing space environment input to science payloads on ISS and anomaly investigations during periods the FPMU is not operating.

  20. Disseminating NASA-based science through NASA's Universe of Learning: Girls STEAM Ahead

    NASA Astrophysics Data System (ADS)

    Marcucci, E.; Meinke, B. K.; Smith, D. A.; Ryer, H.; Slivinski, C.; Kenney, J.; Arcand, K.; Cominsky, L.

    2017-12-01

    The Girls STEAM Ahead with NASA (GSAWN) initiative partners the NASA's Universe of Learning (UoL) resources with public libraries to provide NASA-themed activities for girls and their families. The program expands upon the legacy program, NASA Science4Girls and Their Families, in celebration of National Women's History Month. Program resources include hands-on activities for engaging girls, such as coding experiences and use of remote telescopes, complementary exhibits, and professional development for library partner staff. The science-institute-embedded partners in NASA's UoL are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. The thematic topics related to NASA Astrophysics enable audiences to experience the full range of NASA scientific and technical disciplines and the different career skills each requires. For example, an activity may focus on understanding exoplanets, methods of their detection, and characteristics that can be determined remotely. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations (e.g. National Girls Collaborative Project or NGCP), and remote engagement of audiences. NASA's UoL collaborated with another NASA STEM Activation partner, NASA@ My Library, to announce GSAWN to their extensive STAR_Net network of libraries. This partnership between NASA SMD-funded Science learning and literacy teams has included NASA@ My Library hosting a professional development webinar featuring a GSAWN activity, a newsletter and blog post about the program, and plans for future exhibit development. This presentation will provide an overview of the program's progress to engage girls and their families through the development and dissemination of NASA-based science programming.

  1. Foale performs IFM at the science window in the U.S. Lab during Expedition 8

    NASA Image and Video Library

    2004-04-23

    ISS008-E-22271 (23 April 2004) --- Astronaut C. Michael Foale, Expedition 8 commander and NASA ISS science officer, performs in-flight maintenance (IFM) on the nadir window in the Destiny laboratory of the International Space Station (ISS).

  2. iss055e035378

    NASA Image and Video Library

    2018-04-27

    iss055e035378 (April 27, 2018) --- NASA astronauts Drew Feustel (left) and Scott Tingle play guitar inside the Destiny laboratory module during an educational event with school districts in Aransas Pass, Texas.

  3. iss028e035566

    NASA Image and Video Library

    2011-08-31

    ISS028-E-035566 (31 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.

  4. iss028e035603

    NASA Image and Video Library

    2011-08-31

    ISS028-E-035603 (31 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.

  5. iss028e035301

    NASA Image and Video Library

    2011-08-31

    ISS028-E-035301 (31 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, works with Muscle Atrophy Research & Exercise System (MARES) hardware in the Columbus laboratory of the International Space Station.

  6. Expedition 24 Docks to ISS

    NASA Image and Video Library

    2010-06-17

    William Gerstenmaier, second from right, NASA Associate Administrator for Space Operations, speaks to the crew of Expedition 24 shortly after their arrival to the International Space Station (ISS) aboard their Soyuz TMA-19 on Friday, June 18, 2010 at Russian Mission Control in Korolev, Russia. Photo Credit: (NASA/Carla Cioffi)

  7. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi L.; Gallagher, D. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. Science stories cover a variety of space-related subjects and are expressed in simple terms everyone can understand. The sites address such questions as: what is space weather, what's in the heart of a hurricane, can humans live on Mars, and what is it like to live aboard the International Space Station? Along with a new look, the new format now offers articles organized by subject matter, such as astronomy, living in space, earth science or biology. The focus of sharing real-time science related events has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases broadcasts accommodate active feedback and questions from Internet participants. Information will be provided about each member of the Science@NASA web sites.

  8. Connecting NASA science and engineering with earth science applications

    USDA-ARS?s Scientific Manuscript database

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  9. NASA/MSFC/NSSTC Science Communication Roundtable

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Gallagher, D. L.; Koczor, R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Science Directorate at Marshall Space Flight Center (MSFC) conducts a diverse program of Internet-based science communication through a Science Roundtable process. The Roundtable includes active researchers, writers, NASA public relations staff, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news to inform, involve, and inspire students and the public about science. We describe here the process of producing stories, results from research to understand the science communication process, and we highlight each member of our Web family.

  10. Analyzing an Aging ISS

    NASA Technical Reports Server (NTRS)

    Scharf, R.

    2014-01-01

    The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.

  11. The International Space Station: A National Science Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2011-01-01

    After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.

  12. Ground based ISS payload microgravity disturbance assessments.

    PubMed

    McNelis, Anne M; Heese, John A; Samorezov, Sergey; Moss, Larry A; Just, Marcus L

    2005-01-01

    In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification. Published by Elsevier Ltd.

  13. FEANICS: A Multi-User Facility For Conducting Solid Fuel Combustion Experiments On ISS

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Tofil, Todd A.

    2001-01-01

    The Destiny Module on the International Space Station (ISS) will soon be home for the Fluids and Combustion Facility's (FCF) Combustion Integrated Rack (CIR), which is being developed at the NASA Glenn Research Center in Cleveland, Ohio. The CIR will be the platform for future microgravity combustion experiments. A multi-user mini-facility called FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) will also be built at NASA Glenn. This mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct basic and applied scientific investigations in fire-safety to support NASA's Bioastronautics Initiative. The FEANICS project team will work in conjunction with the CIR project team to develop upgradeable and reusable hardware to meet the science requirements of current and future investigators. Currently, there are six experiments that are candidates to use the FEANICS mini-facility. This paper will describe the capabilities of this mini-facility and the type of solid combustion testing and diagnostics that can be performed.

  14. Coarsening in Solid-Liquid Mixtures-2: A Materials Science Experiment for the ISS

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Voorhees, Peter W.; Kwon, Yongwoo; Lorik, Tibor

    2004-01-01

    A materials science experiment has been developed and readied for operation aboard the International Space Station (ISS). Components of this experiment are onboard ISS and area awaiting the flight of science samples. The goal of the experiment is to understand the dynamics of Ostwald ripening, also known as coarsening, a process that occurs in nearly any two-phase mixture found in nature. Attempts to obtain experimental data in ground-based laboratories are hindered due to the presence of gravity, which introduces material transport modes other than that of the coarsening phenomenon. This introduces adjustable parameters in the formulation of theory. The original Coarsening in Solid-Liquid Mixtures (CSLM) mission, which flew on the Space Shuttle in 1997, produced data from a coarsened eutectic alloy. Unfortunately, both the science matrix and the hardware, while nominally functional, did not account adequately for operations in microgravity. A significantly redesigned follow-on experiment, CSLM-2 has been developed to redress the inadequacies of the original experiment. This paper reviews the CSLM-2 project: its history, science goals, flight hardware implementation, and planned operations and analysis

  15. Microgravity Science Glovebox - Working Volume

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Access ports, one on each side of the Microgravity Science Glovebox (MSG), will allow scientists to place large experiment items inside the MSG. The ports also provide additional glove ports (silver disk) for greater access to the interior. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC

  16. iss031e149757

    NASA Image and Video Library

    2012-06-28

    ISS031-E-149757 (28 June 2012) --- NASA astronaut Joe Acaba, Expedition 31 flight engineer, uses a computer while working with extravehicular activity (EVA) tools in the Quest airlock of the International Space Station.

  17. International Space Station Research and Facilities for Life Sciences

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  18. Capabilities, Calibration, and Impact of the ISS-RAD Fast Neutron Detector

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin

    2015-01-01

    In the current NASA crew radiation health risk assessment framework, estimates for the neutron contributions to crew radiation exposure largely rely on simulated data with sizeable uncertainties due to the lack of experimental measurements inside the ISS. Integrated in the ISS-RAD instrument, the ISS-RAD Fast Neutron Detector (FND) will deploy to the ISS on one of the next cargo supply missions. Together with the ISS-RAD Charged Particle Detector, the FND will perform, for the first time, routine and precise direct neutron measurements inside the ISS between 0.5 and 80 MeV. The measurements will close the NASA Medical Operations Requirement to monitor neutrons inside the ISS and impact crew radiation health risk assessments by reducing uncertainties on the neutron contribution to crew exposure, enabling more efficient mission planning. The presentation will focus on the FND detection mechanism, calibration results and expectations about the FND's interaction with the mixed radiation field inside the ISS.

  19. NASA Earthdata Webinar: Improving Accessibility and Use of NASA Earth Science Data

    Atmospheric Science Data Center

    2015-05-08

    ... Webinar: Improving Accessibility and Use of NASA Earth Science Data Friday, May 8, 2015 Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) ...

  20. Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/ Unity

    NASA Image and Video Library

    2005-04-17

    ISS011-E-05163 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, poses for a photo with the ISS wet/dry vacuum cleaner assembly he used to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).

  1. Expanding NASA Science Cooperation with New Partners

    NASA Astrophysics Data System (ADS)

    Allen, Marc; Bress, Kent

    Expanding NASA Science Cooperation with New Partners When NASA was created in 1958, it was given a goal of "cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results." As science has become increasingly globalized during the past 50 years, NASA and its many partners in space and Earth science research have benefited enormously from pooling ideas, skills, and resources for joint undertakings. The discoveries made have powerfully advanced public awareness of science and its importance all over the world. Today, the U.S. Administra-tion is encouraging NASA to expand its cooperation with new and emerging partners. NASA space and Earth science cooperation is founded on scientist-to-scientist research collaboration. Space missions are very costly and technically challenging, but there are many other important areas for international cooperation. Areas ripe for expansion with new partners include space data sharing, scientist-to-scientist collaborative research, international research program plan-ning and coordination, Earth applications for societal benefit, ground-based measurements for Earth system science, and education and public outreach. This presentation lays out NASA's general principles for international science cooperation, briefly describes each of these opportu-nity areas, and suggests avenues for initiating new cooperative relationships.

  2. 76 FR 31641 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-050] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  3. 76 FR 58303 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-081)] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  4. 78 FR 77719 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-156] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  5. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  6. Balanced Expertise Distribution in Remote Ultrasound Imaging Aboard The International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot; Dulchavsky, Scott; Hamilton, Douglas; Melton, Shannon; Martin, David

    2004-01-01

    Astronaut training for ISS operations usually ensures independent performance. With small crew size same crews also conduct all science work onboard. With diverse backgrounds, a good "match" between the existing and required skills can only be anecdotal. Furthermore, full proficiency in most of the complex tasks can be attained only through long training and practice, which may not be justified and may be impossible given the scarcity of training time. To enable a number of operational and science advancements, authors have developed a new approach to expertise distribution in time and among the space and ground personnel. Methods: As part of NASA Operational Ultrasound Project (1998-2003) and the NASA-solicited experiment "Advanced Diagnostic Ultrasound in Microgravity-ADUM" (P.I. -S.D., ongoing), the authors have created a "Balanced Expertise Distribution" approach to perform complex ultrasound imaging tasks on ISS for both operational and science use. The four components of expertise are a) any pre-existing pertinent expertise; b) limited preflight training c) adaptive onboard proficiency enhancement tools; d) real-time ' guidance from the ground. Throughout the pre-flight training and flight time preceding the experiments, the four components are shaped in a dynamic fashion to meet in an optimum combination during the experiment sessions. Results: Procedure validation sessions and feasibility studies have given encouraging results. While several successful real-time remote guidance sessions have been conducted on ISS, Expedition 8 is the first to use an "on-orbit proficiency enhancement" tool. Conclusions: In spite of severely limited training time, daring peer-reviewed research and operational enhancements are feasible through a balanced distribution of expertise in time, as well as among the crewmembers and ground personnel. This approach shows great promise for biomedical research, but may be applicable for other areas of micro gravity-based science

  7. iss031e143936

    NASA Image and Video Library

    2012-06-24

    ISS031-E-143936 (24 June 2012) --- NASA astronaut Joe Acaba, Expedition 31 flight engineer, watches a water bubble float freely between him and the camera, showing his image refracted, on the International Space Station.

  8. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Frederick, Martin

    2006-01-01

    This presentation highlights the NASA Applied Sciences Program. The goal of the program is to extend the results of scientific research and knowledge beyond the science community to contribute to NASA's partners' applications of national priority, such as agricultural efficiency, energy management and Homeland Security. Another purpose of the program's scientific research is to increase knowledge of the Earth-Sun system to enable improved predictions of climate, weather, and natural hazards. The program primarily optimizes benefits for citizens by contributing to partnering on applications that are used by state, local and tribal governments.

  9. ISS Logistics Hardware Disposition and Metrics Validation

    NASA Technical Reports Server (NTRS)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  10. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2006-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  11. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thumm, Tracy L.; Thomas, Donald A.

    2007-01-01

    In response to the U.S. President s Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  12. NASA Utilization of the International Space Station and the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Thomas, Donald A.; Thumm, Tracy L.

    2006-01-01

    In response to the U.S. President's Vision for Space Exploration (January 14, 2004), NASA has revised its utilization plans for ISS to focus on (1) research on astronaut health and the development of countermeasures that will protect our crews from the space environment during long duration voyages, (2) ISS as a test bed for research and technology developments that will insure vehicle systems and operational practices are ready for future exploration missions, (3) developing and validating operational practices and procedures for long-duration space missions. In addition, NASA will continue a small amount of fundamental research in life and microgravity sciences. There have been significant research accomplishments that are important for achieving the Exploration Vision. Some of these have been formal research payloads, while others have come from research based on the operation of International Space Station (ISS). We will review a selection of these experiments and results, as well as outline some of ongoing and upcoming research. The ISS represents the only microgravity opportunity to perform on-orbit long-duration studies of human health and performance and technologies relevant for future long-duration missions planned during the next 25 years. Even as NASA focuses on developing the Orion spacecraft and return to the moon (2015-2020), research on and operation of the ISS is fundamental to the success of NASA s Exploration Vision.

  13. iss055e018690

    NASA Image and Video Library

    2018-04-11

    iss055e018690 (April 11, 2018) --- NASA astronaut Scott Tingle prepares video equipment for a series of education videos being recorded for the STEMonstration campaign which demonstrates scientific concepts in space for students and teachers.

  14. iss028e036517

    NASA Image and Video Library

    2011-09-02

    ISS028-E-036517 (2 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, conducts a session with the Binary Colloidal Alloy Test-5 (BCAT-5) in the Kibo laboratory of the International Space Station.

  15. iss028e036580

    NASA Image and Video Library

    2011-09-02

    ISS028-E-036580 (2 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, conducts a session with the Binary Colloidal Alloy Test-5 (BCAT-5) in the Kibo laboratory of the International Space Station.

  16. iss028e034978

    NASA Image and Video Library

    2011-08-30

    ISS028-E-034978 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  17. iss028e034993

    NASA Image and Video Library

    2011-08-30

    ISS028-E-034993 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  18. iss028e034980

    NASA Image and Video Library

    2011-08-30

    ISS028-E-034980 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  19. iss028e035002

    NASA Image and Video Library

    2011-08-30

    ISS028-E-035002 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  20. iss028e034984

    NASA Image and Video Library

    2011-08-30

    ISS028-E-034984 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  1. iss028e034992

    NASA Image and Video Library

    2011-08-30

    ISS028-E-034992 (30 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, performs in-flight maintenance on the Muscle Atrophy Research & Exercise System (MARES) in the Columbus laboratory of the International Space Station.

  2. iss028e026402

    NASA Image and Video Library

    2011-08-17

    ISS028-E-026402 (17 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, works with the Combustion Integrated Rack (CIR) Fluids and Combustion Facility (FCF) in the Destiny laboratory of the International Space Station.

  3. iss028e026400

    NASA Image and Video Library

    2011-08-17

    ISS028-E-026400 (17 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, works with the Combustion Integrated Rack (CIR) Fluids and Combustion Facility (FCF) in the Destiny laboratory of the International Space Station.

  4. iss051e029147

    NASA Image and Video Library

    2017-04-29

    iss051e029147 (4/29/2017) --- Russian Cosmonaut Fyodor Yurchikhin prepares to eat some of the Chinese cabbage that was grown in the Veggie Plant Growth facility as part of the Veg-03 investigation. Credits: NASA

  5. iss047e135573

    NASA Image and Video Library

    2016-05-28

    ISS047e135573 (05/28/2016) --- Expedition 47 astronauts Jeff Williams (left) and Timothy Kopra (middle) of NASA, along with ESA (European Space Agency) astronaut Timothy Peake (right) pose in front of the entrance to the Bigelow Expandable Activity Module (BEAM) after successful expansion. NASA Astronaut Jeff Williams and the NASA and Bigelow Aerospace teams working at Mission Control Center at NASA’s Johnson Space Center spent more than seven hours on operations to fill the BEAM with air to cause it to expand.

  6. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  7. Expedition 19 Docks to ISS

    NASA Image and Video Library

    2009-03-27

    Mike Hawes, NASA's Acting Associate Administrator, left, looks on as Kirk Shireman, NASA's deputy ISS program manager, answers reporters questions during a Soyuz post-docking press conference at the Russian Mission Control Center in Korolev, Russia on Saturday March 28, 2009. The Soyuz TMA-14 docked to the International Space Station carrying Expedition 19 Commander Gennady I. Padalka, Flight Engineer Michael R. Barratt and Spaceflight Participant Charles Simonyi. Photo Credit: (NASA/Bill Ingalls)

  8. 76 FR 7235 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [11-013] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  9. iss042e237320

    NASA Image and Video Library

    2015-02-09

    ISS042E237320 (02/09/2015) ---A weather observation image taken from the International Space Station tweeted out to social media fans by NASA astronaut Terry Virts. He added this comment: "Enormous #thunderstorm over the jungles of #Africa".

  10. NASA Science Data Processing for SNPP

    NASA Astrophysics Data System (ADS)

    Hall, A.; Behnke, J.; Lowe, D. R.; Ho, E. L.

