Sample records for nasa jsc arc-jet

  1. Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Larin, Max E.; Marichalar, Jeremiah J.; Kinder, Gerald R.; Campbell, Charles H.; Riccio, Joseph R.; Nguyen, Tien Q.; Del Papa, Steven V.; Pulsonetti, Maria V.

    2010-01-01

    A series of tests conducted recently at the NASA JSC arc -jet test facility demonstrated that a protruding tile material can survive the exposure to the high enthalpy flows characteristic of the Space Shuttle Orbiter re-entry environments. The tests provided temperature data for the protuberance and the surrounding smooth tile surfaces, as well as the tile bond line. The level of heating needed to slump the protuberance material was achieved. Protuberance failure mode was demonstrated.

  2. Consolidating NASA's Arc Jets

    NASA Technical Reports Server (NTRS)

    Balboni, John A.; Gokcen, Tahir; Hui, Frank C. L.; Graube, Peter; Morrissey, Patricia; Lewis, Ronald

    2015-01-01

    The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater.

  3. Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Larin, M. E.; Marichalar, J. J.; Kinder, G. R.; Campbell, C. H.; Riccio, J. R.; Nquyen, T. Q.; DelPapa, S. V.; Pulsonetti, M. V.

    2009-01-01

    A series of arc-jet tests in support of the Shuttle Orbiter Boundary Layer Transition flight experiment was conducted in the Channel Nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility. The boundary layer trip was a protrusion of a certain height and geometry fabricated as part of a 6"x6" tile insert, a special test article made of the Boeing Rigid Insulation tile material and coated with the Reaction Cured Glass used for the bottom fuselage tiles of the Space Shuttle Orbiter. A total of five such tile inserts were manufactured: four with the 0.25-in. trip height, and one with the 0.35-in. trip height. The tile inserts were interchangeably installed in the center of the 24"x24" variable configuration tile array mounted in the 24"x24" test section of the channel nozzle. The objectives of the test series were to demonstrate that the boundary layer trip can safely withstand the Space Shuttle Orbiter flight-like re-entry environments and provide temperature data on the protrusion surface, surfaces of the nearby tiles upstream and downstream of the trip, as well as the bond line between the tiles and the structure. The targeted test environments were defined for the tip of the protrusion, away from the nominal surface of the tile array. The arc jet test conditions were approximated in order to produce the levels of the free stream total enthalpy at the protrusion height similar to those expected in flight. The test articles were instrumented with surface, sidewall and bond line thermocouples. Additionally, Tempilaq temperature-indicating paint was applied to the nominal tiles of the tile array in locations not interfering with the protrusion trip. Five different grades of paint were used that disintegrate at different temperatures between 1500 and 2000 deg F. The intent of using the paint was to gauge the RCG-coated tile surface temperature, as well as determine its usefulness for a flight experiment. This paper provides an

  4. Exhaust-gas measurements from NASAs HYMETS arc jet.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Paul Albert

    Arc-jet wind tunnels produce conditions simulating high-altitude hypersonic flight such as occurs upon entry of space craft into planetary atmospheres. They have traditionally been used to study flight in Earth's atmosphere, which consists mostly of nitrogen and oxygen. NASA is presently using arc jets to study entry into Mars' atmosphere, which consists of carbon dioxide and nitrogen. In both cases, a wide variety of chemical reactions take place among the gas constituents and with test articles placed in the flow. In support of those studies, we made measurements using a residual gas analyzer (RGA) that sampled the exhaust stream ofmore » a NASA arc jet. The experiments were conducted at the HYMETS arc jet (Hypersonic Materials Environmental Test System) located at the NASA Langley Research Center, Hampton, VA. This report describes our RGA measurements, which are intended to be used for model validation in combination with similar measurements on other systems.« less

  5. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  6. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  7. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  8. NASA Ames Arc Jets and Range, Capabilities for Planetary Entry

    NASA Technical Reports Server (NTRS)

    Fretter, Ernest F.

    2005-01-01

    NASA is pursuing innovative technologies and concepts as part of America's Vision for Space Exploration. The rapidly emerging field of nanotechnology has led to new concepts for multipurpose shields to prevent catastrophic loss of vehicles and crew against the triple threats of aeroheating during atmospheric entry, radiation (Solar and galactic cosmic rays) and Micrometorid/Orbital Debris (MMOD) strikes. One proposed concept is the Thermal Radiation Impact Protection System (TRIPS) using carbon nanotubes, hydrogenated carbon nanotubes, and ceramic coatings as a multi-use TPS. The Thermophysics Facilities Branch of the Space Technology Division at NASA Ames Research Center provides testing services for the development and validation of the present and future concepts being developed by NASA and national and International research firms. The Branch operates two key facilities - the Range Complex and the Arc Jets. The Ranges include both the Ames Vertical Gun Range (AVGR) and the Hypervelocity Free Flight (HFF) gas guns best suited for MMOD investigations. Test coupons can be installed in the AVGR or HFF and subjected to particle impacts from glass or metal particles from micron to _ inch (6.35-mm) diameters and at velocities from 5 to 8 kilometers per second. The facility can record high-speed data on film and provide damage assessment for analysis by the Principle Investigator or Ames personnel. Damaged articles can be installed in the Arc Jet facility for further testing to quantify the effects of damage on the heat shield s performance upon entry into atmospheric environments.

  9. Evaluation of the NASA Arc Jet Capabilities to Support Mission Requirements

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bruce, Walt; Gage, Peter; Horn, Dennis; Mastaler, Mike; Rigali, Don; Robey, Judee; Voss, Linda; Wahlberg, Jerry; Williams, Calvin

    2010-01-01

    NASA accomplishes its strategic goals through human and robotic exploration missions. Many of these missions require launching and landing or returning spacecraft with human or return samples through Earth's and other planetary atmospheres. Spacecraft entering an atmosphere are subjected to extreme aerothermal loads. Protecting against these extreme loads is a critical element of spacecraft design. The safety and success of the planned mission is a prime concern for the Agency, and risk mitigation requires the knowledgeable use of thermal protection systems to successfully withstand the high-energy states imposed on the vehicle. Arc jets provide ground-based testing for development and flight validation of re-entry vehicle thermal protection materials and are a critical capability and core competency of NASA. The Agency's primary hypersonic thermal testing capability resides at the Ames Research Center and the Johnson Space Center and was developed and built in the 1960s and 1970s. This capability was critical to the success of Apollo, Shuttle, Pioneer, Galileo, Mars Pathfinder, and Orion. But the capability and the infrastructure are beyond their design lives. The complexes urgently need strategic attention and investment to meet the future needs of the Agency. The Office of Chief Engineer (OCE) chartered the Arc Jet Evaluation Working Group (AJEWG), a team of experienced individuals from across the Nation, to capture perspectives and requirements from the arc jet user community and from the community that operates and maintains this capability and capacity. This report offers the AJEWG's findings and conclusions that are intended to inform the discussion surrounding potential strategic technical and investment strategies. The AJEWG was directed to employ a 30-year Agency-level view so that near-term issues did not cloud the findings and conclusions and did not dominate or limit any of the strategic options.

  10. Bulk Enthalpy Calculations in the Arc Jet Facility at NASA ARC

    NASA Technical Reports Server (NTRS)

    Thompson, Corinna S.; Prabhu, Dinesh; Terrazas-Salinas, Imelda; Mach, Jeffrey J.

    2011-01-01

    The Arc Jet Facilities at NASA Ames Research Center generate test streams with enthalpies ranging from 5 MJ/kg to 25 MJ/kg. The present work describes a rigorous method, based on equilibrium thermodynamics, for calculating the bulk enthalpy of the flow produced in two of these facilities. The motivation for this work is to determine a dimensionally-correct formula for calculating the bulk enthalpy that is at least as accurate as the conventional formulas that are currently used. Unlike previous methods, the new method accounts for the amount of argon that is present in the flow. Comparisons are made with bulk enthalpies computed from an energy balance method. An analysis of primary facility operating parameters and their associated uncertainties is presented in order to further validate the enthalpy calculations reported herein.

  11. NASA Shuttle Orbiter Reinforced Carbon Carbon (RCC) Crack Repair Arc-Jet Testing

    NASA Technical Reports Server (NTRS)

    Clark, ShawnDella; Larin, Max; Rochelle, Bill

    2007-01-01

    This NASA study demonstrates the capability for testing NOAX-repaired RCC crack models in high temperature environments representative of Shuttle Orbiter during reentry. Analysis methods have provided correlation of test data with flight predictions. NOAX repair material for RCC is flown on every STS flight in the event such a repair is needed. Two final test reports are being generated on arc-jet results (both calibration model runs and repaired models runs).

  12. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  13. On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Alunni, Antonella I.

    2012-01-01

    This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.

  14. Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.

    2017-01-01

    The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.

  15. Arc Jet Facility Test Condition Predictions Using the ADSI Code

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Prabhu, Dinesh; Terrazas-Salinas, Imelda

    2015-01-01

    The Aerothermal Design Space Interpolation (ADSI) tool is used to interpolate databases of previously computed computational fluid dynamic solutions for test articles in a NASA Ames arc jet facility. The arc jet databases are generated using an Navier-Stokes flow solver using previously determined best practices. The arc jet mass flow rates and arc currents used to discretize the database are chosen to span the operating conditions possible in the arc jet, and are based on previous arc jet experimental conditions where possible. The ADSI code is a database interpolation, manipulation, and examination tool that can be used to estimate the stagnation point pressure and heating rate for user-specified values of arc jet mass flow rate and arc current. The interpolation is performed in the other direction (predicting mass flow and current to achieve a desired stagnation point pressure and heating rate). ADSI is also used to generate 2-D response surfaces of stagnation point pressure and heating rate as a function of mass flow rate and arc current (or vice versa). Arc jet test data is used to assess the predictive capability of the ADSI code.

  16. jsc2017e009735

    NASA Image and Video Library

    2017-01-26

    jsc2017e009735 (01/26/2017) --- Former NFL players on tour of the Johnson Space Center (JSC) as part of the Centers Super Bowl tailgate event gathered together in front of JSC's Mission Control. The former players toured JSC in the week before the Super Bowl game. Kneeling front left: Kerry Henderson (NY Jets), Joe Wesley (49ers, Jaguars), First standing row, left: Ronald Humphrey (IN Colts), James Williams (Saints, Jag, 49ers, Browns), Emanuel McNeil (NY Jets), Sammy Davis (Chargers, 49ers, Buccaneers), Daryl Gaines (KC Chiefs, Cris Calloway (Giants, Steelers, Falcons, Patriots), Lemanual Stinson (Bears & Falcons). Back row left: Ginger Kerrrick (JSC Staff), Jermaine Fazonde (Chargers), Michael Holmes (49ers), Kevin Williams (Vikings, Seahawks, Saints). NASA PHOTOGRAPHER: Lauren Harnett

  17. Enthalpy By Energy Balance for Aerodynamic Heating Facility at NASA Ames Research Center Arc Jet Complex

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; MacDonald, Christine L.; Martinez, Edward R.; Balboni, John A.; Anderson, Karl F.; Arnold, Jim O. (Technical Monitor)

    2002-01-01

    The NASA Ames Research Center (ARC) Arc Jet Facilities' Aerodynamic Heating Facility (AHF) has been instrumented for the Enthalpy By Energy Balance (EB2) method. Diagnostic EB2 data is routinely taken for all AHF runs. This paper provides an overview of the EB2 method implemented in the AHF. The chief advantage of the AHF implementation over earlier versions is the non-intrusiveness of the instruments used. For example, to measure the change in cooling water temperature, thin film 1000 ohm Resistance Temperature Detectors (RTDs) are used with an Anderson Current Loop (ACL) as the signal conditioner. The ACL with 1000 ohm RTDs allows for very sensitive measurement of the increase in temperature (Delta T) of the cooling water to the arc heater, which is a critical element of the EB2 method. Cooling water flow rates are measured with non-intrusive ultrasonic flow meters.

  18. Boundary Layer Protuberance Simulations in Channel Nozzle Arc-Jet

    NASA Technical Reports Server (NTRS)

    Marichalar, J. J.; Larin, M. E.; Campbell, C. H.; Pulsonetti, M. V.

    2010-01-01

    Two protuberance designs were modeled in the channel nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility with the Data-Parallel Line Relaxation computational fluid dynamics code. The heating on the protuberance was compared to nominal baseline heating at a single fixed arc-jet condition in order to obtain heating augmentation factors for flight traceability in the Boundary Layer Transition Flight Experiment on Space Shuttle Orbiter flights STS-119 and STS-128. The arc-jet simulations were performed in conjunction with the actual ground tests performed on the protuberances. The arc-jet simulations included non-uniform inflow conditions based on the current best practices methodology and used variable enthalpy and constant mass flow rate across the throat. Channel walls were modeled as fully catalytic isothermal surfaces, while the test section (consisting of Reaction Cured Glass tiles) was modeled as a partially catalytic radiative equilibrium wall. The results of the protuberance and baseline simulations were compared to the applicable ground test results, and the effects of the protuberance shock on the opposite channel wall were investigated.

  19. Electrical Arc Ignition Testing for Constellation Program

    NASA Technical Reports Server (NTRS)

    Sparks, Kyle; Gallus, Timothy; Smith, Sarah

    2009-01-01

    NASA Johnson Space Center (JSC) Materials and Processes Branch requested that NASA JSC White Sands Test Facility (WSTF) perform testing for the Constellation Program to evaluate the hazard of electrical arc ignition of materials that could be in close proximity to batteries. Specifically, WSTF was requested to perform wire-break electrical arc tests to determine the current threshold for ignition of generic cotton woven fabric samples with a fixed voltage of 3.7 V, a common voltage for hand-held electrical devices. The wire-break test was developed during a previous test program to evaluate the hazard of electrical arc ignition inside the Extravehicular Mobility Unit [1].

  20. ARC-2010-ACD10-0011

    NASA Image and Video Library

    2010-01-26

    Small Business Council meeting hosed by NASA Ames Research Center: Naeemah Lee, H.Q., Cheryl Harrison, JSC, Gil DelVaile, GSRC, Mary Helen Ruiz, JPL, David Grove, HQ, John Cecconi, NSSC, Sandra Morris, HQ/OP, Michelle Stracener, SSC, Randy Manning, LaRC, Vernon Vann, LaRC, David Brock, MSFC, Ben Henson, MSFC, Larry Third, KSC, Robert Medina, DFRC, Christine Munroe, ARC, Lupe M. Velasquez, ARC, Monica F. Craft, JSC (?), Angel Castillo, NMO, Timothy C Pierce, GRC, Charles Williams, JSC, Jennifer Perez, GSFC, Rosa Acevedo, GSFC, Glenn A Delgado, HQ/Assoc Admin for Small Business, Tabisa Tepfer, HQ/OSBP/MORIAssoc, Richard Mann, HQ/OSBP

  1. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  2. Flow Characterization Studies of the 10-MW TP3 Arc-Jet Facility: Probe Sweeps

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Alunni, Antonella I.

    2016-01-01

    This paper reports computational simulations and analysis in support of calibration and flow characterization tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted in the NASA Ames 10-MW TP3 facility using flat-faced stagnation calorimeters at six conditions corresponding to the steps of a simulated flight heating profile. Data were obtained using a conical nozzle test configuration in which the models were placed in a free jet downstream of the nozzle. Experimental surveys of arc-jet test flow with pitot pressure and heat flux probes were also performed at these arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. Two different sets of pitot pressure and heat probes were used: 9.1-mm sphere-cone probes (nose radius of 4.57 mm or 0.18 in) with null-point heat flux gages, and 15.9-mm (0.625 in) diameter hemisphere probes with Gardon gages. The probe survey data clearly show that the test flow in the TP3 facility is not uniform at most conditions (not even axisymmetric at some conditions), and the extent of non-uniformity is highly dependent on various arc-jet parameters such as arc current, mass flow rate, and the amount of cold-gas injection at the arc-heater plenum. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested. Comparisons of computations with the experimental measurements show reasonably good agreement except at the extreme low pressure conditions of the facility envelope.

  3. Development and Application of Novel Diagnostics for Arc-Jet Characterization

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.

    2002-01-01

    This NASA-Ames University Consortium Project has focused on the design and demonstration of optical absorption sensors using tunable diode laser to target atomic copper impurities from electrode erosion in thc arc-heater metastable electronic excited states of molecular nitrogen, atomic argon, aid atomic oxygen in the arcjet plume. Accomplishments during this project include: 1. Design, construction, and assembly of optical access to the arc-heater gas flow. 2. Design of diode laser sensor for copper impurities in the arc-heater flow. 3 . Diode laser sensor design and test in laboratory plasmas for metastable Ar(3P), O(5S), N(4P), and N2(A). 4. Diode laser sensor demonstration measurements in the test cell to monitor species in the arc-jet plume.

  4. Strategies for recruiting additional African Americans into the NASA JSC summer faculty fellows program

    NASA Technical Reports Server (NTRS)

    Hyman, Ladelle M.

    1993-01-01

    African Americans have participated sporadically in the NASA JSC Summer Faculty Fellows Program--none in 1992 and four in 1993. There is a pool of African Americans who are both qualified to provide services and willing to participate in initiatives which support technologies required for future JSC programs. They can provide human support and handle mission operations, spacecraft systems, planet surface systems, and management tools. Most of these faculty teach at historically black colleges and universities (HBCU's). This research will document the current recruitment system, critique it, and develop a strategy which will facilitate the diversification of the NASA JSC Summer Faculty Fellows Program. While NASA currently mails notices to HBCU's, such notices have generated few applications from, and fewer selections of, targeted faculty. To increase the participation of African Americans in the NASA JSC Summer Faculty Fellows Program, this participant will prepare a strategy which includes a document which identifies HBCU-targeted faculty and enumerates more formally extensive and intensive communication procedures. A fifteen-minute panel discussion, which will include a video, will be delivered during the annual meeting of the American Society for Engineering Education (ASEE) to be held in Edmonton, Alberta, Canada, June 26-29, 1994. An announcement letter will be mailed to targeted faculty; follow-up telephone calls and personal visits will be made and a checklist flowchart will be completed by key NASA personnel or designee. Although initially limited to NASA JSC's recruitment of African Americans, this strategy may be broadened to include other NASA sites and other targeted minority groups.

  5. Arc Jet Testing of the TIRS Cover Thermal Protection System for Mars Exploration Rover

    NASA Technical Reports Server (NTRS)

    Szalai, Christine E.; Chen, Y.-K.; Loomis, Mark; Hui, Frank; Scrivens, Larry

    2002-01-01

    This paper summarizes the arc jet test results of the Mars Exploration Rover (MER) Silicone Impregnated Reusable Ceramic Ablator (SIRCA) Transverse Impulse Rocket System (TIRS) Cover test series in the Panel Test Facility (PTF) at NASA Ames Research Center (ARC). NASA ARC performed aerothermal environment analyses, TPS sizing and thermal response analyses, and arc jet testing to evaluate the MER SIRCA TIRS Cover design and interface to the aeroshell structure. The primary objective of this arc jet test series was to evaluate specific design details of the SIRCA TIRS Cover interface to the MER aeroshell under simulated atmospheric entry heating conditions. Four test articles were tested in an arc jet environment with various sea] configurations. The test condition was designed to match the predicted peak flight heat load at the gap region between the SIRCA and the backshell TPS material, SLA-561S, and resulted in an over-test (with respect to heat flux and heat load) for the apex region of the SIRCA TIRS Cover. The resulting pressure differential was as much as twenty times that predicted for the flight case, depending on the location, and there was no post-test visual evidence of over-heating or damage to the seal, bracket, or backshell structure. The exposed titanium bolts were in good condition at post-test and showed only a small amount of oxidation at the leading edge locations. Repeatable thermocouple data were obtained and SIRCA thermal response analyses were compared to applicable thermocouple data. For the apex region of the SIRCA TIRS Cover, a one-dimensional thermal response prediction proved overly conservative, as there were strong multi-dimensional conduction effects evident from the thermocouple data. The one-dimensional thermal response prediction compared well with the thermocouple data for the leading edge "lip" region at the bolt location. In general, the test results yield confidence in the baseline seal design to prevent hot gas ingestion at the

  6. Replacement/Refurbishment of JSC/NASA POD Specimens

    NASA Technical Reports Server (NTRS)

    Castner, Willard L.

    2010-01-01

    The NASA Special NDE certification process requires demonstration of NDE capability by test per NASA-STD-5009. This test is performed with fatigue cracked specimens containing very small cracks. The certification test results are usually based on binomial statistics and must meet a 90/95 Probability of Detection (POD). The assumption is that fatigue cracks are tightly closed, difficult to detect, and inspectors and processes passing such a test are well qualified for inspecting NASA fracture critical hardware. The JSC NDE laboratory has what may be the largest inventory that exists of such fatigue cracked NDE demonstration specimens. These specimens were produced by the hundreds in the late 1980s and early 1990s. None have been produced since that time and the condition and usability of the specimens are questionable.

  7. Development of the CELSS Emulator at NASA JSC

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Emulator is under development at the NASA Johnson Space Center (JSC) with the purpose to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. This paper describes Version 1.0 of the CELSS Emulator that was initiated in 1988 on the JSC Multi Purpose Applications Console Test Bed as the simulation framework. The run module of the simulation system now contains a CELSS model called BLSS. The CELSS Emulator makes it possible to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  8. NASA OFFICIALS - MISSION OPERATIONS CONROL ROOM (MOCR) - MONITORING PROBLEMS - SKYLAB (SL)-3 COMMAND MODULE (CM) - JSC

    NASA Image and Video Library

    1973-08-02

    S73-31875 (2 Aug. 1973) --- After learning of a problem in the Command/Service Module which was used to transport the Skylab 3 crew to the orbiting Skylab space station cluster, NASA officials held various meetings to discuss the problem. Here, four men monitor the current status of the problem in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) at the Johnson Space Center (JSC). From the left are Gary E. Coen, Guidance and Navigation System flight controller; Howard W. Tindall Jr., Director of Flight Operations at JSC; Dr. Christopher C. Kraft Jr., JSC Director; and Sigurd A. Sjoberg, JSC Deputy Director. Photo credit: NASA

  9. [Study on the fluctuation phenomena of arc plasma spraying jet].

    PubMed

    Zhao, Wen-hua; Liu, Di; Tian, Kuo

    2002-08-01

    The turbulence phenomenon is one of the most attractive characteristics of a DC arc plasma spraying jet. Most of the previous investigations believe that there is a laminar flow region in core of the jet. A spectrum diagnostic system has been built up in this paper to investigate these effects with the aid of high-speed digital camera. The FFT method has been applied to the analysis on the arc voltage and light signals. The influence of the arc behavior and the power supply on the jet is full-scale. It seems that there is not a laminar flow region in core of the jet. Moreover, from the light dynamic variation graph, the jet fluctuation due to the arc voltage behavior maybe is the dominant characteristic of the jet behavior.

  10. Graphite Ablation and Thermal Response Simulation Under Arc-Jet Flow Conditions

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.; Reda, D. C.; Stewart, D. A.; Venkatapathy, Ethiraj (Technical Monitor)

    2002-01-01

    The Two-dimensional Implicit Thermal Response and Ablation program, TITAN, was developed and integrated with a Navier-Stokes solver, GIANTS, for multidimensional ablation and shape change simulation of thermal protection systems in hypersonic flow environments. The governing equations in both codes are demoralized using the same finite-volume approximation with a general body-fitted coordinate system. Time-dependent solutions are achieved by an implicit time marching technique using Gauess-Siedel line relaxation with alternating sweeps. As the first part of a code validation study, this paper compares TITAN-GIANTS predictions with thermal response and recession data obtained from arc-jet tests recently conducted in the Interaction Heating Facility (IHF) at NASA Ames Research Center. The test models are graphite sphere-cones. Graphite was selected as a test material to minimize the uncertainties from material properties. Recession and thermal response data were obtained from two separate arc-jet test series. The first series was at a heat flux where graphite ablation is mainly due to sublimation, and the second series was at a relatively low heat flux where recession is the result of diffusion-controlled oxidation. Ablation and thermal response solutions for both sets of conditions, as calculated by TITAN-GIANTS, are presented and discussed in detail. Predicted shape change and temperature histories generally agree well with the data obtained from the arc-jet tests.

  11. Influence of Catalysis and Oxidation on Slug Calorimeter Measurements in Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, Dave; TerrazasSalinas, Imelda

    2012-01-01

    Arc jet tests play a critical role in the characterization and certification of thermal protection materials and systems (TPS). The results from these arc jet tests feed directly into computational models of material response and aerothermodynamics to predict the performance of the TPS in flight. Thus the precise knowledge of the plasma environment to which the test material is subjected, is invaluable. As one of the environmental parameters, the heat flux is commonly measured. The measured heat flux is used to determine the plasma enthalpy through analytical or computational models. At NASA Ames Research Center (ARC), slug calorimeters of a geometrically similar body to the test article are routinely used to determine the heat flux. A slug calorimeter is a thermal capacitance-type calorimeter that uses the temperature rise in a thermally insulated slug to determine the heat transfer rate, see Figure 1(left). Current best practices for measuring the heat flux with a slug calorimeter are described in ASTM E457 - 96. Both the calorimeter body and slug are made of Oxygen Free High Conductivity Copper, and are cleaned before each run.

  12. NASA Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  13. Earth resources sensor data handling system: NASA JSC version

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design of the NASA JSC data handling system is presented. Data acquisition parameters and computer display formats and the flow of image data through the system, with recommendations for improving system efficiency are discussed along with modifications to existing data handling procedures which will allow utilization of data duplication techniques and the accurate identification of imagery.

  14. Arc Jet Screening Tests Of Phase 1 Orbiter Tile Repair Materials and Uncoated RSI High Temperature Emittance Measurements

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven V.

    2005-01-01

    Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.

  15. jsc2017e009755

    NASA Image and Video Library

    2017-01-26

    jsc2017e009755 (01/26/2017) --- Former NFL player Sammy Davis (Chargers, 49ers, Buccaneers) checks out a NASA Spacesuit while on tour at the Johnson Space Center (JSC) as part of JSC's Super Bowl Tailgate event the week before the Super Bowl game. NASA PHOTOGRAPHER: Lauren Harnett.

  16. Methodology for Flight Relevant Arc-Jet Testing of Flexible Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Bruce, Walter E., III; Mesick, Nathaniel J.; Sutton, Kenneth

    2013-01-01

    A methodology to correlate flight aeroheating environments to the arc-jet environment is presented. For a desired hot-wall flight heating rate, the methodology provides the arcjet bulk enthalpy for the corresponding cold-wall heating rate. A series of analyses were conducted to examine the effects of the test sample model holder geometry to the overall performance of the test sample. The analyses were compared with arc-jet test samples and challenges and issues are presented. The transient flight environment was calculated for the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Earth Atmospheric Reentry Test (HEART) vehicle, which is a planned demonstration vehicle using a large inflatable, flexible thermal protection system to reenter the Earth's atmosphere from the International Space Station. A series of correlations were developed to define the relevant arc-jet test environment to properly approximate the HEART flight environment. The computed arcjet environments were compared with the measured arc-jet values to define the uncertainty of the correlated environment. The results show that for a given flight surface heat flux and a fully-catalytic TPS, the flight relevant arc-jet heat flux increases with the arc-jet bulk enthalpy while for a non-catalytic TPS the arc-jet heat flux decreases with the bulk enthalpy.

  17. Arc Jet Testing of Thermal Protection Materials: 3 Case Studies

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Conley, Joe

    2015-01-01

    Arc jet testing is used to simulate entry to test thermal protection materials. This paper discusses the usefulness of arc jet testing for 3 cases. Case 1 is MSL and PICA, Case 2 is Advanced TUFROC, and Case 3 is conformable ablators.

  18. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  19. CFD Simulations for Arc-Jet Panel Testing Capability Development Using Semi-Elliptical Nozzles

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Balboni, John A.; Hartman, G. Joseph

    2016-01-01

    This paper reports computational simulations in support of arc-jet panel testing capability development using semi-elliptical nozzles in a high enthalpy arc-jet facility at NASA Ames Research Center. Two different semi-elliptical nozzle configurations are proposed for testing panel test articles. Computational fluid dynamics simulations are performed to provide estimates of achievable panel surface conditions and useful test area for each configuration. The present analysis comprises three-dimensional simulations of the nonequilibrium flowfields in the semi-elliptical nozzles, test box and flowfield over the panel test articles. Computations show that useful test areas for the proposed two nozzle options are 20.32 centimeters by 20.32 centimeters (8 inches by 8 inches) and 43.18 centimeters by 43.18 centimeters (17 inches by 17 inches). Estimated values of the maximum cold-wall heat flux and surface pressure are 155 watts per centimeters squared and 39 kilopascals for the smaller panel test option, and 44 watts per centimeters squared and 7 kilopascals for the larger panel test option. Other important properties of the predicted flowfields are presented, and factors that limit the useful test area in the semi-free jet test configuration are discussed.

  20. Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad

    2004-01-01

    The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.

  1. Arc Furnace Mercury Capsule

    NASA Image and Video Library

    1959-08-20

    A hot jet research facility, used extensively in the design and development of the reentry heat shield on the Project Mercury spacecraft. The electrically-heated arc jet simulates the friction heating encountered by a space vehicle as it returns to the earth's atmosphere at high velocities. The arc jet was located in Langley's Structures Research Laboratory. It was capable of heating the air stream to about 9,000 degrees F. -- Published in Taken from an October 5, 1961 press release entitled: Hot Jet Research Facility used in Reentry Studies will be demonstrated at NASA Open House, October 7.

  2. Thermo Physics Facilities Branch Brochure ARC Jet Complex Fact Sheets, Hypervelocity Free-Flight Aerodynamic Facility Fact Sheets, Ames Vertical Gun Range Fact Sheets

    NASA Technical Reports Server (NTRS)

    Fretter, E. F. (Editor); Kuhns, Jay (Editor); Nuez, Jay (Editor)

    2003-01-01

    The Ames Arc Jet Complex has a rich heritage of over 40 years in Thermal Protection System (TPS) development for every NASA Space Transportation and Planetary program, including Apollo, Space Shuttle, Viking, Pioneer-Venus, Galileo, Mars Pathfinder,Stardust, NASP,X-33,X-34,SHARP-B1 and B2,X-37 and Mars Exploration Rovers. With this early TPS history came a long heritage in the development of the arc jet facilities. These are used to simulate the aerodynamic heating that occurs on the nose cap, wing leading edges and on other areas of the spacecraft requiring thermal protection. TPS samples have been run in the arc jets from a few minutes to over an hour,from one exposure to multiple exposures of the same sample, in order t o understand the TPS materials response to a hot gas flow environment (representative of real hyperthermal environments experienced in flight). The Ames Arc l e t Complex is a key enabler for customers involved in the three major areas of TPS development: selection, validation, and qualification. The arc jet data are critical for validating TPS thermal models, heat shield designs and repairs, and ultimately for flight qualification.

  3. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  4. jsc2017e009669

    NASA Image and Video Library

    2017-01-26

    jsc2017e009669 (01/26/2017) --- Former NFL players sign autographs for Johnson Space Center (JSC) staff members as part of the JSC Super Bowl Tailgate event. The former NFL Prayers were invited to tour JSC as guests of the Center Director the week before the Super Bowl game. NASA Photographer: Lauren Harnett

  5. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  6. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles, and comparisons with the measured calibration data.

  7. Time-varying Entry Heating Profile Replication with a Rotating Arc Jet Test Article

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Venkatapathy, Ethiraj; Noyes, Eric A.; Mach, Jeffrey J.; Empey, Daniel M.; White, Todd R.

    2014-01-01

    A new approach for arc jet testing of thermal protection materials at conditions approximating the time-varying conditions of atmospheric entry was developed and demonstrated. The approach relies upon the spatial variation of heat flux and pressure over a cylindrical test model. By slowly rotating a cylindrical arc jet test model during exposure to an arc jet stream, each point on the test model will experience constantly changing applied heat flux. The predicted temporal profile of heat flux at a point on a vehicle can be replicated by rotating the cylinder at a prescribed speed and direction. An electromechanical test model mechanism was designed, built, and operated during an arc jet test to demonstrate the technique.

  8. Developing a Strategic Plan for NASA JSC's Technology Investments

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette M.

    2012-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cislunar space, near earth asteroid visits, lunar exploration, Mars space, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA fs Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach allocating Internal Research and Development funding to projects that have been prioritized using four focus criteria, with appropriate importance weighting. These four focus criteria are the Human Space Flight Technology Needs, JSC Core Technology Competencies, Commercialization Potential, and Partnership Potential. The inherent coupling in these focus criteria have been captured in a database and have provided an initial prioritization for allocation of technology development research funding. This paper will describe this process and this database

  9. Evidence of Standing Waves in Arc Jet Nozzle Flow

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Hartman, Joe; Philippidis, Daniel; Noyes, Eric; Hui, Frank; Terrazas-Salinas, Imelda

    2017-01-01

    Waves spawned by the nozzle in the NASA Ames 60 MW Interaction Heating Facility arc jet were experimentally observed in pressure surveys at the exit of the nozzle. The waves have been seen in past CFD simulations, but were away from the region where models were tested (for the existing nozzles). However, a recent test series with a new nozzle extension (229 mm exit diameter) revealed that these waves intersect the centerline of the jet in a region where it is desirable to put test articles, and that the waves may be contributing to non-uniform recession behavior seen in Teflon (trademark) sublimation test articles tested in this new nozzle. It is reasonable to assume the ablation recession of thermal protection models will also be nonuniform due to exposure to these waves. This work shows that ablation response is sensitive to the location of test samples in the free jet relative to the location of the wave interaction, and that the issues with these waves can be avoided by choosing an optimum position for a test article in the free jet. This work describes the experimental observations along with the CFD simulations that have identified the waves emanating from the nozzle, as well as the instrumentation used to detect them. The work describes a recommended solution, derived by CFD analysis, which if implemented, should significantly reduce these flow disturbance and pressure anomalies in future nozzles.

  10. Applicability of NASA (ARC) two-segment approach procedures to Boeing Aircraft

    NASA Technical Reports Server (NTRS)

    Allison, R. L.

    1974-01-01

    An engineering study to determine the feasibility of applying the NASA (ARC) two-segment approach procedures and avionics to the Boeing fleet of commercial jet transports is presented. This feasibility study is concerned with the speed/path control and systems compability aspects of the procedures. Path performance data are provided for representative Boeing 707/727/737/747 passenger models. Thrust margin requirements for speed/path control are analyzed for still air and shearing tailwind conditions. Certification of the two-segment equipment and possible effects on existing airplane certification are discussed. Operational restrictions on use of the procedures with current autothrottles and in icing or reported tailwind conditions are recommended. Using the NASA/UAL 727 procedures as a baseline, maximum upper glide slopes for representative 707/727/737/747 models are defined as a starting point for further study and/or flight evaluation programs.

  11. jsc2017e009777

    NASA Image and Video Library

    2017-01-26

    jsc2017e009777 (01/26/2017) --- Former NFL player Kevin Williams (Vikings, Seahawks, Saints) enjoys the tour at the Johnson Space Center (JSC) while getting a hands on look in the NASA Space Shuttle cockpit. Kevin was invited with the other former NFL players to visit JSC as part of the JSC Super Bowl tailgate event. The former NFL players got a chance to visit Mission Control and well as many other areas in the Space Center. They also took time to sign autographs and give picture opportunities to the JSC Staff.

  12. Flowfield Analysis of a Small Entry Probe (SPRITE) Tested in an Arc Jet

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.

