Sample records for nasa lewis icing

  1. Update to the NASA Lewis Ice Accretion Code LEWICE

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    1994-01-01

    This report is intended as an update to NASA CR-185129 'User's Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE).' It describes modifications and improvements made to this code as well as changes to the input and output files, interactive input, and graphics output. The comparison of this code to experimental data is shown to have improved as a result of these modifications.

  2. Users manual for the improved NASA Lewis ice accretion code LEWICE 1.6

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    1995-01-01

    This report is intended as an update/replacement to NASA CR 185129 'User's Manual for the NASALewis Ice Accretion Prediction Code (LEWICE)' and as an update to NASA CR 195387 'Update to the NASA Lewis Ice Accretion Code LEWICE'. In addition to describing the changes specifically made for this version, information from previous manuals will be duplicated so that the user will not need three manuals to use this code.

  3. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1992-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  4. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1991-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  5. Advanced ice protection systems test in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon; Mesander, Geert A.

    1991-01-01

    Tests of eight different deicing systems based on variations of three different technologies were conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in June and July 1990. The systems used pneumatic, eddy current repulsive, and electro-expulsive means to shed ice. The tests were conducted on a 1.83 m span, 0.53 m chord NACA 0012 airfoil operated at a 4 degree angle of attack. The models were tested at two temperatures: a glaze condition at minus 3.9 C and a rime condition at minus 17.2 C. The systems were tested through a range of icing spray times and cycling rates. Characterization of the deicers was accomplished by monitoring power consumption, ice shed particle size, and residual ice. High speed video motion analysis was performed to quantify ice particle size.

  6. Additional Improvements to the NASA Lewis Ice Accretion Code LEWICE

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Bidwell, Colin S.

    1995-01-01

    Due to the feedback of the user community, three major features have been added to the NASA Lewis ice accretion code LEWICE. These features include: first, further improvements to the numerics of the code so that more time steps can be run and so that the code is more stable; second, inclusion and refinement of the roughness prediction model described in an earlier paper; third, inclusion of multi-element trajectory and ice accretion capabilities to LEWICE. This paper will describe each of these advancements in full and make comparisons with the experimental data available. Further refinement of these features and inclusion of additional features will be performed as more feedback is received.

  7. NASA Lewis' Icing Research Tunnel Works With Small Local Company to Test Coatings

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dynamic Coatings, Inc., wanted to test coating products that would enable the company to approach new markets. A Space Act Agreement with NASA Lewis Research Center afforded them this opportunity. They used Lewis' Icing Research Tunnel to test coating products for reduced ice adhesion, industrial and aerospace lubrication applications, a tiremold release coating now used in the production of tires for the Boeing 777, and a product that solidifies asbestos fibers (which is being tested as an insulator in a power plant in Iowa). Not only was the testing a success, but during these activities, Dynamic Coatings met another coating company with whom they now have a joint venture offering a barnacle-repellent coating for marine applications, now on the market in Florida.

  8. Liquid water content and droplet size calibration of the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.

    1989-01-01

    The icing research tunnel at the NASA Lewis Research Center underwent a major rehabilitation in 1986 to 1987, necessitating recalibration of the icing cloud. The methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content are described. PMS Forward Scattering Spectrometer and Optical Array probes were used for measurement of droplet size. Examples of droplet size distributions are shown for several median volumetric diameters. Finally, the liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and are compared to the FAA icing certification criteria.

  9. Results of low power deicer tests on a swept inlet component in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon

    1993-01-01

    Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection System were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.

  10. Results of Low Power Deicer tests on a swept inlet component in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon

    1993-01-01

    Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection system were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.

  11. Validation of NASA Thermal Ice Protection Computer Codes Part 2 - LEWICE/Thermal

    DOT National Transportation Integrated Search

    1996-01-01

    The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center: LEWICE/Thermal 1 (electrothermal de-icing and anti-icing), and ANTICE 2 (hot gas and el...

  12. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel diffuser

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    The purpose was to document the airflow characteristics in the diffuser of the NASA Lewis Research Center Icing Research Tunnel and to determine the effects of vortex generators on the flow quality in the diffuser. The results were used to determine how to improve the flow in this portion of the tunnel so that it can be more effectively used as an icing test section and such that overall tunnel efficiency can be improved. The demand for tunnel test time and the desire to test models that are too large for the test section were two of the drivers behind this diffuser study. For all vortex generator configurations tested, the flow quality was improved.

  13. Performance of the Phase Doppler Particle Analyzer icing cloud droplet sizing probe in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Rudoff, R. C.; Bachalo, E. J.; Bachalo, W. D.; Oldenburg, J. R.

    1992-01-01

    The design, development, and testing of an icing cloud droplet sizing probe based upon the Phase Doppler Particle Analyzer (PDPA) are discussed. This probe is an in-situ laser interferometry based single particle measuring device capable of determining size distributions. The probe is designed for use in harsh environments such as icing tunnels and natural icing clouds. From the measured size distribution, Median Volume Diameter (MVD) and Liquid Water Content (LWC) may be determined. Both the theory of measurement and the mechanical aspects of the probe design and development are discussed. The MVD results from the probe are compared to an existing calibration based upon different instruments in a series of tests in the NASA Lewis Icing Research Tunnel. Agreement between the PDPA probe and the existing calibration is close for MVDs between 15 to 30 microns, but the PDPA results are considerably smaller for MVDs under 15 microns.

  14. Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview

    NASA Technical Reports Server (NTRS)

    Miller, Dean; Bond, Thomas; Sheldon, David; Wright, William; Langhals, Tammy; Al-Khalil, Kamel; Broughton, Howard

    1996-01-01

    The Icing Technology Branch at NASA Lewis has been involved in an effort to validate two thermal ice protection codes developed at the NASA Lewis Research Center. LEWICE/Thermal (electrothermal deicing & anti-icing), and ANTICE (hot-gas & electrothermal anti-icing). The Thermal Code Validation effort was designated as a priority during a 1994 'peer review' of the NASA Lewis Icing program, and was implemented as a cooperative effort with industry. During April 1996, the first of a series of experimental validation tests was conducted in the NASA Lewis Icing Research Tunnel(IRT). The purpose of the April 96 test was to validate the electrothermal predictive capabilities of both LEWICE/Thermal, and ANTICE. A heavily instrumented test article was designed and fabricated for this test, with the capability of simulating electrothermal de-icing and anti-icing modes of operation. Thermal measurements were then obtained over a range of test conditions, for comparison with analytical predictions. This paper will present an overview of the test, including a detailed description of: (1) the validation process; (2) test article design; (3) test matrix development; and (4) test procedures. Selected experimental results will be presented for de-icing and anti-icing modes of operation. Finally, the status of the validation effort at this point will be summarized. Detailed comparisons between analytical predictions and experimental results are contained in the following two papers: 'Validation of NASA Thermal Ice Protection Computer Codes: Part 2- The Validation of LEWICE/Thermal' and 'Validation of NASA Thermal Ice Protection Computer Codes: Part 3-The Validation of ANTICE'

  15. NASA Lewis Research Center's Program on Icing Research

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    The helicopter and general aviation, light transport, and commercial transport aircraft share common icing requirements: highly effective, lightweight, low power consuming deicing systems, and detailed knowledge of the aeropenalties due to ice on aircraft surfaces. To meet current and future needs, NASA has a broadbased icing research program which covers both research and engineering applications, and is well coordinated with the FAA, DOD, universities, industry, and some foreign governments. Research activity in ice protection systems, icing instrumentation, experimental methods, analytical modeling, and in-flight research are described.

  16. A numerical simulation of the flow in the diffuser of the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Keith, Theo G., Jr.

    1990-01-01

    The flow in the diffuser section of the Icing Research Tunnel at the NASA Lewis Research Center is numerically investigated. To accomplish this, an existing computer code is utilized. The code, known as PARC3D, is based on the Beam-Warming algorithm applied to the strong conservation law form of the complete Navier-Stokes equations. The first portion of the paper consists of a brief description of the diffuser and its current flow characteristics. A brief discussion of the code work follows. Predicted velocity patterns are then compared with the measured values.

  17. Flow quality studies of the NASA Lewis Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.; Sheldon, David W.

    1994-01-01

    A series of studies have been conducted to determine the flow quality in the NASA Lewis Icing Research Tunnel. The primary purpose of these studies was to document airflow characteristics, including flow angularity, in the test section and tunnel loop. A vertically mounted rake was used to survey total and static pressure and two components of flow angle at three axial stations within the test section (test section inlet, test plane, and test section exit; 15 survey stations total). This information will be used to develop methods of improving the aerodynamic and icing characteristics within the test section. The data from surveys made in the tunnel loop were used to determine areas where overall tunnel flow quality and efficiency can be improved. A separate report documents similar flow quality surveys conducted in the diffuser section of the Icing Research Tunnel. The flow quality studies were conducted at several locations around the tunnel loop. Pressure, velocity, and flow angularity measurements were made by using both fixed and translating probes. Although surveys were made throughout the tunnel loop, emphasis was placed on the test section and tunnel areas directly upstream of the test section (settling chamber, bellmouth, and cooler). Flow visualization, by video recording smoke and tuft patterns, was also used during these studies. A great deal of flow visualization work was conducted in the area of the drive fan. Information gathered there will be used to improve the flow quality upstream and downstream of the fan.

  18. Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip E.; Vanfossen, G. James; Dewitt, Kenneth J.

    1989-01-01

    Local heat transfer coefficients were measured on a smooth and roughened NACA 0012 airfoil. Heat transfer measurements on the 0.533 m chord airfoil were made both in flight on the NASA Lewis Twin Otter Icing Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of uniform 2 mm diameter hemispheres to the airfoil surface in 4 distinct patterns. Flight data were taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range 1.24 to 2.50 x 10(exp 6) and at various angles of attack up to 4 deg. During these flight tests, the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.25 x 10(exp 6) and at angles of attack from -4 to 8 deg. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud generating sprays off. A direct comparison was made between the results obtained in flight and in the IRT. The higher level of turbulence in the IRT vs. flight had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the high Reynolds numbers. Roughness generally increased the heat transfer.

  19. A Study of Large Droplet Ice Accretions in the NASA-Lewis IRT at Near-Freezing Conditions

    NASA Technical Reports Server (NTRS)

    Miller, Dean R.; Addy, Harold E. , Jr.; Ide, Robert F.

    1996-01-01

    This report documents the results of an experimental study on large droplet ice accretions which was conducted in the NASA-Lewis Icing Research Tunnel (IRT) with a full-scale 77.25 inch chord Twin-Otter wing section. This study was intended to: (1) document the existing capability of the IRT to produce a large droplet icing cloud, and (2) study the effect of various parameters on large droplet ice accretions. Results are presented from a study of the IRT's capability to produce large droplets with MVD of 99 and 160 microns. The effect of the initial water droplet temperature on the resultant ice accretion was studied for different initial spray bar air and water temperatures. The initial spray bar water temperature was found to have no discernible effect upon the large droplet ice accretions. Also, analytical and experimental results suggest that the water droplet temperature is very nearly the same as the tunnel ambient temperature, thus providing a realistic simulation of the large droplet natural icing condition. The effect of temperature, droplet size, airspeed, angle-of attack, flap setting and de-icer boot cycling time on ice accretion was studied, and will be discussed in this report. It was found that, in almost all of the cases studied, an ice ridge formed immediately aft of the active portion of the de-icer boot. This ridge was irregular in shape, varied in location, and was in some cases discontinuous due to aerodynamic shedding.

  20. Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Potapczuk, Mark G.

    1993-01-01

    A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by

  1. Heat transfer and pressure drop performance of a finned-tube heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1985-01-01

    A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.

  2. Applied imaging at the NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Slater, Howard A.; Owens, Jay C.

    1993-01-01

    NASA Lewis Research Center in Cleveland, Ohio has just completed the celebration of its 50th anniversary. `During the past 50 years, Lewis helped win World War II, made jet aircraft safer and more efficient, helped Americans land on the Moon ... and engaged in the type of fundamental research that benefits all of us in our daily lives.' As part of the center's long history, the Photographic and Printing Branch has continued to develop and meet the center's research imaging requirements. As imaging systems continue to advance and researchers more clearly understand the power of imaging, investigators are relying more and more on imaging systems to meet program objectives. Today, the Photographic and Printing Branch supports a research community of over 5,000 including advocacy for NASA Headquarters and other government agencies. Complete classified and unclassified imaging services include high- speed image acquisition, technical film and video documentaries, still imaging, and conventional and unconventional photofinishing operations. These are the foundation of the branch's modern support function. This paper provides an overview of the varied applied imaging programs managed by the Photographic and Printing Branch. Emphasis is placed on recent imaging projects including icing research, space experiments, and an on-line image archive.

  3. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    NASA Technical Reports Server (NTRS)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  4. NASA-ASEE Summer Faculty Fellowship Program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Prahl, Joseph M.; Keith, Theo G., Jr.; Montegani, Francis J.

    1996-01-01

    During the summer of 1996, a ten-week Summer Faculty Fellowship Program was conducted at the NASA Lewis Research Center (LeRC) in collaboration with Case Western Reserve University (CWRU), and the Ohio Aerospace Institute (OAI). This is the thirty-third summer of this program at Lewis. It was one of nine summer programs sponsored by NASA in 1996, at various field centers under the auspices of the American Society for Engineering Education (ASEE). The objectives of the program are: (1) to further the professional knowledge of qualified engineering and science educators, (2) to stimulate an exchange of ideas between participants and NASA, (3) to enrich and refresh the research activities of participants' institutions. (4) to contribute to the research objectives of LeRC. This report is intended to recapitulate the activities comprising the 1996 Lewis Summer Faculty Fellowship Program, to summarize evaluations by the participants, and to make recommendations regarding future programs.

  5. Lewis icing research tunnel test of the aerodynamic effects of aircraft ground deicing/anti-icing fluids

    NASA Technical Reports Server (NTRS)

    Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.

    1992-01-01

    A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.

  6. Distance Learning With NASA Lewis Research Center's Learning Technologies Project

    NASA Technical Reports Server (NTRS)

    Petersen, Ruth

    1998-01-01

    The NASA Lewis Research Center's Learning Technologies Project (LTP) has responded to requests from local school district technology coordinators to provide content for videoconferencing workshops. Over the past year we have offered three teacher professional development workshops that showcase NASA Lewis-developed educational products and NASA educational Internet sites. In order to determine the direction of our involvement with distance learning, the LTP staff conducted a survey of 500 U.S. schools. We received responses from 72 schools that either currently use distance learning or will be using distance learning in 98-99 school year. The results of the survey are summarized in the article. In addition, the article provides information on distance learners, distance learning technologies, and the NASA Lewis LTP videoconferencing workshops. The LTP staff will continue to offer teacher development workshops through videoconferencing during the 98-99 school year. We hope to add workshops on new educational products as they are developed at NASA Lewis.

  7. Tests of the Performance of Coatings for Low Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Reich, Allen D.

    1997-01-01

    This paper reports studies of the performance of low-ice-adhesion coatings by NASA Lewis and BFGoodrich. Studies used impact ice accreted both in the NASA Lewis Icing Research Tunnel (IRT) and in the BFGoodrich Icing Wind Tunnel (IWT) and static ice in a BFGoodrich bench-top parallel-plate shear rig. Early tests at NASA Lewis involved simple qualitative evaluations of the ease of removing impact ice from a surface. Coated surfaces were compared with uncoated ones. Some of the coatings were tested again with static ice at BFGoodrich to obtain quantitative measurements. Later, methods to establish the adhesion force on surfaces subjected to impact ice were explored at Lewis. This paper describes the various test programs and the results of testing some of the coatings looked at over the past 5 years. None of the coatings were found to be truly ice-phobic; however, the most effective coatings were found to reduce the adhesion of ice to about 1/2 that of an uncoated aluminum sample.

  8. The NASA Altitude Wind Tunnel (AWT): Its role in advanced icing research and development

    NASA Technical Reports Server (NTRS)

    Blaha, B. J.; Shaw, R. J.

    1985-01-01

    Currently experimental aircraft icing research is severely hampered by limitations of ground icing simulation facilities. Existing icing facilities do not have the size, speed, altitude, and icing environment simulation capabilities to allow accurate studies to be made of icing problems occurring for high speed fixed wing aircraft and rotorcraft. Use of the currently dormant NASA Lewis Altitude Wind Tunnel (AWT), as a proposed high speed propulsion and adverse weather facility, would allow many such problems to be studied. The characteristics of the AWT related to adverse weather simulation and in particular to icing simulation are discussed, and potential icing research programs using the AWT are also included.

  9. Mercury Capsule Construction at the NASA Lewis Research Center

    NASA Image and Video Library

    1959-08-21

    A NASA mechanic secures the afterbody to a Mercury capsule in the hangar at the Lewis Research Center. The capsule was one of two built at Lewis for the “Big Joe” launches scheduled for September 1959. The initial phase of Project Mercury consisted of a series of unmanned launches using the Air Force’s Redstone and Atlas boosters and the Langley-designed Little Joe boosters. The first Atlas launch, referred to as “Big Joe”, was a single attempt early in Project Mercury to use a full-scale Atlas booster to simulate the reentry of a mock-up Mercury capsule without actually placing it in orbit. The overall design of Big Joe had been completed by December 1958, and soon thereafter project manager Aleck Bond assigned NASA Lewis the task of designing the electronic instrumentation and automatic stabilization system. Lewis also constructed the capsule’s lower section, which contained a pressurized area with the electronics and two nitrogen tanks for the retrorockets. Lewis technicians were responsible for assembling the entire capsule: the General Electric heatshield, NASA Langley afterbody and recovery canister, and Lewis electronics and control systems. On June 9, 1959, the capsule was loaded on an air force transport aircraft and flown to Cape Canaveral. A team of 45 test operations personnel from Lewis followed the capsule to Florida and spent the ensuing months preparing it for launch. The launch took place in the early morning hours of September 9, 1959.

  10. Experimental study of performance degradation of a rotating system in the NASA Lewis RC icing tunnel

    NASA Technical Reports Server (NTRS)

    Korkan, Kenneth

    1992-01-01

    The Helicopter Icing Consortium (HIC) conducted one of the first U.S. tests of a heavily instrumented model in the controlled environment of a refrigerated tunnel. In the Icing Research Tunnel (IRT) at NASA LeRC, ice was accreted on the main rotor blade of the BMTR-1 Sikorsky model helicopter under a variety of environmental conditions, such that liquid water content (LWC) and volume mean droplet diameter (VMD) ranges reflected the Federal Aviation Agency and Department of Defence icing condition envelopes. This report gives the correlated results of the data provided by NASA LeRC. The method of statistical analysis is discussed. Lift, thrust, and torque coefficients are presented as a function of icing time, as correlated with changes in ambient temperature, LWC, and VMD. The physical significance of these forces is discussed.

  11. New hypersonic facility capability at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Haas, Jeffrey E.; Chamberlin, Roger; Dicus, John H.

    1989-01-01

    Four facility activities are underway at NASA Lewis Research Center to develop new hypersonic propulsion test capability. Two of these efforts consist of upgrades to existing operational facilities. The other two activities will reactivate facilities that have been in a standby condition for over 15 years. These four activities are discussed and the new test facilities NASA Lewis will have in place to support evolving high speed research programs are described.

  12. NASA Lewis Wind Tunnel Model Systems Criteria

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.; Haller, Henry C.

    1994-01-01

    This report describes criteria for the design, analysis, quality assurance, and documentation of models or test articles that are to be tested in the aeropropulsion facilities at the NASA Lewis Research Center. The report presents three methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it gives quality assurance criteria for models tested in Lewis' aeropropulsion facilities. Both customer-furnished model systems and in-house model systems are discussed. The functions of the facility manager, project engineer, operations engineer, research engineer, and facility electrical engineer are defined. The format for pretest meetings, prerun safety meetings, and the model criteria review are outlined Then, the format for the model systems report (a requirement for each model that is to be tested at NASA Lewis) is described, the engineers that are responsible for developing the model systems report are listed, and the time table for its delivery to the facility manager is given.

  13. NASA Lewis' Telescience Support Center Supports Orbiting Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Hawersaat, Bob W.

    1998-01-01

    The Telescience Support Center (TSC) at the NASA Lewis Research Center was developed to enable Lewis-based science teams and principal investigators to monitor and control experimental and operational payloads onboard the International Space Station. The TSC is a remote operations hub that can interface with other remote facilities, such as universities and industrial laboratories. As a pathfinder for International Space Station telescience operations, the TSC has incrementally developed an operational capability by supporting space shuttle missions. The TSC has evolved into an environment where experimenters and scientists can control and monitor the health and status of their experiments in near real time. Remote operations (or telescience) allow local scientists and their experiment teams to minimize their travel and maintain a local complement of expertise for hardware and software troubleshooting and data analysis. The TSC was designed, developed, and is operated by Lewis' Engineering and Technical Services Directorate and its support contractors, Analex Corporation and White's Information System, Inc. It is managed by Lewis' Microgravity Science Division. The TSC provides operational support in conjunction with the NASA Marshall Space Flight Center and NASA Johnson Space Center. It enables its customers to command, receive, and view telemetry; monitor the science video from their on-orbit experiments; and communicate over mission-support voice loops. Data can be received and routed to experimenter-supplied ground support equipment and/or to the TSC data system for display. Video teleconferencing capability and other video sources, such as NASA TV, are also available. The TSC has a full complement of standard services to aid experimenters in telemetry operations.

  14. Liquid droplet radiator program at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Presler, A. F.; Coles, C. E.; Diem-Kirsop, P. S.; White, K. A., III

    1985-01-01

    The NASA Lewis Research Center and the Air Force Rocket Propulsion Laboratory (AFRPL) are jointly engaged in a program for technical assessment of the Liquid Droplet Radiator (LDR) concept as an advanced high performance heat ejection component for future space missions. NASA Lewis has responsibility for the technology needed for the droplet generator, for working fluid qualification, and for investigating the physics of droplets in space; NASA Lewis is also conducting systems/mission analyses for potential LDR applications with candidate space power systems. For the droplet generator technology task, both micro-orifice fabrication techniques and droplet stream formation processes have been experimentally investigated. High quality micro-orifices (to 50 micron diameter) are routinely fabricated with automated equipment. Droplet formation studies have established operating boundaries for the generation of controlled and uniform droplet streams. A test rig is currently being installed for the experimental verification, under simulated space conditions, of droplet radiation heat transfer performance analyses and the determination of the effect radiative emissivity of multiple droplet streams. Initial testing has begun in the NASA Lewis Zero-Gravity Facility for investigating droplet stream behavior in microgravity conditions. This includes the effect of orifice wetting on jet dynamics and droplet formation. Results for both Brayton and Stirling power cycles have identified favorable mass and size comparisons of the LDR with conventional radiator concepts.

  15. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion system's core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  16. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  17. Utilization of NASA Lewis mobile terminals for the Hermes satellite

    NASA Technical Reports Server (NTRS)

    Edelman, E. A.; Fiala, J. L.; Rizzolla, L.

    1977-01-01

    The high power of the Hermes satellite enables two-way television and voice communication with small ground terminals. The Portable Earth Terminal (PET) and the Transportable Earth Terminal (TET) were developed and built by NASA-Lewis to provide communications capability to short-term users. The NASA-Lewis mobile terminals are described in terms of vehicles and onboard equipment, as well as operation aspects, including use in the field. The section on demonstrations divides the uses into categories of medicine, education, technology and government. Applications of special interest within each category are briefly described.

  18. Gear and Transmission Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1997-01-01

    This paper is a review of some of the research work of the NASA Lewis Research Center Mechanical Components Branch. It includes a brief review of the NASA Lewis Research Center and the Mechanical Components Branch. The research topics discussed are crack propagation of gear teeth, gear noise of spiral bevel and other gears, design optimization methods, methods we have investigated for transmission diagnostics, the analytical and experimental study of gear thermal conditions, the analytical and experimental study of split torque systems, the evaluation of several new advanced gear steels and transmission lubricants and the evaluation of various aircraft transmissions. The area of research needs for gearing and transmissions is also discussed.

  19. An Overview of NASA Engine Ice-Crystal Icing Research

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Veres, Joseph P.

    2011-01-01

    Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.

  20. NASA Lewis advanced IPV nickel-hydrogen technology

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Britton, Doris L.

    1993-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, to modify the state of the art cell design to eliminate identified failure modes and further improve cycle life, and to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10 C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the non-catalyzed wall wick cells failed (cycles 9,588; 13,900; and 20,575). Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80

  1. Software Development Processes Applied to Computational Icing Simulation

    NASA Technical Reports Server (NTRS)

    Levinson, Laurie H.; Potapezuk, Mark G.; Mellor, Pamela A.

    1999-01-01

    The development of computational icing simulation methods is making the transition form the research to common place use in design and certification efforts. As such, standards of code management, design validation, and documentation must be adjusted to accommodate the increased expectations of the user community with respect to accuracy, reliability, capability, and usability. This paper discusses these concepts with regard to current and future icing simulation code development efforts as implemented by the Icing Branch of the NASA Lewis Research Center in collaboration with the NASA Lewis Engineering Design and Analysis Division. With the application of the techniques outlined in this paper, the LEWICE ice accretion code has become a more stable and reliable software product.

  2. Composites research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Duffy, Stephen; Vary, Alex; Nathal, Michael V.; Miner, Robert V.; Arnold, Steven M.; Castelli, Michael G.; Hopkins, Dale A.; Meador, Michael A.

    1994-01-01

    Composites research at NASA Lewis is focused on their applications in aircraft propulsion, space propulsion, and space power, with the first being predominant. Research on polymer-, metal-, and ceramic-matrix composites is being carried out from an integrated materials and structures viewpoint. This paper outlines some of the topics being pursued from the standpoint of key technical issues, current status, and future directions.

  3. NASA Lewis' IITA K-12 Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center's Information Infrastructure Technology and Applications for Kindergarten to 12th Grade (IITA K-12) Program is designed to introduce into school systems computing and communications technology that benefits math and science studies. By incorporating this technology into K-12 curriculums, we hope to increase the proficiency and interest in math and science subjects by K-12 students so that they continue to study technical subjects after their high school careers are over.

  4. The NASA aircraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.

    1990-01-01

    The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.

  5. Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1975-01-01

    NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.

  6. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  7. Rime-, mixed- and glaze-ice evaluations of three scaling laws

    NASA Technical Reports Server (NTRS)

    Anderson, David N.

    1994-01-01

    This report presents the results of tests at NASA Lewis to evaluate three icing scaling relationships or 'laws' for an unheated model. The laws were LWC x time = constant, one proposed by a Swedish-Russian group and one used at ONERA in France. Icing tests were performed in the NASA Lewis Icing Research Tunnel (IRT) with cylinders ranging from 2.5- to 15.2-cm diameter. Reference conditions were chosen to provide rime, mixed and glaze ice. Scaled conditions were tested for several scenarios of size and velocity scaling, and the resulting ice shapes compared. For rime-ice conditions, all three of the scaling laws provided scaled ice shapes which closely matched reference ice shapes. For mixed ice and for glaze ice none of the scaling laws produced consistently good simulation of the reference ice shapes. Explanations for the observed results are proposed, and scaling issues requiring further study are identified.

  8. NASA Administrator James Webb and Lewis Director Abe Silverstein

    NASA Image and Video Library

    1961-12-21

    National Aeronautics and Space Administration (NASA) Administrator James Webb toured the new Plum Brook Reactor Facility in December 1961 with Abe Silverstein, the newly appointed Director of the Lewis Research Center. The 60-megawatt test reactor was built on 500 acres of the former Plum Brook Ordnance Works in Sandusky, Ohio. After nearly five years of construction, the facility went critical for the first time in June 1961. In late 1957 Hugh Dryden requested Silverstein’s assistance in creating the new space agency. After several months of commuting, Silverstein transferred to Headquarters in May 1958. Silverstein was a critical member of a team that devised a fiscal year 1960 budget and began planning missions. When NASA officially began operation on October 1, 1958, Silverstein was third in command. He directed mission planning, spacecraft design, launch operations, manned space missions, and unmanned probes. James Webb, named NASA administrator on January 7, 1961, sought to have those working on Apollo at the NASA centers report to a new Headquarters program office, not to the head of the Apollo Program. Silverstein requested to be appointed to the vacant center director position in Cleveland. He officially returned as director of the Lewis Research Center on November 1, 1961.

  9. NASA Lewis Nickel Alloy being Poured in the Technical Service Building

    NASA Image and Video Library

    1966-04-21

    A nickel alloy developed at the National Aeronautics and Space Administration (NASA) Lewis Research Center being poured in a shop inside the Technical Services Building. Materials technology is an important element in the successful development of both advanced airbreathing and rocket propulsion systems. An array of dependable materials is needed to build different types of engines for operation in diverse environments. NASA Lewis began investigating the characteristics of different materials shortly after World War II. In 1949 the materials research group was expanded into its own division. The Lewis researchers studied and tested materials in environments that simulated the environment in which they would operate. Lewis created two programs in the early 1960s to create materials for new airbreathing engines. One concentrated on high-temperature alloys and the other on cooling turbine blades. William Klopp, Peter Raffo, Lester Rubenstein, and Walter Witzke developed Tungsten RHC, the highest strength metal at temperatures over 3500⁰ F. The men received an IR-100 Award for their efforts. Similarly a cobalt-tungsten alloy was developed by the Fatigue and Alloys Research Branch. The result was a combination of high temperature strength and magnetic properties that were applicable for generator rotor application. John Freche invented and patented a nickel alloy while searching for high temperature metals for aerospace use. NASA agreed to a three-year deal which granted Union Carbide exclusive use of the new alloy before it became public property.

  10. NASA's aircraft icing technology program

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1991-01-01

    NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.

  11. Investigation of water droplet trajectories within the NASA icing research tunnel

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Ibrahim, Mounir

    1995-01-01

    Water droplet trajectories within the NASA Lewis Research Center's Icing Research Tunnel (IRT) were studied through computer analysis. Of interest was the influence of the wind tunnel contraction and wind tunnel model blockage on the water droplet trajectories. The computer analysis was carried out with a program package consisting of a three-dimensional potential panel code and a three-dimensional droplet trajectory code. The wind tunnel contraction was found to influence the droplet size distribution and liquid water content distribution across the test section from that at the inlet. The wind tunnel walls were found to have negligible influence upon the impingement of water droplets upon a wing model.

  12. Methods for Scaling Icing Test Conditions

    NASA Technical Reports Server (NTRS)

    Anderson, David N.

    1995-01-01

    This report presents the results of tests at NASA Lewis to evaluate several methods to establish suitable alternative test conditions when the test facility limits the model size or operating conditions. The first method was proposed by Olsen. It can be applied when full-size models are tested and all the desired test conditions except liquid-water content can be obtained in the facility. The other two methods discussed are: a modification of the French scaling law and the AEDC scaling method. Icing tests were made with cylinders at both reference and scaled conditions representing mixed and glaze ice in the NASA Lewis Icing Research Tunnel. Reference and scale ice shapes were compared to evaluate each method. The Olsen method was tested with liquid-water content varying from 1.3 to .8 g/m(exp3). Over this range, ice shapes produced using the Olsen method were unchanged. The modified French and AEDC methods produced scaled ice shapes which approximated the reference shapes when model size was reduced to half the reference size for the glaze-ice cases tested.

  13. Icing Test Results on an Advanced Two-Dimensional High-Lift Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Wilcox, Peter; Chin, Vincent; Sheldon, David

    1994-01-01

    An experimental study has been conducted to investigate ice accretions on a high-lift, multi-element airfoil in the Icing Research Tunnel at the NASA Lewis Research Center. The airfoil is representative of an advanced transport wing design. The experimental work was conducted as part of a cooperative program between McDonnell Douglas Aerospace and the NASA Lewis Research Center to improve current understanding of ice accretion characteristics on the multi-element airfoil. The experimental effort also provided ice shapes for future aerodynamic tests at flight Reynolds numbers to ascertain high-lift performance effects. Ice shapes documented for a landing configuration over a variety of icing conditions are presented along with analyses.

  14. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    This report describes that portion of the national five-year wind energy program that is being managed by the NASA-Lewis Research Center for the ERDA. The Lewis Research Center's Wind Power Office, its organization and plans and status are briefly described. The three major elements of the wind energy project at Lewis are the experimental 100 kW wind-turbine generator; the first generation industry-built and user-operated wind turbine generators; and the supporting research and technology tasks which are each briefly described.

  15. IceBridge team members

    NASA Image and Video Library

    2013-11-13

    These IceBridge team members aboard a huge U.S. Air Force C-17 transport aircraft are ready to step out into the cold Antarctic air. The C-17 aircraft that fly to Antarctica are operated by the U.S. Air Force's 62nd and 446th Airlift Wings based at Joint Base Lewis-McChord near Seattle, Wash. Credit: NASA/Goddard/Michael Studinger NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Analytical and physical modeling program for the NASA Lewis Research Center's Altitude Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Deidrich, J. H.; Groeneweg, J. F.; Povinelli, L. A.; Reid, L.; Reinmann, J. J.; Szuch, J. R.

    1985-01-01

    An effort is currently underway at the NASA Lewis Research Center to rehabilitate and extend the capabilities of the Altitude Wind Tunnel (AWT). This extended capability will include a maximum test section Mach number of about 0.9 at an altitude of 55,000 ft and a -20 F stagnation temperature (octagonal test section, 20 ft across the flats). In addition, the AWT will include an icing and acoustic research capability. In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide essential input to the AWT final design process. This paper describes the modeling program, including the rationale and criteria used in program definition, and presents some early program results.

  17. Advancements in the LEWICE Ice Accretion Model

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    1993-01-01

    Recent evidence has shown that the NASA/Lewis Ice Accretion Model, LEWICE, does not predict accurate ice shapes for certain glaze ice conditions. This paper will present the methodology used to make a first attempt at improving the ice accretion prediction in these regimes. Importance is given to the correlations for heat transfer coefficient and ice density, as well as runback flow, selection of the transition point, flow field resolution, and droplet trajectory models. Further improvements and refinement of these modules will be performed once tests in NASA's Icing Research Tunnel, scheduled for 1993, are completed.

  18. Electromagnetic properties of ice coated surfaces

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Walton, E.; Wang, N.; Beard, L.

    1989-01-01

    The electromagnetic scattering from ice coated structures is examined. The influence of ice is shown from a measurement standpoint and related to a simple analytical model. A hardware system for the realistic measurement of ice coated structures is also being developed to use in an existing NASA Lewis icing tunnel. Presently, initial measurements have been performed with a simulated tunnel to aid in the development.

  19. Modified NASA-Lewis chemical equilibrium code for MHD applications

    NASA Technical Reports Server (NTRS)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  20. [Tail Plane Icing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second

  1. Overview of free-piston Stirling technology at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1985-01-01

    An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (Lewis) free-piston Stirling engine activities is presented. These activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ONRL)), and (2) a free-piston Stirling space-power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes extensive parametric testing of a 1 kw free-piston Stirling engine (RE-1000), development and validation of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.

  2. Users Manual for the NASA Lewis Ice Accretion Prediction Code (LEWICE)

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Berkowitz, Brian M.

    1990-01-01

    LEWICE is an ice accretion prediction code that applies a time-stepping procedure to calculate the shape of an ice accretion. The potential flow field is calculated in LEWICE using the Douglas Hess-Smith 2-D panel code (S24Y). This potential flow field is then used to calculate the trajectories of particles and the impingement points on the body. These calculations are performed to determine the distribution of liquid water impinging on the body, which then serves as input to the icing thermodynamic code. The icing thermodynamic model is based on the work of Messinger, but contains several major modifications and improvements. This model is used to calculate the ice growth rate at each point on the surface of the geometry. By specifying an icing time increment, the ice growth rate can be interpreted as an ice thickness which is added to the body, resulting in the generation of new coordinates. This procedure is repeated, beginning with the potential flow calculations, until the desired icing time is reached. The operation of LEWICE is illustrated through the use of five examples. These examples are representative of the types of applications expected for LEWICE. All input and output is discussed, along with many of the diagnostic messages contained in the code. Several error conditions that may occur in the code for certain icing conditions are identified, and a course of action is recommended. LEWICE has been used to calculate a variety of ice shapes, but should still be considered a research code. The code should be exercised further to identify any shortcomings and inadequacies. Any modifications identified as a result of these cases, or of additional experimental results, should be incorporated into the model. Using it as a test bed for improvements to the ice accretion model is one important application of LEWICE.

  3. Plans and status of the NASA-Lewis Research Center wind energy project

    NASA Technical Reports Server (NTRS)

    Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.

    1975-01-01

    Wind energy is investigated as a source of energy. The wind energy program that is managed by the NASA-Lewis Research Center is described. The Lewis Research Center's Wind Power Office, its organization, plans, and status are discussed. Major elements of the wind power project included are: an experimental 100 kW wind-turbine generator; first generation industry-built and user-operated wind turbine generators; and supporting research and technology tasks.

  4. NASA Lewis 1969 Apprentice Class Graduates

    NASA Image and Video Library

    1969-11-21

    The 1969 class of graduating apprentices pose for a group photograph during a rehearsal ceremony at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The 35 men completed four years of classroom and hands-on training in various aerospace research trades. Center Director Bruce Lundin and President of Cuyahoga Community College Dr. Bernard Silk addressed the graduates at the ceremony. The Ohio State Apprenticeship Council officially accredited them as journeymen. The journeymen specialized in one of the following fields: aerospace laboratory mechanic, aerospace service operator, experimental electronic equipment mechanic, experimental facilities electrician, experimental metal modelmaker, experimental metal worker, research equipment mechanic, research instrumentation mechanic, or utilities mechanic.

  5. NASA Lewis Research Center Futuring Workshop

    NASA Technical Reports Server (NTRS)

    Boroush, Mark; Stover, John; Thomas, Charles

    1987-01-01

    On October 21 and 22, 1986, the Futures Group ran a two-day Futuring Workshop on the premises of NASA Lewis Research Center. The workshop had four main goals: to acquaint participants with the general history of technology forecasting; to familiarize participants with the range of forecasting methodologies; to acquaint participants with the range of applicability, strengths, and limitations of each method; and to offer participants some hands-on experience by working through both judgmental and quantitative case studies. Among the topics addressed during this workshop were: information sources; judgmental techniques; quantitative techniques; merger of judgment with quantitative measurement; data collection methods; and dealing with uncertainty.

  6. NASA Science Flights Target Melting Arctic Sea Ice

    NASA Image and Video Library

    2017-12-08

    This summer, with sea ice across the Arctic Ocean shrinking to below-average levels, a NASA airborne survey of polar ice just completed its first flights. Its target: aquamarine pools of melt water on the ice surface that may be accelerating the overall sea ice retreat. NASA’s Operation IceBridge completed the first research flight of its new 2016 Arctic summer campaign on July 13. The science flights, which continue through July 25, are collecting data on sea ice in a year following a record-warm winter in the Arctic. Read more: go.nasa.gov/29T6mxc Caption: A large pool of melt water over sea ice, as seen from an Operation IceBridge flight over the Beaufort Sea on July 14, 2016. During this summer campaign, IceBridge will map the extent, frequency and depth of melt ponds like these to help scientists forecast the Arctic sea ice yearly minimum extent in September. Credit: NASA/Operation IceBridge

  7. Ion Thruster Development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Sarver-Verhey, Timothy R.

    1992-01-01

    Recent ion propulsion technology efforts at NASA's Lewis Research Center including development of kW-class xenon ion thrusters, high power xenon and krypton ion thrusters, and power processors are reviewed. Thruster physical characteristics, performance data, life projections, and power processor component technology are summarized. The ion propulsion technology program is structured to address a broad set of mission applications from satellite stationkeeping and repositioning to primary propulsion using solar or nuclear power systems.

  8. Heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis icing research tunnel. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip E.

    1990-01-01

    Local heat transfer coefficients from a smooth and roughened NACA 0012 airfoil were measured using a steady state heat flux method. Heat transfer measurements on the specially constructed 0.533 meter chord airfoil were made both in flight on the NASA Lewis Twin Otter Research Aircraft and in the NASA Lewis Icing Research Tunnel (IRT). Roughness was obtained by the attachment of small, 2 mm diameter, hemispheres of uniform size to the airfoil surface in four distinct patterns. The flight data was taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range of 1.24x10(exp 6) to 2.50x10(exp 6) and at various angles of attack up to 4 degrees. During these flight tests the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). The wind tunnel data was taken in the Reynolds number range of 1.20x10(exp 6) to 4.52x10(exp 6) and at angles of attack from -4 degrees to +8 degrees. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud making spray off. Results for both the flight and tunnel tests are presented as Frossling number based on chord versus position on the airfoil surface for various roughnesses and angle of attack. A table of power law curve fits of Nusselt number as a function of Reynolds number is also provided. The higher level of turbulence in the IRT versus flight had little effect on heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the higher Reynolds numbers. Turning on the cloud making spray air in the IRT did not alter the heat transfer. Roughness generally increased the heat transfer by locally disturbing the boundary layer flow. Finally, the present data was not only compared with previous airfoil data where applicable, but also with leading edge cylinder and flat plate heat transfer values which are often used to estimate airfoil heat transfer in computer codes.