    2014-12-01

    NASA's ESDIS Project has been operating the Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. The science data processing system includes a Science Data Depository and Distribution Element (SD3E) and five Product Evaluation and Analysis Tool Elements (PEATEs): Land, Ocean, Atmosphere, Ozone, and Sounder. The SDS has been responsible for assessing Environmental Data Records (EDRs) for climate quality, providing and demonstrating algorithm improvements/enhancements and supporting the calibration/validation activities as well as instrument calibration and sensor table uploads for mission planning. The SNPP also flies two NASA instruments: OMPS Limb and CERES. The SNPP SDS has been responsible for producing, archiving and distributing the standard products for those instruments in close association with their NASA science teams. The PEATEs leveraged existing science data processing techniques developed under the EOSDIS Program. This enabled he PEATEs to do an excellent job in supporting Science Team analysis for SNPP. The SDS acquires data from three sources: NESDIS IDPS (Raw Data Records (RDRs)), GRAVITE (Retained Intermediate Products (RIPs)), and the NOAA/CLASS (higher level products). The SD3E component aggregates the RDRs, and distributes them to each of the PEATEs for further analysis and processing. It provides a ~32 day rolling storage of data, available for pickup by the PEATEs. The current system used by NASA will be presented along with plans for streamlining the system in support of continuing the NASA's EOS measurements.

  11. 75 FR 50783 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-088)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  12. 76 FR 75914 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-117)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  13. 75 FR 36445 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-069)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  14. 76 FR 64387 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-098] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  15. 76 FR 62456 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-089] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  16. 78 FR 64024 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-122)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  17. 77 FR 4837 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-007)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  18. 76 FR 10626 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-019)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  19. 78 FR 15378 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-022)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  20. 78 FR 56246 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-113] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  1. 77 FR 53919 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-071] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  2. 75 FR 80851 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-169)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  3. 77 FR 22807 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-029] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  4. iss035-s-001

    NASA Image and Video Library

    2011-04-13

    ISS035-S-001 (April 2011) --- Emblazoned with a bold 35 for the 35th expedition to the International Space Station (ISS), this patch portrays a natural moonlit view of the Earth from the ISS at the moment of sunrise, one of the sixteen that occur each day at orbital velocity, with glowing bands of Earth's atmosphere dispersing the sun's bright light into primary colors. The Earth is depicted as it often appears from space, without recognizable coastlines or boundaries - just as the international endeavor of living and working together in space blurs technical and cultural boundaries between nations. The ISS is the unseen central figure of the image, since the view is from a window of the Space Station itself, commemorating full use of the Space Station as a long-duration dwelling from which humans can develop techniques and technologies to further explore. The crew points out, ?The arc of the Earth?s horizon with the sun?s arrows of light imply a bow shooting the imagination to Mars and the cosmos where our species may one day thrive.? The NASA insignia design for shuttle and space station flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced.

  5. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  6. The Planning of New Japanese Facilities for Life Science in ISS

    NASA Astrophysics Data System (ADS)

    Ohnishi, Takeo; Hoson, Takayuki

    Though basic rules and mechanisms of life have been rapidly advanced, in recent years, the most sciences are limited under earth environment. To clarify the universality and the real nature of life, it is necessary to perform the space experiments. We, Japanese Society for Biological Sciences in Space, schedule new five types of up-to-date facilities required for the forefront research in the Kibo Module for utilization during 2015-2020. The project was proposed to the Council of Japan and the utilization Committee of Space Environment Science. We aim (1) further high quality science, (2) widely utilization for various requirements among Japan and foreign scientists. The schedules are 2015-2016, manufacture of them and suitability for space experiments and safety tests; 2016-2018, settlement of the new facilities to ISS; 2018-2023, space experiments. At now stage, we are unable to use space shuttles any more. It is difficult to get the biological samples to the spot of launch. Tests of vibration and shock during launch and landing are required. We recommend the down-road of experimental results from ISS. Now, we schedule new facilities: (1) Plant culture system; culture of various kinds of plants for the cell cycle and the next generation, and space agriculture for long stay in space. (2) Whole-body animal culture system; fertilization, growth, development, movement, life keeping in closed environment and health life in space by many kinds of analysis. (3) Localization and movement of cellular components; gene expression, proteins, chromosome and organelles in the cell with a real time analysis. (4) Collection of biological samples from space and total analysis system; (a) settlement of samples in ISS, space experiments and analysis in space, (b) the collection the samples after space experiments. (5) Exposure area at ISS platform; biological effect and fine physical dosimetry of solar radiations and space radiations under various filters among different radiation

  7. NASA's Coordinated Efforts to Enhance STEM Education: Bringing NASA Science into the Library

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Thomas, C.; Eyermann, S.; Mitchell, S.; LaConte, K.; Hauck, K.

    2015-11-01

    Libraries are community-centered, free-access venues serving learners of all ages and backgrounds. Libraries also recognize the importance of science literacy and strive to include science in their programming portfolio. Scientists and educators can partner with local libraries to advance mutual goals of connecting the public to Earth and Space Science. In this interactive Special Interest Group (SIG) discussion, representatives from the NASA Science Mission Directorate (SMD) Education and Public Outreach (EPO) community's library collaborations discussed the opportunities for partnership with public and school libraries; explored the resources, events, and programs available through libraries; explored NASA science programming and professional development opportunities available for librarians; and strategized about the types of support that librarians require to plan and implement programs that use NASA data and resources. We also shared successes, lessons learned, and future opportunities for incorporating NASA science programming into library settings.

  8. iss047e133469

    NASA Image and Video Library

    2016-05-25

    ISS047e133469 (05/25/2016) --- ESA (European Space Agency) astronaut Tim Peak (left) and NASA Astronaut Jeff Williams (right) prepare the Bigelow Expandable Activity Module (BEAM) for expansion. The pair were outfitting the area known as the vestibule, which is the space between the hatch on BEAM and hatch on Tranquility. NASA Astronaut Jeff Williams and the NASA and Bigelow Aerospace teams working at Mission Control Center at NASA’s Johnson Space Center spent more than seven hours on operations to fill the BEAM with air to cause it to expand.

  9. 78 FR 39341 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-070] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This [[Page 39342

  10. Medipix in space on-board the ISS

    PubMed Central

    Pinsky, Lawrence S.; Idarraga-Munoz, J.; Kroupa, M.; Son, H.M.; Stoffle, N.N.; Semones, E.J.; Bahadori, A.A.; Turecek, D.; Pospíšil, S.; Jakubek, J.; Vykydal, Z.; Kitamura, H.; Uchihori, Y.

    2014-01-01

    On 16 October 2012, five active radiation detectors (referred to by NASA as Radiation Environment Monitors, or REMs) employing the Timepix version of the technology developed by the CERN-based Medipix2 Collaboration were deployed on-board the International Space Station (ISS) using simple USB interfaces to the existing ISS laptops for power, control and readout [ 1– 3]. These devices successfully demonstrated the capabilities of this technology by providing reliable dose and dose-equivalent information based on a track-by-track analysis. Figure 1 shows a sample comparison of the output from all five devices with respect to the on-board tissue equivalent proportional counter (TEPC) for both absorbed dose (top) and dose-equivalent (bottom) as defined in NCRP 142. The lower graph in each set is the TEPC. Several issues were identified and solutions to adjust for them have been included in the analysis. These include items such as the need to identify nuclear interactions in the silicon sensor layer, and to separate penetrating from stopping tracks. The wide effective range in fluence and particle type of this technology was also verified through the highest rates seen during the South Atlantic Anomaly passes and the heavy ions nominally seen in the Galactic Cosmic Rays. Corrections for detector response saturation effects were also successfully implemented as verified by reference to ground-based accelerator data taken at the Heavy-Ion Medical Accelerator Center (HIMAC) facility at the National Institute for Radiological Sciences in Japan, and at the NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory in New York. Flight hardware has been produced that will be flown on the first launch of the new Orion spacecraft, and flight hardware development is ongoing to accommodate the next generation of this technology as a baseline for radiation monitoring and dosimetry on future operational manned missions. Fig 1.Five ISS REM units compared with ISS

  11. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  12. NASA Space Biology Plant Research for 2010-2020

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Tomko, D. L.; Porterfield, D. M.

    2012-01-01

    The U.S. National Research Council (NRC) recently published "Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era" (http://www.nap.edu/catalog.php?record id=13048), and NASA completed a Space Biology Science Plan to develop a strategy for implementing its recommendations ( http://www.nasa.gov/exploration/library/esmd documents.html). The most important recommendations of the NRC report on plant biology in space were that NASA should: (1) investigate the roles of microbial-plant systems in long-term bioregenerative life support systems, and (2) establish a robust spaceflight program of research analyzing plant growth and physiological responses to the multiple stimuli encountered in spaceflight environments. These efforts should take advantage of recently emerged analytical technologies (genomics, transcriptomics, proteomics, metabolomics) and apply modern cellular and molecular approaches in the development of a vigorous flight-based and ground-based research program. This talk will describe NASA's strategy and plans for implementing these NRC Plant Space Biology recommendations. New research capabilities for Plant Biology, optimized by providing state-of-the-art automated technology and analytical techniques to maximize scientific return, will be described. Flight experiments will use the most appropriate platform to achieve science results (e.g., ISS, free flyers, sub-orbital flights) and NASA will work closely with its international partners and other U.S. agencies to achieve its objectives. One of NASA's highest priorities in Space Biology is the development research capabilities for use on the International Space Station and other flight platforms for studying multiple generations of large plants. NASA will issue recurring NASA Research Announcements (NRAs) that include a rapid turn-around model to more fully engage the biology community in designing experiments to respond to the NRC recommendations. In doing so, NASA

  13. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  14. Basic and Applied Materials Science Research Efforts at MSFC Germane to NASA Goals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Presently, a number of investigations are ongoing that blend basic research with engineering applications in support of NASA goals. These include (1) "Pore Formation and Mobility (PFMI) " An ISS Glovebox Investigation" NASA Selected Project - 400-34-3D; (2) "Interactions Between Rotating Bodies" Center Director's Discretionary Fund (CDDF) Project - 279-62-00-16; (3) "Molybdenum - Rhenium (Mo-Re) Alloys for Nuclear Fuel Containment" TD Collaboration - 800-11-02; (4) "Fabrication of Alumina - Metal Composites for Propulsion Components" ED Collaboration - 090-50-10; (5) "Radiation Shielding for Deep-Space Missions" SD Effort; (6) "Other Research". In brief, "Pore Formation and Mobility" is an experiment to be conducted in the ISS Microgravity Science Glovebox that will systematically investigate the development, movement, and interactions of bubbles (porosity) during the controlled directional solidification of a transparent material. In addition to promoting our general knowledge of porosity physics, this work will serve as a guide to future ISS experiments utilizing metal alloys. "Interactions Between Rotating Bodies" is a CDDF sponsored project that is critically examining, through theory and experiment, claims of "new" physics relating to gravity modification and electric field effects. "Molybdenum - Rhenium Alloys for Nuclear Fuel Containment" is a TD collaboration in support of nuclear propulsion. Mo-Re alloys are being evaluated and developed for nuclear fuel containment. "Fabrication of Alumina - Metal Composites for Propulsion Components" is an ED collaboration with the intent of increasing strength and decreasing weight of metal engine components through the incorporation of nanometer-sized alumina fibers. "Radiation Shielding for Deep-Space Missions" is an SD effort aimed at minimizing the health risk from radiation to human space voyagers; work to date has been primarily programmatic but experiments to develop hydrogen-rich materials for shielding are

  15. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science

    NASA Astrophysics Data System (ADS)

    Leidner, A. K.

    2014-12-01

    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  16. 75 FR 8997 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-021)] NASA Advisory Council; Science...: Notice of meeting. SUMMARY: The National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to...

  17. 76 FR 69292 - NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-113] NASA Advisory Council Science..., Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces that the meeting of the Planetary Science Subcommittee of the NASA Advisory Council originally scheduled...

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-20

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after separating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistic Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  19. iss048e026760

    NASA Image and Video Library

    2016-07-16

    ISS048e026760 (07/16/2016) --- NASA astronaut Jeff Williams (right) gets a haircut aboard the International Space Station from Russian cosmonaut Anatoly Ivanishin (left.) The electric razor includes a vacuum hose to keep the tiny hair follicles from floating away

  20. iss028e035028

    NASA Image and Video Library

    2011-08-27

    ISS028-E-035028 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims astronaut Ron Garan's hair in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  1. iss028e035053

    NASA Image and Video Library

    2011-08-27

    ISS028-E-035053 (27 Aug. 2011) --- NASA astronaut Ron Garan, Expedition 28 flight engineer, trims astronaut Mike Fossum's hair in the Tranquility node of the International Space Station. Garan used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  2. iss047e012492

    NASA Image and Video Library

    2016-03-21

    ISS047e012492 (03/21/2016) --- NASA astronaut Tim Kopra stows hardware from the OASIS experiment aboard the International Space Station. OASIS, which stands for Observation and Analysis of Smectic Islands In Space, studies the unique behavior of liquid crystals in microgravity.

  3. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  4. New Developments in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    NASA Technical Reports Server (NTRS)

    Shirazi, Yasaman; Choi, S.; Harris, C.; Gong, C.; Fisher, R. J.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. K.

    2017-01-01

    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASA's life sciences research to perform long duration, rodent experiments on the International Space Station (ISS) to study effects of the space environment on the musculoskeletal and neurological systems of mice as model organisms of human health and disease, particularly in areas of muscle atrophy, bone loss, and fracture healing. To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research Project at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. The Rodent Research Habitat provides a living environment for animals on ISS according to standard animal welfare requirements, and daily health checks can be performed using the habitats camera system. Results from these studies contribute to the science community via both the primary investigation and banked samples that are shared in publicly available data repository such as GeneLab. Following each flight, through the Biospecimen Sharing Program (BSP), numerous tissues and thousands of samples will be harvested, and distributed from the Space Life and Physical Sciences (SLPS) to Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). Every completed mission sets a foundation to build and design greater complexity into future research and answer questions about

  5. 75 FR 2892 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-001)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  6. 75 FR 12310 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-026)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  7. 77 FR 68152 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-086)] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee.... Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202) 358-4452, fax...

  8. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  9. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  10. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  11. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  12. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  13. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  14. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  15. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  16. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  17. NASA HUNCH Hardware

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Wagner, James; Phelps, Amanda

    2014-01-01

    What is NASA HUNCH? High School Students United with NASA to Create Hardware-HUNCH is an instructional partnership between NASA and educational institutions. This partnership benefits both NASA and students. NASA receives cost-effective hardware and soft goods, while students receive real-world hands-on experiences. The 2014-2015 was the 12th year of the HUNCH Program. NASA Glenn Research Center joined the program that already included the NASA Johnson Space Flight Center, Marshall Space Flight Center, Langley Research Center and Goddard Space Flight Center. The program included 76 schools in 24 states and NASA Glenn worked with the following five schools in the HUNCH Build to Print Hardware Program: Medina Career Center, Medina, OH; Cattaraugus Allegheny-BOCES, Olean, NY; Orleans Niagara-BOCES, Medina, NY; Apollo Career Center, Lima, OH; Romeo Engineering and Tech Center, Washington, MI. The schools built various parts of an International Space Station (ISS) middeck stowage locker and learned about manufacturing process and how best to build these components to NASA specifications. For the 2015-2016 school year the schools will be part of a larger group of schools building flight hardware consisting of 20 ISS middeck stowage lockers for the ISS Program. The HUNCH Program consists of: Build to Print Hardware; Build to Print Soft Goods; Design and Prototyping; Culinary Challenge; Implementation: Web Page and Video Production.

  18. iss028e050058

    NASA Image and Video Library

    2011-09-15

    ISS028-E-050058 (15 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, inspects a new growth experiment on the BIO-5 Rasteniya-2 (Plants-2) payload with its LADA-01 greenhouse in the Zvezda Service Module of the International Space Station.

  19. Department of Education ISS Link

    NASA Image and Video Library

    2009-11-05

    NASA Administrator Charles F. Bolden, center, stands with two unidentified students as he performs a demonstration to illustrate how far the International Space Station is from the Earth in comparison with the Moon, during an event where students spoke via downlink to astronauts on the ISS, Thursday, Nov. 5, 2009, at the U.S. Department of Education in Washington. Photo Credit: (NASA/Paul E. Alers)

  20. iss045e152270

    NASA Image and Video Library

    2015-12-01

    ISS045e152270 (12/01/2015) --- NASA astronaut Kjell Lindgren takes images of the Earth on board the International Space Station on Dec. 1, 2015 from the Cupola, the 360 degree viewing and robotic Canadarm 2 control area. Later this area will be used by Lindgren and NASA astronaut Scott Kelly to use the station’s Canadarm 2 robotic arm to reach out and grapple the Orbital ATK CRS-4 "Cygnus" spaceship full of equipment and supplies.

  1. 76 FR 41824 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-068)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2011, 7:30 a.m. to 11:30 a.m., Local Time. ADDRESSES: NASA Ames Research Center, NASA Ames Conference...

  2. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA exhibits line Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  3. iss042e300570

    NASA Image and Video Library

    2015-03-04

    ISS042E300570 (03/04/2015) --- NASA Astronaut Terry Virts on the International Space Station tweeted this sunny day Caribbean image out to his social media fans on Mar. 4, 2015 with this attached comment: "#Cuba is surrounded by some unbelievable beaches and blue-green waters".

  4. iss055e016074

    NASA Image and Video Library

    2018-04-06

    iss055e016074 (April 6, 2018) --- Expedition 55 Flight Engineer Drew Feustel of NASA is inside the Japanese Kibo laboratory module talking to dignitaries on Earth, including university officials, musicians and scientists, during an educational event that took place at Queen's University in Kingston, Ontario.

  5. iss047e111084

    NASA Image and Video Library

    2016-05-10

    ISS047e111084 (05/10/2016) --- NASA astronaut Tim Kopra poses inside the cupola module onboard the International Space Station. Kopra, who was born in Austin, Texas, is the commander of Expedition 47 and previously served as a flight engineer during Expeditions 46 and 20.