    2012-01-01

    A novel concept of small size (diameter less than 15 inches) entry probes named SPRITE (Small Probe Re-entry Investigation for TPS Engineering) has been developed at NASA Ames Research Center (ARC). These flight probes have on-board data acquisition systems that have also been developed in parallel at NASA ARC by Greg Swanson1. Flight probes of this size facilitate testing over a wide range of conditions in arc jets available at NASA ARC, thereby fulfilling a 'test what you fly' paradigm. As indicated by the acronym, these probes, with suitably tailored trajectories, are primarily meant to be robotic flight test beds for TPS materials, although the design is flexible enough to accommodate additional objectives of flight-testing other vehicle subsystems. A first step towards establishing the feasibility of the SPRITE concept is to arc-jet test fully instrumented models at flight scale. In a follow-on to the Large-Scale Article Tests (LSAT2) performed in the 60 MW Interaction Heating Facility (IHF) in late 2008/early 2009, a full-scale model of Deep Space-2 (DS23) made of red oak was tested in the 20 MW Aerodynamic Heating Facility (AHF). There were no issues with mass capture by the diffuser for blunt bodies of roughly 15 inches diameter tested in the 18-inch nozzle of the AHF. Building on this initial success, two identical test articles - SPRITE-T1-1 and SPRITE-T1-2 (T1 indicating the choice of back shell geometry) - were fabricated, and one of them, SPRITE-T1-1, was tested in the AHF recently. Both these test articles, 14 inches in diameter, have a 45deg sphere-cone (like DS2) made of PICA bonded on to a 1/8th inch thick aluminum shell using RTV. The aft portion of the test article is a conical frustum (15deg cone angle) with LI-2200 bonded on to the aluminum shell. Each model is fully instrumented with: (a) thermocouples imbedded in plugs in the heat shield, (b) thermocouples bonded to the aluminum substructure; the thermocouples are distributed over the entire

  13. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA s Space Environment Simulation Laboratory s (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN cooling with centrifugal pumps, requiring 220,000 liters of LN to cool-down and consuming 180,000 liters per day of LN in steady operation. The LN system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the subcontractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC s request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 68,000 liters to cool-down and less than 91,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  14. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber-A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA's Space Environment Simulation Laboratory's (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN2) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN2 cooling with centrifugal pumps, requiring 200,000 liters of LN2 to cool-down and consuming 180,000 liters per day of LN2 in steady operation. The LN2 system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the sub-contractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC's request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 70,000 liters to cool-down and less than 90,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  15. STS-55 Columbia, OV-102, crew members board STA NASA 948 at Ellington Field

    NASA Image and Video Library

    1993-03-17

    S93-30754 (September 1992) --- Astronaut Catherine G. Coleman, who had recently begun a year?s training and evaluation program at the Johnson Space Center (JSC), sits in the rear station of a T-38 jet trainer. She was about to take a familiarization flight in the jet. Coleman was later named mission specialist for NASA?s STS-73/United States Microgravity Laboratory (USML-2) mission.

  16. The 2015-2016 SEPMAP Program at NASA JSC: Science, Engineering, and Program Management Training

    NASA Technical Reports Server (NTRS)

    Graham, L.; Archer, D.; Bakalyar, J.; Berger, E.; Blome, E.; Brown, R.; Cox, S.; Curiel, P.; Eid, R.; Eppler, D.; hide

    2017-01-01

    The Systems Engineering Project Management Advancement Program (SEPMAP) at NASA Johnson Space Center (JSC) is an employee development program designed to provide graduate level training in project management and systems engineering. The program includes an applied learning project with engineering and integrated science goals requirements. The teams were presented with a task: Collect a representative sample set from a field site using a hexacopter platform, as if performing a scientific reconnaissance to assess whether the site is of sufficient scientific interest to justify exploration by astronauts. Four teams worked through the eighteen-month course to design customized sampling payloads integrated with the hexacopter, and then operate the aircraft to meet sampling requirements of number (= 5) and mass (= 5g each). The "Mars Yard" at JSC was utilized for this purpose. This project activity closely parallels NASA plans for the future exploration of Mars, where remote sites will be reconnoitered ahead of crewed exploration.

  17. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T,; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2005-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. To be discussed are: 1.Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debuy lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. 5. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Prevention sustained discharges during testing. 6. Real array or structure samples versus idealized samples. 7. Validity of LEO tests for GEO samples. 8. Extracting arc threshold information from arc rate versus voltage tests. 9. Snapover and current collection at positive sample bias. Glows at positive bias. Kapon (R) pyrolisis. 10. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 11. Testing for Paschen discharge threshold. Testing for dielectric breakdown thresholds. Testing for tether arcing. 12. Testing in very dense plasmas (ie thruster plumes). 13. Arc mitigation strategies. Charging mitigation strategies. Models. 14. Analysis of test results

  18. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.a; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2005-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space flight Center (MSFC) for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing testing standardization. To be discussed are: 1. Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debye lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Preventing sustained discharges during testing. 5. Real array or structure samples versus idealized samples. 6. Validity of LEO tests for GEO samples. 7. Extracting arc threshold information from arc rate versus voltage tests. 8 . Snapover and current collection at positive sample bias. Glows at positive bias. Kapton pyrolization. 9. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 10. Testing for Paschen discharge thresholds. Testing for dielectric breakdown thresholds. Testing for tether arcing. 11. Testing in very dense plasmas (ie thruster plumes). 12. Arc mitigation strategies. Charging mitigation strategies. Models. 13. Analysis of test results. Finally, the necessity of

  19. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2007-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. Discussed herein are neutral gas conditions, plasma densities and uniformity, vacuum chamber sizes, sample sizes and Debye lengths, biasing samples versus self-generated voltages, floating samples versus grounded samples, test electrical conditions, arc detection, preventing sustained discharges during testing, real samples versus idealized samples, validity of LEO tests for GEO samples, extracting arc threshold information from arc rate versus voltage tests, snapover, current collection, and glows at positive sample bias, Kapton pyrolysis, thresholds for trigger arcs, sustained arcs, dielectric breakdown and Paschen discharge, tether arcing and testing in very dense plasmas (i.e. thruster plumes), arc mitigation strategies, charging mitigation strategies, models, and analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.

  20. Nanomaterials Work at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2005-01-01

    Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.

  1. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  2. Radiographic research of the Bi plasma jet formed by the vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Artyomov, A. P.; Rousskikh, A. G.; Fedunin, A. V.; Chaikovsky, S. A.; Zhigalin, A. S.; Oreshkin, V. I.

    2017-05-01

    The results of experiments on a soft x-ray radiography (≈ 1-2 keV) of a bismuth plasma formed by the high-current vacuum arc discharge are represented. The plasma gun with the arc current ≈ 60 kA and the current rise time ≈ 7 μs was used to produce the Bi plasma jet. The compact pulsed radiograph XPG-1 (250 kA, 220 ns) with an X-pinch load consisting of four Mo wires with a diameter 25 μm was used as a source of the soft X-ray radiation. The X-ray backlighting images of the researched plasma jet and the Bi step-wedge with a step thickness of ≈ 100 nm were recorded simultaneously in the course of the experiment. A comparison of the plasma jet x-ray image with the current trace has enabled to estimate dependencies of the linear mass on the arc current. The experiments have shown that when the arc current density reaches ≈ 3·105 A/cm2, the evaporation rate of the electrode material reaches ≈ 100 μg/μs, that under the plasma velocity ≈ 0.5 cm/μs, provides a plasma jet linear mass ≈ 200 μg/cm. At a distance of ≈ 1-2 mm from the arc cathode surface, the sharp increase of the jet linear mass (up to ≈ 500 μg/cm) occurred.

  3. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    PubMed Central

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-01-01

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884

  4. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.

    PubMed

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-02-23

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  5. ARC-2009-ACD09-0141-016

    NASA Image and Video Library

    2009-07-16

    Dr William 'Bill' Borucki, NASA Ames Scientist on the Kepler Mission and John W. 'Jack' Boyd, NASA Ames Historian at the Ames Arc Jet Complex, Aerodynamic Heating Facility talking with a Mercury News photographer about the Kepler Mission and the 40th Anniversary of the Apollo 11 Mission.

  6. ARC-2009-ACD09-0141-015

    NASA Image and Video Library

    2009-07-16

    Dr William 'Bill' Borucki, NASA Ames Scientist on the Kepler Mission and John W. 'Jack' Boyd, NASA Ames Historian at the Ames Arc Jet Complex, Aerodynamic Heating Facility talking with a Mercury News photographer about the Kepler Mission and the 40th Anniversary of the Apollo 11 Mission.

  7. Surface Catalysis and Oxidation on Stagnation Point Heat Flux Measurements in High Enthalpy Arc Jets

    NASA Technical Reports Server (NTRS)

    Nawaz, Anuscheh; Driver, David M.; Terrazas-Salinas

    2013-01-01

    Heat flux sensors are routinely used in arc jet facilities to determine heat transfer rates from plasma plume. The goal of this study is to assess the impact of surface composition changes on these heat flux sensors. Surface compositions can change due to oxidation and material deposition from the arc jet. Systematic surface analyses of the sensors were conducted before and after exposure to plasma. Currently copper is commonly used as surface material. Other surface materials were studied including nickel, constantan gold, platinum and silicon dioxide. The surfaces were exposed to plasma between 0.3 seconds and 3 seconds. Surface changes due to oxidation as well as copper deposition from the arc jets were observed. Results from changes in measured heat flux as a function of surface catalycity is given, along with a first assessment of enthalpy for these measurements. The use of cupric oxide is recommended for future heat flux measurements, due to its consistent surface composition arc jets.

  8. President Bill Clinton visits JSC

    NASA Image and Video Library

    1998-04-14

    S98-05023 (14 April 1998) --- A large crowd of JSC employees listen to President Bill Clinton during an April 14 visit to the Johnson Space Center. NASA, Houston and JSC officials, as well as the STS-95 Discovery crew members scheduled to fly in space later this year, are on the dais with the President. He earlier had gone inside several of the Shuttle and ISS crew training facilities and mockups. Photo Credit: Joe McNally, National Geographic, for NASA

  9. NASA/LaRC jet plume research

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Ponton, Michael K.; Manning, James C.

    1992-01-01

    The following provides a summary for research being conducted by NASA/LaRC and its contractors and grantees to develop jet engine noise suppression technology under the NASA High Speed Research (HSR) program for the High Speed Civil Transport (HSCT). The objective of this effort is to explore new innovative concepts for reducing noise to Federally mandated guidelines with minimum compromise on engine performance both in take-off and cruise. The research program is divided into four major technical areas: (1) jet noise research on advanced nozzles; (2) plume prediction and validation; (3) passive and active control; and (4) methodology for noise prediction.

  10. Nuclear Thermal Rocket - Arc Jet Integrated System Model

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Emrich, William

    2016-01-01

    In the post-shuttle era, space exploration is moving into a new regime. Commercial space flight is in development and is planned to take on much of the low earth orbit space flight missions. With the development of a heavy lift launch vehicle, the Space Launch, System, NASA has become focused on deep space exploration. Exploration into deep space has traditionally been done with robotic probes. More ambitious missions such as manned missions to asteroids and Mars will require significant technology development. Propulsion system performance is tied to the achievability of these missions and the requirements of other developing technologies that will be required. Nuclear thermal propulsion offers a significant improvement over chemical propulsion while still achieving high levels of thrust. Opportunities exist; however, to build upon what would be considered a standard nuclear thermal engine to attain improved performance, thus further enabling deep space missions. This paper discuss the modeling of a nuclear thermal system integrated with an arc jet to further augment performance. The performance predictions and systems impacts are discussed.

  11. On the Development of a Unique Arc Jet Test Apparatus for Control Surface Seal Evaluations

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Robbie, Malcolm; Baker, Gus; Erker, Arthur

    2004-01-01

    NASA Glenn has developed a unique test apparatus capable of evaluating control surface seal and flap designs under simulated reentry heating conditions in NASA Johnson's arc jet test facility. The test apparatus is capable of testing a variety of seal designs with a variety of control surface materials and designs using modular components. The flap angle can be varied during testing, allowing modification of the seal environment while testing is in progress. The flap angle is varied using an innovative transmission system which limits heat transfer from the hot flap structure to the motor, all while keeping the components properly aligned regardless of thermal expansion. A combination of active and passive cooling is employed to prevent thermal damage to the test fixture while still obtaining the target seal temperature.

  12. jsc2013e009914

    NASA Image and Video Library

    2013-02-04

    JSC2013-E-009914 (1969) -- Vice President Spiro Agnew pins Flight Director Eugene F. Kranz as NASA Administrator Thomas Paine and Apollo 9 Commander James A. McDivitt look on. Photo credit: NASA Hq. photo identification no. is 69-H-537

  13. TPS: From Arc-Jet to Flight

    NASA Technical Reports Server (NTRS)

    Buslog, Stanley A.

    2004-01-01

    This slide presentation reviews the testing of thermal protection system materials. All space vehicles that reenter Earth's atmosphere from either LEO or from Lunar/Mars missions require thermal protection system (TPS) materials. These TPS materials requires ground test facilities that simulate the aerothermodynamic environments experienced by reentry. The existing arc-jet facility requires expansion to combine convective and radiation heating and to test the capability to protect with the CO2 atmosphere that will be encountered for Martian entry.

  14. President Bill Clinton visits JSC

    NASA Image and Video Library

    1998-04-14

    S98-05017 (14 April 1998) --- President Bill Clinton prepares to use a fork to sample some space food while visiting NASA's Johnson Space Center (JSC). Holding the food packet is U.S. Sen. John H. Glenn Jr. (D.-Ohio), currently in training at JSC as a payload specialist for a flight scheduled later this year aboard the Space Shuttle Discovery. Looking on is astronaut Curtis L. Brown Jr., STS-95 commander. The picture was taken in the full fuselage trainer (FFT). Photo Credit: Joe McNally, National Geographic, for NASA

  15. Determination of Tolerance to Internal Shorts and Its Screening in Lithium-ion Cells NASA - JSC Method

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2009-01-01

    This slide presentation reviews the method developed by the NASA Johnson Space Center (JSC) to determine tolerances to internal shorts and screening for problems in commercial off the shelf (COTS) Lithium-ion batteries. The test apparatus is shown and several examples of the usage and results of the test are discussed.

  16. JSC almanac

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During America's space shuttle flights, press and public attention focuses on the Johnson Space Center in Houston. The press and public often put questions to JSC technical and management staff. This fourth JSC Almanac supplies answers for many such questions, and provide an informational resource for speeches to general interest groups. This Almanac is not necessarily comprehensive or definitive. It is not intended as a statement of JSC or NASA policy. However, it does provide a much needed compilation of information from diverse sources. These sources are given as references, permitting the reader to obtain additional information as required. While every effort has been made to ensure accuracy and to reconcile statistics, users requiring the most up-to-date and accurate information should contact the office supplying the information at issue. The Almanac is updated periodically as needed. The following offices were responsible for supplying material for this update.

  17. Characterization of Material Response During Arc-Jet Testing with Optical Methods Status and Perspectives

    NASA Technical Reports Server (NTRS)

    Winter, Michael

    2012-01-01

    The characterization of ablation and recession of heat shield materials during arc jet testing is an important step towards understanding the governing processes during these tests and therefore for a successful extrapolation of ground test data to flight. The behavior of ablative heat shield materials in a ground-based arc jet facility is usually monitored through measurement of temperature distributions (across the surface and in-depth), and through measurement of the final surface recession. These measurements are then used to calibrate/validate materials thermal response codes, which have mathematical models with reasonably good fidelity to the physics and chemistry of ablation, and codes thus calibrated are used for predicting material behavior in flight environments. However, these thermal measurements only indirectly characterize the pyrolysis processes within an ablative material pyrolysis is the main effect during ablation. Quantification of pyrolysis chemistry would therefore provide more definitive and useful data for validation of the material response codes. Information of the chemical products of ablation, to various levels of detail, can be obtained using optical methods. Suitable optical methods to measure the shape and composition of these layers (with emphasis on the blowing layer) during arc jet testing are: 1) optical emission spectroscopy (OES) 2) filtered imaging 3) laser induced fluorescence (LIF) and 4) absorption spectroscopy. Several attempts have been made to optically measure the material response of ablative materials during arc-jet testing. Most recently, NH and OH have been identified in the boundary layer of a PICA ablator. These species are suitable candidates for a detection through PLIF which would enable a spatially-resolved characterization of the blowing layer in terms of both its shape and composition. The recent emission spectroscopy data will be presented and future experiments for a qualitative and quantitative

  18. Ultra Pure Water Cleaning Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Burkett, P. J.; Allton, J. H.; Allen, C. C.

    2013-01-01

    Future sample return missions will require strict protocols and procedures for reducing inorganic and organic contamination in isolation containment systems. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs [1, 2]. As part of this in-depth organic study, the current curatorial technical support procedure (TSP) 23 was used for cleaning the gloveboxes with ultra pure water (UPW) [3-5]. Particle counts and identification were obtained that could be used as a benchmark for future mission designs that require glovebox decontamination. The UPW baseline study demonstrates that TSP 23 works well for gloveboxes that have been thoroughly degreased. However, TSP 23 could be augmented to provide even better glovebox decontamination. JSC 03243 could be used as a starting point for further investigating optimal cleaning techniques and procedures. DuPont Vertrel XF or other chemical substitutes to replace Freon- 113, mechanical scrubbing, and newer technology could be used to enhance glovebox cleanliness in addition to high purity UPW final rinsing. Future sample return missions will significantly benefit from further cleaning studies to reduce inorganic and organic contamination.

  19. jsc2017e049161

    NASA Image and Video Library

    2017-04-24

    jsc2017e049161 (April 24, 2017) --- Flight Director Brian Smith, Capcom Astronaut Jessica Meir along with Astronaut Jeff Williams monitor activities in Mission Control as President Donald Trump, First Daughter Ivanka Trump and NASA astronaut Kate Rubins make a special Earth-to-space call from the Oval Office to personally congratulate NASA astronaut Peggy Whitson for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Robert Markowitz)

  20. jsc2017e049163

    NASA Image and Video Library

    2017-04-24

    jsc2017e049163 (April 24, 2017) --- Flight Director Brian Smith, Capcom Astronaut Jessica Meir along with Astronaut Jeff Williams monitor activities in Mission Control as President Donald Trump, First Daughter Ivanka Trump and NASA astronaut Kate Rubins make a special Earth-to-space call from the Oval Office to personally congratulate NASA astronaut Peggy Whitson for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Robert Markowitz)

  1. jsc2017e049160

    NASA Image and Video Library

    2017-04-24

    jsc2017e049160 (April 24, 2017) --- Flight Director Brian Smith, Capcom Astronaut Jessica Meir along with Astronaut Jeff Williams monitor activities in Mission Control as President Donald Trump, First Daughter Ivanka Trump and NASA astronaut Kate Rubins make a special Earth-to-space call from the Oval Office to personally congratulate NASA astronaut Peggy Whitson for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Robert Markowitz)

  2. jsc2017e049155

    NASA Image and Video Library

    2017-04-24

    jsc2017e049155 (April 24, 2017) --- Flight Director Brian Smith, Capcom Astronaut Jessica Meir along with Astronaut Jeff Williams monitor activities in Mission Control as President Donald Trump, First Daughter Ivanka Trump and NASA astronaut Kate Rubins make a special Earth-to-space call from the Oval Office to personally congratulate NASA astronaut Peggy Whitson for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Robert Markowitz)

  3. jsc2017e049158

    NASA Image and Video Library

    2017-04-24

    jsc2017e049158 (April 24, 2017) --- Flight Director Brian Smith, Capcom Astronaut Jessica Meir along with Astronaut Jeff Williams monitor activities in Mission Control as President Donald Trump, First Daughter Ivanka Trump and NASA astronaut Kate Rubins make a special Earth-to-space call from the Oval Office to personally congratulate NASA astronaut Peggy Whitson for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Robert Markowitz)

  4. jsc2017e049157

    NASA Image and Video Library

    2017-04-24

    jsc2017e049157 (April 24, 2017) --- Flight Director Brian Smith, Capcom Astronaut Jessica Meir along with Astronaut Jeff Williams monitor activities in Mission Control as President Donald Trump, First Daughter Ivanka Trump and NASA astronaut Kate Rubins make a special Earth-to-space call from the Oval Office to personally congratulate NASA astronaut Peggy Whitson for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Robert Markowitz)

  5. jsc2017e049162

    NASA Image and Video Library

    2017-04-24

    jsc2017e049162 (April 24, 2017) --- Flight Director Brian Smith, Capcom Astronaut Jessica Meir along with Astronaut Jeff Williams monitor activities in Mission Control as President Donald Trump, First Daughter Ivanka Trump and NASA astronaut Kate Rubins make a special Earth-to-space call from the Oval Office to personally congratulate NASA astronaut Peggy Whitson for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Robert Markowitz)

  6. jsc2017e049156

    NASA Image and Video Library

    2017-04-24

    jsc2017e049156 (April 24, 2017) --- Flight Director Brian Smith, Capcom Astronaut Jessica Meir along with Astronaut Jeff Williams monitor activities in Mission Control as President Donald Trump, First Daughter Ivanka Trump and NASA astronaut Kate Rubins make a special Earth-to-space call from the Oval Office to personally congratulate NASA astronaut Peggy Whitson for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Robert Markowitz)

  7. jsc2017e049159

    NASA Image and Video Library

    2017-04-24

    jsc2017e049159 (April 24, 2017) --- Flight Director Brian Smith, Capcom Astronaut Jessica Meir along with Astronaut Jeff Williams monitor activities in Mission Control as President Donald Trump, First Daughter Ivanka Trump and NASA astronaut Kate Rubins make a special Earth-to-space call from the Oval Office to personally congratulate NASA astronaut Peggy Whitson for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Robert Markowitz)

  8. NASA/JSC ISSLive!

    NASA Technical Reports Server (NTRS)

    Harris, Philip D.; Price, Jennifer B.; Khan, Ahmed; Severance, Mark T.

    2011-01-01

    Just 150 miles above us, the International Space Station (ISS) is orbiting. Each day, the astronauts on board perform a variety of activities from exercise, science experiments, and maintenance. Yet, many on the ground do not know about these daily activities. National Aeronautics Space Agency/ Johnson Space Center (NASA/JSC) innovation creation ISSLive! - an education project - is working to bridge this knowledge gap with traditional education channels such as schools, but also non-traditional channels with the non-technical everyday public. ISSLive! provides a website that seamlessly integrates planning and telemetry data, video feeds, 3D models, and iOS and android applications. Through the site, users are able to view astronauts daily schedules, in plain English alongside the original data. As an example, when an astronaut is working with a science experiment, a user will be able to read about the activity and for more detailed activities follow provided links to view more information all integrated into the same site. Live telemetry data from a predefined set can also be provided alongside the activities. For users to learn more, 3D models of the external and internal parts of the ISS are available, allowing users to explore the station and even select sensors, such as temperature, and view a real-time chart of the data. Even ground operations are modeled with a 3D mission control center, providing users information on the various flight control disciplines and showing live data that they would be monitoring. Some unique activities are also highlighted and have dedicated spaces to explore in more detail. Education is the focus of ISSLive!, even from the beginning when university students participated in the development process as part of their master s projects. Focus groups at a Houston school showed interest in the project and excitement towards including ISSLive! in their classroom. Through this inclusion, students' knowledge can be assessed with projects

  9. High speed jet noise research at NASA Lewis

    NASA Astrophysics Data System (ADS)

    Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas

    1992-04-01

    The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.

  10. High speed jet noise research at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas

    1992-01-01

    The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.

  11. Rotating Arc Jet Test Model: Time-Accurate Trajectory Heat Flux Replication in a Ground Test Environment

    NASA Technical Reports Server (NTRS)

    Laub, Bernard; Grinstead, Jay; Dyakonov, Artem; Venkatapathy, Ethiraj

    2011-01-01

    Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.

  12. Copper atom based measurements of velocity and turbulence in arc jet flows

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Allen, Mark G.; Arepalli, Sivaram; Scott, Carl D.

    1991-01-01

    Laboratory and field measurements were combined with a modeling effort to explore the feasibility of using atomic copper laser-induced fluorescence to measure velocity, turbulence, and temperature in arcjet flows. Both CW and pulsed frequency-doubled dye lasers were used to demonstrate the ability to measure velocity with 10 percent accuracy at rates of 200,000 cm/s in a rarefied flow of Cu atoms seeded in He. The pulsed laser established a threshold energy for power-broadening of the absorption line at 3.5 x 10 to the -8th J/sq cm. Field measurements at the NASA/JSC 10-MW arcjet facility demonstrated the ability to perform these measurements under actual test conditions. The use of this technique to measure freestream temperatures in the flow was examined for the 0.08/cm linewidth laser used in the NASA/JSC effort. Finally, single-shot turbulence measurements at the USAF/AEDC 35-MW H2 arcjet facility were measured with 4 percent accuracy using the laser/absorption line-overlap technique.

  13. Shock layer vacuum UV spectroscopy in an arc-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Palumbo, G.

    1990-01-01

    An experimental program is being developed to obtain measurements of the incident surface radiation in the 1000 A to 2000 A range from the shock stagnation region of a blunt model in the Ames 20 MW Arc-Jet Wind Tunnel. The setup consists of a water-cooled blunt model, with a magnesium fluoride forward-viewing window. Radiation incident on the window is optically imaged via an evacuated system and reflective optical elements onto the entrance slit of a spectrograph. The model will be exposed to the supersonic plasma stream from the exit nozzle of the arc-jet tunnel. The resulting bow shock radiation will be measured. It is expected that this experiment will help evaluate the importance of atomic N and O lines to the radiative heating of future Aeroassist Space Transfer Vehicles (ASTVs).

  14. Osiris-Rex and Hayabusa2 Sample Cleanroom Design and Construction Planning at NASA-JSC

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Pace, Lisa F.; Messenger, Keiko

    2018-01-01

    Final Paper and not the abstract is attached. The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu September 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After confirma-tion of successful sample stowage, the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston. All curation-specific ex-amination and documentation activities related to Ben-nu samples will be conducted in the dedicated OSIRIS-REx sample cleanroom to be built at NASA-JSC.

  15. Use NASA GES DISC Data in ArcGIS

    NASA Technical Reports Server (NTRS)

    Yang, Wenli; Pham, Long B.; Kempler, Steve

    2015-01-01

    This presentation describes GIS relevant data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), GES DISC Services and Support for GIS Users, and use cases of GES DISC data in ArcGIS.

  16. jsc2018e003256

    NASA Image and Video Library

    2018-01-31

    jsc2018e003256 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during an early sunrise on Jan. 31, 2018. Credit: NASA/Robert Markowitz

  17. jsc2018e003255

    NASA Image and Video Library

    2018-01-31

    jsc2018e003255 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  18. jsc2018e003246

    NASA Image and Video Library

    2018-01-31

    jsc2018e003246 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  19. jsc2018e003245

    NASA Image and Video Library

    2018-01-31

    jsc2018e003245 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  20. jsc2018e003250

    NASA Image and Video Library

    2018-01-31

    jsc2018e003250 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  1. jsc2018e003252

    NASA Image and Video Library

    2018-01-31

    jsc2018e003252 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  2. jsc2018e003254

    NASA Image and Video Library

    2018-01-31

    jsc2018e003254 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  3. jsc2018e003247

    NASA Image and Video Library

    2018-01-31

    jsc2018e003247 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  4. jsc2018e003200

    NASA Image and Video Library

    2018-01-31

    jsc2018e003200 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  5. jsc2018e003251

    NASA Image and Video Library

    2018-01-31

    jsc2018e003251 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  6. jsc2018e003244

    NASA Image and Video Library

    2018-01-31

    jsc2018e003244 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  7. jsc2018e003259

    NASA Image and Video Library

    2018-01-31

    jsc2018e003259 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/ Norah Moran

  8. jsc2018e003243

    NASA Image and Video Library

    2018-01-31

    jsc2018e003243 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  9. jsc2018e003248

    NASA Image and Video Library

    2018-01-31

    jsc2018e003248 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  10. jsc2018e003258

    NASA Image and Video Library

    2018-01-31

    jsc2018e003258 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/ Norah Moran

  11. jsc2018e003249

    NASA Image and Video Library

    2018-01-31

    jsc2018e003249 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz

  12. jsc2010e085363

    NASA Image and Video Library

    2010-05-19

    JSC2010-E-085363 (19 May 2010) --- The members of the STS-132 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (right) holds the STS-132 mission logo. Photo credit: NASA or National Aeronautics and Space Administration

  13. STS-35 MS Hoffman is greeted by JSC manager Puddy and NASA administrator Lenoir

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA Associate Administrator for Space Flight Dr. William B. Lenoir (second left) shakes hands with Mission Specialist (MS) Jeffrey A. Hoffman soon after the seven crewmembers egressed Columbia, Orbiter Vehicle (OV) 102, at Edwards Air Force Base (EAFB), California. Also pictured are JSC Flight Crew Operations Directorate (FCOD) Director Donald R. Puddy (left) and Commander Vance D. Brand. OV-102 landed on EAFB concrete runway 22 at 9:54:09 pm (Pacific Standard Time) ending its nine-day STS-35 Astronomy Laboratory 1 (ASTRO-1) mission.

  14. Emission Spectroscopic Measurements with an Optical Probe in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Prabhu, Dinesh K.; Raiche, George A.; Terrazas-Salinas, Imelda; Hui, Frank C. L.

    2011-01-01

    An optical probe was designed to measure radiation (from inside the arc heater) incident on a test sample immersed in the arc-heated stream. Currently, only crude estimates are available for this incident radiation. Unlike efforts of the past, where the probe line of sight was inclined to the nozzle centerline, the present development focuses on having the probe line of sight coincide with the nozzle centerline. A fiber-coupled spectrometer was used to measure the spectral distribution of incident radiation in the wavelength range of 225 to 900 nm. The radiation heat flux in this wavelength range was determined by integration of measured emission spectral intensity calibrated to incident irradiance from an integrating sphere. Two arc-heater conditions, corresponding to stream bulk enthalpy levels of 12 and 22 MJ/kg, were investigated in the 13-inch diameter nozzle of the Interaction Heating Facility at NASA Ames Research Center. With the probe placed at a distance of 10 inches from the nozzle exit plane, total radiative heat fluxes were measured to be 3.3 and 8.4 W/sq cm for the 12 and 22 MJ/kg conditions, respectively. About 17% of these radiative fluxes were due to bound-bound radiation from atoms and molecules, while the remaining 83% could be attributed to continua (bound-free and/or free-free). A comparison with spectral simulation based on CFD solutions for the arc-heater flow field and with spectroscopic measurements in the plenum region indicates that more than 95% of the measured radiation is generated in the arc region. The total radiative heat flux from the line radiation could increase by a factor of two through contributions from wavelengths outside the measured range, i.e., from the vacuum ultraviolet (wavelengths less than 225 nm) and the infrared (wavelengths greater than 900 nm). An extrapolation of the continuum radiation to these two wavelength regions was not attempted. In the tested configuration, the measured radiative heat flux accounts for

  15. JOHNSON, L. - DEDICATION (CEREMONIES) - JSC

    NASA Image and Video Library

    1973-09-05

    S73-33655 (1973) --- Left to right, Lynda Bird Johnson Robb, Charles Robb, Claudia "Lady Bird" Johnson, Texas Governor Dolph Briscoe, Christopher C. Kraft, Jr., James Webb, actor David Niven, and nurse Lt. Dolores B. "Dee" O'Hara with NASA officials during formal dedication ceremonies at JSC. Photo credit: NASA

  16. jsc2018e025556

    NASA Image and Video Library

    2018-03-15

    jsc2018e025556 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 55 crewmembers Drew Feustel of NASA (top) and Ricky Arnold of NASA (bottom) conduct tests of their vestibular systems on tilt tables March 15 as part of pre-launch activities. Along with Oleg Artemyev of Roscosmos, they will launch March 21 on the Soyuz MS-08 spacecraft from the Baikonur Cosmodrome on a five-month mission to the International Space Station...NASA/Victor Zelentsov.

  17. Processing, Properties and Arc Jet Testing of HfB2/SiC

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Beckman, Sarah; Irby, Edward; Ellerby, Don; Gasch, Matt; Gusman, Michael

    2004-01-01

    Contents include the following: Background on Ultra High Temperature Ceramics - UHTCs. Summary UNTC processing: power processing, scale-up. Preliminary material properties: mechanical, thermal. Arc jet testing: flat face models, cone models. Summary.

  18. High-Speed Jet Noise Reduction NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Handy, J. (Technical Monitor)

    2001-01-01

    History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.

  19. jsc2017e011403

    NASA Image and Video Library

    2017-01-30

    jsc2017e011403 (01/30/2017) --- Marshal Space Flight Center Director Todd May tries out the NASA Mark III advanced space suit picture opportunity which is part of the NASA Future Flight exhibits and activities attracting thousands of people attending the Houston Texas Super Bowl events at Discovery Green Jan. 30, 2017. NASA and the Johnson Space Center have many attractions in their Future Flight area for the estimated 100,000 visitors a day throughout the Super Bowl week ending February fifth.

  20. jsc2017e049146

    NASA Image and Video Library

    2017-04-24

    jsc2017e049146 (April 24, 2017) --- Johnson Space Center employees and Center Director watch President Donald Trump call Peggy Whitson on space station for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Allison Bills)

  1. jsc2017e049148

    NASA Image and Video Library

    2017-04-24

    jsc2017e049148 (April 24, 2017) --- Johnson Space Center employees and Center Director watch President Donald Trump call Peggy Whitson on space station for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Allison Bills)

  2. jsc2017e115213

    NASA Image and Video Library

    2017-09-08

    jsc2017e115213 (Sept.. 8, 2017) --- At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 53-54 crewmember Joe Acaba of NASA waters a tree bearing his name he previously planted in a traditional pre-launch ceremony Sept. 8. Acaba, Alexander Misurkin of Roscosmos and Mark Vande Hei of NASA will launch Sept. 13 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-06 spacecraft for a five and a half month mission on the International Space Station. Credit: NASA/Victor Zelentsov

  3. Radial Profiles of the Plasma Electron Characteristics in a 30 kW Arc Jet

    NASA Technical Reports Server (NTRS)

    Codron, Douglas A.; Nawaz, Anuscheh

    2013-01-01

    The present effort aims to strengthen modeling work conducted at the NASA Ames Research Center by measuring the critical plasma electron characteristics within and slightly outside of an arc jet plasma column. These characteristics are intended to give physical insights while assisting in the formulation of boundary conditions to validate full scale simulations. Single and triple Langmuir probes have been used to achieve estimates of the electron temperature (T(sub e)), electron number density (n(sub e)) and plasma potential (outside of the plasma column) as probing location is varied radially from the flow centerline. Both the electron temperature and electron number density measurements show a large dependence on radial distance from the plasma column centerline with T(sub e) approx. = (3 - 12 eV and n(sub e) approx. = 10(exp 12) - 10(exp 14)/cu cm.

  4. Pioneering space exploration: The JSC strategy

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The framework that JCS's senior management will use to guide effective decision making to achieve our long-rang goals while soliciting inputs from all levels of JSC is presented. This plan was developed to allow us to meet head-on the responsibilities and challenges we have today while assuring that we are well prepared to meet the opportunities and challenges of tomorrow. The JSC strategy is closely aligned with the overall strategic direction currently being defined by NASA. One of our major goals was to keep our plan and process tightly focused but flexible enough so that as our national interests in space exploration evolve, so can JSC.

  5. In-liquid arc plasma jet and its application to phenol degradation

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Lin; Park, Hyun-Woo; Hamdan, Ahmad; Cha, Min Suk

    2018-03-01

    We present a new method for achieving chemical reactions induced by plasmas with liquids—an in-liquid arc plasma jet system—designed to have a few advantages over the existing methods. High-speed imaging and optical emission spectroscopy were adopted to highlight the physical aspects of the in-liquid arc plasma jet system, and the feasibility of the system was investigated in a wastewater treatment case with phenol as the model contaminant. We found that the specific energy input is a reasonable parameter by which to characterize the overall process. The phenol removal reaction could be modeled as a pseudo-first-order reaction, and the reaction constant became smaller as the phenol concentration increased. However, complete decomposition of the phenol into water and carbon dioxide required very high energy because the final intermediate, oxalic acid, is relatively stable. Detailed chemical and physical analyses, including byproducts, ions, solution acidity, and conductivity, were conducted to evaluate this new method for use in the appropriate applications.