  9. NASA finds Shrimp Under Antarctic Ice [Video

    NASA Image and Video Library

    2017-12-08

    At a depth of 600 feet beneath the West Antarctic ice sheet, a small shrimp-like creature managed to brighten up an otherwise gray polar day in late November 2009. This critter is a three-inch long Lyssianasid amphipod found beneath the Ross Ice Shelf, about 12.5 miles away from open water. NASA scientists were using a borehole camera to look back up towards the ice surface when they spotted this pinkish-orange creature swimming beneath the ice. Credit: NASA

  10. Close-up analysis of inflight ice accretion

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Ratvasky, Thomas P.; Sims, James

    1994-01-01

    The objective of this effort was to validate in flight, data that has been gathered in the NASA Lewis Research Center's Icing Research Tunnel (IRT) over the past several years. All data was acquired in flight on the NASA Lewis Research Center's Twin Otter Icing Research Aircraft. A faired 3.5 in. diameter metal-clad cylinder exposed to the natural icing environment was observed by a close-up video camera. The grazing angle video footage was recorded to S-VHS video tape and after the icing encounter, the resultant ice shape was documented by 35 mm photography and pencil tracings. The feather growth area was of primary interest; however, all regions of the ice accretion, from the stagnation line to the aft edge of run back were observed and recorded. After analysis of the recorded data several interesting points became evident: (1) the measured flight feather growth rate is consistent with IRT values, (2) the feather growth rate appears to be influenced by droplet size, (3) the feathers were straighter in the lower, spottier LWC of flight in comparison to those observed in the IRT, (4) feather shedding and ice sublimation may be significant to the final ice shape, and (5) the snow encountered on these flights appeared to have little influence on ice growth.

  11. The NASA Langley building solar project and the supporting Lewis solar technology program

    NASA Technical Reports Server (NTRS)

    Ragsdale, R. G.; Namkoong, D.

    1974-01-01

    The use of solar energy to heat and cool a new office building that is now under construction is reported. Planned for completion in December 1975, the 53,000 square foot, single story building will utilize 15,000 square feet of various types of solar collectors in a test bed to provide nearly all of the heating demand and over half of the air conditioning demand. Drawing on its space-program-developed skills and resources in heat transfer, materials, and systems studies, NASA-Lewis will provide technology support for the Langley building project. A solar energy technology program underway at Lewis includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Based on results obtained in this program, NASA-Lewis will select and procure the solar collectors for the Langley test bed.

  12. NASA Lewis Research Center Workshop on Forced Response in Turbomachinery

    NASA Technical Reports Server (NTRS)

    Stefko, George L. (Compiler); Murthy, Durbha V. (Compiler); Morel, Michael (Compiler); Hoyniak, Dan (Compiler); Gauntner, Jim W. (Compiler)

    1994-01-01

    A summary of the NASA Lewis Research Center (LeRC) Workshop on Forced Response in Turbomachinery in August, 1993 is presented. It was sponsored by the following NASA organizations: Structures, Space Propulsion Technology, and Propulsion Systems Divisions of NASA LeRC and the Aeronautics and Advanced Concepts & Technology Offices of NASA Headquarters. In addition, the workshop was held in conjunction with the GUIde (Government/Industry/Universities) Consortium on Forced Response. The workshop was specifically designed to receive suggestions and comments from industry on current research at NASA LeRC in the area of forced vibratory response of turbomachinery blades which includes both computational and experimental approaches. There were eight presentations and a code demonstration. Major areas of research included aeroelastic response, steady and unsteady fluid dynamics, mistuning, and corresponding experimental work.

  13. NASA Lewis Helps Develop Advanced Saw Blades for the Lumber Industry

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA Lewis Research Center's Structures and Material Divisions are centers of excellence in high-temperature alloys for aerospace applications such as advanced aircraft and rocket engines. Lewis' expertise in these fields was enlisted in the development of a new generation of circular sawblades for the lumber industry to use in cutting logs into boards. The U.S. Department of Agriculture's (USDA) Forest Products Laboratory and their supplier had succeeded in developing a thinner sawblade by using a nickel-based alloy, but they needed to reduce excessive warping due to residual stresses. They requested assistance from Lewis' experts, who successfully eliminated the residual stress problem and increased blade strength by over 12 percent. They achieved this by developing an innovative heat treatment based on their knowledge of nickel-based superalloys used in aeropropulsion applications.

  14. NASA Aircraft in the Hangar at Lewis Research Center

    NASA Image and Video Library

    1970-09-21

    Several aircraft parked inside the Flight Research Building, or hangar, at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. A Convair F-106B Delta Dart is in the foreground, a Convair F-102A Delta Dagger is to the right, a Douglas DC-3 is in the back to left, and a Convair T-29 is in background. Lewis’ Martin B-57B Canberra is not seen in this photograph. The F-102A had just been acquired by Lewis to serve as a chase plane for the F-106B. The Lewis team removed the weapons system and 700 pounds of wire from the F-106B when it was acquired on October 20, 1966. The staff cut holes in the wings and modified the elevons to mount the test nacelles. A 228-gallon fuel tank was installed in the missile bay, and the existing wing tanks were used for instrumentation. This photograph contains a rare view of the Block House, seen to the left of the aircraft. Lewis acquired three large developmental programs in 1962—the Centaur and Agena rockets and the M-1 engine. The center was short on office space at the time, and its flight research program was temporarily on the wane. Lewis management decided to construct a large cinderblock structure inside one half of the hangar to house the new personnel. This structure was used until 1965 when the new Developmental Engineering Building was built. The Block House was eventually torn down in 1973.

  15. Selected bibliography of NACA-NASA aircraft icing publications

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J. (Compiler)

    1981-01-01

    A summary of NACA-NASA icing research from 1940 to 1962 is presented. It includes: the main results of the NACA icing program from 1940 to 1950; a selected bibliography of 132 NACA-NASA aircraft icing publications; a technical summary of each document cited in the selected bibliography; and a microfiche copy of each document cited in the selected bibliography.

  16. NASA Lewis Research Center photovoltaic application experiments

    NASA Technical Reports Server (NTRS)

    Ratajczak, A.; Bifano, W.; Martz, J.; Odonnell, P.

    1978-01-01

    The NASA Lewis Research Center has installed 16 geographically dispersed terrestrial photovoltaic systems as part of the DOE National Photovoltaic Program. Four additional experiments are in progress. Currently, operating systems are powering refrigerators, a highway warning sign, forest lookout towers, remote weather stations, a water chiller and insect survey traps. Experiments in progress include the world's first village power system, an air pollution monitor and seismic sensors. Under a separate activity, funded by the U.S. Agency for International Development, a PV-powered water pump and grain grinder is being prepared for an African village. System descriptions and status are included in this report.

  17. Calibration and comparison of the NASA Lewis free-piston Stirling engine model predictions with RE-1000 test data

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.

    1987-01-01

    A free-piston Stirling engine performance code is being upgraded and validated at the NASA Lewis Research Center under an interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA Lewis. Many modifications were made to the free-piston code in an attempt to decrease the calibration effort. A procedure was developed that made the code calibration process more systematic. Engine-specific calibration parameters are often used to bring predictions and experimental data into better agreement. The code was calibrated to a matrix of six experimental data points. Predictions of the calibrated free-piston code are compared with RE-1000 free-piston Stirling engine sensitivity test data taken at NASA Lewis. Reasonable agreement was obtained between the code prediction and the experimental data over a wide range of engine operating conditions.

  18. Calibration and comparison of the NASA Lewis free-piston Stirling engine model predictions with RE-1000 test data

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.

    1987-01-01

    A free-piston Stirling engine performance code is being upgraded and validated at the NASA Lewis Research Center under an interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA Lewis. Many modifications were made to the free-piston code in an attempt to decrease the calibration effort. A procedure was developed that made the code calibration process more systematic. Engine-specific calibration parameters are often used to bring predictions and experimental data into better agreement. The code was calibrated to a matrix of six experimental data points. Predictions of the calibrated free-piston code are compared with RE-1000 free-piston Stirling engine sensitivity test data taken at NASA Lewis. Resonable agreement was obtained between the code predictions and the experimental data over a wide range of engine operating conditions.

  19. Stability relationship for water droplet crystallization with the NASA Lewis icing spray

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Bartlett, C. Scott

    1987-01-01

    In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

  20. Icing Cloud Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.; Oldenburg, John R.

    2001-01-01

    The icing research tunnel at the NASA Glenn Research Center underwent a major rehabilitation in 1999, necessitating recalibration of the icing clouds. This report describes the methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content. The instruments and methods used to perform the droplet size calibration are also described. The liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and compared to the FAA icing certification criteria. The capabilities of the IRT to produce large droplet icing clouds is also detailed.

  1. NASA Lewis Research Center/university graduate research program on engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.

  2. NASA Lewis Research Center/University Graduate Research Program on Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.

  3. Wooden Fan Blades in the Icing Research Tunnel

    NASA Image and Video Library

    1979-02-21

    The drive fan for the Icing Research Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Lewis Icing Research Program, which began during World War II, utilized both research aircraft and the icing tunnel throughout the 1940s and 1950s. The research program was cancelled in 1958 as Lewis focused on space. The tunnel continued to be used occasionally for industrial customers in the 1960s and early 1970s. Lewis’ icing research was formally reinstituted just months before this photograph in 1978. The Icing Research Tunnel’s original 4100-horsepower induction motor was coupled directly to the 24-foot-diameter fan. Neoprene boots protected the leading edges of the 12 spruce fan blades. The system generated air speeds up to 300 miles per hour through the tunnel’s 6- by 9-foot test section. A large tail faring extended from the center of the fan to uniformly guide the airflow down the tunnel. NASA Headquarters ordered modifications to the Icing Research Tunnel in 1985 after wooden fan blades in a wind tunnel at Langley Research Center failed. Despite the fact that the large hub, seen in the center of the fan, provided an extra layer of protection against blade failure, Headquarters ordered the installation of a new set of wooden blades. The blades were ordered but not installed. The tunnel technicians instead agreed to inspect the fan after each run. A new 5000-horsepower motor was installed in 1987, and the original fan blades were finally replaced in 1993.

  4. Solid State Technology Branch of NASA Lewis Research Center: Fifth Annual Digest

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The digest is a collection of papers written by the members of the Solid State Technology Branch of NASA Lewis Research Center from June 1992-June 1993. The papers cover a range of topics relating to superconductivity, monolithic microwave integrated circuits (MMIC's), coplanar waveguide, and material characterization.

  5. Homemade ice cream, à la NASA

    NASA Image and Video Library

    2017-12-08

    Pictured above, Goddard's astrobiology lab makes cookies and cream ice cream using liquid nitrogen at the Science Jamboree. The NASA Goddard Science Jamboree took place on July 16, 2013. The event allowed the different departments at Goddard a chance to showcase their research and projects to other employees and summer interns. #nasa #nasagoddard #icecream Credit: NASA/Goddard Sawyer Rosenstein

  6. NASA's Observes Effects of Summer Melt on Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA's IceBridge, an airborne survey of polar ice, flew over the Helheim/Kangerdlugssuaq region of Greenland on Sept. 11, 2016. This photograph from the flight captures Greenland's Steenstrup Glacier, with the midmorning sun glinting off of the Denmark Strait in the background. IceBridge completed the final flight of the summer campaign to observe the impact of the summer melt season on the ice sheet on Sept. 16. The IceBridge flights, which began on Aug. 27, are mostly repeats of lines that the team flew in early May, so that scientists can observe changes in ice elevation between the spring and late summer. For this short, end-of-summer campaign, the IceBridge scientists flew aboard an HU-25A Guardian aircraft from NASA's Langley Research Center in Hampton, Virginia. Credit: NASA/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. NASA/FAA Tailplane Icing Program Overview

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Riley, James T.

    1999-01-01

    The effects of tailplane icing were investigated in a four-year NASA/FAA Tailplane Icing, Program (TIP). This research program was developed to improve the understanding, of iced tailplane aeroperformance and aircraft aerodynamics, and to develop design and training aides to help reduce the number of incidents and accidents caused by tailplane icing. To do this, the TIP was constructed with elements that included icing, wind tunnel testing, dry-air aerodynamic wind tunnel testing, flight tests, and analytical code development. This paper provides an overview of the entire program demonstrating the interconnectivity of the program elements and reports on current accomplishments.

  8. NASA Launches Eighth Year of Antarctic Ice Change Airborne Survey

    NASA Image and Video Library

    2017-12-08

    At the southern end of the Earth, a NASA plane carrying a team of scientists and a sophisticated instrument suite to study ice is returning to surveying Antarctica. For the past eight years, Operation IceBridge has been on a mission to build a record of how polar ice is evolving in a changing environment. The information IceBridge has gathered in the Antarctic, which includes data on the thickness and shape of snow and ice, as well as the topography of the land and ocean floor beneath the ocean and the ice, has allowed scientists to determine that the West Antarctic Ice Sheet may be in irreversible decline. Researchers have also used IceBridge data to evaluate climate models of Antarctica and map the bedrock underneath Antarctic ice. Read more:http://go.nasa.gov/2dxczkd NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. A review of ice accretion data from a model rotor icing test and comparison with theory

    NASA Technical Reports Server (NTRS)

    Britton, Randall K.; Bond, Thomas H.

    1991-01-01

    An experiment was conducted by the Helicopter Icing Consortium (HIC) in the NASA Lewis Icing Research Tunnel (IRT) in which a 1/6 scale fuselage model of a UH-60A Black Hawk helicopter with a generic rotor was subjected to a wide range of icing conditions. The HIC consists of members from NASA, Bell Helicopter, Boeing Helicopter, McDonnell Douglas Helicopters, Sikorsky Aircraft, and Texas A&M University. Data was taken in the form of rotor torque, internal force balance measurements, blade strain gage loading, and two dimensional ice shape tracings. A review of the ice shape data is performed with special attention given to repeatability and correctness of trends in terms of radial variation, rotational speed, icing time, temperature, liquid water content, and volumetric median droplet size. Moreover, an indepth comparison between the experimental data and the analysis of NASA's ice accretion code LEWICE is given. Finally, conclusions are drawn as to the quality of the ice accretion data and the predictability of the data base as a whole. Recommendations are also given for improving data taking technique as well as potential future work.

  10. The NASA Lewis Research Center High Temperature Fatigue and Structures Laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, M. A.; Bartolotta, P. A.

    1987-01-01

    The physical organization of the NASA Lewis Research Center High Temperature Fatigue and Structures Laboratory is described. Particular attention is given to uniaxial test systems, high cycle/low cycle testing systems, axial torsional test systems, computer system capabilities, and a laboratory addition. The proposed addition will double the floor area of the present laboratory and will be equipped with its own control room.

  11. Coast Guard Assists with Mapping of Great Lakes Ice

    NASA Image and Video Library

    1976-11-21

    A group of Coast Guard seamen leave their ship to verify ice formations on the Great Lakes as part of an joint effort with the National Aeronautics and Space Administration (NASA) Lewis Research Center and the National Oceanic and Atmospheric Administration. The regular winter freezing of large portions of the Great Lakes stalled the shipping industry. Lewis began working on two complementary systems to monitor the ice. The Side Looking Airborne Radar (SLAR) system used microwaves to measure the ice distribution and electromagnetic systems used noise modulation to determine the thickness of the ice. The images were then transferred via satellite to the Coast Guard station. The Coast Guard then transmitted the pertinent images by VHF to the ship captains to help them select the best route. The Great Lakes ice mapping devices were first tested on NASA aircraft during the winter of 1972 and 1973. The pulsed radar system was transferred to the Coast Guard’s C-130 aircraft for the 1975 and 1976 winter. The SLAR was installed in the rear cargo door, and the small S-band antenna was mounted to the underside of the aircraft. Coast Guard flights began in January 1975 at an altitude of 11,000 feet. Early in the program, teams of guardsmen and NASA researchers frequently set out in boats to take samples and measurements of the ice in order to verify the radar information.

  12. NASA: First Map Of Thawed Areas Under Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA researchers have helped produce the first map showing what parts of the bottom of the massive Greenland Ice Sheet are thawed – key information in better predicting how the ice sheet will react to a warming climate. Greenland’s thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth’s depths. Knowing whether Greenland’s ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future, But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Now, a new study synthesizes several methods to infer the Greenland Ice Sheet’s basal thermal state –whether the bottom of the ice is melted or not– leading to the first map that identifies frozen and thawed areas across the whole ice sheet. Map caption: This first-of-a-kind map, showing which parts of the bottom of the Greenland Ice Sheet are likely thawed (red), frozen (blue) or still uncertain (gray), will help scientists better predict how the ice will flow in a warming climate. Credit: NASA Earth Observatory/Jesse Allen Read more: go.nasa.gov/2avKgl2 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. A Review of Transmission Diagnostics Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakajsek, James J.

    1994-01-01

    This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.

  14. Lewis Rodert Receiving a Collier Trophy from President Truman

    NASA Image and Video Library

    1947-12-21

    Lewis Rodert, then of the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory, receives the Collier Trophy from President Harry Truman for his work in the design and development of an ice prevention system for aircraft. The accumulation of ice on an aircraft had been a critical issue for years. Rodert developed a method of transferring engine heat to the wings and other vulnerable components to prevent ice buildup. Rodert began his icing investigations at Langley Memorial Aeronautical Laboratory in 1936. The NACA ordered a Lockheed 12A aircraft to be built using Rodert’s deicing system. The aircraft successfully flew through icing conditions during the following winter. Soon thereafter the military incorporated the system into a Consolidated B-24D Liberator and several other military aircraft, including a North American XB-25F. Rodert and the NACA icing program transferred to the Lewis lab in Cleveland in 1946. In Cleveland, the focus turned to the study of cloud composition and the causes of icing. Rodert’s role at Lewis diminished over the ensuing years. Rodert was honored in 1947 for his Collier Trophy at ceremonies at Langley, Ames, and then finally Lewis.

  15. NASA Lewis and Ohio Company Hit Hole in One

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ben Hogan Company's Golf Ball Division, which is based in Elyria, Ohio, had developed concepts and prototypes for new golf balls but was unable to determine exact performance characteristics. Specifically, the company's R&D department wanted to measure the spin rates of experimental golf balls. After the Golf Ball Division requested assistance, researchers and technicians from the NASA Lewis Research Center went to Elyria and conducted several days worth of tests. Ben Hogan is using the test results to improve the spin characteristics of a new ball it plans to introduce to the market.

  16. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1994-01-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  17. Hypersonic engine seal development at NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Steinetz, Bruce M.

    1994-07-01

    NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.

  18. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  19. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  20. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  1. Life prediction of turbine components: On-going studies at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Spera, D. A.; Grisaffe, S. J.

    1973-01-01

    An overview is presented of the many studies at NASA-Lewis that form the turbine component life prediction program. This program has three phases: (1) development of life prediction methods for major failure modes through materials studies, (2) evaluation and improvement of these methods through a variety of burner rig studies on simulated components in research engines and advanced rigs. These three phases form a cooperative, interdisciplinary program. A bibliography of Lewis publications on fatigue, oxidation and coatings, and turbine engine alloys is included.

  2. Overview of Icing Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.

    2013-01-01

    The aviation industry continues to deal with icing-related incidents and accidents on a regular basis. Air traffic continues to increase, placing more aircraft in adverse icing conditions more frequently and for longer periods. Icing conditions once considered rare or of little consequence, such as super-cooled large droplet icing or high altitude ice crystals, have emerged as major concerns for modern aviation. Because of this, there is a need to better understand the atmospheric environment, the fundamental mechanisms and characteristics of ice growth, and the aerodynamic effects due to icing, as well as how best to protect these aircraft. The icing branch at NASA Glenn continues to develop icing simulation methods and engineering tools to address current aviation safety issues in airframe, engine and rotorcraft icing.

  3. Solid State Technology Branch of NASA Lewis Research Center: Fifth Annual Digest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The digest is a collection of papers written by the members of the Solid State Technology Branch of NASA Lewis Research Center from June 1992-June 1993. The papers cover a range of topics relating to superconductivity, monolithic microwave integrated circuits (MMIC`s), coplanar waveguide, and material characterization. Individual papers are abstracted separately on the data base.

  4. Test facilities of the structural dynamics branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.; Kielb, Robert E.

    1988-01-01

    The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.

  5. SPRE 1 free-piston Stirling engine testing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Cairelli, James E.

    1987-01-01

    As part of the NASA funded portion of the SP-100 Advanced Technology Program the Space Power Research Engine (SPRE 1) was designed and built to serve as a research tool for evaluation and development of advanced Stirling engine concepts. The SPRE 1 is designed to produce 12.5 kW electrical power when operated with helium at 15 MPa and with an absolute temperature ratio of two. The engine is now under test in a new test facility which was designed and built at NASA Lewis specifically to test the SPRE 1. The SPRE 1, the NASA test facility, the initial SPRE 1 test results, and future SPRE 1 test plans are described.

  6. Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center

    NASA Technical Reports Server (NTRS)

    Graham, Scott R.

    2015-01-01

    The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agency-wide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.

  7. Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center

    NASA Technical Reports Server (NTRS)

    Graham, Scott R.

    2014-01-01

    The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agencywide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.

  8. NASA Lewis Helps Company With New Single-Engine Business Turbojet

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Century Aerospace Corporation, a small company in Albuquerque, New Mexico, is developing a six-seat aircraft powered by a single turbofan engine for general aviation. The company had completed a preliminary design of the jet but needed analyses and testing to proceed with detailed design and subsequent fabrication of a prototype aircraft. NASA Lewis Research Center used computational fluid dynamics (CFD) analyses to ferret out areas of excessive curvature in the inlet where separation might occur. A preliminary look at the results indicated very good inlet performance; and additional calculations, performed with vortex generators installed in the inlet, led to even better results. When it was initially determined that the airflow distortion pattern at the compressor face fell outside of the limits set by the engine manufacturer, the Lewis team studied possible solutions, selected the best, and provided recommendations. CFD results for the inlet system were so good that wind tunnel tests were unnecessary.

  9. A laser-based ice shape profilometer for use in icing wind tunnels

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Vargas, Mario

    1995-01-01

    A laser-based profilometer was developed to measure the thickness and shape of ice accretions on the leading edge of airfoils and other models in icing wind tunnels. The instrument is a hand held device that is connected to a desk top computer with a 10 meter cable. It projects a laser line onto an ice shape and used solid state cameras to detect the light scattered by the ice. The instrument corrects the image for camera angle distortions, displays an outline of the ice shape on the computer screen, saves the data on a disk, and can print a full scale drawing of the ice shape. The profilometer has undergone extensive testing in the laboratory and in the NASA Lewis Icing Research Tunnel. Results of the tests show very good agreement between profilometer measurements and known simulated ice shapes and fair agreement between profilometer measurements and hand tracing techniques.

  10. The NASA Lewis Research Center SBIR program: An assessment

    NASA Technical Reports Server (NTRS)

    Grimes, Hubert H.; Metzger, Marie E.; Kim, Walter S.

    1993-01-01

    An assessment was made of the NASA Lewis Small Business Innovation Research (SBIR) Program for the years 1983 to 1989. The assessment was based on the study of 99 Phase 1 contracts and 39 Phase 2 contracts. The overall impact of SBIR was found to be very positive, contributing strongly to many NASA programs. In addition, many successful efforts were commercialized benefiting the small business, federal agencies, and the aerospace industry. The program was evaluated in terms of contract quality, innovativeness, comparison to the state-of-the-art, achievement of goals, difficulty, and impact. Program difficulties were also identified, which could suggest possible program improvements. Much of the information gained in this assessment provided a basis for a SBIR data base which will be updated every year. This data base is computerized and will provide an excellent source of information about past SBIR efforts and company capabilities.

  11. NASA Operation IceBridge Flies Into the Classroom!

    NASA Astrophysics Data System (ADS)

    Kane, M.

    2017-12-01

    Field research opportunities for educators is leveraged as an invaluable tool to increase public engagement in climate research and the geosciences. We investigate the influence of educator's authentic fieldwork by highlighting the post-field impacts of a PolarTREC Teacher who participated in two campaigns, including NASA Operation IceBridge campaign over Antarctica in 2016. NASA's Operation IceBridge has hosted PolarTREC teachers since 2012, welcoming five teachers aboard multiple flights over the Arctic and one over Antarctica. The continuity of teacher inclusion in Operation IceBridge campaigns has facilitated a platform for collaborative curriculum development and revision, integration of National Snow and Ice Data Center (NSIDC) data into multiple classrooms, and given us a means whereby students can interact with science team members. I present impacts to my teaching and classrooms as I grapple with "Big Data" to allow students to work directly with lidar and radar data, I examine public outreach impacts through analytics from virtual networking tools including social media, NASA's Mission Tools Suite for Education, and field blog interactions.

  12. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested. For each pressure altitude test point conducted the ambient static temperature was predicted using a NASA engine icing risk computer model for the given ambient static pressure while maintaining the engine speed.

  13. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  14. An Engineering Approach to Management of Occupational and Community Noise Exposure at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    1997-01-01

    Workplace and environmental noise issues at NASA Lewis Research Center are effectively managed via a three-part program that addresses hearing conservation, community noise control, and noise control engineering. The Lewis Research Center Noise Exposure Management Program seeks to limit employee noise exposure and maintain community acceptance for critical research while actively pursuing engineered controls for noise generated by more than 100 separate research facilities and the associated services required for their operation.

  15. Overview of the 1986 free-piston Stirling activities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1986-01-01

    An overview of the NASA Lewis Research Center's free-piston Stirling engine research is presented, including efforts to improve and advance its design for use in specific space power applications. These efforts are a part of the SP-100 program being conducted to support the Department of Defense (DOD), Department of Energy (DOE) and NASA. Such efforts include: (1) the testing and improvement of 25 kWe Stirling Space Power Demonstrator Engine (SPDE); (2) the preliminary design of 25 kWe single-cylinder Experimental stirling Space Engine (ESSE); and, (3) a study to determine the feasibility of scaling a single-cylinder free-piston Stirling engine/linear alternator to 150 kWe. Other NASA Lewis free-piston Stirling engine activities will be described, directed toward the advancement of general free-piston Stirling engine technology and its application in specific terrestrial applications. One such effort, supported by DOE/Oak Ridge National Laboratory (DRNL), is the development of a free-piston Stirling engine which produces hydraulic power. Finally, a terrestrial solar application involving a conceptual design of a 25 kWe Solar Advanced Stirling Conversion System (ASCS) capable of delivering power to an electric utility grid will be discussed. The latter work is supported by DOE/Sandia National Laboratory (SNLA).

  16. NASA's program on icing research and technology

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.; Shaw, Robert J.; Ranaudo, Richard J.

    1989-01-01

    NASA's program in aircraft icing research and technology is reviewed. The program relies heavily on computer codes and modern applied physics technology in seeking icing solutions on a finer scale than those offered in earlier programs. Three major goals of this program are to offer new approaches to ice protection, to improve our ability to model the response of an aircraft to an icing encounter, and to provide improved techniques and facilities for ground and flight testing. This paper reviews the following program elements: (1) new approaches to ice protection; (2) numerical codes for deicer analysis; (3) measurement and prediction of ice accretion and its effect on aircraft and aircraft components; (4) special wind tunnel test techniques for rotorcraft icing; (5) improvements of icing wind tunnels and research aircraft; (6) ground de-icing fluids used in winter operation; (7) fundamental studies in icing; and (8) droplet sizing instruments for icing clouds.

  17. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility has been developed at NASA Lewis to allow integrated propulsion-control and flight-control algorithm development and evaluation in real time. As a preliminary check of the simulator facility and the correct integration of its components, the control design and physics models for an STOVL fighter aircraft model have been demonstrated, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The results show that this fixed-based flight simulator can provide real-time feedback and display of both airframe and propulsion variables for validation of integrated systems and testing of control design methodologies and cockpit mechanizations.

  18. Fluctuation spectra in the NASA Lewis bumpy-torus plasma

    NASA Technical Reports Server (NTRS)

    Singh, C. M.; Krawczonek, W. M.; Roth, J. R.; Hong, J. Y.; Powers, E. J.

    1978-01-01

    The electrostatic potential fluctuation spectrum in the NASA Lewis bumpy-torus plasma was studied with capacitive probes in the low pressure (high impedance) mode and in the high pressure (low impedance) mode. Under different operating conditions, the plasma exhibited electrostatic potential fluctuations (1) at a set of discrete frequencies, (2) at a continuum of frequencies, and (3) as incoherent high-frequency turbulence. The frequencies and azimuthal wave numbers were determined from digitally implemented autopower and cross-power spectra. The azimuthal dispersion characteristics of the unstable waves were examined by varying the electrode voltage, the polarity of the voltage, and the neutral background density at a constant magnetic field strength.

  19. Lewis Research Center: Commercialization Success Stories

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.

    1996-01-01

    The NASA Lewis Research Center, located in Cleveland, Ohio, has a portfolio of research and technology capabilities and facilities that afford opportunities for productive partnerships with industry in a broad range of industry sectors. In response to the President's agenda in the area of technology for economic growth (Clinton/Gore 1993), the National Performance Review (1993), NASA's Agenda for Change (1994), and the needs of its customers, NASA Lewis Research Center has sought and achieved significant successes in technology transfer and commercialization. This paper discusses a sampling of Lewis Research Center's successes in this area, and lessons learned that Lewis Research Center is applying in pursuit of continuous improvement and excellence in technology transfer and commercialization.

  20. The development of hydrogen sensor technology at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Jefferson, G. D.; Madzsar, G. C.; Liu, C. C.; Wu, Q. H.

    1993-01-01

    The detection of hydrogen leaks in aerospace applications, especially those involving hydrogen fuel propulsion systems, is of extreme importance for reasons of reliability, safety, and economy. Motivated by leaks occurring in liquid hydrogen lines supplying the main engine of the Space Shuttle, NASA Lewis has initiated a program to develop point-contact hydrogen sensors which address the needs of aerospace applications. Several different approaches are being explored. They include the fabrication of PdAg Schottky diode structures, the characterization of PdCr as a hydrogen sensitive alloy, and the use of SiC as a semiconductor for hydrogen sensors. This paper discusses the motivation behind and present status of each of the major components of the NASA LeRC hydrogen sensor program.

  1. NASA Lewis Propulsion Systems Laboratory Customer Guide Manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1994-01-01

    This manual describes the Propulsion Systems Laboratory (PSL) at NASA Lewis Research Center. The PSL complex supports two large engine test cells (PSL-3 and PSL-4) that are capable of providing flight simulation to altitudes of 70,000 ft. Facility variables at the engine or test-article inlet, such as pressure, temperature, and Mach number (up to 3.0 for PSL-3 and up to 6.0 planned for PSL-4), are discussed. Support systems such as the heated and cooled combustion air systems; the altitude exhaust system; the hydraulic system; the nitrogen, oxygen, and hydrogen systems; hydrogen burners; rotating screen assemblies; the engine exhaust gas-sampling system; the infrared imaging system; and single- and multiple-axis thrust stands are addressed. Facility safety procedures are also stated.

  2. Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1995-01-01

    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.

  3. Evaluation of a Stirling engine heater bypass with the NASA Lewis nodal-analysis performance code

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.

    1986-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Research Center investigated whether bypassing the P-40 Stirling engine heater during regenerative cooling would improve engine performance. The Lewis nodal-analysis Stirling engine computer simulation was used for this investigation. Results for the heater-bypass concept showed no significant improvement in the indicated thermal efficiency for the P-40 Stirling engine operating at full-power and part-power conditions. Optimizing the heater tube length produced a small increase in the indicated thermal efficiency with the heater-bypass concept.

  4. Evaluation of Alternative Altitude Scaling Methods for Thermal Ice Protection System in NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Addy, Harold E. Jr.; Broeren, Andy P.; Orchard, David M.

    2017-01-01

    A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two new scaling methods based on Weber number were compared against a method based on Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel where the three methods of scaling were also tested and compared along with reference (altitude) icing conditions. In those tests, the Weber number-based scaling methods yielded results much closer to those observed at the reference icing conditions than the Reynolds number-based icing conditions. The test in the NASA IRT used a much larger, asymmetric airfoil with an ice protection system that more closely resembled designs used in commercial aircraft. Following the trends observed during the AIWT tests, the Weber number based scaling methods resulted in smaller runback ice than the Reynolds number based scaling, and the ice formed farther upstream. The results show that the new Weber number based scaling methods, particularly the Weber number with water loading scaling, continue to show promise for ice protection system development and evaluation in atmospheric icing tunnels.

  5. Analytical ice shape predictions for flight in natural icing conditions

    NASA Technical Reports Server (NTRS)

    Berkowitz, Brian M.; Riley, James T.

    1988-01-01

    LEWICE is an analytical ice prediction code that has been evaluated against icing tunnel data, but on a more limited basis against flight data. Ice shapes predicted by LEWICE is compared with experimental ice shapes accreted on the NASA Lewis Icing Research Aircraft. The flight data selected for comparison includes liquid water content recorded using a hot wire device and droplet distribution data from a laser spectrometer; the ice shape is recorded using stereo photography. The main findings are as follows: (1) An equivalent sand grain roughness correlation different from that used for LEWICE tunnel comparisons must be employed to obtain satisfactory results for flight; (2) Using this correlation and making no other changes in the code, the comparisons to ice shapes accreted in flight are in general as good as the comparisons to ice shapes accreted in the tunnel (as in the case of tunnel ice shapes, agreement is least reliable for large glaze ice shapes at high angles of attack); (3) In some cases comparisons can be somewhat improved by utilizing the code so as to take account of the variation of parameters such as liquid water content, which may vary significantly in flight.

  6. F100 Engine Emissions Tested in NASA Lewis' Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Wey, Chowen C.

    1998-01-01

    Recent advances in atmospheric sciences have shown that the chemical composition of the entire atmosphere of the planet (gases and airborne particles) has been changed due to human activity and that these changes have changed the heat balance of the planet. National Research Council findings indicate that anthropogenic aerosols1 reduce the amount of solar radiation reaching the Earth's surface. Atmospheric global models suggest that sulfate aerosols change the energy balance of the Northern Hemisphere as much as anthropogenic greenhouse gases have. In response to these findings, NASA initiated the Atmospheric Effects of Aviation Project (AEAP) to advance the research needed to define present and future aircraft emissions and their effects on the Earth's atmosphere. Although the importance of aerosols and their precursors is now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. Tests in 1997-an engine test at the NASA Lewis Research Center and the corresponding flight measurement test at the NASA Langley Research Center-attempted to address both issues by measuring emissions when fuels containing different levels of sulfur were burned. Measurement systems from four research groups were involved in the Lewis engine test: A Lewis gas analyzer suite to measure the concentration of gaseous species 1. including NO, NOx, CO, CO2, O2, THC, and SO2 as well as the smoke number; 2. A University of Missouri-Rolla Mobile Aerosol Sampling System to measure aerosol and particulate properties including the total concentration, size distribution, volatility, and hydration property; 3. An Air Force Research Laboratory Chemical Ionization Mass Spectrometer to measure the concentration of SO2 and SO3/H2SO4; and 4. An Aerodyne Research Inc

  7. Practical Application of NASA-Langley Advanced Satellite Products to In-Flight Icing Nowcasts

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.; Wolff, Cory A.; Minnis, Patrick

    2006-01-01

    Experimental satellite-based icing products developed by the NASA Langley Research Center provide new tools to identify the locations of icing and its intensity. Since 1997, research forecasters at the National Center for Atmospheric Research (NCAR) have been helping to guide the NASA Glenn Research Center's Twin Otter aircraft into and out of clouds and precipitation for the purpose of characterizing in-flight icing conditions, including supercooled large drops, the accretions that result from such encounters and their effect on aircraft performance. Since the winter of 2003-04, the NASA Langley satellite products have been evaluated as part of this process, and are being considered as an input to NCAR s automated Current Icing Potential (CIP) products. This has already been accomplished for a relatively straightforward icing event, but many icing events have much more complex characteristics, providing additional challenges to all icing diagnosis tools. In this paper, four icing events with a variety of characteristics will be examined, with a focus on the NASA Langley satellite retrievals that were available in real time and their implications for icing nowcasting and potential applications in CIP.

  8. Icing research tunnel rotating bar calibration measurement system

    NASA Technical Reports Server (NTRS)

    Gibson, Theresa L.; Dearmon, John M.

    1993-01-01

    In order to measure icing patterns across a test section of the Icing Research Tunnel, an automated rotating bar measurement system was developed at the NASA Lewis Research Center. In comparison with the previously used manual measurement system, this system provides a number of improvements: increased accuracy and repeatability, increased number of data points, reduced tunnel operating time, and improved documentation. The automated system uses a linear variable differential transformer (LVDT) to measure ice accretion. This instrument is driven along the bar by means of an intelligent stepper motor which also controls data recording. This paper describes the rotating bar calibration measurement system.

  9. ISDN at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bakes, Catherine Murphy; Goldberg, Fredric; Eubanks, Steven W.

    1992-01-01

    An expository investigation of the potential impact of the Integrated Services Digital Network (ISDN) at NASA Lewis Research Center is described. To properly frame the subject, the paper contains a detailed survey of the components of Narrowband ISDN. The principles and objectives are presented as decreed by the Consultative Committee for International Telephone and Telegraph (CCITT). The various channel types are delineated and their associated service combinations are described. The subscriber-access network functions are explained pictorially via the ISDN reference configuration. A section on switching techniques is presented to enable the reader to understand the emergence of the concept of fast packet switching. This new technology is designed to operate over the high bandwidth, low error rate transmission media that characterizes the LeRC environment. A brief introduction to the next generation of networks is covered with sections on Broadband ISDM (B-ISDN), Asynchronous Transfer Mode (ATM), and Synchronous Optical Networks (SONET). Applications at LeRC are presented, first in terms of targets of opportunity, then in light of compatibility constraints. In-place pilot projects and testing are described that demonstrate actual usage at LeRC.

  10. NASA IceBridge: Scientific Insights from Airborne Surveys of the Polar Sea Ice Covers

    NASA Astrophysics Data System (ADS)

    Richter-Menge, J.; Farrell, S. L.

    2015-12-01

    The NASA Operation IceBridge (OIB) airborne sea ice surveys are designed to continue a valuable series of sea ice thickness measurements by bridging the gap between NASA's Ice, Cloud and Land Elevation Satellite (ICESat), which operated from 2003 to 2009, and ICESat-2, which is scheduled for launch in 2017. Initiated in 2009, OIB has conducted campaigns over the western Arctic Ocean (March/April) and Southern Oceans (October/November) on an annual basis when the thickness of sea ice cover is nearing its maximum. More recently, a series of Arctic surveys have also collected observations in the late summer, at the end of the melt season. The Airborne Topographic Mapper (ATM) laser altimeter is one of OIB's primary sensors, in combination with the Digital Mapping System digital camera, a Ku-band radar altimeter, a frequency-modulated continuous-wave (FMCW) snow radar, and a KT-19 infrared radiation pyrometer. Data from the campaigns are available to the research community at: http://nsidc.org/data/icebridge/. This presentation will summarize the spatial and temporal extent of the OIB campaigns and their complementary role in linking in situ and satellite measurements, advancing observations of sea ice processes across all length scales. Key scientific insights gained on the state of the sea ice cover will be highlighted, including snow depth, ice thickness, surface roughness and morphology, and melt pond evolution.

  11. De-icing of the altitude wind tunnel turning vanes by electro-magnetic impulse

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Ross, R.

    1986-01-01

    The Altitude Wind Tunnel at the NASA-Lewis facility is being proposed for a refurbishment and moderization. Two major changes are: (1) the increasing of the test section Mach number to 0.90, and (2) the addition of spray nozzles to provide simulation of flight in icing clouds. Features to be retained are the simulation of atmospheric temperature and pressure to 50,000 foot altitude and provision for full-scale aircraft engine operation by the exhausting of the aircraft combustion gases and ingestion of air to replace that used in combustion. The first change required a re-design of the turning vanes in the two corners downstream of the test section due to the higher Mach number at the corners. The second change threatens the operation of the turning vanes by the expected ice build-up, particulary on the first-corner vanes. De-icing by heat has two drawbacks: (1) an extremely large amount of heat is required, and (2) the melted ice would tend to collect as ice on some other surfaces in the tunnel, namely, the tunnel propellers and the cooling coils. An alternate de-icing method had been under development for three years under NASA-Lewis grants to the Wichita State University. This report describes the electro-impulse de-icing (EIDI) method and the testing work done to assess its applicability to wind tunnel turning vane de-icing. Tests were conducted in the structural dynamics laboratory and in the NASA Icing Research Tunnel. Good ice protection was achieved at lower power consumption and at a wide range of tunnel operations conditions. Recommendations for design and construction of the system for this application of the EIDI method are given.

  12. NASA Airframe Icing Research Overview Past and Current

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    This slide presentation reviews the past and current research that NASA has done in the area of airframe icing. Both the history experimental efforts and model development to understand the process and problem of ice formation are reviewed. This has resulted in the development of new experimental methods, advanced icing simulation software, flight dynamics and experimental databases that have an impact on design, testing, construction and certification and qualification of the aircraft and its sub-systems.

  13. Operating and service manual for the NASA Lewis automated far-field antenna range

    NASA Technical Reports Server (NTRS)

    Terry, John D.

    1992-01-01

    This NASA Lewis far-field antenna range was recently upgraded and automated to meet the growing and demanding needs of the satellite communications program. Here, assistance is offered in the operation and service of this range. The procedures for configuring the test hardware and for operating the Far-Field Antenna Measurement Program (FAMP) are given. Included are the steps for getting started and for installing the proper microwave equipment.

  14. Gear noise, vibration, and diagnostic studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Oswald, Fred B.; Townsend, Dennis P.; Coy, John J.