  6. Progress of Crew Autonomous Scheduling Test (CAST) On the ISS

    NASA Technical Reports Server (NTRS)

    Healy, Matthew; Marquez, Jessica; Hillenius, Steven; Korth, David; Bakalyar, Lauren Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke; hide

    2017-01-01

    The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This presentation shows the progress done in this study with a single astronaut test subject participating in five CAST sessions. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers.

  7. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA exhibits under white tents line Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  8. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    Signage points the way to NASA exhibits at the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  9. 78 FR 41115 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-074] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory... Time. ADDRESSES: NASA Headquarters, Room 7H45, 300 E Street SW., Washington, DC 20546. FOR FURTHER...

  10. NASA SMD STEM Activation: Enabling NASA Science Experts and Content into the Learning Environment

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Erickson, Kristen

    2018-01-01

    The NASA Science Mission Directorate (SMD) restructured its efforts to enhance learning in science, technology, engineering, and mathematics (STEM) content areas through a cooperative agreement notice issued in 2015. This effort resulted in the competitive selection of 27 organizations to implement a strategic approach that leverages SMD’s unique assets. Three of these are exclusively directed towards Astrophysics. These unique assets include SMD’s science and engineering content and Science Discipline Subject Matter Experts. Awardees began their work during 2016 and span all areas of Earth and space science and the audiences NASA SMD intends to reach. The goal of the restructured STEM Activation program is to further enable NASA science experts and content into the learning environment more effectively and efficiently with learners of all ages. The objectives are to enable STEM education, improve US scientific literacy, advance national educational goals, and leverage efforts through partnerships. This presentation will provide an overview of the NASA SMD STEM Activation landscape and its commitment to meeting user needs.

  11. NASA Space Science Resource Catalog

    NASA Astrophysics Data System (ADS)

    Teays, T.

    2000-05-01

    The NASA Office of Space Science Resource Catalog provides a convenient online interface for finding space science products for use in classrooms, science museums, planetariums, and many other venues. Goals in developing this catalog are: (1) create a cataloging system for all NASA OSS education products, (2) develop a system for characterizing education products which is meaningful to a large clientele, (3) develop a mechanism for evaluating products, (4) provide a user-friendly interface to search and access the data, and (5) provide standardized metadata and interfaces to other cataloging and library systems. The first version of the catalog is being tested at the spring 2000 conventions of the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM) and will be released in summer 2000. The catalog may be viewed at the Origins Education Forum booth.

  12. Communicating the Science from NASA's Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  13. iss038e053780

    NASA Image and Video Library

    2014-02-18

    ISS038-E-053780 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a Microbial Air Sampler to collect air samples in the Unity node of the International Space Station. These air samples will be incubated for five days and tested for signs of microbial contamination.

  14. iss042e135486

    NASA Image and Video Library

    2015-01-10

    ISS042E135486 (01/10/2015) --- Just another sunny day in the Caribbean sea as viewed by astronauts aboard the International Space Station. This image was tweeted out by NASA astronaut Terry Virts as he captured the Earth observation of #Cuba and #Bahamas on Jan. 10, 2015.

  15. iss042e243192

    NASA Image and Video Library

    2015-02-11

    ISS042E243192 (02/11/2015) --- This huge Desert in northern Africa is an image tweeted by NASA astronaut Terry Virts on Feb. 11, 2015 from the International Space Station. He wanted to share with his Twitter fans the enormous size of the " Murzuq Desert #Libya #Africa".

  16. iss028e035074

    NASA Image and Video Library

    2011-08-27

    ISS028-E-035074 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims the hair of Japan Aerospace Exploration Agency astronaut Satoshi Furukawa in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  17. iss028e035073

    NASA Image and Video Library

    2011-08-27

    ISS028-E-035073 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims the hair of Japan Aerospace Exploration Agency astronaut Satoshi Furukawa in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  18. iss028e035071

    NASA Image and Video Library

    2011-08-27

    ISS028-E-035071 (27 Aug. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, trims the hair of Japan Aerospace Exploration Agency astronaut Satoshi Furukawa in the Tranquility node of the International Space Station. Fossum used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  19. iss050e038054

    NASA Image and Video Library

    2017-02-03

    iss050e038054 (02/03/2017) --- NASA astronaut Shane Kimbrough is seen executing the SPHERES-HALO experiment aboard the International Space Station. The investigation uses two small, self-contained satellites (SPHERES) fitted with donut-like rings to test wireless power transfer and formation flight using electromagnetic fields.

  20. iss050e038043

    NASA Image and Video Library

    2017-02-03

    iss050e038043 (02/03/2017) --- NASA astronaut Shane Kimbrough is seen executing the SPHERES-HALO experiment aboard the International Space Station. The investigation uses two small, self-contained satellites (SPHERES) fitted with donut-like rings to test wireless power transfer and formation flight using electromagnetic fields.

  1. iss050e037283

    NASA Image and Video Library

    2017-01-31

    iss050e037283 (01/31/2017) --- NASA astronaut Peggy Whitson removes the Multi-Purpose Experiment Platform (MPEP) from inside the Kibo airlock aboard the International Space Station. The airlock is used to deploy a number of scientific payloads from inside the station out into the vacuum of space.

  2. iss038e055240

    NASA Image and Video Library

    2014-02-24

    ISS038-E-055240 (24 Feb. 2014) --- In the International Space Station's Destiny laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Advanced Colloids Experiment (ACE) housed in the Light Microscopy Module (LMM) inside the Fluids Integrated Rack. ACE studies microscopic particles suspended in a liquid.

  3. 77 FR 67027 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12- 091] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science Subcommittee of the [[Page 67028

  4. Space Life Sciences Lab

    NASA Image and Video Library

    2003-10-09

    The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is a state-of-the-art facility built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor is the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  5. 78 FR 20357 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-037] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory...:30 a.m. to 3:00 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street SW., Room 6H45...

  6. 77 FR 38093 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-046] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory.... to 2:30 p.m., local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC), Building 1, Room E100E...

  7. 78 FR 67202 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-131] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2013, 8:30 a.m. to 3:00 p.m., Local Time. ADDRESSES: This meeting will take place at NASA Headquarters...

  8. 76 FR 17158 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-026)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 5H45, Washington, DC...

  9. The GEOFLOW experiment missions in the Fluid Science Laboratory on ISS

    NASA Astrophysics Data System (ADS)

    Picker, Gerold; Carpy, Rodrigo; Fabritius, Gerd; Dettmann, Jan; Minster, Olivier; Winter, Josef; Ranebo, Hans; Dewandre, Thierry; Castiglione, Luigi; Mazzoni, Stefano; Egbers, Christoph; Futterer, Birgit

    The GEOFLOW I experiment has been successfully performed on the International Space Sta-tion (ISS) in 2008 in the Columbus module in order to study the stability, pattern formation and transition to turbulence in a viscous incompressible fluid layer enclosed in two concentric co-rotating spheres subject to a radial temperature gradient and a radial volumetric force field. The objective of the study is the experimental investigation of large scale astrophysical and geophysical phenomena in spherical geometry stipulated by rotation, thermal convections and radial gravity fields. These systems include earth outer core or mantle convection, differen-tial rotation effects in the sun, atmosphere of gas planets as well as a variety of engineering applications. The GEOFLOW I experimental instrument consists of an experiment insert for operation in the Fluid Science Laboratory, which is part of the Columbus Module of the ISS. It was first launched in February 2008 together with Columbus Module on STS 122, operated periodically for 9 month and returned to ground after 14 month on orbit with STS 119. The primary objective was the experimental modelling of outer earth core convection flow. In order to allow for variations of the characteristic scaling for different physical phenomena, the experiment was designed and qualified for a total of nine flights to the ISS, with ground refurbishment and geometrical or fluid modification after each mission. The second mission of GEOFLOW (II) is currently under preparation in terms of hardware refurbishment and modification, as well as science parameter development in order to allow use of a new experimental model fluid with a strongly temperature dependent viscosity, a adaptation of the experimental thermal parameter range in order to provide a representative model for earth mantle convection. The GEOFLOW II instrument is foreseen to be launched with the second mission of the Eu-ropean Automated Transfer Vehicle (ATV). The flight to ISS

  10. KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  11. 75 FR 35091 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-068)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 1:30 p.m., e.d.t. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 3H46, Washington, DC...

  12. 77 FR 6824 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-010] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory....m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street SW., Room 3H46 and 7H45...

  13. 76 FR 59446 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice11-084] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory..., 2011, 8:30 a.m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Room 3H46...

  14. iss038e054117

    NASA Image and Video Library

    2014-02-22

    ISS038-E-054117 (22 Feb. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, trims the hair of NASA astronaut Rick Mastracchio, flight engineer, in the Unity node of the International Space Station. Wakata used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  15. iss038e054116

    NASA Image and Video Library

    2014-02-22

    ISS038-E-054116 (22 Feb. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, trims the hair of NASA astronaut Rick Mastracchio, flight engineer, in the Unity node of the International Space Station. Wakata used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  16. iss042e230270

    NASA Image and Video Library

    2015-02-06

    ISS042E230270 (02/06/2015) --- US NASA astronaut Terry Virts, Expedition 42 flight engineer on the International Space Station tweeted this Earth observation on Feb. 6, 2015 and made this comment: " Looking back over middle America at twilight. I love the sun’s reflection off these rivers and lakes".

  17. iss055e016051

    NASA Image and Video Library

    2018-04-11

    iss055e016051 (April 11, 2018) --- NASA astronaut and Flight Engineer Ricky Arnold works with the student-designed Genes in Space-5 experiment inside the Harmony module. The genetic research is helping scientists understand the relationship between DNA alterations and weakened immune systems possibly caused by living in space.

  18. iss042e215971

    NASA Image and Video Library

    2015-02-03

    ISS042E215971 (02/06/2015) --- NASA US Astronaut Terry Virts on Feb. 6, 2015 captured this Earth observation of Ireland, United Kingdom and Scandinavia on a moonlit night under an amazing and ever-changing aurora. Terry is a flight engineer on the international Space Station with Expedition 42.

  19. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  20. NASA Earthdata Forums: An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J., III; Acker, James; Meyer, Dave; Northup, Emily A.; Bagwell, Ross E.

    2017-01-01

    We demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  1. 76 FR 8380 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-114)] NASA Advisory Council; Science... Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory...:30 a.m. to 2 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Rooms 9H40 and 3H46...

  2. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    NASA Acting Chief Technologist Douglas Terrier gives a talk to teachers attending a professional development workshop held in tandem with the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  3. NASA Education Activities on the International Space Station: A National Laboratory for Inspiring, Engaging, Educating and Employing the Next Generation

    NASA Technical Reports Server (NTRS)

    Severance, Mark T.; Tate-Brown, Judy; McArthur, Cynthia L.

    2010-01-01

    The International Space Station (ISS) National Lab Education Project has been created as a part of the ISS National Lab effort mandated by the U.S. Congress The project seeks to expand ISS education of activities so that they reach a larger number of students with clear educational metrics of accomplishments. This paper provides an overview of several recent ISS educational payloads and activities. The expected outcomes of the project, consistent with those of the NASA Office of Education, are also described. NASA performs numerous education activities as part of its ISS program. These cover the gamut from formal to informal educational opportunities in grades Kindergarten to grade 12, Higher Education (undergraduate and graduate University) and informal educational venues (museums, science centers, exhibits). Projects within the portfolio consist of experiments performed onboard the ISS using onboard resources which require no upmass, payloads flown to ISS or integrated into ISS cargo vehicles, and ground based activities that follow or complement onboard activities. Examples include ground based control group experiments, flight or experiment following lesson plans, ground based activities involving direct interaction with ISS or ground based activities considering ISS resources in their solution set. These projects range from totally NASA funded to projects which partner with external entities. These external agencies can be: other federal, state or local government agencies, commercial entities, universities, professional organizations or non-profit organizations. This paper will describe the recent ISS education activities and discuss the approach, outcomes and metrics associated with the projects.

  4. Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computer-generated drawing shows the relative scale and working space for the Microgravity Science Glovebox (MSG) being developed by NASA and the European Space Agency for science experiments aboard the International Space Station (ISS). The person at the glovebox repesents a 95th percentile American male. The MSG will be deployed first to the Destiny laboratory module and later will be moved to ESA's Columbus Attached Payload Module. Each module will be filled with International Standard Payload Racks (green) attached to standoff fittings (yellow) that hold the racks in position. Destiny is six racks in length. The MSG is being developed by the European Space Agency and NASA to provide a large working volume for hands-on experiments aboard the International Space Station. Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall)

  5. CATS Concludes Successful Mission on ISS

    Atmospheric Science Data Center

    2018-02-15

    ... instrument has ended its operations on the International Space Station (ISS), after a successful 33-month mission to measure clouds and ... and the "NASA's CATS Concludes Successful Mission on Space Station" article.   Read more ...

  6. Two-Phase Flow Research on the ISS for Thermal Control Applications

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.

    2013-01-01

    With the era of full utilization of the ISS now upon us, this presentation will discuss some of the highest-priority areas for two-phase flow systems with thermal control applications. These priorities are guided by recommendations of a 2011 NRC Decadal Survey report, Recapturing a Future for Space Exploration, Life and Physical Sciences for a New Era as well as an internal NASA exercise in response to the NRC report conducted in early 2012. Many of these proposals are already in various stages of development, while others are still conceptual.

  7. 78 FR 77502 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-152)] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee.... ADDRESSES: NASA Headquarters, Room 3P40, 300 E Street SW., Washington, DC 20546. FOR FURTHER INFORMATION...

  8. 78 FR 57178 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-115] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee.... ADDRESSES: NASA Headquarters, Room 1Q39, 300 E Street SW., Washington, DC 20546. FOR FURTHER INFORMATION...

  9. Evaluating the Medical Kit System for the International Space Station(ISS) - A Paradigm Revisited

    NASA Technical Reports Server (NTRS)

    Hailey, Melinda J.; Urbina, Michelle C.; Hughlett, Jessica L.; Gilmore, Stevan; Locke, James; Reyna, Baraquiel; Smith, Gwyn E.

    2010-01-01

    Medical capabilities aboard the International Space Station (ISS) have been packaged to help astronaut crew medical officers (CMO) mitigate both urgent and non-urgent medical issues during their 6-month expeditions. Two ISS crewmembers are designated as CMOs for each 3-crewmember mission and are typically not physicians. In addition, the ISS may have communication gaps of up to 45 minutes during each orbit, necessitating medical equipment that can be reliably operated autonomously during flight. The retirement of the space shuttle combined with ten years of manned ISS expeditions led the Space Medicine Division at the NASA Johnson Space Center to reassess the current ISS Medical Kit System. This reassessment led to the system being streamlined to meet future logistical considerations with current Russian space vehicles and future NASA/commercial space vehicle systems. Methods The JSC Space Medicine Division coordinated the development of requirements, fabrication of prototypes, and conducted usability testing for the new ISS Medical Kit System in concert with implementing updated versions of the ISS Medical Check List and associated in-flight software applications. The teams constructed a medical kit system with the flexibility for use on the ISS, and resupply on the Russian Progress space vehicle and future NASA/commercial space vehicles. Results Prototype systems were developed, reviewed, and tested for implementation. Completion of Preliminary and Critical Design Reviews resulted in a streamlined ISS Medical Kit System that is being used for training by ISS crews starting with Expedition 27 (June 2011). Conclusions The team will present the process for designing, developing, , implementing, and training with this new ISS Medical Kit System.

  10. iss053e180226

    NASA Image and Video Library

    2017-11-12

    iss053e180226 (Nov. 12, 2017) --- The six-member Expedition 53 crew poses for a portrait inside the Japanese Kibo laboratory module with a spacesuit hand-painted by cancer patients from the M.D. Anderson Cancer Center in Houston. On the left (from top to bottom) are NASA astronauts Joe Acaba and Mark Vande Hei with cosmonaut Alexander Misurkin of Roscosmos. On the right (from top to bottom) are European Space Agency astronaut Paolo Nespoli, cosmonaut Sergey Ryazanskiy of Roscosmos and Expedition 53 Commander Randy Bresnik of NASA.

  11. 75 FR 54389 - NASA Advisory Council; Science Committee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-103)] NASA Advisory Council; Science... National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for the...

  12. 75 FR 14472 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-033)] NASA Advisory Council; Science...: The National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for...

  13. 75 FR 2892 - NASA Advisory Council; Science Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-003)] NASA Advisory Council; Science...: The National Aeronautics and Space Administration (NASA) announces a meeting of the Science Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The Meeting will be held for...

  14. Department of Education ISS Link

    NASA Image and Video Library

    2009-11-05

    Students speak with astronauts aboard the International Space Station (ISS) via downlink during an event at the U.S. Department of Education, Thursday, Nov. 5, 2009, in Washington. NASA Administrator Charles Bolden and Secretary of Education Arne Duncan hosted Washington area middle and high school students Thursday for a live discussion with astronauts aboard the International Space Station. The event was part of the 10th annual celebration of International Education Week. Photo Credit: (NASA/Paul E. Alers)

  15. Department of Education ISS Link

    NASA Image and Video Library

    2009-11-05

    Students speak with astronauts on the International Space Station (ISS) via downlink during an event at the U.S. Department of Education, Thursday, Nov. 5, 2009, in Washington. NASA Administrator Charles Bolden and Secretary of Education Arne Duncan hosted Washington area middle and high school students Thursday for a live discussion with astronauts aboard the International Space Station. The event was part of the 10th annual celebration of International Education Week. Photo Credit: (NASA/Paul E. Alers)

  16. NASA 2014 The Hyperspectral Infrared Imager (HyspIRI) - Science Impact of Deploying Instruments on Separate Platforms

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin; Veraverbeke, Sander; Wright, Robert; Anderson, Martha; Prakash, Anupma; Quattrochi, Dale

    2014-01-01

    The Hyperspectral Infrared Imager (HyspIRI) mission was recommended for implementation by the 2007 report from the U.S. National Research Council Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also known as the Earth Science Decadal Survey. The HyspIRI mission is science driven and will address a set of science questions identified by the Decadal Survey and broader science community. The mission includes a visible shortwave infrared (VSWIR) imaging spectrometer, a multispectral thermal infrared (TIR) imager and an intelligent payload module (IPM). The IPM enables on-board processing and direct broadcast for those applications with short latency requirements. The science questions are organized as VSWIR-only, TIR-only and Combined science questions, the latter requiring data from both instruments. In order to prepare for the mission NASA is undertaking pre-phase A studies to determine the optimum mission implementation, in particular, cost and risk reduction activities. Each year the HyspIRI project is provided with feedback from NASA Headquarters on the pre-phase A activities in the form of a guidance letter which outlines the work that should be undertaken the subsequent year. The 2013 guidance letter included a recommendation to undertake a study to determine the science impact of deploying the instruments from separate spacecraft in sun synchronous orbits with various time separations and deploying both instruments on the International Space Station (ISS). This report summarizes the results from that study. The approach taken was to evaluate the impact on the combined science questions of time separations between the VSWIR and TIR data of <3 minutes, <1 week and a few months as well as deploying both instruments on the ISS. Note the impact was only evaluated for the combined science questions which require data from both instruments (VSWIR and TIR). The study concluded the impact of a separation of <3 minutes was

  17. The Crew Earth Observations Experiment: Earth System Science from the ISS

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-05-14

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  19. 78 FR 31977 - NASA Applied Sciences Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-061] NASA Applied Sciences Advisory... Aeronautics and Space Administration (NASA) announces a meeting of the Applied Sciences Advisory Committee (ASAC). This Committee functions in an advisory capacity to the Director, Earth Science Division. The...