  6. jsc2018e048512

    NASA Image and Video Library

    2018-05-14

    jsc2018e048512 - Expedition 56 backup crewmember Anne McClain of NASA poses for pictures in the Kremlin gardens in Moscow May 14 as part of traditional pre-launch activities. McClain is serving as a backup to the prime crew, Serena Aunon-Chancellor of NASA, Sergey Prokopyev of Roscosmos and Alexander Gerst of the European Space Agency, who will launch June 6 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-09 spacecraft for a six month mission on the International Space Station...NASA/Elizabeth Weissinger.

  7. jsc2010e060725

    NASA Image and Video Library

    2010-04-29

    JSC2010-E-060725 (29 April 2010) --- The members of the STS-131 Ascent flight control team and crew members pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Bryan Lunney and NASA astronaut Alan Poindexter, commander, (left center) stand on the second row. Additional crew members pictured are NASA astronauts James P. Dutton Jr., pilot; Clayton Anderson, Dorothy Metcalf-Lindenburger, Stephanie Wilson, Rick Mastracchio and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, all mission specialists.

  8. President Bill Clinton visits JSC

    NASA Image and Video Library

    1998-04-14

    S98-05024 (14 April 1998) --- A large crowd of JSC employees listen to President Bill Clinton during an April 14 visit to the Johnson Space Center. On the dais with the President (seated, from the left) are JSC Director George W.S. Abbey, U.S. Rep. Nick Lampson (D.-TX), and Houston Mayor Lee Brown. Standing behind them are members of the STS-95 crew: (from the left) Pedro Duque of ESA, Chiaki Mukai of NASDA, U.S. Sen. John H. Glenn Jr. (D.-Ohio), Stephen K. Robinson, Scott E. Parazynski, Steven W. Lindsey (behind Clinton) and Curtis L. Brown Jr. Out of the frame is NASA Administrator Daniel Goldin who also addressed the crowd. The Chief Executive earlier had gone inside several of the shuttle and ISS crew training facilities and mockups. Photo Credit: Joe McNally, National Geographic, for NASA

  9. jsc2004e47548

    NASA Image and Video Library

    2004-10-24

    JSC2004-E-47548 (24 October 2004) --- Astronaut Edward M. (Mike) Fincke, NASA International Space Station (ISS) science officer and flight engineer, shows his happiness with the successful landing in the Soyuz spacecraft with fellow crew members cosmonaut Gennady I. Padalka, Russia’s Federal Space Agency Expedition 9 commander, and Russian Space Forces cosmonaut Yuri Shargin. The crew landed approximately 85 kilometers northeast of Arkalyk in northern Kazakhstan on October 24, 2004. Photo Credit: "NASA/Bill Ingalls"

  10. jsc2004e47550

    NASA Image and Video Library

    2004-10-24

    JSC2004-E-47550 (24 October 2004) --- Astronaut Edward M. (Mike) Fincke, NASA International Space Station (ISS) science officer and flight engineer, shows his happiness with the successful landing in the Soyuz spacecraft with fellow crew members cosmonaut Gennady I. Padalka, Russia’s Federal Space Agency Expedition 9 commander, and Russian Space Forces cosmonaut Yuri Shargin. The crew landed approximately 85 kilometers northeast of Arkalyk in northern Kazakhstan on October 24, 2004. Photo Credit: "NASA/Bill Ingalls"

  11. jsc2017e067166

    NASA Image and Video Library

    2017-06-07

    jsc2017e067166 (06/07/2017) --- United States Vice President Mike Pence congratulates NASA's 12 new astronaut candidates at the agency's Johnson Space Center in Houston. The 2017 astronaut candidate class -- Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Bob Hines, Warren “Woody” Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins – were chosen from amid a record number of people applying. Photo Credit: (NASA/James Blair)

  12. AN INSTRUMENT TO MEASURE THE ELECTRICAL CONDUCTIVITY OF ARC PLASMA JETS

    DTIC Science & Technology

    The instrument was calibrated by moving aluminum or graphite rods through the transducer. By using thin-wall, stainless steel tubing, the influence ... function for the transducer was also obtained. Tests were run on two different arc plasma jet facilities. Values of s, u ranged from 0.02 to 9 megamhos per second. (Author)

  13. Visitor - Soviet Union Ambassador - Anatoliy Dobrynin - JSC

    NASA Image and Video Library

    1975-07-17

    S75-28534 (17 July 1975) --- Anatoliy Dobrynin (right), Soviet Union ambassador to the United States, visits with a group of USSR ASTP flight controllers in the Mission Control Center during a tour of NASA's Johnson Space Center (JSC). Dobrynin was at JSC on the day the Soviet Soyuz and the American Apollo spacecraft docked in Earth orbit. The group also includes a couple of American ASTP flight controllers.

  14. Partnering With NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and PSAMS Initiative

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa; Draper, David

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. In order to continue to provide this level of support to the planetary sciences community, and also expand our services and collaboration within the broader scientific community, we intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science. This initiative should result in substantial cost savings to PIs with NASA funding who wish to use our facilities. Another cost saving could be realized by aggregating visiting user experiments and analyses through COMPRES, which would be of particular interest to researchers in earth and material sciences. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs and mission teams easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products that could be shared and distributed to COMPRES community members. These experimental run products could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, CETUS (see companion abstract), to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale.

  15. jsc2018e025598

    NASA Image and Video Library

    2018-03-16

    jsc2018e025598 - In the Korolev Museum at the Baikonur Cosmodrome in Kazakhstan, Expedition 55 crewmembers Ricky Arnold of NASA (left), Oleg Artemyev of Roscosmos (center) and Drew Feustel of NASA (right) display the Russian Sokol launch and entry suit worn by Artemyev during his first flight into space in 2014 as part of the Expedition 39-40 crew. Artemyev is donating the suit to the museum as an historical artifact. The crewmembers will launch March 21 on the Soyuz MS-08 spacecraft for a five-month mission on the International Space Station...NASA/Victor Zelentsov.

  16. jsc2018e010821

    NASA Image and Video Library

    2018-03-04

    jsc2018e010821 - Bundled up against a blizzard, Expedition 55 crewmember Oleg Artemyev of Roscosmos (center) holds his infant child March 4 at the Gagarin Cosmonaut Training Center in Star City, Russia as he and his crewmates walk to a waiting bus to take them to a nearby airport for a flight to the launch site at the Baikonur Cosmodrome in Kazakhstan. Looking on are crewmates Ricky Arnold of NASA (left) and Drew Feustel of NASA (right). The trio will launch March 21 on the Soyuz MS-08 spacecraft for a five month mission on the International Space Station...NASA/Elizabeth Weissinger.

  17. jsc2018e010820

    NASA Image and Video Library

    2018-03-04

    jsc2018e010820 - Bundled up against a blizzard, Expedition 55 crewmember Oleg Artemyev of Roscosmos holds his infant child March 4 at the Gagarin Cosmonaut Training Center in Star City, Russia as he and his family walk to a waiting bus to take them to a nearby airport for a flight to the launch site at the Baikonur Cosmodrome in Kazakhstan. Looking on is crewmate Ricky Arnold of NASA (left). Arnold, Artemyev and Drew Feustel of NASA will launch March 21 on the Soyuz MS-08 spacecraft for a five month mission on the International Space Station...NASA/Elizabeth Weissinger.

  18. NASA's Subsonic Jet Transport Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Preisser, John S.

    2000-01-01

    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

  19. Oxidation of boron nitride in an arc heated jet.

    NASA Technical Reports Server (NTRS)

    Buckley, J. D.

    1971-01-01

    Two grades of hot pressed boron nitride and a boron nitride composite were subjected to oxidation tests in a 2.5 megawatt atmospheric arc jet. The results showed that fabrication and/or composition influenced thermal shock and oxidation resistance. Changes in surface structure and recession due to oxidation suggest correlation with specimen composition. The boron nitride composite reacted with the oxygen in the hot subsonic airstream to produce a glassy coating on the hot face surface.

  20. jsc2017e038547

    NASA Image and Video Library

    2017-03-30

    jsc2017e038547 (March 30, 2017) --- At the Gagarin Cosmonaut Training Center in Star City, Russia, Expedition 51 crewmembers Jack Fischer of NASA (left) and Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos, right) flash broad smiles March 30 as they begin final crew qualification exams. They will launch April 20 on the Soyuz MS-04 spacecraft from the Baikonur Cosmodrome in Kazakhstan for a four and a half month mission on the International Space Station. Credit: NASA/Rob Navias

  1. jsc2017e039459

    NASA Image and Video Library

    2017-04-03

    jsc2017e039459 (04/03/2017) --- At the Kremlin Wall in Red Square in Moscow, Expedition 51 crewmember Jack Fischer of NASA lays flowers at the site where Russian space icons are interred during traditional ceremonies April 3. Fischer and Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos) will launch April 20 on the Soyuz MS-04 spacecraft from the Baikonur Cosmodrome in Kazakhstan for a four and a half month mission on the International Space Station. Photo: NASA/Rob Navias.

  2. jsc2018e008068

    NASA Image and Video Library

    2018-02-22

    jsc2018e008068 - At Red Square in Moscow, Expedition 55 crewmember Drew Feustel of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch activities Feb. 22. Feustel, Oleg Artemyev of Roscosmos and Ricky Arnold of NASA will launch March 21 on the Soyuz MS-08 spacecraft from the Baikonur Cosmodrome in Kazakhstan for a five-month mission on the International Space Station...Gagarin Cosmonaut Training Center/Andrey Shelepin and Irina Spektor .

  3. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueiredo, J., E-mail: joao.figueiredo@jet.efda.org; Mailloux, J.; Kirov, K.

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguidesmore » facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.« less

  4. An arc control and protection system for the JET lower hybrid antenna based on an imaging system.

    PubMed

    Figueiredo, J; Mailloux, J; Kirov, K; Kinna, D; Stamp, M; Devaux, S; Arnoux, G; Edwards, J S; Stephen, A V; McCullen, P; Hogben, C

    2014-11-01

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  5. Presidential commission investigating Challenger accident at JSC

    NASA Image and Video Library

    1986-03-05

    S86-28750 (5 March 1986) --- Two JSC officials and two members of the Presidential Commission on the Space Shuttle Challenger Accident meet in the Executive Conference Room of JSC’s Project Management Building. Left to right are JSC Deputy Director Robert C. Goetz; Richard H. Kohrs, Deputy Manager for National Space Transportation Systems Program Office; and commission members Joseph F. Sutter and Dr. Arthur B.C. Walker Jr. Photo credit: NASA

  6. Enthalpy Distributions of Arc Jet Flow Based on Measured Laser Induced Fluorescence, Heat Flux and Stagnation Pressure Distributions

    NASA Technical Reports Server (NTRS)

    Suess, Leonard E.; Milhoan, James D.; Oelke, Lance; Godfrey, Dennis; Larin, Maksim Y.; Scott, Carl D.; Grinstead, Jay H.; DelPapa, Steven

    2011-01-01

    The centerline total enthalpy of arc jet flow is determined using laser induced fluorescence of oxygen and nitrogen atoms. Each component of the energy, kinetic, thermal, and chemical can be determined from LIF measurements. Additionally, enthalpy distributions are inferred from heat flux and pressure probe distribution measurements using an engineering formula. Average enthalpies are determined by integration over the radius of the jet flow, assuming constant mass flux and a mass flux distribution estimated from computational fluid dynamics calculations at similar arc jet conditions. The trends show favorable agreement, but there is an uncertainty that relates to the multiple individual measurements and assumptions inherent in LIF measurements.

  7. Arc jet testing of a Dynasil dome

    NASA Astrophysics Data System (ADS)

    Burrell, Jack O.; Strobel, Forrest A.

    1999-07-01

    Arc jet testing of the Hera modified ballistic reentry vehicle - 1E (MBRV-1E) nosetip was conducted in June of 1998. The tests were conducted in the Air Force's Arnold Engineering Development Center HEAT-H1 arc plasma test facility in Tullahoma, Tennessee. The MBRV-1 vehicle is a separating short- to medium-range target. The MBRV-1E nosetip incorporates a custom designed quartz dome that is integrated into the nosetip stagnation region. The dome was bonded to the baseline nosetip material, a well characterized carbon-carbon composite material, using a silica based ceramic bond materials. The objectives of the test were to demonstrate the thermal performance and structural integrity of the nosetip design by exposing tip to arc plasma-heated flow simulating the reentry flight environment. Pre-test analysis of the Dynasil dome performed using finite element analysis predicted the dome would survive the test conditions with no failures. Post-test inspection of the dome revealed a hard, opaque coating on the outer surface of the dome. Once removed, the dome was shown to have numerous surface cracks near the stagnation region. In addition to the surface cracks, significant pitting on the surface was observed through both an optical microscope and a scanning electron microscope. Post-test analyses were performed to determine the cause of these surface cracks. It was concluded that the cracks occurred during cooldown, and were a result of significant strength degradation which was caused by the surface pitting.

  8. NASA systems autonomy demonstration project: Advanced automation demonstration of Space Station Freedom thermal control system

    NASA Technical Reports Server (NTRS)

    Dominick, Jeffrey; Bull, John; Healey, Kathleen J.

    1990-01-01

    The NASA Systems Autonomy Demonstration Project (SADP) was initiated in response to Congressional interest in Space station automation technology demonstration. The SADP is a joint cooperative effort between Ames Research Center (ARC) and Johnson Space Center (JSC) to demonstrate advanced automation technology feasibility using the Space Station Freedom Thermal Control System (TCS) test bed. A model-based expert system and its operator interface were developed by knowledge engineers, AI researchers, and human factors researchers at ARC working with the domain experts and system integration engineers at JSC. Its target application is a prototype heat acquisition and transport subsystem of a space station TCS. The demonstration is scheduled to be conducted at JSC in August, 1989. The demonstration will consist of a detailed test of the ability of the Thermal Expert System to conduct real time normal operations (start-up, set point changes, shut-down) and to conduct fault detection, isolation, and recovery (FDIR) on the test article. The FDIR will be conducted by injecting ten component level failures that will manifest themselves as seven different system level faults. Here, the SADP goals, are described as well as the Thermal Control Expert System that has been developed for demonstration.

  9. ARC-2009-ACD09-0244-008

    NASA Image and Video Library

    2009-11-04

    A Nanosensor Device for Cellphone Intergration and Chemical Sensing Network. iPhone with sensor chip, data aquisition board and sampling jet.(Note 4-4-2012:High Sensitive, Low Power and Compact Nano Sensors for Trache Chemical Detection' is the winner of the Government Invention of the Year Award 2012 (winning inventors Jing Li and Myya Meyyappan, NASA/ARC, and Yijiang Lu, University of California Santa Cruz. )

  10. LES of a Jet Excited by the Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2011-01-01

    The fluid dynamics of a high-speed jet are governed by the instability waves that form in the free-shear boundary layer of the jet. Jet excitation manipulates the growth and saturation of particular instability waves to control the unsteady flow structures that characterize the energy cascade in the jet.The results may include jet noise mitigation or a reduction in the infrared signature of the jet. The Localized Arc Filament Plasma Actuators (LAFPA) have demonstrated the ability to excite a high-speed jets in laboratory experiments. Extending and optimizing this excitation technology, however, is a complex process that will require many tests and trials. Computational simulations can play an important role in understanding and optimizing this actuator technology for real-world applications. Previous research has focused on developing a suitable actuator model and coupling it with the appropriate computational fluid dynamics (CFD) methods using two-dimensional spatial flow approximations. This work is now extended to three-dimensions (3-D) in space. The actuator model is adapted to a series of discrete actuators and a 3-D LES simulation of an excited jet is run. The results are used to study the fluid dynamics near the actuator and in the jet plume.

  11. jsc2018e050828

    NASA Image and Video Library

    2018-05-29

    jsc2018e050828 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 56 prime crewmember Alexander Gerst of the European Space Agency takes a spin in a rotating chair May 29 to test his vestibular system as part of pre-launch activities. Gerst, Serena Aunon-Chancellor of NASA and Sergey Prokopyev of Roscosmos will launch June 6 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-09 spacecraft for a six-month mission on the International Space Station...NASA/Victor Zelentsov.

  12. jsc2017e101945

    NASA Image and Video Library

    2017-07-22

    jsc2017e101945 (July 22, 2017) --- At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 52-53 crewmember Paolo Nespoli of the European Space Agency tests his vestibular system in a spinning chair July 22 as part of pre-launch activities. Nespoli, Randy Bresnik of NASA and Sergey Ryazanskiy of the Russian Federal Space Agency (Roscosmos) will launch July 28 on the Soyuz MS-05 spacecraft from the Baikonur Cosmodrome for a five-month mission on the International Space Station. Credit: NASA/Victor Zelentsov

  13. jsc2018e050829

    NASA Image and Video Library

    2018-05-29

    jsc2018e050829 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 56 prime crewmember Serena Aunon-Chancellor of NASA takes a spin in a rotating chair May 29 to test her vestibular system as part of pre-launch activities. Aunon-Chancellor, Alexander Gerst of the European Space Agency and Sergey Prokopyev of Roscosmos will launch June 6 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-09 spacecraft for a six-month mission on the International Space Station...NASA/Victor Zelentsov.

  14. jsc2017e043074

    NASA Image and Video Library

    2017-04-13

    jsc2017e043074 (April 13, 2017) --- At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 51 crewmember Jack Fischer of NASA conducts a session on a tilt table to test his vestibular system April 13 as part of his pre-launch activities. Fischer and Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos) will liftoff April 20 from the Baikonur Cosmodrome on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. NASA/Victor Zelentsov

  15. jsc2017e043073

    NASA Image and Video Library

    2017-04-13

    jsc2017e043073 (April 13, 2017) --- At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 51 crewmember Jack Fischer of NASA takes a spin in a rotating chair to test his vestibular system April 13 as part of his pre-launch activities. Fischer and Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos) will liftoff April 20 from the Baikonur Cosmodrome on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. NASA/Victor Zelentsov

  16. jsc2017e067268

    NASA Image and Video Library

    2017-06-06

    jsc2017e067268 (06/06/2017) --- New Astronaut Candidate's First Day at NASA's Ellington Field. NASA selected 12 new astronaut candidates, Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Robert Hines, Warren Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/James Blair)

  17. jsc2017e067275

    NASA Image and Video Library

    2017-06-06

    jsc2017e067275 (06/06/2017) -- New Astronaut Candidate's First Day at NASA's Ellington Field. NASA selected 12 new astronaut candidates, Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Robert Hines, Warren Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/James Blair)

  18. jsc2018e050016

    NASA Image and Video Library

    2018-05-21

    jsc2018e050016 - In the town of Baikonur, Kazakhstan, Expedition 56 backup crewmember David Saint-Jacques of the Canadian Space Agency lays flowers at the statue of Yuri Gagarin, the first human to fly in space as his crewmates look on during traditional pre-launch activities May 21. Saint-Jacques, Anne McClain of NASA and Oleg Kononenko of Roscosmos are the backups to the prime crew, Serena Aunon-Chancellor of NASA, Sergey Prokopyev of Roscosmos and Alexander Gerst of the European Space Agency, who will launch June 6 on the Soyuz MS-09 spacecraft from Baikonur for a six-month mission on the International Space Station...NASA/Victor Zelentsov.

  19. jsc2018e050018

    NASA Image and Video Library

    2018-05-21

    jsc2018e0500108 - In the town of Baikonur, Kazakhstan, Expedition 56 backup crewmembers Anne McClain of NASA (left), Oleg Kononenko of Roscosmos (center) and David Saint-Jacques of the Canadian Space Agency (right), lay flowers and pay tribute at the statue of Sergei Korolev, the Russian space designer icon May 21 during traditional pre-launch activities. They are the backups to the prime crew, Serena Aunon-Chancellor of NASA, Sergey Prokopyev of Roscosmos and Alexander Gerst of the European Space Agency, who will launch June 6 on the Soyuz MS-09 spacecraft from Baikonur for a six-month mission on the International Space Station...NASA/Victor Zelentsov.

  20. jsc2018e050017

    NASA Image and Video Library

    2018-05-21

    jsc2018e050017 - In the town of Baikonur, Kazakhstan, Expedition 56 backup crewmembers David Saint-Jacques of the Canadian Space Agency (left), Oleg Kononenko of Roscosmos (center) and Anne McClain of NASA (right) pose for pictures May 21 at the statue of Yuri Gagarin, the first human to fly in space during traditional pre-launch activities. They are the backups to the prime crew, Serena Aunon-Chancellor of NASA, Sergey Prokopyev of Roscosmos and Alexander Gerst of the European Space Agency, who will launch June 6 on the Soyuz MS-09 spacecraft from Baikonur for a six-month mission on the International Space Station...NASA/Victor Zelentsov.

  1. NASA Cribs: Human Exploration Research Analog

    NASA Image and Video Library

    2017-07-20

    Follow along as interns at NASA’s Johnson Space Center show you around the Human Exploration Research Analog (HERA), a mission simulation environment located onsite at the Johnson Space Center in Houston. HERA is a unique three-story habitat designed to serve as an analog for isolation, confinement, and remote conditions in exploration scenarios. This video gives a tour of where crew members live, work, sleep, and eat during the analog missions. Find out more about HERA mission activities: https://www.nasa.gov/analogs/hera Find out how to be a HERA crew member: https://www.nasa.gov/analogs/hera/want-to-participate For more on NASA internships: https://intern.nasa.gov/ For Johnson Space Center specific internships: https://pathways.jsc.nasa.gov/ https://www.nasa.gov/centers/johnson/education/interns/index.html HD download link: https://archive.org/details/jsc2017m000730_NASA-Cribs-Human-Exploration-Research-Analog --------------------------------- FOLLOW JOHNSON SPACE CENTER INTERNS! Facebook: @NASA.JSC.Students https://www.facebook.com/NASA.JSC.Students/ Instagram: @nasajscstudents https://www.instagram.com/nasajscstudents/ Twitter: @NASAJSCStudents https://twitter.com/nasajscstudents

  2. Pulsed arc plasma jet synchronized with drop-on-demand dispenser

    NASA Astrophysics Data System (ADS)

    Mavier, F.; Lemesre, L.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F.

    2017-04-01

    This work concerns with the liquid injection in arc plasma spraying for the development of finely structured ceramics coatings. Nanostructured coatings can be now achieved with nanopowders dispersed in a liquid (SPS: Suspension Plasma Spraying) or with a salt dissolved into a liquid (SPPS: Solution Precursor Plasma Spraying) injected into the plasma jet. Controlling electric arc instabilities confined in non-transferred arc plasma torch is therefore a key issue to get reproducible coating properties. Adjustment of parameters with a mono-cathode arc plasma allows a new resonance mode called “Mosquito”. A pulsed arc plasma producing a periodic regular voltage signal with modulation of enthalpy is obtained. The basic idea is to synchronize the injection system with the arc to introduce the liquid material in each plasma oscillation in the same conditions, in order to control the plasma treatment of the material in-fly. A custom-developed pulsed arc plasma torch is used with a drop-on-demand dispenser triggered by the arc voltage. A delay is added to adjust the droplets emission time and their penetration into the plasma gusts. Indeed, the treatment of droplets is also shown to be dependent on this injection delay. A TiO2 suspension and an aqueous solution of aluminium nitrate were optimized to get ejectable inks forming individual droplets. The feasibility of the process was demonstrated for SPS and SPPS techniques. Coatings from the suspension and the solution were achieved. First synchronized sprayings show a good penetration of the droplets into the plasma. Coatings show a fine structure of cauliflowers shapes. The synchronization of the ejection allows a control of morphology and a better deposition efficiency. Further investigations will find the optimal operating parameters to show the full potential of this original liquid injection technique.

  3. jsc2012e096292

    NASA Image and Video Library

    2012-06-07

    JSC2012-E-096292 (7 June 2012) --- Attired in Russian Sokol launch and entry suits, NASA astronaut Tom Marshburn (left), Russian cosmonaut Roman Romanenko (center) and Canadian Space Agency astronaut Chris Hadfield, all Expedition 32 backup crew members, take a break from training in Star City, Russia to pose for a portrait. Photo credit: Gagarin Cosmonaut Training Center

  4. jsc2017e043855

    NASA Image and Video Library

    2017-04-14

    jsc2017e043855 (April 14, 2017) --- At the Baikonur Cosmodrome in Kazakhstan, Expedition 51 crewmember Jack Fischer of NASA poses for pictures April 14 in front of the cottage where Yuri Gagarin slept on the eve of his historic launch on April 12, 1961 to become the first human to fly in space. Fischer and Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos) will launch April 20 on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. Credit: NASA/Victor Zelentsov

  5. jsc2004e47551

    NASA Image and Video Library

    2004-10-24

    JSC2004-E-47551 (24 October 2004) --- Astronaut Edward M. (Mike) Fincke, NASA International Space Station (ISS) science officer and flight engineer, is interviewed for the video phone by astronaut Peggy Whitson, Expedition 5 flight engineer, after the successful landing in the Soyuz spacecraft with fellow crew members cosmonaut Gennady I. Padalka, Russia’s Federal Space Agency Expedition 9 commander, and Russian Space Forces cosmonaut Yuri Shargin. The crew landed approximately 85 kilometers northeast of Arkalyk in northern Kazakhstan on October 24, 2004. Photo Credit: "NASA/Bill Ingalls"

  6. jsc2017e101943

    NASA Image and Video Library

    2017-07-22

    jsc2017e101943 (July 22, 2017) --- At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 52-53 crewmembers Randy Bresnik of NASA (left) and Paolo Nespoli of the European Space Agency (right) try their hand at a game of ping-pong July 22 as part of their media day activities. Bresnik, Nespoli and Sergey Ryazanskiy of the Russian Federal Space Agency (Roscosmos) will launch July 28 on the Soyuz MS-05 spacecraft from the Baikonur Cosmodrome for a five-month mission on the International Space Station. Credit: NASA/Victor Zelentsov

  7. jsc2018e048511

    NASA Image and Video Library

    2018-05-14

    jsc2018e048511 - Expedition 56 backup crewmember David Saint-Jacques of the Canadian Space Agency poses for pictures in the Kremlin gardens in Moscow May 14 as part of traditional pre-launch activities. Saint-Jacques is serving as a backup to the prime crew, Serena Aunon-Chancellor of NASA, Sergey Prokopyev of Roscosmos and Alexander Gerst of the European Space Agency, who will launch June 6 from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-09 spacecraft for a six month mission on the International Space Station...NASA/Elizabeth Weissinger.

  8. Experimental research on electric propulsion. Note 5: Experimental study of a magnetic field stabilized arc-jet

    NASA Technical Reports Server (NTRS)

    Robotti, A. C.; Oggero, M.

    1984-01-01

    The possibility of using an electric arc under the influence of a magnetic field in ambient air to transform the heat energy of the working fluid arc into the kinetic energy of the jet was investigated. A convergent-divergent type nozzle was used. Variation of specific thrust and chamber pressure are discussed. Nitrogen was the propellant used.

  9. STS-134 crew during food tasting session in JSC Food Lab.

    NASA Image and Video Library

    2010-05-25

    JSC2010-E-087706 (25 May 2010) --- NASA astronaut Mark Kelly, STS-134 commander, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  10. STS-134 crew during food tasting session in JSC Food Lab.

    NASA Image and Video Library

    2010-05-25

    JSC2010-E-087713 (25 May 2010) --- NASA astronaut Mark Kelly, STS-134 commander, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  11. jsc2017e011279

    NASA Image and Video Library

    2017-01-27

    jsc2017e011279 (01/27/2017) --- Crowds of visitors line up for the NASA Orion Journey to Mars ride at the Houston Texas NFL Live Super Bowl LI event on Discovery Green Jan. 27, 2017. With people safely seated and virtual googles in place the ride pulls the Orion capsule up 90 feet then drops them suddenly to the bottom providing a physical experience as well as a visual one while experiencing the trip to Mars and back. The virtual reality trip is a popular no cost feature as part of NASA’s Future Flight area which also houses many other NASA space exploration and science exhibits. NASA PHOTOGRAPHER: Robert Markowitz

  12. jsc2017e043854

    NASA Image and Video Library

    2017-04-14

    jsc2017e043854 (April 14, 2017) --- At the Baikonur Cosmodrome in Kazakhstan, the Expedition 51 prime and backup crewmembers pose for pictures April 14 in front of the cottage where Yuri Gagarin slept on the eve of his historic launch on April 12, 1961 to become the first human to fly in space. From left to right are backup crewmembers Randy Bresnik of NASA and Sergey Ryazanskiy of the Russian Federal Space Agency (Roscosmos) and prime crewmembers Fyodor Yurchikhin of Roscosmos and Jack Fischer of NASA. Yurchikhin and Fischer will launch April 20 on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. Credit: NASA/Victor Zelentsov

  13. jsc2017e067161

    NASA Image and Video Library

    2017-06-07

    jsc2017e067161 06/07/2017) --- Robert Lightfoot, NASA's Acting Administrator, delivers remarks during an event where 12 new NASA astronaut candidates were introduced; Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Robert Hines, Warren Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/James Blair)

  14. Variable polarity plasma arc welding on the Space Shuttle external tank

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Bayless, E. O., Jr.; Jones, C. S., III; Munafo, P. M.; Biddle, A. P.; Wilson, W. A.

    1984-01-01

    Variable polarity plasma arc (VPPA) techniques used at NASA's Marshall Space Flight Center for the fabrication of the Space Shuttle External Tank are presentedd. The high plasma arc jet velocities of 300-2000 m/s are produced by heating the plasma gas as it passes through a constraining orifice, with the plasma arc torch becoming a miniature jet engine. As compared to the GTA jet, the VPPA has the following advantages: (1) less sensitive to contamination, (2) a more symmetrical fusion zone, and (3) greater joint penetration. The VPPA welding system is computerized, operating with a microprocessor, to set welding variables in accordance with set points inputs, including the manipulator and wire feeder, as well as torch control and power supply. Some other VPPA welding technique advantages are: reduction in weld repair costs by elimination of porosity; reduction of joint preparation costs through elimination of the need to scrape or file faying surfaces; reduction in depeaking costs; eventual reduction of the 100 percent-X-ray inspection requirements. The paper includes a series of schematic and block diagrams.

  15. Partnering with NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and Psams Initiative

    NASA Astrophysics Data System (ADS)

    Danielson, L. R.; Draper, D. S.

    2016-12-01

    NASA Johnson Space Center's (JSC) Astromaterials Research and Exploration Science Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. We intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science, which should result in substantial cost savings to PIs who wish to use our facilities. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products and standards that could be shared and distributed to community members, products that could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale. A CT scanner will be delivered August 2016 and installed in the same building as all the other division experimental and analytical facilities, allowing users to construct a 3 dimensional model of their run product and/or starting material before any destruction of their sample for follow up analyses. The 3D printer may also be utilized to construct containers for diamond anvil cell experiments. Our staff scientists will work with PIs to maximize science return and serve the needs of the community. We welcome student visitors, and a graduate semester internship is available through Jacobs.

  16. STS-335 food tasting in the JSC Food Lab

    NASA Image and Video Library

    2010-11-12

    JSC2010-E-185479 (10 Nov. 2010) --- NASA astronaut Rex Walheim, STS-135 mission specialist, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  17. Highly porous micro-roughened structures developed on aluminum surface using the jet of rotating arc discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Asadollahi, Siavash; Farzaneh, Masoud; Stafford, Luc

    2018-02-01

    Aluminum 6061 samples were exposed to the jet of an atmospheric pressure rotating arc discharge operated in either nitrogen or air. After multiple passes of treatment with an air-based plasma jet at very short source-to-substrate distances, scanning electron microscopy combined with x-ray photoelectron spectroscopy revealed a highly porous micro-roughened alumina-based structure on the surface of aluminum. Based on optical emission spectroscopy and high-speed optical imaging of the jet interacting with aluminum samples, it was found that the process is mainly driven by the energy transfer from the plasma source to the surface through transient plasma-transferred arcs. The occurrence of multiple arc discharges over very short time scales can induce rapid phase transformations of aluminum with characteristics similar to the ones usually observed during laser ablation of materials with femto- to nanosecond laser pulses or during the formation of cathode spots on the surface of metals.

  18. STS-134 crew during food tasting session in JSC Food Lab.

    NASA Image and Video Library

    2010-05-25

    JSC2010-E-087707 (25 May 2010) --- NASA astronaut Michael Fincke, STS-134 mission specialist, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  19. STS-134 crew during food tasting session in JSC Food Lab.

    NASA Image and Video Library

    2010-05-25

    JSC2010-E-087712 (25 May 2010) --- NASA astronaut Andrew Feustel, STS-134 mission specialist, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  20. Upgrades, Current Capabilities and Near-Term Plans of the NASA ARC Mars Climate

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, Melinda April; Haberle, Robert M.; Schaeffer, James R.

    2012-01-01

    We describe and review recent upgrades to the ARC Mars climate modeling framework, in particular, with regards to physical parameterizations (i.e., testing, implementation, modularization and documentation); the current climate modeling capabilities; selected research topics regarding current/past climates; and then, our near-term plans related to the NASA ARC Mars general circulation modeling (GCM) project.

  1. Air to air view of Endeavour, OV-105, atop SCA flies over JSC enroute to KSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Air to air view shows Endeavour, Orbiter Vehicle (OV) 105, atop a Shuttle Carrier Aircraft (SCA) NASA 911, a modified Boeing 747, flying over the Clear Lake / NASA JSC area prior to a brief stopover at Ellington Field, near JSC. JSC site appears behind and below the orbiter/aircraft combination with Clear Creek and Egret Bay Blvd in the foreground and Clear Lake and Galveston Bay in the background. OV-105 rolled out at Rockwell's Palmdale facility on 04-25-91 to once more bring to four the total of NASA Shuttles available for flight assignment. It left Houston later on this day headed for another stop in Mississippi before landing in Florida on 05-07-91. This photograph was taken from a T-38 aircraft by Sheri J. Dunnette of JSC's Image Sciences Division (ISD).

  2. jsc2018e050022

    NASA Image and Video Library

    2018-05-21

    jsc2018e050022 - At the Baikonur Museum in Baikonur, Kazakhstan, Expedition 56 backup crewmember David Saint-Jacques of the Canadian Space Agency signs a wall photo May 21 depicting the statue of Yuri Gagarin, the first human to fly in space, during traditional pre-launch activities. Saint-Jacques is one of the backups to the prime crewmembers, Serena Aunon-Chancellor of NASA, Sergey Prokopyev of Roscosmos and Alexander Gerst of the European Space Agency, who will launch June 6 on the Soyuz MS-09 spacecraft from Baikonur for a six-month mission on the International Space Station...NASA/Victor Zelentsov.

  3. Development of an IVE/EVA Compatible Prototype Cold-Gas Cubesat Propulsion System at NASA/JSC

    NASA Technical Reports Server (NTRS)

    Radke, Christopher; Studak, Joseph

    2017-01-01

    Cold-gas propulsion systems are well suited for some applications because they are simple to design and build, have low operating costs, and are non-toxic. The inherent tradeoff, however, is their relatively low impulse density. Nevertheless, a modest propulsion system, sized for Cubesats and designed for affordability, presents an attractive system solution for some missions, such as an on-orbit inspection free-flyer. NASA has a long-standing effort to develop propulsion systems appropriate for very high delta-V cubesat missions, such as geo transfer orbits, and there are commercially available Cubesat propulsion systems with considerably more impulse capability, but, these are both prohibitively expensive for some development customers and face compatibility constraints for crewed applications, such as operation within ISS. A relatively conventional cold-gas system has been developed at NASA/JSC taking advantage of existing miniature industrial components, additive manufacturing techniques and in-house qualification of the system. The result is a nearly modular system with a 1U form factor. Compressed nitrogen is stored in a small high-pressure tank, then regulated and distributed to 12 thrusters. Maneuvering thrust can be adjusted, with a typical value of 40 mN, and the delta-V delivered to a 3U Cubesat would be approximately 7 m/s. These values correspond to the performance parameters for an inspection mission previously established at JSC for inspection of the orbiter prior to reentry. Environmental testing was performed to meet ISS launch and workmanship standards, along with the expected thermal environment for an inspection mission. Functionality has been demonstrated, and performance in both vacuum and relevant blow down scenarios was completed. Several avenues for further improvement are also explored. Details of the system, components, integration, tests, and test data are presented in this paper.