    1990-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command are involved in a joint research program to advance the technology of rotorcraft transmissions. This program consists of analytical as well as experimental efforts to achieve the overall goals of reducing weight, noise, and vibration, while increasing life and reliability. Recent analytical activities are highlighted in the areas of gear noise, vibration, and diagnostics performed in-house and through NASA and U.S. Army sponsored grants and contracts. These activities include studies of gear tooth profiles to reduce transmission error and vibration as well as gear housing and rotordynamic modeling to reduce structural vibration transmission and noise radiation, and basic research into current gear failure diagnostic methodologies. Results of these activities are presented along with an overview of near term research plans in the gear noise, vibration, and diagnostics area.

  15. NASA Sea Ice and Snow Validation Program for the DMSP SSM/I: NASA DC-8 flight report

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.

    1988-01-01

    In June 1987 a new microwave sensor called the Special Sensor Microwave Imager (SSM/I) was launched as part of the Defense Meteorological Satellite Program (DMSP). In recognition of the importance of this sensor to the polar research community, NASA developed a program to acquire the data, to convert the data into sea ice parameters, and finally to validate and archive both the SSM/I radiances and the derived sea ice parameters. Central to NASA's sea ice validation program was a series of SSM/I aircraft underflights with the NASA DC-8 airborne Laboratory. The mission (the Arctic '88 Sea Ice Mission) was completed in March 1988. This report summarizes the mission and includes a summary of aircraft instrumentation, coordination with participating Navy aircraft, flight objectives, flight plans, data collected, SSM/I orbits for each day during the mission, and lists several piggyback experiments supported during this mission.

  16. Recent advances in Ni-H2 technology at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Gonzalezsanabria, O. D.; Britton, D. L.; Smithrick, J. J.; Reid, M. A.

    1986-01-01

    The NASA Lewis Research Center has concentrated its efforts on advancing the Ni-H2 system technology for low Earth orbit applications. Component technology as well as the design principles were studied in an effort to understand the system behavior and failure mechanisms in order to increase performance and extend cycle life. The design principles were previously addressed. The component development is discussed, in particular the separator and nickel electrode and how these efforts will advance the Ni-H2 system technology.

  17. Providing Total Quality Fundamentals: 1995 Workshops for the NASA Lewis Research Center's Technical Services Directorate

    NASA Technical Reports Server (NTRS)

    Antczak, Paul; Jacinto,Gilda; Simek, Jimmy

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) agency-wide movement to cultivate a quality workplace is the basis for Lewis Research Center to implement Total Quality Fundamentals (TQF) initiatives. The Lewis Technical Services Directorate (TSD) introduced the Total Quality Fundamentals (TQF) workshops to its work force as an opportunity to introduce the concepts and principles of TQF. These workshops also provided the participants with the opportunity to dialogue with fellow TSD employees and managers. This report describes, through the perspective of the Lewis TSD TQF Coaches, how the TQF work- shop process was accomplished in TSD. It describes the structure for addressing the need, implementation process, input the TSD Coaches provided, common themes and concerns raised, conclusions, and recommendations. The Coaches concluded that these types of workshops could be the key to open the communication channels that are necessary to help everyone at Lewis understand where they fit in the organization. TQF workshops can strengthen the participant's connection with the Mission, Vision of the Center, and Vision of the Agency. Reconunendations are given based on these conclusions that can help the TSD Quality Board develop attainable measures towards a quality workplace.

  18. Lockheed F-94B Starfire at the NASA Lewis Research Center

    NASA Image and Video Library

    1959-12-21

    A Lockheed F-94B Starfire on the hangar apron at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The Air Force contracted Lockheed in November 1948 to create the new F-94s fighters. The first test flight occurred only months later in April 1949. This quick turnaround was due to the fact that the F-94 was based largely on the TF-80 fighter and constructed with parts from the P-80, including its two General Electric I-40 turbojet engines. The F-94Bs entered the Korean War in late 1951, but were initially prevented from flying over enemy territory due to fear that their fire control system would be copied by the enemy if an F-94B went down. The Starfire went on to perform scores of missions escorting B-29 and B-26 bombers deep into enemy territory and acting as interceptors against enemy fighters. In mid-1954 the F-94s were retired from active military service. Lewis acquired the F-94B Starfire in April 1956. At the time, the aircraft industry was preparing for the first use of jet engines for commercial aviation. The amount of noise generated by the engines was a major obstacle. Lewis undertook an extensive program to understand the causes of the noise and develop methods for reducing it. This program included the study of aerodynamic sound at high speed and altitude using the F-94B.

  19. Drive System Enhancement in the NASA Lewis Research Center Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Becks, Edward A.

    1998-01-01

    An overview of NASA Lewis' Aeropropulsion Wind Tunnel Productivity Improvements was presented at the 19th AIAA Advanced Measurement & Ground Testing Technology Conference. Since that time Lewis has implemented subsonic operation in their 10- by 10-Foot Supersonic Wind Tunnel as had been proven viable in the 8- by 6 and 9- by 15-Foot Wind Tunnel Complex and discussed at the aforementioned conference. In addition, two more years of data have been gathered to help quantify the true productivity increases in these facilities attributable to the drive system and operational improvements. This paper was invited for presentation at the 20th Advanced Measurement and Ground Testing Conference to discuss and quantify the productivity improvements in the 10- by 10 SWT since the implementation of less than full complement motor operation. An update on the increased productivity at the 8- by 6 and 9- by 15-Foot facility due to drive system enhancements will also be presented.

  20. Grumman OV-1B Mohawk Maps the Ice over the Great Lakes

    NASA Image and Video Library

    1973-03-21

    A Grumman OV-1B Mohawk maps Great Lakes’ ice flows for the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. The regular freezing of large portions of the Great Lakes during the winter frequently stalled the region’s shipping industry. Lewis developed two complementary systems to monitor the ice. The Side Looking Airborne Radar (SLAR) system used microwaves to measure the ice distribution, and electromagnetic systems employed noise modulation to determine the thickness of the ice. Once this dual system was in place, the information could be generated during a single pass of a research aircraft and quickly distributed to ship captains planning their routes. The SLAR was superior to aerial photography for this task because it was able to penetrate cloud cover. The SLAR system used pulsed microwaves to examine a band of ice or water on either side of the aircraft up to 31 miles wide. The Lewis ice mapping devices were first tested during the winter of 1972 and 1973. The system was installed on the tail of the Coast Guard’s OV-1B aircraft. An infrared thermal mapping instrument was installed on Lewis’ DC-3 to determine the ice temperature and estimate its thickness. The team created 160 ice charts that were sent to 28 ships and 2 icebreakers. Shipping was able to continue throughout the season for the first time that winter.

  1. NASA Lewis Stirling engine computer code evaluation

    NASA Technical Reports Server (NTRS)

    Sullivan, Timothy J.

    1989-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Stirling engine performance code was evaluated by comparing code predictions without engine-specific calibration factors to GPU-3, P-40, and RE-1000 Stirling engine test data. The error in predicting power output was -11 percent for the P-40 and 12 percent for the Re-1000 at design conditions and 16 percent for the GPU-3 at near-design conditions (2000 rpm engine speed versus 3000 rpm at design). The efficiency and heat input predictions showed better agreement with engine test data than did the power predictions. Concerning all data points, the error in predicting the GPU-3 brake power was significantly larger than for the other engines and was mainly a result of inaccuracy in predicting the pressure phase angle. Analysis into this pressure phase angle prediction error suggested that improvements to the cylinder hysteresis loss model could have a significant effect on overall Stirling engine performance predictions.

  2. LSENS, The NASA Lewis Kinetics and Sensitivity Analysis Code

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    2000-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS (the NASA Lewis kinetics and sensitivity analysis code), are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include: static system; steady, one-dimensional, inviscid flow; incident-shock initiated reaction in a shock tube; and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method (LSODE, the Livermore Solver for Ordinary Differential Equations), which works efficiently for the extremes of very fast and very slow reactions, is used to solve the "stiff" ordinary differential equation systems that arise in chemical kinetics. For static reactions, the code uses the decoupled direct method to calculate sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters. Solution methods for the equilibrium and post-shock conditions and for perfectly stirred reactor problems are either adapted from or based on the procedures built into the NASA code CEA (Chemical Equilibrium and Applications).

  3. Transport Coefficients for the NASA Lewis Chemical Equilibrium Program

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1995-01-01

    The new transport property data that will be used in the NASA Lewis Research Center's Chemical Equilibrium and Applications Program (CEA) is presented. It complements a previous publication that documented the thermodynamic and transport property data then in use. Sources of the data and a brief description of the method by which the data were obtained are given. Coefficients to calculate the viscosity, thermal conductivity, and binary interactions are given for either one, or usually, two temperature intervals, typically 300 to 1000 K and 1000 to 5000 K. The form of the transport equation is the same as used previously. The number of species was reduced from the previous database. Many species for which the data were estimated were eliminated from the database. Some ionneutral interactions were added.

  4. Flight test report of the NASA icing research airplane: Performance, stability, and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Jordan, J. L.; Platz, S. J.; Schinstock, W. C.

    1986-01-01

    Flight test results are presented documenting the effect of airframe icing on performance and stability and control of a NASA DHC-6 icing research aircraft. Kohlman System Research, Inc., provided the data acquisition system and data analysis under contract to NASA. Performance modeling methods and MMLE techniques were used to determine the effects of natural ice on the aircraft. Results showed that ice had a significant effect on the drag coefficient of the aircraft and a modest effect on the MMLE derived longitudinal stability coefficients (code version MMLE). Data is also presented on asymmetric power sign slip maneuvers showing rudder floating characteristics with and without ice on the vertical stabilizer.

  5. Modern Airfoil Ice Accretions

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.

    1997-01-01

    This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.

  6. Preliminary results in the NASA Lewis H2-O2 combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1979-01-01

    MHD (magnetohydrodynamic) power generation experiments were carried out in the NASA Lewis Research Center cesium-seeded H2-O2 combustion facility. This facility uses a neon-cooled cryomagnet capable of producing magnetic fields in excess of 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown on generator performance are discussed. The experimental data is compared to a theory based on one-dimensional flow with heat transfer, friction, and voltage drops.

  7. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Bartkus, Tadas; Tsao, Jen-Ching; Bencic, Timothy; King, Michael; Ratvasky, Thomas; Van Zante, Judith

    2017-01-01

    This presentation shows results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This presentation shows data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  8. An Initial Study of the Fundamentals of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Ratvasky, Thomas P.; Bencic, Timothy J.; Van Zante, Judith F.; King, Michael C.; Tsao, Jen-Ching; Bartkus, Tadas P.

    2017-01-01

    This paper presents results from an initial study of the fundamental physics of ice-crystal ice accretion using the NASA Propulsion Systems Lab (PSL). Ice accretion due to the ingestion of ice-crystals is being attributed to numerous jet-engine power-loss events. The NASA PSL is an altitude jet-engine test facility which has recently added a capability to inject ice particles into the flow. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. The present study utilized a NACA0012 airfoil. The mixed-phase conditions were generated by partially freezing the liquid-water droplets ejected from the spray bars. This paper presents data regarding (1) the freeze out characteristics of the cloud, (2) changes in aerothermal conditions due to the presence of the cloud, and (3) the ice accretion characteristics observed on the airfoil model. The primary variable in this test was the PSL plenum humidity which was systematically varied for two duct-exit-plane velocities (85 and 135 ms) as well as two particle size clouds (15 and 50 m MVDi). The observed clouds ranged from fully glaciated to fully liquid, where the liquid clouds were at least partially supercooled. The air total temperature decreased at the test section when the cloud was activated due to evaporation. The ice accretions observed ranged from sharp arrow-like accretions, characteristic of ice-crystal erosion, to cases with double-horn shapes, characteristic of supercooled water accretions.

  9. The NASA Lewis integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1991-01-01

    A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.

  10. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  11. Lewis Incubator for Technology (LIFT)

    NASA Technical Reports Server (NTRS)

    Zeman, Wayne P.; King, Joseph B.; Jankura, Richard E., Jr.

    2004-01-01

    This report summarizes the work done to operate the Lewis Incubator for Technology for the period October 2000 through September 2004. The Lewis Incubator helped the startup and growth of technology based businesses with the potential to incorporate technology from the NASA Glenn Research Center.

  12. NASA Engine Icing Research Overview: Aeronautics Evaluation and Test Capabilities (AETC) Project

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2015-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported by airlines under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion by the engine. The ice crystals can result in degraded engine performance, loss of thrust control, compressor surge or stall, and flameout of the combustor. The Aviation Safety Program at NASA has taken on the technical challenge of a turbofan engine icing caused by ice crystals which can exist in high altitude convective clouds. The NASA engine icing project consists of an integrated approach with four concurrent and ongoing research elements, each of which feeds critical information to the next element. The project objective is to gain understanding of high altitude ice crystals by developing knowledge bases and test facilities for testing full engines and engine components. The first element is to utilize a highly instrumented aircraft to characterize the high altitude convective cloud environment. The second element is the enhancement of the Propulsion Systems Laboratory altitude test facility for gas turbine engines to include the addition of an ice crystal cloud. The third element is basic research of the fundamental physics associated with ice crystal ice accretion. The fourth and final element is the development of computational tools with the goal of simulating the effects of ice crystal ingestion on compressor and gas turbine engine performance. The NASA goal is to provide knowledge to the engine and aircraft manufacturing communities to help mitigate, or eliminate turbofan engine interruptions, engine damage, and failures due to ice crystal ingestion.

  13. An Infrared Solution to a National Priority NASA Ice Detection and Measurement Problem

    NASA Technical Reports Server (NTRS)

    Meitzler, Thomas; Bryk, Darryl; Sohn, Euijung; Bienkowski, Mary; Lane, Kimberly; Smith, Gregory; Charbeneau, Michelle; Moss, Thomas; Speece, Robert; Stevenson, Charles; hide

    2007-01-01

    NASA has a serious problem with ice that forms on the cryogenic-filled Space Shuttle External Tank (ET) that could endanger the crew and vehicle. This problem has defied resolution in the past. To find a solution, a cooperative agreement was developed between NASA-Kennedy Space Center (KSC) and the U.S. Army-Tank-Automotive, armaments Research, Development & Engineering Center (TARDEC). This paper describes the need, initial investigation, solution methodology, and some results for a mobile near-IR ice detection and measurement system developed by MDA of Canada and jointly tested by the U.S. Army TARDEC and NASA. Performance results achieved demonstrate that the pre-launch inspection system has the potential to become a critical tool in addressing NASA's ice problem.

  14. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2017-01-01

    This paper describes plans and preliminary results for using the NASA Propulsion Systems Lab (PSL) to experimentally study the fundamental physics of ice-crystal ice accretion. NASA is evaluating whether this facility, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This paper presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  15. Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Struk, Peter; Tsao, Jen-Ching; Bartkus, Tadas

    2016-01-01

    This presentation accompanies the paper titled Plans and Preliminary Results of Fundamental Studies of Ice Crystal Icing Physics in the NASA Propulsion Systems Laboratory. NASA is evaluating whether PSL, in addition to full-engine and motor-driven-rig tests, can be used for more fundamental ice-accretion studies that simulate the different mixed-phase icing conditions along the core flow passage of a turbo-fan engine compressor. The data from such fundamental accretion tests will be used to help develop and validate models of the accretion process. This presentation (and accompanying paper) presents data from some preliminary testing performed in May 2015 which examined how a mixed-phase cloud could be generated at PSL using evaporative cooling in a warmer-than-freezing environment.

  16. Grumman S2F-1 Tracker at NACA Lewis

    NASA Image and Video Library

    1956-08-21

    The NACA’s Lewis Flight Propulsion Laboratory acquired the Grumman S2F-1 Tracker from the Navy in 1955 to study icing instrumentation. Lewis’s icing research program was winding down at the time. The use of jet engines was increasing thus reducing the threat of ice accumulation. Nonetheless Lewis continued research on the instrumentation used to detect icing conditions. The S2F-1 Tracker was a carrier-based submarine hunter for the Navy. Grumman developed the Tracker as a successor to its Korean War-era Guardian patrol aircraft. Prototypes first flew in late 1952 and battle-ready versions entered Naval service in early 1954. The Navy utilized the Trackers to protect fleets from attack.

  17. General aviation internal combustion engine research programs at NASA-Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1978-01-01

    An update is presented of non-turbine general aviation engine programs underway at the NASA-Lewis Research Center in Cleveland, Ohio. The program encompasses conventional, lightweight diesel and rotary engines. Its three major thrusts are: (a) reduced SFC's; (b) improved fuels tolerance; and (c) reducing emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to late 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.

  18. Ice Accretion with Varying Surface Tension

    NASA Technical Reports Server (NTRS)

    Bilanin, Alan J.; Anderson, David N.

    1995-01-01

    During an icing encounter of an aircraft in flight, super-cooled water droplets impinging on an airfoil may splash before freezing. This paper reports tests performed to determine if this effect is significant and uses the results to develop an improved scaling method for use in icing test facilities. Simple laboratory tests showed that drops splash on impact at the Reynolds and Weber numbers typical of icing encounters. Further confirmation of droplet splash came from icing tests performed in the NaSA Lewis Icing Research Tunnel (IRT) with a surfactant added to the spray water to reduce the surface tension. The resulting ice shapes were significantly different from those formed when no surfactant was added to the water. These results suggested that the droplet Weber number must be kept constant to properly scale icing test conditions. Finally, the paper presents a Weber-number-based scaling method and reports results from scaling tests in the IRT in which model size was reduced up to a factor of 3. Scale and reference ice shapes are shown which confirm the effectiveness of this new scaling method.

  19. Computational Simulation of the Formation and Material Behavior of Ice

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Singhal, Surendra N.; Chamis, Christos C.

    1994-01-01

    Computational methods are described for simulating the formation and the material behavior of ice in prevailing transient environments. The methodology developed at the NASA Lewis Research Center was adopted. A three dimensional finite-element heat transfer analyzer was used to predict the thickness of ice formed under prevailing environmental conditions. A multi-factor interaction model for simulating the material behavior of time-variant ice layers is presented. The model, used in conjunction with laminated composite mechanics, updates the material properties of an ice block as its thickness increases with time. A sample case of ice formation in a body of water was used to demonstrate the methodology. The results showed that the formation and the material behavior of ice can be computationally simulated using the available composites technology.

  20. DRA/NASA/ONERA Collaboration on Icing Research. Part 2; Prediction of Airfoil Ice Accretion

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Gent, R. W.; Guffond, Didier

    1997-01-01

    This report presents results from a joint study by DRA, NASA, and ONERA for the purpose of comparing, improving, and validating the aircraft icing computer codes developed by each agency. These codes are of three kinds: (1) water droplet trajectory prediction, (2) ice accretion modeling, and (3) transient electrothermal deicer analysis. In this joint study, the agencies compared their code predictions with each other and with experimental results. These comparison exercises were published in three technical reports, each with joint authorship. DRA published and had first authorship of Part 1 - Droplet Trajectory Calculations, NASA of Part 2 - Ice Accretion Prediction, and ONERA of Part 3 - Electrothermal Deicer Analysis. The results cover work done during the period from August 1986 to late 1991. As a result, all of the information in this report is dated. Where necessary, current information is provided to show the direction of current research. In this present report on ice accretion, each agency predicted ice shapes on two dimensional airfoils under icing conditions for which experimental ice shapes were available. In general, all three codes did a reasonable job of predicting the measured ice shapes. For any given experimental condition, one of the three codes predicted the general ice features (i.e., shape, impingement limits, mass of ice) somewhat better than did the other two. However, no single code consistently did better than the other two over the full range of conditions examined, which included rime, mixed, and glaze ice conditions. In several of the cases, DRA showed that the user's knowledge of icing can significantly improve the accuracy of the code prediction. Rime ice predictions were reasonably accurate and consistent among the codes, because droplets freeze on impact and the freezing model is simple. Glaze ice predictions were less accurate and less consistent among the codes, because the freezing model is more complex and is critically

  1. Update on results of SPRE testing at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.

    1991-01-01

    The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigated the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The impact of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance tests results with HFAST code predictions show good agreement for PV power, but show poor agreement for PV efficiency. Correlations are presented relating the piston midstroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.

  2. Update on results of SPRE testing at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Cairelli, James E.; Swec, Diane M.; Wong, Wayne A.; Doeberling, Thomas J.; Madi, Frank J.

    1991-01-01

    The Space Power Research Engine (SPRE), a free-piston Stirling engine with a linear alternator, is being tested at NASA Lewis Research Center as part of the Civilian Space Technology Initiative (CSTI) as a candidate for high capacity space power. Results are presented from recent SPRE tests designed to investigate the effects of variation in the displacer seal clearance and piston centering port area on engine performance and dynamics. The effects of these variations on PV power and efficiency are presented. Comparisons of the displacer seal clearance test results with HFAST code predictions show good agreement for PV power but poor agreement for PV efficiency. Correlations are presented relating the piston mid-stroke position to the dynamic Delta P across the piston and the centering port area. Test results indicate that a modest improvement in PV power and efficiency may be realized with a reduction in piston centering port area.

  3. Validation of NASA Thermal Ice Protection Computer Codes. Part 3; The Validation of Antice

    NASA Technical Reports Server (NTRS)

    Al-Khalil, Kamel M.; Horvath, Charles; Miller, Dean R.; Wright, William B.

    2001-01-01

    An experimental program was generated by the Icing Technology Branch at NASA Glenn Research Center to validate two ice protection simulation codes: (1) LEWICE/Thermal for transient electrothermal de-icing and anti-icing simulations, and (2) ANTICE for steady state hot gas and electrothermal anti-icing simulations. An electrothermal ice protection system was designed and constructed integral to a 36 inch chord NACA0012 airfoil. The model was fully instrumented with thermo-couples, RTD'S, and heat flux gages. Tests were conducted at several icing environmental conditions during a two week period at the NASA Glenn Icing Research Tunnel. Experimental results of running-wet and evaporative cases were compared to the ANTICE computer code predictions and are presented in this paper.

  4. Design of the NASA Lewis 4-Port Wave Rotor Experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    1997-01-01

    Pressure exchange wave rotors, used in a topping stage, are currently being considered as a possible means of increasing the specific power, and reducing the specific fuel consumption of gas turbine engines. Despite this interest, there is very little information on the performance of a wave rotor operating on the cycle (i.e., set of waves) appropriate for use in a topping stage. One such cycle, which has the advantage of being relatively easy to incorporate into an engine, is the four-port cycle. Consequently, an experiment to measure the performance of a four-port wave rotor for temperature ratios relevant to application as a topping cycle for a gas turbine engine has been designed and built at NASA Lewis. The design of the wave rotor is described, together with the constraints on the experiment.

  5. NASA-Lewis experiences with multigroup cross sections and shielding calculations

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.

  6. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    NASA Technical Reports Server (NTRS)

    Thomas, Queito P.

    2015-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.

  7. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  8. New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.

    1999-01-01

    A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.

  9. Characterization of Ice Roughness From Simulated Icing Encounters

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Shin, Jaiwon

    1997-01-01

    Detailed measurements of the size of roughness elements on ice accreted on models in the NASA Lewis Icing Research Tunnel (IRT) were made in a previous study. Only limited data from that study have been published, but included were the roughness element height, diameter and spacing. In the present study, the height and spacing data were found to correlate with the element diameter, and the diameter was found to be a function primarily of the non-dimensional parameters freezing fraction and accumulation parameter. The width of the smooth zone which forms at the leading edge of the model was found to decrease with increasing accumulation parameter. Although preliminary, the success of these correlations suggests that it may be possible to develop simple relationships between ice roughness and icing conditions for use in ice-accretion-prediction codes. These codes now require an ice-roughness estimate to determine convective heat transfer. Studies using a 7.6-cm-diameter cylinder and a 53.3-cm-chord NACA 0012 airfoil were also performed in which a 1/2-min icing spray at an initial set of conditions was followed by a 9-1/2-min spray at a second set of conditions. The resulting ice shape was compared with that from a full 10-min spray at the second set of conditions. The initial ice accumulation appeared to have no effect on the final ice shape. From this result, it would appear the accreting ice is affected very little by the initial roughness or shape features.

  10. Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory (PSL): Altitude Investigation

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a full scale ice crystal icing turbofan engine test in the NASA Glenn Research Centers Propulsion Systems Laboratory (PSL) Facility in February 2013. Honeywell Engines supplied the test article, an obsolete, unmodified Lycoming ALF502-R5 turbofan engine serial number LF01 that experienced an un-commanded loss of thrust event while operating at certain high altitude ice crystal icing conditions. These known conditions were duplicated in the PSL for this testing.

  11. Research and development of optical measurement techniques for aerospace propulsion research: A NASA Lewis Research Center perspective

    NASA Technical Reports Server (NTRS)

    Lesco, Daniel J.

    1991-01-01

    The applied research effort required to develop new nonintrusive measurement techniques capable of obtaining the data required by aerospace propulsion researchers and of operating in the harsh environments encountered in research and test facilities is discussed and illustrated through several ongoing projects at NASA's Lewis Research Center. Factors including length of development time, funding levels, and collaborative support from fluid-thermal researchers are cited. Progress in developing new instrumentation via a multi-path approach, including NASA research, grant, and government-sponsored research through mechanisms like the Small Business Innovative Research program, is also described.

  12. New NASA Laser Technology Reveals How Ice Measures Up

    NASA Image and Video Library

    2014-01-28

    NASA's Multiple Altimeter Beam Experimental Lidar flew over Southwest Greenland's glaciers and sea ice to test a new method of measuring the height of Earth from space. Read more here: 1.usa.gov/1fkvoBp Credit: NASA/Tim Williams NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Lewis Research Center earth resources program

    NASA Technical Reports Server (NTRS)

    Mark, H.

    1972-01-01

    The Lewis Research Center earth resources program efforts are in the areas of: (1) monitoring and rapid evaluation of water quality; (2) determining ice-type and ice coverage distribution to aid operations in a possible extension of the Great Lakes ice navigation and shipping season; (3) monitoring spread of crop viruses; and (4) extent of damage to strip mined areas as well as success of efforts to rehabilitate such areas for agriculture.

  14. Determination of Shed Ice Particle Size Using High Speed Digital Imaging

    NASA Technical Reports Server (NTRS)

    Broughton, Howard; Owens, Jay; Sims, James J.; Bond, Thomas H.

    1996-01-01

    A full scale model of an aircraft engine inlet was tested at NASA Lewis Research Center's Icing Research Tunnel. Simulated natural ice sheds from the engine inlet lip were studied using high speed digital image acquisition and image analysis. Strategic camera placement integrated at the model design phase allowed the study of ice accretion on the inlet lip and the resulting shed ice particles at the aerodynamic interface plane at the rear of the inlet prior to engine ingestion. The resulting digital images were analyzed using commercial and proprietary software to determine the size of the ice particles that could potentially be ingested by the engine during a natural shedding event. A methodology was developed to calibrate the imaging system and insure consistent and accurate measurements of the ice particles for a wide range of icing conditions.

  15. User's manual for the NASA Lewis ice accretion/heat transfer prediction code with electrothermal deicer input

    NASA Technical Reports Server (NTRS)

    Masiulaniec, Konstanty C.; Wright, William B.

    1994-01-01

    A version of LEWICE has been developed that incorporates a recently developed electrothermal deicer code, developed at the University of Toledo by William B. Wright. This was accomplished, in essence, by replacing a subroutine in LEWICE, called EBAL, which balanced the energies at the ice surface, with a subroutine called UTICE. UTICE performs this same energy balance, as well as handles all the time-timperature transients below the ice surface, for all of the layers of a composite blade as well as the ice layer itself. This new addition is set up in such a fashion that a user may specify any number of heaters, any heater chordwise length, and any heater gap desired. The heaters may be fired in unison, or they may be cycled with periods independent of each other. The heater intensity may also be varied. In addition, the user may specify any number of layers and thicknesses depthwise into the blade. Thus, the new addition has maximum flexibility in modeling virtually any electrothermal deicer installed into any airfoil. It should be noted that the model simulates both shedding and runback. With the runback capability, it can simulate the anti-icing mode of heater performance, as well as detect icing downstream of the heaters due to runback in unprotected portions of the airfoil. This version of LEWICE can be run in three modes. In mode 1, no conduction heat transfer is modeled (which would be equivalent to the original version of LEWICE). In mode 2, all heat transfer is considered due to conduction but no heaters are firing. In mode 3, conduction heat transfer where the heaters are engaged is modeled, with subsequent ice shedding. When run in the first mode, there is virtually identical agreement with the original version of LEWICE in the prediction of accreted ice shapes. The code may be run in the second mode to determine the effects of conduction on the ice accretion process.

  16. Spectral Analysis and Experimental Modeling of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.

    1996-01-01

    A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.

  17. Evaluation of Alternative Altitude Scaling Methods for Thermal Ice Protection System in NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Addy, Harold; Broeren, Andy P.; Orchard, David M.

    2017-01-01

    A test was conducted at NASA Icing Research Tunnel to evaluate altitude scaling methods for thermal ice protection system. Two scaling methods based on Weber number were compared against a method based on the Reynolds number. The results generally agreed with the previous set of tests conducted in NRCC Altitude Icing Wind Tunnel. The Weber number based scaling methods resulted in smaller runback ice mass than the Reynolds number based scaling method. The ice accretions from the Weber number based scaling method also formed farther upstream. However there were large differences in the accreted ice mass between the two Weber number based scaling methods. The difference became greater when the speed was increased. This indicated that there may be some Reynolds number effects that isnt fully accounted for and warrants further study.

  18. The NASA Lewis Research Center: An Economic Impact Study

    NASA Technical Reports Server (NTRS)

    Austrian, Ziona

    1996-01-01

    The NASA Lewis Research Center (LeRC), established in 1941, is one of ten NASA research centers in the country. It is situated on 350 acres of land in Cuyahoga County and occupies more than 140 buildings and over 500 specialized research and test facilities. Most of LeRC's facilities are located in the City of Cleveland; some are located within the boundaries of the cities of Fairview Park and Brookpark. LeRC is a lead center for NASA's research, technology, and development in the areas of aeropropulsion and selected space applications. It is a center of excellence for turbomachinery, microgravity fluid and combustion research, and commercial communication. The base research and technology disciplines which serve both aeronautics and space areas include materials and structures, instrumentation and controls, fluid physics, electronics, and computational fluid dynamics. This study investigates LeRC's economic impact on Northeast Ohio's economy. It was conducted by The Urban Center's Economic Development Program in Cleveland State University's Levin College of Urban Affairs. The study measures LeRC's direct impact on the local economy in terms of jobs, output, payroll, and taxes, as well as the indirect impact of these economic activities when they 'ripple' throughout the economy. To fully explain LeRC's overall impact on the region, its contributions in the areas of technology transfer and education are also examined. The study uses a highly credible and widely accepted research methodology. First, regional economic multipliers based on input-output models were used to estimate the effect of LERC spending on the Northeast Ohio economy. Second, the economic models were complemented by interviews with industrial, civic, and university leaders to qualitatively assess LeRC's impact in the areas of technology transfer and education.

  19. Transputer parallel processing at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1989-01-01

    The transputer parallel processing lab at NASA Lewis Research Center (LeRC) consists of 69 processors (transputers) that can be connected into various networks for use in general purpose concurrent processing applications. The main goal of the lab is to develop concurrent scientific and engineering application programs that will take advantage of the computational speed increases available on a parallel processor over the traditional sequential processor. Current research involves the development of basic programming tools. These tools will help standardize program interfaces to specific hardware by providing a set of common libraries for applications programmers. The thrust of the current effort is in developing a set of tools for graphics rendering/animation. The applications programmer currently has two options for on-screen plotting. One option can be used for static graphics displays and the other can be used for animated motion. The option for static display involves the use of 2-D graphics primitives that can be called from within an application program. These routines perform the standard 2-D geometric graphics operations in real-coordinate space as well as allowing multiple windows on a single screen.

  20. Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility

    NASA Technical Reports Server (NTRS)

    Moore, S. H.; Voecks, G. E.

    1997-01-01

    Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.

  1. NASA Lewis steady-state heat pipe code users manual

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.

    1992-01-01

    The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.

  2. NASA Lewis steady-state heat pipe code users manual

    NASA Astrophysics Data System (ADS)

    Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.

    1992-06-01

    The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.

  3. A turbulence model for iced airfoils and its validation

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Chen, Hsun H.; Cebeci, Tuncer

    1992-01-01

    A turbulence model based on the extension of the algebraic eddy viscosity formulation of Cebeci and Smith developed for two dimensional flows over smooth and rough surfaces is described for iced airfoils and validated for computed ice shapes obtained for a range of total temperatures varying from 28 to -15 F. The validation is made with an interactive boundary layer method which uses a panel method to compute the inviscid flow and an inverse finite difference boundary layer method to compute the viscous flow. The interaction between inviscid and viscous flows is established by the use of the Hilbert integral. The calculated drag coefficients compare well with recent experimental data taken at the NASA-Lewis Icing Research Tunnel (IRT) and show that, in general, the drag increase due to ice accretion can be predicted well and efficiently.

  4. An experimental and theoretical study of the ice accretion process during artificial and natural icing conditions

    NASA Technical Reports Server (NTRS)

    Kirby, Mark S.; Hansman, R. John

    1988-01-01

    Real-time measurements of ice growth during artificial and natural icing conditions were conducted using an ultrasonic pulse-echo technique. This technique allows ice thickness to be measured with an accuracy of + or - 0.5 mm; in addition, the ultrasonic signal characteristics may be used to detect the presence of liquid on the ice surface and hence discern wet and dry ice growth behavior. Ice growth was measured on the stagnation line of a cylinder exposed to artificial icing conditions in the NASA Lewis Icing Research Tunnel (IRT), and similarly for a cylinder exposed in flight to natural icing conditions. Ice thickness was observed to increase approximately linearly with exposure time during the initial icing period. The ice accretion rate was found to vary with cloud temperature during wet ice growth, and liquid runback from the stagnation region was inferred. A steady-state energy balance model for the icing surface was used to compare heat transfer characteristics for IRT and natural icing conditions. Ultrasonic measurements of wet and dry ice growth observed in the IRT and in flight were compared with icing regimes predicted by a series of heat transfer coefficients. The heat transfer magnitude was generally inferred to be higher for the IRT than for the natural icing conditions encountered in flight. An apparent variation in the heat transfer magnitude was also observed for flights conducted through different natural icing-cloud formations.

  5. Update on the NASA Glenn PSL Ice Crystal Cloud Characterization (2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, J.; Bencic, T.; Ratvasky, Thomas P.; Struk, Peter M.

    2016-01-01

    NASA Glenn's Propulsion Systems Laboratory (PSL) is an altitude engine research test facility capable of producing ice-crystal and supercooled liquid clouds. The cloud characterization parameter space is fairly large and complex, but the phase of the cloud seems primarily governed by wet bulb temperature. The presentation will discuss some of the issues uncovered through four cloud characterization efforts to date, as well as some of instrumentation that has been used to characterize cloud parameters including cloud uniformity, bulk total water content, median volumetric diameter and max-diameter, percent freeze-out, relative humidity, and an update on the NASA Glenn PSL Ice Crystal Cloud Characterization (2016).

  6. Wind tunnel evaluation of air-foil performance using simulated ice shapes

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Zaguli, R. J.; Gregorek, G. M.

    1982-01-01

    A two-phase wind tunnel test was conducted in the 6 by 9 foot Icing Research Tunnel (IRT) at NASA Lewis Research Center to evaluate the effect of ice on the performance of a full scale general aviation wing. In the first IRT tests, rime and glaze shapes were carefully documented as functions of angle of attack and free stream conditions. Next, simulated ice shapes were constructed for two rime and two glaze shapes and used in the second IRT tunnel entry. The ice shapes and the clean airfoil were tapped to obtain surface pressures and a probe used to measure the wake characteristics. These data were recorded and processed, on-line, with a minicomputer/digital data acquisition system. The effect of both rime and glaze ice on the pressure distribution, Cl, Cd, and Cm are presented.

  7. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  8. Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory

    NASA Technical Reports Server (NTRS)

    Robinson, Raymond C.; Cuy, Michael D.

    1994-01-01

    The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.

  9. Incorporation of New Convective Ice Microphysics into the NASA GISS GCM and Impacts on Cloud Ice Water Path (IWP) Simulation

    NASA Technical Reports Server (NTRS)

    Elsaesser, Greg; Del Genio, Anthony

    2015-01-01

    The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high latitude ice IWP that decreased by 50 relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by 15 in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of 2. This was largely driven by IWC in deep-convecting regions of the tropics.Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter.GCM simulations with the improved convective parameterization yield a 50 decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.

  10. Incorporation of New Convective Ice Microphysics into the NASA GISS GCM and Impacts on Cloud Ice Water Path (IWP) Simulation

    NASA Astrophysics Data System (ADS)

    Elsaesser, G.; Del Genio, A. D.

    2015-12-01

    The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high-latitude ice IWP that decreased by ~50% relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by ~15% in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (~200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of ~2. This was largely driven by IWC in deep-convecting regions of the tropics. Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter. GCM simulations with the improved convective parameterization yield a ~50% decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.

  11. Automatic control study of the icing research tunnel refrigeration system

    NASA Technical Reports Server (NTRS)

    Kieffer, Arthur W.; Soeder, Ronald H.

    1991-01-01

    The Icing Research Tunnel (IRT) at the NASA Lewis Research Center is a subsonic, closed-return atmospheric tunnel. The tunnel includes a heat exchanger and a refrigeration plant to achieve the desired air temperature and a spray system to generate the type of icing conditions that would be encountered by aircraft. At the present time, the tunnel air temperature is controlled by manual adjustment of freon refrigerant flow control valves. An upgrade of this facility calls for these control valves to be adjusted by an automatic controller. The digital computer simulation of the IRT refrigeration plant and the automatic controller that was used in the simulation are discussed.

  12. Evaluation of constant-Weber-number scaling for icing tests

    NASA Technical Reports Server (NTRS)

    Anderson, David N.

    1996-01-01

    Previous studies showed that for conditions simulating an aircraft encountering super-cooled water droplets the droplets may splash before freezing. Other surface effects dependent on the water surface tension may also influence the ice accretion process. Consequently, the Weber number appears to be important in accurately scaling ice accretion. A scaling method which uses a constant-Weber-number approach has been described previously; this study provides an evaluation of this scaling method. Tests are reported on cylinders of 2.5 to 15-cm diameter and NACA 0012 airfoils with chords of 18 to 53 cm in the NASA Lewis Icing Research Tunnel (IRT). The larger models were used to establish reference ice shapes, the scaling method was applied to determine appropriate scaled test conditions using the smaller models, and the ice shapes were compared. Icing conditions included warm glaze, horn glaze and mixed. The smallest size scaling attempted was 1/3, and scale and reference ice shapes for both cylinders and airfoils indicated that the constant-Weber-number scaling method was effective for the conditions tested.

  13. NASA Sea Ice Validation Program for the Defense Meteorological Satellite Program Special Sensor Microwave Imager

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J. (Editor); Crawford, John P.; Drinkwater, Mark R.; Emery, William J.; Eppler, Duane T.; Farmer, L. Dennis; Fowler, Charles W.; Goodberlet, Mark; Jentz, Robert R.; Milman, Andrew

    1992-01-01

    The history of the program is described along with the SSM/I sensor, including its calibration and geolocation correction procedures used by NASA, SSM/I data flow, and the NASA program to distribute polar gridded SSM/I radiances and sea ice concentrations (SIC) on CD-ROMs. Following a discussion of the NASA algorithm used to convert SSM/I radiances to SICs, results of 95 SSM/I-MSS Landsat IC comparisons for regions in both the Arctic and the Antarctic are presented. The Landsat comparisons show that the overall algorithm accuracy under winter conditions is 7 pct. on average with 4 pct. negative bias. Next, high resolution active and passive microwave image mosaics from coordinated NASA and Navy aircraft underflights over regions of the Beaufort and Chukchi seas in March 1988 were used to show that the algorithm multiyear IC accuracy is 11 pct. on average with a positive bias of 12 pct. Ice edge crossings of the Bering Sea by the NASA DC-8 aircraft were used to show that the SSM/I 15 pct. ice concentration contour corresponds best to the location of the initial bands at the ice edge. Finally, a summary of results and recommendations for improving the SIC retrievals from spaceborne radiometers are provided.

  14. Ice Accretion Calculations for a Commercial Transport Using the LEWICE3D, ICEGRID3D and CMARC Programs

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Pinella, David; Garrison, Peter

    1999-01-01

    Collection efficiency and ice accretion calculations were made for a commercial transport using the NASA Lewis LEWICE3D ice accretion code, the ICEGRID3D grid code and the CMARC panel code. All of the calculations were made on a Windows 95 based personal computer. The ice accretion calculations were made for the nose, wing, horizontal tail and vertical tail surfaces. Ice shapes typifying those of a 30 minute hold were generated. Collection efficiencies were also generated for the entire aircraft using the newly developed unstructured collection efficiency method. The calculations highlight the flexibility and cost effectiveness of the LEWICE3D, ICEGRID3D, CMARC combination.

  15. Characteristics of the NASA Lewis bumpy torus plasma generated with high positive or negative applied potentials

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Gerdin, G. A.

    1976-01-01

    The toroidal ring of plasma contained in the NASA Lewis bumpy-torus superconducting magnet facility may be biased to positive or negative potentials approaching 50 kilovolts by applying direct-current voltages of the respective polarity to 12 or fewer of the midplane electrode rings. The electric fields which are responsible for heating the ions by E/B drift then point radially outward or inward. The low-frequency fluctuations below the ion cyclotron frequency appeared to be dominated by rotating spokes.