  20. Science at NASA field centers: Findings and recommendations on the scope, strength and interactions of science and science-related technology programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles.

  1. The International Space Station (ISS) Education Accomplishments and Opportunities

    NASA Technical Reports Server (NTRS)

    Alleyne, Camille W.; Blue, Regina; Mayo, Susan

    2012-01-01

    The International Space Station (ISS) has the unique ability to capture the imaginations of both students and teachers worldwide and thus stands as an invaluable learning platform for the advancement of proficiency in research and development and education. The presence of humans on board ISS for the past ten years has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM) disciplines which will lead to an increase in quality of teachers, advancements in research and development, an increase in the global reputation for intellectual achievement, and an expanded ability to pursue unchartered avenues towards a brighter future. Over 41 million students around the world have participated in ISS-related activities since the year 2000. Projects such as the Amateur Radio on International Space Station (ARISS) and Earth Knowledge Acquired by Middle School Students (EarthKAM), among others, have allowed for global student, teacher, and public access to space through radio contacts with crewmembers and student image acquisition respectively. . With planned ISS operations at least until 2020, projects like the aforementioned and their accompanying educational materials will be available to enable increased STEM literacy around the world. Since the launch of the first ISS element, a wide range of student experiments and educational activities have been performed by each of the international partner agencies: National Aeronautics and Space Administration (NASA), Canadian Space Agency (CSA), European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA) and Russian Federal Space Agency (Roscosmos). Additionally, a number of non-participating countries, some under commercial agreements, have also participated in Station-related activities. Many of these programs still continue while others are being developed and added to the station crewmembers tasks

  2. NASA Wavelength: A Full Spectrum of NASA Resources for Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Schwerin, T. G.; Peticolas, L. M.; Porcello, D.; Kansa, E.; Shipp, S. S.; Bartolone, L.

    2013-12-01

    The NASA Science Education and Public Outreach Forums have developed a digital library--NASAWavelength.org--that enables easy discovery and retrieval of thousands of resources from the NASA Earth and space science education portfolio. The system has been developed based on best practices in the architecture and design of web-based information systems. The design style and philosophy emphasize simple, reusable data and services that facilitate the free flow of data across systems. The primary audiences for NASA Wavelength are STEM educators (K-12, higher education and informal education) as well as scientists, education and public outreach professionals who work with K-12, higher education, and informal education. A NASA Wavelength strandmap service features the 19 AAAS strandmaps that are most relevant to NASA science; the service also generates all of the 103 AAAS strandmaps with content from the Wavelength collection. These maps graphically and interactively provide connections between concepts as well as illustrate how concepts build upon one another across grade levels. New features have been developed for this site based on user feedback, including list-building so that users can create and share individual collections within Wavelength. We will also discuss potential methods for integrating the Next Generation Science Standards (NGSS) into the search and discovery tools on NASA Wavelength.

  3. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  4. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  5. Preliminary Findings from the SHERE ISS Experiment

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; McKinley, Gareth H.; Erni, Philipp; Soulages, Johannes; Magee, Kevin S.

    2009-01-01

    The Shear History Extensional Rheology Experiment (SHERE) is an International Space Station (ISS) glovebox experiment designed to study the effect of preshear on the transient evolution of the microstructure and viscoelastic tensile stresses for monodisperse dilute polymer solutions. The SHERE experiment hardware was launched on Shuttle Mission STS-120 (ISS Flight 10A) on October 22, 2007, and 20 fluid samples were launched on Shuttle Mission STS-123 (ISS Flight 10/A) on March 11, 2008. Astronaut Gregory Chamitoff performed experiments during Increment 17 on the ISS between June and September 2008. A summary of the ten year history of the hardware development, the experiment's science objectives, and Increment 17's flight operations are discussed in the paper. A brief summary of the preliminary science results is also discussed.

  6. iss055e032444

    NASA Image and Video Library

    2018-04-25

    iss055e032444 (April 25, 2018) --- NASA astronaut Scott Tingle replaces a failed light bulb in a light to be used on a new external television camera group (ETVCG) that will be installed on an upcoming spacewalk. Parts from the old ETVCG, removed during a previous spacewalk, will be shipped back to Earth in Dragon for refurbishment.

  7. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-072)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee...

  8. Benchmarks: Reports of the NASA Science Institutes Team

    NASA Technical Reports Server (NTRS)

    Diaz, A. V.

    1995-01-01

    This report results from a benchmarking study undertaken by NASA as part of its planning for the possible creation of new science Institutes. Candidate Institutes under consideration cover a range of scientific and technological activities ranging from biomedical to astrophysical research and from the global hydrological cycle to microgravity material science. Should NASA create these Institutes, the intent will be to preserve and strengthen key science and technology activities now being performed by Government employees at NASA Field Centers. Because the success of these projected non-Government-operated Institutes is vital for the continued development of space science and applications, NASA has sought to identify the best practices of successful existing scientific and technological research institutions as they carry out those processes that will be most important for the new science Institutes. While many individuals and organizations may be interested in our findings, the primary use of this report will be to formulate plas for establishing the new science Institutes. As a result, the report is organized to that the "best practices" of the finest institutes are associated with characteristics of all institutes. These characteristics or "attributes" serve as the headings for the main body of this report.

  9. NASA Briefing Previews Upcoming Spacewalks on ISS

    NASA Image and Video Library

    2017-10-02

    On Oct. 2, NASA held a briefing at the Johnson Space Center in Houston, to preview a trio of spacewalks in October to perform maintenance outside the International Space Station. Expedition 53 Commander Randy Bresnik of NASA will lead all three spacewalks, joined on Oct. 5 and 10 by Flight Engineer Mark Vande Hei, also of NASA. Flight Engineer Joe Acaba of NASA will join Bresnik on Oct. 18 for the third spacewalk. NASA TV coverage of the spacewalks will begin at 6:30 a.m. on Oct. 5, 10 and 18. Each spacewalk is scheduled to start at approximately 8:05 a.m., however, the spacewalks may begin earlier if the crew is running ahead of schedule.

  10. Department of Education ISS Link

    NASA Image and Video Library

    2009-11-05

    NASA Administrator Charles F. Bolden speaks during an event where students spoke via downlink to astronauts on the ISS, Thursday, Nov. 5, 2009, at the U.S. Department of Education in Washington. Bolden and Secretary of Education Arne Duncan are hosted Washington area middle and high school students Thursday for a live discussion with astronauts aboard the International Space Station. The event was part of the 10th annual celebration of International Education Week. Photo Credit: (NASA/Paul E. Alers)

  11. Department of Education ISS Link

    NASA Image and Video Library

    2009-11-05

    An unidentified student speaks with astronauts aboard the Internatiional Space Station (ISS) via downlink during an event at the U.S. Department of Education, Thursday, Nov. 5, 2009, in Washington. NASA Administrator Charles Bolden and Secretary of Education Arne Duncan hosted Washington area middle and high school students Thursday for a live discussion with astronauts aboard the International Space Station. The event was part of the 10th annual celebration of International Education Week. Photo Credit: (NASA/Paul E. Alers)

  12. Department of Education ISS Link

    NASA Image and Video Library

    2009-11-05

    NASA Administrator Charles F. Bolden, left, speaks during an event where students spoke via downlink to astronauts on the International Space Station (ISS), Thursday, Nov. 5, 2009, at the U.S. Department of Education in Washington. Bolden and Secretary of Education Arne Duncan hosted Washington area middle and high school students Thursday for a live discussion with astronauts aboard the International Space Station. The event was part of the 10th annual celebration of International Education Week. Photo Credit: (NASA/Paul E. Alers)

  13. Benefit from NASA

    NASA Image and Video Library

    2002-02-01

    AiroCide Ti02, an anthrax-killing air scrubber manufactured by KES Science and Technology Inc., in Kernesaw, Georgia, looks like a square metal box when it is installed on an office wall. Its fans draw in airborne spores and airflow forces them through a maze of tubes. Inside, hydroxyl radicals (OH-) attack and kill pathogens. Most remaining spores are destroyed by high-energy ultraviolet photons. Building miniature greenhouses for experiments on the International Space Station (ISS) has led to the invention of this device that annihilates anthrax-a bacteria that can be deadly when inhaled. The research enabling the invention started at the University of Wisconsin (Madison) Center for Space Automation and Robotics (WCSAR), one of 17 NASA Commercial Space Centers. A special coating technology used in the anthrax-killing invention is also being used inside WCSAR-built plant growth units on the ISS. This commercial research is managed by the Space Product Development Program at the Marshall Space Flight Center.

  14. MSRR Rack Materials Science Research Rack

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  15. KENNEDY SPACE CENTER, FLA. - Ivan Rodriguez, with Bionetics, and Michelle Crouch and Larry Burns, with Dynamac, carry boxes of equipment into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Ivan Rodriguez, with Bionetics, and Michelle Crouch and Larry Burns, with Dynamac, carry boxes of equipment into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  16. KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  17. Technology for NASA's Planetary Science Vision 2050.

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  18. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-115)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics...) announces a meeting of the Applied Science Advisory Group. This Subcommittee reports to the Earth Science...

  19. Overview of Space Science and Information Research Opportunities at NASA

    NASA Technical Reports Server (NTRS)

    Green, James L.

    2000-01-01

    It is not possible to review all the opportunities that NASA provides to support the Space Science Enterprise, in the short amount of time allotted for this presentation. Therefore, only a few key programs will be discussed. The programs that I will discuss will concentrate on research opportunities for faculty, graduate and postdoctoral candidates in Space Science research and information technologies at NASA. One of the most important programs for research opportunities is the NASA Research Announcement or NRA. NASA Headquarters issues NRA's on a regular basis and these cover space science and computer science activities relating to NASA missions and programs. In the Space Sciences, the most important NRA is called the "Research Opportunities in Space Science or the ROSS NRA. The ROSS NRA is composed of multiple announcements in the areas of structure and evolution of the Universe, Solar System exploration, Sun-Earth connections, and applied information systems. Another important opportunity is the Graduate Student Research Program (GSRP). The GSRP is designed to cultivate research ties between a NASA Center and the academic community through the award of fellowships to promising students in science and engineering. This program is unique since it matches the student's area of research interest with existing work being carried out at NASA. This program is for U.S. citizens who are full-time graduate students. Students who are successful have made the match between their research and the NASA employee who will act as their NASA Advisor/ Mentor. In this program, the student's research is primarily accomplished under the supervision of his faculty advisor with periodic or frequent interactions with the NASA Mentor. These interactions typically involve travel to the sponsoring NASA Center on a regular basis. The one-year fellowships are renewable for up to three years and over $20,000 per year. These and other important opportunities will be discussed.

  20. Solidifying Small Satellite Access to Orbit via the International Space Station (ISS): Cyclops' Deployment of the Lonestar SmallSat from the ISS

    NASA Technical Reports Server (NTRS)

    Hershey, Matthew P.; Newswander, Daniel R.; Evernden, Brent A.

    2016-01-01

    On January 29, 2016, the Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, deployed Lonestar from the ISS. The deployment of Lonestar, a collaboration between Texas A&M University and the University of Texas at Austin, continued to showcase the simplicity and reliability of the Cyclops deployment system. Cyclops, a NASA-developed, dedicated 10-100 kg class ISS SmallSat deployment system, utilizes the Japanese airlock and robotic systems to seamlessly insert SmallSats into orbit. This paper will illustrate Cyclops' successful deployment of Lonestar from the ISS as well as outline its concept of operations, interfaces, requirements, and processes.

  1. ECHO Responds to NASA's Earth Science User Community

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; Ullman, Richard; Wichmann, Keith; Perkins, Dorothy C. (Technical Monitor)

    2001-01-01

    Over the past decade NASA has designed, built, evolved, and operated the Earth Observing System Data and Information System (EOSDIS) Information Management System (IMS) in order to provide user access to NASA's Earth Science data holdings. During this time revolutionary advances in technology have driven changes in NASA's approach to providing an IMS service. This paper will describe NASA's strategic planning and approach to build and evolve the EOSDIS IMS and to serve the evolving needs of NASA's Earth Science community. It discusses the original strategic plan and how lessons learned help to form a new plan, a new approach and a new system. It discusses the original technologies and how they have evolved to today.

  2. The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.

    2013-10-01

    The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the

  3. Cygnus OA-4 Spacecraft on Approach to ISS

    NASA Image and Video Library

    2015-12-09

    ISS045e176110 (12/09/2015) --- Using the International Space Station’s robotic arm, Canadarm2 (right) NASA Flight Engineer Kjell Lindgren prepares to capture Orbital ATK’s Cygnus cargo vehicle Dec. 09, 2015. The space station crew and the robotics officer in mission control in Houston will position Cygnus for installation to the orbiting laboratory’s Earth-facing port of the Unity module. Among the more than 7,000 pounds of supplies aboard Cygnus are numerous science and research investigations and technology demonstrations, including a new life science facility that will support studies on cell cultures, bacteria and other microorganisms; a microsatellite deployer and the first microsatellite that will be deployed from the space station; several other educational and technology demonstration CubeSats; and experiments that will study the behavior of gases and liquids, clarify the thermo-physical properties of molten steel, and evaluate flame-resistant textiles.

  4. The NASA Earthdata Forums - An Interactive Venue for Discussions of NASA Data and Earth Science

    NASA Astrophysics Data System (ADS)

    Hearty, T. J., III; Acker, J. G.; Meyer, D. L.; Northup, E. A.; Bagwell, R.

    2017-12-01

    In this presentation, we will demonstrate how students and teachers can register to use the NASA Earthdata Forums. The NASA Earthdata forums provide a venue where registered users can pose questions regarding NASA Earth science data in a moderated forum, and have their questions answered by data experts and scientific subject matter experts connected with NASA Earth science missions and projects. Since the forums are also available for research scientists to pose questions and discuss pertinent topics, the NASA Earthdata Forums provide a unique opportunity for students and teachers to gain insight from expert scientists and enhance their knowledge of the many different ways that NASA Earth observations can be used in research and applications.

  5. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    NASA Astrophysics Data System (ADS)

    Grayson, C.; Sgobba, T.; Larsen, A.; Rose, S.; Heimann, T.; Ciancone, M.; Mulhern, V.

    2005-12-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998 the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre- existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and ISS. The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper then presents the background of ISS agreements and international treaties that had to be considered when establishing the ESA PSRP. The paper will expound upon the detailed franchising model, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The paper will then address the resulting ESA PSRP implementation and its success statistics to date. Additionally, the paper presents ongoing developments with the Japan Aerospace Exploration Agency (JAXA). The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  6. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    NASA Technical Reports Server (NTRS)

    Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso

    2005-01-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  7. International Space Station (ISS) Anomalies Trending Study

    NASA Technical Reports Server (NTRS)

    Beil, Robert J.; Brady, Timothy K.; Foster, Delmar C.; Graber, Robert R.; Malin, Jane T.; Thornesbery, Carroll G.; Throop, David R.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) set out to utilize data mining and trending techniques to review the anomaly history of the International Space Station (ISS) and provide tools for discipline experts not involved with the ISS Program to search anomaly data to aid in identification of areas that may warrant further investigation. Additionally, the assessment team aimed to develop an approach and skillset for integrating data sets, with the intent of providing an enriched data set for discipline experts to investigate that is easier to navigate, particularly in light of ISS aging and the plan to extend its life into the late 2020s. This report contains the outcome of the NESC Assessment.

  8. 78 FR 20358 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-036] NASA Advisory Council; Science... Subcommittee (HPS) of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of... CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202...

  9. iss042e287843

    NASA Image and Video Library

    2015-02-22

    ISS042E287843 (02/22/2015) --- This Earth observation of North America was taken on Feb. 22, 2015 and tweeted out to social media fans of NASA astronaut Terry Virts who is on a 6 month Expedition of the International Space Station. Terry added this comment to his tweeted image: "#Sunset over the frozen Great Lakes and southern #Canada".

  10. iss051e029016

    NASA Image and Video Library

    2017-04-28

    iss051e029016 (4/28/2017) --- Crew members on the International Space Station completed a new session of the Genes in Space 2 investigation. Spaceflight causes many changes to the human body, including alterations in DNA and a weakened immune system. This study uses a new technology to study DNA in space to try and safeguard crew health. Credits: NASA

  11. iss051e044502

    NASA Image and Video Library

    2017-05-17

    iss051e044502 (5/17/2017) --- Crew members on the International Space Station completed a new session of the Genes in Space 2 investigation. Spaceflight causes many changes to the human body, including alterations in DNA and a weakened immune system. This study uses a new technology to study DNA in space to try and safeguard crew health. Credits: NASA

  12. iss051e044497

    NASA Image and Video Library

    2017-05-17

    iss051e044497 (5/17/2017) --- Crew members on the International Space Station completed a new session of the Genes in Space 2 investigation. Spaceflight causes many changes to the human body, including alterations in DNA and a weakened immune system. This study uses a new technology to study DNA in space to try and safeguard crew health. Credits: NASA

  13. iss042e237302

    NASA Image and Video Library

    2015-02-09

    ISS042E237302 (02/09/2015) --- Aboard the International Space Station on Feb. 9, 2015 NASA astronaut Terry Virts while viewing through the Cupola window captured this image of the African continent. Virts tweeted the photo to his many fans with the comment: "Sun glint on one of a thousand rivers in the heart of #Africa, this one in #Angola" .