  4. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included < 0.6 ng/cm2 of DBP, DEP, TXIB, and DIBP. Silicones included < 0.5 ng/cm2 of cyclo(Me2SiO)x (x = 6, 8, 9, 10) and siloxane. Solvents included < 1.0 ng/cm2 of 2-cyclohexen-1-one, 3,5,5-trimethyl- (Isopho-rone), N-formylpiperidine, and 2-(2-butoxyethoxy) ethanol. In addition, DBF, rubber/polymer additive was found at < 0.2 ng/cm2 and caprolactam, nylon-6 at < 0.6 ng/cm2. Reducing Organics: The Apollo program was the last sam-ple return mission to place high-level organic requirements and biological containment protocols on a curation facility. The high vacuum complex F-201 glovebox in the Lunar Receiving Labora-tory used ethyl alcohol (190 proof), 3:1 benzene/methanol (nano grade solution), and heat sterilization at 130degC for 48 hours to reduce organic

  5. STS-335 food tasting in the JSC Food Lab

    NASA Image and Video Library

    2010-11-12

    JSC2010-E-185484 (10 Nov. 2010) --- NASA astronauts Doug Hurley (left), STS-135 pilot; and Rex Walheim, mission specialist, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  6. STS-335 food tasting in the JSC Food Lab

    NASA Image and Video Library

    2010-11-12

    JSC2010-E-185486 (10 Nov. 2010) --- NASA astronauts Chris Ferguson (left), STS-135 commander; and Doug Hurley, pilot, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  7. STS-335 food tasting in the JSC Food Lab

    NASA Image and Video Library

    2010-11-12

    JSC2010-E-185481 (10 Nov. 2010) --- NASA astronauts Doug Hurley (left), STS-135 pilot; and Rex Walheim, mission specialist, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  8. jsc2009e049945

    NASA Image and Video Library

    2009-02-12

    JSC2009-E-049945 (February 2009) --- Attired in Russian Sokol launch and entry suits, European Space Agency (ESA) astronaut Frank De Winne (right), Expedition 20 flight engineer and Expedition 21 commander; cosmonaut Roman Romanenko and NASA astronaut Nicole Stott, both Expedition 20/21 flight engineers, take a break from training in Star City, Russia to pose for a portrait. Photo credit: Gagarin Cosmonaut Training Center

  9. An Update on Structural Seal Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Dunlap, Pat; Steinetz, Bruce; Finkbeiner, Josh; DeMange, Jeff; Taylor, Shawn; Daniels, Chris; Oswald, Jay

    2006-01-01

    A viewgraph presentation describing advanced structural seal development for NASA exploration is shown. The topics include: 1) GRC Structural Seals Team Research Areas; 2) Research Areas & Objective; 3) Wafer Seal Geometry/Flow Investigations; 4) Wafer Seal Installation DOE Study; 5) Results of Wafer Seal Installation DOE Study; 6) Wafer Geometry Study: Thickness Variations; 7) Wafer Geometry Study: Full-Size vs. Half-Size Wafers; 8) Spring Tube Seal Development; 9) Resiliency Improvement for Rene 41 Spring Tube; 10) Spring Tube Seals: Go-Forward Plan; 11) High Temperature Seal Preloader Development: TZM Canted Coil Spring; 12) TZM Canted Coil Spring Development; 13) Arc Jet Test Rig Development; and 14) Arc Jet Test Rig Status.

  10. jsc2011e050262

    NASA Image and Video Library

    2011-06-01

    JSC2011-E-050262 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA

  11. jsc2011e050254

    NASA Image and Video Library

    2011-06-01

    JSC2011-E-050254 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA

  12. jsc2011e050249

    NASA Image and Video Library

    2011-06-01

    JSC2011-E-050249 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA

  13. jsc2011e050245

    NASA Image and Video Library

    2011-06-01

    JSC2011-E-050245 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA

  14. jsc2011e050253

    NASA Image and Video Library

    2011-06-01

    JSC2011-E-050253 (1 June 2011) --- Bathed in xenon lights, space shuttle Atlantis embarks on its final journey from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the crawler-transporter about six hours to carry the shuttle, attached to its external fuel tank and solid rocket boosters, to the seaside launch pad. The milestone move paves the way for the launch of the STS-135 mission to the International Space Station, targeted for July 8. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. Photo credit: NASA

  15. JSC Search System Usability Case Study

    NASA Technical Reports Server (NTRS)

    Meza, David; Berndt, Sarah

    2014-01-01

    The advanced nature of "search" has facilitated the movement from keyword match to the delivery of every conceivable information topic from career, commerce, entertainment, learning... the list is infinite. At NASA Johnson Space Center (JSC ) the Search interface is an important means of knowledge transfer. By indexing multiple sources between directorates and organizations, the system's potential is culture changing in that through search, knowledge of the unique accomplishments in engineering and science can be seamlessly passed between generations. This paper reports the findings of an initial survey, the first of a four part study to help determine user sentiment on the intranet, or local (JSC) enterprise search environment as well as the larger NASA enterprise. The survey is a means through which end users provide direction on the development and transfer of knowledge by way of the search experience. The ideal is to identify what is working and what needs to be improved from the users' vantage point by documenting: (1) Where users are satisfied/dissatisfied (2) Perceived value of interface components (3) Gaps which cause any disappointment in search experience. The near term goal is it to inform JSC search in order to improve users' ability to utilize existing services and infrastructure to perform tasks with a shortened life cycle. Continuing steps include an agency based focus with modified questions to accomplish a similar purpose

  16. STS-134 crew during food tasting session in JSC Food Lab.

    NASA Image and Video Library

    2010-05-25

    JSC2010-E-087709 (25 May 2010) --- NASA astronaut Mark Kelly (right), STS-134 commander; along with European Space Agency astronaut Roberto Vittori (center) and NASA astronaut Andrew Feustel, both mission specialists, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  17. Computational Fluid Dynamics Modeling of Supersonic Coherent Jets for Electric Arc Furnace Steelmaking Process

    NASA Astrophysics Data System (ADS)

    Alam, Morshed; Naser, Jamal; Brooks, Geoffrey; Fontana, Andrea

    2010-12-01

    Supersonic coherent gas jets are now used widely in electric arc furnace steelmaking and many other industrial applications to increase the gas-liquid mixing, reaction rates, and energy efficiency of the process. However, there has been limited research on the basic physics of supersonic coherent jets. In the present study, computational fluid dynamics (CFD) simulation of the supersonic jet with and without a shrouding flame at room ambient temperature was carried out and validated against experimental data. The numerical results show that the potential core length of the supersonic oxygen and nitrogen jet with shrouding flame is more than four times and three times longer, respectively, than that without flame shrouding, which is in good agreement with the experimental data. The spreading rate of the supersonic jet decreased dramatically with the use of the shrouding flame compared with a conventional supersonic jet. The present CFD model was used to investigate the characteristics of the supersonic coherent oxygen jet at steelmaking conditions of around 1700 K (1427 °C). The potential core length of the supersonic coherent oxygen jet at steelmaking conditions was 1.4 times longer than that at room ambient temperature.

  18. jsc2012e238481

    NASA Image and Video Library

    2012-11-14

    JSC2012-E-238481 (14 Nov. 2012) --- Canadian Space Agency astronaut Chris Hadfield (right), Expedition 34 flight engineer and Expedition 35 commander; along with Russian cosmonaut Roman Romanenko (center) and NASA astronaut Tom Marshburn, both Expedition 34/35 flight engineers, attired in Russian Sokol launch and entry suits, take a break from training in Star City, Russia to pose for a portrait. Photo credit: Gagarin Cosmonaut Training Center

  19. jsc2010e046805

    NASA Image and Video Library

    2010-04-05

    JSC2010-E-046805 (5 April 2010) --- John McCullough, chief of the Flight Director Office; and Janet Kavandi, deputy director, Flight Crew Operations, watch television screens at the Mission Operations Directorate (MOD) console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 liftoff.

  20. STS-3 MISSION OPERATIONS CONTROL ROOM (MOCR) - JSC

    NASA Image and Video Library

    1982-03-26

    Mission Control Activities during the STS-3 Mission, Day-4 with: Maj. Gen. James A. Abrahamson, Associate Administrator of the Space Transportation System (STS), NASA Hdqs., conversing with Dr. Kraft; Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC, Aaron Cohen, Manager, Space Shuttle Orbiter Project Office; and, J. E. Conner, Ford Aerospace Engineer at the Instrumentation and Communications Officer (INCO) Console position. 1. Glynn S. Lunney 2. Major General James A. Abrahamson 3. Aaron Cohen 4. J. E. Conner 5. Dr. Christopher Kraft JSC, Houston, TX

  1. On factors influencing arc filament plasma actuator performance in control of high speed jets

    NASA Astrophysics Data System (ADS)

    Hahn, Casey; Kearney-Fischer, Martin; Samimy, Mo

    2011-12-01

    Localized arc filament plasma actuators (LAFPAs) have been developed and used at The Gas Dynamics and Turbulence Laboratory for the purpose of controlling high-speed and high Reynolds number jets. The ability of LAFPAs for use in both subsonic and supersonic jets has been explored, and experiments to date have shown that these actuators have significant potential for mixing enhancement and noise control applications. While it has been established that the actuators manipulate instabilities of the jet, the exact nature of how the actuation couples to the flow is still unclear. All of the results previously reported have been based on a nozzle extension that has an azimuthal groove of 1 mm width and 0.5 mm depth along the inner surface approximately 1 mm upstream of nozzle extension exit. The ring groove was initially added to shield the plasma arcs from the high-momentum flow. However, the effect of the ring groove on the actuation mechanism is not known. To explore this effect, a new nozzle extension is designed, which relocates the actuators to the nozzle extension face and eliminates the ring groove. Schlieren images, particle image velocimetry and acoustic results of a Mach 0.9 jet of Reynolds number ~6.1 × 105 show similar trends and magnitudes with and without a ring groove. Thus, it is concluded that the ring groove does not play a primary role in the LAFPAs' control mechanism. Furthermore, the effect of the duty cycle of the actuator input pulse on the LAFPAs' control authority is investigated. The results show that the minimum duty cycle that provides complete plasma formation has the largest control over the jet.

  2. Effort to Accelerate MBSE Adoption and Usage at JSC

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Izygon, Michel; Okron, Shira; Garner, Larry; Wagner, Howard

    2016-01-01

    This paper describes the authors' experience in adopting Model Based System Engineering (MBSE) at the NASA/Johnson Space Center (JSC). Since 2009, NASA/JSC has been applying MBSE using the Systems Modeling Language (SysML) to a number of advanced projects. Models integrate views of the system from multiple perspectives, capturing the system design information for multiple stakeholders. This method has allowed engineers to better control changes, improve traceability from requirements to design and manage the numerous interactions between components. As the project progresses, the models become the official source of information and used by multiple stakeholders. Three major types of challenges that hamper the adoption of the MBSE technology are described. These challenges are addressed by a multipronged approach that includes educating the main stakeholders, implementing an organizational infrastructure that supports the adoption effort, defining a set of modeling guidelines to help engineers in their modeling effort, providing a toolset that support the generation of valuable products, and providing a library of reusable models. JSC project case studies are presented to illustrate how the proposed approach has been successfully applied.

  3. State of Jet Noise Prediction-NASA Perspective

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2008-01-01

    This presentation covers work primarily done under the Airport Noise Technical Challenge portion of the Supersonics Project in the Fundamental Aeronautics Program. To provide motivation and context, the presentation starts with a brief overview of the Airport Noise Technical Challenge. It then covers the state of NASA s jet noise prediction tools in empirical, RANS-based, and time-resolved categories. The empirical tools, requires seconds to provide a prediction of noise spectral directivity with an accuracy of a few dB, but only for axisymmetric configurations. The RANS-based tools are able to discern the impact of three-dimensional features, but are currently deficient in predicting noise from heated jets and jets with high speed and require hours to produce their prediction. The time-resolved codes are capable of predicting resonances and other time-dependent phenomena, but are very immature, requiring months to deliver predictions without unknown accuracies and dependabilities. In toto, however, when one considers the progress being made it appears that aeroacoustic prediction tools are soon to approach the level of sophistication and accuracy of aerodynamic engineering tools.

  4. jsc2018e050027

    NASA Image and Video Library

    2018-05-19

    jsc2018e050027 - At the Gagarin Cosmonaut Training Center in Star City, Russia, the Expedition 56 prime and backup crewmembers pose for pictures in front of the statue of Vladimir Lenin May 19 before boarding a bus that took them to a nearby airfield for a flight to their launch site at the Baikonur Cosmodrome in Kazakhstan. From left to right are the backup crewmembers, Anne McClain of NASA, Oleg Kononenko of Roscosmos and David Saint-Jacques of the Canadian Space Agency, and the prime crew, Serena Aunon-Chancellor of NASA, Sergey Prokopyev of Roscosmos and Alexander Gerst of the European Space Agency. Aunon-Chancellor, Prokopyev and Gerst will launch June 6 on the Soyuz MS-09 spacecraft from Baikonur for a six-month mission on the International Space Station...NASA/Elizabeth Weissinger.

  5. Joint JSC/GSFC two-TDRS navigation certification results for STS-29, STS-30, and STS-32

    NASA Technical Reports Server (NTRS)

    Schmidt, Thomas G.; Brown, Edward T.; Murdock, Valerie E.; Cappellari, James O., Jr.; Smith, Evan A.; Schmitt, Mark W.; Omalley, James W.; Lowes, Flora B.; Joyce, James B.

    1990-01-01

    The procedures used and the results obtained in the joint Johnson Space Center (JSC)/Goddard Space Flight Center (GSFC) navigation certification of the two-Tracking and Data Relay Satellite (TDRS) S-band tracking configuration for support of low- to medium-inclination (28.5 to 62 degrees) Shuttle missions (STS-29 and STS-30) and Shuttle rendezvous missions (STS-32) are described. The objective of this certification effort was to certify the two-TDRS configuration for nominal Space Transportation System (STS) on-orbit navigation support, thereby making it possible to significantly reduce the ground tracking support requirements for routine STS on-orbit navigation. JSC had the primary responsibility for certification of the two-TDRS configuration for STS support, and GSFC supported the effort by performing Ground Network (GN) and Space Network (SN) tracking data evaluation, parallel orbit solutions, and solution comparisons. In the certification process, two types of orbit determination solutions were generated by JSC and by GSFC for each tracking arc evaluated, one type using TDRS-East and TDRS-West tracking data combined with ground tracking data (the reference solutions) and one type using only TDRS-East and TDRS-West tracking data. The two types of solutions were then compared to determine the maximum position differences over the solution arcs and whether these differences satisfied the navigation certification criteria. The certification criteria were a function of the type of Shuttle activity in the tracking arc, i.e., quiet, moderate, or active. Quiet periods included no attitude maneuvers or ventings; moderate periods included one or two maneuvers or ventings; and active periods included more than two maneuvers or ventings. The results of the individual JSC and GSFC certification analyses for the STS-29, STS-30, and STS-32 missions and the joint JSC/GSFC conclusions regarding certification of the two-TDRS S-band configuration for STS support are presented.

  6. Presidential commission investigating Challenger accident at JSC

    NASA Image and Video Library

    1986-03-05

    S86-28751 (5 March 1986) --- Two NASA officials talk with members of the Presidential Commission on the Space Shuttle Challenger Accident in the Executive Conference Room of JSC’s Project Management Building. Left to right are JSC Deputy Director Robert C. Goetz; Richard H. Kohrs, Deputy Manager, National Space Transportation Systems Office; and commission members Dr. Arthur B.C. Walker Jr., Robert W. Rummel and Joseph F. Sutter. Photo credit: NASA

  7. NASA-JSC Protocol for the Characterization of Single Wall Carbon Nanotube Material Quality

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Hadjiev, Victor; Holmes, William; Devivar, Rodrigo; Files, Bradley; Yowell, Leonard

    2010-01-01

    It is well known that the raw as well as purified single wall carbon nanotube (SWCNT) material always contain certain amount of impurities of varying composition (mostly metal catalyst and non-tubular carbon). Particular purification method also creates defects and/or functional groups in the SWCNT material and therefore affects the its dispersability in solvents (important to subsequent application development). A number of analytical characterization tools have been used successfully in the past years to assess various properties of nanotube materials, but lack of standards makes it difficult to compare these measurements across the board. In this work we report the protocol developed at NASA-JSC which standardizes measurements using TEM, SEM, TGA, Raman and UV-Vis-NIR absorption techniques. Numerical measures are established for parameters such as metal content, homogeneity, thermal stability and dispersability, to allow easy comparison of SWCNT materials. We will also report on the recent progress in quantitative measurement of non-tubular carbon impurities and a possible purity standard for SWCNT materials.

  8. STS-134 crew during food tasting session in JSC Food Lab.

    NASA Image and Video Library

    2010-05-25

    JSC2010-E-087708 (25 May 2010) --- NASA astronaut Gregory H. Johnson (foreground), STS-134 pilot; along with astronauts Greg Chamitoff and Michael Fincke, both STS-134 mission specialists, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration

  9. Aerodynamic characterization of the jet of an arc wind tunnel

    NASA Astrophysics Data System (ADS)

    Zuppardi, Gennaro; Esposito, Antonio

    2016-11-01

    It is well known that, due to a very aggressive environment and to a rather high rarefaction level of the arc wind tunnel jet, the measurement of fluid-dynamic parameters is difficult. For this reason, the aerodynamic characterization of the jet relies also on computer codes, simulating the operation of the tunnel. The present authors already used successfully such a kind of computing procedure for the tests in the arc wind tunnel (SPES) in Naples (Italy). In the present work an improved procedure is proposed. Like the former procedure also the present procedure relies on two codes working in tandem: 1) one-dimensional code simulating the inviscid and thermally not-conducting flow field in the torch, in the mix-chamber and in the nozzle up to the position, along the nozzle axis, of the continuum breakdown, 2) Direct Simulation Monte Carlo (DSMC) code simulating the flow field in the remaining part of the nozzle. In the present procedure, the DSMC simulation includes the simulation both in the nozzle and in the test chamber. An interesting problem, considered in this paper by means of the present procedure, has been the simulation of the flow field around a Pitot tube and of the related measurement of the stagnation pressure. The measured stagnation pressure, under rarefied conditions, may be even four times the theoretical value. Therefore a substantial correction has to be applied to the measured pressure. In the present paper a correction factor for the stagnation pressure measured in SPES is proposed. The analysis relies on twelve tests made in SPES.

  10. jsc2017e067167

    NASA Image and Video Library

    2017-06-07

    jsc2017e067167 (06/07/2017)--- Ellen Ochoa, Director of the Johnson Space Center delivers remarks during an event where 12 new NASA astronaut candidates were introduced; Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Robert Hines, Warren Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/Robert Markowitz)

  11. jsc2017e067186

    NASA Image and Video Library

    2017-06-07

    jsc2017e067186 (06/07/2017) --- United States Vice President Mike Pence delivers remarks during an event where 12 new NASA astronaut candidates were introduced; Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Robert Hines, Warren Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins at NASA’s Johnson Space Center in Houston, Texas. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/Robert Markowitz)

  12. Organic Contamination Baseline Study: In NASA JSC Astromaterials Curation Laboratories. Summary Report

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.

    2013-01-01

    In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.

  13. NASA - easyJet Collaboration on the Human Factors Monitoring Program (HFMP) Study

    NASA Technical Reports Server (NTRS)

    Srivistava, Ashok N.; Barton, Phil

    2012-01-01

    This is the first annual report jointly prepared by NASA and easyJet on the work performed under the agreement to collaborate on a study of the many factors entailed in flight - and cabin-crew fatigue and documenting the decreases in performance associated with fatigue. The objective of this Agreement is to generate reliable, automated procedures that improve understanding of the levels and characteristics of flight - and cabin-crew fatigue factors, both latent and proximate, whose confluence will likely result in unacceptable flight crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and easyJet are both interested in assessing and testing NASA s automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases, much larger than can be handled practically by human experts.

  14. The JSC Engineering Directorate Product Peer Review Process

    NASA Technical Reports Server (NTRS)

    Jenks, Kenneth C.

    2009-01-01

    The JSC Engineering Directorate has developed a Product Peer Review process in support of NASA policies for project management and systems engineering. The process complies with the requirements of NPR 7120.5, NPR 7123.1 and NPR 7150.2 and follows the guidance in NASA/SP-2007-6105. This presentation will give an overview of the process followed by a brief demonstration of an actual peer review, with audience participation.

  15. Diode Laser Sensors for Arc-Jet Characterization

    NASA Technical Reports Server (NTRS)

    Hanson, Ronald K.

    2005-01-01

    The development and application of tunable diode laser (TDL) absorption sensors to monitor the health and operating conditions in the large-scale 60 MW arc-heated- plasma wind-tunnel at NASA Ames Research Center is reported. The interactive heating facility (THF) produces re-entry flow conditions by expanding the gas heated in a constricted plasma arc-heater to flow at high velocity over a model located in a test cabin. This facility provides the conditions needed to test thermal protective systems for spacecraft re-entering the earth s atmosphere. TDL sensors are developed to monitor gas flows in both the high-temperature constricted flow and the supersonic expansion flow into test cabin. These sensors utilize wavelength-tuned diode lasers to measure absorption transitions of atomic oxygen near 777.2 nm, atomic nitrogen near 856.8 nm, and atomic copper near 793.3 nm. The oxygen and nitrogen sensors measure the population density in exited electronic states of these atoms. The measurements combined with the assumption of local thermal and chemical equilibrium yield gas temperature (typically near 7,000K). The nitrogen and oxygen population temperatures are redundant, and their close agreement provides an important test of the local thermal equilibrium assumption. These temperature sensors provide time-resolved monitors of the operating conditions of the arc-heater and can be used to verify and control the test conditions. An additional TDL sensor was developed to monitor the copper concentration in the arc-heater flow yielding values as high as 13 ppm. Measurements of copper in the flow can identify flow conditions with unacceptably rapid electrode erosion, and hence this sensor provides valuable information needed to schedule maintenance to avoid costly arc-heater failure. TDL sensors were also developed for measurements in the test cabin, where absorption measurements of the populations of argon and molecular nitrogen in excited metastable electronic states

  16. NASA Ames Research Center Overview

    NASA Technical Reports Server (NTRS)

    Boyd, Jack

    2006-01-01

    A general overview of the NASA Ames Research Center is presented. The topics include: 1) First Century of Flight, 1903-2003; 2) NACA Research Centers; 3) 65 Years of Innovation; 4) Ames Projects; 5) NASA Ames Research Center Today-founded; 6) Astrobiology; 7) SOFIA; 8) To Explore the Universe and Search for Life: Kepler: The Search for Habitable Planets; 9) Crew Exploration Vehicle/Crew Launch Vehicle; 10) Lunar Crater Observation and Sensing Satellite (LCROSS); 11) Thermal Protection Materials and Arc-Jet Facility; 12) Information Science & Technology; 13) Project Columbia Integration and Installation; 14) Air Traffic Management/Air Traffic Control; and 15) New Models-UARC.

  17. Skylab 3 prime crew participate in water egress simulations at JSC

    NASA Image and Video Library

    1973-05-01

    S73-27787 (1 May 1973) --- The three members of the prime crew of the second manned Skylab mission participate in prelaunch training, specifically water egress simulations, at the Johnson Space Center (JSC), Houston. They are, left to right, astronaut Alan J. Bean, commander; scientist-astronaut Owen K. Garriott, science pilot; and astronaut Jack R. Lousma, pilot. This training took place in JSC?s Building 220 on May 1, 1973. Photo credit: NASA

  18. jsc2017e067164

    NASA Image and Video Library

    2017-06-07

    jsc2017e067164 (06/07/2017) --- United States Vice President Mike Pence congratulates NASA's 12 new astronaut candidates at the agency's Johnson Space Center in Houston Texas. The 2017 astronaut candidate class -- Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Bob Hines, Warren “Woody” Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins – were chosen from amid a record number of people applying. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/James Blair)

  19. jsc2017e067182

    NASA Image and Video Library

    2017-06-07

    jsc2017e067182 (06/07/2017) --- United States Vice President Mike Pence congratulates NASA's 12 new astronaut candidates at the agency's Johnson Space Center in Houston Texas. The 2017 astronaut candidate class -- Kayla Barron, Zena Cardman, Raja Chari, Matthew Dominick, Bob Hines, Warren “Woody” Hoburg, Jonathan Kim, Robb Kulin, Jasmin Moghbeli, Loral O’Hara, Francisco Rubio and Jessica Watkins – were chosen from amid a record number of people applying. After completing two years of training, the new astronaut candidates could be assigned to missions performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and launching on deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket. Photo Credit: (NASA/Robert Markowitz)

  20. Experimental research on electric propulsion. Note 7: Analysis of the performance of an arc-jet driven by means of hydrogen and nitrogen

    NASA Technical Reports Server (NTRS)

    Robotti, A. C.; Oggero, M.

    1984-01-01

    Experiments which use a new type of arc-jet, characterized by composite electromagnetic and vortex stabilization and propelled by hydrogen and nitrogen in turn are described. The electrical characteristics of the arc and the loss of heat through the electrodes is emphasized.

  1. STS-335 food tasting in the JSC Food Lab

    NASA Image and Video Library

    2010-11-12

    JSC2010-E-185482 (10 Nov. 2010) --- STS-135 crew members participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Pictured from the left are NASA astronauts Chris Ferguson, commander; Doug Hurley, pilot; Rex Walheim and Sandy Magnus, both mission specialists. Michele Perchonok, manager, Shuttle Food System, assisted the crew members. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  2. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet

    NASA Astrophysics Data System (ADS)

    Guo, Jianchao; Li, Chengming; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Hua, Chenyi; Yan, Xiongbo

    2016-05-01

    The addition of titanium (Ti) interlayer was verified to reduce the residual stress of diamond films by self-fracturing and facilitate the harvest of a crack-free free-standing diamond film prepared by direct current (DC) arc plasma jet. In this study, the evolution of the Ti interlayer between large-area diamond film and substrate was studied and modeled in detail. The evolution of the interlayer was found to be relevant to the distribution of the DC arc plasma, which can be divided into three areas (arc center, arc main, and arc edge). The formation rate of titanium carbide (TiC) in the arc main was faster than in the other two areas and resulted in the preferred generation of crack in the diamond film in the arc main during cooling. Sandwich structures were formed along with the growth of TiC until the complete transformation of the Ti interlayer. The interlayer released stress via self-fracture. Avoiding uneven fragile regions that formed locally in the interlayer and achieving cooperatively released stress are crucial for the preparation of large crack-free diamond films.

  3. Implementing the President's Vision: JPL and NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Sander, Michael J.

    2006-01-01

    As part of the NASA team the Jet Propulsion Laboratory is involved in the Exploration Systems Mission Directorate (ESMD) work to implement the President's Vision for Space exploration. In this slide presentation the roles that are assigned to the various NASA centers to implement the vision are reviewed. The plan for JPL is to use the Constellation program to advance the combination of science an Constellation program objectives. JPL's current participation is to contribute systems engineering support, Command, Control, Computing and Information (C3I) architecture, Crew Exploration Vehicle, (CEV) Thermal Protection System (TPS) project support/CEV landing assist support, Ground support systems support at JSC and KSC, Exploration Communication and Navigation System (ECANS), Flight prototypes for cabin atmosphere instruments

  4. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    NASA Technical Reports Server (NTRS)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  5. Understanding High Recession Rates of Carbon Ablators Seen in Shear Tests in an Arc Jet

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Olson, Michael W.; Barnhardt, Michael D.; MacLean, Matthew

    2010-01-01

    High rates of recession in arc jet shear tests of Phenolic Impregnated Carbon Ablator (PICA) inspired a series of tests and analysis on FiberForm (a carbon preform used in the fabrication of PICA). Arc jet tests were performed on FiberForm in both air and pure nitrogen for stagnation and shear configurations. The nitrogen tests showed little or no recession, while the air tests of FiberForm showed recession rates similar to that of PICA (when adjusted for the difference in density). While mechanical erosion can not be ruled out, this is the first step in doing so. Analysis using a carbon oxidation boundary condition within DPLR was used to predict the recession rate of FiberForm. The analysis indicates that much of the anomalous recession behavior seen in shear tests may simply be an artifact of the non-flight like test configuration (copper upstream of the test article) a result of dissimilar enthalpy and oxygen concentration profiles on the copper. Shape change effects were also investigated and shown to be relatively small.

  6. INFLIGHT (MISSION CONTROL CENTER [MCC]) - STS-2 - JSC

    NASA Image and Video Library

    1981-11-14

    S81-39511 (14 Nov. 1981) --- The successful STS-2 landing at Edwards Air Force Base in California was cause for celebration in the Johnson Space Center?s Mission Control Center shortly before 3:30 p.m. (CST) on Nov. 14, 1981. JSC Director Christopher C. Kraft Jr. (center), not only applauds but enjoys a traditional ?touchdown? cigar, as well. Eugene F. Kranz (left), deputy director of flight operations at JSC, and Thomas L. Moser of the structures and mechanics division join the celebration. The second flight of the space shuttle Columbia lasted two days, six hours, 13 minutes and a few seconds. Photo credit: NASA

  7. JSC document index

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Johnson Space Center (JSC) document index is intended to provide a single source listing of all published JSC-numbered documents their authors, and the designated offices of prime responsibility (OPR's) by mail code at the time of publication. The index contains documents which have been received and processed by the JSC Technical Library as of January 13, 1988. Other JSC-numbered documents which are controlled but not available through the JSC Library are also listed.

  8. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  9. Analysis of wavelet technology for NASA applications

    NASA Technical Reports Server (NTRS)

    Wells, R. O., Jr.

    1994-01-01

    The purpose of this grant was to introduce a broad group of NASA researchers and administrators to wavelet technology and to determine its future role in research and development at NASA JSC. The activities of several briefings held between NASA JSC scientists and Rice University researchers are discussed. An attached paper, 'Recent Advances in Wavelet Technology', summarizes some aspects of these briefings. Two proposals submitted to NASA reflect the primary areas of common interest. They are image analysis and numerical solutions of partial differential equations arising in computational fluid dynamics and structural mechanics.

  10. jsc2017e043083

    NASA Image and Video Library

    2017-04-13

    jsc2017e043083 (April 13, 2017) --- At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 51 crewmembers Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos, left) and Jack Fischer of NASA (right) display commemorative items April 13 that will be used as “zero-G” mascot indicators in the Soyuz MS-04 descent module over their heads during launch and their ascent to orbit. Yurchikhin is holding several toys from his children and Fischer is holding an emblem of the MD Anderson Cancer Center in Houston, where his daughter, Sariah was treated. Fischer and Yurchikhin will liftoff April 20 from the Baikonur Cosmodrome on the Soyuz MS-04 spacecraft for a four and a half month mission on the International Space Station. NASA/Victor Zelentsov

  11. Curating NASA's Extraterrestrial Samples - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Allton, Judith; Lofgren, Gary; Righter, Kevin; Zolensky, Michael

    2011-01-01

    Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA s extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "documentation, preservation, preparation, and distribution of samples for research, education, and public outreach."

  12. Curating NASA's Extraterrestrial Samples - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Allton, Judith; Lofgren, Gary; Righter, Kevin; Zolensky, Michael

    2010-01-01

    Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. The Astromaterials Acquisition and Curation Office at the NASA Johnson Space Center (JSC) is responsible for curating NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials," JSC is charged with ". . . curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach.

  13. NASA Research Bearing on Jet Engine Reliability

    NASA Technical Reports Server (NTRS)

    Mason, S. S.; Ault, G. M.; Pinkel, B.

    1959-01-01

    Turbojet engine reliability has long been an intense interest to the military users of this type of aircraft propulsion. With the recent inauguration of commercial jet transport this subject has assumed a new dimension of importance. In January l96 the Lewis Research Center of the NASA (then the MACA) published the results of an extensive study on the factors that affect the opera- center dot tional reliability of turbojet engines (ref. 1). At that time the report was classified Confidential. In July l98 this report was declassified. It is thus appropriate at this time to present some of the highlights of the studies described in the NASA report. In no way is it intended to outline the complete contents of the report; rather it is hoped to direct attention to it among those who are center dot directly concerned with this problem. Since the publication of our study over three years ago, the NASA has completed a number of additional investigations that bear significantly on this center dot subject. A second object of this paper, therefore, is to summarize the results of these recent studies and to interpret their significance in relation to turbojet operational reliability.

  14. STS-134 crew during food tasting session in JSC Food Lab.

    NASA Image and Video Library

    2010-05-25

    JSC2010-E-087710 (25 May 2010) --- STS-134 crew members and dieticians are pictured during a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Crew members pictured counter-clockwise (from bottom left) are NASA astronauts Gregory H. Johnson, pilot; Greg Chamitoff and Michael Fincke, both mission specialists; Mark Kelly, commander; European Space Agency astronaut Roberto Vittori and NASA astronaut Andrew Feustel, both mission specialists. Photo credit: NASA or National Aeronautics and Space Administration

  15. LH launcher Arcs Formation and Detection on JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranov, Yu. F.; Challis, C. D.; Kirov, K.

    2011-12-23

    Mechanisms of arc formation have been analyzed and the critical electric fields for the multipactor effect calculated, compared to the experimental values and found to be within the normal operational space of the LH system on JET. It has been shown that the characteristic electron energy (20-1000)eV for the highest multipactor resonances (N = 4-9) are within the limits of secondary electron yield above 1 required for multipactoring. Electrons with these energies provide the highest gas desorption efficiency when hitting the waveguide walls. The effect of higher waveguide modes and magnetic field on the multipactor was also considered. The distributionmore » function for electrons accelerated by LH waves in front of the launcher has been calculated. The field emission currents have been estimated and found to be small. It is proposed that emission of Fel5, 16 lines, which can be obtained with improved diagnostics, could be used to detect arcs that are missed by a protection system based on the reflected power. The reliability and time response of these signals are discussed. A similar technique based on the observation of the emission of low ionized atoms can be used for a fast detection of other undesirable events to avoid sputtering or melting of the plasma facing components such as RF antenna. These techniques are especially powerful if they are based on emission uniquely associated with specific locations and components.« less

  16. STS-6 MISSION OPERATIONS CONTROL ROOM (MOCR) ACTIVITIES - DAY 5 - JSC

    NASA Image and Video Library

    1983-04-09

    Various views of STS-6 MOCR activities during Day-5 with Vice-Pres. George Bush, Cap Communicator Bridges, JSC Director Gerald Griffin, Eugene F. Kranz, NASA Admin. James M. Beggs, Cap Com Astronaut O'Connor, Flight Directors Jay H. Greene, Gary E. Coen, and Harold Draughon. 1. BUSH, GEORGE, VICE-PRES. - STS-6 MOCR 2. DIR. GRIFFIN, GERALD D. - STS-6 MOCR 3. ADMIN. BEGGS, JAMES M. - STS-6 MOCR 4. FLT. DIRECTORS - STS-6 JSC, HOUSTON, TX Also available in 35 CN

  17. Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD

    NASA Astrophysics Data System (ADS)

    Hei, Li-fu; Zhao, Yun; Wei, Jun-jun; Liu, Jin-long; Li, Cheng-ming; Lü, Fan-xiu

    2017-12-01

    Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV- centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.

  18. Curating NASA's Past, Present, and Future Extraterrestrial Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Allton, J. H.; Evans, C. A.; Fries, M. D.; Nakamura-Messenger, K.; Righter, K.; Zeigler, R. A.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "...curation of all extra-terrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "...documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the past, present, and future activities of the NASA Curation Office.

  19. 20 K Helium Refrigeration System for NASA-JSC Chamber-A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhelef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope. The chamber previously and currently still has helium cryopumping panels (CPP) and LN2 shrouds used to create Low Earth Orbit environments. Now with the new refrigerator and new helium shrouds (45 x 65 ) the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Labs, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate a inverse coefficient of performance better than 70 W/W for a 18 KW load at 20 K (accounting for liquid nitrogen precooling power) that remains essentially constant down to 1/3 of this load. Even at 10 percent of the maximum capacity, the performance is better than 140 W/W at 20K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10kW at 15 K to 100 kW at 100K. The refrigerator is capable of operating at any load temperature from 15K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  20. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  1. The 1983 NASA/ASEE Summer Faculty Fellowship Research Program research reports

    NASA Technical Reports Server (NTRS)

    Horn, W. J. (Editor); Duke, M. B. (Editor)

    1983-01-01

    The 1983 NASA/ASEE Summary Faculty Fellowship Research Program was conducted by Texas A&M University and the Lyndon B. Johnson Space Center (JSC). The 10-week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the programs, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members, (2) to stimulate an exchange of ideas between participants and NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at JSC engaged in a research project commensurate with their interests and background. They worked in collaboration with a NASA/JSC colleague. This document is a compilation of final reports on their research during the summer of 1983.