  16. Low-Noise Potential of Advanced Fan Stage Stator Vane Designs Verified in NASA Lewis Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    1999-01-01

    With the advent of new, more stringent noise regulations in the next century, aircraft engine manufacturers are investigating new technologies to make the current generation of aircraft engines as well as the next generation of advanced engines quieter without sacrificing operating performance. A current NASA initiative called the Advanced Subsonic Technology (AST) Program has set as a goal a 6-EPNdB (effective perceived noise) reduction in aircraft engine noise relative to 1992 technology levels by the year 2000. As part of this noise program, and in cooperation with the Allison Engine Company, an advanced, low-noise, high-bypass-ratio fan stage design and several advanced technology stator vane designs were recently tested in NASA Lewis Research Center's 9- by 15-Foot Low-Speed Wind Tunnel (an anechoic facility). The project was called the NASA/Allison Low Noise Fan.

  17. Determination of Local Densities in Accreted Ice Samples Using X-Rays and Digital Imaging

    NASA Technical Reports Server (NTRS)

    Broughton, Howard; Sims, James; Vargas, Mario

    1996-01-01

    At the NASA Lewis Research Center's Icing Research Tunnel ice shapes, similar to those which develop in-flight icing conditions, were formed on an airfoil. Under cold room conditions these experimental samples were carefully removed from the airfoil, sliced into thin sections, and x-rayed. The resulting microradiographs were developed and the film digitized using a high resolution scanner to extract fine detail in the radiographs. A procedure was devised to calibrate the scanner and to maintain repeatability during the experiment. The techniques of image acquisition and analysis provide accurate local density measurements and reveal the internal characteristics of the accreted ice with greater detail. This paper will discuss the methodology by which these samples were prepared with emphasis on the digital imaging techniques.

  18. Overview of free-piston Stirling SP-100 activities at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1986-01-01

    An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) SP-100 free-piston Stirling engine activities is presented. These activities are being conducted in support of the Department of Defense (DOD), Department of Energy (DOE), and NASA. The space-power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE). Another facet of the SP-100 project covers the status of an endurance test. Dynamic balancing of the SPDE engine is discussed along with a summary covering the parametric results of a study showing the relationship between power-converter specific weight and efficiency both as a function of Stirling engine heater to cooler temperature ratio. Design parameters and conceptual design features are presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. And finally, a description of a hydrodynamic gas bearing concept is presented.

  19. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    NASA Technical Reports Server (NTRS)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  20. Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Sun, Tao; Niles, Paul B.; Harvey, Ralph P.; Bish, David L.; Tonui, Eric

    2012-01-01

    It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (< approx. 1km dia.) mound-like geomorphic features discovered within the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions.

  1. Summary of Research Report Lewis Incubator for Technology

    NASA Technical Reports Server (NTRS)

    Zeman, Wayne P.

    2000-01-01

    This report summarizes the work done to establish and operate the Lewis Incubator for Technology (LIFT) for the period July 1996 through September 2000. The Lewis Incubator helps the startup and growth of technology-based businesses with the potential to incorporate technology from the NASA Glenn Research Center. During the grant period, LIFT began operation, met or exceeded all key performance measures, and continues its operation through a new cooperative agreement with NASA Glenn and also through continued funding from the State of Ohio.

  2. Edwin W. Lewis, Jr.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Edwin W. Lewis Jr. is a research pilot in the Airborne Science program, Flight Crew Branch, Dryden Flight Research Center, Edwards, California. He currently flies the DC-8, F/A-18, Lear Jet 24, King Air, and T-34C in support of Dryden's flight operations and is mentor pilot for the King Air and the Lear Jet. Prior to accepting this assignment Lewis was a pilot for eight years at NASA's Ames Research Center, Moffett Field, California, flying 10 different aircraft - C-130B, DC-8-72, UH-1, SH-3, King Air, Lear 24, T-38A, T-39G and YO-3A - in support of NASA flight missions. Lewis also flew the Kuiper Airborne Observatory (a modified civilian version of the Lockheed C-141 Starlifter). He was project pilot for Ames' 747 and T-38 programs. Lewis was born in New York City on May 19, 1936, and began flight training as a Civil Air Patrol cadet in 1951, ultimately earning his commercial pilot's certificate in 1958. He received a bachelor of arts degree in biology from Hobart College, Geneva, N.Y., and entered the U.S. Air Force through the Reserve Officer Training Corps. Following pilot training he was assigned to Moody Air Force Base, Ga., as an instructor pilot, for both the T-33 and T-37 aircraft. He served in Vietnam in 1965 and 1966, where he was a forward air controller, instructor and standardization/evaluation pilot, flying more than 1,000 hours in the O-1 'Bird Dog.' Lewis separated from the regular Air Force and joined Pan American World Airways and the 129th Air Commando Group, California Air National Guard (ANG) based in Hayward, California. During his 18-year career with the California ANG he flew the U-6, U-10, C-119, HC-130 aircraft and the HH-3 helicopter. He retired as commander, 129th Air Rescue and Recovery Group, a composite combat rescue group, in the grade of colonel. During his 22 years as an airline pilot, he flew the Boeing 707, 727 and 747. He took early retirement from Pan American in 1989 to become a pilot with NASA.

  3. Edwin W. Lewis, Jr.

    NASA Image and Video Library

    1999-09-29

    Edwin W. Lewis Jr. is a research pilot in the Airborne Science program, Flight Crew Branch, Dryden Flight Research Center, Edwards, California. He currently flies the DC-8, F/A-18, Lear Jet 24, King Air, and T-34C in support of Dryden's flight operations and is mentor pilot for the King Air and the Lear Jet. Prior to accepting this assignment Lewis was a pilot for eight years at NASA's Ames Research Center, Moffett Field, California, flying 10 different aircraft C-130B, DC-8-72, UH-1, SH-3, King Air, Lear 24, T-38A, T-39G and YO-3A in support of NASA flight missions. Lewis also flew the Kuiper Airborne Observatory (a modified civilian version of the Lockheed C-141 Starlifter). He was project pilot for Ames' 747 and T-38 programs. Lewis was born in New York City on May 19, 1936, and began flight training as a Civil Air Patrol cadet in 1951, ultimately earning his commercial pilot's certificate in 1958. He received a bachelor of arts degree in biology from Hobart College, Geneva, N.Y., and entered the U.S. Air Force through the Reserve Officer Training Corps. Following pilot training he was assigned to Moody Air Force Base, Ga., as an instructor pilot, for both the T-33 and T-37 aircraft. He served in Vietnam in 1965 and 1966, where he was a forward air controller, instructor and standardization/evaluation pilot, flying more than 1,000 hours in the O-1 "Bird Dog." Lewis separated from the regular Air Force and joined Pan American World Airways and the 129th Air Commando Group, California Air National Guard (ANG) based in Hayward, California. During his 18-year career with the California ANG he flew the U-6, U-10, C-119, HC-130 aircraft and the HH-3 helicopter. He retired as commander, 129th Air Rescue and Recovery Group, a composite combat rescue group, in the grade of colonel. During his 22 years as an airline pilot, he flew the Boeing 707, 727 and 747. He took early retirement from Pan American in 1989 to become a pilot with NASA.

  4. Consolidated B-24M Liberator Equipped for Icing Research

    NASA Image and Video Library

    1946-07-21

    A Consolidated B-25M Liberator modified for icing research by the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. NACA Lewis performed a limited amount of icing research during World War II, but the program expanded significantly in 1946. The accumulation of ice on aircraft was a continual problem. The ice formations could result in extra weight, aerodynamic penalties, and blockage engine inlets. Although the Lewis icing researchers utilized numerous aircraft, the program’s two workhorses were the B-24M Liberator, seen here, and a North American XB-25E Mitchell. The Consolidated Aircraft Company created the four-engine bomber in the early 1940s. During World War II the bomber was employed on long-duration bombing missions in both Europe and the Pacific. Production of the B-24M version did not begin until October 1944 with the end of the war in Europe approaching. This resulted in scores of unneeded bombers when hostilities ended. This B-24M arrived at the NACA Lewis laboratory in November 1945. At Lewis the B-24M was repeatedly modified to study ice accretion on aircraft components. Researchers analyzed different anti-icing and deicing strategies and gathered statistical ice measurement data. The B-24M was also used to study ice buildup on jet engines. A General Electric I-16 engine was installed in the aircraft’s waist compartment with an air scoop on the top of the aircraft to duct air to the engine. Water spray nozzles inside the aircraft were employed to simulate icing conditions at the turbojet’s inlet.

  5. Fuels research studies at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.

    1982-01-01

    Fuels research studies carried out in a variety of areas related to aviation propulsion, ground transportation, and stationary power generation systems are discussed. The major efforts are directed to studies on fuels for jet aircraft. These studies involve fuels preparation, fuels analysis, and fuel quality evaluations. The scope and direction of research activities in these areas is discussed, descriptions of Lewis capabilities and facilities given, and results of recent research efforts reported.

  6. Characteristics of surface roughness associated with leading edge ice accretion

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon

    1994-01-01

    Detailed size measurements of surface roughness associated with leading edge ice accretions are presented to provide information on characteristics of roughness and trends of roughness development with various icing parameters. Data was obtained from icing tests conducted in the Icing Research Tunnel (IRT) at NASA Lewis Research Center (LeRC) using a NACA 0012 airfoil. Measurements include diameters, heights, and spacing of roughness elements along with chordwise icing limits. Results confirm the existence of smooth and rough ice zones and that the boundary between the two zones (surface roughness transition region) moves upstream towards stagnation region with time. The height of roughness grows as the air temperature and the liquid water content increase, however, the airspeed has little effect on the roughness height. Results also show that the roughness in the surface roughness transition region grows during a very early stage of accretion but reaches a critical height and then remains fairly constant. Results also indicate that a uniformly distributed roughness model is only valid at a very initial stage of the ice accretion process.

  7. Experimental Technique and Assessment for Measuring the Convective Heat Transfer Coefficient from Natural Ice Accretions

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.

  8. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  9. Results of a low power ice protection system test and a new method of imaging data analysis

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Bond, Thomas H.; Mesander, Geert A.

    1992-01-01

    Tests were conducted on a BF Goodrich De-Icing System's Pneumatic Impulse Ice Protection (PIIP) system in the NASA Lewis Icing Research Tunnel (IRT). Characterization studies were done on shed ice particle size by changing the input pressure and cycling time of the PIIP de-icer. The shed ice particle size was quantified using a newly developed image software package. The tests were conducted on a 1.83 m (6 ft) span, 0.53 m (221 in) chord NACA 0012 airfoil operated at a 4 degree angle of attack. The IRT test conditions were a -6.7 C (20 F) glaze ice, and a -20 C (-4 F) rime ice. The ice shedding events were recorded with a high speed video system. A detailed description of the image processing package and the results generated from this analytical tool are presented.

  10. User manual for NASA Lewis 10 by 10 foot supersonic wind tunnel. Revised

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1995-01-01

    This manual describes the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Lewis Research Center and provides information for users who wish to conduct experiments in this facility. Tunnel performance operating envelopes of altitude, dynamic pressure, Reynolds number, total pressure, and total temperature as a function of test section Mach number are presented. Operating envelopes are shown for both the aerodynamic (closed) cycle and the propulsion (open) cycle. The tunnel test section Mach number range is 2.0 to 3.5. General support systems, such as air systems, hydraulic system, hydrogen system, fuel system, and Schlieren system, are described. Instrumentation and data processing and acquisition systems are also described. Pretest meeting formats and schedules are outlined. Tunnel user responsibility and personnel safety are also discussed.

  11. Scale Model Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.

    1997-01-01

    NASA Lewis Research Center's Icing Research Tunnel (IRT) is the world's largest refrigerated wind tunnel and one of only three icing wind tunnel facilities in the United States. The IRT was constructed in the 1940's and has been operated continually since it was built. In this facility, natural icing conditions are duplicated to test the effects of inflight icing on actual aircraft components as well as on models of airplanes and helicopters. IRT tests have been used successfully to reduce flight test hours for the certification of ice-detection instrumentation and ice protection systems. To ensure that the IRT will remain the world's premier icing facility well into the next century, Lewis is making some renovations and is planning others. These improvements include modernizing the control room, replacing the fan blades with new ones to increase the test section maximum velocity to 430 mph, installing new spray bars to increase the size and uniformity of the artificial icing cloud, and replacing the facility heat exchanger. Most of the improvements will have a first-order effect on the IRT's airflow quality. To help us understand these effects and evaluate potential improvements to the flow characteristics of the IRT, we built a modular 1/10th-scale aerodynamic model of the facility. This closed-loop scale-model pilot tunnel was fabricated onsite in the various shops of Lewis' Fabrication Support Division. The tunnel's rectangular sections are composed of acrylic walls supported by an aluminum angle framework. Its turning vanes are made of tubing machined to the contour of the IRT turning vanes. The fan leg of the tunnel, which transitions from rectangular to circular and back to rectangular cross sections, is fabricated of fiberglass sections. The contraction section of the tunnel is constructed from sheet aluminum. A 12-bladed aluminum fan is coupled to a turbine powered by high-pressure air capable of driving the maximum test section velocity to 550 ft

  12. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  13. NASA Software Safety Standard

    NASA Technical Reports Server (NTRS)

    Rosenberg, Linda

    1997-01-01

    If software is a critical element in a safety critical system, it is imperative to implement a systematic approach to software safety as an integral part of the overall system safety programs. The NASA-STD-8719.13A, "NASA Software Safety Standard", describes the activities necessary to ensure that safety is designed into software that is acquired or developed by NASA, and that safety is maintained throughout the software life cycle. A PDF version, is available on the WWW from Lewis. A Guidebook that will assist in the implementation of the requirements in the Safety Standard is under development at the Lewis Research Center (LeRC). After completion, it will also be available on the WWW from Lewis.

  14. Lewis' Educational and Research Collaborative Internship Program

    NASA Technical Reports Server (NTRS)

    Heyward, Ann; Gott, Susan (Technical Monitor)

    2004-01-01

    The Lewis Educational and Research Collaborative Internship Program (LERCIP) is a collaborative undertaking by the Office of Educational Programs at NASA Glenn Research Center at Lewis Field (formerly NASA Lewis Research Center) and the Ohio Aerospace Institute. This program provides 10-week internships in addition to summer and winter extensions if funding is available and/or is requested by mentor (no less than 1 week no more than 4 weeks) for undergraduate/graduate students and secondary school teachers. Students who meet the travel reimbursement criteria receive up to $500 for travel expenses. Approximately 178 interns are selected to participate in this program each year and begin arriving the fourth week in May. The internships provide students with introductory professional experiences to complement their academic programs. The interns are given assignments on research and development projects under the personal guidance of NASA professional staff members. Each intern is assigned a NASA mentor who facilitates a research assignment. In addition to the research assignment, the summer program includes a strong educational component that enhances the professional stature of the participants. The educational activities include a research symposium and a variety of workshops, and lectures. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 2004.

  15. Close-up analysis of aircraft ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Breuer, Kenneth S.; Hazan, Didier; Reehorst, Andrew; Vargas, Mario

    1993-01-01

    Various types of ice formation have been studied by analysis of high magnification video observations. All testing was conducted in the NASA Lewis Icing Research Tunnel (IRT). A faired 8.9 cm (3.5 in.) diameter metal-clad cylinder and a 5.1 (2 in.) aluminum cylinder were observed by close-up and overview video cameras for several wind tunnel conditions. These included close-up grazing angle, close-up side view, as well as overhead and side overview cameras. Still photographs were taken at the end of each spray along with tracings of the subsequent ice shape. While in earlier tests only the stagnation region was observed, the entire area from the stagnation line to the horn region of glaze ice shapes was observed in this test. The modes or horn formation have been identified within the range of conditions observed. In the horn region, Horn Type A ice is formed by 'dry' feather growth into the flow direction and Horn Type B is formed by a 'wet' growth normal to the surface. The feather growth occurs when the freezing fraction is near unity and roughness elements exist to provide an initial growth site.

  16. Wind Tunnel Measured Effects on a Twin-Engine Short-Haul Transport Caused by Simulated Ice Accretions: Data Report

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Potapczuk, Mark; Ratvasky, Thomas; Laflin, Brenda Gile

    1997-01-01

    The purpose of this report is to release the data from the NASA Langley/Lewis 14 by 22 foot wind tunnel test that examined icing effects on a 1/8 scale twin-engine short-haul jet transport model. Presented in this document are summary data from the major configurations tested. The entire test database in addition to ice shape and model measurements is available as a data supplement in CD-ROM form. Data measured and presented are: wing pressure distributions, model force and moment, and wing surface flow visualization.

  17. Flow Quality Measurements in an Aerodynamic Model of NASA Lewis' Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Gonsalez, Jose C.

    1999-01-01

    As part of an ongoing effort to improve the aerodynamic flow characteristics of the Icing Research Tunnel (IRT), a modular scale model of the facility was fabricated. This 1/10th-scale model was used to gain further understanding of the flow characteristics in the IRT. The model was outfitted with instrumentation and data acquisition systems to determine pressures, velocities, and flow angles in the settling chamber and test section. Parametric flow quality studies involving the insertion and removal of a model of the IRT's distinctive heat exchanger (cooler) and/or of a honeycomb in the settling chamber were performed. These experiments illustrate the resulting improvement or degradation in flow quality.

  18. Rocket Propulsion Research at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Dawson, Virginia P.

    1992-01-01

    A small contingent of engineers at NASA Lewis Research Center pioneered in basic research on liquid propellants for rockets shortly after World War II. Carried on through the 1950s, this work influenced the important early decisions made by Abe Silverstein when he took charge of the Office of Space Flight Programs for NASA. He strongly supported the development of liquid hydrogen as a propulsion fuel in the face of resistance from Wernher von Braun. Members of the Lewis staff played an important role in bringing liquid hydrogen technology to the point of reliability through their management of the Centaur Program. This paper demonstrates how the personality and engineering intuition of Abe Silverstein shaped the Centaur program and left a lasting imprint on the laboratory research tradition. Many of the current leaders of Lewis Research Center received their first hands-on engineering experience when they worked on the Centaur program in the 1960s.

  19. Borax in the supraglacial moraine of the Lewis Cliff, Buckley Island quadrangle--first Antarctic occurrence

    USGS Publications Warehouse

    Fitzpatrick, J.J.; Muhs, D.R.

    1989-01-01

    During the 1987-1988 austral summer field season, membersof the south party of the antarctic search for meteorites south-ern team* working in the Lewis Cliff/Colbert Hills region dis-covered several areas of unusual mineralization within theLewis Cliff ice tongue and its associated moraine field (figure1). The Lewis Cliff ice tongue (84°15'S 161°25'E) is a meteorite-stranding surface of ablating blue ice, about 2.3 by 7.0 kilo-meters, bounded on the west by the Lewis Cliff, on the northand northeast by a large supraglacial moraine, and on the eastby the Colbert Hills. To the south it opens to the Walcott Névé.Because it is a meteorite-stranding surface, the major component of ice motion in the area is believed to be vertical(Whillans and Cassidy 1983). The presence of Thule-Baffinmoraines at the northern terminus of the blue ice tends tosupport the hypothesis that the area underlying the moraineis essentially stagnant and that ice arriving from the south ispiling up against it. Areas containing mineral deposits werefound within the moraine field to the north and east of theblue ice margin and also along the east margins of the blue iceitself. Subsequent X-ray diffraction analyses of these depositshave shown that they are composed predominantly of nah-colite (NaHCO3), trona [Na3(CO3)(HCO3) · 2H20], borax[Na2B405(OH)4 · 8H20], and a new hexagonal hydrous sulfatespecies. This paper reports the details of the borax occurrence,because it is the first known on the continent.

  20. Comparisons of Mixed-Phase Icing Cloud Simulations with Experiments Conducted at the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter

    2017-01-01

    This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.

  1. Balloons on Ice: NASA Launches Antarctica Scientific Balloon Campaign

    NASA Image and Video Library

    2017-12-08

    Cosmic rays and the chemicals and atoms that make up the interstellar space between stars are the focus of this year’s NASA Antarctica Long Duration Balloon Flight Campaign, which kicked into high gear with the launch of the Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) payload Nov. 28. The University of Maryland’s BACCUS mission is the first of three payloads taking flight from a balloon launch site on Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Read more: go.nasa.gov/2gCMtyP NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Lewis' Educational and Research Collaborative Intership Program Grant Closeout Report

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Lewis' Educational and Research Collaborative Internship Program (LERCIP) is a collaborative undertaking by the Office of Educational Programs at NASA Glenn Research Center at Lewis Field (formerly NASA Lewis Research Center) and the Ohio Aerospace Institute. This program provides 10-week internships and 10 or 12-week fellowships for undergraduate/graduate students and secondary school teachers. Approximately 130 interns are selected to participate in this program each year and begin arriving the second week in May. The internships provide students with introductory professional experiences to complement their academic programs. The interns are given assignments on research and development projects under the personal guidance of NASA professional staff members. Each intern is assigned a NASA mentor who facilitates a research assignment. In addition to the research assignment, the summer program includes a strong educational component that enhances the professional stature of the participants. The educational activities include a research symposium and a variety of workshops, lectures and short courses. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds.

  3. Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1995-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.

  4. Modern Exploration of the Lewis and Clark Expedition

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Lewis and Clark Geosystem is an online collection of private, state, local, and Federal data resources associated with the geography of the Lewis and Clark Expedition. Data were compiled from key partners including NASA s Stennis Space Center, the U.S. Army Corps of Engineers, the U.S. Fish and Wildlife Service, the U.S. Geological Survey (USGS), the University of Montana, the U.S. Department of Agriculture Forest Service, and from a collection of Lewis and Clark scholars. It combines modern views of the landscape with historical aerial photography, cartography, and other geographical data resources and historical sources, including: The Journals of the Lewis and Clark Expedition, the Academy of Natural Science's Lewis and Clark Herbarium, high-resolution copies of the American Philosophical Society s primary-source Lewis and Clark Journals, The Library of Congress Lewis and Clark cartography collection, as well as artifacts from the Smithsonian Institution and other sources.

  5. High-temperature test facility at the NASA Lewis engine components research laboratory

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1990-01-01

    The high temperature test facility (HTTF) at NASA-Lewis Engine Components Research Laboratory (ECRL) is presently used to evaluate the survivability of aerospace materials and the effectiveness of new sensing instrumentation in a realistic afterburner environment. The HTTF has also been used for advanced heat transfer studies on aerospace components. The research rig uses pressurized air which is heated with two combustors to simulate high temperature flow conditions for test specimens. Maximum airflow is 31 pps. The HTTF is pressure rated for up to 150 psig. Combustors are used to regulate test specimen temperatures up to 2500 F. Generic test sections are available to house test plates and advanced instrumentation. Customized test sections can be fabricated for programs requiring specialized features and functions. The high temperature test facility provides government and industry with a facility for testing aerospace components. Its operation and capabilities are described.

  6. NASA, Navy, and AES/York sea ice concentration comparison of SSM/I algorithms with SAR derived values

    NASA Technical Reports Server (NTRS)

    Jentz, R. R.; Wackerman, C. C.; Shuchman, R. A.; Onstott, R. G.; Gloersen, Per; Cavalieri, Don; Ramseier, Rene; Rubinstein, Irene; Comiso, Joey; Hollinger, James

    1991-01-01

    Previous research studies have focused on producing algorithms for extracting geophysical information from passive microwave data regarding ice floe size, sea ice concentration, open water lead locations, and sea ice extent. These studies have resulted in four separate algorithms for extracting these geophysical parameters. Sea ice concentration estimates generated from each of these algorithms (i.e., NASA/Team, NASA/Comiso, AES/York, and Navy) are compared to ice concentration estimates produced from coincident high-resolution synthetic aperture radar (SAR) data. The SAR concentration estimates are produced from data collected in both the Beaufort Sea and the Greenland Sea in March 1988 and March 1989, respectively. The SAR data are coincident to the passive microwave data generated by the Special Sensor Microwave/Imager (SSM/I).

  7. The NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.; Ryerson, Charles C.; Koenig, George G.

    2005-01-01

    NASA and the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) have an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data are post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Although the comparison data set is quite small, the cases examined indicate that the remote sensing technique appears to be an acceptable approach.

  8. Broken ice

    NASA Image and Video Library

    2017-12-08

    An area of broken glacier ice seen from the IceBridge DC-8 on Oct. 22, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Research and technology, Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The NASA Lewis Research Center's research and technology accomplishments for fiscal year 1985 are summarized. The report is organized into five major sections covering aeronautics, aerospace technology, spaceflight systems, space station systems, and computational technology support. This organization of the report roughly parallels the organization of the Center into directorates. Where appropriate, subheadings are used to identify special topics under the major headings. Results of all research and technology work performed during the fiscal year are contained in Lewis-published technical reports and presentations prepared either by Lewis scientists and engineers or by contractor personnel. In addition, significant results are presented by university faculty or graduate students in technical sessions and in journals of the technical societies. For the reader who desires more information about a particular subject, the Lewis contact will provide that information or references. In 1985, five Lewis products were selected by Research and Development Magazine for IR-100 awards. All are described and identified. In addition, the Lewis Distinguished Paper for 1984 to 1985, which was selected by the Chief Scientist and a research advisory board, is included and so identified.

  10. Derive Arctic Sea-ice Freeboard and Thickness from NASA's LVIS Observations

    NASA Astrophysics Data System (ADS)

    Yi, D.; Hofton, M. A.; Harbeck, J.; Cornejo, H.; Kurtz, N. T.

    2015-12-01

    The sea-ice freeboard and thickness are derived from the six sea-ice flights of NASA's IceBridge Land, Vegetation, and Ice Sensor (LVIS) over the Arctic from 2009 to 2013. The LVIS is an airborne scanning laser altimeter. It can operate at an altitude up to 10 km above the ground and produce a data swath up to 2 km wide with 20-m wide footprints. The laser output wavelength is 1064 nm and pulse repetition rate is 1000 Hz. The LVIS L2 geolocated surface elevation product and Level-1b waveform product (http://nsidc.org/data/ilvis2.html and http://nsidc.org/data/ilvis1b.html) at National Snow and Ice Data Center, USA (NSIDC) are used in this study. The elevations are referenced to a geoid with tides and dynamic atmospheric corrections applied. The LVIS waveforms were fitted with Gaussian curves to calculate pulse width, peak location, pulse amplitude, and signal baseline. For each waveform, the centroid, skewness, kurtosis, and pulse area were also calculated. The waveform parameters were calibrated based on laser off pointing angle and laser channels. Calibrated LVIS waveform parameters show a coherent response to variations in surface features along their ground tracks. These parameters, combined with elevation, can be used to identify leads, enabling the derivation of sea-ice freeboard and thickness without relying upon visual images. Preliminary results show that the elevations in some of the LVIS campaigns may vary with laser incident angle; this can introduce an elevation bias if not corrected. Further analysis of the LVIS data shown that the laser incident angle related elevation bias can be removed empirically. The sea-ice freeboard and thickness results from LVIS are compared with NASA's Airborne Topographic Mapper (ATM) for an April 20, 2010 flight, when both LVIS and ATM sensors were on the same aircraft and made coincidental measurements along repeat ground tracks.

  11. A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.

    1993-01-01

    This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).

  12. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  13. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short

  14. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Bencic, Timothy J.; Ratvasky, Thomas P.

    2016-01-01

    NASA Glenn's Propulsion Systems Lab (PSL), an altitude engine test facility, was outfitted with a spray system to generate ice crystals. The first ice crystal characterization test occurred in 2012. At PSL, turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper will discuss the recent learning from the previous two calibrations. It will describe some of the 12-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  15. Liner cooling research at NASA Lewis Research Center. [for gas turbine combustion chambers

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.

    1987-01-01

    Described are recently completed and current advanced liner research applicable to advanced small gas turbine engines. Research relating to the evolution of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently under way at NASA Lewis Research Center. As part of this research, a reverse-flow combustor geometry was maintained while different advanced liner wall cooling techniques were investigated and compared to a baseline combustor. The performance of the combustors featuring counterflow film-cooled (CFFC) panels, transpiration cooled liner walls (TRANS), and compliant metal/ceramic (CMC) walls was obtained over a range of simulated flight conditions of a 16:1 pressure ratio gas turbine engine and fuel/air ratios up to 0.034. All the combustors featured an identical fuel injection system, identical geometric configuration outline, and similar designed internal aerothermodynamics.

  16. User Manual for the NASA Glenn Ice Accretion Code LEWICE. Version 2.2.2

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    2002-01-01

    A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 2.2.2 of this code, which is called LEWICE. This version differs from release 2.0 due to the addition of advanced thermal analysis capabilities for de-icing and anti-icing applications using electrothermal heaters or bleed air applications. An extensive effort was also undertaken to compare the results against the database of electrothermal results which have been generated in the NASA Glenn Icing Research Tunnel (IRT) as was performed for the validation effort for version 2.0. This report will primarily describe the features of the software related to the use of the program. Appendix A of this report has been included to list some of the inner workings of the software or the physical models used. This information is also available in the form of several unpublished documents internal to NASA. This report is intended as a replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this code.

  17. NASA MISR Tracks Growth of Rift in the Larsen C Ice Shelf

    NASA Image and Video Library

    2017-04-11

    A rift in Antarctica's Larsen C ice shelf has grown to 110 miles (175 km) long, making it inevitable that an iceberg larger than Rhode Island will soon calve from the ice shelf. Larsen C is the fourth largest ice shelf in Antarctica, with an area of almost 20,000 square miles (50,000 square kilometers). The calving event will remove approximately 10 percent of the ice shelf's mass, according to the Project for Impact of Melt on Ice Shelf Dynamics and Stability (MIDAS), a UK-based team studying the ice shelf. Only 12 miles (20 km) of ice now separates the end of the rift from the ocean. The rift has grown at least 30 miles (50 km) in length since August, but appears to be slowing recently as Antarctica returns to polar winter. Project MIDAS reports that the calving event might destabilize the ice shelf, which could result in a collapse similar to what occurred to the Larsen B ice shelf in 2002. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite captured views of Larsen C on August 22, 2016, when the rift was 80 miles (130 km) in length; December 8, 2016, when the rift was approximately 90 miles (145 km) long; and April 6, 2017. The MISR instrument has nine cameras, which view the Earth at different angles. The overview image, from December 8, shows the entire Antarctic Peninsula -- home to Larsen A, B, and C ice shelves -- in natural color (similar to how it would appear to the human eye) from MISR's vertical-viewing camera. Combining information from several MISR cameras pointed at different angles gives information about the texture of the ice. The accompanying GIF depicts the inset area shown on the larger image and displays data from all three dates in false color. These multiangular views -- composited from MISR's 46-degree backward-pointing camera, the nadir (vertical-viewing) camera, and the 46-degree forward-pointing camera -- represent variations in ice texture as changes in color, such that areas of rough ice appear

  18. Setup in the Icing Research Tunnel Test Section

    NASA Image and Video Library

    1969-02-21

    Technicians set up test hardware inside the test section of the Icing Research Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Icing Research Tunnel was built in the early 1940s to study the formation of ice on aircraft surfaces and develop methods of preventing or eradicating that ice. Ice buildup is dangerous because it adds extra weight, effects aerodynamics, and sometimes blocks air flow through engines. The Icing Research Tunnel is a closed-loop atmospheric wind tunnel with a 6- by 9-foot test section. The tunnel can produce speeds up to 300 miles per hour and temperatures from 30 to -45 °F. NACA engineers struggled initially to perfect a spray bar system to introduce moisture into the airstream. The tunnel was shut down in the late 1950s as the center focused its energy exclusively on space. Industrial customers began using the tunnel sporadically, then steadily, in the 1960s. Boeing, Aerojet, Lockheed, Sikorsky, Beech and others ran tests during the 1960s. Boeing analyzed engine inlets for the CH-47 Chinook, CH-46 (Sea Knight) and CH-113. This photograph was taken during a series of 100 ice-phobic coatings for the Federal Aviation Administration. They found that many of the coatings reduced ice adhesion to the test sample, but they could not be used for aircraft applications.

  19. Use of the X-Band Radar to Support the Detection of In-Flight Icing Hazards by the NASA Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Serke, David J.; Politovich, Marcia K.; Reehorst, Andrew L.; Gaydos, Andrew

    2009-01-01

    The Alliance Icing Research Study-II (AIRS-II) field program was conducted near Montreal, Canada during the winter of 2003. The NASA Icing Remote Detection System (NIRSS) was deployed to detect in-flight icing hazards and consisted of a vertically pointing multichannel radiometer, a ceilometer and an x-band cloud radar. The radiometer was used to derive atmospheric temperature soundings and integrated liquid water, while the ceilometer and radar were used only to define cloud boundaries. The purpose of this study is to show that the radar reflectivity profiles from AIRS-II case studies could be used to provide a qualitative icing hazard.

  20. Establishing effective working relations with a potential user community - NASA Lewis Research Center experience

    NASA Technical Reports Server (NTRS)

    Foster, P.

    1977-01-01

    The NASA Lewis Research Center has held a series of six major and unique technology utilization conferences which were major milestones in planned structured efforts to establish effective working relationships with specific technology user communities. These efforts were unique in that the activities undertaken prior to the conference were extensive, and effectively laid the groundwork for productive technology transfer following, and as a direct result of, the conferences. The effort leading to the conference was in each case tailored to the characteristics of the potential user community, however, the common factors comprise a basic framework applicable to similar endeavors. The process is essentially a planned sequence of steps that constitute a technical market survey and a marketing program for the development of beneficial applications of aerospace technology beyond the aerospace field.

  1. Iceproofing Helicopters

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASA aircraft-icing research has been applied to expand the utility of the big flying-crane helicopter built by the Sikorsky Aircraft Division of United Technologies in Stratford, Conn. Sikorsky wanted to adapt the Skycrane, used in both military and commercial service, to lift heavy external loads in areas where icing conditions occur; ice build-up around the engine air inlets caused the major problem. NASA-Lewis has a special wind tunnel for injecting super cooled water droplets into the wind thereby simulating a natural icing cloud and observing how ice builds up on various shaped surfaces. From Lewis, Sikorsky engineers obtained information which optimized the design of the inlet anti-ice system. The resulting design proved to be an effective anti-icing modification for the flying crane. Sikorsky is also using additional Lewis Icing Research Tunnel data in its development of a new VTOL (Vertical Take-Off and Landing) aircraft.

  2. NASA Lewis Stirling SPRE testing and analysis with reduced number of cooler tubes

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Cairelli, James E.; Swec, Diane M.; Doeberling, Thomas J.; Lakatos, Thomas F.; Madi, Frank J.

    1992-01-01

    Free-piston Stirling power converters are candidates for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator, is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve the converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. Experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics are described. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.

  3. Ice-Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Malone, Adam M.; Paul, Benard P., Jr.; Woodard, Brian S.

    2016-01-01

    Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20% semispan), Midspan (64% semispan) and Outboard stations (83% semispan) of a wing based upon a 65% scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 deg C to -1.4 deg C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 deg C to -6.3 deg C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest that

  4. Ice-Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Malone, Adam M.; Paul, Bernard P., Jr.; Woodard, Brian S.

    2016-01-01

    Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20 percent semispan), Midspan (64 percent semispan) and Outboard stations (83 percent semispan) of a wing based upon a 65 percent scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 to -1.4 C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 to -6.3 C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest

  5. Improvements to the Total Temperature Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Gonsalez, Jose C.

    2005-01-01

    The ability to accurately set repeatable total temperature conditions is critical for collecting quality icing condition data, particularly near freezing conditions. As part of efforts to continually improve data quality in the NASA Glenn Icing Research Tunnel (IRT), new facility instrumentation and new calibration hardware for total temperature measurement were installed and new operational techniques were developed and implemented. This paper focuses on the improvements made in the calibration of total temperature in the IRT.

  6. Update on the NASA Glenn Propulsion Systems Lab Ice Crystal Cloud Characterization (2015, 2016)

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith; Bencic, Timothy; Ratvasky, Thomas

    2016-01-01

    NASA Glenn's Propulsion Systems Lab, an altitude engine test facility, was outfitted with a spray system to generate ice crystals in 2011. Turbine engines and driven rigs can experience ice crystal icing at flight altitudes, temperatures and Mach numbers. To support these tests, four ice crystal characterizations have been conducted in two different facility configurations. In addition, super-cooled liquid and mixed phase clouds have also been generated. This paper represents a work in progress. It will describe some of the 11-parameter calibration space, and how those parameters interact with each other, the instrumentation used to characterize the cloud and present a sample of the cloud characterization results.

  7. Aircraft icing research at NASA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    Research activity is described for: ice protection systems, icing instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft icing has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of ice protection systems and better estimates of the aeropenalties caused by ice on unprotected surfaces. The physics of aircraft icing is very similar to the icing that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all icing research groups will benefit greatly by sharing their research information.

  8. Electro-impulse de-icing of a turbofan engine inlet

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.

    1985-01-01

    The application of electromagnetic impulse deicing (EIDI) systems to turbofan engine inlets on business aircraft has been investigated experimentally. The tests were performed in the Icing Research Tunnel at NASA's Lewis Research Center. The deicing system testbed was a Falcon Fanjet 20 engine nacelle. The effectiveness of various deicing coil configurations and mount designs were compared, and design parameters were developed specifically for EIDI systems in turbofan engines. Flight tests were also carried out at altitudes in the range 3000-6000 ft corresponding to a temperature range of -3 to -8 C. It is shown that the ice particles removed from the engine inlet by the deicing system were small enough for the engine to ingest. Tentative design specifications are given with respect to the optimum coil configuration, and operating power of a EIDI production candidate.

  9. Cyclic Oxidation Testing and Modelling: A NASA Lewis Perspective

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Nesbitt, J. A.; Barrett, C. A.; Lowell, C. E.

    2000-01-01

    The Materials Division of the NASA Lewis Research Center has been heavily involved in the cyclic oxidation of high temperature materials for 30 years. Cyclic furnace and burner rig apparati have been developed, refined, and replicated to provide a large scale facility capable of evaluating many materials by a standard technique. Material behavior is characterized by weight change data obtained throughout the test, which has been modelled in a step-wise process of scale growth and spallation. This model and a coupled diffusion model have successfully described cyclic behavior for a number of systems and have provided insights regarding life prediction and variations in the spalling process. Performance ranking and mechanistic studies are discussed primarily for superalloys and coating alloys. Similar cyclic oxidation studies have been performed on steels, intermetallic compounds, thermal barrier coatings, ceramics, and ceramic composites. The most common oxidation test was performed in air at temperatures ranging from 800 deg. to 1600 C, for times up to 10000 h, and for cycle durations of 0.1 to 1000 h. Less controlled, but important, test parameters are the cooling temperature and humidity level. Heating and cooling rates are not likely to affect scale spallation. Broad experience has usually allowed for considerable focus and simplification of these test parameters, while still revealing the principal aspects of material behavior and performance. Extensive testing has been performed to statistically model the compositional effects of experimental alloys and to construct a comprehensive database of complex commercial alloys.

  10. NASA's MESSENGER Finds New Evidence for Water Ice at Mercury's Poles

    NASA Image and Video Library

    2017-12-08

    New observations by the MESSENGER spacecraft provide compelling support for the long-held hypothesis that Mercury harbors abundant water ice and other frozen volatile materials in its permanently shadowed polar craters. Three independent lines of evidence support this conclusion: the first measurements of excess hydrogen at Mercury's north pole with MESSENGER's Neutron Spectrometer, the first measurements of the reflectance of Mercury's polar deposits at near-infrared wavelengths with the Mercury Laser Altimeter (MLA), and the first detailed models of the surface and near-surface temperatures of Mercury's north polar regions that utilize the actual topography of Mercury's surface measured by the MLA. These findings are presented in three papers published online today in Science Express. Given its proximity to the Sun, Mercury would seem to be an unlikely place to find ice. But the tilt of Mercury's rotational axis is almost zero — less than one degree — so there are pockets at the planet's poles that never see sunlight. Scientists suggested decades ago that there might be water ice and other frozen volatiles trapped at Mercury's poles. The idea received a boost in 1991, when the Arecibo radio telescope in Puerto Rico detected unusually radar-bright patches at Mercury's poles, spots that reflected radio waves in the way one would expect if there were water ice. Many of these patches corresponded to the location of large impact craters mapped by the Mariner 10 spacecraft in the 1970s. But because Mariner saw less than 50 percent of the planet, planetary scientists lacked a complete diagram of the poles to compare with the images. MESSENGER's arrival at Mercury last year changed that. Images from the spacecraft's Mercury Dual Imaging System taken in 2011 and earlier this year confirmed that radar-bright features at Mercury's north and south poles are within shadowed regions on Mercury's surface, findings that are consistent with the water-ice hypothesis. To read

  11. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  12. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing

  13. Chemical Inventory Management at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Kraft, Shirley S.; Homan, Joseph R.; Bajorek, Michael J.; Dominguez, Manuel B.; Smith, Vanessa L.

    1997-01-01

    The Chemical Management System (CMS) is a client/server application developed with Power Builder and Sybase for the Lewis Research Center (LeRC). Power Builder is a client-server application development tool, Sybase is a Relational Database Management System. The entire LeRC community can access the CMS from any desktop environment. The multiple functions and benefits of the CMS are addressed.