  14. Image Detective 2.0: Engaging Citizen Scientists with NASA Astronaut Photography

    NASA Technical Reports Server (NTRS)

    Higgins, Melissa; Graff, Paige Valderrama; Heydorn, James; Jagge, Amy; Vanderbloemen, Lisa; Stefanov, William; Runco, Susan; Lehan, Cory; Gay, Pamela

    2017-01-01

    Image Detective 2.0 engages citizen scientists with NASA astronaut photography of the Earth obtained by crew members on the International Space Station (ISS). Engaged citizen scientists are helping to build a more comprehensive and searchable database by geolocating this imagery and contributing to new imagery collections. Image Detective 2.0 is the newest addition to the suite of citizen scientist projects available through CosmoQuest, an effort led by the Astronomical Society of the Pacific (ASP) and supported through a NASA Science Mission Directorate Cooperative Agreement Notice award. CosmoQuest hosts a number of citizen science projects enabling individuals from around the world to engage in authentic NASA science. Image Detective 2.0, an effort that focuses on imagery acquired by astronauts on the International Space Station, builds on work initiated in 2012 by scientists and education specialists at the NASA Johnson Space Center. Through the many lessons learned, Image Detective 2.0 enhances the original project by offering new and improved options for participation. Existing users, as well as new Image Detective participants joining through the CosmoQuest platform, gain first-hand experience working with astronaut photography and become more engaged with this valuable data being obtained from the International Space Station. Citizens around the world are captivated by astronauts living and working in space. As crew members have a unique vantage point from which to view our Earth, the Crew Earth Observations (CEO) online database, referred to as the Gateway to Astronaut Photography of Earth (https://eol.jsc.nasa.gov/), provides a means for crew members to share their unique views of our home planet from the ISS with the scientific community and the public. Astronaut photography supports multiple uses including scientific investigations, visualizations, education, and outreach. These astronaut images record how the planet is changing over time, from human

  15. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very early days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for combustion, complex fluids, and fluid physics; GRC has led the successful implementation of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion; fire detection; fire extinguishment; soot phenomena; flame liftoff and stability; and material flammability. The fluids experiments have studied capillary flow; magneto-rheological fluids; colloidal systems; extensional rheology; pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years.

  16. Independent Assessment of Instrumentation for ISS On-Orbit NDE. Volume 1

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I

    2013-01-01

    International Space Station (ISS) Structural and Mechanical Systems Manager, requested that the NASA Engineering and Safety Center (NESC) provide a quantitative assessment of commercially available nondestructive evaluation (NDE) instruments for potential application to the ISS. This work supports risk mitigation as outlined in the ISS Integrated Risk Management Application (IRMA) Watch Item #4669, which addresses the requirement for structural integrity after an ISS pressure wall leak in the event of a penetration due to micrometeoroid or debris (MMOD) impact. This document contains the outcome of the NESC assessment.

  17. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Peticolas, L.; Schwerin, T.; Shipp, S.; Manning, J. G.

    2014-07-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The NASA SMD EPO program evaluates EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advances STEM education and literacy, and enables students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. Leads of the four NASA SMD Science EPO Forums provided big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact. Attendees gained an increased awareness of the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and the ways current and future EPO programs can build upon the work being done.

  18. Proposed NASA budget cuts planetary science

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    President Barack Obama's fiscal year (FY) 2013 budget request for NASA would sharply cut planetary science while maintaining other science and exploration priorities. The total proposed FY 2013 budget for NASA is $17.7 billion, a slight decrease (0.33%) from the previous year (see Table 1). This includes $4.9 billion for the Science directorate, a decrease of about 3.2% from the previous year, and about $3.9 billion for the Human Exploration directorate, a n increase of about $200 million over FY 2012. The latter would include about $2.8 million for development of a new heavy-lift rocket system, known as the Space Launch System (SLS), to take humans beyond low-Earth orbit, along with the Orion crew vehicle.

  19. Depending on Partnerships to Manage NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Lindsay, F. E.; Lowe, D. R.

    2015-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's.The data collected by NASA's remote sensing instruments represent a significant public investment in research, providing access to a world-wide public research community. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. To this end, EOSDIS has collocated NASA Earth science data and processing with centers of science discipline expertise located at universities, other government agencies and NASA centers. Commercial industry is also part of this partnership as it focuses on developing the EOSDIS cross-element infrastructure. The partnership to develop and operate EOSDIS has made for a robust, flexible system that evolves continuously to take advantage of technological opportunities. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Today's EOSDIS is a loosely coupled, yet heterogeneous system designed to meet the requirements of both a diverse user community and a growing collection of data to be archived and distributed. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential

  20. NASA Social

    NASA Image and Video Library

    2012-12-04

    A NASA Social participant tweets during as astronaut Joe Acaba answers questions from the audience at NASA Headquaters, Tuesday, Dec. 4, 2012 in Washington. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  1. NASA's Microgravity Science Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The ongoing challenge faced by NASA's Microgravity Science Research Program is to work with the scientific and engineering communities to secure the maximum return from our Nation's investments by: assuring that the best possible science emerges from the science community for microgravity investigations; ensuring the maximum scientific return from each investigation in the most timely and cost-effective manner; and enhancing the distribution of data and applications of results acquired through completed investigations to maximize their benefits.

  2. NASA Science Mission Directorate Science Education and Public Outreach Forums: A Six-Year Retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Denise Anne; Peticolas, Laura; Schwerin, Theresa; Shipp, Stephanie; Lawton, Brandon L.; Meinke, Bonnie; Manning, James G.; Bartolone, Lindsay; Schultz, Gregory

    2015-08-01

    NASA’s Science Mission Directorate (SMD) created four competitively awarded Science Education and Public Outreach Forums (Astrophysics, Heliophysics, Planetary Science, Earth Science) in 2009. The NASA SMD education and public engagement community and Forum teams have worked together to share the science, the story, and the adventure of SMD's science missions with students, educators, and the public. In doing so, SMD's programs have emphasized collaboration between scientists with content expertise and educators with pedagogy expertise. The goal of the Education Forums has been to maximize program efficiency, effectiveness, and coherence by organizing collaborations that reduce duplication of effort; sharing best practices; aligning products to national education standards; creating and maintaining the NASA Wavelength online catalog of SMD education products; and disseminating metrics and evaluation findings. We highlight examples of our activities over the past six years, along with the role of the scientist-educator partnership and examples of program impact. We also discuss our community’s coordinated efforts to expand the Astro4Girls pilot program into the NASA Science4Girls and Their Families initiative, which partners NASA science education programs with public libraries to engage underrepresented audiences in science.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2000-05-01

    This photograph depicts the International Space Station's (ISS) Joint Airlock Module undergoing exhaustive structural and systems testing in the Space Station manufacturing facility at the Marshall Space Flight Center (MSFC) prior to shipment to the Kennedy Space Center. The Airlock includes two sections. The larger equipment lock, on the left, will store spacesuits and associated gear and the narrower crewlock is on the right, from which the astronauts will exit into space for extravehicular activity. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.

  4. NASA at the Space & Science Festival

    NASA Image and Video Library

    2017-08-05

    An inflatable scale model of the SLS rocket is seen on Pier 86 during the Intrepid Space & Science Festival, Saturday, Aug. 5, 2017 held at the Intrepid Sea, Air & Space Museum in New York City. The week-long festival featured talks, films and cutting-edge displays showcasing NASA technology. Photo Credit: (NASA/Bill Ingalls)

  5. ISS Expedition 41 Return to Ellington Field

    NASA Image and Video Library

    2015-03-12

    Footage of ISS Expedition 41 Flight Engineer Reid Wiseman's return to Ellington Field. Includes footage of the aircraft landing at Ellington Field; Wiseman as he exits the aircraft and is greeted by family, friends and NASA Officials.

  6. ISS Utilization for Exploration-Class Missions

    NASA Technical Reports Server (NTRS)

    FIncke, R.; Davis-Street, J.; Korth, D.

    2006-01-01

    Exercise countermeasures are the most commonly utilized approach for maintaining the health and performance of astronauts during spaceflight missions. However, International Space Station (ISS) exercise countermeasure hardware reliability and prescriptions are not at a point of departure to support exploration-class missions. The JSC Exercise Countermeasures Project (ECP) plans to use ISS as a research and hardware evaluation platform to define and validate improved exercise hardware, prescriptions, and monitoring strategies to support crewmember operations on the Moon and Mars. The ECP will partner with JSC's Space Medicine Division to standardize elements of ISS exercise prescriptions to better understand their efficacy and to propose modified prescriptions for implementation that may be used in the crew exploration vehicle and/or lunar habitat. In addition, evaluations of the ISS treadmill harness will be conducted to define and improve fit and function, and assess the next generation medical monitoring devices such as the portable unit for metabolic analysis and the muscle atrophy research and exercise system for completion of periodic fitness evaluations during lunar and Mars travel. Finally, biomechanical data from ISS crew exercise sessions will be obtained to better understand loading and restraint systems, and identify the physiologic requirements during ISS extravehicular activities that may be analogous to extended excursions from the lunar habitat. It is essential to optimize exercise prescriptions, hardware, and monitoring strategies for exploration initiatives using ISS as a platform before the planned retirement of the Shuttle in 2010 and the declining NASA emphasis on ISS to maximize knowledge before embarking on travel to the Moon and Mars.

  7. The Microgravity Science Glovebox (MSG), a Resource for Gravity-Dependent Phenomena Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jeter, Linda B.; Vonk, Chris

    2007-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG s unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, +/-12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to the MSG facility to further enhance the resources provided to investigations.

  8. The Microgravity Science Glovebox (MSG), a Resource for Gravity-Dependent Phenomena Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jeter, Linda B.; Vonk, Chris

    2007-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, plus or minus 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust' and Vacuum Resource 'Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to-the MSG facility to further enhance the resources provided to investigations.

  9. iss037-s-001

    NASA Image and Video Library

    2012-07-27

    ISS037-S-001 (August 2012) --- Leonardo da Vinci's Vitruvian Man, created some 525 years ago, as a blend of art and science and a symbol of the medical profession, is depicted amongst the orbits of a variety of satellites circling the Earth at great speed. Da Vinci's drawing, based on the proportions of man as described by the Roman architect Vitruvius, is often used as a symbol of symmetry of the human body and the universe as a whole. Almost perfect in symmetry as well, the International Space Station, with its solar wings spread out and illuminated by the first rays of dawn, is pictured as a mighty beacon arcing upwards across our night skies, the ultimate symbol of science and technology of our age. Six stars represent the six members of Expedition 37 crew, which includes two cosmonauts with a medical background, as well as a native of Da Vinci's Italy. The design for insignia for space station flights is reserved for use by the crew members and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced.

  10. Independent Assessment of Instrumentation for ISS On-Orbit NDE. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    2013-01-01

    International Space Station (ISS) Structural and Mechanical Systems Manager, requested that the NASA Engineering and Safety Center (NESC) provide a quantitative assessment of commercially available nondestructive evaluation (NDE) instruments for potential application to the ISS. This work supports risk mitigation as outlined in the ISS Integrated Risk Management Application (IRMA) Watch Item #4669, which addresses the requirement for structural integrity after an ISS pressure wall leak in the event of a penetration due to micrometeoroid or debris (MMOD) impact. This document contains the appendices the final report.

  11. NASA/NSF Antarctic Science Working Group

    NASA Technical Reports Server (NTRS)

    Stoklosa, Janis H.

    1990-01-01

    A collection of viewgraphs on NASA's Life Sciences Biomedical Programs is presented. They show the structure of the Life Sciences Division; the tentative space exploration schedule from the present to 2018; the biomedical programs with their objectives, research elements, and methodological approaches; validation models; proposed Antarctic research as an analog for space exploration; and the Science Working Group's schedule of events.

  12. NASA GeneLab Concept of Operations

    NASA Technical Reports Server (NTRS)

    Thompson, Terri; Gibbs, Kristina; Rask, Jon; Coughlan, Joseph; Smith, Jeffrey

    2014-01-01

    NASA's GeneLab aims to greatly increase the number of scientists that are using data from space biology investigations on board ISS, emphasizing a systems biology approach to the science. When completed, GeneLab will provide the integrated software and hardware infrastructure, analytical tools and reference datasets for an assortment of model organisms. GeneLab will also provide an environment for scientists to collaborate thereby increasing the possibility for data to be reused for future experimentation. To maximize the value of data from life science experiments performed in space and to make the most advantageous use of the remaining ISS research window, GeneLab will apply an open access approach to conducting spaceflight experiments by generating, and sharing the datasets derived from these biological studies in space.Onboard the ISS, a wide variety of model organisms will be studied and returned to Earth for analysis. Laboratories on the ground will analyze these samples and provide genomic, transcriptomic, metabolomic and proteomic data. Upon receipt, NASA will conduct data quality control tasks and format raw data returned from the omics centers into standardized, annotated information sets that can be readily searched and linked to spaceflight metadata. Once prepared, the biological datasets, as well as any analysis completed, will be made public through the GeneLab Space Bioinformatics System webb as edportal. These efforts will support a collaborative research environment for spaceflight studies that will closely resemble environments created by the Department of Energy (DOE), National Center for Biotechnology Information (NCBI), and other institutions in additional areas of study, such as cancer and environmental biology. The results will allow for comparative analyses that will help scientists around the world take a major leap forward in understanding the effect of microgravity, radiation, and other aspects of the space environment on model organisms

  13. Automated ISS Flight Utilities

    NASA Technical Reports Server (NTRS)

    Offermann, Jan Tuzlic

    2016-01-01

    space weather environment officers to monitor solar activity. I consulted my mentor Dr. Ryan Rios and Dr. Kerry Lee for project requirements and added features, and ROOT developer Edmond Offermann for advice on using the ROOT library. I also received advice and feedback from Dr. Janet Barzilla of SRAG, who tested my code. Besides these inputs, I worked independently, writing all of the code by myself. The code for all these projects is documented throughout, and I have attempted to write it in a modular format. Assuming that ROOT is updated accordingly, these codes are also Y2038-compliant (and Y10K-compliant). This allows the code to be easily referenced, modified and possibly repurposed for non-ISS missions in the future, should the necessary inputs exist. These projects have taught me a lot about coding and software design - I have become a much more skilled C++ programmer and ROOT user, and I also learned to code in Python and PyROOT (and its advantages and disadvantages compared to C++/ ROOT). Furthermore, I have learned about space radiation and radiation modeling, topics that greatly interest me as I pursue a degree in physics. Working alongside experimental physicists like Dr. Rios, I have developed a greater understanding and appreciation for experimental science, something I have always leaned towards but to which I lacked significant exposure. My work in SRAG has also given me the invaluable opportunity to witness the work environment for physicists at NASA, and what a career in academia may look like at a government laboratory such as NASA Johnson Space Center. As I continue my studies and look forward to graduate school and a future career, this experience at NASA has given me a meaningful and enjoyable opportunity to put my skills to use and see what my future career path might hold.

  14. Upgrades to the ISS Water Recovery System

    NASA Technical Reports Server (NTRS)

    Pruitt, Jennifer M.; Carter, Layne; Bagdigian, Robert M.; Kayatin, Mattthew J.

    2015-01-01

    The ISS Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. The WRS has been operational on ISS since November 2008, producing over 21,000 L of potable water during that time. Though the WRS has performed well during this time, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper lists these modifications, how they improve WRS performance, and a status on the ongoing development effort.

  15. NSI customer service representatives and user support office: NASA Science Internet

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Science Internet, (NSI) was established in 1987 to provide NASA's Offices of Space Science and Applications (OSSA) missions with transparent wide-area data connectivity to NASA's researchers, computational resources, and databases. The NSI Office at NASA/Ames Research Center has the lead responsibility for implementing a total, open networking program to serve the OSSA community. NSI is a full-service communications provider whose services include science network planning, network engineering, applications development, network operations, and network information center/user support services. NSI's mission is to provide reliable high-speed communications to the NASA science community. To this end, the NSI Office manages and operates the NASA Science Internet, a multiprotocol network currently supporting both DECnet and TCP/IP protocols. NSI utilizes state-of-the-art network technology to meet its customers' requirements. THe NASA Science Internet interconnects with other national networks including the National Science Foundation's NSFNET, the Department of Energy's ESnet, and the Department of Defense's MILNET. NSI also has international connections to Japan, Australia, New Zealand, Chile, and several European countries. NSI cooperates with other government agencies as well as academic and commercial organizations to implement networking technologies which foster interoperability, improve reliability and performance, increase security and control, and expedite migration to the OSI protocols.

  16. iss050e059608

    NASA Image and Video Library

    2017-03-24

    iss050e059608 (03/24/2017) --- NASA astronaut Peggy Whitson controls the robotic arm aboard the International Space Station during a spacewalk. Expedition 50 Commander Shane Kimbrough of NASA and Flight Engineer Thomas Pesquet of ESA (European Space Agency) conducted a six hour and 34 minute spacewalk on March 24, 2017. The two astronauts successfully disconnected cables and electrical connections on the Pressurized Mating Adapter-3 to prepare for its robotic move, lubricated the latching end effector on the Special Purpose Dexterous Manipulator “extension” for the Canadarm2 robotic arm, inspected a radiator valve and replaced cameras on the Japanese segment of the outpost.