  2. Formation of liquid-metal jets in a vacuum arc cathode spot: Analogy with drop impact on a solid surface

    NASA Astrophysics Data System (ADS)

    Gashkov, M. A.; Zubarev, N. M.

    2018-01-01

    Conditions of the liquid-metal jets formation in a cathode spot of a vacuum arc discharge are studied. Our consideration is based on the analogy between the processes, occurring in the liquid phase of the cathode spot, and the processes, accompanying a liquid drop impact on a flat solid surface. In the latter case there exists a wide variety of experimental data on the conditions under which the spreading regime of fluid motion (i.e., without formation of jets and secondary droplets) changes into the splashing one. In the present work, using the hydrodynamic similarity principle (processes in geometrically similar systems will proceed similarly when their Weber and Reynolds numbers coincide), criteria for molten metal splashing are formulated for different materials of the cathode. They are compared with the experimental data on the threshold conditions for vacuum arc burning.

  3. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    NASA Astrophysics Data System (ADS)

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-01

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  4. Second Interim Report NASA - easyJet Collaboration on the Human Factors Monitoring Program (HFMP) Study

    NASA Technical Reports Server (NTRS)

    Srivistava, Ashok N.; Barton, Phil

    2012-01-01

    This is the second interim report jointly prepared by NASA and easyJet on the work performed under the agreement to collaborate on a study of the factors entailed in flight and cabin-crew fatigue, and decreases in performance associated with fatigue. The objective of this Agreement is to generate reliable procedures that aid in understanding the levels and characteristics of flight and cabin-crew fatigue factors, both latent and proximate, whose confluence will likely result in unacceptable crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and easyJet are both interested in assessing and testing NASA s automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases; much larger than can be handled practically by human experts.

  5. NASA-ARC 91.5-cm airborne infrared telescope. [tracking mechanism

    NASA Technical Reports Server (NTRS)

    Mobley, R. E.; Brown, T. M.

    1979-01-01

    A 91.5 cm aperture telescope installed aboard NASA-Lockheed C-141A aircraft for the performance of infrared astronomy is described. A unique feature of the telescope is that its entire structure is supported by a 41 cm spherical air bearing which effectively uncouples it from aircraft angular motion, and with inertial stabilization and star tracking, limits tracking errors to less than 1 arc second in most applications. A general description of the system, a summary of its performance, and a detailed description of an offset tracking mechanism is presented.

  6. jsc2018e051938

    NASA Image and Video Library

    2018-05-31

    jsc2018e051938 - In the Integration Facility at the Baikonur Cosmodrome in Kazakhstan, the Expedition 56 prime and backup crewmembers pose for pictures May 31 with a soccer ball in front of the Soyuz booster rocket three of them will ride into space on June 6. The soccer ball and the booster bear the insignia of the FIFA World Cup soccer matches that will begin in mid-June throughout Russia. From left to right are the backup crewmembers, Anne McClain of NASA, Oleg Kononenko of Roscosmos and David Saint-Jacques of the Canadian Space Agency, and the prime crew, Serena Aunon-Chancellor of NASA, Sergey Prokopyev of Roscosmos and Alexander Gerst of the European Space Agency, who will launch June 6 in the Soyuz MS-09 spacecraft for a six-month mission on the International Space Station. ..Andrey Shelepin/Gagarin Cosmonaut Training Center.

  7. STS-30 crewmembers train on JSC shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wearing headsets, Mission Specialist (MS) Mark C. Lee (left), MS Mary L. Cleave (center), and MS Norman E. Thagard pose on aft flight deck in JSC's fixed base (FB) shuttle mission simulator (SMS). In background, Commander David M. Walker and Pilot Ronald J. Grabe check data on forward flight deck CRT monitors. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5. Crewmembers are scheduled to fly aboard Atlantis, Orbiter Vehicle (OV) 104, in April 1989 for NASA mission STS-30.

  8. President Bill Clinton visits JSC

    NASA Image and Video Library

    1998-04-14

    S98-05025 (14 April 1998) --- President Bill Clinton tours a laboratory mockup used for training purposes by astronauts assigned to fly aboard the International Space Station (ISS). Astronaut William Shepherd (right), mission commander for the first ISS expedition crew, briefs the Chief Executive. Looking on are astronauts C. Michael Foale and Tamara C. Jernigan. Foale spent four months last year aboard Russia's Mir space station. President Clinton toured several mockups and other training components before speaking to a crowd of JSC employees. Photo Credit: Joe McNally, National Geographic, for NASA

  9. National Aeronautics and Space Administration (NASA) /American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The 1996 JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1996.

  10. Networking at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1991-01-01

    A series of viewgraphs on computer networks at the Johnson Space Center (JSC) are given. Topics covered include information resource management (IRM) at JSC, the IRM budget by NASA center, networks evolution, networking as a strategic tool, the Information Services Directorate charter, and SSC network requirements, challenges, and status.

  11. Shuttle crew escape systems test conducted in JSC Bldg 9A CCT

    NASA Image and Video Library

    1987-03-20

    Shuttle crew escape systems test is conducted by astronauts Steven R. Nagel (left) and Manley L. (Sonny) Carter in JSC One Gravity Mockup and Training Facilities Bldg 9A crew compartment trainer (CCT). Nagel and Carter are evaluating methods for crew escape during Space Shuttle controlled gliding flight. JSC test was done in advance of tests scheduled for facilities in California and Utah. Here, Carter serves as test subject evaluating egress positioning for the tractor rocket escape method - one of the two systems currently being closely studied by NASA.

  12. Characterization of the NASA Langley Arc Heated Scramjet Test Facility Using NO PLIF

    NASA Technical Reports Server (NTRS)

    Kidd, F. Gray, III; Narayanaswamy, Venkateswaran; Danehy, Paul M.; Inman, Jennifer A.; Bathel, Brett F.; Cabell, Karen F.; Hass, Neal E.; Capriotti, Diego P.; Drozda, Tomasz G.; Johansen, Criag T.

    2014-01-01

    The nitric oxide planar laser-induced fluorescence (NO PLIF) imaging was used to characterize the air flow of the NASA Langley Arc Heated Scramjet Test Facility (AHSTF) configured with a Mach 6 nozzle. The arc raises the enthalpy of the test gas in AHSTF, producing nitric oxide. Nitric oxide persists as the temperature drops through the nozzle into the test section. NO PLIF was used to qualitatively visualize the flowfield at different experimental conditions, measure the temperature of the gas flow exiting the facility nozzle, and visualize the wave structure downstream of the nozzle at different operating conditions. Uniformity and repeatability of the nozzle flow were assessed. Expansion and compression waves on the free-jet shear layer as the nozzle flow expands into the test section were visualized. The main purpose of these experiments was to assess the uniformity of the NO in the freestream gas for planned experiments, in which NO PLIF will be used for qualitative fuel-mole-fraction sensitive imaging. The shot-to-shot fluctuations in the PLIF signal, caused by variations in the overall laser intensity as well as NO concentration and temperature variations in the flow was 20-25% of the mean signal, as determined by taking the standard deviation of a set of images obtained at constant conditions and dividing by the mean. The fluctuations within individual images, caused by laser sheet spatial variations as well as NO concentration and temperature variations in the flow, were about 28% of the mean in images, determined by taking standard deviation within individual images, dividing by the mean in the same image and averaged over the set of images. Applying an averaged laser sheet intensity correction reduced the within-image intensity fluctuations to about 10% suggesting that the NO concentration is uniform to within 10%. There was no significant difference in flow uniformity between the low and high enthalpy settings. While not strictly quantitative, the

  13. STS-49 MS Thornton, in LES, at the CCT side hatch during JSC egress exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Kathryn C. Thornton, wearing launch and entry suit (LES) and with foot propped on open side hatch, prepares to enter JSC's Crew Compartment Trainer (CCT) located in the Mockup and Integration Laboratory (MAIL) Bldg 9. Thornton along with other STS-49 crewmembers is participating in post-landing emergency egress training. Photo taken by NASA JSC contract photographer Mark Sowa.

  14. Detection of Subsurface Material Separation in Shuttle Orbiter Slip-Side Joggle Region of the Wing Leading Edge using Infrared Imaging Data from Arc Jet Tests

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Walker, Sandra P.

    2009-01-01

    The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. A compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993 is presented.

  16. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard; Sickorez, Donn G.

    1995-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994.

  17. Human spaceflight technology needs-a foundation for JSC's technology strategy

    NASA Astrophysics Data System (ADS)

    Stecklein, J. M.

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which added risks and became a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation's primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (Tech Needs) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology disciplines. Th

  18. Human Spaceflight Technology Needs - A Foundation for JSC's Technology Strategy

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette M.

    2013-01-01

    Human space exploration has always been heavily influenced by goals to achieve a specific mission on a specific schedule. This approach drove rapid technology development, the rapidity of which adds risks as well as provides a major driver for costs and cost uncertainty. The National Aeronautics and Space Administration (NASA) is now approaching the extension of human presence throughout the solar system by balancing a proactive yet less schedule-driven development of technology with opportunistic scheduling of missions as the needed technologies are realized. This approach should provide cost effective, low risk technology development that will enable efficient and effective manned spaceflight missions. As a first step, the NASA Human Spaceflight Architecture Team (HAT) has identified a suite of critical technologies needed to support future manned missions across a range of destinations, including in cis-lunar space, near earth asteroid visits, lunar exploration, Mars moons, and Mars exploration. The challenge now is to develop a strategy and plan for technology development that efficiently enables these missions over a reasonable time period, without increasing technology development costs unnecessarily due to schedule pressure, and subsequently mitigating development and mission risks. NASA's Johnson Space Center (JSC), as the nation s primary center for human exploration, is addressing this challenge through an innovative approach in allocating Internal Research and Development funding to projects. The HAT Technology Needs (TechNeeds) Database has been developed to correlate across critical technologies and the NASA Office of Chief Technologist Technology Area Breakdown Structure (TABS). The TechNeeds Database illuminates that many critical technologies may support a single technical capability gap, that many HAT technology needs may map to a single TABS technology discipline, and that a single HAT technology need may map to multiple TABS technology

  19. Contingency Operations Support to NASA Johnson Space Center Medical Operations Division

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien

    2005-01-01

    The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.

  20. Miniature Arcs for Synthesis of Carbon Nanotubes in Microgravity

    NASA Technical Reports Server (NTRS)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2006-01-01

    Although many methods are available for producing single-walled carbon nanotubes (SWNTs), the conventional carbon arc process remains the most popular due to its simplicity and large production rate. In the carbon arc, SWNTs are catalytically synthesized by rapidly evaporating a graphite anode impregnated with NiN metal catalyst from which the nanotubes grow in an inert atmosphere. However, high temperatures inside the carbon arc generate strong buoyancy driven convection, and it is hypothesized that the non-uniform environment created by this flow has a large effect on the growth and morphology of the SWNTs. To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was developed to synthesize SWNTs in a microgravity environment substantially free from these strong convective flows. The reactor was operated for either 2.2 or 5 seconds during free-fall in the drop towers at the NASA Glenn Research Center. Two apparatus designs differing mainly in their production rate and power capacity were investigated. The first consisted of a miniaturized carbon arc employing a 1 mm diameter graphite anode and powered by a 0.54 F capacitor bank charged to 65 V. The second, larger apparatus employed a 4 mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300 amps at 30 volts to the arc for the duration of a 5 second drop. Initial results indicated that transient heating is a very large effect in the short-duration drop tower carbon arcs, and thermal equilibrium of the arc plasma, buffer gas, and apparatus was not attained during the short microgravity periods. In addition, removal of the buoyant convection by the microgravity now allowed clear observation of large jets of evaporated carbon vapor streaming from the anode and mixing with the inert buffer gas. The initial mixing of these jets with the cold buffer gas combined with the thermal transient made it difficult to establish a uniform high temperature

  1. JSC Design and Procedural Standards, JSC-STD-8080

    NASA Technical Reports Server (NTRS)

    Punch, Danny T.

    2011-01-01

    This document provides design and procedural requirements appropriate for inclusion in specifications for any human spaceflight program, project, spacecraft, system, or end item. The term "spacecraft" as used in the standards includes launch vehicles, orbital vehicles, non-terrestrial surface vehicles, and modules. The standards are developed and maintained as directed by Johnson Space Center (JSC) Policy Directive JPD 8080.2, JSC Design and Procedural Standards for Human Space Flight Equipment. The Design and Procedural Standards contained in this manual represent human spacecraft design and operational knowledge applicable to a wide range of spaceflight activities. These standards are imposed on JSC human spaceflight equipment through JPD 8080.2. Designers shall comply with all design standards applicable to their design effort.

  2. Virtual workstations and telepresence interfaces: Design accommodations and prototypes for Space Station Freedom evolution

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1990-01-01

    An advanced human-system interface is being developed for evolutionary Space Station Freedom as part of the NASA Office of Space Station (OSS) Advanced Development Program. The human-system interface is based on body-pointed display and control devices. The project will identify and document the design accommodations ('hooks and scars') required to support virtual workstations and telepresence interfaces, and prototype interface systems will be built, evaluated, and refined. The project is a joint enterprise of Marquette University, Astronautics Corporation of America (ACA), and NASA's ARC. The project team is working with NASA's JSC and McDonnell Douglas Astronautics Company (the Work Package contractor) to ensure that the project is consistent with space station user requirements and program constraints. Documentation describing design accommodations and tradeoffs will be provided to OSS, JSC, and McDonnell Douglas, and prototype interface devices will be delivered to ARC and JSC. ACA intends to commercialize derivatives of the interface for use with computer systems developed for scientific visualization and system simulation.

  3. The mechanism of liquid metal jet formation in the cathode spot of vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Gashkov, M. A.; Zubarev, N. M.; Mesyats, G. A.; Uimanov, I. V.

    2016-08-01

    We have theoretically studied the dynamics of molten metal during crater formation in the cathode spot of vacuum arc discharge. At the initial stage, a liquid-metal ridge is formed around the crater. This process has been numerically simulated in the framework of the two-dimensional axisymmetric heat and mass transfer problem in the approximation of viscous incompressible liquid. At a more developed stage, the motion of liquid metal loses axial symmetry, which corresponds to a tendency toward jet formation. The development of azimuthal instabilities of the ridge is analyzed in terms of dispersion relations for surface waves. It is shown that maximum increments correspond to instability of the Rayleigh-Plateau type. Estimations of the time of formation of liquid metal jets and their probable number are obtained.

  4. Cloud Arcs in the Western Pacific

    NASA Technical Reports Server (NTRS)

    2002-01-01

    kilometers x 345 kilometers. It utilizes data from blocks 80 to 82 within World Reference System-2 path 90.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)

    1993-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are as follows: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993.

  6. Experimental and Analytical Determination of the Geometric Far Field for Round Jets

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James E.; Brown, Clifford E.; Khavaran, Abbas

    2005-01-01

    An investigation was conducted at the NASA Glenn Research Center using a set of three round jets operating under unheated subsonic conditions to address the question: "How close is too close?" Although sound sources are distributed at various distances throughout a jet plume downstream of the nozzle exit, at great distances from the nozzle the sound will appear to emanate from a point and the inverse-square law can be properly applied. Examination of normalized sound spectra at different distances from a jet, from experiments and from computational tools, established the required minimum distance for valid far-field measurements of the sound from subsonic round jets. Experimental data were acquired in the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center. The WIND computer program solved the Reynolds-Averaged Navier-Stokes equations for aerodynamic computations; the MGBK jet-noise prediction computer code was used to predict the sound pressure levels. Results from both the experiments and the analytical exercises indicated that while the shortest measurement arc (with radius approximately 8 nozzle diameters) was already in the geometric far field for high-frequency sound (Strouhal number >5), low-frequency sound (Strouhal number <0.2) reached the geometric far field at a measurement radius of at least 50 nozzle diameters because of its extended source distribution.

  7. Supreme Court Hears Privacy Case Between NASA and Jet Propulsion Laboratory Scientists

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    After NASA put into practice the 2004 Homeland Security Presidential Directive-12, known as HSPD-12, Dennis Byrnes talked to then-NASA administrator Michael Griffin. Byrnes recalls that Griffin told him in 2007 that if he didn’t like the agency's implementation of HSPD-12, he should go to court. That's exactly what Byrnes, an employee of the California Institute of Technology (Caltech) working as a senior engineer at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., did. Concerned about prying and open-ended background investigations of federal contractors through NASA's implementation of HSPD-12, he, along with lead plaintiff Robert Nelson and 26 other Caltech employees working at JPL, sued NASA. Following several lower court decisions, including an injunction issued by a U.S. federal appeals court in response to a plaintiff motion, the case made it all the way to the U.S. Supreme Court, which heard oral arguments on 5 October.

  8. SKYLAB III - POSTLAUNCH (MISSION CONTROL CENTER [MCC]) - JSC

    NASA Image and Video Library

    1973-08-06

    S73-31964 (5 August 1973) --- This group of flight controllers discuss today's approaching extravehicular activity (EVA) to be performed by the Skylab 3 crewmen. They are, left to right, scientist-astronaut Story Musgrave, a Skylab 3 spacecraft communicator; Robert Kain and Scott Millican, both of the Crew Procedures Division, EVA Procedures Section; William C. Schneider, Skylab Program Director, NASA Headquarters; and Milton Windler, flight director. Windler points to the model of the Skylab space station cluster to indicate the location of the ATM's film magazines. The group stands near consoles in the Mission Operations Control Room (MOCR) of the JSC Mission Control Center (MCC). Photo credit: NASA

  9. Developing the Parachute System for NASA's Orion: An Overview at Inception

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo; Taylor, Anthony P.; Royall, Paul

    2007-01-01

    As the Crew Exploration Vehicle (CEV) program developed, NASA decided to provide the parachute portion of the landing system as Government Furnished Equipment (GFE) and designated NASA Johnson Space Center (JSC) as the responsible NASA center based on JSC s past experience with the X-38 program. JSC subsequently chose to have the Engineering Support contractor Jacobs Sverdrup to manage the overall program development. After a detailed source selection process Jacobs chose Irvin Aerospace Inc (Irvin) to provide the parachutes and mortars for the CEV Parachute Assembly System (CPAS). Thus the CPAS development team, including JSC, Jacobs and Irvin has been formed. While development flight testing will have just begun at the time this paper is submitted, a number of significant design decisions relative to the architecture for the manned spacecraft will have been completed. This paper will present an overview of the approach CPAS is taking to providing the parachute system for CEV, including: system requirements, the preliminary design solution, and the planned/completed flight testing.

  10. JSC Pharmacy Services for Remote Operations

    NASA Technical Reports Server (NTRS)

    Stoner, Paul S.; Bayuse, Tina

    2005-01-01

    The Johnson Space Center Pharmacy began operating in March of 2003. The pharmacy serves in two main capacities: to directly provide medications and services in support of the medical clinics at the Johnson Space Center, physician travel kits for NASA flight surgeon staff, and remote operations, such as the clinics in Devon Island, Star City and Moscow; and indirectly provide medications and services for the International Space Station and Space Shuttle medical kits. Process changes that occurred and continued to evolve in the advent of the installation of the new JSC Pharmacy, and the process of stocking medications for each of these aforementioned areas will be discussed. Methods: The incorporation of pharmacy involvement to provide services for remote operations and supplying medical kits was evaluated. The first step was to review the current processes and work the JSC Pharmacy into the existing system. The second step was to provide medications to these areas. Considerations for the timeline of expiring medications for shipment are reviewed with each request. The third step was the development of a process to provide accountability for the medications. Results: The JSC Pharmacy utilizes a pharmacy management system to document all medications leaving the pharmacy. Challenges inherent to providing medications to remote areas were encountered. A process has been designed to incorporate usage into the electronic medical record upon return of the information from these remote areas. This is an evolving program and several areas have been identified for further improvement.

  11. Curating NASA's Future Extraterrestrial Sample Collections: How Do We Achieve Maximum Proficiency?

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis; Evans, Cynthia; Zeigler, Ryan; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael

    2016-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "... documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working towards a state of maximum proficiency.

  12. MASSIM, the Milli-Arc-Second Structure Imager

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry

    2008-01-01

    The MASSIM (Milli-Arc-Second Structure Imager) mission will use a set of achromatic diffractive-refractive Fresnel lenses to achieve imaging in the X-ray band with unprecedented angular resolution. It has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. Lenses on an optics spacecraft will focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds.

  13. NASA's Planned Fuel Cell Development Activities for 2009 and Beyond in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2010-01-01

    NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.

  14. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  16. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  17. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    NASA Technical Reports Server (NTRS)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  18. SKYLAB (SL) PRIME CREW - BLDG. 5 - JSC

    NASA Image and Video Library

    1973-03-20

    S73-20759 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, takes items from the M512 materials processing equipment storage assembly during Skylab training at Johnson Space Center. Conrad is standing in the Multiple Docking Adapter (MDA) trainer in the JSC Mission Simulation and Training Facility. The assembly holds equipment designed to explore space manufacturing capability in a weightless state. Conrad is holding one of the experiment parts in his left hand. Photo credit: NASA

  19. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Kincaid, Russell W. (Inventor); Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995.. Volume 2

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted at JSC, including the White Sands Test Facility, by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports.

  1. Lessons Learned JSC Micro-Wireless Instrumentation Systems on Space Shuttle and International Space Station CANEUS 2006

    NASA Technical Reports Server (NTRS)

    Studor, George

    2007-01-01

    A viewgraph presentation on lessons learned from NASA Johnson Space Center's micro-wireless instrumentation is shown. The topics include: 1) Background, Rationale and Vision; 2) NASA JSC/Structural Engineering Approach & History; 3) Orbiter Wing Leading Edge Impact Detection System; 4) WLEIDS Confidence and Micro-WIS Lessons Learned; and 5) Current Projects and Recommendations.

  2. Cloud Arcs

    Atmospheric Science Data Center

    2013-04-19

    ... series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the ... in Hampton, VA. Image credit: NASA/GSFC/LaRC/JPL, MISR Team. Other formats available at JPL March 11, 2002 - ...

  3. BLDG. 30 - APOLLO-SOYUZ TEST PROJECT (ASTP) SIMS - FLIGHT DIRECTION - JSC

    NASA Image and Video Library

    1975-03-20

    S75-23638 (20 March 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during joint ASTP simulation activity at NASA's Johnson Space Center. The simulations are part of the preparations for the U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit scheduled for July 1975. M.P. Frank (seated, right) is the senior American flight director for the mission. Sigurd A. Sjoberg (in center, checked jacket), JSC Deputy Director, watches some of the console activity. George W.S. Abbey, Technical Assistant to the JSC Director, is standing next to Sjoberg. The television monitor in the background shows Soviet Soyuz crew activity from the Soviet Union.

  4. JSC Case Study: Fleet Experience with E-85 Fuel

    NASA Technical Reports Server (NTRS)

    Hummel, Kirck

    2009-01-01

    JSC has used E-85 as part of an overall strategy to comply with Presidential Executive Order 13423 and the Energy Policy Act. As a Federal fleet, we are required to reduce our petroleum consumption by 2 percent per year, and increase the use of alternative fuels in our vehicles. With the opening of our onsite dispenser in October 2004, JSC became the second federal fleet in Texas and the fifth NASA center to add E-85 fueling capability. JSC has a relatively small number of GSA Flex Fuel fleet vehicles at the present time (we don't include personal vehicles, or other contractor's non-GSA fleet), and there were no reasonably available retail E-85 fuel stations within a 15-minute drive or within five miles (one way). So we decided to install a small 1000 gallon onsite tank and dispenser. It was difficult to obtain a supplier due to our low monthly fuel consumption, and our fuel supplier contract has changed three times in less than five years. We experiences a couple of fuel contamination and quality control issues. JSC obtained good information on E-85 from the National Ethanol Vehicle Coalition (NEVC). We also spoke with Defense Energy Support Center, (DESC), Lawrence Berkeley Laboratory, and US Army Fort Leonard Wood. E-85 is a liquid fuel that is dispensed into our Flexible Fuel Vehicles identically to regular gasoline, so it was easy for our vehicle drivers to make the transition.

  5. SHJAR Jet Noise Data and Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2009-01-01

    High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. The measured spectral data are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of 0.0 to 10.0. The measured data are reported as lossless (i.e., atmospheric attenuation is added to measurements), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter (200-in.) arc. Following the work of Viswanathan, velocity power factors are evaluated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit and the confidence margins for the two regression parameters are studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. As an immediate application of the velocity power laws, spectral density in shockcontaining jets are decomposed into components attributed to jet mixing noise and shock noise. From this analysis, jet noise prediction tools can be developed with different spectral components derived from different physics.

  6. Effects of Anode Arc Root Fluctuation on Coating Quality During Plasma Spraying

    NASA Astrophysics Data System (ADS)

    An, Lian-Tong; Gao, Yang; Sun, Chengqi

    2011-06-01

    To obtain a coating of high quality, a new type of plasma torch was designed and constructed to increase the stability of the plasma arc and reduce the air entrainment into the plasma jet. The torch, called bi-anode torch, generates an elongated arc with comparatively high arc voltage and low arc fluctuation. Spraying experiments were carried out to compare the quality of coatings deposited by a conventional torch and a bi-anode torch. Alumina coatings and tungsten carbide coatings were prepared to appraise the heating of the sprayed particles in the plasma jets and the entrainment of the surrounding air into the plasma jets, respectively. The results show that anode arc root fluctuation has only a small effect on the melting rate of alumina particles. On the other hand, reduced air entrainment into the plasma jet of the bi-anode torch will drastically reduce the decarbonization of tungsten carbide coatings.

  7. Carbon Nanotube Material Quality Assessment

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Arepalli, Sivaram; Sosa, Edward; Niolaev, Pavel; Gorelik, Olga

    2006-01-01

    The nanomaterial activities at NASA Johnson Space Center focus on carbon nanotube production, characterization and their applications for aerospace systems. Single wall carbon nanotubes are produced by arc and laser methods. Characterization of the nanotube material is performed using the NASA JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. A possible addition of other techniques such as XPS, and ICP to the existing protocol will be discussed. Changes in the quality of the material collected in different regions of the arc and laser production chambers is assessed using the original JSC protocol. The observed variations indicate different growth conditions in different regions of the production chambers.

  8. jsc2017m000907_Making-fiber-Optics-in-Space

    NASA Image and Video Library

    2017-12-05

    To demonstrate potential scientific and commercial merits of manufacturing exotic optical fibers in space, a private company is working with NASA on an investigation headed to the International Space Station on the next Dragon cargo ship. Matthew Napoli, vice president of In-Space Operations for Made In Space, explains how the Optical Fiber Production in Microgravity investigation could lead to the production of materials with better properties, setting the stage for large scale manufacturing of high-quality fiber in space. This investigation follows up on research conducted in the 1990s by scientists at NASA’s Marshall Space Flight Center in Huntsville, Alabama. For more on space station science, please visit: https://archive.org/details/jsc2017m000907_Making-fiber-Optics-in-Space HD download link: https://archive.org/details/jsc2017m000907_Making-fiber-Optics-in-Space

  9. Status of Low Thrust Work at JSC

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.

    2004-01-01

    High performance low thrust (solar electric, nuclear electric, variable specific impulse magnetoplasma rocket) propulsion offers a significant benefit to NASA missions beyond low Earth orbit. As NASA (e.g., Prometheus Project) endeavors to develop these propulsion systems and associated power supplies, it becomes necessary to develop a refined trajectory design capability that will allow engineers to develop future robotic and human mission designs that take advantage of this new technology. This ongoing work addresses development of a trajectory design and optimization tool for assessing low thrust (and other types) trajectories. This work targets to advance the state of the art, enable future NASA missions, enable science drivers, and enhance education. This presentation provides a summary of the low thrust-related JSC activities under the ISP program and specifically, provides a look at a new release of a multi-gravity, multispacecraft trajectory optimization tool (Copernicus) along with analysis performed using this tool over the past year.

  10. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  11. Protocol - Apollo-Soyuz Test Project (ASTP) Press Activity - JSC

    NASA Image and Video Library

    1975-07-01

    S75-32051 (July 1975) --- An overall view of activity in the ?Soyuz Room? of the ASTP News Center in Building 2 at NASA's Johnson Space Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. Representatives from the Soviet space program were stationed in this room to be available to reporters at the news center. The JSC Public Affairs Office maintains a news center during each mission. The NASA spaceflights are covered by U.S. and foreign reporters representing TV networks, wire services, television and radio stations, newspapers, magazines, scientific and educational publications, etc. (Photo courtesy Communications Satellite Corporation)

  12. The sixteen to forty micron spectroscopy from the NASA Lear jet

    NASA Technical Reports Server (NTRS)

    Houck, J. R.

    1982-01-01

    Two cryogenically cooled infrared grating spectrometers were designed, fabricated and used on the NASA Lear Jet Observatory. The first spectrometer was used to measure continuum sources such as dust in H II regions, the galactic center and the thermal emission from Mars, Jupiter, Saturn, and Venus over the 16 to 40 micron spectral range. The second spectrometer had higher resolution and was used to measure ionic spectral lines in H II regions (S III at 18.7 microns). It was later used extensively on NASA C-141 Observatory to make observations of numerous objects including H II regions, planetary nebulae, stars with circumstellar shells, the galactic center and extragalactic objects. The spectrometers are described including the major innovations and a list of the scientific contributions.

  13. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1996. Volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1997-01-01

    The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague.

  14. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1998. Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    1999-01-01

    JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC, under ASEE. The objectives of the program are to further the professional knowledge of qualified engineering and science members; stimulate an exchange of ideas between participants and NASA; enrich and refresh the research and teaching activities of participants; and contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the fellows' research projects performed during the summer of 1998. Volume 1, current volume, contains the first reports, and volume 2 contains the remaining reports.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  16. ARC-2007-ACD07-0145-046

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  17. ARC-2007-ACD07-0145-027

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  18. ARC-2007-ACD07-0145-004

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  19. ARC-2007-ACD07-0145-045

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  20. ARC-2007-ACD07-0145-003

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  1. ARC-2007-ACD07-0145-005

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker Jeff Hanley, JSC Constellation program manager

  2. ARC-2007-ACD07-0145-055

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker; Skip Hatfield, JSC Orion Project Manager

  3. ARC-2007-ACD07-0145-054

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker; Skip Hatfield, JSC Orion Project Manager

  4. ARC-2007-ACD07-0145-006

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker; Skip Hatfield, JSC Orion Project Manager

  5. ARC-2007-ACD07-0145-056

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker; Skip Hatfield, JSC Orion Project Manager

  6. ARC-2007-ACD07-0145-028

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker; Skip Hatfield, JSC Orion Project Manager

  7. ARC-2007-ACD07-0145-051

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. Speaker; Skip Hatfield, JSC Orion Project Manager

  8. Training - Apollo-Soyuz Test Project (ASTP) - JSC

    NASA Image and Video Library

    1975-07-12

    S75-28485 (12 July 1975) --- Astronaut Vance D. Brand, command module pilot of the American ASTP prime crew, practices operating a Docking Module hatch during Apollo-Soyuz Test Project preflight training at NASA's Johnson Space Center. The Docking Module is designed to link the Apollo and Soyuz spacecraft during their docking mission in Earth orbit. Gary L. Doerre of JSC?s Crew Training and Procedures Division is working with Brand. Doerre is wearing a face mask to help prevent possible exposure to Brand of disease prior to the ASTP launch.

  9. Astronauts Conrad and Kerwin - Human Vestibular Function Experiment - JSC

    NASA Image and Video Library

    1973-01-01

    S73-20678 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at Johnson Space Center. Scientist-astronaut Joseph P. Kerwin, science pilot of the mission, goes over a checklist. The two men are in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. Photo credit: NASA

  10. [Taylor and Hill, Incorporated's JSC Cryo Chamber A

    NASA Technical Reports Server (NTRS)

    Morales, Rito

    2008-01-01

    NASA commissioned construction of an environmental simulation test chamber which was completed in 1964 at Johnson Space Center (JSC) in Houston, Texas. The facility, Chamber A, was invaluable for testing spacecraft and satellites before deployment to space. By testing spacecraft in an environment similar to the one they would be functioning in, potential problems could be addressed before launch. A new addition to NASA's observatory inventory is called the James Webb Space Telescope (JWST), after a former Administrator of NASA. The new telescope will have 7 times the mirror area of the Hubble, with a target destination approximately one million miles from earth. Scheduled for launch in 2013, the JWST will allow scientists the ability to see, for the first time, the first galaxies that formed in the early Universe. Pre-launch testing of JWST must be performed in environments that approximate its final target space environment as closely as possible.

  11. Diverse Studies in the Reactivated NASA/Ames Radiation Facility: From Shock Layer Spectroscopy to Thermal Protection System Impact

    NASA Technical Reports Server (NTRS)

    Miller, Robert J.; Hartman, G. Joseph (Technical Monitor)

    1994-01-01

    NASA/Ames' Hypervelocity Free-Flight Radiation Facility has been reactivated after having been decommissioned for some 15 years, first tests beginning in early 1994. This paper discusses two widely different studies from the first series, one involving spectroscopic analysis of model shock-layer radiation, and the other the production of representative impact damage in space shuttle thermal protection tiles for testing in the Ames arc-jet facilities. These studies emphasize the interorganizational and interdisciplinary value of the facility in the newly-developing structure of NASA.

  12. STS-131 crew preparing for their T-38 flight to KSC for TCDT

    NASA Image and Video Library

    2010-03-01

    JSC2010-E-032825 (1 March 2010) --- NASA astronaut Stephanie Wilson, STS-131 mission specialist, gives a ?thumbs-up? signal as she prepares for a flight in a NASA T-38 trainer jet from Ellington Field near NASA's Johnson Space Center to Kennedy Space Center, Florida.

  13. STS-131 crew preparing for their T-38 flight to KSC for TCDT

    NASA Image and Video Library

    2010-03-01

    JSC2010-E-032826 (1 March 2010) --- NASA astronaut Dorothy Metcalf-Lindenburger, STS-131 mission specialist, gives a ?thumbs-up? signal as she prepares for a flight in a NASA T-38 trainer jet from Ellington Field near NASA's Johnson Space Center to Kennedy Space Center, Florida.

  14. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, volume 1

    NASA Technical Reports Server (NTRS)

    Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)

    1987-01-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.

  16. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    NASA Astrophysics Data System (ADS)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  17. ARC-2007-ACD07-0145-016

    NASA Image and Video Library

    2007-08-01

    NASA Officials gather at Ames Research Center to discuss Spaceship development progress. Constellation is developing the Orion spacecraft and Ares rockets to support an American return to the moon by 2020. (with Kelly Humphries, JSC - on detail to Ames PAO '07-'08)

  18. NASA Dryden's T-38 Talon trainer jet in flight over the main base complex at Edwards Air Force Base

    NASA Image and Video Library

    2006-05-05

    NASA Dryden's T-38 Talon trainer jet in flight over the main base complex at Edwards Air Force Base. Formerly at NASA's Langley Research Center, this Northrop T-38 Talon is now used for mission support and pilot proficiency at the Dryden Flight Research Center.