  14. Lewis Information Network (LINK): Background and overview

    NASA Technical Reports Server (NTRS)

    Schulte, Roger R.

    1987-01-01

    The NASA Lewis Research Center supports many research facilities with many isolated buildings, including wind tunnels, test cells, and research laboratories. These facilities are all located on a 350 acre campus adjacent to the Cleveland Hopkins Airport. The function of NASA-Lewis is to do basic and applied research in all areas of aeronautics, fluid mechanics, materials and structures, space propulsion, and energy systems. These functions require a great variety of remote high speed, high volume data communications for computing and interactive graphic capabilities. In addition, new requirements for local distribution of intercenter video teleconferencing and data communications via satellite have developed. To address these and future communications requirements for the next 15 yrs, a project team was organized to design and implement a new high speed communication system that would handle both data and video information in a common lab-wide Local Area Network. The project team selected cable television broadband coaxial cable technology as the communications medium and first installation of in-ground cable began in the summer of 1980. The Lewis Information Network (LINK) became operational in August 1982 and has become the backbone of all data communications and video.

  15. A NASA/University/Industry Consortium for Research on Aircraft Ice Protection

    NASA Technical Reports Server (NTRS)

    Zumwalt, Glen W.

    1989-01-01

    From 1982 through 1987, an unique consortium was functioning which involved government (NASA), academia (Wichita State Univ.) and twelve industries. The purpose was the development of a better ice protection systems for aircraft. The circumstances which brought about this activity are described, the formation and operation recounted, and the effectiveness of the ventue evaluated.

  16. Particle Size Measurements From the First Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This paper presents particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  17. Particle Size Measurements from the first Fundamentals of Ice Crystal Icing Physics Test in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    King, Michael C.; Bachalo, William; Kurek, Andrzej

    2017-01-01

    This presentation shows particle measurements by the Artium Technologies, Inc. Phase Doppler Interferometer and High Speed Imaging instruments from the first Fundamental Ice Crystal Icing Physics test conducted in the NASA Propulsion Systems Laboratory. The work focuses on humidity sweeps at a larger and a smaller median volumetric diameter. The particle size distribution, number density, and water content measured by the Phase Doppler Interferometer and High Speed Imaging instruments from the sweeps are presented and compared. The current capability for these two instruments to measure and discriminate ICI conditions is examined.

  18. Turbulent dispersion of the icing cloud from spray nozzles used in icing tunnels

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Olsen, W. A., Jr.

    1986-01-01

    To correctly simulate flight in natural icing conditions, the turbulence in an icing simulator must be as low as possible. But some turbulence is required to mix the droplets from the spray nozzles and achieve an icing cloud of uniform liquid water content. The goal for any spray system is to obtain the widest possible spray cloud with the lowest possible turbulence in the test section of a icing tunnel. This investigation reports the measurement of turbulence and the three-dimensional spread of the cloud from a single spray nozzle. The task was to determine how the air turbulence and cloud width are affected by spray bars of quite different drag coefficients, by changes in the turbulence upstream of the spray, the droplet size, and the atomizing air. An ice accretion grid, located 6.3 m downstream of the single spray nozzle, was used to measure cloud spread. Both the spray bar and the grid were located in the constant velocity test section. Three spray bar shapes were tested: the short blunt spray bar used in the NASA Lewis Icing Research Tunnel, a thin 14.6 cm chord airfoil, and a 53 cm chord NACA 0012 airfoil. At the low airspeed (56 km/hr) the ice accretion pattern was axisymmetric and was not affected by the shape of the spray bar. At the high airspeed (169 km/hr) the spread was 30 percent smaller than at the low airspeed. For the widest cloud the spray bars should be located as far upstream in the low velocity plenum of the icing tunnel. Good comparison is obtained between the cloud spread data and predicitons from a two-dimensional cloud mixing computer code using the two equation turbulence (k epsilon g) model.

  19. Evaluation of NCAR Icing/SLD Forecasts, Tools and Techniques Used During The 1998 NASA SLD Flight Season

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.

    2001-01-01

    Supercooled Large Droplet (SLD) icing conditions were implicated in at least one recent aircraft crash, and have been associated with other aircraft incidents. Inflight encounters with SLD can result in ice accreting on unprotected areas of the wing where it can not be removed. Because this ice can adversely affect flight characteristics of some aircraft, there has been concern about flight safety in these conditions. The FAA held a conference on in-flight icing in 1996 where the state of knowledge concerning SLD was explored. One outcome of these meetings was an identified need to acquire SLD flight research data, particularly in the Great Lakes Region. The flight research data was needed by the FAA to develop a better understanding of the meteorological characteristics associated with SLD and facilitate an assessment of existing aircraft icing certification regulations with respect to SLD. In response to this need, NASA, the Federal Aviation Administration (FAA), and the National Center for Atmospheric Research (NCAR) conducted a cooperative icing flight research program to acquire SLD flight research data. The NASA Glenn Research Center's Twin Otter icing research aircraft was flown throughout the Great Lakes region during the winters of 1996-97 and 1997-98 to acquire SLD icing and meteorological data. The NASA Twin Otter was instrumented to measure cloud microphysical properties (particle size, LWC (Liquid Water Content), temperature, etc.), capture images of wing and tail ice accretion, and then record the resultant effect on aircraft performance due to the ice accretion. A satellite telephone link enabled the researchers onboard the Twin Otter to communicate with NCAR meteorologists. who provided real-time guidance into SLD icing conditions. NCAR meteorologists also provided preflight SLD weather forecasts that were used to plan the research flights, and served as on-board researchers. This document contains an evaluation of the tools and techniques NCAR

  20. An Experimental and Numerical Study of Icing Effects on the Performance and Controllability of a Twin Engine Aircraft

    NASA Technical Reports Server (NTRS)

    Reehorst, A.; Chung, J.; Potapczuk, M.; Choo, Y.; Wright, W.; Langhals, T.

    1999-01-01

    In September 1997 the National Transportation Safety Board (NTSB) requested assistance from the NASA Lewis Research Center (LeRC) Icing Branch in the investigation of an aircraft accident that was suspected of being caused by ice contamination. In response to the request NASA agreed to perform an experimental and computational study. The main activities that NASA performed were LERC Icing Research Tunnel (IRT) testing to define ice shapes and 2-D Navier-Stokes analysis to determine the performance degradation that those ice shapes would have caused. An IRT test was conducted in January 1998. Most conditions for the test were based upon raw and derived data from the Flight Data Recorder (FDR) recovered from the accident and upon the current understanding of the Meteorological conditions near the accident. Using a two-dimensional Navier-Stokes code, the flow field and resultant lift and drag were calculated for the wing section with various ice shapes accreted in the IRT test. Before the final calculations could be performed extensive examinations of geometry smoothing and turbulence were conducted. The most significant finding of this effort is that several of the five-minute ice accretions generated in the IRT were found by the Navier-Stokes analysis to produce severe lift and drag degradation. The information generated by this study suggests a possible scenario for the kind of control upset recorded in the accident. Secondary findings were that the ice shapes accreted in the IRT were mostly limited to the protected pneumatic boot region of the wing and that during testing, activation of the pneumatic boots cleared most of the ice.

  1. Test results of a 40-kW Stirling engine and comparison with the NASA Lewis computer code predictions

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Cairelli, James E.

    1988-01-01

    A Stirling engine was tested without auxiliaries at Nasa-Lewis. Three different regenerator configurations were tested with hydrogen. The test objectives were: (1) to obtain steady-state and dynamic engine data, including indicated power, for validation of an existing computer model for this engine; and (2) to evaluate structurally the use of silicon carbide regenerators. This paper presents comparisons of the measured brake performance, indicated mean effective pressure, and cyclic pressure variations from those predicted by the code. The silicon carbide foam generators appear to be structurally suitable, but the foam matrix showed severely reduced performance.

  2. NASA Lewis Research Center's Preheated Combustor and Materials Test Facility

    NASA Technical Reports Server (NTRS)

    Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith

    1995-01-01

    The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.

  3. Pilot Ed Lewis with T-34C aircraft on ramp

    NASA Image and Video Library

    1998-03-04

    NASA pilot Ed Lewis with the T-34C aircraft on the Dryden Flight Research Center Ramp. The aircraft was previously used at the Lewis Research Center in propulsion experiments involving turboprop engines, and was used as a chase aircraft at Dryden for smaller and slower research projects. Chase aircraft accompany research flights for photography and video purposes, and also as support for safety and research. At Dryden, the T-34 is used mainly for smaller remotely piloted vehicles which fly slower than NASA's F-18's, used for larger scale projects. This aircraft was returned to the U.S. Navy in May of 2002.

  4. Modeling of surface roughness effects on glaze ice accretion

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark

    1990-01-01

    A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.

  5. Ice Stars

    NASA Image and Video Library

    2017-12-08

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  6. Specially-Equipped Martin XB-25E Icing Research Aircraft

    NASA Image and Video Library

    1947-08-21

    In 1946 the Lewis Flight Propulsion Laboratory became the NACA’s official icing research center. In addition to the Icing Research Tunnel, the lab possessed several aircraft modified for icing work, including a Consolidated B-24M Liberator and a North American XB-25E Mitchell, seen here. The XB-25E’s frequent engine fires allegedly resulted in its “Flamin’ Maimie” nickname. The aircraft’s nose art, visible in this photograph, includes a leather-jacketed mechanic with an extinguisher fleeing a fiery woman. North American developed the B-25 in the mid-1930s as a transport aircraft, but it was hurriedly reconfigured as a medium bomber for World War II. This XB-25E was a single prototype designed in 1942 specifically to test an exhaust gas ice prevention system developed by NACA researcher Lewis Rodert. The system circulated the engines’ hot bleed air to the wings, windshield, and tail. The XB-25E was utilized at the NACA’s Ames Aeronautical Laboratory for two years before being transferred to Cleveland in July 1944. NACA Lewis mechanics modified the aircraft further by installing electrical heating in the front fuselage, propellers, inboard sing, cowls, and antennae. Lewis pilots flew the B-24M and XB-25E into perilous weather conditions all across the country to study both deicing technologies and the physics of ice-producing clouds. These dangerous flights led to advances in weather sensing instruments and flight planning.

  7. Library Staff operate a Microfilm Reader at the Lewis Research Center

    NASA Image and Video Library

    1961-04-21

    Jean Neidengard and George Mandel operate a Kodak Recordak microfilm reader in the library at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The library was located in the Administration Building until the mid-1960s. It was then moved to the Propulsion Systems Laboratory Office Building. In 2008 the library was moved once again, to the Research Analysis Center. At the time of this photograph, the Lewis library claimed to possess “One of the most complete aero-technical collections in the world.” It was doing a brisk business in the early 1960s. During 1960 alone the library acquired 19,000 new documents and provided 100,000 documents to customers. The library’s eleven-person staff provided reference services, archived technical reports, and supplied periodicals. The staff also included Sam Reiss, a full-time translator who could read 30 languages. He translated technical reports from all over the world for the Lewis research staff. Jean Neidengard oversaw the secret Atomic Energy Commission (AEC) documents in the collection. NASA was partnering with the AEC at the time on Nuclear Engine for Rocket Vehicle Application (NERVA) program. NASA Lewis was the agency’s lead center in the NERVA program. Neidengard’s husband Bill was the head mechanic in the Propulsion Systems Laboratory. George Mandel led the library staff from 1955 to 1968.

  8. Wilkins Ice Shelf

    NASA Image and Video Library

    2009-04-20

    The Wilkins Ice Shelf, as seen by NASA Terra spacecraft, on the western side of the Antarctic Peninsula, experienced multiple disintegration events in 2008. By the beginning of 2009, a narrow ice bridge was all that remained to connect the ice shelf to ice fragments fringing nearby Charcot Island. That bridge gave way in early April 2009. Days after the ice bridge rupture, on April 12, 2009, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the southern base of the ice bridge, where it connected with the remnant ice shelf. Although the ice bridge has played a role in stabilizing the ice fragments in the region, its rupture doesn't guarantee the ice will immediately move away. http://photojournal.jpl.nasa.gov/catalog/PIA11991

  9. Airframe Icing Research Gaps: NASA Perspective

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  10. Heat Transfer Measurements on Surfaces with Natural Ice Castings and Modeled Roughness

    NASA Technical Reports Server (NTRS)

    Breuer, Kenneth S.; Torres, Benjamin E.; Orr, D. J.; Hansman, R. John

    1997-01-01

    An experimental method is described to measure and compare the convective heat transfer coefficient of natural and simulated ice accretion roughness and to provide a rational means for determining accretion-related enhanced heat transfer coefficients. The natural ice accretion roughness was a sample casting made from accretions at the NASA Lewis Icing Research Tunnel (IRT). One of these castings was modeled using a Spectral Estimation Technique (SET) to produce three roughness elements patterns that simulate the actual accretion. All four samples were tested in a flat-plate boundary layer at angle of attack in a "dry" wind tunnel test. The convective heat transfer coefficient was measured using infrared thermography. It is shown that, dispite some problems in the current data set, the method does show considerable promise in determining roughness-induced heat transfer coefficients, and that, in addition to the roughness height and spacing in the flow direction, the concentration and spacing of elements in the spanwise direction are important parameters.

  11. NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro

    2014-01-01

    Satellite microwave radiometers are widely used to estimate sea ice cover properties (concentration, extent, and area) through the use of sea ice concentration (IC) algorithms. Rare are the algorithms providing associated IC uncertainty estimates. Algorithm uncertainty estimates are needed to assess accurately global and regional trends in IC (and thus extent and area), and to improve sea ice predictions on seasonal to interannual timescales using data assimilation approaches. This paper presents a method to provide relative IC uncertainty estimates using the enhanced NASA Team (NT2) IC algorithm. The proposed approach takes advantage of the NT2 calculations and solely relies on the brightness temperatures (TBs) used as input. NT2 IC and its associated relative uncertainty are obtained for both the Northern and Southern Hemispheres using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) TB. NT2 IC relative uncertainties estimated on a footprint-by-footprint swath-by-swath basis were averaged daily over each 12.5-km grid cell of the polar stereographic grid. For both hemispheres and throughout the year, the NT2 relative uncertainty is less than 5%. In the Southern Hemisphere, it is low in the interior ice pack, and it increases in the marginal ice zone up to 5%. In the Northern Hemisphere, areas with high uncertainties are also found in the high IC area of the Central Arctic. Retrieval uncertainties are greater in areas corresponding to NT2 ice types associated with deep snow and new ice. Seasonal variations in uncertainty show larger values in summer as a result of melt conditions and greater atmospheric contributions. Our analysis also includes an evaluation of the NT2 algorithm sensitivity to AMSR-E sensor noise. There is a 60% probability that the IC does not change (to within the computed retrieval precision of 1%) due to sensor noise, and the cumulated probability shows that there is a 90% chance that the IC varies by less than

  12. Iceberg in sea ice

    NASA Image and Video Library

    2017-12-08

    An iceberg embedded in sea ice as seen from the IceBridge DC-8 over the Bellingshausen Sea on Oct. 19, 2012. Credit: NASA / James Yungel NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Lewis Wooten, manager of the Mission Operations Laboratory

    NASA Image and Video Library

    2015-07-20

    LEWIS WOOTEN MANAGES THE MISSION OPERATIONS LABORATORY. MORE THAN 1600 INVESTIGATIONS AND STUDENT EXPERIMENTS FOR OVER 80 COUNTRIES HAVE BEEN COMPLETED WITH THE HELP OF WOOTEN'S TEAM AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA.

  14. Astronaut Judy Resnik Visits Lewis Research Center

    NASA Image and Video Library

    1979-07-21

    Astronaut Judy Resnik visits the National Aeronautics and Space Administration (NASA) Lewis Research Center on July 18, 1979, the tenth anniversary of the Apollo 11 mission. The event, sponsored by the center’s Public Information Office, was attended by Lewis staff, Cleveland-area media and personalities, and the public. During her time in Cleveland, Resnik appeared on a local television program, gave a press conference, lunched with NASA officials, addressed employees at Lewis, and then met the public at the center’s Visitors Information Center. Resnik related her recent experiences as one of the first US female astronauts and her duties as a mission specialist. The Akron, Ohio native earned a Bachelor’s degree in electrical engineering from Carnegie-Mellon University in 1970 and a doctorate in electrical engineering from the University of Maryland in 1977. Resnik served as a biomedic engineer and staff fellow in the Laboratory of Neurophysiology at the National Institutes of Health from 1974 to 1977, where she performed biological research experiments on visual systems. She served as a senior systems engineer in private industry prior to her selection as an astronaut. Resnik first flew as a mission specialist on STS 41-D, Discovery’s maiden flight, in 1984. Resnik was killed in the January 28, 1986 Challenger accident.

  15. The Lewis heat pipe code with application to SP-100 GES heat pipes

    NASA Astrophysics Data System (ADS)

    Baker, Karl W.; Tower, Leonard K.

    The NASA Lewis Research Center has a thermal management program supporting SP-100 goals, which includes heat pipe radiator development. As a part of the program Lewis has elected to prepare an in-house heat pipe code tailored to the needs of its SP-100 staff to supplement codes from other sources. The latter, designed to meet the needs of the originating organizations, were deemed not entirely appropriate for use at Lewis. However, a review of their features proved most beneficial in the design of the Lewis code.

  16. NASA Icing Remote Sensing System Comparisons From AIRS II

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.

    2005-01-01

    NASA has an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Individual remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Comparisons between the remote sensing system s fused icing product and in-situ measurements from the research aircraft are reviewed here. While there are areas where improvement can be made, the cases examined indicate that the fused sensor remote sensing technique appears to be a valid approach.

  17. Growing Crack in Antarctica Larsen C Ice Shelf Spotted by NASA MISR

    NASA Image and Video Library

    2016-08-31

    Project MIDAS, a United Kingdom-based group that studies the Larsen Ice Shelf in Antarctica, reported Aug. 18, 2016, that a large crack in the Larsen C shelf has grown by another 13 miles (22 kilometers) in the past six months. The crack is now more than 80 miles (130 kilometers) long. Larsen C is the fourth largest ice shelf in Antarctica, with an area of about 19,300 square miles (50,000 square kilometers), greater than the size of Maryland. Computer modeling by Project MIDAS predicts that the crack will continue to grow and eventually cause between nine and twelve percent of the ice shelf to collapse, resulting in the loss of 2,300 square miles (6,000 square kilometers) of ice -- more than the area of Delaware. This follows the collapse of the Larsen B shelf in 2002 and the Larsen A shelf in 1995, which removed about 1,255 square miles (3,250 square kilometers) and 580 square miles (1,500 square kilometers) of ice, respectively. The Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite flew over Larsen C on Aug. 22, 2016. The MISR instrument views Earth with nine cameras pointed at different angles, which provides information about the texture of the surface. On the left is a natural-color image of the shelf from MISR's vertical-viewing camera. Antarctica is slowly emerging from its polar night, and the low light gives the scene a bluish tint. The Larsen C shelf is on the left, while thinner sea ice is present on the right. A variety of cracks are visible in the Larsen C shelf, all appearing roughly the same. The image is about 130 by 135 miles (210 by 220 kilometers) in size. On the right is a composite image made by combining data from MISR's 46-degree backward-pointing camera (plotted as blue), the vertical-pointing camera (plotted as green), and the 46-degree forward-pointing camera (plotted as red). This has the effect of highlighting surface roughness; smooth surfaces appear as blue-purple, while rough surfaces appear as

  18. NASA,FAA,ONERA Swept-Wing Icing and Aerodynamics: Summary of Research and Current Status

    NASA Technical Reports Server (NTRS)

    Broeren, Andy

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  19. Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot low speed wind tunnel with flow visualization

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.

    1988-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.

  20. The NASA-Lewis program on fusion energy for space power and propulsion, 1958-1978

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Roth, J. Reece

    1990-01-01

    An historical synopsis is provided of the NASA-Lewis research program on fusion energy for space power and propulsion systems. It was initiated to explore the potential applications of fusion energy to space power and propulsion systems. Some fusion related accomplishments and program areas covered include: basic research on the Electric Field Bumpy Torus (EFBT) magnetoelectric fusion containment concept, including identification of its radial transport mechanism and confinement time scaling; operation of the Pilot Rig mirror machine, the first superconducting magnet facility to be used in plasma physics or fusion research; operation of the Superconducting Bumpy Torus magnet facility, first used to generate a toroidal magnetic field; steady state production of neutrons from DD reactions; studies of the direct conversion of plasma enthalpy to thrust by a direct fusion rocket via propellant addition and magnetic nozzles; power and propulsion system studies, including D(3)He power balance, neutron shielding, and refrigeration requirements; and development of large volume, high field superconducting and cryogenic magnet technology.

  1. Operating capability and current status of the reactivated NASA Lewis Research Center Hypersonic Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Trefny, Charles J.; Pack, William D.

    1995-01-01

    The NASA Lewis Research Center's Hypersonic Tunnel Facility (HTF) is a free-jet, blowdown propulsion test facility that can simulate up to Mach-7 flight conditions with true air composition. Mach-5, -6, and -7 nozzles, each with a 42 inch exit diameter, are available. Previously obtained calibration data indicate that the test flow uniformity of the HTF is good. The facility, without modifications, can accommodate models approximately 10 feet long. The test gas is heated using a graphite core induction heater that generates a nonvitiated flow. The combination of clean-air, large-scale, and Mach-7 capabilities is unique to the HTF and enables an accurate propulsion performance determination. The reactivation of the HTF, in progress since 1990, includes refurbishing the graphite heater, the steam generation plant, the gaseous oxygen system, and all control systems. All systems were checked out and recertified, and environmental systems were upgraded to meet current standards. The data systems were also upgraded to current standards and a communication link with NASA-wide computers was added. In May 1994, the reactivation was complete, and an integrated systems test was conducted to verify facility operability. This paper describes the reactivation, the facility status, the operating capabilities, and specific applications of the HTF.

  2. Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1986-01-01

    An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defennse (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.

  3. Background noise levels measured in the NASA Lewis 9- by 15-foot low-speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Dittmar, James H.; Hall, David G.; Kee-Bowling, Bonnie

    1994-01-01

    The acoustic capability of the NASA Lewis 9 by 15 Foot Low Speed Wind Tunnel has been significantly improved by reducing the background noise levels measured by in-flow microphones. This was accomplished by incorporating streamlined microphone holders having a profile developed by researchers at the NASA Ames Research Center. These new holders were fabricated for fixed mounting on the tunnel wall and for an axially traversing microphone probe which was mounted to the tunnel floor. Measured in-flow noise levels in the tunnel test section were reduced by about 10 dB with the new microphone holders compared with those measured with the older, less refined microphone holders. Wake interference patterns between fixed wall microphones were measured and resulted in preferred placement patterns for these microphones to minimize these effects. Acoustic data from a model turbofan operating in the tunnel test section showed that results for the fixed and translating microphones were equivalent for common azimuthal angles, suggesting that the translating microphone probe, with its significantly greater angular resolution, is preferred for sideline noise measurements. Fixed microphones can provide a local check on the traversing microphone data quality, and record acoustic performance at other azimuthal angles.

  4. Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1986-01-01

    An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.

  5. Clouds Over Sea Ice

    NASA Image and Video Library

    2012-11-01

    Low-lying clouds over sea ice on the Bellingshausen Sea. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Edge of Ice Shelf

    NASA Image and Video Library

    2017-12-08

    Edge of an ice shelf in Adelaide Island, off the Antarctic Peninsula. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Sunlight off the ice

    NASA Image and Video Library

    2017-12-08

    Sunlight reflecting off of ice in the Bellingshausen Sea on Oct. 19, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Testing of UH-60A helicopter transmission in NASA Lewis 2240-kW (3000-hp) facility

    NASA Technical Reports Server (NTRS)

    Mitchell, A. M.; Oswald, F. B.; Coe, H. H.

    1986-01-01

    The U.S. Army's UH-60A Black Hawk 2240-kW (3000-hp) class, twin-engine helicopter transmission was tested at the NASA Lewis Research Center. The vibration and efficiency test results will be used to enhance the data base for similar-class helicopters. Most of the data were obtained for a matrix of test conditions of 50 to 100 percent of rated rotor speed and 20 to 100 percent of rated input power. The transmission's mechanical efficiency at 100 percent of rated power was 97.3 and 97.5 percent with its inlet oil maintained at 355 and 372 K (180 and 210 F), respectively. The highest vibration reading was 72 g's rms at the upper housing side wall. Other vibration levels measured near the gear meshes are reported.

  9. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  10. Prediction of ice accretion on a swept NACA 0012 airfoil and comparisons to flight test results

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    1992-01-01

    In the winter of 1989-90, an icing research flight project was conducted to obtain swept wing ice accretion data. Utilizing the NASA Lewis Research Center's DHC-6 DeHavilland Twin Otter aircraft, research flights were made into known icing conditions in Northeastern Ohio. The icing cloud environment and aircraft flight data were measured and recorded by an onboard data acquisition system. Upon entry into the icing environment, a 24 inch span, 15 inch chord NACA 0012 airfoil was extended from the aircraft and set to the desired sweep angle. After the growth of a well defined ice shape, the airfoil was retracted into the aircraft cabin for ice shape documentation. The ice accretions were recorded by ice tracings and photographs. Ice accretions were mostly of the glaze type and exhibited scalloping. The ice was accreted at sweep angles of 0, 30, and 45 degrees. A 3-D ice accretion prediction code was used to predict ice profiles for five selected flight test runs, which include sweep angle of zero, 30, and 45 degrees. The code's roughness input parameter was adjusted for best agreement. A simple procedure was added to the code to account for 3-D ice scalloping effects. The predicted ice profiles are compared to their respective flight test counterparts. This is the first attempt to predict ice profiles on swept wings with significant scalloped ice formations.

  11. NASA: Data on the Web.

    ERIC Educational Resources Information Center

    Galica, Carol

    1997-01-01

    Provides an annotated bibliography of selected NASA Web sites for K-12 math and science teachers: the NASA Lewis Research Center Learning Technologies K-12 Home Page, Spacelink, NASA Quest, Basic Aircraft Design Page, International Space Station, NASA Shuttle Web Site, LIFTOFF to Space Education, Telescopes in Education, and Space Educator's…

  12. The Effects of the Critical Ice Accretion on Airfoil and Wing Performance

    NASA Technical Reports Server (NTRS)

    Selig, Michael S.; Bragg, Michael B.; Saeed, Farooq

    1998-01-01

    In support of the NASA Lewis Modern Airfoils Ice Accretion Test Program, the University of Illinois at Urbana-Champaign provided expertise in airfoil design and aerodynamic analysis to determine the aerodynamic effect of ice accretion on modern airfoil sections. The effort has concentrated on establishing a design/testing methodology for "hybrid airfoils" or "sub-scale airfoils," that is, airfoils having a full-scale leading edge together with a specially designed and foreshortened aft section. The basic approach of using a full-scale leading edge with a foreshortened aft section was considered to a limited extent over 40 years ago. However, it was believed that the range of application of the method had not been fully exploited. Thus a systematic study was being undertaken to investigate and explore the range of application of the method so as to determine its overall potential.

  13. NASA. Lewis Research Center materials research and technology: An overview

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1990-01-01

    The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. This paper overviews the division staff, facilities, past history, recent progress, and future interests.

  14. Embedded ice with lead

    NASA Image and Video Library

    2017-12-08

    Iceberg embedded in sea ice with a lead on one side. This opening was likely caused by winds blowing against the side of the iceberg. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. User Manual for the NASA Glenn Ice Accretion Code LEWICE: Version 2.0

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    1999-01-01

    A research project is underway at NASA Glenn to produce a computer code which can accurately predict ice growth under a wide range of meteorological conditions for any aircraft surface. This report will present a description of the code inputs and outputs from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive effort undertaken to compare the results against the database of ice shapes which have been generated in the NASA Glenn Icing Research Tunnel (IRT) 1. This report will only describe the features of the code related to the use of the program. The report will not describe the inner working of the code or the physical models used. This information is available in the form of several unpublished documents which will be collectively referred to as a Programmers Manual for LEWICE 2 in this report. These reports are intended as an update/replacement for all previous user manuals of LEWICE. In addition to describing the changes and improvements made for this version, information from previous manuals may be duplicated so that the user will not need to consult previous manuals to use this code.

  16. CET93 and CETPC: An interim updated version of the NASA Lewis computer program for calculating complex chemical equilibria with applications

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Reno, Martin A.; Gordon, Sanford

    1994-01-01

    The NASA Lewis chemical equilibrium program with applications continues to be improved and updated. The latest version is CET93. This code, with smaller arrays, has been compiled for use on an IBM or IBM-compatible personal computer and is called CETPC. This report is intended to be primarily a users manual for CET93 and CETPC. It does not repeat the more complete documentation of earlier reports on the equilibrium program. Most of the discussion covers input and output files, two new options (ONLY and comments), example problems, and implementation of CETPC.

  17. High-temperature fatigue in metals - A brief review of life prediction methods developed at the Lewis Research Center of NASA

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1983-01-01

    The presentation focuses primarily on the progress we at NASA Lewis Research Center have made. The understanding of the phenomenological processes of high temperature fatigue of metals for the purpose of calculating lives of turbine engine hot section components is discussed. Improved understanding resulted in the development of accurate and physically correct life prediction methods such as Strain-Range partitioning for calculating creep fatigue interactions and the Double Linear Damage Rule for predicting potentially severe interactions between high and low cycle fatigue. Examples of other life prediction methods are also discussed. Previously announced in STAR as A83-12159

  18. Iceberg trapped in sea ice

    NASA Image and Video Library

    2012-11-01

    An iceberg trapped in sea ice in the Amundsen Sea, seen from the IceBridge DC-8 during the Getz 07 mission on Oct. 27. Credit: NASA / Maria-Jose Vinas NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. NASA Photovoltaic Village Project in Arizona

    NASA Image and Video Library

    1978-11-21

    National Aeronautics and Space Administration (NASA) Lewis Research Center. NASA signed an agreement with the Papago tribe in May 1978 to provide the village with solar-generated electricity within the year. The project was funded by the Department of Energy and managed by NASA Lewis. Lewis provided all of the equipment and technical assistance while the tribe’s construction team built the arrays and support equipment, seen here. The 3.5-kilowatt system was modest in scope, but resulted in the first solar electric village. The system provided power to operate a refrigerator, freezer, washing machine, and water pump for the village and lights in each of the 16 homes. The system was activated on December 16, 1978. During the next year officials from around the world travelled to Schuchuli to ascertain if the system was applicable to their areas. The major television networks and over 100 publications covered the story. Less than one percent of the cells failed during the first year of operation.

  20. Effect of anode ring arrangement on the spectroscopic characteristics of the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    The modified Penning discharge in the NASA Lewis Bumpy Torus is normally produced by an anode ring at high voltage in each of the 12 magnetic mirror midplanes. For this investigation, the plasma was run with 12, 6, 3, and 1 anode rings. When 3 anode rings were used, the spectroscopically determined relative electron density and mean ion residence time increased by factors of 10 and 5, respectively, in one mode of operation. The discharge is observed to uniformly fill all bumps around the torus regardless of the anode arrangement and number. A plasma density on axis of 100 billion per cu cm is estimated for the 3-anode case in one mode of operation based on an observed discharge current to ion loss rate correlation and a measured mean ion residence time of .5 msec.

  1. Effect of anode ring arrangement on the spectroscopic characteristics of the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    The modified Penning discharge in the NASA Lewis Bumpy Torus is normally produced by an anode ring at high voltage in each of the 12 magnetic mirror midplanes. For this investigation, the plasma was run with 12, 6, 3, and 1 anode rings. When 3 anode rings were used, the spectroscopically determined relative electron density and mean ion residence time increase by factors of 10 and 5, respectively, in one mode of operation. The discharge is observed to uniformly fill all bumps around the torus regardless of the anode arrangement and number. A plasma density on axis of 10 to the 11th power cm/3 is estimated for the 3 anode case in one mode of operation based on an observed discharge current to ion loss rate correlation and a measured mean ion residence time of .5 msec.

  2. NASA Glenn Propulsion Systems Lab: 2012 Inaugural Ice Crystal Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    VanZante, Judith F.; Rosine, Bryan M.

    2014-01-01

    The inaugural calibration of the ice crystal and supercooled liquid water clouds generated in NASA Glenn's engine altitude test facility, the Propulsion Systems Lab (PSL) is reported herein. This calibration was in support of the inaugural engine ice crystal validation test. During the Fall of 2012 calibration effort, cloud uniformity was documented via an icing grid, laser sheet and cloud tomography. Water content was measured via multi-wire and robust probes, and particle sizes were measured with a Cloud Droplet Probe and Cloud Imaging Probe. The environmental conditions ranged from 5,000 to 35,000 ft, Mach 0.15 to 0.55, temperature from +50 to -35 F and relative humidities from less than 1 percent to 75 percent in the plenum.

  3. An experimental investigation of multi-element airfoil ice accretion and resulting performance degradation

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Berkowitz, Brian M.

    1989-01-01

    An investigation of the ice accretion pattern and performance characteristics of a multi-element airfoil was undertaken in the NASA Lewis 6- by 9-Foot Icing Research Tunnel. Several configurations of main airfoil, slat, and flaps were employed to examine the effects of ice accretion and provide further experimental information for code validation purposes. The text matrix consisted of glaze, rime, and mixed icing conditions. Airflow and icing cloud conditions were set to correspond to those typical of the operating environment anticipated tor a commercial transport vehicle. Results obtained included ice profile tracings, photographs of the ice accretions, and force balance measurements obtained both during the accretion process and in a post-accretion evaluation over a range of angles of attack. The tracings and photographs indicated significant accretions on the slat leading edge, in gaps between slat or flaps and the main wing, on the flap leading-edge surfaces, and on flap lower surfaces. Force measurments indicate the possibility of severe performance degradation, especially near C sub Lmax, for both light and heavy ice accretion and performance analysis codes presently in use. The LEWICE code was used to evaluate the ice accretion shape developed during one of the rime ice tests. The actual ice shape was then evaluated, using a Navier-Strokes code, for changes in performance characteristics. These predicted results were compared to the measured results and indicate very good agreement.

  4. Change-of-Pace Electric Vehicle at the Lewis Research Center

    NASA Image and Video Library

    1977-04-21

    The National Aeronautics and Space Administration (NASA) Lewis Research Center tested 16 commercially-manufactured electric vehicles, including this modified Pacer, during the mid-1970s. The Electric Vehicle Project was just one of several energy-related programs that Lewis and the Energy Research and Development Administration (ERDA) undertook in the mid-1970s. NASA and ERDA embarked on this program in 1976 to determine the state of the current electric vehicle technology. As part of the project, Lewis tested a fleet composed of every commercially available electric car. The Cleveland-area Electric Vehicle Associates modified an American Motors Pacer vehicle to create this Change-of-Pace Coupe. It was powered by twenty 6-volt batteries whose voltage could be varied by a foot control. The tests analyzed the vehicle’s range, acceleration, coast-down, braking, and energy consumption. Some of the vehicles had analog data recording systems to measure the battery during operation and sensors to determine speed and distance. Lewis researchers found that the vehicle performance varied significantly from model to model. In general, the range, acceleration, and speed were lower than conventional vehicles. They also found that traditional gasoline-powered vehicles were as efficient as the electric vehicles. The researchers concluded, however, that advances in battery technology and electric drive systems would significantly improve the performance and efficiency.

  5. Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2012 Tests)

    NASA Technical Reports Server (NTRS)

    Pastor-Barsi, Christine; Allen, Arrington E.

    2013-01-01

    A full aero-thermal calibration of the NASA Glenn Icing Research Tunnel (IRT) was completed in 2012 following the major modifications to the facility that included replacement of the refrigeration plant and heat exchanger. The calibration test provided data used to fully document the aero-thermal flow quality in the IRT test section and to construct calibration curves for the operation of the IRT.

  6. High-Temperature Solid Lubricants Developed by NASA Lewis Offer Virtually "Unlimited Life" for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    1999-01-01

    The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.

  7. Blue Beaufort Sea Ice from Operation IceBridge

    NASA Image and Video Library

    2017-12-08

    Mosaic image of sea ice in the Beaufort Sea created by the Digital Mapping System (DMS) instrument aboard the IceBridge P-3B. The dark area in the middle of the image is open water seen through a lead, or opening, in the ice. Light blue areas are thick sea ice and dark blue areas are thinner ice formed as water in the lead refreezes. Leads are formed when cracks develop in sea ice as it moves in response to wind and ocean currents. DMS uses a modified digital SLR camera that points down through a window in the underside of the plane, capturing roughly one frame per second. These images are then combined into an image mosaic using specialized computer software. Credit: NASA/DMS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Lewis Wooten in the MSFC Payload Operations Integration facility.

    NASA Image and Video Library

    2015-04-13

    LEWIS WOOTEN, NEW DIRECTOR OF THE MISSION OPERATIONS LABORATORY AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA, MANAGES OPERATIONS IN THE PAYLOAD OPERATIONS INTEGRATION CENTER-THE COMMAND POST FOR ALL SCIENCE AND RESEARCH ACTIVITIES ON THE INTERNATIONAL SPACE STATION

  9. Solar photovoltaics: Stand alone applications. [NASA Lewis Research Center research and development

    NASA Technical Reports Server (NTRS)

    Deyo, J. N.

    1980-01-01

    The Lewis Research Center involvement in space photovoltaic research and development and in using photovoltaics for terrestrial applications is described with emphasis on applications in which the normal source of power may be a diesel generator, batteries, or other types of power not connected to a utility grid. Once an application is processed, technology is developed and demonstrated with a user who participates in the cost and furnishes the site. Projects completed related to instruments, communication, refrigeration, and highways, are described as well as warning systems, weather stations, fire lookouts, and village power systems. A commercially available photovoltaic powered electric fence charger is the result of Lewis research and development.

  10. NASA Iced Aerodynamics and Controls Current Research

    NASA Technical Reports Server (NTRS)

    Addy, Gene

    2009-01-01

    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  11. NASA Glenn Icing Research Tunnel: Upgrade and Cloud Calibration

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss; Ide, Robert F.; Steen, Laura E.

    2012-01-01

    In 2011, NASA Glenn s Icing Research Tunnel underwent a major modification to it s refrigeration plant and heat exchanger. This paper presents the results of the subsequent full cloud calibration. Details of the calibration procedure and results are presented herein. The steps include developing a nozzle transfer map, establishing a uniform cloud, conducting a drop sizing calibration and finally a liquid water content calibration. The goal of the calibration is to develop a uniform cloud, and to build a transfer map from the inputs of air speed, spray bar atomizing air pressure and water pressure to the output of median volumetric droplet diameter and liquid water content.

  12. Futurepath: The Story of Research and Technology at NASA Lewis Research Center. Structures for Flight Propulsion, ARC Sprayed Monotape, National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.

  13. NASA Lewis Research Center low-gravity fluid management technology program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Carney, M. J.; Hochstein, J. I.

    1985-01-01

    A history of the Lewis Research Center in space fluid management technology program is presented. Current programs which include numerical modeling of fluid systems, heat exchanger/radiator concept studies, and the design of the Cryogenic Fluid Management Facility are discussed. Recent analytical and experimental activities performed to support the Shuttle/Centaur development activity are highlighted.

  14. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA's ICESat-2 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April

    2011-01-01

    The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.

  15. NASA's DC-8 Desert Shadow

    NASA Image and Video Library

    2017-12-08

    The DC-8 research aircraft casting its shadow on the ground in California's Mojave Desert during an IceBridge instrument check flight. Prior to field campaigns, IceBridge instrument and aircraft teams run the aircraft through a series of tests to ensure that everything is operating at peak condition. Credit: NASA / Jim Yungel NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Metro Electric Vehicle Evaluation at the Lewis Research Center

    NASA Image and Video Library

    1976-05-21

    The National Aeronautics and Space Administration (NASA) Lewis Research Center tested 16 commercially-manufactured electric vehicles, including this Metro, during the mid-1970s. Lewis and the Energy Research and Development Administration (ERDA) engaged in several energy-related programs in the mid-1970s, including the Electric Vehicle Project. NASA and ERDA undertook the program in 1976 to determine the state of the current electric vehicle technology. As part of the project, Lewis and ERDA tested every commercially available electric car model. Electric Vehicle Associates, located in a Cleveland suburb, modified a Renault 12 vehicle to create this Metro. Its 1040-pound golfcart-type battery provided approximately 106 minutes of operation. The tests analyzed the vehicle’s range, acceleration, coast-down, braking, and energy consumption. Some of the vehicles had analog data recording systems to measure the battery during operation and sensors to determine speed and distance. The researchers found the performance of the different vehicles varied significantly. In general, the range, acceleration, and speed were lower than that found on conventional vehicles. They also found that traditional gasoline-powered vehicles were as efficient as the electric vehicles. The researchers concluded, however, that advances in battery technology and electric drive systems would significantly improve efficiency and performance.

  17. Flow quality studies of the NASA Lewis Research Center 8- by 6-foot supersonic/9- by 15-foot Low Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. A.; Pickett, Mark T.

    1992-01-01

    A series of studies were conducted to determine the existing flow quality in the NASA Lewis 8 by 6 Foot Supersonic/9 by 15 Foot Low Speed Wind Tunnel. The information gathered from these studies was used to determine the types and designs of flow manipulators which can be installed to improve overall tunnel flow quality and efficiency. Such manipulators include honeycomb flow straighteners, turbulence reduction screens, corner turning vanes, and acoustic treatments. The types of measurements, instrumentation, and results obtained from experiments conducted at several locations throughout the tunnel loop are described.