  17. iss050e059579

    NASA Image and Video Library

    2017-03-24

    iss050e059579 (03/24/2017) --- NASA astronaut Peggy Whitson (middle) poses with Expedition 50 Commander Shane Kimbrough of NASA (left) and Flight Engineer Thomas Pesquet of ESA (European Space Agency) (right) prior to their spacewalk. The pair conducted a six hour and 34 minute spacewalk on March 24, 2017. The two astronauts successfully disconnected cables and electrical connections on the Pressurized Mating Adapter-3 to prepare for its robotic move, lubricated the latching end effector on the Special Purpose Dexterous Manipulator “extension” for the Canadarm2 robotic arm, inspected a radiator valve and replaced cameras on the Japanese segment of the outpost.

  18. Laser Remote Sensing From ISS: CATS Cloud and Aerosol Level 2 Data Products (Heritage Edition)

    NASA Technical Reports Server (NTRS)

    Rodier, Sharon; Vaughan, Mark; Palm, Steve; Jensen, Mike; Yorks, John; McGill, Matt; Trepte, Chip; Murray, Tim; Lee, Kam-Pui

    2015-01-01

    The Cloud-Aerosol Transport System (CATS) instrument was developed at NASA's Goddard Space Flight Center (GSFC) and deployed to the International Space Station (ISS) on 10 January 2015. CATS is mounted on the Japanese Experiment Module's Exposed Facility (JEM_EF) and will provide near-continuous, altitude-resolved measurements of clouds and aerosols in the Earth's atmosphere. The CATS ISS orbit path provides a unique opportunity to capture the full diurnal cycle of cloud and aerosol development and transport, allowing for studies that are not possible with the lidar aboard the CALIPSO platform, which flies in the sun-synchronous A-Train orbit." " One of the primary science objectives of CATS is to continue the CALIPSO aerosol and cloud profile data record to provide continuity of lidar climate observations during the transition from CALIPSO to EarthCARE. To accomplish this, the CATS project at NASA's Goddard Space Flight Center (GSFC) and the CALIPSO project at NASA's Langley Research Center (LaRC) are closely collaborating to develop and deliver a full suite of CALIPSO-like level 2 data products that will be produced using the newly acquired CATS level 1B data whenever CATS is operating in science modes 1. The CALIPSO mission is now well into its ninth year of on-orbit operations, and has developed a robust set of mature and well-validated science algorithms to retrieve the spatial and optical properties of clouds and aerosols from multi-wavelength lidar backscatter signals. By leveraging both new and existing NASA technical resources, this joint effort by the CATS and CALIPSO teams will deliver validated lidar data sets to the user community at the earliest possible opportunity. The science community will have access to two sets of CATS Level 2 data products. The "Operational" data products will be produced by the GSFC CATS team utilizing the new instrument capabilities (e.g., multiple FOVs and 1064 nm depolarization), while the "Heritage" data products created

  19. Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  20. Launching Science: Science Opportunities Provided by NASA's Constellation System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In 2004 NASA began implementation of the first phases of a new space exploration policy. This implementation effort included the development of a new human-carrying spacecraft, known as Orion; the Altair lunar lander; and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System (described in Chapter 5 of this report). The Altair lunar lander, which is in the very preliminary concept stage, is not discussed in detail in the report. In 2007 NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System. To do so, the NRC established the Committee on Science Opportunities Enabled by NASA's Constellation System. In general, the committee interpreted "Constellation-enabled" broadly, to include not only mission concepts that required Constellation, but also those that could be significantly enhanced by Constellation. The committee intends this report to be a general overview of the topic of science missions that might be enabled by Constellation, a sort of textbook introduction to the subject. The mission concepts that are reviewed in this report should serve as general examples of kinds of missions, and the committee s evaluation should not be construed as an endorsement of the specific teams that developed the mission concepts or of their proposals. Additionally, NASA has a well-developed process for establishing scientific priorities by asking the NRC to conduct a "decadal survey" for a particular discipline. Any scientific mission that eventually uses the Constellation System will have to be properly evaluated by means of this decadal survey process. The committee was impressed with the scientific potential of many of the proposals that it evaluated. However, the committee notes that the Constellation System has been justified by NASA and selected in order to enable human exploration beyond low Earth orbit.not to enable science missions. Virtually all of the science

  1. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Raftery, C. L.; Shackelford, R. L., III

    2014-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding art (and multimedia) to STEM learning, we wanted to try a unique "STEAM" approach, highlighting how scientists and artists often collaborate, and why scientists need visualization experts. The program values the rise of the STEAM teaching concept, particularly that art and multimedia projects can help communicate science concepts more effectively. We also promote the fact that art and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals.

  2. NASA Science4Girls: Engaging Girls in STEM at Their Local Library

    NASA Astrophysics Data System (ADS)

    Meinke, B.; Smith, D.; Bleacher, L.; Hauck, K.; Soeffing, C.; NASA SMD EPO Community

    2014-07-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. The initiative has expanded from the successful 2012 Astro4Girls pilot to engage girls in all four NASA science discipline areas, which broadens the impact of the pilot by enabling audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  3. ISS Expedition 43 Crew Departure from Russia

    NASA Image and Video Library

    2015-03-16

    NASA video file of ISS Expedition 43 crew departure from Russia on March 16, 2015 with crewmembers Scott Kelly, Gennady Padalka, and Mikhail Kornienko; and backupcrew Jeff Williams, Sergei Volkov and Alexie Ovchinin. Includes footage of crew and backup crew as the meet outside the Gagarin Cosmonaut Training Center (GCTC); ISS Expedition 42 crewmembers Elena Serova and Alexander Samokutyaev as they exits the GCTC; crew and backup crew with family, friends and officials as they walk to park, pose for photographs and offers short remarks; and finally the crew as they are leaving by bus.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2000-05-01

    The Joint Airlock Module for the International Space Station (ISS) awaits shipment to the Kennedy Space Center in the Space Station manufacturing facility at the Marshall Space Flight Center in Huntsville, Alabama. The Airlock includes two sections. The larger equipment lock on the left is where crews will change into and out of their spacesuits for extravehicular activities, and store spacesuits, batteries, power tools, and other supplies. The narrower crewlock from which the astronauts will exit into space for extravehicular activities, is on the right. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.

  5. Ground-Based Research within NASA's Materials Science Program

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Curreri, Peter (Technical Monitor)

    2002-01-01

    Ground-based research in Materials Science for NASA's Microgravity program serves several purposes, and includes approximately four Principal Investigators for every one in the flight program. While exact classification is difficult. the ground program falls roughly into the following categories: (1) Intellectual Underpinning of the Flight Program - Theoretical Studies; (2) Intellectual Underpinning of the Flight Program - Bringing to Maturity New Research; (3) Intellectual Underpinning of the Flight Program - Enabling Characterization; (4) Intellectual Underpinning of the Flight Program - Thermophysical Property Determination; (5) Radiation Shielding; (6) Preliminary In Situ Resource Utilization; (7) Biomaterials; (8) Nanostructured Materials; (9) Materials Science for Advanced Space Propulsion. It must be noted that while the first four categories are aimed at using long duration low gravity conditions, the other categories pertain more to more recent NASA initiatives in materials science. These new initiatives address NASA's future materials science needs in the realms of crew health and safety, and exploration, and have been included in the most recent NASA Research Announcements (NRA). A description of each of these nine categories will be given together with examples of the kinds of research being undertaken.

  6. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  7. Spheres: from Ground Development to ISS Operations

    NASA Technical Reports Server (NTRS)

    Katterhagen, A.

    2016-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.

  8. International Space Station (ISS) Orbital Replaceable Unit (ORU) Wet Storage Risk Assessment

    NASA Technical Reports Server (NTRS)

    Squire, Michael D.; Rotter, Henry A.; Lee, Jason; Packham, Nigel; Brady, Timothy K.; Kelly, Robert; Ott, C. Mark

    2014-01-01

    The International Space Station (ISS) Program requested the NASA Engineering and Safety Center (NESC) to evaluate the risks posed by the practice of long-term wet storage of ISS Environmental Control and Life Support (ECLS) regeneration system orbital replacement units (ORUs). The ISS ECLS regeneration system removes water from urine and humidity condensate and converts it into potable water and oxygen. A total of 29 ORUs are in the ECLS system, each designed to be replaced by the ISS crew when necessary. The NESC assembled a team to review the ISS ECLS regeneration system and evaluate the potential for biofouling and corrosion. This document contains the outcome of the evaluation.

  9. NASA Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Olson, Tim

    2017-01-01

    Since August 2012, the NASA Mars Science Laboratory (MSL) rover Curiosity has been operating on the Martian surface. The primary goal of the MSL mission is to assess whether Mars ever had an environment suitable for life. MSL Science Team member Dr. Tim Olson will provide an overview of the rover's capabilities and the major findings from the mission so far. He will also share some of his experiences of what it is like to operate Curiosity's science cameras and explore Mars as part of a large team of scientists and engineers.

  10. Large Parachute for NASA Mars Science Laboratory

    NASA Image and Video Library

    2009-04-22

    The parachute for NASA Mars Science Laboratory mission opens to a diameter of nearly 16 meters 51 feet. This image shows a duplicate qualification-test parachute inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, Calif. The Mars Science Laboratory will be launched in 2011 for a landing on Mars in 2012. Its parachute is the largest ever built to fly on an extraterrestrial mission. The parachute uses a configuration called disk-gap-band, with 80 suspension lines. Most of the orange and white fabric is nylon, though a small disk of heavier polyester is used near the vent in the apex of the canopy due to higher stresses there. http://photojournal.jpl.nasa.gov/catalog/PIA11994

  11. FLEX: A Decisive Step Forward in NASA's Combustion Research Program

    NASA Technical Reports Server (NTRS)

    Hickman, John M.; Dietrich, Daniel L.; Hicks, Michael C.; Nayagam, Vedha; Stocker, Dennis

    2012-01-01

    Stemming from the need to prevent, detect and suppress on-board spacecraft fires, the NASA microgravity combustion research program has grown to include fundamental research. From early experiment, we have known that flames behave differently in microgravity, and this environment would provide an ideal laboratory for refining many of the long held principals of combustion science. A microgravity environment can provide direct observation of phenomena that cannot be observed on Earth. Through the years, from precursor work performed in drop towers leading to experiments on the International Space Station (ISS), discoveries have been made about the nature of combustion in low gravity environments. These discoveries have uncovered new phenomena and shed a light on many of the fundamental phenomena that drive combustion processes. This paper discusses the NASA microgravity combustion research program taking place in the ISS Combustion Integrated Rack, its various current and planned experiments, and the early results from the Flame Extinguishment (FLEX) Experiment.

  12. iss042e288167

    NASA Image and Video Library

    2015-02-25

    ISS042E288167 (02/25?2015) --- Expedition 42 astronauts Terry Virts and Barry “Butch” Wilmore worked outside the International Space Station installing cables and equipment Feb. 25, 2015 for the second of three spacewalks to help ready the laboratory complex for dockings by commercial crew capsules. Virts reported a small amount of water in his space helmet, but NASA officials said he was never in any danger

  13. iss049e040733

    NASA Image and Video Library

    2016-10-19

    ISS049e040733 (10/19/2016) --- NASA astronaut Kate Rubins is pictured inside of the Soyuz MS-01 spacecraft while conducting routine spacesuit checks. Rubins, suited up in a Russian Sokol Launch and Entry suit, was conducting leak checks in advance of her upcoming landing along with Japanese astronaut Takuya Onishi and Russian cosmonaut Anatoly Ivanishin. The trio are scheduled to land Oct. 29, U.S. time.

  14. iss031e150065

    NASA Image and Video Library

    2012-06-28

    ISS031-E-150065 (28 June 2012) --- In the Rassvet Mini-Research Module 1 (MRM-1), Russian cosmonaut Oleg Kononenko (center), Expedition 31 commander; along with European Space Agency astronaut Andre Kuipers (left) and NASA astronaut Don Pettit, both flight engineers, pose for a photo after adding the Soyuz TMA-03M patch to the growing collection of insignias representing crews who have worked on the International Space Station.

  15. iss032e025361

    NASA Image and Video Library

    2012-09-05

    ISS032-E-025361 (5 Sept. 2012) --- Having doffed the outer layer of their Extravehicular Mobility Unit (EMU) spacesuits, Expedition 32 Flight Engineers Sunita Williams of NASA and Akihiko Hoshide of the Japan Aerospace Exploration Agency (JAXA) flex their muscles, celebrating success on their just-completed spacewalk, the second extravehicular activity for them in less than a week. They are still sporting their EMU thermal underwear in the Unity Node 1.

  16. Hair cuttime on ISS

    NASA Image and Video Library

    2015-03-22

    Caption: ISS043E044174 (03/22/2015) --- Its haircut time onboard the International Space Station as Expedition 43 Commander and NASA astronaut Terry Virts handles the scissors while ESA (European Space Agency) astronaut Samantha Cristoforetti holds the vacuum to immediately pull the fine hair strands into the safe container so they don't float away into the station. Hair trims are a regular occurrence during an astronaut's six month tour.

  17. iss038e024791

    NASA Image and Video Library

    2014-01-02

    ISS038-E-024791 (2 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, performs troubleshooting on the Biorack centrifuge for NanoRacks, a facility that provides lower-cost microgravity research facilities for small payloads utilizing a standardized "plug-and-play" interface. Mastracchio checked the three settings of the centrifuge, which is designed to simulate the gravity of Earth, the moon and Mars.

  18. iss042e236075

    NASA Image and Video Library

    2015-02-10

    ISS042E236075 (02/10/2015) --- Astronauts in space must exercise regularly to keep muscles from deteriorating. The busy schedule aboard the International Space Station has these regular periods worked in as NASA astronaut Terry Virts shows in this Tweet he sent out on Feb. 10, 2015 with the comment: "Periodic Fitness Evaluation- riding the bike with a heart rate monitor, EKG, and blood pressure machine hooked up".

  19. iss049e039316

    NASA Image and Video Library

    2016-10-17

    ISS049e039316 (10/17/2016) --- NASA astronaut Kate Rubins watches a live video feed of the Orbital ATK CRS-5 launch on Oct. 17, 2016. The commercial company’s Cygnus cargo craft launched atop the Antares rocket for the first time since a previous failure in Oct. 2014. Packed with more than 5,100 pounds of cargo, the spacecraft arrived at the station on October 23.

  20. NASA Citizen Science: Looking at Impact in the Science Community and Beyond

    NASA Astrophysics Data System (ADS)

    Thaller, M.

    2017-12-01

    NASA's Science Mission Directorate has invested in several citizen scinece programs with the goal of addressing specific scientific goals which will lead to publishable results. For a complete list of these programs, go to https://science.nasa.gov/citizenscientists. In this paper, we will look at preliminary evalution of the impact of these programs, both in the production of scientific papers and the participation of the general public.

  1. Ensuring Credibility of NASA's Earth Science Data (Invited)

    NASA Astrophysics Data System (ADS)

    Maiden, M. E.; Ramapriyan, H. K.; Mitchell, A. E.; Berrick, S. W.; Walter, J.; Murphy, K. J.

    2013-12-01

    The summary description of the Fall 2013 AGU session on 'Data Curation, Credibility, Preservation Implementation, and Data Rescue to Enable Multi-Source Science' identifies four attributes needed to ensure credibility in Earth science data records. NASA's Earth Science Data Systems Program has been working on all four of these attributes: transparency, completeness, permanence, and ease of access and use, by focusing on them and upon improving our practices of them, over many years. As far as transparency or openness, NASA was in the forefront of free and open sharing of data and associated information for Earth observations. The US data policy requires such openness, but allows for the recoup of the marginal cost of distribution of government data and information - but making the data available with no such charge greatly increases their usage in scientific studies and the resultant analyses hasten our collective understanding of the Earth system. NASA's currently available Earth observations comprise primarily those obtained from satellite-borne instruments, suborbital campaigns, and field investigations. These data are complex and must be accompanied by rich metadata and documentation to be understandable. To enable completeness, NASA utilizes standards for data format, metadata content, and required documentation for any data that are ingested into our distributed Earth Observing System Data and Information System, or EOSDIS. NASA is moving to a new metadata paradigm, primarily to enable a fuller description of data quality and fit-for-purpose attributes. This paradigm offers structured approaches for storing quality measures in metadata that include elements such as Positional Accuracy, Lineage and Cloud Cover. NASA exercises validation processes for the Earth Science Data Systems Program to ensure users of EOSDIS have a predictable level of confidence in data as well as assessing the data viability for usage and application. The Earth Science Data Systems

  2. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more

  3. NASA's Commercial Space Centers: Bringing Together Government and Industry for "Out of this World" Benefits

    NASA Technical Reports Server (NTRS)

    Robinson, R. Keith; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is making significant effort to accommodate commercial research in the utilization plans of the International Space Station (ISS)[1]. NASA is providing 30% of the research accommodations in the ISS laboratory modules to support commercial endeavors. However, the availability of resources alone does not necessarily translate into significant private sector participation in NASA's ISS utilization plans. Due to the efforts of NASA's Commercial Space Centers (CSC's), NASA has developed a very robust plan for involving the private sector in ISS utilization activities. Obtaining participation from the private sector requires a demonstrated capability for obtaining commercially significant research results. Since 1985, NASA CSC's have conducted over 200 commercial research activities aboard parabolic aircraft, sounding rockets, the Space Shuttle, and the ISS. The success of these activities has developed substantial investment from private sector companies in commercial space research.

  4. 76 FR 16841 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-025)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... [[Page 16842

  5. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    NASA Technical Reports Server (NTRS)

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  6. Sharing NASA Science with Decision Makers: A Perspective from NASA's Applied Remote Sensing Training (ARSET) Program

    NASA Astrophysics Data System (ADS)

    Prados, A. I.; Blevins, B.; Hook, E.