  19. Advanced Curation Activities at NASA: Implications for Astrobiological Studies of Future Sample Collections

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Evans, C. A.; Fries, M. D.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for re-search, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  20. Astronaut Jack Lousma - Inflight Medical Support System (IMSS) - JSC

    NASA Image and Video Library

    1973-01-01

    S73-28423 (16 June 1973) --- Astronaut Jack R. Lousma, Skylab 3 pilot, reaches into a medical kit, part of the Inflight Medical Support System (IMSS), during training for the second manned Skylab Earth-orbital mission. This activity took place in the OWS trainer in the Mission Simulation and Training Facility at the Johnson Space Center (JSC). Other Skylab 3 crewmen are astronaut Alan L. Bean, commander, and scientist-astronaut Owen K. Garriott, science pilot. Photo credit: NASA

  1. Experimental program for real gas flow code validation at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Deiwert, George S.; Strawa, Anthony W.; Sharma, Surendra P.; Park, Chul

    1989-01-01

    The experimental program for validating real gas hypersonic flow codes at NASA Ames Rsearch Center is described. Ground-based test facilities used include ballistic ranges, shock tubes and shock tunnels, arc jet facilities and heated-air hypersonic wind tunnels. Also included are large-scale computer systems for kinetic theory simulations and benchmark code solutions. Flight tests consist of the Aeroassist Flight Experiment, the Space Shuttle, Project Fire 2, and planetary probes such as Galileo, Pioneer Venus, and PAET.

  2. The Acoustic Analogy: A Powerful Tool in Aeroacoustics with Emphasis on Jet Noise Prediction

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Doty, Michael J.; Hunter, Craig A.

    2004-01-01

    The acoustic analogy introduced by Lighthill to study jet noise is now over 50 years old. In the present paper, Lighthill s Acoustic Analogy is revisited together with a brief evaluation of the state-of-the-art of the subject and an exploration of the possibility of further improvements in jet noise prediction from analytical methods, computational fluid dynamics (CFD) predictions, and measurement techniques. Experimental Particle Image Velocimetry (PIV) data is used both to evaluate turbulent statistics from Reynolds-averaged Navier-Stokes (RANS) CFD and to propose correlation models for the Lighthill stress tensor. The NASA Langley Jet3D code is used to study the effect of these models on jet noise prediction. From the analytical investigation, a retarded time correction is shown that improves, by approximately 8 dB, the over-prediction of aft-arc jet noise by Jet3D. In experimental investigation, the PIV data agree well with the CFD mean flow predictions, with room for improvement in Reynolds stress predictions. Initial modifications, suggested by the PIV data, to the form of the Jet3D correlation model showed no noticeable improvements in jet noise prediction.

  3. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Putnam, L. E.

    1979-01-01

    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  4. Comparative Measurements of Earth and Martian Entry Environments in the NASA Langley HYMETS Facility

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Bey, Kim S.; Gragg, Jeffrey G.; Brewer, Amy

    2011-01-01

    Arc-jet facilities play a major role in the development of heat shield materials for entry vehicles because they are capable of producing representative high-enthalpy flow environments. Arc-jet test data is used to certify material performance for a particular mission and to validate or calibrate models of material response during atmospheric entry. Materials used on missions entering Earth s atmosphere are certified in an arc-jet using a simulated air entry environment. Materials used on missions entering the Martian atmosphere should be certified in an arc-jet using a simulated Martian atmosphere entry environment, which requires the use of carbon dioxide. Carbon dioxide has not been used as a test gas in a United States arc-jet facility since the early 1970 s during the certification of materials for the Viking Missions. Materials certified for the Viking missions have been used on every entry mission to Mars since that time. The use of carbon dioxide as a test gas in an arc-jet is again of interest to the thermal protection system community for certification of new heat shield materials that can increase the landed mass capability for Mars bound missions beyond that of Viking and Pathfinder. This paper describes the modification, operation, and performance of the Hypersonic Materials Environmental Test System (HYMETS) arc-jet facility with carbon dioxide as a test gas. A basic comparison of heat fluxes, various bulk properties, and performance characteristics for various Earth and Martian entry environments in HYMETS is provided. The Earth and Martian entry environments consist of a standard Earth atmosphere, an oxygen-rich Earth atmosphere, and a simulated Martian atmosphere. Finally, a preliminary comparison of the HYMETS arc-jet facility to several European plasma facilities is made to place the HYMETS facility in a more global context of arc-jet testing capability.

  5. Publications of the Jet Propulsion Laboratory, 1977. [NASA research and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites 900 externally distributed technical reports released during calendar year 1977, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Report topics cover 81 subject areas related in some way to the various NASA programs. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author.

  6. Artificial recharge for subsidence abatement at the NASA-Johnson Space Center, Phase I

    USGS Publications Warehouse

    Garza, Sergio

    1977-01-01

    Regional decline of aquifer head due to ground-water withdrawal in the Houston area has caused extensive land-surface subsidence. The NASA-Johnson Space Center (NASA-JSC) in southeastern Harris County, Texas, was about 13 to 19 feet above mean sea level in 1974 and sinking at a rate of more than 0.2 foot per year. NASA-JSC officials, concerned about the hurricane flooding hazard, requested the U.S. Geological Survey to study the feasibility of artificially recharging the aquifers for subsidence abatement. Hydrologic digital models were developed for theoretical determinations of quantities of water needed, under various well-array plans, for artificial recharge of the Chicot and Evangeline aquifers in order to halt the local subsidence at NASA-JSC. The programs for the models were developed for analysis of three-dimensional ground-water flow. Total injection rates of between 2,000 and 14,000 gallons per minute under three general well-array plans were determined for a range of residual clay pore pressures of 10 to 70 feet of hydraulic head. The space distributions of the resultant hydraulic heads, illustrated for injection rates of 3,600 and 8 ,400 gallons per minute, indicated that, for the same rate, increasing the number and spread of the injection locations reduces the head gradients within NASA-JSC. (Woodard-USGS)

  7. STS-40 MS Seddon pauses during fire fighting training at JSC's Fire Pit

    NASA Image and Video Library

    1990-08-22

    S90-46497 (18 Aug 1990) --- Astronaut Rhea Seddon, STS-40 mission specialist, takes a break from firefighting training at the Johnson Space Center (JSC). In less than a year Dr. Seddon will be joined by four NASA astronauts and two payload specialists for the Spacelab Life Sciences (SLS-1) mission aboard Columbia.

  8. Commissioning of a 20 K Helium Refrigeration System for NASA-JSC Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center s Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  9. Commissioning of a 20 K helium refrigeration system for NASA-JSC Chamber-A

    NASA Astrophysics Data System (ADS)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2014-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL's Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (23 metric tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the design, project execution and commissioning results.

  10. Photographic documentation of the STS-107 Memorial at the JSC Mall

    NASA Image and Video Library

    2003-02-04

    JSC2003-E-05938 (4 February 2003) --- President George W. Bush addresses the crowd on the mall of the Johnson Space Center during the memorial for the Columbia astronauts. Seated from the left are Captain Gene Theriot, Chaplain Corps (USN); NASA Administrator Sean O’Keefe; and astronaut Kent V. Rominger, Chief of the Astronaut Office. A portrait of the STS-107 Columbia crew is visible at left.

  11. Faint Ring, Bright Arc

    NASA Image and Video Library

    2010-01-12

    In this image taken by NASA Cassini spacecraft, the bright arc in Saturn faint G ring contains a little something special. Although it cant be seen here, the tiny moonlet Aegaeon orbits within the bright arc.

  12. Jet Mixing Noise Scaling Laws SHJAR Data Vs. Predictions

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2008-01-01

    High quality jet noise spectral data measured at the anechoic dome at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent as well as convergent-divergent axisymmetric nozzles. The spectral measurements are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of (0.01 10.0). Measurements are reported as lossless (i.e. atmospheric attenuation is added to as-measured data), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter arc. Following the work of Viswanathan [Ref. 1], velocity power laws are derived using a least square fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit is studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. On the application side, power laws are extremely useful in identifying components from various noise generation mechanisms. From this analysis, jet noise prediction tools can be developed with physics derived from the different spectral components.

  13. RAPID and DDS

    NASA Technical Reports Server (NTRS)

    Utz, Hans Heinrich

    2011-01-01

    This talk gives an overview of the the Robot Applications Programmers Interface Delegate (RAPID) as well as the distributed systems middleware Data Distribution Service (DDS). DDS is an open software standard, RAPID is cleared for open-source release under NOSA. RAPID specifies data-structures and semantics for high-level telemetry published by NASA robotic software. These data-structures are supported by multiple robotic platforms at Johnson Space Center (JSC), Jet Propulsion Laboratory (JPL) and Ames Research Center (ARC), providing high-level interoperability between those platforms. DDS is used as the middleware for data transfer. The feature set of the middleware heavily influences the design decision made in the RAPID specification. So it is appropriate to discuss both in this introductory talk.

  14. Coordinated Analysis 101: A Joint Training Session Sponsored by LPI and ARES/JSC

    NASA Technical Reports Server (NTRS)

    Draper, D. S.; Treiman, A. H.

    2017-01-01

    The Lunar and Planetary Institute (LPI) and the Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate at NASA Johnson Space Center (JSC), co-sponsored a training session in November 2016 for four early-career scientists in the techniques of coordinated analysis. Coordinated analysis refers to the approach of systematically performing high-resolution and -precision analytical studies on astromaterials, particularly the very small particles typical of recent and near-future sample return missions such as Stardust, Hayabusa, Hayabusa2, and OSIRIS-REx. A series of successive analytical steps is chosen to be performed on the same particle, as opposed to separate subsections of a sample, in such a way that the initial steps do not compromise the results from later steps in the sequence. The data from the entire series can then be integrated for these individual specimens, revealing important in-sights obtainable no other way. ARES/JSC scientists have played a leading role in the development and application of this approach for many years. Because the coming years will bring new sample collections from these and other planned NASA and international exploration missions, it is timely to begin disseminating specialized techniques for the study of small and precious astromaterial samples. As part of the Cooperative Agreement between NASA and the LPI, this training workshop was intended as the first in a series of similar training exercises that the two organizations will jointly sponsor in the coming years. These workshops will span the range of analytical capabilities and sample types available at ARES/JSC in the Astromaterials Research and Astro-materials Acquisition and Curation Offices. Here we summarize the activities and participants in this initial training.

  15. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  16. SPE propulsion electrolyzer for NASA's integrated propulsion test article

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.

  17. Driven motion and instability of an atmospheric pressure arc

    NASA Astrophysics Data System (ADS)

    Karasik, Max

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental are furnace is constructed and operated in air with graphite cathode and steel anode at currents 100--250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes. Experiments are carried out on the response of the are to applied transverse DC and AC (up to ≈1 kHz) magnetic fields. The arc is found to deflect parabolically for DC field and assumes a growing sinusoidal structure for AC field. A simple analytic two-parameter fluid model of the are dynamics is derived, in which the inertia of the magnetically pumped cathode jet balances the applied J⃗xB⃗ force. Time variation of the applied field allows evaluation of the parameters individually. A fit of the model to the experimental data gives a value for the average jet speed an order of magnitude below Maecker's estimate of the maximum jet speed. A spontaneous instability of the same arc is investigated experimentally and modeled analytically. The presence of the instability is found to depend critically on cathode dimensions. For cylindrical cathodes, instability occurs only for a narrow range of cathode diameters. Cathode spot motion is proposed as the mechanism of the instability. A simple fluid model combining the effect of the cathode spot motion and the inertia of the cathode jet successfully describes the arc shape during low amplitude instability. The amplitude of cathode spot motion required by the model is in agreement with measurements. The average jet velocity required is approximately equal to that inferred from the transverse magnetic field experiments. Reasons for spot motion and for cathode

  18. SKYLAB (SL)-3 CREW - 1-G TRAINER - MULTIPLE DOCKING ADAPTER (MDA) - JSC

    NASA Image and Video Library

    1973-06-22

    S73-28714 (29 June 1973) --- These three men are the prime crewmen for the Skylab 3 mission. Pictured in the one-G trainer Multiple Docking Adapter (MDA) at the Johnson Space Center (JSC) are, left to right, scientist-astronaut Owen K. Garriott, science pilot; and astronauts Jack R. Lousma and Alan L. Bean, pilot and commander, respectively. Photo credit: NASA

  19. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995. Volume 1

    NASA Technical Reports Server (NTRS)

    Hyman, William A. (Editor); Sickorez, Donn G. (Editor)

    1996-01-01

    The objectives of the JSC NASA/ASEE Summer Faculty Fellowship Program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the first fifteen of twenty-seven final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports included in Volume 2.

  20. NASA/UH signing of memorandum of understanding

    NASA Image and Video Library

    1996-10-02

    NASA/University of Houston (UH) signing of memorandum of understanding. Johnson Space Center (JSC) Director George Abbey signs a memorandum of understanding with University of Houston's President Glenn Goerke and University of Houston Clear Lake President Williams Staples. UH will supply post-doctoral researchers to JSC for more than 15 projects of scientific interest to both JSC and the university. Seated from left are, Abbey, Goerke and Staples. Standing from left are David Criswell, director of the Institute of Space Systems Operations; Texas State Representatives Michael Jackson, Robert Talton and Talmadge Heflin. View appears in Space News Roundup v35 n41 p4, 10-18-96.

  1. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  2. Climate Change Adaptation Science Activities at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Lulla, Kamlesh

    2012-01-01

    The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.

  3. jsc2002-00417

    NASA Image and Video Library

    2002-02-04

    JSC2002-00417 (4 February 2002) --- Astronaut Franklin R. Chang-Diaz, STS-111 mission specialist, simulates a parachute drop into water during an emergency bailout training session at the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC). Chang-Diaz is attired in a training version of the shuttle launch and entry garment. STS-111 will be the 14th shuttle mission to visit the International Space Station (ISS).

  4. Advanced Curation Activities at NASA: Preparing to Receive, Process, and Distribute Samples Returned from Future Missions

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis M.; Zeigler, Ryan A.

    2017-01-01

    The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.

  5. ARC-1974-AC74-4562-13

    NASA Image and Video Library

    1974-11-22

    X-14B NASA-704: A Bell single-place, open cockpit, twin-engine, jet-lift VTOL aircraft in flight over Sunnyvale golf course. The X-14 was used by NASA Ames Research Center to advance state-of-the-art jet-powered VTOL aircraft.

  6. Simulations - Joint NASA-USSR Mission - JSC

    NASA Image and Video Library

    1975-02-25

    S75-22187 (25 Feb. 1975) --- Two ASTP crewmen look over food cans and packages in the Soyuz orbital module trainer in Building 35 during Apollo-Soyuz Test Project joint crew training at NASA's Johnson Space Center. They are astronaut Thomas P. Stafford (left), commander of the American ASTP prime crew; and cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP first (prime) crew. The training session simulated activity on the second day in Earth orbit.

  7. JSC2001E19296

    NASA Image and Video Library

    2001-06-25

    JSC2001-E-19296 (25 June 2001) --- Astronauts James F. Reilly (left), Janet L. Kavandi, Michael L. Gernhardt, all STS-104 mission specialists; along with Charles O. Hobaugh and Steven W. Lindsey, pilot and mission commander, respectively, are photographed during a pre-flight press conference at Johnson Space Center (JSC).

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  9. Measured and calculated spectral radiation from a blunt body shock layer in an arc-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Babikian, Dikran S.; Palumbo, Giuseppe; Craig, Roger A.; Park, Chul; Palmer, Grant; Sharma, Surendra P.

    1994-01-01

    Spectra of the shock layer radiation incident on the stagnation point of a blunt body placed in an arc-jet wind tunnel were measured over the wavelength range from 600 nm to 880 nm. The test gas was a mixture of 80 percent air and 20 percent argon by mass, and the run was made in a highly nonequilibrium environment. The observed spectra contained contributions from atomic lines of nitrogen, oxygen, and argon, of bound-free and free-free continua, and band systems of N2 and N2(+). The measured spectra were compared with the synthetic spectra, which were obtained through four steps: the calculation of the arc-heater characteristics, of the nozzle flow, of the blunt-body flow, and the nonequilibrium radiation processes. The results show that the atomic lines are predicted approximately correctly, but all other sources are underpredicted by orders of magnitude. A possible explanation for the discrepancy is presented.

  10. JSC Metal Finishing Waste Minimization Methods

    NASA Technical Reports Server (NTRS)

    Sullivan, Erica

    2003-01-01

    THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.

  11. The Data Acquisition and Control Systems of the Jet Noise Laboratory at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jansen, B. J., Jr.

    1998-01-01

    The features of the data acquisition and control systems of the NASA Langley Research Center's Jet Noise Laboratory are presented. The Jet Noise Laboratory is a facility that simulates realistic mixed flow turbofan jet engine nozzle exhaust systems in simulated flight. The system is capable of acquiring data for a complete take-off assessment of noise and nozzle performance. This paper describes the development of an integrated system to control and measure the behavior of model jet nozzles featuring dual independent high pressure combusting air streams with wind tunnel flow. The acquisition and control system is capable of simultaneous measurement of forces, moments, static and dynamic model pressures and temperatures, and jet noise. The design concepts for the coordination of the control computers and multiple data acquisition computers and instruments are discussed. The control system design and implementation are explained, describing the features, equipment, and the experiences of using a primarily Personal Computer based system. Areas for future development are examined.

  12. Pre-STS-3 press conference held at the JSC public affairs facility

    NASA Image and Video Library

    1982-01-25

    S82-25903 (21 Jan. 1982) --- Astronaut Jack R. Lousma, center, and C. Gordon Fullerton, left, respond to a visual depicting the Columbia and its remote manipulator system in space during a pre-STS-3 press conference in JSC?s pubic affairs building. Dr. John Lawrence, public information specialist who introduced the crew to news media representatives, is at far right. Photo credit: NASA

  13. SKYLAB (SL) PRIME CREW - BLDG. 5 - JSC

    NASA Image and Video Library

    1973-03-20

    S73-20695 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, checks out the Human Vestibular Function, Experiment M131, during Skylab training at Johnson Space Center. Conrad is in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. The reference sphere with a magnetic rod is used by the astronaut to indicate body orientation non-visually. The litter chair in which he is seated can be rotated by a motor at its base or, when not being rotated, can tilt forward, backward or to either side. Photo credit: NASA

  14. NASA JSC neural network survey results

    NASA Technical Reports Server (NTRS)

    Greenwood, Dan

    1987-01-01

    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc.

  15. jsc2017e136942 - In the town of Baikonur, Kazakhstan, Expedition 54-55 backup crewmembers Jeanette Epps of NASA, Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos) and Alexander Gerst of the European Space Agency lay flowers Dec. 6 at the sta

    NASA Image and Video Library

    2017-12-06

    jsc2017e136942 - In the town of Baikonur, Kazakhstan, Expedition 54-55 backup crewmembers Jeanette Epps of NASA, Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos) and Alexander Gerst of the European Space Agency lay flowers Dec. 6 at the sta

  16. jsc2017e136944 - In the town of Baikonur, Kazakhstan, Expedition 54-55 backup crewmembers Jeanette Epps of NASA, Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos) and Alexander Gerst of the European Space Agency lay flowers Dec. 6 at the sta

    NASA Image and Video Library

    2017-12-06

    jsc2017e136944 - In the town of Baikonur, Kazakhstan, Expedition 54-55 backup crewmembers Jeanette Epps of NASA, Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos) and Alexander Gerst of the European Space Agency lay flowers Dec. 6 at the sta

  17. Flow Property Measurement Using Laser-Induced Fluorescence in the NASA Ames Interaction Heating Facility

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Porter, Barry J.; Carballo, Julio Enrique

    2011-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species has been applied to single-point measurements of velocity and static temperature in the NASA Ames Interaction Heating Facility (IHF) arc jet. Excitation spectra of atomic oxygen and nitrogen were recorded while scanning a tunable dye laser over the absorption feature. Thirty excitation spectra were acquired during 8 arc jet runs at two facility operating conditions; the number of scans per run varied between 2 and 6. Curve fits to the spectra were analyzed to recover their Doppler shifts and widths, from which the flow velocities and static temperatures, respectively, were determined. An increase in the number of independent flow property pairs from each as-measured scan was obtained by extracting multiple lower-resolution scans. The larger population sample size enabled the mean property values and their uncertainties for each run to be characterized with greater confidence. The average plus or minus 2 sigma uncertainties in the mean velocities and temperatures for all 8 runs were plus or minus 1.4% and plus or minus 11%, respectively.

  18. INFLIGHT (MISSION CONTROL CENTER [MCC]) - STS-2 - JSC

    NASA Image and Video Library

    1981-11-14

    S81-39508 (14 Nov. 1981) --- The successful STS-2 landing at Edwards Air Force Base in California was cause for celebration in the Johnson Space Center?s Mission Control Center shortly before 3:30 p.m. (CST) on Nov. 14, 1981. JSC Director Christopher C. Kraft Jr. (center), enjoys a traditional ?touchdown? cigar. He is flanked by retiring lead engineer Maxime Faget (left) and Thomas L. Moser of the structures and mechanics division, who join the celebration. The second flight of the space shuttle Columbia lasted two days, six hours, 13 minutes and a few seconds. Photo credit: NASA

  19. LUNAR RECEIVING LABORATORY (LRL) - CLARK, ROBERT, DR. - JSC

    NASA Image and Video Library

    1973-11-05

    S73-36161 (November 1973) --- In the Radiation Counting Laboratory sixty feet underground at JSC, Dr. Robert S. Clark prepares to load pieces of iridium foil -- sandwiched between plastic sheets -- into the laboratory's radiation detector. The iridium foil strips were worn by the crew of the second Skylab flight in personal radiation dosimeters throughout their 59 1/2 days in space. Inside the radiation detector assembly surrounded by 28 tons of lead shielding, the sample will be tested to determine the total neutron dose to which the astronauts were exposed during their long stay aboard the space station. Photo credit: NASA

  20. SKYLAB (SL)-2 PRIME CREW - BLDG. 5 - JSC

    NASA Image and Video Library

    1973-03-20

    S73-20713 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, wipes perspiration from his face following an exercise session on the bicycle ergometer during Skylab training at Johnson Space Center. Conrad is in the work and experiments compartment of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. In addition to being the prime exercise for the crewmen, the ergometer is also used for the vector-cardiogram test and the metabolic activity experiment. The bicycle ergometer produces measured workloads for use in determining man's metabolic effectiveness. Photo credit: NASA

  1. ARC-1974-AC74-4562-14

    NASA Image and Video Library

    1974-11-22

    X-14B NASA-704: A Bell single-place, open cockpit, twin-engine, jet-lift VTOL aircraft over Highway 101 in approach to Moffett Field, California. The X-14 was used by NASA Ames Research Center to advance state-of-the-art jet-powered VTOL aircraft.

  2. ARC-1974-AC74-4562-15

    NASA Image and Video Library

    1974-11-22

    X-14B NASA-704: A Bell single-place, open cockpit, twin-engine, jet-lift VTOL aircraft over Highway 101 in approach to Moffett Field, California. The X-14 was used by NASA Ames Research Center to advance state-of-the-art jet-powered VTOL aircraft.

  3. NREL and NASA Receive Regional FLC Award for Notable Technology | News |

    Science.gov Websites

    NREL and NASA Receive Regional FLC Award for Notable Technology NREL and NASA Receive Regional FLC Award for Notable Technology August 25, 2016 NASA Johnson Space Center (JSC) and the National Group Manager Ahmad Pesaran, along with NASA Scientist and collaborator Eric Darcy, will be honored

  4. Skylab (SL)-3 Crew - Training - Orbital Workshop Trainer - JSC

    NASA Image and Video Library

    1973-06-16

    S73-28420 (16 June 1973) --- The three prime crewmen of the Skylab 3 mission check over flight data during a training session in the crew quarters of the Orbital Workshop (OWS) trainer in the Mission Simulation and Training Facility at the Johnson Space Center (JSC). Skylab 3 crew work with Inflight Medical Support System (IMSS) resupply container atop the food table in the OWS. They are from left to right, scientist-astronaut Owen K. Garriott, science pilot; and astronauts Jack R. Lousma, pilot; and Alan L. Bean, commander. Photo credit: NASA

  5. Skylab (SL)-3 Crew - Training - Orbital Workshop Trainer - JSC

    NASA Image and Video Library

    1973-06-16

    S73-28419 (16 June 1973) --- The three prime crewmen of the Skylab 3 mission check over flight data during a training session in the crew quarters of the Orbital Workshop (OWS) trainer in the Mission Simulation and Training Facility at the Johnson Space Center (JSC). They are, from left to right, scientist-astronaut Owen K. Garriott, science pilot; and astronauts Alan L. Bean, commander, and Jack R. Lousma, pilot. The 56-day, second manned Skylab Earth-orbital mission is scheduled for liftoff in the latter part of July 1973. Photo credit: NASA

  6. SKYLAB (SL)-4 - CREW TRAINING (ORBITAL WORKSHOP [OWS]) - JSC

    NASA Image and Video Library

    1973-08-22

    S73-32839 (10 Sept. 1973) --- Scientist-astronaut Edward G. Gibson, science pilot for the third manned Skylab mission (Skylab 4), enters a notation in a manual while seated at the control and display panel for the Apollo Telescope Mount (ATM) during simulations inside the one-G trainer for the Multiple Docking Adapter (MDA) at the Johnson Space Center (JSC). Dr. Gibson will be joined by astronauts Gerald P. Carr, commander, and William R. Pogue, pilot, when the Skylab 4 mission begins in November 1973. Photo credit: NASA

  7. Alternating-Polarity Arc Welding

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  8. Improving data discoverability, accessibility, and interoperability with the Esri ArcGIS Platform at the NASA Atmospheric Science Data Center (ASDC).

    NASA Astrophysics Data System (ADS)

    Tisdale, M.

    2017-12-01

    NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying user requirements from government, private, public and academic communities. The ASDC is actively working to provide their mission essential datasets as ArcGIS Image Services, Open Geospatial Consortium (OGC) Web Mapping Services (WMS), and OGC Web Coverage Services (WCS) while leveraging the ArcGIS multidimensional mosaic dataset structure. Science teams at ASDC are utilizing these services through the development of applications using the Web AppBuilder for ArcGIS and the ArcGIS API for Javascript. These services provide greater exposure of ASDC data holdings to the GIS community and allow for broader sharing and distribution to various end users. These capabilities provide interactive visualization tools and improved geospatial analytical tools for a mission critical understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry. The presentation will cover how the ASDC is developing geospatial web services and applications to improve data discoverability, accessibility, and interoperability.

  9. Spectroscopic Diagnostics and an Arc Jet Heated Air Plasma

    NASA Technical Reports Server (NTRS)

    Mack, Larry Howard, Jr.

    1996-01-01

    Spectral radiation measurements were made in the range of 200 to 900 nm across a section of the plenum of an arc jet wind tunnel using a series of optical fibers. The spectra contained line radiation from Oxygen and Nitrogen atoms and molecular radiation from N2(+), N2, and NO. Abel inversion technique is used to obtain radial distribution of the spectra. The analysis yielded radial profiles of the electronic excitation, vibrational and rotational temperatures of the flow field. Spectral fitting yielded branching ratios for different vibrational and rotational bands. Relatively mild flow conditions, i.e. enthalpy and mass flow rate, were used for prolonged measurements of up to and over two hours to establish the best experimental methods of temperature determinations. Signal to noise was improved by at least an order of magnitude enabling the molecular vibrational band heads of N2(+) (first negative system), N2 (second positive system), and NO (beta, gamma, delta, and epsilon systems) to be resolved in the lower ultraviolet wavelength regions. The increased signal to noise ratio also enabled partial resolution of the rotational lines of N2(+) and N2 in certain regions of minimal overlap. Comparison of the spectra with theoretical models such as the NEQAIR2 code are presented and show potential for fitting the spectra when reliable calibration is performed for the complete wavelength range.

  10. STS-31 MS McCandless and MS Sullivan during JSC WETF underwater simulation

    NASA Image and Video Library

    1990-03-05

    This overall view shows STS-31 Mission Specialist (MS) Bruce McCandless II (left) and MS Kathryn D. Sullivan making a practice space walk in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. McCandless works with a mockup of the remote manipulator system (RMS) end effector which is attached to a grapple fixture on the Hubble Space Telescope (HST) mockup. Sullivan manipulates HST hardware on the Support System Module (SSM) forward shell. SCUBA-equipped divers monitor the extravehicular mobility unit (EMU) suited crewmembers during this simulated extravehicular activity (EVA). No EVA is planned for the Hubble Space Telescope (HST) deployment, but the duo has trained for contingencies which might arise during the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103. Photo taken by NASA JSC photographer Sheri Dunnette.

  11. STS-31 MS McCandless and MS Sullivan during JSC WETF underwater simulation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This overall view shows STS-31 Mission Specialist (MS) Bruce McCandless II (left) and MS Kathryn D. Sullivan making a practice space walk in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. McCandless works with a mockup of the remote manipulator system (RMS) end effector which is attached to a grapple fixture on the Hubble Space Telescope (HST) mockup. Sullivan manipulates HST hardware on the Support System Module (SSM) forward shell. SCUBA-equipped divers monitor the extravehicular mobility unit (EMU) suited crewmembers during this simulated extravehicular activity (EVA). No EVA is planned for the Hubble Space Telescope (HST) deployment, but the duo has trained for contingencies which might arise during the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103. Photo taken by NASA JSC photographer Sheri Dunnette.

  12. View of Press working area of ASTP News Center at JSC

    NASA Image and Video Library

    1975-07-17

    S75-32053 (July 1975) --- An overall view of activity in the press working area of the ASTP News Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. The JSC Public Affairs Office maintains a news center for each mission. The NASA spaceflights are covered by U.S. and foreign reporters representing TV networks, wire services, television and radio stations, newspapers, magazines, scientific and educational publications, etc. (Photo courtesy Communications Satellite Corporation)

  13. STS-124 crew members as they prepare for their T-38 flight to KSC

    NASA Image and Video Library

    2008-05-06

    JSC2008-E-038930 (6 May 2008) --- Astronaut Mike Fossum, STS-124 mission specialist, photographed in the rear station of a NASA T-38 trainer jet, gives a "thumbs-up" signal as he prepares for a flight from Ellington Field near NASA's Johnson Space Center to Kennedy Space Center, Florida.

  14. Effect of Free Jet on Refraction and Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Georgiadis, Nicholas J.; Bridges, James E.; Dippold, Vance F., III

    2005-01-01

    This article investigates the role of a free jet on the sound radiated from a jet. In particular, the role of an infinite wind tunnel, which simulates the forward flight condition, is compared to that of a finite wind tunnel. The second configuration is usually used in experiments, where the microphones are located in a static ambient medium far outside the free jet. To study the effect of the free jet on noise, both propagation and source strength need to be addressed. In this work, the exact Green's function in a locally parallel flow is derived for a simulated flight case. Numerical examples are presented that show a reduction in the magnitude of the Green's function in the aft arc and an increase in the forward arc for the simulated flight condition. The effect of finite wind tunnel on refraction is sensitive to the source location and is most pronounced in the aft arc. A Reynolds-averaged Navier-Stokes solution (RANS) yields the required mean flow and turbulence scales that are used in the jet mixing noise spectrum calculations. In addition to the sound/flow interaction, the separate effect of source strength and elongation of the noise-generating region of the jet in a forward flight is studied. Comparisons are made with experiments for the static and finite tunnel cases. Finally, the standard free-jet shear corrections that convert the finite wind tunnel measurements to an ideal wind tunnel arrangement are evaluated.

  15. Jets Galore

    NASA Image and Video Library

    2010-11-04

    This enhanced image, one of the closest taken of comet Harley 2 by NASA EPOXI mission, shows jets and where they originate from the surface. There are jets outgassing from the sunward side, the night side, and along the terminator.

  16. Quantitative Spectral Radiance Measurements in the HYMETS Arc Jet

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Hires, Drew V.; Johansen, Craig T.; Bathel, Brett F.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.

    2012-01-01

    Calibrated spectral radiance measurements of gaseous emission spectra have been obtained from the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. A fiber-optic coupled spectrometer collected natural luminosity from the flow. Spectral radiance measurements are reported between 340 and 1000 nm. Both Silicon Carbide (SiC) and Phenolic Impregnated Carbon Ablator (PICA) samples were placed in the flow. Test gases studied included a mostly-N2 atmosphere (95% nitrogen, 5% argon), a simulated Earth Air atmosphere (75% nitrogen, 20% oxygen, 5% argon) and a simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon). The bulk enthalpy of the flow was varied as was the location of the measurement. For the intermediate flow enthalpy tested (20 MJ/kg), emission from the Mars simulant gas was about 10 times higher than the Air flow and 15 times higher than the mostly-N2 atmosphere. Shock standoff distances were estimated from the spectral radiance measurements. Within-run, run-to-run and day-to-day repeatability of the emission were studied, with significant variations (15-100%) noted.

  17. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, D.; Mathias, D.; Reuther, J.; Garn, M.

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  18. jsc2004e37689

    NASA Image and Video Library

    2004-08-18

    JSC2004-E-37689 (18 August 2004) --- Astronaut Steven W. Lindsey, STS-121 commander, uses a climbing apparatus to lower himself from a simulated trouble-plagued shuttle in an emergency egress training session in the Space Vehicle Mockup Facility at the Johnson Space Center (JSC). Lindsey is wearing a training version of the shuttle launch and entry suit. United Space Alliance (USA) crew trainer David Pogue assisted Lindsey.

  19. JSC Toxicology Web Site

    NASA Technical Reports Server (NTRS)

    Garcia, Hector D.; Coleman, M.; James, J.; Lam, C.

    1999-01-01

    Data on chemical and biological materials to be flown in the pressurized volumes of habitable spacecraft, including the International Space Station (ISS), are needed by JSC toxicologists to assess the toxicity and assign hazard levels. This document defines submission schedules and establishes requirements for the types and format of these data. JSC 27472 Rev A is a major revision of JSC 25607, "Requirements for Submission of Test Sample-Materials Data for Shuttle Payload Safety Evaluations", dated October 1994, which was subsequently re-issued (September 1996) with a new document number, JSC 27472, but with the same title and date and no revisions. The revisions in the present document have been necessitated by the recent introduction of a two-step process (described in this document) for verification of data for flight materials and by the anticipated needs of the ISS. The requirements -for data submission apply to items which contain liquids, gases, gels, greases, powders/ particulates, radioisotopes, or biological materials and are located in the habitable pressurized volume of ISS or U.S. operated spacecraft. These include, but are not limited to, science payloads, government furnished equipment (GFE), risk mitigation experiments (RmEs), development test objectives (DTOs), detailed supplementary objectives (DSOs), life science experiments, and medical studies.

  20. "Teacher in Space" Participants - Space Food Testing - Orientation Session - JSC

    NASA Image and Video Library

    1985-09-25

    S85-39979 (10 Sept. 1985) --- Two teachers training for participation in the STS-51L flight get their first introduction to space food during an orientation session in the life sciences building at the Johnson Space Center (JSC). Sharon Christa McAuliffe (left) chews on a morsel while Barbara R. Morgan reaches for a bite. Dr. C.T. Bourland of Technology, Incorporated, looks on. McAuliffe was chosen from among ten finalists as prime citizen observer payload specialist and Morgan was named as backup for the STS-51L flight. Photo credit: NASA

  1. jsc2017m001088_Top-17-Earth-Images-of-2017

    NASA Image and Video Library

    2017-12-27

    Top 17 Earth Images of 2017 The astronauts and cosmonauts on the International Space Station take pictures of Earth out their windows nearly every day, and over a year that adds up to thousands of photos. The people at the Earth Science and Remote Sensing Unit at NASA’s Johnson Space Center in Houston had the enviable job of going through this year’s crop to pick their top 17 photos of Earth for 2017—here’s what they chose! Gateway to Astronaut Photography of Earth: https://eol.jsc.nasa.gov/

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  3. X-ray Arcs Tell The Tale Of Giant Eruption

    NASA Astrophysics Data System (ADS)

    2002-08-01

    Long ago, a giant eruption occurred in a nearby galaxy and plunged it into turmoil. Now NASA's Chandra X-ray Observatory has revealed the remains of that explosion in the form of two enormous arcs of hot gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes in the centers of many so-called "active" galaxies. Scientists from the Harvard-Smithsonian Center for Astrophysics (CfA) report that two arc-like structures of multimillion-degree gas in the galaxy Centaurus A appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been produced in a titanic explosion that occurred about ten million years ago. A composite image of the galaxy made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a stunning tableau of a tumultuous galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of X-ray emitting hot gas. "Putting all the images together was the key to understanding what Chandra showed," said Margarita Karovska, lead author on a paper in the September 20, 2002, issue of The Astrophysical Journal. "Suddenly it all clicked in, as with a giant puzzle, and the images fit together to make a complete picture of the galaxy geometry that was not at all apparent before." The team proposes that the orientation of the arcs of hot gas perpendicular to the jet and the symmetry of the projected ring with respect to the center of the galaxy could be evidence that the ring is the result of a giant eruption in the nucleus of the galaxy 10 million years ago. This explosion may have produced a galaxy-sized shock wave that has been moving outward at speeds of a million miles per hour. The age of 10 million years for the

  4. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    NASA Astrophysics Data System (ADS)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-06-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  5. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    NASA Astrophysics Data System (ADS)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-03-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  6. NASA Ames Research Center 60 MW Power Supply Modernization

    NASA Technical Reports Server (NTRS)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  7. Updating the NASA LEO Orbital Debris Environment Model with Recent Radar and Optical Observations and in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Anz-Meador, P.; Matney, M. J.; Kessler, D. J.; Theall, J.; Johnson, N. L.