  18. Flow quality studies of the NASA Lewis Research Center 8- by 6-foot supersonic/9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pickett, Mark T.

    1992-01-01

    A series of studies were conducted to determine the existing flow quality in the NASA Lewis 8 by 6 Foot Supersonic/9 by 15 Foot Low speed Wind Tunnel. The information gathered from these studies was used to determine the types and designs of flow manipulators which can be installed to improve overall tunnel flow quality and efficiency. Such manipulators include honeycomb flow straighteners, turbulence reduction screens, corner turning vanes, and acoustic treatments. The types of measurements, instrumentation, and results obtained from experiments conducted at several locations throughout the tunnel loop are described.

  19. Spectroscopic results in helium from the NASA Lewis Bumpy Torus plasma. [ion heating by Penning discharge in confinement geometry

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1974-01-01

    Spectroscopic measurements were carried out on the NASA Lewis Bumpy Torus experiment in which a steady state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. Electron temperatures in pure helium are measured from the ratio of spectral line intensities. Measured electron temperatures range from 10 to 100 eV. Relative electron densities are also measured over the range of operating conditions. Radial profiles of temperature and relative density are measured in the two basic modes of operation of the device called the low and high pressure modes. The electron temperatures are used to estimate particle confinement times based on a steady state particle balance.

  20. National space test centers - Lewis Research Center Facilities

    NASA Technical Reports Server (NTRS)

    Roskilly, Ronald R.

    1990-01-01

    The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.

  1. Implementation of Combined Feather and Surface-Normal Ice Growth Models in LEWICE/X

    NASA Technical Reports Server (NTRS)

    Velazquez, M. T.; Hansman, R. J., Jr.

    1995-01-01

    Experimental observations have shown that discrete rime ice growths called feathers, which grow in approximately the direction of water droplet impingement, play an important role in the growth of ice on accreting surfaces for some thermodynamic conditions. An improved physical model of ice accretion has been implemented in the LEWICE 2D panel-based ice accretion code maintained by the NASA Lewis Research Center. The LEWICE/X model of ice accretion explicitly simulates regions of feather growth within the framework of the LEWICE model. Water droplets impinging on an accreting surface are withheld from the normal LEWICE mass/energy balance and handled in a separate routine; ice growth resulting from these droplets is performed with enhanced convective heat transfer approximately along droplet impingement directions. An independent underlying ice shape is grown along surface normals using the unmodified LEWICE method. The resulting dual-surface ice shape models roughness-induced feather growth observed in icing wind tunnel tests. Experiments indicate that the exact direction of feather growth is dependent on external conditions. Data is presented to support a linear variation of growth direction with temperature and cloud water content. Test runs of LEWICE/X indicate that the sizes of surface regions containing feathers are influenced by initial roughness element height. This suggests that a previous argument that feather region size is determined by boundary layer transition may be incorrect. Simulation results for two typical test cases give improved shape agreement over unmodified LEWICE.

  2. Validation of a Compact Isokinetic Total Water Content Probe for Wind Tunnel Characterization at NASA Glenn Icing Research Tunnel and at NRC Ice Crystal Tunnel

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Landreville, Charles; Ratvasky, Thomas P.

    2017-01-01

    A new compact isokinetic probe to measure total water content in a wind tunnel environment has been developed. The probe has been previously tested under altitude conditions. This paper presents a comprehensive validation of the probe under a range of liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and with ice crystals at sea level at the NRC wind tunnel. The compact isokinetic probe is compared to tunnel calibrations and other probes.

  3. VIIRS Data and Data Access at the NASA National Snow and Ice Data Center Distributed Active Archive Center

    NASA Astrophysics Data System (ADS)

    Moth, P.; Johnston, T.; Fowler, D. K.

    2017-12-01

    Working collaboratively, NASA and NOAA are producing data from the Visible Infrared Imaging Radiometer Suite (VIIRS). The National Snow and Ice Data Center (NSIDC), a NASA Distributed Active Archive Center (DAAC), is distributing VIIRS snow cover, ice surface temperature, and sea ice cover products. Data is available in .nc and HDF5 formats with a temporal coverage of 1 January 2012 and onward. VIIRS, NOAA's latest radiometer, was launched aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite on October 28, 2011. The instrument comprises 22 bands; five for high-resolution imagery, 16 at moderate resolution, and one panchromatic day/night band. VIIRS is a whiskbroom scanning radiometer that covers the spectrum between 0.412 μm and 12.01 μm and acquires spatial resolutions at nadir of 750 m, 375 m, and 750 m, respectively. One distinct advantage of VIIRS is to ensure continuity that will lead to the development of snow and sea ice climate data records with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Combined with the Advanced Very-High-resolution Radiometer (AVHRR), the AVHRR-MODIS-VIIRS timeline will start in the early 1980s and span at least four decades-and perhaps beyond-enabling researchers to produce and gain valuable insight from long, high-quality Earth System Data Records (ESDRs). Several options are available to view and download VIIRS data: Direct download from NSIDC via HTTPS. Using NASA Earthdata Search, users can explore and download VIIRS data with temporal and/or spatial filters, re-format, re-project, and subset by spatial extent and parameter. API access is also available for all these options; Using NASA Worldview, users can view Global Imagery Browse Services (GIBS) from VIIRS data; Users can join a VIIRS subscription list to have new VIIRS data automatically ftp'd or staged on a local server as it is archived at NSIDC.

  4. First NASA Workshop on Wiring for Space Applications

    NASA Technical Reports Server (NTRS)

    Hammond, Ahmad (Compiler); Stavnes, Mark W. (Compiler)

    1994-01-01

    This document contains the proceedings of the First NASA Workshop on Wiring for Space Applications held at NASA Lewis Research Center in Cleveland, OH, July 23-24, 1991. The workshop was sponsored by NASA Headquarters Code QE Office of Safety and Mission Quality, Technical Standards Division and hosted by the NASA Lewis Research Center, Power Technology Division, Electrical Components and Systems Branch. The workshop addressed key technology issues in the field of electrical power wiring for space applications. Speakers from government, industry and academia presented and discussed topics on arc tracking phenomena, wiring applications and requirements, and new candidate insulation materials and constructions. Presentation materials provided by the various speakers are included in this document.

  5. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  6. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  7. Simulation Tools Model Icing for Aircraft Design

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here s a simple science experiment to try: Place an unopened bottle of distilled water in your freezer. After 2-3 hours, if the water is pure enough, you will notice that it has not frozen. Carefully pour the water into a bowl with a piece of ice in it. When it strikes the ice, the water will instantly freeze. One of the most basic and commonly known scientific facts is that water freezes at around 32 F. But this is not always the case. Water lacking any impurities for ice crystals to form around can be supercooled to even lower temperatures without freezing. High in the atmosphere, water droplets can achieve this delicate, supercooled state. When a plane flies through clouds containing these droplets, the water can strike the airframe and, like the supercooled water hitting the ice in the experiment above, freeze instantly. The ice buildup alters the aerodynamics of the plane - reducing lift and increasing drag - affecting its performance and presenting a safety issue if the plane can no longer fly effectively. In certain circumstances, ice can form inside aircraft engines, another potential hazard. NASA has long studied ways of detecting and countering atmospheric icing conditions as part of the Agency s efforts to enhance aviation safety. To do this, the Icing Branch at Glenn Research Center utilizes a number of world-class tools, including the Center s Icing Research Tunnel and the NASA 607 icing research aircraft, a "flying laboratory" for studying icing conditions. The branch has also developed a suite of software programs to help aircraft and icing protection system designers understand the behavior of ice accumulation on various surfaces and in various conditions. One of these innovations is the LEWICE ice accretion simulation software. Initially developed in the 1980s (when Glenn was known as Lewis Research Center), LEWICE has become one of the most widely used tools in icing research and aircraft design and certification. LEWICE has been transformed over

  8. NASA Report to Education, Volume 9

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is an edition of 'NASA Report to Education' covering NASA's Educational Workshop, Lewis Research Center's T-34 and the Space Exploration Initiative. The first segment shows NASA Education Workshop program (NEWEST - NASA Educational Workshops for Elementary School Teachers). Highlights of the 14 days of intense training, lectures, fieldtrips and simple projects that the educators went through to teach the program are included. Participants are shown working on various projects such as the electromagnetic spectrum, living in Space Station Freedom, experience in T-34, tour of tower at the Federal Aviation Administrative Facilities, conducting an egg survival system and an interactive video conference with astronaut Story Musgrave. Participants share impressions of the workshop. The second segment tells how Lewis Research Center's T-34 aircraft is used to promote aerospace education in several Cleveland schools and excite students.

  9. Bibliography of Lewis Research Center technical contributions announced in 1976

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Abstracts of Lewis authored publications and publications resulting from Lewis managed contracts which were announced in the 1976 issues of STAR (Scientific and Technical Aerospace Reports) and IAA (International Aerospace Abstracts) are presented. Research reports, journal articles, conference presentations, patents and patent applications, and these are included. The arrangement is by NASA subject category. Citations indicate report literature (identified by their N-numbers) and the journal and conference presentations (identified by their A-numbers). A grouping of indexes helps locate specific publications by author (including contractor authors), contractor organization, contract number, and report number.

  10. A Comprehensive Approach to Management of Workplace and Environmental Noise at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    1995-01-01

    NASA Lewis Research Center is home to more than 100 experimental research testing facilities and laboratories, including large wind tunnels and engine test cells, which in combination create a varied and complex noise environment. Much of the equipment was manufactured prior to the enactment of legislation limiting product noise emissions or occupational noise exposure. Routine facility maintenance and associated construction also contributes to a noise exposure management responsibility which is equal in magnitude and scope to that of several small industrial companies. The Noise Program, centrally managed within the Office of Environmental Programs at LRC, maintains overall responsibility for hearing conservation, community noise control, and acoustical and noise control engineering. Centralized management of the LRC Noise Program facilitates the timely development and implementation of engineered noise control solutions for problems identified via either the Hearing Conservation of Community Noise Program. The key element of the Lewis Research Center Noise Program, Acoustical and Noise Control Engineering Services, is focused on developing solutions that permanently reduce employee and community noise exposure and maximize research productivity by reducing or eliminating administrative and operational controls and by improving the safety and comfort of the work environment. The Hearing Conservation Program provides noise exposure assessment, medical monitoring, and training for civil servant and contractor employees. The Community Noise Program aims to maintain the support of LRC's neighboring communities while enabling necessary research operations to accomplish their programmatic goals. Noise control engineering capability resides within the Noise Program. The noise control engineering, based on specific exposure limits, is a fundamental consideration throughout the design phase of new test facilities, labs, and office buildings. In summary, the Noise Program

  11. Lewis's Woodpecker: Melanerpes lewis

    Treesearch

    Bret W. Tobalske; Kerri T. Vierling; Victoria A. Saab

    2013-01-01

    During the historic Lewis and Clark expedition, Meriwether Lewis wrote on 20 July 1805, "I saw a black woodpecker (or crow) today it is a distinct species of woodpecker; it has a long tail and flys a good deal like the jay bird" (sic, Thwaites 1905). Subsequent observations of flight and vocalization reminded him of the Red-headed Woodpecker (Melanerpes...

  12. Sources of Sulfate Found in Mounds and Lakes at the Lewis Cliffs Ice Tongue, Transantarctic

    NASA Technical Reports Server (NTRS)

    Socki, Richard; Sun, Tao; Harvey, Ralph P.; Bish, David L.; Tonui, Eric; Bao, Huiming; Niles, Paul B.

    2012-01-01

    Massive but highly localized Na-sulfate mounds (mirabilite, Na2SO4.10H2O) have been found at the terminal moraine of the Lewis Cliffs Ice Tongue (LCIT), Antarctica. (Sigma)34S and (Sigma)18O values of LCIT mirabilite range from +48.8 to +49.3% (CDT), and -16.6 to -17.1% (V-SMOW), respectively, while (Delta)17O average -0.37% (V-SMOW). LCIT mirabilite mounds are isotopically different from other mirabilite mounds found in coastal regions of Antarctica, which have isotope values close to seawater compositions. (Sigma)18O and (Delta)17O values suggest the incorporation of isotopically light glacial water. Data point to initial sulfate formation in an anoxic water body, either as a stratified anoxic deep lake on the surface, a sub-glacial water reservoir, or a sub-glacial lake. Several surface lakes of varying size are also present within this region of the LCIT, and in some cases are adjacent to the mirabilite mounds. O and D isotope compositions of surface lakes confirm they are derived from a mixture of glacial ice and snow that underwent moderate evaporation. (Sigma)18O and (Sigma)D (V-SMOW) values of snow, ice, and lake water range from -64.2 to -29.7%, and -456.0 to -231.7%, respectively. However, the isotope chemistry of these surface lakes is extremely different from the mounds. Dissolved SO4-2 (Sigma)34S and (Sigma)18O values range from +12.0 to +20.0% and -12.8 to -22.2% (the most negative (Sigma)18O of terrestrial sulfate ever reported), respectively, with sulfate (Delta)17O ranging from +0.93 to 2.24%. Ion chromatography data show that lake water is fresh to brackish in origin, with TDS less than 1500 ppm, and sulfate concentration less than 431 ppm. Isotope and chemical data suggest that these lakes are unlikely the source of the mirabilite mounds. We suggest that lake water sulfate is potentially composed of a mixture of atmospheric sulfate and minor components of sulfate of weathering origin, much like the sulfate in the polar plateau soils of the Mc

  13. The NASA Lewis Strain Gauge Laboratory: An update

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1986-01-01

    Efforts continue in the development and evaluation of electrical resistance strain gauges of the thin film and small diameter wire type. Results obtained early in 1986 on some Chinese gauges and Kanthal A-1 gauges mounted on a Hastelloy-X substrate are presented. More recent efforts include: (1) the determination of the uncertainty in the ability to establish gauge factor, (2) the evaluation of sputtered gauges that were fabricated at Lewis, (3) an investigation of the efficacy of dual element temperature compensated gauges when using strain gauge alloys having large thermal coefficients of resistance, and (4) an evaluation of the practical methods of stabilizing gauges whose apparent strain is dependent on cooling rate (e.g., FeCrAl gauges).

  14. NASA's P-3 at Sunrise

    NASA Image and Video Library

    2017-12-08

    NASA's P-3B airborne laboratory on the ramp at Thule Air Base in Greenland early on the morning of Mar. 21, 2013. Credit: NASA/Goddard/Christy Hansen NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Commercial Implementation of Ultrasonic Velocity Imaging Methods via Cooperative Agreement Between NASA Lewis Research Center and Sonix, Inc.

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Hendricks, J. Lynne; Whalen, Mike F.; Bodis, James R.; Martin, Katherine

    1996-01-01

    This article describes the commercial implementation of ultrasonic velocity imaging methods developed and refined at NASA Lewis Research Center on the Sonix c-scan inspection system. Two velocity imaging methods were implemented: thickness-based and non-thickness-based reflector plate methods. The article demonstrates capabilities of the commercial implementation and gives the detailed operating procedures required for Sonix customers to achieve optimum velocity imaging results. This commercial implementation of velocity imaging provides a 100x speed increase in scanning and processing over the lab-based methods developed at LeRC. The significance of this cooperative effort is that the aerospace and other materials development-intensive industries which use extensive ultrasonic inspection for process control and failure analysis will now have an alternative, highly accurate imaging method commercially available.

  16. Antarctic Ice Shelf Loss Comes From Underneath

    NASA Image and Video Library

    2017-12-08

    Calving front of an ice shelf in West Antarctica. The traditional view on ice shelves, the floating extensions of seaward glaciers, has been that they mostly lose ice by shedding icebergs. A new study by NASA and university researchers has found that warm ocean waters melting the ice sheets from underneath account for 55 percent of all ice shelf mass loss in Antarctica. This image was taken during the 2012 Antarctic campaign of NASA's Operation IceBridge, a mission that provided data for the new ice shelf study. Read more: www.nasa.gov/topics/earth/features/earth20130613.html Credit: NASA/GSFC/Jefferson Beck NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Testing of YUH-61A helicopter transmission in NASA Lewis 2240-kW (3000-hp facility

    NASA Technical Reports Server (NTRS)

    Mitchell, A. M.; Oswald, F. B.; Schuller, F. T.

    1986-01-01

    A helicopter transmission that was being considered for the Army's Utility Tactical Transport Attack System (UTTAS) was tested in the NASA Lewis 2240-kW (3000-hp) test facility to obtain the transmission's operational data. The results will form a vibration and efficiency data base for evaluation similar-class helicopter transmissions. The transmission's mechanical efficiency was determined to be 98.7 percent at its rated power level of 2080 kW (2792 hp). At power levels up to 113 percent of rated the transmission displayed 56 percent higher vibration acceleration levels on the right input than on the left input. Both vibration signature analysis and final visual inspection indicated that the right input spiral-bevel gear had poor contact patterns. The highest vibration meter level was 52 g's rms at the accessory gear, which had free-wheeling gearsets. At 113 percent power and 100 percent rated speed the vibration meter levels generally ranged from 3 to 25 g's rms.

  18. Comparisons of Mixed-Phase Icing Cloud Simulations with Experiments Conducted at the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; Struk, Peter M.; Tsao, Jen-Ching

    2017-01-01

    This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. Experimentally measured air temperature, humidity, total water content, liquid and ice water content, as well as cloud particle size, are compared with model predictions. The model showed good trend agreement with experimentally measured values, but often over-predicted aero-thermodynamic changes. This discrepancy is likely attributed to radial variations that this one-dimensional model does not address. One of the key findings of this work is that greater aero-thermodynamic changes occur when humidity conditions are low. In addition a range of mixed-phase clouds can be achieved by varying only the tunnel humidity conditions, but the range of humidities to generate a mixed-phase cloud becomes smaller when clouds are composed of smaller particles. In general, the model predicted melt fraction well, in particular with clouds composed of larger particle sizes.

  19. 2-kW Solar Dynamic Space Power System Tested in Lewis' Thermal Vacuum Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Working together, a NASA/industry team successfully operated and tested a complete solar dynamic space power system in a large thermal vacuum facility with a simulated sun. This NASA Lewis Research Center facility, known as Tank 6 in building 301, accurately simulates the temperatures, high vacuum, and solar flux encountered in low-Earth orbit. The solar dynamic space power system shown in the photo in the Lewis facility, includes the solar concentrator and the solar receiver with thermal energy storage integrated with the power conversion unit. Initial testing in December 1994 resulted in the world's first operation of an integrated solar dynamic system in a relevant environment.

  20. Telecommuting (Work-At-Home) at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Srinidhi, Saragur M.

    1994-01-01

    This report presents a study in evaluating the viability of providing a work-at-home (telecommuting) program for Lewis Research Center's corporate employees using Integrated Services Digital Network (ISDN). Case studies have been presented for a range of applications from casual data access to interactive access. The network performance of telemedia applications were studied against future requirements for such level of remote connectivity. Many of the popular ISDN devices were characterized for network and service functionality. A set of recommendations to develop a telecommuting policy have been proposed.

  1. LeRC-HT: NASA Lewis Research Center General Multiblock Navier-Stokes Heat Transfer Code Developed

    NASA Technical Reports Server (NTRS)

    Heidmann, James D.; Gaugler, Raymond E.

    1999-01-01

    For the last several years, LeRC-HT, a three-dimensional computational fluid dynamics (CFD) computer code for analyzing gas turbine flow and convective heat transfer, has been evolving at the NASA Lewis Research Center. The code is unique in its ability to give a highly detailed representation of the flow field very close to solid surfaces. This is necessary for an accurate representation of fluid heat transfer and viscous shear stresses. The code has been used extensively for both internal cooling passage flows and hot gas path flows--including detailed film cooling calculations, complex tip-clearance gap flows, and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool (at least 35 technical papers have been published relative to the code and its application), but it should be useful for detailed design analysis. We now plan to make this code available to selected users for further evaluation.

  2. Operationally Merged Satellite Visible/IR and Passive Microwave Sea Ice Information for Improved Sea Ice Forecasts and Ship Routing

    DTIC Science & Technology

    2015-09-30

    microwave sea ice information for improved sea ice forecasts and ship routing W. Meier NASA Goddard Space Flight Center, Cryospheric Sciences Laboratory...updating the initial ice concentration analysis fields along the ice edge. In the past year, NASA Goddard and NRL have generated a merged 4 km AMSR-E...collaborations of three groups: NASA Goddard Space Flight Center ( NASA /GSFC) in Greenbelt, MD, NRL/Oceanography Division located at Stennis Space Center (SSC

  3. NASA/OAI Research Associates program

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.

    1994-01-01

    The intent of this activity was the development of a cooperative program between the Ohio Aerospace Institute and the NASA Lewis Research Center with the objective of better preparing recent university graduates for careers in government aerospace research laboratories. The selected individuals were given the title of research associate. To accomplish the aims of this effort: (1) the research associates were introduced to the NASA Lewis Research Center and its mission/programs, (2) the research associates directly participated in NASA research and development programs, and (3) the research associates were given continuing educational opportunities in specialized areas. A number of individuals participated in this project during the discourse of this cooperative agreement. Attached are the research summaries of eight of the research associates. These reports give a very good picture of the research activities that were conducted by the associates.

  4. Electric Vehicles near the Hangar at the Lewis Research Center

    NASA Image and Video Library

    1977-06-21

    The National Aeronautics and Space Administration (NASA) Lewis Research Center tested 16 commercially-manufactured electric vehicles, including these, during the mid-1970s. Lewis and the Energy Research and Development Administration (ERDA) engaged in several energy-related programs in the mid-1970s, including the Electric Vehicle Project. NASA and ERDA undertook the program in 1976 to determine the state of the current electric vehicle technology. The tests were primarily conducted on a 7.5-mile track at the Transportation Research Center located approximately 160 miles southwest of Cleveland, Ohio. Some of the vehicles had analog data recording systems to measure the battery during operation and sensors to determine speed and distance. The tests analyzed the vehicle’s range, acceleration, coast-down, braking, and energy consumption. From left to right: RIPP-Electric, EVA Contactor, Otis P-500, C.H. Waterman DAF, Zagato Elcar, unknown, Sebring-Vanguard Citicar, and Hattronic Minivan

  5. Lewis base activation of Lewis acids: development of a Lewis base catalyzed selenolactonization.

    PubMed

    Denmark, Scott E; Collins, William R

    2007-09-13

    The concept of Lewis base activation of Lewis acids has been applied to the selenolactonization reaction. Through the use of substoichiometric amounts of Lewis bases with "soft" donor atoms (S, Se, P) significant rate enhancements over the background reaction are seen. Preliminary mechanistic investigations have revealed the resting state of the catalyst as well as the significance of a weak Brønsted acid promoter.

  6. Why credible propeller noise measurements are possible in the acoustically untreated NASA Lewis 8 ft by 6 ft wind tunnel

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1984-01-01

    An explanation is presented for the lack of acoustic reflections in noise studies of propfan models in the NASA-Lewis 8 x 6 ft wind tunnel, where trials were run at Mach numbers 0.5-0.85. The highly directional propeller noise, i.e., mainly in the plane of rotation, experiences a convective effect due to the high subsonic axial Mach number. Reflected sounds are carried downstream, out of range of the acoustic sensors in the tunnel. Furthermore, reflected noise is less audible, and therefore does not affect measurements near peak values. It is suggested that some data contamination may occur below Mach 0.6, and that measurements be performed on higher harmonics generated by low level reflected noise.

  7. Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2012 Test)

    NASA Technical Reports Server (NTRS)

    Pastor-Barsi, Christine M.; Arrington, E. Allen; VanZante, Judith Foss

    2012-01-01

    A major modification of the refrigeration plant and heat exchanger at the NASA Glenn Icing Research Tunnel (IRT) occurred in autumn of 2011. It is standard practice at NASA Glenn to perform a full aero-thermal calibration of the test section of a wind tunnel facility upon completion of major modifications. This paper will discuss the tools and techniques used to complete an aero-thermal calibration of the IRT and the results that were acquired. The goal of this test entry was to complete a flow quality survey and aero-thermal calibration measurements in the test section of the IRT. Test hardware that was used includes the 2D Resistive Temperature Detector (RTD) array, 9-ft pressure survey rake, hot wire survey rake, and the quick check survey rake. This test hardware provides a map of the velocity, Mach number, total and static pressure, total temperature, flow angle and turbulence intensity. The data acquired were then reduced to examine pressure, temperature, velocity, flow angle, and turbulence intensity. Reduced data has been evaluated to assess how the facility meets flow quality goals. No icing conditions were tested as part of the aero-thermal calibration. However, the effects of the spray bar air injections on the flow quality and aero-thermal calibration measurements were examined as part of this calibration.

  8. Aero-thermal Calibration of the NASA Glenn Icing Research Tunnel (2000 Tests)

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen; Curry, Monroe R., III

    2001-01-01

    Aerothermal calibration measurements and flow quality surveys were made in the test section of the Icing Research Tunnel at the NASA Glenn Research Center. These surveys were made following major facility modifications including widening of the heat exchanger tunnel section, replacement of the heat exchanger, installation of new turning vanes, and installation of new fan exit guide vanes. Standard practice at NASA Glenn requires that test section calibration and flow quality surveys be performed following such major facility modifications. A single horizontally oriented rake was used to survey the flow field at several vertical positions within a single cross-sectional plane of the test section. These surveys provided a detailed mapping of the total and static pressure, total temperature, Mach number, velocity, flow angle and turbulence intensity. Data were acquired over the entire velocity and total temperature range of the facility. No icing conditions were tested; however, the effects of air sprayed through the water injecting spray bars were assessed. All data indicate good flow quality. Mach number standard deviations were less than 0.0017, flow angle standard deviations were between 0.3 deg and 0.8 deg, total temperature standard deviations were between 0.5 and 1.8 F for subfreezing conditions, axial turbulence intensities varied between 0.3 and 1.0 percent, and transverse turbulence intensities varied between 0.3 and 1.5 percent. Measurement uncertainties were also quantified.

  9. Icing Simulation Research Supporting the Ice-Accretion Testing of Large-Scale Swept-Wing Models

    NASA Technical Reports Server (NTRS)

    Yadlin, Yoram; Monnig, Jaime T.; Malone, Adam M.; Paul, Bernard P.

    2018-01-01

    The work summarized in this report is a continuation of NASA's Large-Scale, Swept-Wing Test Articles Fabrication; Research and Test Support for NASA IRT contract (NNC10BA05 -NNC14TA36T) performed by Boeing under the NASA Research and Technology for Aerospace Propulsion Systems (RTAPS) contract. In the study conducted under RTAPS, a series of icing tests in the Icing Research Tunnel (IRT) have been conducted to characterize ice formations on large-scale swept wings representative of modern commercial transport airplanes. The outcome of that campaign was a large database of ice-accretion geometries that can be used for subsequent aerodynamic evaluation in other experimental facilities and for validation of ice-accretion prediction codes.

  10. An Assessment of the Icing Blade and the SEA Multi-Element Sensor for Liquid Water Content Calibration of the NASA GRC Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith Foss

    2017-01-01

    The Icing Research Tunnel at NASA Glenn has recently switched to from using the Icing Blade to using the SEA Multi-Element Sensor (also known as the multi-wire) for its calibration of cloud liquid water content. In order to perform this transition, tests were completed to compare the Multi-Element Sensor to the Icing Blade, particularly with respect to liquid water content, airspeed, and drop size. The two instruments were found to compare well for the majority of Appendix C conditions. However, it was discovered that the Icing Blade under-measures when the conditions approach the Ludlam Limit. This paper also describes data processing procedures for the Multi-Element Sensor in the IRT, including collection efficiency corrections, mounting underneath a splitter plate, and correcting for a jump in the compensation wire power. Further data is presented to describe the repeatability of the IRT with the Multi-Element sensor, health-monitoring checks for the instrument, and a sensing-element configuration comparison.

  11. Particle trajectory computer program for icing analysis of axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Chang, Ho-Pen; Kimble, Kenneth R.

    1982-01-01

    General aviation aircraft and helicopters exposed to an icing environment can accumulate ice resulting in a sharp increase in drag and reduction of maximum lift causing hazardous flight conditions. NASA Lewis Research Center (LeRC) is conducting a program to examine, with the aid of high-speed computer facilities, how the trajectories of particles contribute to the ice accumulation on airfoils and engine inlets. This study, as part of the NASA/LeRC research program, develops a computer program for the calculation of icing particle trajectories and impingement limits relative to axisymmetric bodies in the leeward-windward symmetry plane. The methodology employed in the current particle trajectory calculation is to integrate the governing equations of particle motion in a flow field computed by the Douglas axisymmetric potential flow program. The three-degrees-of-freedom (horizontal, vertical, and pitch) motion of the particle is considered. The particle is assumed to be acted upon by aerodynamic lift and drag forces, gravitational forces, and for nonspherical particles, aerodynamic moments. The particle momentum equation is integrated to determine the particle trajectory. Derivation of the governing equations and the method of their solution are described in Section 2.0. General features, as well as input/output instructions for the particle trajectory computer program, are described in Section 3.0. The details of the computer program are described in Section 4.0. Examples of the calculation of particle trajectories demonstrating application of the trajectory program to given axisymmetric inlet test cases are presented in Section 5.0. For the examples presented, the particles are treated as spherical water droplets. In Section 6.0, limitations of the program relative to excessive computer time and recommendations in this regard are discussed.

  12. An Assessment of the SEA Multi-Element Sensor for Liquid Water Content Calibration of the NASA GRC Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith F.

    2015-01-01

    The NASA Glenn Icing Research tunnel has been using an Icing Blade technique to measure cloud liquid water content (LWC) since 1980. The IRT conducted tests with SEA Multi-Element sensors from 2009 to 2011 to assess their performance in measuring LWC. These tests revealed that the Multi-Element sensors showed some significant advantages over the Icing Blade, particularly at higher water contents, higher impingement rates, and large drop sizes. Results of these and other tests are presented here.

  13. Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen

    1999-01-01

    A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.

  14. Unstructured grid research and use at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    Computational fluid dynamics applications of grid research at LRC include inlets, nozzles, and ducts; turbomachinery; propellers - ducted and unducted; and aircraft icing. Some issues related to internal flow grid generation are resolution requirements on several boundaries, shock resolution vs. grid periodicity, grid spacing at blade/shroud gap, grid generation in turbine blade passages, and grid generation for inlet/nozzle geometries. Aircraft icing grid generation issues include (1) small structures relative to airfoil chord must be resolved; (2) excessive number of grid points in far-field using structured grid; and (3) grid must be recreated as ice shape grows.

  15. Analysis of the Meteorology Associated with the 1998 NASA Glenn Twin Otter Icing Flights

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.

    2000-01-01

    This document contains a basic analysis of the meteorology associated with the NASA Glenn Twin Otter icing encounters between December 1997 and March 1998. The purpose of this analysis is to provide a meteorological context for the aircraft data collected during these flights. For each case, the following data elements are presented: (1) A brief overview of the Twin Otter encounter, including locations, liquid water contents, temperatures and microphysical makeup of the clouds and precipitation aloft, (2) Upper-air charts, providing hand-analyzed locations of lows, troughs, ridges, saturated/unsaturated air, temperatures, warm/cold advection, and jet streams, (3) Balloon-borne soundings, providing vertical profiles of temperature, moisture and winds, (4) Infrared and visible satellite data, providing cloud locations and cloud top temperature, (5) 3-hourly surface charts, providing hand-analyzed locations of lows, highs, fronts, precipitation (including type) and cloud cover, (6) Hourly, regional radar mosaics, providing fine resolution of the locations of precipitation (including intensity and type), pilot reports of icing (including intensity and type), surface observations of precipitation type and Twin Otter tracks for a one hour window centered on the time of the radar data, and (7) Hourly plots of icing pilot reports, providing the icing intensity, icing type, icing altitudes and aircraft type. Outages occurred in nearly every dataset at some point. All relevant data that was available is presented here. All times are in UTC and all heights are in feet above mean sea level (MSL).

  16. The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-16

    The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  17. The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-13

    The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  18. The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-16

    The Larsen Ice Shelf in Antarctica viewed from NASA's DC-8 aircraft during the AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with an Airborne Synthetic Aperture Radar (AirSAR) developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  19. Proceedings of the Airframe Icing Workshop

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron O. (Editor)

    2009-01-01

    The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of ice accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe Icing Workshop held at GRC provided an opportunity to examine the current NASA airframe icing research program and to dialogue on remaining and emerging airframe icing issues and research with the external community. Some of the airframe icing gaps identified included, but are not limited to, ice accretion simulation enhancements, three-dimensional benchmark icing database development, three-dimensional iced aerodynamics modeling, and technology development for a smart icing system.

  20. A detailed description of the uncertainty analysis for high area ratio rocket nozzle tests at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac

    1987-01-01

    A preliminary uncertainty analysis was performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis is presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.

  1. A detailed description of the uncertainty analysis for High Area Ratio Rocket Nozzle tests at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.; Dieck, Ronald H.; Chuang, Isaac

    1987-01-01

    A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices.

  2. Lewis Research Center studies of multiple large wind turbine generators on a utility network

    NASA Technical Reports Server (NTRS)

    Gilbert, L. J.; Triezenberg, D. M.

    1979-01-01

    A NASA-Lewis program to study the anticipated performance of a wind turbine generator farm on an electric utility network is surveyed. The paper describes the approach of the Lewis Wind Energy Project Office to developing analysis capabilities in the area of wind turbine generator-utility network computer simulations. Attention is given to areas such as, the Lewis Purdue hybrid simulation, an independent stability study, DOE multiunit plant study, and the WEST simulator. Also covered are the Lewis mod-2 simulation including analog simulation of a two wind turbine system and comparison with Boeing simulation results, and gust response of a two machine model. Finally future work to be done is noted and it is concluded that the study shows little interaction between the generators and between the generators and the bus.

  3. Acoustical evaluation of the NASA Lewis 9 by 15 foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Woodward, Richard P.

    1992-01-01

    The test section of the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel was acoustically treated to allow the measurement of acoustic sources located within the tunnel test section under simulated free field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and to withstand tunnel airflow velocities up to 0.2 Mach. Evaluation tests with no tunnel airflow were conducted in the test section to assess the performance of the installed treatment. This performance would not be significantly affected by low speed airflow. Time delay spectrometry tests showed that interference ripples in the incident signal resulting from reflections occurring within the test section average from 1.7 dB to 3.2 dB wide over a 500 to 5150 Hz frequency range. Late reflections, from upstream and downstream of the test section, were found to be insignificant at the microphone measuring points. For acoustic sources with low directivity characteristics, decay with distance measurements in the test section showed that incident free field behavior can be measured on average with an accuracy of +/- 1.5 dB or better at source frequencies from 400 Hz to 10 kHz. The free field variations are typically much smaller with an omnidirectional source.

  4. Computers in aeronautics and space research at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This brochure presents a general discussion of the role of computers in aerospace research at NASA's Lewis Research Center (LeRC). Four particular areas of computer applications are addressed: computer modeling and simulation, computer assisted engineering, data acquisition and analysis, and computer controlled testing.

  5. An Overview-NASA LeRC Structures Program

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1997-01-01

    The Structures and Acoustics Division of the NASA Lewis Research Center has its genesis dating back to 1943. It has been an independent Division at Lewis since 1979. Its two primary capabilities are performance and life analysis of static and dynamic systems such as those found in aircraft and spacecraft propulsion systems and experimental verification of these analyses. Research is conducted in-house, through university grants and contracts, and through cooperative programs with industry. Our work directly supports NASA's Advanced Subsonic Technology (AST), Smart Green Engine, Fast Quiet Engine, High-Temperature Materials and Processing (HiTEMP), Hybrid Hyperspeed Propulsion, Rotorcraft, High-Speed Research (HSR), and Aviation Safety Program (AvSP). A general overview is given discussing these programs and other technologies that are being developed at NASA LeRC.

  6. Ice Waves

    NASA Image and Video Library

    2017-12-08

    Ice Waves - May 21st, 2001 Description: Along the southeastern coast of Greenland, an intricate network of fjords funnels glacial ice to the Atlantic Ocean. During the summer melting season, newly calved icebergs join slabs of sea ice and older, weathered bergs in an offshore slurry that the southward-flowing East Greenland Current sometimes swirls into stunning shapes. Exposed rock of mountain peaks, tinted red in this image, hints at a hidden landscape. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  7. Applied analytical combustion/emissions research at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Kundu, K. P.; Nguyen, H. L.

    1992-01-01

    Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time.

  8. John Lewis | NREL

    Science.gov Websites

    Lewis John Lewis John Lewis Researcher IV-Chemical Engineering John.Lewis@nrel.gov | 303-275-3021 Education Ph.D. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1996 M.S. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1993 B.S. Chemical Engineering, Texas A&M

  9. Drive Fan of the NACA's Icing Research Tunnel

    NASA Image and Video Library

    1956-10-21

    A researcher examines the drive fan inside the Icing Research Tunnel at the National Advisory Committee for Aeronautics (NACA) Flight Propulsion Research Laboratory in Cleveland, Ohio. The facility was built in the mid-1940s to simulate the atmospheric conditions that caused ice to build up on aircraft. Carrier Corporation refrigeration equipment reduced the internal air temperature to -45⁰ F, and a spray bar system injected water droplets into the air stream. The 24-foot diameter drive fan, seen in this photograph, created air flow velocities up to 400 miles per hour. The 1950s were prime years for the Icing Research Tunnel. NACA engineers had spent the 1940s trying to resolve the complexities of the spray bar system. The final system put into operation in 1950 included six horizontal spray bars with 80 nozzles that produced a 4- by 4-foot cloud in the test section. The icing tunnel was used for extensive testing of civilian and military aircraft components in the 1950s. The NACA also launched a major investigation of the various methods of heating leading edge surfaces. The hot-air anti-icing technology used on today’s commercial transports was largely developed in the facility during this period. Lewis researchers also made significant breakthroughs with icing on radomes and jet engines. Although the Icing Research Tunnel yielded major breakthroughs in the 1950s, the Lewis icing research program began tapering off as interest in the space program grew. The icing tunnel’s use declined in 1956 and 1957. The launch of Sputnik in October 1957 signaled the end of the facility’s operation. The icing staff was transferred to other research projects and the icing tunnel was temporarily mothballed.

  10. Sea Ice in the Bellingshausen Sea

    NASA Image and Video Library

    2017-12-08

    Antarctica—the continent at the southernmost reach of the planet—is fringed by cold, often frozen waters of the Southern Ocean. The extent of sea ice around the continent typically reaches a peak in September and a minimum in February. The photograph above shows Antarctic sea ice on November 5, 2014, during the annual cycle of melt. The image was acquired by the Digital Mapping System (DMS), a digital camera installed in the belly of research aircraft to capture images of terrain below. In this case, the system flew on the DC-8 during a flight as part of NASA’s Operation IceBridge. Most of the view shows first-year sea ice in the Bellingshausen Sea, as it appeared from an altitude of 328 meters (1,076 feet). The block of ice on the right side of the image is older, thicker, and was once attached to the Antarctic Ice Sheet. By the time this image was acquired, however, the ice had broken away to form an iceberg. Given its close proximity to the ice sheet, this could have been a relatively new berg. Read more: earthobservatory.nasa.gov/IOTD/view.php?id=86721 Credit: NASA/Goddard/IceBridge DMS L0 Raw Imagery courtesy of the Digital Mapping System (DMS) team and the NASA DAAC at the National Snow and Ice Data Center Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Further evaluation of traditional icing scaling methods

    NASA Technical Reports Server (NTRS)

    Anderson, David N.

    1996-01-01

    This report provides additional evaluations of two methods to scale icing test conditions; it also describes a hybrid technique for use when scaled conditions are outside the operating envelope of the test facility. The first evaluation is of the Olsen method which can be used to scale the liquid-water content in icing tests, and the second is the AEDC (Ruff) method which is used when the test model is less than full size. Equations for both scaling methods are presented in the paper, and the methods were evaluated by performing icing tests in the NASA Lewis Icing Research Tunnel (IRT). The Olsen method was tested using 53 cm diameter NACA 0012 airfoils. Tests covered liquid-water-contents which varied by as much as a factor of 1.8. The Olsen method was generally effective in giving scale ice shapes which matched the reference shapes for these tests. The AEDC method was tested with NACA 0012 airfoils with chords from 18 cm to 53 cm. The 53 cm chord airfoils were used in reference tests, and 1/2 and 1/3 scale tests were made at conditions determined by applying the AEDC scaling method. The scale and reference airspeeds were matched in these tests. The AEDC method was found to provide fairly effective scaling for 1/2 size tests, but for 1/3 size models, scaling was generally less effective. In addition to these two scaling methods, a hybrid approach was also tested in which the Olsen method was used to adjust the LWC after size was scaled using the constant Weber number method. This approach was found to be an effective way to test when scaled conditions would otherwise be outside the capability of the test facility.

  12. NASA Glenn Icing Research Tunnel: 2012 Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    VanZante, Judith Foss; Ide, Robert F.; Steen, Laura E.

    2012-01-01

    In 2011, NASA Glenn s Icing Research Tunnel underwent a major modification to it s refrigeration plant and heat exchanger. This paper presents the results of the subsequent full cloud calibration. Details of the calibration procedure and results are presented herein. The steps include developing a nozzle transfer map, establishing a uniform cloud, conducting a drop sizing calibration and finally a liquid water content calibration. The goal of the calibration is to develop a uniform cloud, and to build a transfer map from the inputs of air speed, spray bar atomizing air pressure and water pressure to the output of median volumetric droplet diameter and liquid water content.