    2015-12-01

    NASA ARSET http://arset.gsfc.nasa.gov has been providing applied remote sensing training since 2008. The goals of the program are to develop the technical and analytical skills necessary to utilize NASA resources for decision-support. The program has reached over 3500 participants, with 1600 stakeholders from 100 countries in 2015 alone. The target audience for the program are professionals engaged in environmental management in the public and private sectors, such as air quality forecasters, public utilities, water managers and non-governmental organizations engaged in conservation. Many program participants have little or no expertise in NASA remote sensing, and it's frequently their very first exposure to NASA's vast resources. One the key challenges for the program has been the evolution and refinement of its approach to communicating NASA data access, research, and ultimately its value to stakeholders. We discuss ARSET's best practices for sharing NASA science, which include 1) training ARSET staff and other NASA scientists on methods for science communication, 2) communicating the proper amount of scientific information at a level that is commensurate with the technical skills of program participants, 3) communicating the benefit of NASA resources to stakeholders, and 4) getting to know the audience and tailoring the message so that science information is conveyed within the context of agencies' unique environmental challenges.

  7. NASA Social

    NASA Image and Video Library

    2012-12-04

    A participant at a NASA Social in Washington tweets as he listens to astronaut Joe Acaba answer questions about his time living aboard the International Space Station, Tuesday, Dec. 4, 2012 at NASA Headquarters. NASA astronaut Joe Acaba launched to the ISS on a Russian Soyuz spacecraft May 15, 2012, spending 123 days aboard as a flight engineer of the Expedition 31 and 32 crews. He recently returned to Earth on Sept. 17 after four months in low earth orbit. Photo Credit: (NASA/Carla Cioffi)

  8. Measuring the returns to NASA life sciences research and development

    NASA Astrophysics Data System (ADS)

    Hertzfeld, Henry R.

    1998-01-01

    The National Aeronautics and Space Administration has invested in R&D in the life sciences for forty years. The thrust of this investment has been directed toward the support of human beings in space flight and in space activities. There are many documented examples of beneficial services and products now used in everyday life and medical practice that can be traced to origins in the R&D of the space program. However, a framework for quantitatively documenting, characterizing, and analyzing these public benefits has eluded researchers. This paper will present the results of a pilot project that includes the development of a methodology for assessing the economic benefits from NASA life sciences R&D and for realistically evaluating the financial leverage that private companies which are either involved in NASA R&D or which have ``bootstrapped'' NASA R&D into commercial products have realized. The results will show that the NASA life sciences investments are more engineering oriented, and more typically show results in the fields of instrumentation and medical devices. This is substantially different in nature from the focus of the National Institutes of Health, which is organized around the diagnosis and treatment of diseases. The appropriate measures of benefits for engineering-oriented products are economic parameters that focus on capital equipment. NIH benefits are more typically measured by human labor parameters, including the much more difficult to quantify measures of the quality and delivery of medical services. Although there is tremendous overlap in the goals and outputs of NASA life sciences and NIH investments, and NASA R&D is also very concerned with human beings and the quality of life, NIH is the overwhelming large source of life sciences R&D funds in the US. NASA has a special niche in life sciences R&D that supports the NASA mission as well as overall research issues in the life sciences. This paper evaluates the economic benefits of NASA's life

  9. 76 FR 14433 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-023)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  10. 75 FR 53350 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-096)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  11. 76 FR 28470 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-047)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Heliophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  12. 75 FR 74089 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-149)] NASA Advisory Council; Science... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science Committee of the NAC...

  13. Lightning Observations from the International Space Station (ISS) for Science Research and Operational Applications

    NASA Technical Reports Server (NTRS)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    There exist several core science applications of LIS lightning observations, that range from weather and climate to atmospheric chemistry and lightning physics due to strong quantitative connections that can be made between lightning and other geophysical processes of interest. The space-base vantage point, such as provided by ISS LIS, still remains an ideal location to obtain total lightning observations on a global basis.

  14. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  15. Analysis of ISS Plasma Interaction

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon; Alred, John; Kramer, Leonard; Mikatarian, Ron; Minow, Joe; Koontz, Steve

    2006-01-01

    To date, the International Space Station (ISS) has been one of the largest objects flown in lower earth orbit (LEO). The ISS utilizes high voltage solar arrays (160V) that are negatively grounded leading to pressurized elements that can float negatively with respect to the plasma. Because laboratory measurements indicate a dielectric breakdown potential difference of 80V, arcing could occur on the ISS structure. To overcome the possibility of arcing and clamp the potential of the structure, two Plasma Contactor Units (PCUs) were designed, built, and flown. Also a limited amount of measurements of the floating potential for the present ISS configuration were made by a Floating Potential Probe (FPP), indicating a minimum potential of 24 Volts at the measurement location. A predictive tool, the ISS Plasma Interaction Model (PIM) has been developed accounting for the solar array electron collection, solar array mast wire and effective conductive area on the structure. The model has been used for predictions of the present ISS configuration. The conductive area has been inferred based on available floating potential measurements. Analysis of FPP and PCU data indicated distribution of the conductive area along the Russian segment of the ISS structure. A significant input to PIM is the plasma environment. The International Reference Ionosphere (IRI 2001) was initially used to obtain plasma temperature and density values. However, IRI provides mean parameters, leading to difficulties in interpretation of on-orbit data, especially at eclipse exit where maximum charging can occur. This limits our predicative capability. Satellite and Incoherent Scatter Radar (ISR) data of plasma parameters have also been collected. Approximately 130,000 electron temperature (Te) and density (Ne) pairs for typical ISS eclipse exit conditions have been extracted from the reduced Langmuir probe data flown aboard the NASA DE-2 satellite. Additionally, another 18,000 Te and Ne pairs of ISR data

  16. Enabling Earth Science Measurements with NASA UAS Capabilites

    NASA Technical Reports Server (NTRS)

    Albertson, Randal; Schoenung, Susan; Fladeland, Matthew M.; Cutler, Frank; Tagg, Bruce

    2015-01-01

    NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikkana not only flew wildfires in the Western US, but also provided major programs for the development of real-time data download and processing capabilities. In early 2014, an advanced L-band Synthetic Aperture Radar (SAR) also flew for the first time on Global Hawk, proving the utility of UAVSAR, which has been flying successfully on a manned aircraft. In this paper, we focus on two topics: 1) the results of a NASA program called UAS-Enabled Earth Science, in which three different science teams flew (at least) two different UAS to demonstrate platform performance, airspace integration, sensor performance, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks, especially measurements from several payload suites consisting of multiple instruments. The latest upgrades to data processing, communications, tracking and flight planning systems will also be described.

  17. Space Station Cargo Contracts on This Week @NASA – January 15, 2016

    NASA Image and Video Library

    2016-01-15

    On Jan. 14, NASA announced it has awarded three cargo contracts to ensure the critical science, research and technology demonstrations that are informing the agency’s journey to Mars are delivered to the International Space Station (ISS) from 2019 through 2024. The agency unveiled its selection of Orbital ATK; Sierra Nevada Corporation; and SpaceX to continue building on the initial resupply partnerships with two American companies. Also, Space station spacewalk, Juno breaks distance record, New Ceres images reveal details, Space Launch System progress and NASA-developed software in self-driving cars!

  18. A Summary of the NASA ISS Space Debris Collision Avoidance Program

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph

    2002-01-01

    Creating and implementing a process for the mitigation of the impact hazards due to cornets and asteroids will prove to be a complex and involved process. The closest similar program is the collision avoidance process currently used for protection of the International Space Station (ISS). This process, in operation for over three years, has many similarities to the NEG risk problem. By reviewing the ISS program, a broader perspective on the complications of and requirements for a NEO risk mitigation program might be obtained. Specifically, any lessons learned and continuing issues of concern might prove useful in the development of a NEO risk assessment and mitigation program.

  19. NASA Space Science Day Events-Engaging Students in Science

    NASA Technical Reports Server (NTRS)

    Foxworth, S.; Mosie, A.; Allen, J.; Kent, J.; Green, A.

    2015-01-01

    The NASA Space Science Day Event follows the same format of planning and execution at all host universities and colleges. These institutions realized the importance of such an event and sought funding to continue hosting NSSD events. In 2014, NASA Johnson Space Center ARES team has supported the following universities and colleges that have hosted a NSSD event; the University of Texas at Brownsville, San Jacinto College, Georgia Tech University and Huston-Tillotson University. Other universities and colleges are continuing to conduct their own NSSD events. NASA Space Science Day Events are supported through continued funding through NASA Discovery Program. Community Night begins with a NASA speaker and Astromaterials display. The entire community surrounding the host university or college is invited to the Community Night. This year at the Huston-Tillotson (HTU) NSSD, we had Dr. Laurie Carrillo, a NASA Engineer, speak to the public and students. She answered questions, shared her experiences and career path. The speaker sets a tone of adventure and discovery for the NSSD event. After the speaker, the public is able to view Lunar and Meteorite samples and ask questions from the ARES team. The students and teachers from nearby schools attended the NSSD Event the following day. Students are able to see the university or college campus and the university or college mentors are available for questions. Students rotate through hour long Science Technology Engineering and Mathematics (STEM) sessions and a display area. These activities are from the Discovery Program activities that tie in directly with k- 12 instruction. The sessions highlight the STEM in exploration and discovery. The Lunar and Meteorite display is again available for students to view and ask questions. In the display area, there are also other interactive displays. Angela Green, from San Jacinto College, brought the Starlab for students to watch a planetarium exhibit for the NSSD at Huston

  20. iss042e325633

    NASA Image and Video Library

    2015-03-11

    ISS042E325633 (03/11/2015) --- The day before three of his colleagues on the International Space Station were to return to Earth in a Soyuz rocket US NASA astronaut Terry Virts wished all well but gave birthday wishes before they left to Flight Engineer cosmonaut Alexander Samokutyaev with this tweeted message: "с днём рождения Саша- Happy Birthday Sasha!"!

  1. iss047e115879

    NASA Image and Video Library

    2016-05-13

    ISS047e115879 (05/13/2016) --- NASA astronaut Jeff Williams captured this image of the ancient Potidea canal in Greece from the International Space Station. For 2,000 years this canal has connected the Thermaikos and Toronaios Gulfs. Williams posted the photograph to his Twitter account May 13, 2016 saying, "Coastal currents and erosion over 2,000 years appear to have displaced the two sides of this isthmus," which may explain the coastline's misalignment".

  2. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  3. NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.

    2012-01-01

    A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.

  4. The Lifecycle of NASA's Earth Science Enterprise Data Resources

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert

    2004-01-01

    A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.

  5. Reuse International Space Station (ISS) Modules as Lunar Habitat

    NASA Technical Reports Server (NTRS)

    Miernik, Janie; Owens, James E.; Floyd, Brian A.; Strong, Janet; Sanford, Joseph

    2005-01-01

    NASA currently projects ending the ISS mission in approximately 2016, due primarily to the expense of re-boost and re-supply. Lunar outposts are expected to be in place in the same timeframe. In support of these mission goals, a scheme to reuse ISS modules on the moon has been identified. These modules could function as pressurized volumes for human habitation in a lunar vacuum as they have done in low-earth orbit. The ISS hull is structurally capable of withstanding a lunar landing because there is no atmospheric turbulence or friction. A compelling reason to send ISS modules to the moon is their large mass; a large portion of the ISS would survive re-entry if allowed to de-orbit to Earth. ISS debris could pose a serious risk to people or structures on Earth unless a controlled re-entry is performed. If a propulsive unit is devised to be attached to the ISS and control re-entry, a propulsion system could be used to propel the modules to the moon and land them there. ISS modules on the lunar surface would not require re-boost. Radiation protection can be attained by burying the module in lunar regolith. Power and a heat removal system would be required for the lunar modules which would need little support structure other than the lunar surface. With planetary mass surrounding the module, heat flux may be controlled by conductance. The remaining requirement is the re-supply of life-support expendables. There are raw materials on the moon to supplement these vital resources. The lunar maria is known to contain approximately 40% oxygen by mass in inorganic mineral compounds. Chemical conversion of moon rocks to release gaseous oxygen is known science. Recycling and cleaning of air and water are currently planned to be accomplished with ISS Environmental Control & Life Support Systems (ECLSS). By developing a Propulsion and Landing Module (PLM) to dock to the Common Berthing Mechanism (CBM), several identical PLMs could be produced to rescue and transfer the ISS

  6. The Student Spaceflight Experiments Program: Access to the ISS for K-14 Students

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J. J.; Hamel, S.; Manber, J.; Hulslander, M.

    2013-12-01

    The Student Spaceflight Experiments Program (SSEP) has flown 53 experiments to space, on behalf of students from middle school through community college, on 4 missions: each of the last 2 Space Shuttle flights, the first SpaceX demonstration flight to the International Space Station (ISS), and on SpaceX-1 to ISS. Two more missions to ISS have payloads flying in Fall 2013. SSEP plans 2 missions to the ISS per year for the foreseeable future, and is expanding the program to include 4-year undergraduate college students and home-schooled students. SSEP experiments have explored biological, chemical, and physical phenomena within self-contained enclosures developed by NanoRacks, currently in the form of MixStix Fluid Mixing Enclosures. 21,600 students participated in the initial 6 missions of SSEP, directly experiencing the entire lifecycle of space science experimentation through community-wide participation in SSEP, taking research from a nascent idea through developing competitive research proposals, down-selecting to three proposals from each participating community and further selection of a single proposal for flight, actual space flight, sample recovery, analysis, and reporting. The National Air and Space Museum has hosted 3 National Conferences for SSEP student teams to report results in keeping with the model of professional research. Student teams have unflinchingly reported on success, failure, and groundbased efforts to develop proposals for future flight opportunities. Community participation extends outside the sciences and the immediate proposal efforts to include design competitions for mission patches, which also fly to space. Student experimenters have rallied around successful proposal teams to support a successful experiment on behalf of the entire community. SSEP is a project of the National Center for Earth and Space Science Education enabled through NanoRacks LLC, working in partnership with NASA under a Space Act Agreement as part of the

  7. Veggies in Space: Salad Crop Production on the ISS

    NASA Technical Reports Server (NTRS)

    Massa, Gioia

    2016-01-01

    NASA is currently testing Veggie, a low mass, low energy, salad crop production system on the International Space Station (ISS). Veggie grows crops with LED lights using ISS cabin air and passive watering that has presented challenges in microgravity. Initial tests included red romaine lettuce and zinnia, with testing of Chinese cabbage, and tomatoes planned. A goal is to add supplemental salad foods to the astronaut diet as we prepare for a future journey to Mars.

  8. New Development in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    NASA Technical Reports Server (NTRS)

    Shirazi-Fard, Y.; Choi, S.; Harris, C.; Gong, C.; Beegle, J. E.; Stube, K. C.; Martin, K. J.; Nevitt, R. G.; Globus, R. G.

    2017-01-01

    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research program at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. Throughout phases of these missions, our practices, hardware and operations have evolved from tested to developed standards, and we are able to modify and customize our procedure and operations for mission specific requirements. The Rodent Research Habitat is capable of providing a living environment for animals on ISS according to standard animal welfare requirements. Using the cameras in the Habitat, the Rodent Research team has the ability to perform daily health checks on animals, and further analyze the collected videos for behavioral studies. A recent development of the Rodent Research hardware is inclusion of enrichment, to provide the animals the ability to rest and huddle. The Enrichment Hut is designed carefully for adult mice (up to 35 week old) within animal welfare, engineering, and operations constraints. The Hut is made out of the same stainless steel mesh as the cage interior, it has an ingress and an egress to allow animals move freely, and a hinge door to allow crewmembers remove the

  9. The Science behind a NASA Poster.

    ERIC Educational Resources Information Center

    Ashby, Susanne

    2002-01-01

    Uses National Aeronautics and Space Administration (NASA) posters and the information behind them as instructional materials to connect real world science to the classroom. Provides a list of resources. (YDS)

  10. The role of the space station in earth science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, Jack A.

    1999-01-22

    The International Space Station (ISS) has the potential to be a valuable platform for earth science research. By virtue of its being in a mid-inclination orbit (51.5 deg.), ISS provides the opportunity for nadir viewing of nearly 3/4 of the Earth's surface, and allows viewing to high latitudes if limb-emission or occultation viewing techniques are used. ISS also provides the opportunity for viewing the Earth under a range of lighting conditions, unlike the polar sun-synchronous satellites that are used for many earth observing programs. The ISS is expected to have ample power and data handling capability to support Earth-viewing instruments,more » provide opportunities for external mounting and retrieval of instruments, and be in place for a sufficiently long period that long-term data records can be obtained. On the other hand, there are several questions related to contamination, orbital variations, pointing knowledge and stability, and viewing that are of concern in consideration of ISS for earth science applications. The existence of an optical quality window (the Window Observational Research Facility, or WORF), also provides the opportunity for Earth observations from inside the pressurized part of ISS. Current plans by NASA for earth science research from ISS are built around the Stratospheric Aerosol and Gas Experiment (SAGE III) instrument, planned for launch in 2002.« less

  11. 75 FR 2893 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-002)] NASA Advisory Council; Science... FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters, Washington...

  12. 75 FR 13597 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-031)] NASA Advisory Council; Science.... FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters...

  13. 75 FR 30074 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-061)] NASA Advisory Council; Science...: Ms. Marian Norris, Science Mission Directorate, NASA Headquarters, Washington, DC 20546, (202) 358...

  14. 76 FR 35481 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Update. --Research and Analysis Update. --Wide-Field Infrared Survey Telescope Science Definition Team... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-054] NASA Advisory Council; Science... Subcommittee of the NASA Advisory Council (NAC). This subcommittee reports to the Science Committee of the NAC...

  15. KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Michelle Crouch talk in a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Michelle Crouch talk in a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  16. KENNEDY SPACE CENTER, FLA. - Dynamac employees Debbie Wells, Michelle Crouch and Larry Burns are silhouetted as they talk inside a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

    NASA Image and Video Library

    2003-09-10

    KENNEDY SPACE CENTER, FLA. - Dynamac employees Debbie Wells, Michelle Crouch and Larry Burns are silhouetted as they talk inside a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.

  17. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  18. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  19. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  20. Space science at NASA - Retrospect and prospect

    NASA Technical Reports Server (NTRS)

    Rosendhal, Jeffrey D.