    2000-01-01

    The Low Earth Orbit (LEO, between 200 and 2000 km altitudes) debris environment has been constantly measured by NASA Johnson Space Center's Liquid Mirror Telescope (LMT) since 1996 (Africano et al. 1999, NASA JSC-28826) and by Haystack and Haystack Auxiliary radars at MIT Lincoln Laboratory since 1990 (Settecerri et al. 1999, NASA JSC-28744). Debris particles as small as 3 mm can be detected by the radars and as small as 3 cm can be measured by LMT. Objects about 10 cm in diameter and greater are tracked and catalogued by the US Space Surveillance Network. Much smaller (down to several micrometers) natural and debris particle populations can be estimated based on in situ measurements, such as Long Duration Exposure Facility, and based on analyses of returned surfaces, such as Hubble Space Telescope solar arrays, European Retrievable Carrier, and Space Shuttles. To increase our understanding of the current LEO debris environment, the Orbital Debris Program Office at NASA JSC has initiated an effort to improve and update the ORDEM96 model (Kessler et al. 1996, NASA TM-104825) utilizing the recently available data. This paper gives an overview of the new NASA orbital debris engineering model, ORDEM2000.

  8. Configuration Management (CM) Support for KM Processes at NASA/Johnson Space Center (JSC)

    NASA Technical Reports Server (NTRS)

    Cioletti, Louis

    2010-01-01

    Collection and processing of information are critical aspects of every business activity from raw data to information to an executable decision. Configuration Management (CM) supports KM practices through its automated business practices and its integrated operations within the organization. This presentation delivers an overview of JSC/Space Life Sciences Directorate (SLSD) and its methods to encourage innovation through collaboration and participation. Specifically, this presentation will illustrate how SLSD CM creates an embedded KM activity with an established IT platform to control and update baselines, requirements, documents, schedules, budgets, while tracking changes essentially managing critical knowledge elements.

  9. STS-29 MS Bagian during post landing egress exercises in JSC FFT mockup

    NASA Image and Video Library

    1988-05-26

    S88-38355 (27 May 1988) --- Astronaut James P. Bagian lowers himself from the top of one of the full-fuselage trainer in JSC's Shuttle mockup and integration laboratory during a post-landing, over-the-top emergency egress test. Bagian, a M.D., and one of three mission specialists assigned to NASA STS-29 flight of the Discovery, is working with engineers evaluating egress using the new crew escape equipment that includes a parachute harness.

  10. The JSC Research and Development Annual Report 1993

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Issued as a companion to Johnson Space Center's Research and Technology Annual Report, which reports JSC accomplishments under NASA Research and Technology Operating Plan (RTOP) funding, this report describes 47 additional projects that are funded through sources other than the RTOP. Emerging technologies in four major disciplines are summarized: space systems technology, medical and life sciences, mission operations, and computer systems. Although these projects focus on support of human spacecraft design, development, and safety, most have wide civil and commercial applications in areas such as advanced materials, superconductors, advanced semiconductors, digital imaging, high density data storage, high performance computers, optoelectronics, artificial intelligence, robotics and automation, sensors, biotechnology, medical devices and diagnosis, and human factors engineering.

  11. STS-38 Mission Specialist Gemar climbs into T-38A cockpit at Ellington Field

    NASA Image and Video Library

    1990-06-18

    S90-41527 (August 1990) --- Astronaut Charles D. (Sam) Gemar, prepares to climb aboard on of NASA's T-38 jet trainers, located near the Johnson Space Center (JSC). Gemar began training as an astronaut candidate in summer of 1985.

  12. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  13. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. ARC-2003-ACD03-0183-030

    NASA Image and Video Library

    2003-09-08

    U. S. Congressman Culbertson, Texas and Mr John Webb, Webb & Associates visit and tour Ames Research Center with Center Director G. Scott Hubbard (pre-tour briefing at the Thermal Protection Facility - Arc Jet by Sylvia Johnson)

  15. JSC flight experiment recommendation in support of Space Station robotic operations

    NASA Astrophysics Data System (ADS)

    Berka, Reginald B.

    1993-02-01

    The man-tended configuration (MTC) of Space Station Freedom (SSF) provides a unique opportunity to move robotic systems from the laboratory into the mainstream space program. Restricted crew access due to the Shuttle's flight rate, as well as constrained on-orbit stay time, reduces the productivity of a facility dependent on astronauts to perform useful work. A natural tendency toward robotics to perform maintenance and routine tasks will be seen in efforts to increase SSF usefulness. This tendency will provide the foothold for deploying space robots. This paper outlines a flight experiment that will capitalize on the investment in robotic technology made by NASA over the past ten years. The flight experiment described herein provides the technology demonstration necessary for taking advantage of the expected opportunity at MTC. As a context to this flight experiment, a broader view of the strategy developed at the JSC is required. The JSC is building toward MTC by developing a ground-based SSF emulation funded jointly by internal funds, NASA/Code R, and NASA/Code M. The purpose of this ground-based Station is to provide a platform whereby technology originally developed at JPL, LaRC, and GSFC can be integrated into a near flight-like condition. For instance, the Automated Robotic Maintenance of Space Station (ARMSS) project integrates flat targets, surface inspection, and other JPL technologies into a Station analogy for evaluation. Also, ARMSS provides the experimental platform for the Capaciflector from GSPC to be evaluated for its usefulness in performing ORU change out or other tasks where proximity detection is required. The use and enhancement of these ground-based SSF models are planned for use through FY-93. The experimental data gathered from tests in these facilities will provide the basis for the technology content of the proposed flight experiment.

  16. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985. [Space Stations and Their Environments

    NASA Technical Reports Server (NTRS)

    Chilton, R. G. (Editor); Williams, C. E. (Editor)

    1986-01-01

    The 1985 NASA/ASEE Summer Faculty Fellowship Research Program was conducted by Texas A&M University and the Johnson Space Center. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The faculty fellows spent the time at JSC engaged in research projects commensurate with their interests and background and worked in collaboration with NASA/JSC colleagues. This document is a compilation of the final reports of their research during the summer of 1985.

  17. JSC research and technology

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The primary roles and missions of JSC incorporate all aspects of human presence in space. Therefore, the Center is involved in the development of technology that will allow humans to stay longer in Earth orbit, allow safe flight in space, and provide capabilities to explore the Moon and Mars. The Center's technology emphasis areas include human spacecraft development, human support systems and infrastructure, and human spacecraft operations. Safety and reliability are critical requirements for the technologies that JSC pursues for long-duration use in space. One of the objectives of technology development at the Center is to give employees the opportunity to enhance their technological expertise and project management skills by defining, designing, and developing projects that are vital to the Center's strategy for the future. This report is intended to communicate within and outside the Agency our research and technology (R&T) accomplishments, as well as inform Headquarters program managers and their constituents of the significant accomplishments that have promise for future Agency programs. While not inclusive of all R&T efforts, the report presents a comprehensive summary of JSC projects in which substantial progress was made in the 1992 fiscal year. At the beginning of each project description, names of the Principal Investigator (PI) and the Technical Monitor (TM) are given, followed by their JSC mail codes or their company or university affiliations. The funding sources and technology focal points are identified in the index.

  18. Study Confirms Biofuels Reduce Jet Engine Pollution on This Week @NASA – March 17, 2017

    NASA Image and Video Library

    2017-03-17

    Findings published March 15 in the journal Nature from a series of flight tests in 2013 and 2014 near NASA’s Armstrong Flight Research Center in California indicate that using biofuels helps jet engines reduce particle emissions in exhaust by as much as 50 to 70 percent. That’s both an economic and an environmental benefit. The findings were based on data from the Alternative Fuel Effects on Contrails and Cruise Emissions Study, or ACCESS. The international research program led by NASA and involving agencies from Germany and Canada, studied the effects of alternative fuels on aircraft-generated contrails, engine performance and emissions. Also, NASA @SXSW Interactive Festival, Satellites See Winter Storm from Space, CST-100 Starliner Parachute Testing, and NASA’s Pi Day Challenge!

  19. NASA rocket to display artificial clouds in space

    NASA Image and Video Library

    2017-12-08

    A NASA sounding rocket to be launched from the Poker Flat Research Range, Alaska, between February 13 and March 3, 2017, will form white artificial clouds during its brief, 10-minute flight. The rocket is one of five being launched January through March, each carrying instruments to explore the aurora and its interactions with Earth’s upper atmosphere and ionosphere. Scientists at NASA's Goddard Space Center in Greenbelt, Maryland, explain that electric fields drive the ionosphere, which, in turn, are predicted to set up enhanced neutral winds within an aurora arc. This experiment seeks to understand the height-dependent processes that create localized neutral jets within the aurora. For this mission, two 56-foot long Black Brant IX rockets will be launched nearly simultaneously. One rocket is expected to fly to an apogee of about 107 miles while the other is targeted for 201 miles apogee. Only the lower altitude rocket will form the white luminescent clouds during its flight. Read more: go.nasa.gov/2kYaBgV NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Heat sink effects in variable polarity plasma arc welding

    NASA Technical Reports Server (NTRS)

    Abdelmessih, Amanie N.

    1991-01-01

    The Space Shuttle External Tank is fabricated by the variable polarity plasma arc (VPPA) welding process. In VPPA welding, a noble gas, usually argon, is directed through an arc to emerge from the torch as a hot plasma jet. This jet is surrounded by a shielding gas, usually helium, to protect the weld from contamination with air. The high velocity, hot plasma jet completely penetrates the workpiece (resembling a line heat source) when operated in the 'keyhole' mode. The metal melts on touching the side of the jet, as the torch travels in the perpendicular direction to the direction of the jet, and melted metal moves around the plasma jet in the keyhole forming a puddle which solidifies behind the jet. Heat sink effects are observed when there are irregularities in the workpiece configuration, especially, if these irregularities are close to the weld bead. These heat sinks affect the geometry of the weld bead, i.e., in extreme cases they could cause defects such as incomplete fusion. Also, different fixtures seem to have varying heat sink effects. The objective of this research is to study the effect of irregularities in workpiece configuration and fixture differences (heat sink effects) on the weld bead geometry with the ultimate objective to compensate for the heat sink effects and achieve a perfect weld. Experiments were performed on different workpiece geometries and compared to approximate models.

  1. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Nechnical producer for NASA's Eyes at JPL, Jason Craig discusses the Cassini mission as seen through the NASA Eyes program during a NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  2. VISITOR - PRES. NIXON - PROTOCOL - JSC

    NASA Image and Video Library

    1974-03-20

    Five (5) views of President Richard M. Nixon during his visit to the JSC. These views show the President as he addresses a crowd of employees and visitors outside of Building 1 Auditorium. Dr. Christopher C. Kraft, Fletcher, and Astronaut Gerald Carr, with Pete Clements, George Abbey, and Jack Waite in the background is also seen with the President. 1. Pres. Richard M. Nixon 2. Dr. Christopher C. Kraft JSC, HOUSTON, TX

  3. The 'missing man' formation concluded the memorial for the STS 51-L crew

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The 'missing man' formation concluded the memorial services at JSC for the STS 51-L crew. Four NASA T-38 jet aircraft were used for the symbolic flight. A small portion of the crowd is visible in the bottom portion of the frame.

  4. NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1990-01-01

    The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.

  5. End-to-End Information System design at the NASA Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Hooke, A. J.

    1978-01-01

    Recognizing a pressing need of the 1980s to optimize the two-way flow of information between a ground-based user and a remote space-based sensor, an end-to-end approach to the design of information systems has been adopted at the Jet Propulsion Laboratory. The objectives of this effort are to ensure that all flight projects adequately cope with information flow problems at an early stage of system design, and that cost-effective, multi-mission capabilities are developed when capital investments are made in supporting elements. The paper reviews the End-to-End Information System (EEIS) activity at the Laboratory, and notes the ties to the NASA End-to-End Data System program.

  6. T-38 A- AIRCRAFT (NASA 924)

    NASA Image and Video Library

    1983-12-07

    S82-28952 (1 April 1982) --- Crew members from STS-2 and STS-4 meet with the recently returned STS-3 astronauts for a debriefing session at the Johnson Space Center. Taking notes at bottom left foreground is astronaut John W. Young, STS-1 commander and chief of the Astronaut Office at JSC. Clockwise around the table, beginning with Young, are George W. S. Abbey, JSC Director of Flight Operations; and astronauts Joe E. Engle, STS-2 commander; Henry W. Hartsfield Jr., STS-4 pilot; C. Gordon Fullerton, STS-3 pilot; Jack R. Lousma, STS-3 commander; Thomas K. (Ken) Mattingly, STS-4 commander; and Richard H. Truly, STS-2 pilot. Photo credit: NASA

  7. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, speaks to NASA Social attendees about the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  8. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA JPL digital and social media lead Stephanie Smith, introduces technical producer for NASA's Eyes at JPL, Jason Craig, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Director of NASA's Planetary Science Division, Jim Green, speaks to NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees film director of NASA's Planetary Science Division, Jim Green as he discusses the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)

    NASA Image and Video Library

    1986-02-11

    S86-28458 (28 Feb. 1986) --- Astronaut Michael L. Coats participates in a rehearsal for his assigned flight at the commander's station of the Shuttle Mission Simulator (SMS) at the Johnson Space Center (JSC). NOTE: Coats, a veteran of spaceflight, originally trained for STS 61-H, which was cancelled in the wake of the Challenger accident. Following the Janaury 1986 accident he was named to serve on a mock crew (STS-61M) for personnel training and simulation purposes. Photo credit: NASA

  12. NASA Chief Technologist Douglas Terrier Learns How Jacobs Uses 3-D Printing

    NASA Image and Video Library

    2017-08-10

    A Jacobs engineer shows NASA Chief Technologist Douglas Terrier how the company uses 3-D printers to create inexpensive physical models of new electronically designed hardware. Date: 08-10-2017 Location: B1 & Jacobs Engineering Subject: NASA Acting Chief Technology Officer Douglas Terrier Tours JSC and Jacobs Photographer: David DeHoyos

  13. NASA #801 and NASA 7 on ramp

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA N801NA and NASA 7 together on the NASA Dryden ramp. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  14. Development and Validation of a Model for Hydrogen Reduction of JSC-1A

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    Hydrogen reduction of lunar regolith has been proposed as a viable technology for oxygen production on the moon. Hydrogen reduces FeO present in the lunar regolith to form metallic iron and water. The water may be electrolyzed to recycle the hydrogen and produce oxygen. Depending upon the regolith composition, FeO may be bound to TiO2 as ilmenite or it may be dispersed in glassy substrates. Some testing of hydrogen reduction has been conducted with Apollo-returned lunar regolith samples. However, due to the restricted amount of lunar material available for testing, detailed understanding and modeling of the reduction process in regolith have not yet been developed. As a step in this direction, hydrogen reduction studies have been carried out in more detail with lunar regolith simulants such as JSC-1A by NASA and other organizations. While JSC-1A has some similarities with lunar regolith, it does not duplicate the wide variety of regolith types on the moon, for example, it contains almost no ilmenite. Nonetheless, it is a good starting point for developing an understanding of the hydrogen reduction process with regolith-like material. In this paper, a model utilizing a shrinking core formulation coupled with the reactor flow is described and validated against experimental data on hydrogen reduction of JSC-1A.

  15. NASA Bioreactor Schematic

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  16. Flow and Noise Control in High Speed and High Reynolds Number Jets Using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Samimy, M.; Kastner, J.; Kim, J.-H.; Utkin, Y.; Adamovich, I.; Brown, C. A.

    2006-01-01

    The idea of manipulating flow to change its characteristics is over a century old. Manipulating instabilities of a jet to increase its mixing and to reduce its radiated noise started in the 1970s. While the effort has been successful in low-speed and low Reynolds number jets, available actuators capabilities in terms of their amplitude, bandwidth, and phasing have fallen short in control of high-speed and high Reynolds number jets of practical interest. Localized arc filament plasma actuators have recently been developed and extensively used at Gas Dynamics and Turbulence Laboratory (GDTL) for control of highspeed and high Reynolds number jets. While the technique has been quite successful and is very promising, all the work up to this point had been carried out using small high subsonic and low supersonic jets from a 2.54 cm diameter nozzle exit with a Reynolds number of about a million. The preliminary work reported in this paper is a first attempt to evaluate the scalability of the technique. The power supply/plasma generator was designed and built in-house at GDTL to operate 8 actuators simultaneously over a large frequency range (0 to 200 kHz) with independent control over phase and duty cycle of each actuator. This allowed forcing the small jet at GDTL with azimuthal modes m = 0, 1, 2, 3, plus or minus 1, plus or minus 2, and plus or minus 4 over a large range of frequencies. This power supply was taken to and used, with minor modifications, at the NASA Nozzle Acoustic Test Rig (NATR). At NATR, 32 actuators were distributed around the 7.5 in. nozzle (a linear increase with nozzle exit diameter would require 60 actuators). With this arrangement only 8 actuators could operate simultaneously, thus limiting the forcing of the jet at NATR to only three azimuthal modes m = plus or minus 1, 4, and 8. Very preliminary results at NATR indicate that the trends observed in the larger NASA facility in terms of the effects of actuation frequency and azimuthal modes are

  17. On the Wing: A Business-Class Jet

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cessna Aircraft Company was last featured in Spinoff 1991 for the Citation Jet, the industry's current best selling business jet. The newest addition to its fleet is the Citation X (ten), the largest, most complex aircraft ever produced by Cessna, which also has its basis in NASA technology. Aerodynamic design, wind tunneling testing, and airfoil performance, for example, have their foundation with NASA. The Citation X is the fastest, most efficient business jet ever built.

  18. Pre-STS-3 press conference held at the JSC public affairs facility

    NASA Image and Video Library

    1982-01-25

    S82-25905 (21 Jan. 1982) --- Astronaut C. Gordon Fullerton uses an electronic pointer to localize an area on a projected visual of the OSS payload package to be carried in the cargo bay of the Columbia on STS-3. Fullerton is pilot for the flight and Jack R. Lousma, center, is mission commander. The two were holding one of a series of pre-STS-3 press briefings. They were introduced by Dr. John Lawrence, far right, a public information specialist for JSC?s Office of Public Affairs. Photo credit: NASA

  19. NASA 947 and NASA 904 during training flight over White Sands, New Mexico

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA 947 and NASA 904 during a training and familiarization flight over White Sands, New Mexico. The Gulfstream aircraft on the left is NASA's Space Shuttle Training aircraft (STA) and the T-38 jet serves as a chase plane.

  20. Characterization and Glass Formation of JSC-1 Lunar and Martian Soil Simulants

    NASA Technical Reports Server (NTRS)

    Sen, Subhayu

    2008-01-01

    The space exploration mission of NASA requires long duration presence of human being beyond the low earth orbit (LEO), especially on Moon and Mars. Developing a human habitat or colony on these planets would require a diverse range of materials, whose applications would range from structural foundations, (human) life support, (electric) power generation to components for scientific instrumentation. A reasonable and cost-effective approach for fabricating the materials needed for establishing a self-sufficient human outpost would be to primarily use local (in situ) resources on these planets. Since ancient times, glass and ceramics have been playing a vital role on human civilization. A long term project on studying the feasibility of developing glass and ceramic materials using Lunar and Martian soil simulants (JSC-1) as developed by Johnson Space Center has been undertaken. The first step in this on-going project requires developing a data base on results that fully characterize the simulants to be used for further investigations. The present paper reports characterization data of both JSC-1 Lunar and JSC Mars-1 simulants obtained up to this time via x-ray diffraction analysis, scanning electron microscopy, thermal analysis (DTA, TGA) and chemical analysis. The critical cooling rate for glass formation for the melts of the simulants was also measured in order to quantitatively assess the glass forming tendency of these melts. The importance of the glasses and ceramics developed using in-situ resources for constructing human habitats on Moon or Mars is discussed.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. Jets, arcs, and shocks: NGC 5195 at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Rampadarath, H.; Soria, R.; Urquhart, R.; Argo, M. K.; Brightman, M.; Lacey, C. K.; Schlegel, E. M.; Beswick, R. J.; Baldi, R. D.; Muxlow, T. W. B.; McHardy, I. M.; Williams, D. R. A.; Dumas, G.

    2018-05-01

    We studied the nearby, interacting galaxy NGC 5195 (M 51b) in the radio, optical and X-ray bands. We mapped the extended, low-surface-brightness features of its radio-continuum emission; determined the energy content of its complex structure of shock-ionized gas; constrained the current activity level of its supermassive nuclear black hole. In particular, we combined data from the European Very Long Baseline Interferometry Network (˜1-pc scale), from our new e-MERLIN observations (˜10-pc scale), and from the Very Large Array (˜100-1000-pc scale), to obtain a global picture of energy injection in this galaxy. We put an upper limit to the luminosity of the (undetected) flat-spectrum radio core. We find steep-spectrum, extended emission within 10 pc of the nuclear position, consistent with optically thin synchrotron emission from nuclear star formation or from an outflow powered by an active galactic nucleus (AGN). A linear spur of radio emission juts out of the nuclear source towards the kpc-scale arcs (detected in radio, Hα and X-ray bands). From the size, shock velocity, and Balmer line luminosity of the kpc-scale bubble, we estimate that it was inflated by a long-term-average mechanical power ˜3-6 × 1041 erg s-1 over the last 3-6 Myr. This is an order of magnitude more power than can be provided by the current level of star formation, and by the current accretion power of the supermassive black hole. We argue that a jet-inflated bubble scenario associated with previous episodes of AGN activity is the most likely explanation for the kpc-scale structures.

  7. NASA reload program

    NASA Technical Reports Server (NTRS)

    Byington, Marshall

    1993-01-01

    Atlantic Research Corporation (ARC) contracted with NASA to manufacture and deliver thirteen small scale Solid Rocket Motors (SRM). These motors, containing five distinct propellant formulations, will be used for plume induced radiation studies. The information contained herein summarizes and documents the program accomplishments and results. Several modifications were made to the scope of work during the course of the program. The effort was on hold from late 1991 through August, 1992 while propellant formulation changes were developed. Modifications to the baseline program were completed in late-August and Modification No. 6 was received by ARC on September 14, 1992. The modifications include changes to the propellant formulation and the nozzle design. The required motor deliveries were completed in late-December, 1992. However, ARC agreed to perform an additional mix and cast effort at no cost to NASA and another motor was delivered in March, 1993.

  8. Proceedings of the First NASA Ada Users' Symposium

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Ada has the potential to be a part of the most significant change in software engineering technology within NASA in the last twenty years. Thus, it is particularly important that all NASA centers be aware of Ada experience and plans at other centers. Ada activity across NASA are covered, with presenters representing five of the nine major NASA centers and the Space Station Freedom Program Office. Projects discussed included - Space Station Freedom Program Office: the implications of Ada on training, reuse, management and the software support environment; Johnson Space Center (JSC): early experience with the use of Ada, software engineering and Ada training and the evaluation of Ada compilers; Marshall Space Flight Center (MSFC): university research with Ada and the application of Ada to Space Station Freedom, the Orbital Maneuvering Vehicle, the Aero-Assist Flight Experiment and the Secure Shuttle Data System; Lewis Research Center (LeRC): the evolution of Ada software to support the Space Station Power Management and Distribution System; Jet Propulsion Laboratory (JPL): the creation of a centralized Ada development laboratory and current applications of Ada including the Real-time Weather Processor for the FAA; and Goddard Space Flight Center (GSFC): experiences with Ada in the Flight Dynamics Division and the Extreme Ultraviolet Explorer (EUVE) project and the implications of GSFC experience for Ada use in NASA. Despite the diversity of the presentations, several common themes emerged from the program: Methodology - NASA experience in general indicates that the effective use of Ada requires modern software engineering methodologies; Training - It is the software engineering principles and methods that surround Ada, rather than Ada itself, which requires the major training effort; Reuse - Due to training and transition costs, the use of Ada may initially actually decrease productivity, as was clearly found at GSFC; and real-time work at LeRC, JPL and GSFC shows

  9. jsc2017m000738_NASA Tests Orion Crew Egress_July 2017

    NASA Image and Video Library

    2017-07-18

    NASA Tests Orion Crew Exit Plans in Gulf of Mexico A NASA and Department of Defense team evaluated the techniques that will be used to make sure astronauts can exit Orion in a variety of scenarios upon splashdown after deep space missions, using the waters off the coast of Galveston, Texas, to test their procedures in July. The team used a mockup of the spacecraft to examine how crew will get out of Orion with assistance and alone. The testing is helping NASA prepare for Orion and Space Launch System missions with crew beginning with Exploration Mission-2 in the early 2020s.

  10. STS-45 crewmembers during LINHOF camera briefing in JSC's Bldg 4 rm 2026A

    NASA Image and Video Library

    1992-01-14

    S92-26522 (Feb 1992) --- Crewmembers assigned to NASA's STS-45 mission are briefed on the use of the Linhof camera in the flight operations facility at the Johnson Space Center (JSC). Charles F. Bolden, mission commander, stands at left. Other crewmembers (seated clockwise around the table from lower left) are Dirk Frimout of Belgium representing the European Space Agency as payload specialist; Charles R. (Rick) Chappell, backup payload specialist; Brian Duffy, pilot; Kathryn D. Sullivan, payload commander; David C. Leestma, mission specialist; Byron K. Lichtenberg, payload specialist; and C. Michael Foale, mission specialist. James H. Ragan (far right), head of the flight equipment section of the flight systems branch in JSC's Man Systems Division, briefs the crewmembers. Donald C. Carico, of the crew training staff and Rockwell International, stands near Bolden. The camera, used for out-the-window observations, is expected to be used frequently on the Atmospheric Laboratory for Applications and Science (ATLAS-1) mission, scheduled for a March date with the Space Shuttle Atlantis.

  11. JSC-1: A new lunar regolith simulant

    NASA Technical Reports Server (NTRS)

    Mckay, David S.; Carter, James L.; Boles, Walter W.; Allen, Carlton C.; Allton, Judith H.

    1993-01-01

    Simulants of lunar rocks and soils with appropriate properties, although difficult to produce in some cases, will be essential to meeting the system requirements for lunar exploration. In order to address this need a new lunar regolith simulant, JSC-1, has been developed. JSC-1 is a glass-rich basaltic ash which approximates the bulk chemical composition and mineralogy of some lunar soils. It has been ground to produce a gain size distribution approximating that of lunar regolith samples. The simulant is available in large quantities (greater than 2000 lb; 907 kg). JSC-1 was produced specifically for large- and medium-scale engineering studies in support of future human activities on the Moon. Such studies include material handling, construction, excavation, and transportation. The simulant is also appropriate for research on dust control and spacesuit durability. JSC-1 can be used as a chemical or mineralogical analog to some lunar soils for resource studies such as oxygen or metal production, sintering, and radiation shielding.

  12. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  13. NASA-STD-4005 and NASA-HDBK-4006, LEO Spacecraft Solar Array Charging Design Standard

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    Two new NASA Standards are now official. They are the NASA LEO Spacecraft Charging Design Standard (NASA-STD-4005) and the NASA LEO Spacecraft Charging Design Handbook (NASA-HDBK-4006). They give the background and techniques for controlling solar array-induced charging and arcing in LEO. In this paper, a brief overview of the new standards is given, along with where they can be obtained and who should be using them.

  14. Numerical and Experimental Determination of the Geometric Far Field for Round Jets

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Brown, Cliff; Khavaran, Abbas

    2003-01-01

    To reduce ambiguity in the reporting of far field jet noise, three round jets operating at subsonic conditions have recently been studied at the NASA Glenn Research Center. The goal of the investigation was to determine the location of the geometric far field both numerically and experimentally. The combination of the WIND Reynolds-Averaged Navier-Stokes solver and the MGBK jet noise prediction code was used for the computations, and the experimental data was collected in the Aeroacoustic Propulsion Laboratory. While noise sources are distributed throughout the jet plume, at great distances from the nozzle the noise will appear to be emanating from a point source and the assumption of linear propagation is valid. Closer to the jet, nonlinear propagation may be a problem, along with the known geometric issues. By comparing sound spectra at different distances from the jet, both from computational methods that assume linear propagation, and from experiments, the contributions of geometry and nonlinearity can be separately ascertained and the required measurement distance for valid experiments can be established. It is found that while the shortest arc considered here (approx. 8D) was already in the geometric far field for the high frequency sound (St greater than 2.0), the low frequency noise due to its extended source distribution reached the geometric far field at or about 50D. It is also found that sound spectra at far downstream angles does not strictly scale on Strouhal number, an observation that current modeling does not capture.

  15. Assessment of Fencing on the Orion Heatshield

    NASA Technical Reports Server (NTRS)

    Alunni, Antonella I.; Gokcen, Tahir

    2016-01-01

    This paper presents recent experimental results from arc-jet tests of the Orion heatshield that were conducted at NASA Ames Research Center. Test conditions that simulated a set of heating profiles in time representative of the Orion flight environments were used to observe their effect on Orion's block architecture in terms of differential recession or fencing. Surface recession of arc-jet models was characterized during and after testing to derive fencing profiles used for the baseline sizing of the heatshield. Arc-jet test data show that the block architecture produces varying degrees of fencing.

  16. Development of arcjet and ion propulsion for spacecraft stationkeeping

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Curran, Francis M.; Haag, Thomas W.; Patterson, Michael J.; Pencil, Eric J.; Rawlin, Vincent K.; Sankovic, John M.

    1992-01-01

    Near term flight applications of arc jet and ion thruster satellite station-keeping systems as well as development activities in Europe, Japan, and the United States are reviewed. At least two arc jet and three ion propulsion flights are scheduled during the 1992-1995 period. Ground demonstration technology programs are focusing on the development of kW-class hydrazine and ammonia arc jets and xenon ion thrusters. Recent work at NASA LeRC on electric thruster and system integration technologies relating to satellite station keeping and repositioning will also be summarized.

  17. The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Many tasks in fluids engineering require prediction of turbulence of jet flows. The present document documents the single-point statistics of velocity, mean and variance, of cold and hot jet flows. The jet velocities ranged from 0.5 to 1.4 times the ambient speed of sound, and temperatures ranged from unheated to static temperature ratio 2.7. Further, the report assesses the accuracies of the data, e.g., establish uncertainties for the data. This paper covers the following five tasks: (1) Document acquisition and processing procedures used to create the particle image velocimetry (PIV) datasets. (2) Compare PIV data with hotwire and laser Doppler velocimetry (LDV) data published in the open literature. (3) Compare different datasets acquired at the same flow conditions in multiple tests to establish uncertainties. (4) Create a consensus dataset for a range of hot jet flows, including uncertainty bands. (5) Analyze this consensus dataset for self-consistency and compare jet characteristics to those of the open literature. The final objective was fulfilled by using the potential core length and the spread rate of the half-velocity radius to collapse of the mean and turbulent velocity fields over the first 20 jet diameters.

  18. Skylab (SL)-3 Crewmen - Checklist - Crew Quarters - Orbital Workshop Simulator (OWS) Trainer - JSC

    NASA Image and Video Library

    1973-01-01

    S73-28793 (16 July 1973) --- The three crewmen of the second manned Skylab mission (Skylab 3) go over a checklist during preflight training at the Johnson Space Center. They are, left to right, scientist-astronaut Owen K. Garriott, science pilot; astronaut Alan L. Bean, commander; and astronaut Jack R. Lousma, pilot. They are in the crew quarters of the Orbital Workshop trainer in the Mission Training and Simulation Facility, Building 5, at JSC. Skylab 3 is scheduled as a 59-day mission in Earth orbit. Photo credit: NASA

  19. STS-49 crew in JSC's FB Shuttle Mission Simulator (SMS) during simulation

    NASA Image and Video Library

    1992-02-19

    S92-29406 (Feb 1992) --- Three mission specialists assigned to the STS-49 flight occupy temporary stations on the "middeck" of a Johnson Space Center (JSC) Shuttle trainer during a rehearsal of Endeavour's launch and entry phases. Left to right are astronauts Thomas D. Akers, Kathryn C. Thornton and Pierre J. Thuot. The three, along with four other NASA astronauts, will be aboard Endeavour in May for a week-long mission during which a satellite will be retrieved and boosted toward a higher orbit and extravehicular activity evaluations for Space Station Freedom assembly techniques will be conducted.

  20. Investigation of a subsonic-arc-attachment thruster using segmented anodes

    NASA Technical Reports Server (NTRS)

    Berns, Darren H.; Sankovic, John M.; Sarmiento, Charles J.

    1993-01-01

    To investigate high frequency arc instabilities observed in subsonic-arc-attachment thrusters, a 3 kW, segmented-anode arc jet was designed and tested using hydrogen as the propellant. The thruster nozzle geometry was scaled from a 30 kW design previously tested in the 1960's. By observing the current to each segment and the arc voltage, it was determined that the 75-200 kHz instabilities were results of axial movements of the arc anode attachment point. The arc attachment point was fully contained in the subsonic portion of the nozzle for nearly all flow rates. The effects of isolating selected segments were investigated. In some cases, forcing the arc downstream caused the restrike to cease. Finally, decreasing the background pressure from 18 to 0.05 Pa affected the pressure distribution in the nozzle including the pressure in the subsonic arc chamber.

  1. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Li, Tianming; Sooseok, Choi; Takayuki, Watanabe

    2012-12-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans speaks with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, speaks to NASA Social attendees about the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. [Temperature measurement of DC argon plasma jet].

    PubMed

    Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa

    2008-01-01

    The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.

  6. NASA's Astronant Family Support Office

    NASA Technical Reports Server (NTRS)

    Beven, Gary; Curtis, Kelly D.; Holland, Al W.; Sipes, Walter; VanderArk, Steve

    2014-01-01

    During the NASA-Mir program of the 1990s and due to the challenges inherent in the International Space Station training schedule and operations tempo, it was clear that a special focus on supporting families was a key to overall mission success for the ISS crewmembers pre-, in- and post-flight. To that end, in January 2001 the first Family Services Coordinator was hired by the Behavioral Health and Performance group at NASA JSC and matrixed from Medical Operations into the Astronaut Office's organization. The initial roles and responsibilities were driven by critical needs, including facilitating family communication during training deployments, providing mission-specific and other relevant trainings for spouses, serving as liaison for families with NASA organizations such as Medical Operations, NASA management and the Astronaut Office, and providing assistance to ensure success of an Astronaut Spouses Group. The role of the Family Support Office (FSO) has modified as the ISS Program matured and the needs of families changed. The FSO is currently an integral part of the Astronaut Office's ISS Operations Branch. It still serves the critical function of providing information to families, as well as being the primary contact for US and international partner families with resources at JSC. Since crews launch and return on Russian vehicles, the FSO has the added responsibility for coordinating with Flight Crew Operations, the families, and their guests for Soyuz launches, landings, and Direct Return to Houston post-flight. This presentation will provide a summary of the family support services provided for astronauts, and how they have changed with the Program and families the FSO serves. Considerations for future FSO services will be discussed briefly as NASA proposes one year missions and beyond ISS missions. Learning Objective: 1) Obtain an understanding of the reasons a Family Support Office was important for NASA. 2) Become familiar with the services provided for

  7. On the structure of pulsed plasma jets

    NASA Astrophysics Data System (ADS)

    Cavolowsky, John Arthur

    A pulsed plasma jet is a turbulent, inhomogeneous fluid mechanical discharge capable of initiating and inhancing combustion. Having shown the ability to ignite lean fuel mixtures, is now offers the potential for real-time control of combustion processes. The fluid mechanical and chemical properties of such jets are explored. The fluid mechanical structure of the jet was examined using two optical diagnostic techniques. Self-light streak photography provided information on the motion of luminous gas particles in its core. The turbulent, thermal evolution of the jet was explored using high speed laser schlieren cinematography. By examine plasma jet generators with both opaque and transparent plasma cavities, detailed information on plasma formation and jet structure, beginning with the electric arc discharge in the cavity, was obtained. Molecular beam mass spectroscopy was used to determine temperature and species concentration in the jet. Both noncombustible and combustible jets were studied. Species measurements in combustible jets revealed significant concentrations of radicals and products of complete as well as incomplete combustion.