  13. NASA Researcher with a Coaxial Plasma Gun

    NASA Image and Video Library

    1962-06-21

    Researcher Charles Michels operates a coaxial plasma gun rig in Cell SW-13 of the Engine Research Building at the National Aeronautics and Space Administration (NASA) Lewis Research Center. From 1962 to 1967 NASA Lewis investigated coaxial plasma guns powered by conventional capacitor banks. The studies were part of a larger effort to identify electromagnetic accelerators for space propulsion. NASA worked with General Dynamics, General Electric, General Motors, and Republic Aviation on the project. NASA Lewis conducted a research program to determine which factors influenced the coaxial gun’s efficiency and analyze the acceleration process. The system had not previously been used for propulsion applications. The single-shot gun’s fast gas valve and capacitor banks with variable-delay ignition source permitted the evaluation of gun performance under controllable propellant quantity and distribution conditions. The coaxial plasma gun was the most basic type of electromagnetic accelerator. It included a charged capacitor in series with a pair of coaxial electrodes. An electrical breakdown occurred when gas was admitted to the inter-electrode region. The gas instantly became a good conductor and formed a conducting sheet that separated the magnetic field from the open region beyond. The highly-conducting gas was basically expelled by the force of the magnetic pressure. This type of thruster could operate at the high instantaneous power levels without decreasing its average power level.

  14. Supercooled Liquid Water Content Instrument Analysis and Winter 2014 Data with Comparisons to the NASA Icing Remote Sensing System and Pilot Reports

    NASA Technical Reports Server (NTRS)

    King, Michael C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has developed a system for remotely detecting the hazardous conditions leading to aircraft icing in flight, the NASA Icing Remote Sensing System (NIRSS). Newly developed, weather balloon-borne instruments have been used to obtain in-situ measurements of supercooled liquid water during March 2014 to validate the algorithms used in the NIRSS. A mathematical model and a processing method were developed to analyze the data obtained from the weather balloon soundings. The data from soundings obtained in March 2014 were analyzed and compared to the output from the NIRSS and pilot reports.

  15. IceBridge Survey Flight Over Saunders Island and Wolstenholme Fjord

    NASA Image and Video Library

    2017-12-08

    This image of Saunders Island and Wolstenholme Fjord with Kap Atholl in the background was taken during an Operation IceBridge survey flight in April, 2013. Sea ice coverage in the fjord ranges from thicker, white ice seen in the background, to thinner grease ice and leads showing open ocean water in the foreground. In March 2013, NASA's Operation IceBridge scientists began another season of research activity over Arctic ice sheets and sea ice. IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Image Credit: NASA / Michael Studinger Read more about the mission here: www.nasa.gov/mission_pages/icebridge/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. NASA communications technology research and development

    NASA Technical Reports Server (NTRS)

    Durham, A. F.; Stankiewicz, N.

    1979-01-01

    The development of a 1978 NASA study to identify technology requirements is surveyed, and its principal conclusions, recommendations, and priorities are summarized. In addition, antenna, traveling wave tube, and solid state amplifier developments representing selected items from the current communications technology development programs at the NASA Lewis Research and Goddard Space Flight Centers are described.

  17. Noise measurements from an ejector suppressor nozzle in the NASA Lewis 9- by 15-foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Cooper, Beth A.; Hall, David G.; Khavaran, Abbas

    1990-01-01

    Acoustic results are presented of a cooperative nozzle test program between NASA and Pratt and Whitney, conducted in the NASA-Lewis 9 x 15 ft Anechoic Wind Tunnel. The nozzle tested was the P and W Hypermix Nozzle concept, a 2-D lobed mixer nozzle followed by a short ejector section made to promote rapid mixing of the induced ejector nozzle flow. Acoustic and aerodynamic measurements were made to determine the amount of ejector pumping, degree of mixing, and noise reduction achieved. A series of tests were run to verify the acoustic quality of this tunnel. The results indicated that the tunnel test section is reasonably anechoic but that background noise can limit the amount of suppression observed from suppressor nozzles. Also, a possible internal noise was observed in the air supply system. The P and W ejector suppressor nozzle demonstrated the potential of this concept to significantly reduce jet noise. Significant reduction in low frequency noise was achieved by increasing the peak jet noise frequency. This was accomplished by breaking the jet into segments with smaller dimensions than those of the baseline nozzle. Variations in ejector parameters had little effect on the noise for the geometries and the range of temperatures and pressure ratios tested.

  18. Engines and Innovation: Lewis Laboratory and American Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Dawson, Virginia Parker

    1991-01-01

    This book is an institutional history of the NASA Lewis Research Center, located in Cleveland, Ohio, from 1940, when Congress authorized funding for a third laboratory for the National Advisory Committee for Aeronautics, through the 1980s. The history of the laboratory is discussed in relation to the development of American propulsion technology, with particular focus on the transition in the 1940s from the use of piston engines in airplanes to jet propulsion and that from air-breathing engines to rocket technology when the National Aeronautics and Space Administration was established in 1958. The personalities and research philosophies of the people who shaped the history of the laboratory are discussed, as is the relationship of Lewis Research Center to the Case Institute of Technology.

  19. Lewy Body Disease

    MedlinePlus

    Lewy body disease is one of the most common causes of dementia in the elderly. Dementia is the loss of mental ... to affect normal activities and relationships. Lewy body disease happens when abnormal structures, called Lewy bodies, build ...

  20. Analysis of the Meteorology Associated with the 1997 NASA Glenn Twin Otter Icing Events

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.

    2000-01-01

    This part of the document contains an analysis of the meteorology associated with the premier icing encounters from the January-March 1997 NASA Twin Otter dataset. The purpose of this analysis is to provide a meteorological context for the aircraft data collected during these flights. For each case, the following data elements are presented: (1) A detailed discussion of the Twin Otter encounter, including locations, liquid water contents, temperatures and microphysical makeup of the clouds and precipitation aloft, (2) Upper-air charts, providing hand-analyzed locations of lows, troughs, ridges, saturated/unsaturated air, temperatures, warm/cold advection, and jet streams, (3) Balloon-borne soundings, providing vertical profiles of temperature, moisture and winds, (4) Infrared satellite data, providing cloud locations and cloud top temperature, (5) 3-hourly surface charts, providing hand-analyzed locations of lows, highs, fronts, precipitation (including type) and cloud cover, (6) Hourly plots of icing pilot reports, providing the icing intensity, icing type, icing altitudes and aircraft type, (7) Hourly, regional radar mosaics, providing fine resolution of the locations of precipitation (including intensity and type), pilot reports of icing (including intensity and type), surface observations of precipitation type and Twin Otter tracks for a one hour window centered on the time of the radar data, and (8) Plots of data from individual NEXRAD radars at times and elevation angles that have been matched to Twin Otter flight locations. Outages occurred in nearly every dataset at some point. All relevant data that was available is presented here. All times are in UTC and all heights are in feet above mean sea level (MSL).

  1. Hardwall acoustical characteristics and measurement capabilities of the NASA Lewis 9 x 15 foot low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Rentz, P. E.

    1976-01-01

    Experimental evaluations of the acoustical characteristics and source sound power and directionality measurement capabilities of the NASA Lewis 9 x 15 foot low speed wind tunnel in the untreated or hardwall configuration were performed. The results indicate that source sound power estimates can be made using only settling chamber sound pressure measurements. The accuracy of these estimates, expressed as one standard deviation, can be improved from + or - 4 db to + or - 1 db if sound pressure measurements in the preparation room and diffuser are also used and source directivity information is utilized. A simple procedure is presented. Acceptably accurate measurements of source direct field acoustic radiation were found to be limited by the test section reverberant characteristics to 3.0 feet for omni-directional and highly directional sources. Wind-on noise measurements in the test section, settling chamber and preparation room were found to depend on the sixth power of tunnel velocity. The levels were compared with various analytic models. Results are presented and discussed.

  2. Sea Ice in McClure Strait

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 17, 2010 In mid-August 2010, the Northwest Passage was almost—but not quite—free of ice. The ice content in the northern route through the passage (through the Western Parry Channel) was very light, but ice remained in McClure (or M’Clure) Strait. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image on August 17, 2010. Although most of McClure Strait looks perfectly ice-free, immediately west of Prince Patrick Island, a band of sea ice stretches southward across the strait (left edge of the image). The National Snow and Ice Data Center Sea Ice News and Analysis blog reported that even more ice remained in the southern route (through Amundsen’s Passage) of the Northwest Passage in mid-August 2010. Nevertheless, the ice content in the northern route was not only well below the 1968–2000 average, but also nearly a month ahead of the clearing observed in 2007, when Arctic sea ice set a record low. As of mid-August 2010, however, overall sea ice extent was higher than it had been at the same time of year in 2007. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team Caption by Michon Scott. To learn more go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=45333 Instrument: Terra - MODIS NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook Click here to see more images from NASA Goddard’s Earth Observatory

  3. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    PubMed

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pK a 's (estimated error of 1.3 pK a units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol -1 , were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pK a units. A linear correlation exhibiting a 2.6 pK a unit change of the Lewis acid-water adduct per ten kcal mol -1 change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pK a units. On average, a ten kcal mol -1 change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pK a unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pK a of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pK a of a main group dihydrogen complex is described. The pK a of H 2 -B(C 6 F 5 ) 3 was determined to be 5.8 ± 0.2 in acetonitrile.

  4. Sea Ice Outlook for September 2015 June Report - NASA Global Modeling and Assimilation Office

    NASA Technical Reports Server (NTRS)

    Cullather, Richard I.; Keppenne, Christian L.; Marshak, Jelena; Pawson, Steven; Schubert, Siegfried D.; Suarez, Max J.; Vernieres, Guillaume; Zhao, Bin

    2015-01-01

    The recent decline in perennial sea ice cover in Arctic Ocean is a topic of enormous scientific interest and has relevance to a broad variety of scientific disciplines and human endeavors including biological and physical oceanography, atmospheric circulation, high latitude ecology, the sustainability of indigenous communities, commerce, and resource exploration. A credible seasonal prediction of sea ice extent would be of substantial use to many of the stakeholders in these fields and may also reveal details on the physical processes that result in the current trends in the ice cover. Forecasts are challenging due in part to limitations in the polar observing network, the large variability in the climate system, and an incomplete knowledge of the significant processes. Nevertheless it is a useful to understand the current capabilities of high latitude seasonal forecasting and identify areas where such forecasts may be improved. Since 2008 the Arctic Research Consortium of the United States (ARCUS) has conducted a seasonal forecasting contest in which the average Arctic sea ice extent for the month of September (the month of the annual extent minimum) is predicted from available forecasts in early June, July, and August. The competition is known as the Sea Ice Outlook (SIO) but recently came under the auspices of the Sea Ice Prediction Network (SIPN), and multi-agency funded project to evaluate the SIO. The forecasts are submitted based on modeling, statistical, and heuristic methods. Forecasts of Arctic sea ice extent from the GMAO are derived from seasonal prediction system of the NASA Goddard Earth Observing System model, version 5 (GEOS 5) coupled atmosphere and ocean general circulation model (AOGCM). The projections are made in order to understand the relative skill of the forecasting system and to determine the effects of future improvements to the system. This years prediction is for a September average Arctic ice extent of 5.030.41 million km2.

  5. Measurement uncertainty for the Uniform Engine Testing Program conducted at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Abdelwahab, Mahmood; Biesiadny, Thomas J.; Silver, Dean

    1987-01-01

    An uncertainty analysis was conducted to determine the bias and precision errors and total uncertainty of measured turbojet engine performance parameters. The engine tests were conducted as part of the Uniform Engine Test Program which was sponsored by the Advisory Group for Aerospace Research and Development (AGARD). With the same engines, support hardware, and instrumentation, performance parameters were measured twice, once during tests conducted in test cell number 3 and again during tests conducted in test cell number 4 of the NASA Lewis Propulsion Systems Laboratory. The analysis covers 15 engine parameters, including engine inlet airflow, engine net thrust, and engine specific fuel consumption measured at high rotor speed of 8875 rpm. Measurements were taken at three flight conditions defined by the following engine inlet pressure, engine inlet total temperature, and engine ram ratio: (1) 82.7 kPa, 288 K, 1.0, (2) 82.7 kPa, 288 K, 1.3, and (3) 20.7 kPa, 288 K, 1.3. In terms of bias, precision, and uncertainty magnitudes, there were no differences between most measurements made in test cells number 3 and 4. The magnitude of the errors increased for both test cells as engine pressure level decreased. Also, the level of the bias error was two to three times larger than that of the precision error.

  6. An Assessment of the Icing Blade and the SEA Multi-Element Sensor for Liquid Water Content Calibration of the NASA GRC Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Ide, Robert F.; Van Zante, Judith F.

    2016-01-01

    The Icing Research Tunnel at NASA Glenn has recently switched from using the Icing Blade to using the SEA Multi-Element Sensor (also known as the multi-wire) for its calibration of cloud liquid water content. In order to peform this transition, tests were completed to compare the Multi-Element Sensor to the Icing Blade, particularly with respect to liquid water content, airspeed, and drop size. The two instruments were found to compare well for the majority of Appendix C conditions. However, it was discovered that the Icing Blade under-measures when the conditions approach the Ludlam Limit. This paper also describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, mounting underneath a splitter plate, and correcting for a jump in the compensation wire power. Further data is presented to describe the repeatability of the IRT with the Multi-Element Sensor, health-monitoring checks for the instrument, and a sensing-element configuration comparison. Ultimately these tests showed that in the IRT, the multi-wire is a better instrument for measuring cloud liquid water content than the blade.

  7. Numerical Analysis of Mixed-Phase Icing Cloud Simulations in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas; Tsao, Jen-Ching; Struk, Peter; Van Zante, Judith

    2017-01-01

    This presentation describes the development of a numerical model that couples the thermal interaction between ice particles, water droplets, and the flowing gas of an icing wind tunnel for simulation of NASA Glenn Research Centers Propulsion Systems Laboratory (PSL). The ultimate goal of the model is to better understand the complex interactions between the test parameters and have greater confidence in the conditions at the test section of the PSL tunnel. The model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations for both the cloud particles and flowing gas mass. Model predictions were compared to measurements taken during May 2015 testing at PSL, where test conditions varied gas temperature, pressure, velocity and humidity levels, as well as the cloud total water content, particle initial temperature, and particle size distribution.

  8. Numerical Analysis of Mixed-Phase Icing Cloud Simulations in the NASA Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; Tsao, Jen-Ching; Struk, Peter M.; Van Zante, Judith F.

    2017-01-01

    This paper describes the development of a numerical model that couples the thermal interaction between ice particles, water droplets, and the flowing gas of an icing wind tunnel for simulation of NASA Glenn Research Centers Propulsion Systems Laboratory (PSL). The ultimate goal of the model is to better understand the complex interactions between the test parameters and have greater confidence in the conditions at the test section of the PSL tunnel. The model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations for both the cloud particles and flowing gas mass. Model predictions were compared to measurements taken during May 2015 testing at PSL, where test conditions varied gas temperature, pressure, velocity and humidity levels, as well as the cloud total water content, particle initial temperature, and particle size distribution.

  9. Antarctic Sea-Ice Freeboard and Estimated Thickness from NASA's ICESat and IceBridge Observations

    NASA Technical Reports Server (NTRS)

    Yi, Donghui; Kurtz, Nathan; Harbeck, Jeremy; Manizade, Serdar; Hofton, Michelle; Cornejo, Helen G.; Zwally, H. Jay; Robbins, John

    2016-01-01

    ICESat completed 18 observational campaigns during its lifetime from 2003 to 2009. Data from all of the 18 campaign periods are used in this study. Most of the operational periods were between 34 and 38 days long. Because of laser failure and orbit transition from 8-day to 91-day orbit, there were four periods lasting 57, 16, 23, and 12 days. IceBridge data from 2009, 2010, and 2011 are used in this study. Since 2009, there are 19 Airborne Topographic Mapper (ATM) campaigns, and eight Land, Vegetation, and Ice Sensor (LVIS) campaigns over the Antarctic sea ice. Freeboard heights are derived from ICESat, ATM and LVIS elevation and waveform data. With nominal densities of snow, water, and sea ice, combined with snow depth data from AMSR-E/AMSR2 passive microwave observation over the southern ocean, sea-ice thickness is derived from the freeboard. Combined with AMSR-E/AMSR2 ice concentration, sea-ice area and volume are also calculated. During the 2003-2009 period, sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of the growth and decay of the Antarctic pack ice. We found no significant trend of thickness or area for the Antarctic sea ice during the ICESat period. IceBridge sea ice freeboard and thickness data from 2009 to 2011 over the Weddell Sea and Amundsen and Bellingshausen Seas are compared with the ICESat results.

  10. Flowfield measurements in the NASA Lewis Research Center 9- by 15-foot low-speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    1989-01-01

    An experimental investigation was conducted in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel to determine the flow characteristics in the test section during wind tunnel operation. In the investigation, a 20-probe horizontally-mounted Pitot-static flow survey rake was used to obtain cross-sectional total and static pressure surveys at four axial locations in the test section. At each axial location, the cross-sectional flowfield surveys were made by repositioning the Pitot-static flow survey rake vertically. In addition, a calibration of the new wind tunnel rake instrumentation, used to determine the wind tunnel operating conditions, was performed. Boundary laser surveys were made at three axial locations in the test section. The investigation was conducted at tunnel Mach numbers 0.20, 0.15, 0.10, and 0.05. The test section profile results from the investigation indicate that fairly uniform total pressure profiles (outside the test section boundary layer) and fairly uniform static pressure and Mach number profiles (away from the test section walls and downstream of the test section entrance) exist throughout in the wind tunnel test section.

  11. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  12. Age distribution among NASA scientists and engineers

    NASA Technical Reports Server (NTRS)

    Ciancone, Michael L.

    1989-01-01

    The loss of technical expertise through attrition in NASA and the aerospace industry is discussed. This report documents historical age-related information for scientific and engineering personnel in general and the NASA Lewis Research Center in particular, for 1968 through 1987. Recommendations are made to promote discussion and to establish the groundwork for action.

  13. Mapping and assessing variability in the Antarctic marginal ice zone, pack ice and coastal polynyas in two sea ice algorithms with implications on breeding success of snow petrels

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne C.; Jenouvrier, Stephanie; Campbell, G. Garrett; Barbraud, Christophe; Delord, Karine

    2016-08-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore, mapping their spatial extent as well as seasonal and interannual variability is essential for understanding how current and future changes in these biologically active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of MIZ, consolidated pack ice and coastal polynyas in the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent record for assessing the proportion of the sea ice cover that is covered by each of these ice categories. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depend strongly on which sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap, and applies the same thresholds to the sea ice concentrations to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal that the seasonal cycle in the MIZ and pack ice is generally similar between both algorithms, yet the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Trends also differ, with the Bootstrap algorithm suggesting statistically significant trends towards increased pack ice area and no statistically significant trends in the MIZ. The NASA Team algorithm on the other hand indicates statistically significant positive trends in the MIZ during spring. Potential coastal polynya area and amount of broken ice within the consolidated ice pack are also larger in the NASA Team algorithm. The timing of maximum polynya area may differ by as much as 5 months between algorithms. These

  14. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

    2014-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  15. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  16. Dibble Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, aken onboard a National Science Foundation/NASA chartered Twin Otter aircraft, shows the ice front of Dibble Ice Shelf, East Antarctica, a significant melt water producer from the Wilkes Land region, East Antarctica.

  17. Sea Ice Mass Reconciliation Exercise (SIMRE) for altimetry derived sea ice thickness data sets

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Haas, C.; Tsamados, M.; Kwok, R.; Kurtz, N. T.; Rinne, E. J.; Uotila, P.; Stroeve, J.

    2017-12-01

    Satellite altimetry is the primary remote sensing data source for retrieval of Arctic sea-ice thickness. Observational data sets are available from current and previous missions, namely ESA's Envisat and CryoSat as well as NASA ICESat. In addition, freeboard results have been published from the earlier ESA ERS missions and candidates for new data products are the Sentinel-3 constellation, the CNES AltiKa mission and NASA laser altimeter successor ICESat-2. With all the different aspects of sensor type and orbit configuration, all missions have unique properties. In addition, thickness retrieval algorithms have evolved over time and data centers have developed different strategies. These strategies may vary in choice of auxiliary data sets, algorithm parts and product resolution and masking. The Sea Ice Mass Reconciliation Exercise (SIMRE) is a project by the sea-ice radar altimetry community to bridge the challenges of comparing data sets across missions and algorithms. The ESA Arctic+ research program facilitates this project with the objective to collect existing data sets and to derive a reconciled estimate of Arctic sea ice mass balance. Starting with CryoSat-2 products, we compare results from different data centers (UCL, AWI, NASA JPL & NASA GSFC) at full resolution along selected orbits with independent ice thickness estimates. Three regions representative of first-year ice, multiyear ice and mixed ice conditions are used to compare the difference in thickness and thickness change between products over the seasonal cycle. We present first results and provide an outline for the further development of SIMRE activities. The methodology for comparing data sets is designed to be extendible and the project is open to contributions by interested groups. Model results of sea ice thickness will be added in a later phase of the project to extend the scope of SIMRE beyond EO products.

  18. A Summary of Validation Results for LEWICE 2.0

    NASA Technical Reports Server (NTRS)

    Wright, William B.

    1998-01-01

    A research project is underway at NASA Lewis to produce a computer code which can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different point spacing, and time step criteria across general computing platforms. It also differs in the extensive amount of effort undertaken to compare the results in a quantifiable manner against the database of ice shapes which have been generated in the NASA Lewis Icing, Research Tunnel (IRT), The complete set of data used for this comparison is available in a recent contractor report . The result of this comparison shows that the difference between the predicted ice shape from LEWICE 2.0 and the average of the experimental data is 7.2% while the variability of the experimental data is 2.5%.

  19. NASA Ice, Cloud and land Elevation Satellite-2 Applications - Advancing Dialogue for More Effective Decisions and Societal benefits

    NASA Astrophysics Data System (ADS)

    Delgado Arias, S.; Brown, M. E.; Escobar, V. M.; Jasinski, M. F.; Neumann, T.

    2016-12-01

    Since 2012, the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Applications Program has worked to understand how future mission observations can be effectively used to inform operational sea ice forecasting for Arctic shipping, global flood risk monitoring, fire fuel mapping, and other applications. The ICESat-2 Applications Program has implemented various engagement and outreach activities, as well as an Early Adopter program, to facilitate dialogue between potential users, project scientists, science definition team members, NASA Headquarters and the mission's data distribution center. This dialogue clarifies how ICESat-2's science data can be integrated, improved or leveraged to advance science objectives aligned with or beyond those of the mission, and in support of a range of decisions and actions of benefit to communities across the globe. In this presentation, we will present an overview of the Program initiatives and highlight the research-to-applications chains that mission Early Adopters are helping build for ICESat-2. With a total of 19 Early Adopters and more than 400 people engaged as part of the applications community, ICESat-2 has positioned itself to ensure applications where its observations are used to meet the needs of decision makers, policy makers and managers at different scales. For more information visit: http://icesat-2.gsfc.nasa.gov/applications

  20. Small Airframe Manufacturer's Icing Perspective

    NASA Technical Reports Server (NTRS)

    Hoppins, Jim

    2009-01-01

    This viewgraph presentation describes the icing effects, risk mitigation practices, and icing certifications for various Cessna small aircraft models. NASA's role in the development of simulation tools for icing certifications is also discussed.

  1. Lewis's Woodpecker (Melanerpes lewis): A technical conservation assessment

    Treesearch

    Stephen C. Abele; Victoria A. Saab; Edward O. Garton

    2004-01-01

    Lewis's woodpecker (Melanerpes lewis) is a locally common but patchily distributed woodpecker species usually seen in open forests of western North America. The combination of its sporadic distribution, its diet of adult-stage free-living insects (primarily aerial), its preference to nest in burned landscapes, and its variable migratory behavior...

  2. NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.

    1983-01-01

    On June 1, 1980, the University of Akron and the NASA Lewis Research Center (LERC) established a Graduate Cooperative Fellowship Program in the specialized areas of Engine Structural Analysis and Dynamics, Computational Mechanics, Mechanics of Composite Materials, and Structural Optimization, in order to promote and develop requisite technologies in these areas of engine technology. The objectives of this program are consistent with those of the NASA Engine Structure Program in which graduate students of the University of Akron participate by conducting research at Lewis. This report is the second on this grant and summarizes the second and third year research effort, which includes the participation of five graduate students where each student selects one of the above areas as his special field of interest. Each student is required to spend 30 percent of his educational training time at the NASA Lewis Research Center and the balance at the University of Akron. His course work is judiciously selected and tailored to prepare him for research work in his field of interest. A research topic is selected for each student while in residence at the NASA Lewis Research Center, which is also approved by the faculty of the University of Akron as his thesis topic for a Master's and/or a Ph.D. degree.

  3. Mapping and Assessing Variability in the Antarctic Marginal Ice Zone, the Pack Ice and Coastal Polynyas

    NASA Astrophysics Data System (ADS)

    Stroeve, Julienne; Jenouvrier, Stephanie

    2016-04-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore mapping their spatial extent, seasonal and interannual variability is essential for understanding how current and future changes in these biological active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of different ice types to the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent data record for assessing different ice types. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depends strongly on what sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Polynya area is also larger in the NASA Team algorithm, and the timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.

  4. Rocket Engines Displayed for 1966 Inspection at Lewis Research Center

    NASA Image and Video Library

    1966-10-21

    An array of rocket engines displayed in the Propulsion Systems Laboratory for the 1966 Inspection held at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis engineers had been working on chemical, nuclear, and solid rocket engines throughout the 1960s. The engines on display are from left to right: two scale models of the Aerojet M-1, a Rocketdyne J-2, a Pratt and Whitney RL-10, and a Rocketdyne throttleable engine. Also on display are several ejector plates and nozzles. The Chemical Rocket Division resolved issues such as combustion instability and screech, and improved operation of cooling systems and turbopumps. The 1.5-million pound thrust M-1 engine was the largest hydrogen-fueled rocket engine ever created. It was a joint project between NASA Lewis and Aerojet-General. Although much larger in size, the M-1 used technology developed for the RL-10 and J-2. The M-1 program was cancelled in late 1965 due to budget cuts and the lack of a post-Apollo mission. The October 1966 Inspection was the culmination of almost a year of events held to mark the centers’ 25th anniversary. The three‐day Inspection, Lewis’ first since 1957, drew 2000 business, industry, and government executives and included an employee open house. The visitors witnessed presentations at the major facilities and viewed the Gemini VII spacecraft, a Centaur rocket, and other displays in the hangar. In addition, Lewis’ newest facility, the Zero Gravity Facility, was shown off for the first time.

  5. Sea Ice off the Princess Astrid Coast

    NASA Image and Video Library

    2015-04-08

    On April 5, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of sea ice off the coast of East Antarctica’s Princess Astrid Coast. White areas close to the continent are sea ice, while white areas in the northeast corner of the image are clouds. One way to better distinguish ice from clouds is with false-color imagery. In the false-color view of the scene here, ice is blue and clouds are white. The image was acquired after Antarctic sea ice had passed its annual minimum extent (reached on February 20, 2015), and had resumed expansion toward its maximum extent (usually reached in September). Credit: NASA image by Jeff Schmaltz, LANCE/EOSDIS Rapid Response. Caption by Kathryn Hansen via NASA's Earth Observatory Read more: www.nasa.gov/content/sea-ice-off-east-antarcticas-princes... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Ice Island Calves off Petermann Glacier

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 11, 2010. After breaking off the Petermann Glacier on August 5, 2010, a massive ice island floated slowly down the fjord toward the Nares Strait. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA’s Terra satellite captured this false-color image of the ice island on August 11, 2010. In this image, ice is light blue, water is nearly black, and clouds are nearly white. Although a bank of thin clouds hovers over the fjord, the southernmost margin of the ice island is still visible. Toward the north, the leading edge of the ice island retains the same shape it had days earlier, at the time of the initial calving. NASA Earth Observatory image created by Jesse Allen, using data provided courtesy of NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Michon Scott. Instrument: Terra - ASTER To see more images from of the glacier go to: earthobservatory.nasa.gov/NaturalHazards/event.php?id=45116 NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  7. Looking for Ice

    NASA Image and Video Library

    2016-03-23

    This image was targeted for NASA Mars Reconnaissance Orbiter spacecraft to look at a candidate new crater on a lobate apron. Such aprons are often ice-rich, but the crater shows no bright material that would indicate ice.

  8. Traversing Microphone Track Installed in NASA Lewis' Aero-Acoustic Propulsion Laboratory Dome

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.; Perusek, Gail P.

    1999-01-01

    The Aero-Acoustic Propulsion Laboratory is an acoustically treated, 65-ft-tall dome located at the NASA Lewis Research Center. Inside this laboratory is the Nozzle Acoustic Test Rig (NATR), which is used in support of Advanced Subsonics Technology (AST) and High Speed Research (HSR) to test engine exhaust nozzles for thrust and acoustic performance under simulated takeoff conditions. Acoustic measurements had been gathered by a far-field array of microphones located along the dome wall and 10-ft above the floor. Recently, it became desirable to collect acoustic data for engine certifications (as specified by the Federal Aviation Administration (FAA)) that would simulate the noise of an aircraft taking off as heard from an offset ground location. Since nozzles for the High-Speed Civil Transport have straight sides that cause their noise signature to vary radially, an additional plane of acoustic measurement was required. Desired was an arched array of 24 microphones, equally spaced from the nozzle and each other, in a 25 off-vertical plane. The various research requirements made this a challenging task. The microphones needed to be aimed at the nozzle accurately and held firmly in place during testing, but it was also essential that they be easily and routinely lowered to the floor for calibration and servicing. Once serviced, the microphones would have to be returned to their previous location near the ceiling. In addition, there could be no structure could between the microphones and the nozzle, and any structure near the microphones would have to be designed to minimize noise reflections. After many concepts were considered, a single arched truss structure was selected that would be permanently affixed to the dome ceiling and to one end of the dome floor.

  9. Aerial View of NACA's Lewis Flight Propulsion Research Laboratory

    NASA Image and Video Library

    1946-05-21

    The National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory in Cleveland, Ohio as seen from the west in May 1946. The Cleveland Municipal Airport is located directly behind. The laboratory was built in the early 1940s to resolve problems associated with aircraft engines. The initial campus contained seven principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Engine Propeller Research Building, Altitude Wind Tunnel, and Icing Research Tunnel. These facilities and their associated support structures were located within an area occupying approximately one-third of the NACA’s property. After World War II ended, the NACA began adding new facilities to address different problems associated with the newer, more powerful engines and high speed flight. Between 1946 and 1955, four new world-class test facilities were built: the 8- by 6-Foot Supersonic Wind Tunnel, the Propulsion Systems Laboratory, the Rocket Engine Test Facility, and the 10- by 10-Foot Supersonic Wind Tunnel. These large facilities occupied the remainder of the NACA’s semicircular property. The Lewis laboratory expanded again in the late 1950s and early 1960s as the space program commenced. Lewis purchased additional land in areas adjacent to the original laboratory and acquired a large 9000-acre site located 60 miles to the west in Sandusky, Ohio. The new site became known as Plum Brook Station.

  10. Optimizing Observations of Sea Ice Thickness and Snow Depth in the Arctic

    DTIC Science & Technology

    2015-09-30

    Region Research and Engineering Laboratory (CRREL), Naval Research Laboratory (NRL) and National Aeronautics and Space Administration ( NASA ) in...and results from this focused effort with data collected during related national and international activities (e.g. other NASA IceBridge sea ice...surface elevation of the snow or ice/air interface, and radar altimetry measurements of the snow/ice interface, taken by NASA IceBridge and NRL

  11. Piloted Flight Simulator Developed for Icing Effects Training

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.

    2005-01-01

    In an effort to expand pilot training methods to avoid icing-related accidents, the NASA Glenn Research Center and Bihrle Applied Research Inc. have developed the Ice Contamination Effects Flight Training Device (ICEFTD). ICEFTD simulates the flight characteristics of the NASA Twin Otter Icing Research Aircraft in a no-ice baseline and in two ice configurations simulating ice-protection-system failures. Key features of the training device are the force feedback in the yoke, the instrument panel and out-the-window graphics, the instructor s workstation, and the portability of the unit.

  12. NASA Has Joined America True's Design Mission for 2000

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    1999-01-01

    Engineers at the NASA Lewis Research Center will support the America True design team led by America s Cup innovator Phil Kaiko. The joint effort between NASA and America True is encouraged by Mission HOME, the official public awareness campaign of the U.S. space community. NASA Lewis and America True have entered into a Space Act Agreement to focus on the interaction between the airfoil and the large deformation of the pretensioned sails and rigs along with the dynamic motions related to the boat motions. This work will require a coupled fluid and structural simulation. Included in the simulation will be both a steadystate capability, to capture the quasi-state interactions between the air loads and sail geometry and the lift and drag on the boat, and a transient capability, to capture the sail/mast pumping effects resulting from hull motions.

  13. Water droplet impingement on airfoils and aircraft engine inlets for icing analysis

    NASA Technical Reports Server (NTRS)

    Papadakis, Michael; Elangovan, R.; Freund, George A., Jr.; Breer, Marlin D.

    1991-01-01

    This paper includes the results of a significant research program for verification of computer trajectory codes used in aircraft icing analysis. Experimental water droplet impingement data have been obtained in the NASA Lewis Research Center Icing Research Tunnel for a wide range of aircraft geometries and test conditions. The body whose impingement characteristics are required is covered at strategic locations by thin strips of moisture absorbing (blotter) paper and then exposed to an airstream containing a dyed-water spray cloud. Water droplet impingement data are extracted from the dyed blotter strips by measuring the optical reflectance of the dye deposit on the strips with an automated reflectometer. Impingement characteristics for all test geometries have also been calculated using two recently developed trajectory computer codes. Good agreement is obtained with experimental data. The experimental and analytical data show that maximum impingement efficiency and impingement limits increase with mean volumetric diameter for all geometries tested. For all inlet geometries tested, as the inlet mass flow is reduced, the maximum impingement efficiency is reduced and the location of the maximum impingement shifts toward the inlet inner cowl.

  14. Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2004 and 2005 Tests)

    NASA Technical Reports Server (NTRS)

    Arrington, E. Allen; Pastor, Christine M.; Gonsalez, Jose C.; Curry, Monroe R., III

    2010-01-01

    A full aero-thermal calibration of the NASA Glenn Icing Research Tunnel was completed in 2004 following the replacement of the inlet guide vanes upstream of the tunnel drive system and improvement to the facility total temperature instrumentation. This calibration test provided data used to fully document the aero-thermal flow quality in the IRT test section and to construct calibration curves for the operation of the IRT. The 2004 test was also the first to use the 2-D RTD array, an improved total temperature calibration measurement platform.

  15. Detailed flow surveys of turning vanes designed for a 0.1-scale model of NASA Lewis Research Center's proposed altitude wind tunnel

    NASA Technical Reports Server (NTRS)

    Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.; Gelder, Thomas F.

    1987-01-01

    Detailed flow surveys downstream of the corner turning vanes and downstream of the fan inlet guide vanes have been obtained in a 0.1-scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel. Two turning vane designs were evaluated in both corners 1 and 2 (the corners between the test section and the drive fan). Vane A was a controlled-diffusion airfoil and vane B was a circular-arc airfoil. At given flows the turning vane wakes were surveyed to determine the vane pressure losses. For both corners the vane A turning vane configuration gave lower losses than the vane B configuration in the regions where the flow regime should be representative of two-dimensional flow. For both vane sets the vane loss coefficient increased rapidly near the walls.

  16. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.

  17. Overview of the Icing and Flow Quality Improvements Program for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Kevdzija, Susan L.; Sheldon, David W.; Spera, David A.

    2001-01-01

    Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper describes the rationale behind this latest program of IRT upgrades and the program's requirements and goals. An overview is given of the scope of work undertaken by the design and construction contractors, the scale-model IRT (SMIRT) design verification program, the comprehensive reactivation test program initiated upon completion of construction, and the overall management approach followed.

  18. New Fluid Prevents Railway Ice

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through a licensing agreement between NASA's Ames Research Center and Midwest Industrial Supply, Inc. (MIS), two MIS products have been enhanced with NASA's anti-icing fluid technology. MIS offers the new fluid in two commercial products, the Zero Gravity(TM) Third Rail Anti-Icer/Deicer and the Ice Free Switch(R). Using NASA's fluid technology, these products form a protective-coating barrier that prevents the buildup of ice and snow. Applying the fluid to the railway components prior to ice or snowstorm works as an anti-icing fluid, remaining in place to melt precipitation as it hits the surface. It also functions as a deicing fluid. If applied to an already frozen switch or rail, it will quickly melt the ice, free the frozen parts, and then remain in place to prevent refreezing. Additional benefits include the ability to cling to vertical rail surfaces and resist the effects of rain and wind. With the Ice Free Switch, it takes only five minutes to treat the switch by spraying, brushing, or pouring on the product. Ice Free Switch requires as little as one gallon per switch whereas other deicing fluids require five to ten gallons of liquid to effectively melt ice. Zero Gravity serves the same anti-icing/deicing purposes but applies fluid to the third rail through a system that is easily installed onto mass transit cars. A tank of fluid and a dispensing system are placed underneath the train car and the fluid is applied as the train runs its route.

  19. Subsonic Aircraft Safety Icing Study

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.

    2008-01-01

    NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with icing for subsonic transport, summarize reports by subject matter experts in icing research on current knowledge of icing effects on control parameters and establish future requirements for icing research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of icing in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft icing research in these lists and (4) suggested future requirements for NASA icing research. The review of several studies by subject-matter experts was summarized into four high-priority icing research areas. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority icing research areas that were identified, with the exception of the developing of methods to sense and document actual icing conditions.

  20. Europa Broken Ice

    NASA Image and Video Library

    1997-09-07

    Jupiter moon Europa, as seen in this image taken June 27, 1996 by NASA Galileo spacecraft, displays features in some areas resembling ice floes seen in Earth polar seas. http://photojournal.jpl.nasa.gov/catalog/PIA00291

  1. Comparison of NASA Team2 and AES-York Ice Concentration Algorithms Against Operational Ice Charts From the Canadian Ice Service

    NASA Technical Reports Server (NTRS)

    Shokr, Mohammed; Markus, Thorsten

    2006-01-01

    Ice concentration retrieved from spaceborne passive-microwave observations is a prime input to operational sea-ice-monitoring programs, numerical weather prediction models, and global climate models. Atmospheric Environment Service (AES)- York and the Enhanced National Aeronautics and Space Administration Team (NT2) are two algorithms that calculate ice concentration from Special Sensor Microwave/Imager observations. This paper furnishes a comparison between ice concentrations (total, thin, and thick types) output from NT2 and AES-York algorithms against the corresponding estimates from the operational analysis of Radarsat images in the Canadian Ice Service (CIS). A new data fusion technique, which incorporates the actual sensor's footprint, was developed to facilitate this study. Results have shown that the NT2 and AES-York algorithms underestimate total ice concentration by 18.35% and 9.66% concentration counts on average, with 16.8% and 15.35% standard deviation, respectively. However, the retrieved concentrations of thin and thick ice are in much more discrepancy with the operational CIS estimates when either one of these two types dominates the viewing area. This is more likely to occur when the total ice concentration approaches 100%. If thin and thick ice types coexist in comparable concentrations, the algorithms' estimates agree with CIS'S estimates. In terms of ice concentration retrieval, thin ice is more problematic than thick ice. The concept of using a single tie point to represent a thin ice surface is not realistic and provides the largest error source for retrieval accuracy. While AES-York provides total ice concentration in slightly more agreement with CIS'S estimates, NT2 provides better agreement in retrieving thin and thick ice concentrations.

  2. NASA Satellite View of Antarctica

    NASA Image and Video Library

    2017-12-08

    NASA image acquired November 2, 2011 The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite captured this image of the Knox, Budd Law Dome, and Sabrina Coasts, Antarctica on November 2, 2011 at 01:40 UTC (Nov. 1 at 9:40 p.m. EDT). Operation Ice Bridge is exploring Antarctic ice, and more information can be found at www.nasa.gov/icebridge. Image Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  4. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    NASA Technical Reports Server (NTRS)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  5. Numerical Modeling of Climatic Change from the Terminus Record of Lewis Glacier, Mount Kenya.