    1988-01-01

    Following a brief overview of past accomplishments in space science, a status report is given concerning progress toward recovering from the Challenger accident and a number of trends are described which are likely to have a major influence on the future of the NASA Space Science program. Key changes in process include a trend toward a program centered on the use of large, long-lived facilities, the emergence of strong space capabilities outside the U.S., and steps being taken toward the diversification of NASA's launch capability. A number of recent planning activities are also discussed. Major considerations which will specifically need to be taken into account in NASA's prgram planning include the need for provision of a spectrum of flight activities and the need to recognize likely resource limitations and to do more realistic program planning.

  1. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  2. 75 FR 2892 - NASA Advisory Council; Science Committee; Heliophysics Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Science Committee of the NAC. The Meeting will be held for the purpose of soliciting from the scientific... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-004)] NASA Advisory Council; Science..., Washington, DC 20546. FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Science Mission Directorate, NASA...

  3. Practicing for Mars: The International Space Station (ISS) as a Testbed

    NASA Technical Reports Server (NTRS)

    Korth, David H.

    2014-01-01

    Allows demonstration and development of exploration capabilities to help accomplish future missions sooner with less risk to crew and mission Characteristics of ISS as a testbed High fidelity human operations platform in LEO: Continuously operating habitat and active laboratory. High fidelity systems. Astronauts as test subjects. Highly experienced ground operations teams. Offers a controlled test environment.: Consequences to systems performance and decision making not offered in ground analogs International participation. Continuously improving system looking for new technology and ideas to improve operations. Technology Demos & Critical Systems Maturation. Human Health and Performance. Operations Simulations and Techniques. Exploration prep testing on ISS has been ongoing since 2012. Number of tests increasing with each ISS expedition. One Year Crew Expedition starting in Spring 2015. ROSCOSMOS and NASA are partnering on the Participating Crew are Mikhail Kornienko and Scott Kelly Majority of testing is an extension of current Human Biomedical Research investigations Plan for extending & expanding upon current operations techniques and tech demo studies ESA 10 Day Mission in Fall 2015 ESA astronaut focus on testing exploration technologies Many more opportunities throughout the life of ISS! 4/24/2014 david.h.korth@nasa.gov 4 Exploration testing

  4. The NASA Herschel Science Center

    NASA Astrophysics Data System (ADS)

    Helou, G.

    2005-12-01

    NASA has set aside resources in support of US-based scientists working on analysis and interpretation of data from Herschel, and has designated IPAC as the home of the NASA Herschel Science Center (NHSC). In supporting the US-based Herschel community, NHSC will draw on its experience (ISO, Spitzer and other missions) as well as a close working relation with the Herschel mission and instrument expertise both in Europe and in the U.S. The support covers technical and logistical aspects as well as data analysis funding, to be handled in large measure following the Spitzer funding model.

  5. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  6. The NASA computer science research program plan

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  7. The ISS as a platform for a fully simulated mars voyage

    NASA Astrophysics Data System (ADS)

    Narici, Livio; Reitz, Guenther

    2016-07-01

    The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable "analogue" for deep space exploration. NASA has indeed suggested a 'full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays & autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final "analogue", performing a real 'dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage. This Mars ISS dry run (ISS4Mars) would last 500-800 days, mimicking most of the challenges which will be undertaken such as length, isolation, food provision, decision making, time delays, health monitoring diagnostic and therapeutic actions and more: not a collection of "single experiments", but a complete exploration simulation were all the pieces will come together for the first in space simulated Mars voyage. Most of these challenges are the same that those that will be encountered during a Moon voyage, with the most evident exceptions being the duration and the communication delay. At the time of the Mars ISS dry run all the science and technological challenges will have to be mostly solved by dedicated works. These solutions will be synergistically deployed in the dry run which will simulate all the different aspects of the voyage, the trip to Mars, the permanence on the planet and the return to Earth. During the dry run i) There will be no arrivals/departure of spacecrafts; 2) Proper communications delay with ground will be simulated; 3) Decision processes will migrate from Ground to ISS; 4) Permanence on Mars will be simulated. Mars ISS dry run will use just a portion of the ISS which will be totally isolated from the rest of the ISS, leaving to the other ISS portions the task to provide the

  8. ISS Materials Research

    NASA Image and Video Library

    2017-01-09

    Deena Dombrosky (Zin Technologies Engineer) is shown here filling a Procter & Gamble (P & G) sample that will be used in ground-testing as NASA prepares for their experiment on the International Space Station (ISS). The sample particles are the size of the wavelength of light and they are dyed orange/pink to glow when illuminated with the laser light enabling a confocal microscope to produce 3D images. The P & G experiment will improve product stabilizers that extend product shelf life. This has the added advantage of leading to more compact environmentally friendly containers.

  9. iss051e049012

    NASA Image and Video Library

    2017-05-23

    iss051e049012 (May 23, 2017) --- Air Force colonel and NASA astronaut Jack Fischer (left) works outside the U.S. Destiny laboratory module to attach wireless antennas during the 201st spacewalk in support of International Space Station maintenance and assembly. This was a short and unplanned, contingency spacewalk whose primary task was the removal and replacement of a failed computer data relay box that controls the functionality of important station components such as solar arrays and radiators.

  10. iss056e009809

    NASA Image and Video Library

    2018-06-11

    iss056e009809 (June 11, 2018) --- Expedition 56 Flight Engineer Serena Auñón-Chancellor of NASA is pictured in the Destiny laboratory module with gear from the Marrow investigation. She was collecting breath samples to analyze and measure red blood cell function to help doctors understand how blood cell production is altered in microgravity. Results may improve the health of astronauts on long-term missions and help patients on Earth with mobility and aging issues.

  11. iss055e009952

    NASA Image and Video Library

    2018-04-04

    iss055e009952 (April 4, 2018) --- The SpaceX Dragon resupply ship nears its capture point about 10 meters away from the International Space Station. Japanese astronaut Norishige Kanai commanded the Canadian Space Agency's Canadarm2 robotic arm to grapple Dragon at 6:40 a.m. EDT over the southern part of the Democratic Republic of the Congo in Africa. NASA astronaut Scott Tingle backed up Kanai while monitoring the cargo ship's approach and rendezvous.

  12. iss055e009956

    NASA Image and Video Library

    2018-04-04

    iss055e009956 (April 4, 2018) --- The SpaceX Dragon resupply ship nears its capture point about 10 meters away from the International Space Station. Japanese astronaut Norishige Kanai commanded the Canadian Space Agency's Canadarm2 robotic arm to grapple Dragon at 6:40 a.m. EDT over the southern part of the Democratic Republic of the Congo in Africa. NASA astronaut Scott Tingle backed up Kanai while monitoring the cargo ship's approach and rendezvous.

  13. NASA's Space Life Sciences Training Program

    NASA Technical Reports Server (NTRS)

    Coulter, G.; Lewis, L.; Atchison, D.

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D. C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  14. NASA's Space Life Sciences Training Program.

    PubMed

    Coulter, G; Lewis, L; Atchison, D

    1994-01-01

    The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.

  15. NASA Space Sciences Strategic Planning

    NASA Technical Reports Server (NTRS)

    Crane, Philippe

    2004-01-01

    The purpose of strategic planning roadmap is to:Fulfill the strategic planning requirements; Provide a guide to the science community in presenting research requests to NASA; Inform and inspire; Focus investments in technology and research for future missions; and Provide the scientific and technical justification for augmentation requests.

  16. CDRA-4EU Testing to Assess Increased Number of ISS Crew

    NASA Technical Reports Server (NTRS)

    Peters, Warren T.; Knox, James C.

    2017-01-01

    The International Space Station (ISS) program is investigating methods to increase carbon dioxide (CO2) removal on ISS in order to support an increased number of astronauts at a future date. The Carbon Dioxide Removal Assembly - Engineering Unit (CDRA-4EU) system at NASA Marshall Space Flight Center (MSFC) was tested at maximum fan settings to evaluate CO2 removal rate and power consumption at those settings.

  17. Ambient mass density effects on the International Space Station (ISS) microgravity experiments

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Smith, R. E.

    1996-01-01

    The Marshall engineering thermosphere model was specified by NASA to be used in the design, development and testing phases of the International Space Station (ISS). The mass density is the atmospheric parameter which most affects the ISS. Under simplifying assumptions, the critical ambient neutral density required to produce one micro-g on the ISS is estimated using an atmospheric drag acceleration equation. Examples are presented for the critical density versus altitude, and for the critical density that is exceeded at least once a month and once per orbit during periods of low and high solar activity. An analysis of the ISS orbital decay is presented.

  18. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    NASA Technical Reports Server (NTRS)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  19. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  20. NASA Space Sciences Symposium-1977

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The primary objective of the symposium was to motivate American Indians and other minority youths and women to select science and engineering as viable career choices, thereby making them available to the technical work force. Other objectives were: (1) to determine how aerospace technology careers and aerospace activities can be made more relevant to minorities and women; (2) to provide an opportunity for key NASA officials to interact with teachers and counselors of the participating schools; (3) to stimulate a greater interest among American Indian organizations and students in NASA's research and development programs; (4) to help NASA's efforts in the recruiting of minorities and women into its work force; and (5) to provide opportunities for minority aerospace scientists and engineers to interact with the minority community, particularly with youths at the junior high school and high school levels.

  1. NASA Center for Computational Sciences: History and Resources

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Pictured here is the Space Shuttle Orbiter Endeavour, STS-111 mission insignia. The International Space Station (ISS) recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when STS-111 visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  3. Delay/Disruption Tolerant Networking for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Schlesinger, Adam; Willman, Brett M.; Pitts, Lee; Davidson, Suzanne R.; Pohlchuck, William A.

    2017-01-01

    Disruption Tolerant Networking (DTN) is an emerging data networking technology designed to abstract the hardware communication layer from the spacecraft/payload computing resources. DTN is specifically designed to operate in environments where link delays and disruptions are common (e.g., space-based networks). The National Aeronautics and Space Administration (NASA) has demonstrated DTN on several missions, such as the Deep Impact Networking (DINET) experiment, the Earth Observing Mission 1 (EO-1) and the Lunar Laser Communication Demonstration (LLCD). To further the maturation of DTN, NASA is implementing DTN protocols on the International Space Station (ISS). This paper explains the architecture of the ISS DTN network, the operational support for the system, the results from integrated ground testing, and the future work for DTN expansion.

  4. Vision Science and Technology at NASA: Results of a Workshop

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Editor); Mulligan, Jeffrey B. (Editor)

    1990-01-01

    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program.

  5. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Bayt, Robert L. (Compiler); Lueders, Kathryn L. (Compiler)

    2016-01-01

    The ISS Crew Transportation and Services Requirements Document (CCT-REQ-1130) contains all technical, safety, and crew health medical requirements that are mandatory for achieving a Crew Transportation System Certification that will allow for International Space Station delivery and return of NASA crew and limited cargo. Previously approved on TN23183.

  6. NASA Applied Sciences Program Rapid Prototyping Results and Conclusions

    NASA Astrophysics Data System (ADS)

    Cox, E. L.

    2007-12-01

    NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five

  7. NASA Airborne Science Program: NASA Stratospheric Platforms

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  8. NASA Opportunities in Visualization, Art, and Science (NOVAS)

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Zevin, D.; Croft, S.; Thrall, L.; Shackelford, R. L., III

    2015-12-01

    Led by members of UC Berkeley's Multiverse education team at the Space Sciences Laboratory (http://multiverse.ssl.berkeley.edu/), in partnership with UC Berkeley Astronomy, NASA Opportunities in Visualization, Art and Science (NOVAS) is a NASA-funded program mainly for high school students that explores NASA science through art and highlights the need for and uses of art and visualizations in science. The project's aim is to motivate more diverse young people (especially African Americans) to consider Science, Technology, Engineering, and Mathematics (STEM) careers. The program offers intensive summer workshops at community youth centers, afterschool workshops at a local high school, a year-round internship for those who have taken part in one or more of our workshops, public and school outreach, and educator professional development workshops. By adding Art (fine art, graphic art, multimedia, design, and "maker/tinkering" approaches) to STEM learning, we wanted to try a unique combination of what's often now called the "STEAM movement" in STEM education. We've paid particular attention to highlighting how scientists and artists/tinkerers often collaborate, and why scientists need visualization and design experts. The program values the rise of the STEAM teaching concept, particularly that art, multimedia, design, and maker projects can help communicate science concepts more effectively. We also promote the fact that art, design, and visualization skills can lead to jobs and broader participation in science, and we frequently work with and showcase scientific illustrators and other science visualization professionals. This presentation will highlight the significant findings from our multi-year program.

  9. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  10. Using ISS Telescopes for Electromagnetic Follow-up of Gravitational Wave Detections of NS-NS and NS-BH Mergers

    NASA Technical Reports Server (NTRS)

    Camp, J.; Barthelmy, S.; Blackburn, L.; Carpenter, K. G.; Gehrels, N.; Kanner, J.; Marshall, F. E.; Racusin, J. L.; Sakamoto, T.

    2013-01-01

    The International Space Station offers a unique platform for rapid and inexpensive deployment of space telescopes. A scientific opportunity of great potential later this decade is the use of telescopes for the electromagnetic follow-up of ground-based gravitational wave detections of neutron star and black hole mergers. We describe this possibility for OpTIIX, an ISS technology demonstration of a 1.5 m diffraction limited optical telescope assembled in space, and ISS-Lobster, a wide-field imaging X-ray telescope now under study as a potential NASA mission. Both telescopes will be mounted on pointing platforms, allowing rapid positioning to the source of a gravitational wave event. Electromagnetic follow-up rates of several per year appear likely, offering a wealth of complementary science on the mergers of black holes and neutron stars.

  11. EPO in NASA's Science Mission Directorate

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, A.; Cooper, L. P.

    2005-05-01

    The Science Mission Directorate (SMD) at NASA believes very strongly in education and public outreach (EPO) and has embedded such programs within its missions. There are also some funding opportunities that are available outside the mission context. We will provide an overview of the various funding opportunities available through the SMD at NASA to carry out EPO programs. We will introduce speakers who have won such EPO awards and they will discuss their experience with writing the proposals and carrying out their projects.

  12. iss009e23808

    NASA Image and Video Library

    2004-09-20

    ISS009-E-23808 (20 September 2004) --- A fringing coral reef in the Red Sea is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). The Sudanese coast of the Red Sea is a well known destination for divers due to clear water and abundance of coral reefs (or “shia’ab” in Arabic). According to NASA scientists studying the ISS imagery, reefs are formed primarily from precipitation of calcium carbonate by corals; massive reef structures are built over thousands of years of succeeding generations of coral. In the Red Sea, fringing reefs form on shallow shelves of less than 50 meters depth along the coastline. This photograph illustrates the intricate morphology of the reef system located along the coast between Port Sudan to the northwest and the Tokar River delta to the southeast. Close to shore, fringing reefs border the coastline. Farther offshore grows a larger, more complicated barrier reef structure. Different parts of the reef structure show up as variable shades of light blue. Deeper water channels (darker blue) define the boundaries for individual reefs within the greater barrier reef system. Such a complex pattern of reefs may translate into greater ecosystem diversity through a wide variety of local reef environments.

  13. NASA's Microgravity Science Program

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

  14. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Flores, Ginger N.

    2009-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG has been operating on the ISS since July 2002 and is currently located in the Columbus Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a workbench type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. In fact, the MSG has been used for over 5000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technologies. MSG is an ideal platform for science investigations and research required to advance the technology readiness levels (TRLs) applicable to the Constellation Program. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of future investigations currently planned for operation in the MSG, and potential applications of MSG investigations that can provide useful data to the Constellation Program. In addition, this paper will address

  15. Human Exploration Science Office (KX) Overview

    NASA Technical Reports Server (NTRS)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides

  16. New Mission to Measure Global Lightning from the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2015-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) from November 1997 to April 2015 between 38° N/S latitudes, and its Optical Transient Detector predecessor that acquired observation from May 1995 to April 2000 over 75° N/S latitudes. In February 2016, as an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission. The LIS on ISS will continue observations of the amount, rate, and radiant energy of total lightning over the Earth. More specifically, LIS measures lightning during both day and night, with storm scale resolution (~4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines. This mission will also extend TRMM time series observations, expand the latitudinal coverage to 54° latitude, provide real-time lightning data to operational users, espically over data sparse oceanic regions, and enable cross-sensor observations and calibrations that includes the new GOES-R Geostationary Lightning Mapper (GLM) and the Meteosat

  17. NASA/JSC ISSLive!

    NASA Technical Reports Server (NTRS)

    Harris, Philip D.; Price, Jennifer B.; Khan, Ahmed; Severance, Mark T.

    2011-01-01

    Just 150 miles above us, the International Space Station (ISS) is orbiting. Each day, the astronauts on board perform a variety of activities from exercise, science experiments, and maintenance. Yet, many on the ground do not know about these daily activities. National Aeronautics Space Agency/ Johnson Space Center (NASA/JSC) innovation creation ISSLive! - an education project - is working to bridge this knowledge gap with traditional education channels such as schools, but also non-traditional channels with the non-technical everyday public. ISSLive! provides a website that seamlessly integrates planning and telemetry data, video feeds, 3D models, and iOS and android applications. Through the site, users are able to view astronauts daily schedules, in plain English alongside the original data. As an example, when an astronaut is working with a science experiment, a user will be able to read about the activity and for more detailed activities follow provided links to view more information all integrated into the same site. Live telemetry data from a predefined set can also be provided alongside the activities. For users to learn more, 3D models of the external and internal parts of the ISS are available, allowing users to explore the station and even select sensors, such as temperature, and view a real-time chart of the data. Even ground operations are modeled with a 3D mission control center, providing users information on the various flight control disciplines and showing live data that they would be monitoring. Some unique activities are also highlighted and have dedicated spaces to explore in more detail. Education is the focus of ISSLive!, even from the beginning when university students participated in the development process as part of their master s projects. Focus groups at a Houston school showed interest in the project and excitement towards including ISSLive! in their classroom. Through this inclusion, students' knowledge can be assessed with projects

  18. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in

  19. International Space Station (ISS)

    NASA Image and Video Library

    1997-06-01

    This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  20. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the