  8. Simulations of Atmospheric Plasma Arcs

    NASA Astrophysics Data System (ADS)

    Pearcy, Jacob; Chopra, Nirbhav; Jaworski, Michael

    2017-10-01

    We present the results of computer simulation of cylindrical plasma arcs with characteristics similar to those predicted to be relevant in magnetohydrodynamic (MHD) power conversion systems. These arcs, with core temperatures on the order of 1 eV, place stringent limitations on the lifetime of conventional electrodes used in such systems, suggesting that a detailed analysis of arc characteristics will be crucial in designing more robust electrode systems. Simulations utilize results from NASA's Chemical Equilibrium with Applications (CEA) program to solve the Elenbaas-Heller equation in a variety of plasma compositions, including approximations of coal-burning plasmas as well as pure gas discharges. The effect of carbon dioxide injection on arc characteristics, emulating discharges from molten carbonate salt electrodes, is also analyzed. Results include radial temperature profiles, composition maps, and current-voltage (IV) characteristics of these arcs. Work supported by DOE contract DE-AC02-09CH11466.

  9. NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2007-01-01

    NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.

  10. NASA/ASEE Summer Faculty Fellowship Program, 1990, volume 2

    NASA Technical Reports Server (NTRS)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1990-01-01

    The 1990 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and Johnson Space Centers (JSC). A compilation of the final reports on the research projects is presented. The following topics are covered: the Space Shuttle; the Space Station; lunar exploration; mars exploration; spacecraft power supplies; mars rover vehicle; mission planning for the Space Exploration Initiative; instrument calibration standards; a lunar oxygen production plant; optical filters for a hybrid vision system; dynamic structural analysis; lunar bases; pharmacodynamics of scopolamine; planetary spacecraft cost modeling; and others.

  11. Jovian Jet Stream

    NASA Image and Video Library

    2018-05-31

    See a jet stream speeding through Jupiter's atmosphere in this new view taken by NASA's Juno spacecraft. The jet stream, called Jet N2, was captured along the dynamic northern temperate belts of the gas giant planet. It is the white stream visible from top left to bottom right in the image. The color-enhanced image was taken at 10:34 p.m. PST on May 23 (1:34 a.m. EST on May 24), as Juno performed its 13th close flyby of Jupiter. At the time the image was taken, the spacecraft was about 3,516 miles (5,659 kilometers) from the tops of the clouds of the planet at a northern latitude of 32.9 degrees. Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft's JunoCam imager. The view is a composite of several separate JunoCam images that were re-projected, blended, and healed. https://photojournal.jpl.nasa.gov/catalog/PIA22422

  12. NASA personnel and facilities involved in Hurricane Katrina medical evacuation

    NASA Image and Video Library

    2005-09-02

    JSC2005-E-36144 (2 September 2005) --- NASA Johnson Space Center Aircraft Operations Hangar 990 at Ellington Field, Houston, has been used as a triage location this week for medical patients evacuated by air from New Orleans to pass through on their way to Houston-area medical facilities. Hundreds of patients have passed through the location so far, as the transfer operations, led by the Veterans Administration and supported by NASA and other agencies, continue.

  13. It Twins! Spitzer Finds Hidden Jet

    NASA Image and Video Library

    2011-04-04

    NASA Spitzer Space Telescope took this image of a baby star sprouting two identical jets green lines emanating from fuzzy star. The left jet was hidden behind a dark cloud, which Spitzer can see through.

  14. Establishing Esri ArcGIS Enterprise Platform Capabilities to Support Response Activities of the NASA Earth Science Disasters Program

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Seepersad, J.; Shute, J.; Carriere, L.; Duffy, D.; Tisdale, B.; Kirschbaum, D.; Green, D. S.; Schwizer, L.

    2017-12-01

    NASA's Earth Science Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. NASA Earth observations and those of domestic and international partners are combined with in situ observations and models by NASA scientists and partners to develop products supporting disaster mitigation, response, and recovery activities among several end-user partners. These products are accompanied by training to ensure proper integration and use of these materials in their organizations. Many products are integrated along with other observations available from other sources in GIS-capable formats to improve situational awareness and response efforts before, during and after a disaster. Large volumes of NASA observations support the generation of disaster response products by NASA field center scientists, partners in academia, and other institutions. For example, a prediction of high streamflows and inundation from a NASA-supported model may provide spatial detail of flood extent that can be combined with GIS information on population density, infrastructure, and land value to facilitate a prediction of who will be affected, and the economic impact. To facilitate the sharing of these outputs in a common framework that can be easily ingested by downstream partners, the NASA Earth Science Disasters Program partnered with Esri and the NASA Center for Climate Simulation (NCCS) to establish a suite of Esri/ArcGIS services to support the dissemination of routine and event-specific products to end users. This capability has been demonstrated to key partners including the Federal Emergency Management Agency using a case-study example of Hurricane Matthew, and will also help to support future domestic and international disaster events. The Earth Science Disasters Program has also established a longer-term vision to leverage scientists' expertise in the development and delivery of

  15. SKYLAB (SL) PRIME CREW - BLDG 5 - JSC

    NASA Image and Video Library

    1973-03-20

    S73-20622 (March 1973) --- Scientist-astronaut Joseph P. Kerwin, science pilot of the first manned Skylab mission, demonstrates the Body Mass Measurement Experiment (M172) during Skylab training at the Johnson Space Center. Dr. Kerwin is in the work and experiments area of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. The M172 experiment will demonstrate body mass measurement in a null gravity environment, validate theoretical behavior of this method, and support those medical experiments for which body mass measurements are required. The data to be collected in support of M172 are: preflight calibration of the body mass measurement device and measurements of known masses up to 100 kilograms (220 pounds) three times during each Skylab mission. The device, a spring/flexure pivot-mounted chair, will also be used for daily determination of the crewmen?s weight, which will be manually logged and voice recorded for subsequent telemetered transmission. Photo credit: NASA

  16. NASA's Astromaterials Database: Enabling Research Through Increased Access to Sample Data, Metadata and Imagery

    NASA Technical Reports Server (NTRS)

    Evans, Cindy; Todd, Nancy

    2014-01-01

    The Astromaterials Acquisition & Curation Office at NASA's Johnson Space Center (JSC) is the designated facility for curating all of NASA's extraterrestrial samples. Today, the suite of collections includes the lunar samples from the Apollo missions, cosmic dust particles falling into the Earth's atmosphere, meteorites collected in Antarctica, comet and interstellar dust particles from the Stardust mission, asteroid particles from Japan's Hayabusa mission, solar wind atoms collected during the Genesis mission, and space-exposed hardware from several missions. To support planetary science research on these samples, JSC's Astromaterials Curation Office hosts NASA's Astromaterials Curation digital repository and data access portal [http://curator.jsc.nasa.gov/], providing descriptions of the missions and collections, and critical information about each individual sample. Our office is designing and implementing several informatics initiatives to better serve the planetary research community. First, we are re-hosting the basic database framework by consolidating legacy databases for individual collections and providing a uniform access point for information (descriptions, imagery, classification) on all of our samples. Second, we continue to upgrade and host digital compendia that summarize and highlight published findings on the samples (e.g., lunar samples, meteorites from Mars). We host high resolution imagery of samples as it becomes available, including newly scanned images of historical prints from the Apollo missions. Finally we are creating plans to collect and provide new data, including 3D imagery, point cloud data, micro CT data, and external links to other data sets on selected samples. Together, these individual efforts will provide unprecedented digital access to NASA's Astromaterials, enabling preservation of the samples through more specific and targeted requests, and supporting new planetary science research and collaborations on the samples.

  17. Assessment of Fencing on the Orion Heatshield

    NASA Technical Reports Server (NTRS)

    Alunni, Antonella I.; Gokcen, Tahir

    2016-01-01

    This paper presents recession measurements of arc-jet test articles that simulate an ablator with gap filler and were exposed to various heating profiles. Results were used to derive empirically-based differential recession models used for the baseline sizing of the Orion block heatshield architecture. The profile test conditions represent different local flight environments associated with different regions of the heatshield. Recession measurements were collected during and after arc-jet tests, and the results were used to observe the heating profiles’ effect on differential recession. Arc-jet tests were conducted at the Aerodynamic Heating Facility at NASA Ames Research Center.

  18. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans discusses an image of Saturn's moon Daphnis with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini NASA Social attendees speak with members of the Cassini mission team in the Charles Elachi Mission Control Center in the Space Flight Operation Center, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. NASA Medical Response to Human Spacecraft Accidents

    NASA Technical Reports Server (NTRS)

    Patlach, Robert

    2010-01-01

    Manned space flight is risky business. Accidents have occurred and may occur in the future. NASA's manned space flight programs, with all their successes, have had three fatal accidents, one at the launch pad and two in flight. The Apollo fire and the Challenger and Columbia accidents resulted in a loss of seventeen crewmembers. Russia's manned space flight programs have had three fatal accidents, one ground-based and two in flight. These accidents resulted in the loss of five crewmembers. Additionally, manned spacecraft have encountered numerous close calls with potential for disaster. The NASA Johnson Space Center Flight Safety Office has documented more than 70 spacecraft incidents, many of which could have become serious accidents. At the Johnson Space Center (JSC), medical contingency personnel are assigned to a Mishap Investigation Team. The team deploys to the accident site to gather and preserve evidence for the Accident Investigation Board. The JSC Medical Operations Branch has developed a flight surgeon accident response training class to capture the lessons learned from the Columbia accident. This presentation will address the NASA Mishap Investigation Team's medical objectives, planned response, and potential issues that could arise subsequent to a manned spacecraft accident. Educational Objectives are to understand the medical objectives and issues confronting the Mishap Investigation Team medical personnel subsequent to a human space flight accident.

  1. NASA Aerosciences Activities to Support Human Space Flight

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.

    2011-01-01

    The Lyndon B. Johnson Space Center (JSC) has been a critical element of the United State's human space flight program for over 50 years. It is the home to NASA s Mission Control Center, the astronaut corps, and many major programs and projects including the Space Shuttle Program, International Space Station Program, and the Orion Project. As part of JSC's Engineering Directorate, the Applied Aeroscience and Computational Fluid Dynamics Branch is charted to provide aerosciences support to all human spacecraft designs and missions for all phases of flight, including ascent, exo-atmospheric, and entry. The presentation will review past and current aeroscience applications and how NASA works to apply a balanced philosophy that leverages ground testing, computational modeling and simulation, and flight testing, to develop and validate related products. The speaker will address associated aspects of aerodynamics, aerothermodynamics, rarefied gas dynamics, and decelerator systems, involving both spacecraft vehicle design and analysis, and operational mission support. From these examples some of NASA leading aerosciences challenges will be identified. These challenges will be used to provide foundational motivation for the development of specific advanced modeling and simulation capabilities, and will also be used to highlight how development activities are increasing becoming more aligned with flight projects. NASA s efforts to apply principles of innovation and inclusion towards improving its ability to support the myriad of vehicle design and operational challenges will also be briefly reviewed.

  2. jsc2017e136057 - On a snowy night at Red Square Moscow, Expedition 54-55 backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left), Jeanette Epps of NASA (center) and Alexander Gerst of the European Space Agency (right) pay

    NASA Image and Video Library

    2017-11-30

    jsc2017e136057 - On a snowy night at Red Square Moscow, Expedition 54-55 backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left), Jeanette Epps of NASA (center) and Alexander Gerst of the European Space Agency (right) pay homage at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. They are backups to Anton Shkaplerov of Roscosmos, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), who will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  3. JSC2001E21584

    NASA Image and Video Library

    2001-07-16

    JSC2001-E-21584 (16 July 2001) --- STS-104 Orbit 1 flight director Paul Hill discusses mission related matters over the phone at his console in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC).

  4. Considerations regarding the deployment of hypermedia at JSC

    NASA Technical Reports Server (NTRS)

    Kacmar, Charles J.

    1993-01-01

    Electronic documents and systems are becoming the primary means of managing information for ground and space operations at NASA. These documents will utilize hypertext and hypermedia technologies to aid users in structuring and accessing information. Documents will be composed of static and dynamic data consisting of user-defined annotations and hypermedia links. The report consists of three major sections. First, it provides an overview of hypermedia and surveys the use of hypermedia throughout JSC. Second, it briefly describes a prototypical hypermedia system that was developed in conjunction with this work. This system was constructed to demonstrate various hypermedia features and to serve as a platform for supporting the electronic documentation needs for the MIDAS system developed by the Intelligent Systems Branch of the Automation and Robotics Division (Pac92). Third, it discusses emerging hypermedia technologies which have either been untapped by vendors or present significant challenges to the Agency.

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. JSC2001E21576

    NASA Image and Video Library

    2001-07-16

    JSC2001-E-21576 (16 July 2001) --- ISS Orbit 1 flight director Sally Davis discusses STS-104 matters with other mission support staff at her console in the ISS flight control room (BFCR) in Houston's Mission Control Center (MCC).

  7. Arcing in LEO: Does the Whole Array Discharge?

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry

    2005-01-01

    The conventional wisdom about solar array arcing in LEO is that only the parts of the solar array that are swept over by the arc-generated plasma front are discharged in the initial arc. This limits the amount of energy that can be discharged. Recent work done at the NASA Glenn Research Center has shown that this idea is mistaken. In fact, the capacitance of the entire solar array may be discharged, which for large arrays leads to very large and possibly debilitating arcs, even if no sustained arc occurs. We present the laboratory work that conclusively demonstrates this fact by using a grounded plate that prevents the arc-plasma front from reaching certain array strings. Finally, we discuss the dependence of arc strength and arc pulse width on the capacitance that is discharged, and provide a physical mechanism for discharge of the entire array, even when parts of the array are not accessible to the arc-plasma front. Mitigation techniques are also presented.

  8. The NASA Wallops Arc-Second Pointer (WASP) System for Precision Pointing of Scientific Balloon Instruments and Telescopes

    NASA Technical Reports Server (NTRS)

    Stuchlik, David W.; Lanzi, Raymond J.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) Wallops Flight Facility (WFF), part of the Goddard Space Flight Center (GSFC), has developed a unique pointing control system for instruments aboard scientific balloon gondolas. The ability to point large telescopes and instruments with arc-second accuracy and stability is highly desired by multiple scientific disciplines, such as Planetary, Earth Science, Heliospheric and Astrophysics, and the availability of a standardized system supplied by NASA alleviates the need for the science user to develop and provide their own system. In addition to the pointing control system, a star tracker has been developed with both daytime and nighttime capability to augment the WASP and provide an absolute pointing reference. The WASP Project has successfully completed five test flights and one operational science mission, and is currently supporting an additional test flight in 2017, along with three science missions with flights scheduled between 2018 and 2020. The WASP system has demonstrated precision pointing and high reliability, and is available to support scientific balloon missions.

  9. NASA Year 2000 (Y2K) Program Plan

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA initiated the Year 2000 (Y2K) program in August 1996 to address the challenges imposed on Agency software, hardware, and firmware systems by the new millennium. The Agency program is centrally managed by the NASA Chief Information Officer, with decentralized execution of program requirements at each of the nine NASA Centers, Headquarters and the Jet Propulsion Laboratory. The purpose of this Program Plan is to establish Program objectives and performance goals; identify Program requirements; describe the management structure; and detail Program resources, schedules, and controls. Project plans are established for each NASA Center, Headquarters, and the Jet Propulsion Laboratory.

  10. Arc plasma generator of atomic driver for steady-state negative ion source.

    PubMed

    Ivanov, A A; Belchenko, Yu I; Davydenko, V I; Ivanov, I A; Kolmogorov, V V; Listopad, A A; Mishagin, V V; Putvinsky, S V; Shulzhenko, G I; Smirnov, A

    2014-02-01

    The paper reviews the results of development of steady-state arc-discharge plasma generator with directly heated LaB6 cathode. This arc-discharge plasma generator produces a plasma jet which is to be converted into an atomic one after recombination on a metallic plate. The plate is electrically biased relative to the plasma in order to control the atom energies. Such an intensive jet of hydrogen atoms can be used in negative ion sources for effective production of negative ions on a cesiated surface of plasma grid. All elements of the plasma generator have an augmented water cooling to operate in long pulse mode or in steady state. The thermo-mechanical stresses and deformations of the most critical elements of the plasma generator were determined by simulations. Magnetic field inside the discharge chamber was optimized to reduce the local power loads. The first tests of the steady-state arc plasma generator prototype have performed in long-pulse mode.

  11. Black Hole With Jet (Artist's Concept)

    NASA Image and Video Library

    2017-11-02

    This artist's concept shows a black hole with an accretion disk -- a flat structure of material orbiting the black hole -- and a jet of hot gas, called plasma. Using NASA's NuSTAR space telescope and a fast camera called ULTRACAM on the William Herschel Observatory in La Palma, Spain, scientists have been able to measure the distance that particles in jets travel before they "turn on" and become bright sources of light. This distance is called the "acceleration zone." https://photojournal.jpl.nasa.gov/catalog/PIA22085

  12. Real jet effects on dual jets in a crossflow

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.

    1984-01-01

    A 6-ft by 6-ft wind tunnel section was modification to accommodate the 7-ft wide NASA dual-jet flate model in an effort to determine the effects of nonuniform and/or noncircular jet exhaust profiles on the pressure field induced on a nearby surface. Tests completed yield surface pressure measurements for a 90 deg circular injector producing exit profiles representative of turbofan nozzles (such as the TF-34 nozzle). The measurements were obtained for both tandem and side-by-side jet configurations, jet spacing of S/D =2, and velocity ratios of R=2.2 and 4.0. Control tests at the same mass flow rate but with uniform exit velocity profiles were also conducted, for comparison purposes. Plots for 90 deg injection and R=2.2 show that the effects of exit velocity profile nonuniformity are quite significant.

  13. NASA Astronaut Selection 2009: Behavioral Overview

    NASA Technical Reports Server (NTRS)

    Holland, A. W.; Sipes, W.; Beven, G.; Schmidt, L.; Slack, K.; Seaton, K.; Moomaw, R.; VanderArk, S.

    2010-01-01

    NASA's multi-phase U.S. astronaut selection process seeks to identify the most qualified astronaut candidates from a large number of applicants. With the approaching retirement of the Space Shuttle, NASA focused on selecting those individuals who were most suited to the unique demands of long-duration spaceflight. In total, NASA received 3,535 applications for the 2009 astronaut selection cycle. Of these, 123 were invited to NASA Johnson Space Center (JSC) for Round 1 initial screening and interviews, which consisted of an Astronaut Selection Board (ASB) preliminary interview, medical review, and psychological testing. Of these, 48 individuals were invited to return for Round 2. This round consisted of medical testing, further behavioral assessments, and a second ASB interview. Following this, nine astronaut candidates (ASCANs) were ultimately chosen to go forward to basic training. The contents, benefits, and lessons learned from implementing this phased process will be discussed. The lessons learned can benefit the future selection of space flyers, whether they are NASA or commercial. Learning Objective: 1) Familiarization with the 2009 NASA behavioral screening process for astronaut applicants.

  14. Mechanisms of anode power deposition in a low pressure free burning arc

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Myers, Roger M.

    1994-01-01

    Anode power deposition is a dominant power loss mechanism for arc jets and MPD thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arc jets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa (0.05 torr) and then became insensitive to pressure. Anode power increased with increasing arc current while the electron number density near the anode surface increased linearity. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the current carrying electrons and that the anode fall voltage was the largest contributor. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, and applied magnetic field strengths and with magnetic field lines intercepting the anode.

  15. jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup

    NASA Image and Video Library

    2017-11-30

    jsc2017e136055 - On a snowy night at Red Square in Moscow, Expedition 54-55 backup crewmember Jeanette Epps of NASA lays flowers at the Kremlin Wall where Russian space icons are interred in traditional pre-launch ceremonies Nov. 30. Looking on are backup crewmembers Sergey Prokopyev of the Russian Federal Space Agency (Roscosmos, left) and Alexander Gerst of the European Space Agency. They are backups to Anton Shkaplerov of Roscosmos, Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), who will launch from the Baikonur Cosmodrome in Kazakhstan on the Soyuz MS-07 spacecraft Dec. 17 for a five-month mission on the International Space Station...Andrey Shelepin/Gagarin Cosmonaut Training Center.

  16. jsc2012e096294

    NASA Image and Video Library

    2012-06-07

    JSC2012-E-096294 (7 June 2012) --- Russian cosmonaut Roman Romanenko, Expedition 32 backup crew member, attired in a Russian Sokol launch and entry suit, takes a break from training in Star City, Russia to pose for a portrait. Photo credit: Gagarin Cosmonaut Training Center

  17. jsc2012e238486

    NASA Image and Video Library

    2012-11-14

    JSC2012-E-238486 (14 Nov. 2012) --- Russian cosmonaut Roman Romanenko, Expedition 34/35 flight engineer, attired in a Russian Sokol launch and entry suit, takes a break from training in Star City, Russia to pose for a portrait. Photo credit: Gagarin Cosmonaut Training Center

  18. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees are seen during a science panel discussion with Cassini project scientist at JPL, Linda Spilker, Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, Cassini Composite Infrared Spectrometer(CIRS) Instrument deputy principle investigator Connor Nixon, and Cassini assistant project science systems engineer Morgan Cable, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. jsc2017e137341 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmembers Scott Tingle of NASA (left) and Norishige Kanai of the Japan Aerospace Exploration Agency (right) test their vestibular skills on tilt tables

    NASA Image and Video Library

    2017-12-11

    jsc2017e137341 - At the Cosmonaut Hotel crew quarters in Baikonur, Kazakhstan, Expedition 54-55 prime crewmembers Scott Tingle of NASA (left) and Norishige Kanai of the Japan Aerospace Exploration Agency (right) test their vestibular skills on tilt tables Dec. 11 as part of their pre-launch training. Along with Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), they will launch Dec. 17 on the Soyuz MS-07 spacecraft from the Baikonur Cosmodrome for a five month mission on the International Space Station...Andrey Shelepin / Gagarin Cosmonaut Training Center.

  20. The NASA John C. Stennis Environmental Geographic Information System

    NASA Technical Reports Server (NTRS)

    Cohan, Tyrus; Grant, Kerry

    2002-01-01

    In addition to the Environmental Geographic Information System (EGIS) presentation, we will present two live demonstrations of a portion of the work being performed in support of environmental operations onsite and NASA-wide. These live demonstrations will showcase the NASA EGIS database through working versions of two software packages available from Environmental Systems Research Institute, Inc. (ESRI, Inc.): ArcIMS 3.0 and either ArcView 3.2a or ArcGIS 8.0.2. Using a standard web browser, the ArcIMS demo will allow users to access a project file containing several data layers found in the EGIS database. ArcIMS is configured so that a single computer can be used as the data server and as the user interface, which allows for maximum Internet security because the computer being used will not actually be connected to the World Wide Web. Further, being independent of the Internet, the demo will run at an increased speed. This demo will include several data layers that are specific to Stennis Space Center. The EGIS database demo is a representative portion of the entire EGIS project sent to NASA Headquarters last year. This demo contains data files that are readily available at various government agency Web sites for download. Although these files contain roads, rails, and other infrastructure details, they are generalized and at a small enough scale that they provide only a general idea of each NASA center's surroundings rather than specific details of the area.

  1. STS-97 flight control team in WFCR - JSC - MCC

    NASA Image and Video Library

    2000-11-24

    JSC2000-07303 (24 November 2000) --- The 30-odd flight controllers supporting the STS-97 entry shift pose for a pre-flight group portrait in the shuttle flight control room in Houston's Mission Control Center (JSC). Entry flight director LeRoy Cain (front center) holds a mission logo.

  2. jsc2010e046737

    NASA Image and Video Library

    2010-04-05

    JSC2010-E-046737 (5 April 2010) --- Flight director Tony Ceccacci is pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.

  3. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence, left, meets with JPL Director Michael Watkins during a tour of NASA's Jet Propulsion Laboratory, Saturday, April 28, 2018 in Pasadena, California. Photo Credit: (NASA/Bill Ingalls)

  4. Morphology of zirconia particles exposed to D.C. arc plasma jet

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1987-01-01

    Zirconia particles were sprayed into water with an arc plasma gun in order to determine the effect of various gun operating parameters on their morphology. The collected particles were examined by XRD and SEM techniques. A correlation was established between the content of spherical (molten) particles and the operating parameters by visual inspection and regression analysis. It was determined that the composition of the arc gas and the power input were the predominant parameters that affected the melting of zirconia particles.

  5. Undercover Jet Exposed

    NASA Image and Video Library

    2011-04-04

    This image layout shows two views of the same baby star from NASA Spitzer Space Telescope. Spitzer view shows that this star has a second, identical jet shooting off in the opposite direction of the first.

  6. ASTRONAUT STAFFORD, THOMAS P. - PLAQUES - JSC

    NASA Image and Video Library

    1975-02-01

    S75-25823 (February 1975) --- Cosmonaut Aleksei A. Leonov (left) and astronaut Thomas P. Stafford display the Apollo Soyuz Test Project (ASTP) commemorative plaque. The two commanders, of their respective crews, are in the Apollo Command Module (CM) trainer at Building 35 at NASA's Johnson Space Center (JSC). Two plaques divided into four quarters each will be flown on the ASTP mission. The American ASTP Apollo crew will carry the four United States quarter pieces aboard Apollo; and the Soviet ASTP Soyuz 19 crew will carry the four USSR quarter sections aboard Soyuz. The eight quarter pieces will be joined together to form two complete commemorative plaques after the two spacecraft rendezvous and dock in Earth orbit. One complete plaque then will be returned to Earth by the astronauts; and the other complete plaque will be brought back by the cosmonauts. The plaque is written in both English and Russian. The Apollo crew will consist of astronauts Thomas P. Stafford, commander; Donald K. "Deke" Slayton, docking module pilot; Vance D. Brand, command module pilot. The Soyuz 19 crew will consist of cosmonauts Aleksei A. Leonov, command pilot; and Valeri N. Kubasov, flight engineer.

  7. JSC Advanced Curation: Research and Development for Current Collections and Future Sample Return Mission Demands

    NASA Technical Reports Server (NTRS)

    Fries, M. D.; Allen, C. C.; Calaway, M. J.; Evans, C. A.; Stansbery, E. K.

    2015-01-01

    Curation of NASA's astromaterials sample collections is a demanding and evolving activity that supports valuable science from NASA missions for generations, long after the samples are returned to Earth. For example, NASA continues to loan hundreds of Apollo program samples to investigators every year and those samples are often analyzed using instruments that did not exist at the time of the Apollo missions themselves. The samples are curated in a manner that minimizes overall contamination, enabling clean, new high-sensitivity measurements and new science results over 40 years after their return to Earth. As our exploration of the Solar System progresses, upcoming and future NASA sample return missions will return new samples with stringent contamination control, sample environmental control, and Planetary Protection requirements. Therefore, an essential element of a healthy astromaterials curation program is a research and development (R&D) effort that characterizes and employs new technologies to maintain current collections and enable new missions - an Advanced Curation effort. JSC's Astromaterials Acquisition & Curation Office is continually performing Advanced Curation research, identifying and defining knowledge gaps about research, development, and validation/verification topics that are critical to support current and future NASA astromaterials sample collections. The following are highlighted knowledge gaps and research opportunities.

  8. jsc2010e046798

    NASA Image and Video Library

    2010-04-05

    JSC2010-E-046798 (5 April 2010) --- Flight director Bryan Lunney watches the big screens in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.

  9. Lunar Simulants: JSC-1 is Gone; The Need for New Standardized Root Simulants

    NASA Technical Reports Server (NTRS)

    Carter, James L.; McKay, David S.; Taylor, Lawrence A.; Carrier, W. David, III

    2004-01-01

    A workshop was held in 1991 to evaluate the status of simulated lunar regolith material and to make recommendations on future requirements and production of such material. As an outgrowth of that workshop, a group centered at Johnson Space Center (JSC) teamed with James Carter of the University of Texas at Dallas and Walter Boles of Texas A&M University to produce and distribute a new standardized lunar regolith simulant termed JSC-1. Carter supervised the field collection, shipping, processing, and initial packaging and transportation of JSC-1. Boles stored and distributed JSC-1. About 25 tons were created and distributed to the lunar science and engineer community; none is left for distribution. JSC-1 served an important role in concepts and designs for lunar base and lunar materials processing. Its chemical and physical properties were described by McKay et al., with its geotechnical properties described by Klosky et al.. While other lunar regolith simulants were produced before JSC-1, they were not standardized, and results from tests performed on them were not necessarily equivalent to test results performed on JSC-1. JSC-1 was designed to be chemically, mineralogically, and texturally similar to a mature lunar mare regolith (low titanium). The glass-rich character of JSC-1 (approx. 50%) produced quite different properties compared to other simulants that were made entirely of comminuted crystalline rock, but properties similar to lunar mare near surface regolith.

  10. NASA's Optical Measurement Program 2014

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Lederer, S.; Stansbery, G.; Seitzer, P.; Buckalew, B.; Abercromby, K.; Barker, E.

    2014-01-01

    The Optical Measurements Group (OMG) within the NASA Orbital Debris Program Office (ODPO) addresses U.S. National Space Policy goals by monitoring and characterizing debris. Since 2001, the OMG has used the Michigan Orbital Debris Survey Telescope (MODEST) at Cerro Tololo Inter-American Observatory (CTIO) in Chile for general orbital debris survey. The 0.6-m Schmidt MODEST provides calibrated astronomical data of GEO targets, both catalogued and uncatalogued debris, with excellent image quality. The data are utilized by the ODPO modeling group and are included in the Orbital Debris Engineering Model (ORDEM) v. 3.0. MODEST and the CTIO/SMARTS (Small and Moderate Aperture Research Telescope System) 0.9 m both acquire filter photometric data, as well as synchronously observing targets in selected optical filters. This information provides data used in material composition studies as well as longer orbital arc data on the same target, without time delay or bias from a rotating, tumbling, or spinning target. NASA, in collaboration with the University of Michigan, began using the twin 6.5-m Magellan telescopes at Las Campanas Observatory in Chile for deep imaging (Baade) and spectroscopic data (Clay) in 2011. Through the data acquired on Baade, debris have been detected that are 3 magnitudes fainter than detections with MODEST, while the data from Clay provide better resolved information used in material characterization analyses via selected bandpasses. To better characterize and model optical data, the Optical Measurements Center (OMC) at NASA/JSC has been in operation since 2005, resulting in a database of comparison laboratory data. The OMC is designed to emulate illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. Lastly, the OMG is building the Meter Class Autonomous Telescope (MCAT) at Ascension Island. The 1.3-m telescope is designed to observe GEO and LEO targets, using a

  11. Arc spray process for the aircraft and stationary gas turbine industry

    NASA Astrophysics Data System (ADS)

    Sampson, E. R.; Zwetsloot, M. P.

    1997-06-01

    Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.

  12. NASA space shuttle lightweight seat

    NASA Technical Reports Server (NTRS)

    Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd

    1996-01-01

    The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.

  13. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    NASA Technical Reports Server (NTRS)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  14. Plant Atrium System for Food Production in NASA's Deep Space Habitat Tests

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Simpson, Morgan; Wheeler, Raymond M.; Newsham, Gary; Stutte, Gary W.

    2013-01-01

    Future human space exploration missions will need functional habitat systems. Possible concepts are assessed for integration issues, power requirements, crew operations, technology, and system performance. A food production system concept was analyzed at NASA Desert Research and Technology Studies (DRATS) in 2011, and at NASA JSC in 2012. System utilizes fresh foods (vegetables and small fruits) which are harvested on a continuous basis. Designed to improve crew's diet and quality of life without interfering with other components or operations.

  15. Computational Nanoelectronics and Nanotechnology at NASA ARC

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Kutler, Paul (Technical Monitor)

    1998-01-01

    Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technology are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotechnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.

  16. Computational Nanoelectronics and Nanotechnology at NASA ARC

    NASA Technical Reports Server (NTRS)

    Saini, Subhash

    1998-01-01

    Both physical and economic considerations indicate that the scaling era of CMOS will run out of steam around the year 2010. However, physical laws also indicate that it is possible to compute at a rate of a billion times present speeds with the expenditure of only one Watt of electrical power. NASA has long-term needs where ultra-small semiconductor devices are needed for critical applications: high performance, low power, compact computers for intelligent autonomous vehicles and Petaflop computing technolpgy are some key examples. To advance the design, development, and production of future generation micro- and nano-devices, IT Modeling and Simulation Group has been started at NASA Ames with a goal to develop an integrated simulation environment that addresses problems related to nanoelectronics and molecular nanotecnology. Overview of nanoelectronics and nanotechnology research activities being carried out at Ames Research Center will be presented. We will also present the vision and the research objectives of the IT Modeling and Simulation Group including the applications of nanoelectronic based devices relevant to NASA missions.

  17. NASA Bioreactor Demonstration System

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  18. STS-26 simulation activities in JSC Mission Control Center (MCC)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Overall view of JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) during Flight Day 1 of STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).

  19. Symposium on Automation, Robotics and Advanced Computing for the National Space Program (2nd) Held in Arlington, Virginia on 9-11 March 1987

    DTIC Science & Technology

    1988-02-28

    enormous investment in software. This is an area extremely important objective. We need additional where better methodologies , tools and theories...microscopy (SEM) and optical mi- [131 Hanson, A., et a. "A Methodology for the Develop- croscopy. Current activities include the study of SEM im- ment...through a phased knowledge engineering methodology Center (ARC) and NASA Johnson Space Center consisting of: prototype knowledge base develop- iJSC

  20. Human-in-the-Loop Operations over Time Delay: NASA Analog Missions Lessons Learned

    NASA Technical Reports Server (NTRS)

    Rader, Steven N.; Reagan, Marcum L.; Janoiko, Barbara; Johnson, James E.

    2013-01-01

    Teams at NASA have conducted studies of time-delayed communications as it effects human exploration. In October 2012, the Advanced Exploration Systems (AES) Analog Missions project conducted a Technical Interchange Meeting (TIM) with the primary stakeholders to share information and experiences of studying time delay, to build a coherent picture of how studies are covering the problem domain, and to determine possible forward plans (including how to best communicate study results and lessons learned, how to inform future studies and mission plans, and how to drive potential development efforts). This initial meeting s participants included personnel from multiple NASA centers (HQ, JSC, KSC, ARC, and JPL), academia, and ESA. It included all of the known studies, analog missions, and tests of time delayed communications dating back to the Apollo missions including NASA Extreme Environment Mission Operations (NEEMO), Desert Research and Technology Studies (DRATS/RATS), International Space Station Test-bed for Analog Research (ISTAR), Pavilion Lake Research Project (PLRP), Mars 520, JPL Mars Orbiters/Rovers, Advanced Mission Operations (AMO), Devon Island analog missions, and Apollo experiences. Additionally, the meeting attempted to capture all of the various functional perspectives via presentations by disciplines including mission operations (flight director and mission planning), communications, crew, Capcom, Extra-Vehicular Activity (EVA), Behavioral Health and Performance (BHP), Medical/Surgeon, Science, Education and Public Outreach (EPO), and data management. The paper summarizes the descriptions and results from each of the activities discussed at the TIM and includes several recommendations captured in the meeting for dealing with time delay in human exploration along with recommendations for future development and studies to address this issue.