    NASA Astrophysics Data System (ADS)

    Kruss, Phillip Donald

    Over the last 100 years, the glaciers and lakes of East Africa have undergone dramatic change in response to climatic forcing. However, the available conventional meterological series have not proven sufficient to explain these environmental events. The secular climatic change at Lewis Glacier, Mount Kenya (0(DEGREES)9'S, 37(DEGREES)19'E), is reconstructed from its terminus record documented since 1893. The short-time-step numerical model developed for this study consists of climate and ice dynamics segments. The climate segment directly computes the effect on the net balance of change in the four forcings: precipitation, albedo, cloudiness, and temperature. The flow segment calculates the dynamic glacier response to net balance variation. Climatic change occurs over a wide range of time scales. Each glacier responds in a unique fashion to this spectrum of climatic forcings. The response of the Lewis terminus extent to repeated sinusoidal fluctuation in the net balance is calculated. The net balance versus elevation profile is separately translated along the orthogonal balance and elevation axes. Net balance amplitudes of 0.1 to 0.5 m a('-1) of ice and 10 to 50 m elevation, respectively, and periods ranging from 20 to 1000 years are covered. Consideration of the Lewis response is perspective with similar results for Hintereisferner, Storglaciaren, and Berendon and South Cascade Glaciers identifies general characteristics of the time lag and amplitude of the terminus response. The magnitude and timing of the change in only one of the climatic forcings precipitation, albedo, cloudiness, or temperature necessary to produce the retreat of the Lewis terminus from its late 19th century maximum are computed. Equivalent changes for two scenarios of simultaneous variation, namely precipitation/albedo/cloudiness and temperature/albedo, are also estimated. These numerical results are interpreted in the light of long-term lake level, river flow, and instrumental information. A

  6. Time-dependence of sea-ice concentration and multiyear ice fraction in the Arctic Basin

    USGS Publications Warehouse

    Gloersen, P.; Zwally, H.J.; Chang, A.T.C.; Hall, D.K.; Campbell, W.J.; Ramseier, R.O.

    1978-01-01

    The time variation of the sea-ice concentration and multiyear ice fraction within the pack ice in the Arctic Basin is examined, using microwave images of sea ice recently acquired by the Nimbus-5 spacecraft and the NASA CV-990 airborne laboratory. The images used for these studies were constructed from data acquired from the Electrically Scanned Microwave Radiometer (ESMR) which records radiation from earth and its atmosphere at a wavelength of 1.55 cm. Data are analyzed for four seasons during 1973-1975 to illustrate some basic differences in the properties of the sea ice during those times. Spacecraft data are compared with corresponding NASA CV-990 airborne laboratory data obtained over wide areas in the Arctic Basin during the Main Arctic Ice Dynamics Joint Experiment (1975) to illustrate the applicability of passive-microwave remote sensing for monitoring the time dependence of sea-ice concentration (divergence). These observations indicate significant variations in the sea-ice concentration in the spring, late fall and early winter. In addition, deep in the interior of the Arctic polar sea-ice pack, heretofore unobserved large areas, several hundred kilometers in extent, of sea-ice concentrations as low as 50% are indicated. ?? 1978 D. Reidel Publishing Company.

  7. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  8. Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Camello, Stephanie

    2015-01-01

    There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the ice shapes for the aerodynamic testing, ice-accretion testing will be conducted in the NASA Icing Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The ice shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D ice shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of ice than can be used. However, a full-span ice accretion will require 75 ft span of ice. This means there will be large gaps between these spanwise ice sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span ice shape from the three 1.5 ft span ice shapes from the three models.

  9. C-17 on Runway

    NASA Image and Video Library

    2013-11-13

    A U.S. Air Force C-17 transport aircraft sits on the sea ice runway at the National Science Foundation's McMurdo Station in Antarctica following a transit flight from Christchurch, New Zealand that transported IceBridge personnel and gear on Nov. 12, 2013. The C-17 aircraft that fly to Antarctica are operated by the U.S. Air Force's 62nd and 446th Airlift Wings based at Joint Base Lewis-McChord near Seattle, Wash. Credit: NASA/Goddard/George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA-OAI Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center at Lewis Field

    NASA Technical Reports Server (NTRS)

    Heyward, Ann O.; Montegani, Francis J.

    2003-01-01

    During the summer of 2002, a IO-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA- ASEE Summer Faculty Fellowship Program, that operated for 38 years at Glenn. This year s program began officially on June 3, 2002 and continued through August 9, 2002. This report is intended primarily to summarize the research activities comprising the 2002 CFP Program at Glenn. Fifteen research summaries are included.

  11. NASA Lewis 9- by 15-foot low-speed wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    This manual describes the 9- by 15-Foot Low-Speed Wind Tunnel at the Lewis Research Center and provides information for users who wish to conduct experiments in this atmospheric facility. Tunnel variables such as pressures, temperatures, available tests section area, and Mach number ranges (0.05 to 0.20) are discussed. In addition, general support systems such as air systems, hydraulic system, hydrogen system, laser system, flow visualization system, and model support systems are described. Instrumentation and data processing and acquisition systems are also discussed.

  12. Lewis Acidic Ionic Liquids.

    PubMed

    Brown, Lucy C; Hogg, James M; Swadźba-Kwaśny, Małgorzata

    2017-08-21

    Until very recently, the term Lewis acidic ionic liquids (ILs) was nearly synonymous with halometallate ILs, with a strong focus on chloroaluminate(III) systems. The first part of this review covers the historical context in which these were developed, speciation of a range of halometallate ionic liquids, attempts to quantify their Lewis acidity, and selected recent applications: in industrial alkylation processes, in supported systems (SILPs/SCILLs) and in inorganic synthesis. In the last decade, interesting alternatives to halometallate ILs have emerged, which can be divided into two sub-sections: (1) liquid coordination complexes (LCCs), still based on halometallate species, but less expensive and more diverse than halometallate ionic liquids, and (2) ILs with main-group Lewis acidic cations. The two following sections cover these new liquid Lewis acids, also highlighting speciation studies, Lewis acidity measurements, and applications.

  13. NASA/FAA Tailplane Icing Program: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Sim, Alex

    2000-01-01

    This report presents results from research flights that explored the characteristics of an ice-contaminated tailplane using various simulated ice shapes attached to the leading edge of the horizontal tailplane. A clean leading edge provided the baseline case, then three ice shapes were flown in order of increasing severity. Flight tests included both steady state and dynamic maneuvers. The steady state points were 1G wings level and steady heading sideslips. The primary dynamic maneuvers were pushovers to various G-levels; elevator doublets; and thrust transitions. These maneuvers were conducted for a full range of flap positions and aircraft angle of attack where possible. The analysis of this data set has clearly demonstrated the detrimental effects of ice contamination on aircraft stability and controllability. Paths to tailplane stall were revealed through parameter isolation and transition studies. These paths are (1) increasing ice shape severity, (2) increasing flap deflection, (3) high or low speeds, depending on whether the aircraft is in a steady state (high speed) or pushover maneuver (low speed), and (4) increasing thrust. The flight research effort was very comprehensive, but did not examine effects of tailplane design and location, or other aircraft geometry configuration effects. However, this effort provided the role of some of the parameters in promoting tailplane stall. The lessons learned will provide guidance to regulatory agencies, aircraft manufacturers, and operators on ice-contaminated tailplane stall in the effort to increase aviation safety and reduce the fatal accident rate.

  14. "We Freeze to Please": A History of NASA's Icing Research Tunnel and the Quest for Flight Safety

    NASA Technical Reports Server (NTRS)

    Leary, William M.

    2002-01-01

    The formation of ice on wings and other control surfaces of airplanes is one of the oldest and most vexing problems that aircraft engineers and scientists continue to face. While no easy, comprehensive answers exist, the staff at NASAs Icing Research Tunnel (IRT) at the Glenn Research Center in Cleveland has done pioneering work to make flight safer for experimental, commercial, and military customers. The National Advisory Committee for Aeronautics (NACA) initiated government research on aircraft icing in the 1930s at its Langley facility in Virginia. Icing research shifted to the NACA's Cleveland facility in the 1940s. Initially there was little focus on icing at either location, as these facilities were more concerned with aerodynamics and engine development. With several high-profile fatal crashes of air mail carriers, however, the NACA soon realized the need for a leading research facility devoted to icing prevention and removal. The IRT began operation in 1944 and, despite renovations and periodic attempts to shut it down, has continued to function productively for almost 60 years. In part because icing has proved so problematic over time, IRT researchers have been unusually open-minded in experimenting with a wide variety of substances, devices, and techniques. Early icing prevention experiments involved grease, pumping hot engine exhaust onto the wings, glycerin soap, mechanical and inflatable "boots," and even corn syrup. The IRT staff also looked abroad for ideas and later tried a German and Soviet technique of electromagnetism, to no avail. More recently, European polymer fluids have been more promising. The IRT even periodically had "amateur nights" in which a dentist's coating for children's teeth proved unequal to the demands of super-cooled water droplets blown at 100 miles per hour. Despite many research dead-ends, IRT researchers have achieved great success over the years. They have developed important computer models, such as the LEWICE software

  15. Validation Results for LEWICE 2.0

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Rutkowski, Adam

    1999-01-01

    A research project is underway at NASA Lewis to produce a computer code which can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from version 2.0 of this code, which is called LEWICE. This version differs from previous releases due to its robustness and its ability to reproduce results accurately for different spacing and time step criteria across computing platform. It also differs in the extensive amount of effort undertaken to compare the results in a quantified manner against the database of ice shapes which have been generated in the NASA Lewis Icing Research Tunnel (IRT). The results of the shape comparisons are analyzed to determine the range of meteorological conditions under which LEWICE 2.0 is within the experimental repeatability. This comparison shows that the average variation of LEWICE 2.0 from the experimental data is 7.2% while the overall variability of the experimental data is 2.5%.

  16. Cutting Through Multiyear Ice

    NASA Image and Video Library

    2012-06-07

    ICESCAPE scientists watched from the deck of the Healy as it cut a path through thick multiyear ice on July 6, 2011. Cutting the path is key for getting researchers to remote research sites amid the sea ice. Credit: NASA/Kathryn Hansen The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Ice Particle Impacts on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Ruggeri, Charles; Struk, Peter M.; Pereira, Mike; Revilock, Duane; Kreeger, Richard E.

    2015-01-01

    An experimental study was conducted at the Ballistic Laboratory of NASA Glenn Research Center to study the impact of ice particles on a stationary flat surface target set at 45 degrees with respect to the direction of motion of the impinging particle (Figure 1). The experiment is part of NASA efforts to study the physics involved in engine power-loss events due to ice-crystal ingestion and ice accretion formation inside engines. These events can occur when aircraft encounter high-altitude convective weather.

  18. Flight teams compare notes

    NASA Image and Video Library

    2013-11-13

    NASA Operation IceBridge pilot Michael Anderson chats with Lt. Colonel Brent Keenan aboard a U.S. Air Force C-17 transport aircraft during a flight from Christchurch, New Zealand, to the U.S. Antarctic Program's McMurdo Station in Antarctica on Nov. 12, 2013. The C-17s that ferry people, equipment and supplies to Antarctica are operated by the U.S. Air Force's 62nd and 446th Airlift Wings based at Joint Base Lewis-McChord near Seattle, Wash. NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. In 2013, IceBridge is conducting its first field campaign directly from Antarctica. For more information about IceBridge, visit: www.nasa.gov/icebridge Credit: NASA/Goddard/Jefferson Beck NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Approaching the 2015 Arctic Sea Ice Minimum

    NASA Image and Video Library

    2017-12-08

    As the sun sets over the Arctic, the end of this year’s melt season is quickly approaching and the sea ice cover has already shrunk to the fourth lowest in the satellite record. With possibly some days of melting left, the sea ice extent could still drop to the second or third lowest on record. Arctic sea ice, which regulates the planet’s temperature by bouncing solar energy back to space, has been on a steep decline for the last two decades. This animation shows the evolution of Arctic sea ice in 2015, from its annual maximum wintertime extent, reached on February 25, to September 6. Credit: NASA Scientific Visualization Studio DOWNLOAD THIS VIDEO HERE: svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11999 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. A Biography of Distinguished Scientist Gilbert Newton Lewis (by Edward S. Lewis)

    NASA Astrophysics Data System (ADS)

    Harris, Reviewed By Harold H.

    1999-11-01

    The Edward Mellen Press: Lewiston, NY, 1998. 114 pp + index. ISBN 0-7734-8284-9. $69.95. There may not be a surname better known to students of chemistry than Lewis, from the Lewis electron-dot diagrams and the Lewis theory of acids and bases. More advanced students may know of the groundbreaking textbook Thermodynamics, by Lewis and Randall. Yet few Americans know much about this remarkable U.S.-born scholar, whose contributions equal those of the greatest scientists. He is a chemist-educator of whom we should be as proud and as well informed as we are of Linus Pauling, who was part of the westward movement of science in this country that G. N. Lewis began, or of the recently deceased Glenn Seaborg, who was one of the many students of Lewis who achieved renown. Gilbert N. Lewis was born in Weymouth, Massachusetts, in 1875, but his family moved to near Lincoln, Nebraska, in 1884. He spent two years at the University of Nebraska, but then moved to Harvard when his father became an executive at Merchants Trust Company in Boston. Young Lewis (then only 17) was also said to have been disappointed with the quality of education in Nebraska, and this may have been part of the impetus for the family's move east. After earning his baccalaureate at Harvard, he taught for a year at Phillips Andover Academy before returning to Harvard to study for his doctorate, which he completed 100 years ago, in 1899, under T. W. Richards. Lewis's doctoral work was on the thermodynamics of zinc and cadmium amalgams. At that time, physical chemistry was only beginning to achieve recognition as a branch of science, and its boundaries were ill defined. Edward Lewis quotes his father as often saying, "Physical chemistry is anything interesting." Like many chemists of his time, Lewis went to Europe to complete his preparation for a career; he was in the laboratories of Ostwald in Leipzig and Nernst in Göttingen in 1900-1901. On his return to the United States, he was an instructor at Harvard

  1. Operation IceBridge Turns Five

    NASA Image and Video Library

    2017-12-08

    stopped functioning in 2009. In addition to extending the ICESat record, IceBridge also sets the stage for ICESat-2, which is scheduled for launch in 2017. Credit: IceBridge DMS L0 Raw Imagery courtesy of the Digital Mapping System (DMS) team/NASA DAAC at the National Snow and Ice Data Center More info: earthobservatory.nasa.gov/IOTD/view.php?id=84549 earthobservatory.nasa.gov/IOTD/view.php?id=84549

  2. NASA's Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Picard, Martin; Quinn, Jacqueline; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.

    2012-01-01

    After the completion of the Apollo Program, space agencies didn't visit the moon for many years. But then in the 90's, the Clementine and Lunar Prospector missions returned and showed evidence of water ice at the poles. Then in 2009 the Lunar Crater Observation and Sensing Satellite indisputably showed that the Cabeus crater contained water ice and other useful volatiles. Furthermore, instruments aboard the Lunar Reconnaissance Orbiter (LRO) show evidence that the water ice may also be present in areas that receive several days of continuous sunlight each month. However, before we can factor this resource into our mission designs, we must understand the distribution and quantity of ice or other volatiles at the poles and whether it can be reasonably harvested for use as propellant or mission consumables. NASA, in partnership with the Canadian Space Agency (CSA), has been developing a payload to answer these questions. The payload is named RESOLVE. RESOLVE is on a development path that will deliver a tested flight design by the end of 2014. The team has developed a Design Reference Mission using LRO data that has RESOLVE landing near Cabeus Crater in May of2016. One of the toughest obstacles for RESOLVE's solar powered mission is its tight timeline. RESOLVE must be able to complete its objectives in the 5-7 days of available sunlight. The RESOLVE team must be able to work around obstacles to the mission timeline in real time. They can't afford to take a day off to replan as other planetary missions have done. To insure that this mission can be executed as planned, a prototype version of RESOLVE was developed this year and tested at a lunar analog site on Hawaii, known as Apollo Valley, which was once used to train the Apollo astronauts. The RESOLVE team planned the mission with the same type of orbital imagery that would be available from LRO. The simulation team prepositioned a Lander in Apollo Valley with RESOLVE on top mounted on its CSA rover. Then the mission

  3. NASA Airborne Campaigns Focus on Climate Impacts in the Arctic

    NASA Image and Video Library

    2017-12-08

    This red plane is a DHC-3 Otter, the plane flown in NASA's Operation IceBridge-Alaska surveys of mountain glaciers in Alaska. Credit: Chris Larsen, University of Alaska-Fairbanks Over the past few decades, average global temperatures have been on the rise, and this warming is happening two to three times faster in the Arctic. As the region’s summer comes to a close, NASA is hard at work studying how rising temperatures are affecting the Arctic. NASA researchers this summer and fall are carrying out three Alaska-based airborne research campaigns aimed at measuring greenhouse gas concentrations near Earth’s surface, monitoring Alaskan glaciers, and collecting data on Arctic sea ice and clouds. Observations from these NASA campaigns will give researchers a better understanding of how the Arctic is responding to rising temperatures. The Arctic Radiation – IceBridge Sea and Ice Experiment, or ARISE, is a new NASA airborne campaign to collect data on thinning sea ice and measure cloud and atmospheric properties in the Arctic. The campaign was designed to address questions about the relationship between retreating sea ice and the Arctic climate. Arctic sea ice reflects sunlight away from Earth, moderating warming in the region. Loss of sea ice means more heat from the sun is absorbed by the ocean surface, adding to Arctic warming. In addition, the larger amount of open water leads to more moisture in the air, which affects the formation of clouds that have their own effect on warming, either enhancing or reducing it. Read more: www.nasa.gov/earthrightnow NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. MODIS Snow and Ice Production

    NASA Technical Reports Server (NTRS)

    Hall, Dorthoy K.; Hoser, Paul (Technical Monitor)

    2002-01-01

    Daily, global snow cover maps, and sea ice cover and sea ice surface temperature (IST) maps are derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), are available at no cost through the National Snow and Ice Data Center (NSIDC). Included on this CD-ROM are samples of the MODIS snow and ice products. In addition, an animation, done by the Scientific Visualization studio at Goddard Space Flight Center, is also included.

  5. NASA low speed centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    1990-01-01

    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  6. High speed jet noise research at NASA Lewis

    NASA Astrophysics Data System (ADS)

    Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas

    1992-04-01

    The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.

  7. High speed jet noise research at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas

    1992-01-01

    The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.

  8. Ice Roughness in Short Duration SLD Icing Events

    NASA Technical Reports Server (NTRS)

    McClain, Stephen T.; Reed, Dana; Vargas, Mario; Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.

  9. 2014 Summer Series - Lewis Braxton III - Lessons Learned Enroute to Becoming Deputy Center Director

    NASA Image and Video Library

    2014-07-01

    This talk will take you on a journey of Mr. Lewis Braxton's successful career through the lens of an African American. You will gain insights to his success as he shares the wisdom he gained through personal and professional experiences. He will walk you through his early childhood, education, NASA internship at Dryden Flight Research Center (DFRC), and his transition to Ames as he developed and matured into a senior leader. Mr. Braxton will also provide a special focus on his CFO and Deputy Director roles at NASA Ames.

  10. Initial results from the NASA Lewis Bumpy Torus experiment. [of steady-state ion heating method based on modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Richardson, R. W.; Gerdin, G. A.

    1973-01-01

    Initial results were obtained from low power operation of the NASA Lewis Bumpy Torus experiment, in which a steady-state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. The magnet facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T, equally spaced in a toroidal array 1.52 m in major diameter. A 18 cm i.d. anode ring is located at each of the 12 midplanes and is maintained at high positive potentials by a dc power supply. Initial observations indicate electron temperatures from 10 to 150 eV, and ion kinetic temperatures from 200 eV to 1200 eV. Two modes of operation were observed, which depend on background pressure, and have different radial density profiles. Steady state neutron production was observed. The ion heating process in the bumpy torus appears to parallel closely the mechanism observed when the modified Penning discharge was operated in a simple magnetic mirror field.

  11. NASA’s Operation IceBridge Completes Twin Polar Campaigns

    NASA Image and Video Library

    2017-12-08

    Heimdal Glacier in southern Greenland, in an image captured on Oct. 13, 2015, from NASA Langley Research Center's Falcon 20 aircraft flying 33,000 feet above mean sea level. NASA’s Operation IceBridge, an airborne survey of polar ice, recently finalized two overlapping campaigns at both of Earth’s poles. Down south, the mission observed a big drop in the height of two glaciers situated in the Antarctic Peninsula, while in the north it collected much needed measurements of the status of land and sea ice at the end of the Arctic summer melt season. This was the first time in its seven years of operations that IceBridge carried out parallel flights in the Arctic and Antarctic. Every year, the mission flies to the Arctic in the spring and to Antarctica in the fall to keep collect an uninterrupted record of yearly changes in the height of polar ice. Read more: www.nasa.gov/feature/goddard/nasa-s-operation-icebridge-c... Credits: NASA/Goddard/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Ice Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Broeren, Andy; Potapczuk, Mark; Lee, Sam; Malone, Adam; Paul, Ben; Woodard, Brian

    2016-01-01

    The design and certification of modern transport airplanes for flight in icing conditions increasing relies on three-dimensional numerical simulation tools for ice accretion prediction. There is currently no publically available, high-quality, ice accretion database upon which to evaluate the performance of icing simulation tools for large-scale swept wings that are representative of modern commercial transport airplanes. The purpose of this presentation is to present the results of a series of icing wind tunnel test campaigns whose aim was to provide an ice accretion database for large-scale, swept wings.

  13. Light transport and general aviation aircraft icing research requirements

    NASA Technical Reports Server (NTRS)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  14. Applied Analytical Combustion/emissions Research at the NASA Lewis Research Center - a Progress Report

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Kundu, K. P.; Nguyen, H. L.

    1992-01-01

    Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time.

  15. Warming Seas and Melting Ice Sheets

    NASA Image and Video Library

    2017-12-08

    Sea level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises. For thousands of years, sea level has remained relatively stable and human communities have settled along the planet’s coastlines. But now Earth’s seas are rising. Globally, sea level has risen about eight inches since the beginning of the 20th century and more than two inches in the last 20 years alone. All signs suggest that this rise is accelerating. Read more: go.nasa.gov/1heZn29 Caption: An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credits: NASA/Saskia Madlener NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. SeaWinds Wind-Ice Interaction

    NASA Image and Video Library

    2000-05-07

    The figure demonstrates of the capability of the SeaWinds instrument on NASA QuikScat satellite in monitoring both sea ice and ocean surface wind, thus helping to further our knowledge in wind-ice interaction and its effect on climate change.

  17. Water Ice on Pluto

    NASA Image and Video Library

    2015-10-16

    The Ralph instrument on NASA's New Horizons spacecraft detected water ice on Pluto's surface, picking up on the ice's near-infrared spectral characteristics. (See featured image from Oct. 8, 2015.) The middle panel shows a region west of Pluto's "heart" feature -- which the mission team calls Tombaugh Regio -- about 280 miles (450 kilometers) across. It combines visible imagery from Ralph's Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). Areas with the strongest water ice spectral signature are highlighted in blue. Major outcrops of water ice occur in regions informally called Viking Terra, along Virgil Fossa west of Elliot crater, and in Baré Montes. Numerous smaller outcrops are associated with impact craters and valleys between mountains. In the lower left panel, LEISA spectra are shown for two regions indicated by cyan and magenta boxes. The white curve is a water ice model spectrum, showing similar features to the cyan spectrum. The magenta spectrum is dominated by methane ice absorptions. The lower right panel shows an MVIC enhanced color view of the region in the white box, with MVIC's blue, red and near-infrared filters displayed in blue, green and red channels, respectively. The regions showing the strongest water ice signature are associated with terrains that are actually a lighter shade of red. http://photojournal.jpl.nasa.gov/catalog/PIA20030

  18. Sea ice in the Greenland Sea

    NASA Image and Video Library

    2017-12-08

    As the northern hemisphere experiences the heat of summer, ice moves and melts in the Arctic waters and the far northern lands surrounding it. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Greenland on July 16, 2015. Large chunks of melting sea ice can be seen in the sea ice off the coast, and to the south spirals of ice have been shaped by the winds and currents that move across the Greenland Sea. Along the Greenland coast, cold, fresh melt water from the glaciers flows out to the sea, as do newly calved icebergs. Frigid air from interior Greenland pushes the ice away from the shoreline, and the mixing of cold water and air allows some sea ice to be sustained even at the height of summer. According to observations from satellites, 2015 is on track to be another low year for arctic summer sea ice cover. The past ten years have included nine of the lowest ice extents on record. The annual minimum typically occurs in late August or early September. The amount of Arctic sea ice cover has been dropping as global temperatures rise. The Arctic is two to three times more sensitive to temperature changes as the Earth as a whole. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Mars Ice Age, Simulated

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 17, 2003

    This simulated view shows Mars as it might have appeared during the height of a possible ice age in geologically recent time.

    Of all Solar System planets, Mars has the climate most like that of Earth. Both are sensitive to small changes in orbit and tilt. During a period about 2.1 million to 400,000 years ago, increased tilt of Mars' rotational axis caused increased solar heating at the poles. A new study using observations from NASA's Mars Global Surveyor and Mars Odyssey orbiters concludes that this polar warming caused mobilization of water vapor and dust into the atmosphere, and buildup of a surface deposit of ice and dust down to about 30 degrees latitude in both hemispheres. That is the equivalent of the southern Unites States or Saudi Arabia on Earth. Mars has been in an interglacial period characterized by less axial tilt for about the last 300,000 years. The ice-rich surface deposit has been degrading in the latitude zone of 30 degrees to 60 degrees as water-ice returns to the poles.

    In this illustration prepared for the December 18, 2003, cover of the journal Nature, the simulated surface deposit is superposed on a topography map based on altitude measurements by Global Surveyor and images from NASA's Viking orbiters of the 1970s.

    Mars Global Surveyor and Mars Odyssey are managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Office of Space Science, Washington.

  20. "Solid State" Chemistry in Titan Ice Particles

    NASA Image and Video Library

    2016-09-20

    Scientists from NASA's Cassini mission suggested in a 2016 paper that the appearance of a cloud of dicyanoacetylene (C4N2) ice in Titan's stratosphere may be explained by "solid-state" chemistry taking place inside ice particles. The particles have an inner layer of cyanoacetylene (HC3N) ice coated with an outer layer of hydrogen cyanide (HCN) ice. Left: When a photon of light penetrates the outer shell, it can interact with the HC3N, producing C3N and H. Center: The C3N then reacts with HCN to yield C4N2 and H (shown at right). Another reaction that also yields C4N2 ice and H also is possible, but the researchers think it is less likely. http://photojournal.jpl.nasa.gov/catalog/PIA20715

  1. C-17 boarding

    NASA Image and Video Library

    2013-11-13

    Operation IceBridge team members board a U.S. Air Force C-17 transport aircraft for a flight from Christchurch, New Zealand, to the U.S. Antarctic Program's McMurdo Station in Antarctica on Nov. 12, 2013. The C-17s that ferry people, equipment and supplies to Antarctica are operated by the U.S. Air Force's 62nd and 446th Airlift Wings based at Joint Base Lewis-McChord near Seattle, Wash. NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. In 2013, IceBridge is conducting its first field campaign directly from Antarctica. For more information about IceBridge, visit: www.nasa.gov/icebridge Credit: NASA/Goddard/Jefferson Beck NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. NASA’s Aerial Survey of Polar Ice Expands Its Arctic Reach

    NASA Image and Video Library

    2017-12-08

    For the past eight years, Operation IceBridge, a NASA mission that conducts aerial surveys of polar ice, has produced unprecedented three-dimensional views of Arctic and Antarctic ice sheets, providing scientists with valuable data on how polar ice is changing in a warming world. Now, for the first time, the campaign will expand its reach to explore the Arctic’s Eurasian Basin through two research flights based out of Svalbard, a Norwegian archipelago in the northern Atlantic Ocean. More: go.nasa.gov/2ngAxX2 Caption: Ellesmere Island mountain tops bathed in light as the sun began to peak over the horizon during Operation IceBridge’s first flight of its 2017 Arctic campaign, on March 9, 2017. Credits: NASA/Nathan Kurtz NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Water Ice on Mercury

    NASA Image and Video Library

    2015-04-16

    This orthographic projection view from NASA MESSENGER spacecraft provides a look at Mercury north polar region. The yellow regions in many of the craters mark locations that show evidence for water ice, as detected by Earth-based radar observations from Arecibo Observatory in Puerto Rico. MESSENGER has collected compelling new evidence that the deposits are indeed water ice, including imaging within the permanently shaded interiors of some of the craters, such as Prokofiev and Fuller. Instrument: Mercury Dual Imaging System (MDIS) Arecibo Radar Image: In yellow (Harmon et al., 2011, Icarus 211, 37-50) http://photojournal.jpl.nasa.gov/catalog/PIA19411

  4. Acoustic evaluation of the Helmholtz resonator treatment in the NASA Lewis 8- by 6-foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Gordon, Elliot B.

    1989-01-01

    The acoustic consequences of sealing the Helmholtz resonators of the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT) were experimentally evaluated. This resonator sealing was proposed in order to avoid entrapment of hydrogen during tests of advanced hydrogen-fueled engines. The resonators were designed to absorb energy in the 4- to 20-Hz range; thus, this investigation is primarily concerned with infrasound. Limited internal and external noise measurements were made at tunnel Mach numbers ranging from 0.5 to 2.0. Although the resonators were part of the acoustic treatment installed because of a community noise problem their sealing did not seem to indicate a reoccurrence of the problem would result. Two factors were key to this conclusion: (1) A large bulk treatment muffler downstream of the resonators was able to make up for much of the attenuation originally provided by the resonators, and (2) there was no noise source in the tunnel test section. The previous community noise problem occurred when a large ramjet was tested in an open-loop tunnel configuration. If a propulsion system producing high noise levels at frequencies of less than 10 Hz were tested, the conclusion on community noise would have to be reevaluated.

  5. Navier-Stokes Analysis of the Flowfield Characteristics of an Ice Contaminated Aircraft Wing

    NASA Technical Reports Server (NTRS)

    Chung, J.; Choo, Y.; Reehorst, A.; Potapczuk, M.; Slater, J.

    1999-01-01

    An analytical study was performed as part of the NASA Lewis support of a National Transportation Safety Board (NTSB) aircraft accident investigation. The study was focused on the performance degradation associated with ice contamination on the wing of a commercial turbo-prop-powered aircraft. Based upon the results of an earlier numerical study conducted by the authors, a prominent ridged-ice formation on the subject aircraft wing was selected for detailed flow analysis using 2-dimensional (2-D), as well as, 3-dimensional (3-D) Navier-Stokes computations. This configuration was selected because it caused the largest lift decrease and drag increase among all the ice shapes investigated in the earlier study. A grid sensitivity test was performed to find out the influence of grid spacing on the lift, drag, and associated angle-of-attack for the maximum lift (C(sub lmax)). This study showed that grid resolution is important and a sensitivity analysis is an essential element of the process in order to assure that the final solution is independent of the grid. The 2-D results suggested that a severe stability and control difficulty could have occurred at a slightly higher angle-of-attack (AOA) than the one recorded by the Flight Data Recorder (FDR). This stability and control problem was thought to have resulted from a decreased differential lift on the wings with respect to the normal loading for the configuration. The analysis also indicated that this stability and control problem could have occurred whether or not natural ice shedding took place. Numerical results using an assumed 3-D ice shape showed an increase of the angle at which this phenomena occurred of about 4 degrees. As it occurred with the 2-D case, the trailing edge separation was observed but started only when the AOA was very close to the angle at which the maximum lift occurred.

  6. Europa Ice Floes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Jupiter's moon Europa, as seen in this image taken June 27, 1996 by NASA's Galileo spacecraft, displays features in some areas resembling ice floes seen in Earth's polar seas. Europa, about the size of Earth's moon, has an icy crust that has been severely fractured, as indicated by the dark linear, curved, and wedged-shaped bands seen here. These fractures have broken the crust into plates as large as 30 kilometers (18.5 miles) across. Areas between the plates are filled with material that was probably icy slush contaminated with rocky debris. Some individual plates were separated and rotated into new positions. Europa's density indicates that it has a shell of water ice thicker than 100 kilometers (about 60 miles), parts of which could be liquid. Currently, water ice could extend from the surface down to the rocky interior, but the features seen in this image suggest that motion of the disrupted icy plates was lubricated by soft ice or liquid water below the surface at the time of disruption. This image covers part of the equatorial zone of Europa and was taken from a distance of 156,000 kilometers (about 96,300 miles) by the Solid-state Imaging Subsystem on the Galileo spacecraft. North is to the right and the sun is nearly directly overhead. The area shown is about 510 by 989 kilometers (310-by-600 miles), and the smallest visible feature is about 1.6 kilometers (1 mile) across.

    The Jet Propulsion Laboratory manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http:// www.jpl.nasa.gov/galileo/sepo.

  7. Larsen Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Warmer surface temperatures over just a few months in the Antarctic can splinter an ice shelf and prime it for a major collapse, NASA and university scientists report in the latest issue of the Journal of Glaciology. Using satellite images of tell-tale melt water on the ice surface and a sophisticated computer simulation of the motions and forces within an ice shelf, the scientists demonstrated that added pressure from surface water filling crevasses can crack the ice entirely through. The process can be expected to become more widespread if Antarctic summer temperatures increase. This true-color image from Landsat 7, acquired on February 21, 2000, shows pools of melt water on the surface of the Larsen Ice Shelf, and drifting icebergs that have split from the shelf. The upper image is an overview of the shelf's edge, while the lower image is displayed at full resolution of 30 meters (98 feet) per pixel. The labeled pond in the lower image measures roughly 1.6 by 1.6 km (1.0 x 1.0 miles). Full text of Press Release More Images and Animations Image courtesy Landsat 7 Science Team and NASA GSFC

  8. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/ characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  9. Preliminary Results From a Heavily Instrumented Engine Ice Crystal Icing Test in a Ground Based Altitude Test Facility

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.; Oliver, Michael J.

    2016-01-01

    Preliminary results from the heavily instrumented ALF502R-5 engine test conducted in the NASA Glenn Research Center Propulsion Systems Laboratory are discussed. The effects of ice crystal icing on a full scale engine is examined and documented. This same model engine, serial number LF01, was used during the inaugural icing test in the Propulsion Systems Laboratory facility. The uncommanded reduction of thrust (rollback) events experienced by this engine in flight were simulated in the facility. Limited instrumentation was used to detect icing on the LF01 engine. Metal temperatures on the exit guide vanes and outer shroud and the load measurement were the only indicators of ice formation. The current study features a similar engine, serial number LF11, which is instrumented to characterize the cloud entering the engine, detect/characterize ice accretion, and visualize the ice accretion in the region of interest. Data were acquired at key LF01 test points and additional points that explored: icing threshold regions, low altitude, high altitude, spinner heat effects, and the influence of varying the facility and engine parameters. For each condition of interest, data were obtained from some selected variations of ice particle median volumetric diameter, total water content, fan speed, and ambient temperature. For several cases the NASA in-house engine icing risk assessment code was used to find conditions that would lead to a rollback event. This study further helped NASA develop necessary icing diagnostic instrumentation, expand the capabilities of the Propulsion Systems Laboratory, and generate a dataset that will be used to develop and validate in-house icing prediction and risk mitigation computational tools. The ice accretion on the outer shroud region was acquired by internal video cameras. The heavily instrumented engine showed good repeatability of icing responses when compared to the key LF01 test points and during day-to-day operation. Other noticeable

  10. NASA’s Aerial Survey of Polar Ice Expands Its Arctic Reach

    NASA Image and Video Library

    2017-12-08

    For the past eight years, Operation IceBridge, a NASA mission that conducts aerial surveys of polar ice, has produced unprecedented three-dimensional views of Arctic and Antarctic ice sheets, providing scientists with valuable data on how polar ice is changing in a warming world. Now, for the first time, the campaign will expand its reach to explore the Arctic’s Eurasian Basin through two research flights based out of Svalbard, a Norwegian archipelago in the northern Atlantic Ocean. More: go.nasa.gov/2ngAxX2 Credits: NASA/Nathan Kurtz NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Lewy Body Dementia Diagnosis

    MedlinePlus

    ... individuals, it may also be due to the natural course of the disease. All Rights Reserved Lewy Body Dementia Association, Inc. 912 Killian Hill Road S.W., Lilburn, GA 30047 © 2018 Lewy Body Dementia Association, Inc. Connect ...

  12. NASA Lewis 8- by 6-foot supersonic wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    The 8- by 6-Foot Supersonic Wind Tunnel (SWT) at Lewis Research Center is available for use by qualified researchers. This manual contains tunnel performance maps which show the range of total temperature, total pressure, static pressure, dynamic pressure, altitude, Reynolds number, and mass flow as a function of test section Mach number. These maps are applicable for both the aerodynamic and propulsion cycle. The 8- by 6-Foot Supersonic Wind Tunnel is an atmospheric facility with a test section Mach number range from 0.36 to 2.0. General support systems (air systems, hydraulic system, hydrogen system, infrared system, laser system, laser sheet system, and schlieren system are also described as are instrumentation and data processing and acquisition systems. Pretest meeting formats are outlined. Tunnel user responsibility and personal safety requirements are also stated.

  13. Ice Block Avalanche

    NASA Image and Video Library

    2018-06-25

    One of the most actively changing areas on Mars are the steep edges of the North Polar layered deposits. This image from NASA's Mars Reconnaissance Orbiter (MRO) shows many new ice blocks compared to an earlier image in December 2006. An animation shows one example, where a section of ice cliff collapsed. The older image (acquired in bin-2 mode) is not as sharp as the newer one. HiRISE has been re-imaging regions first photographed in 2006 through 2007, six Mars years ago. This long baseline allows us to see large, rare changes as well as many smaller changes. More information is available at https://photojournal.jpl.nasa.gov/catalog/PIA22535

  14. Historic First Landing of NASA's P-3B in Antarctica

    NASA Image and Video Library

    2014-01-03

    NASA's first ever historic P-3B landing in McMurdo Station, Antarctica on the sea ice runway, which occurred on Nov. 16, 2013. It took the craft 5 days to reach Antarctica from the NASA Wallops Flight Facility in Wallops Island, Virginia. You can see the IceBridge Team waiting to greet the flight crew as they taxied for the very first time right up to the IceBridge team tents. Credit: NASA/Justin Miller/Indiana University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Airfoil Ice-Accretion Aerodynamics Simulation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  16. Sea ice off western Alaska

    NASA Image and Video Library

    2015-02-20

    On February 4, 2014 the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard NASA’s Aqua satellite captured a true-color image of sea ice off of western Alaska. In this true-color image, the snow and ice covered land appears bright white while the floating sea ice appears a duller grayish-white. Snow over the land is drier, and reflects more light back to the instrument, accounting for the very bright color. Ice overlying oceans contains more water, and increasing water decreases reflectivity of ice, resulting in duller colors. Thinner ice is also duller. The ocean waters are tinted with green, likely due to a combination of sediment and phytoplankton. Alaska lies to the east in this image, and Russia to the west. The Bering Strait, covered with ice, lies between to two. South of the Bering Strait, the waters are known as the Bering Sea. To the north lies the Chukchi Sea. The bright white island south of the Bering Strait is St. Lawrence Island. Home to just over 1200 people, the windswept island belongs to the United States, but sits closer to Russia than to Alaska. To the southeast of the island a dark area, loosely covered with floating sea ice, marks a persistent polynya – an area of open water surrounded by more frozen sea ice. Due to the prevailing winds, which blow the sea ice away from the coast in this location, the area rarely completely freezes. The ice-covered areas in this image, as well as the Beaufort Sea, to the north, are critical areas for the survival of the ringed seal, a threatened species. The seals use the sea ice, including ice caves, to rear their young, and use the free-floating sea ice for molting, raising the young and breeding. In December 2014, the National Oceanic and Atmospheric Administration (NOAA) proposed that much of this region be set aside as critical, protected habitat for the ringed seal. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center

  17. Superconducting Microwave Electronics at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  18. Superconducting microwave electronics at Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  19. Bernard Lewis: An Appreciation.

    ERIC Educational Resources Information Center

    Humphreys, R. Stephen

    1990-01-01

    Discusses the career and publications of Bernard Lewis, a noted scholar in the field of Middle-Eastern studies and Islamic history. Traces the history of Western-based Islamic historiography. Examines Lewis' interpretation of Islamic history, outlining his political and social views. (RW)

  20. A Terminal Area Icing Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Serke, David J.

    2014-01-01

    NASA and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology is now being extended to provide volumetric coverage surrounding an airport. With volumetric airport terminal area coverage, the resulting icing hazard information will be usable by aircrews, traffic control, and airline dispatch to make strategic and tactical decisions regarding routing when conditions are conducive to airframe icing. Building on the existing vertical pointing system, the new method for providing volumetric coverage will utilize cloud radar, microwave radiometry, and NEXRAD radar. This terminal area icing remote sensing system will use the data streams from these instruments to provide icing hazard classification along the defined approach paths into an airport. Strategies for comparison to in-situ instruments on aircraft and weather balloons for a planned NASA field test are discussed, as are possible future applications into the NextGen airspace system.

  1. Engine structures: A bibliography of Lewis Research Center's research for 1980-1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Structures Division of the NASA Lewis Research Center from 1980 through 1987. All the publications were announced in the l980 to 1987 issues of STAR (Scientific and Technical Aerospace Reports) and or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.

  2. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  3. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    DOE PAGES

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.; ...

    2017-04-26

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  4. NASA Pilot and Researcher Prepare for a Solar Cell Calibration Flight

    NASA Image and Video Library

    1964-04-21

    Pilot Earle Boyer and researcher Henry Brandhorst prepare for a solar cell calibration flight in a Martin B-57B Canberra at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis was in the early stages of decades-long energy conversion and space power research effort. Brandhorst, a member of the Chemistry and Energy Conversion Division, led a team of Lewis researchers in a quest to develop new power sources to sustain spacecraft in orbit. Solar cells proved to be an important source of energy, but researchers discovered that their behavior varied at different atmospheric levels. Their standardization and calibration were critical. Brandhorst initiated a standardized way to calibrate solar cells in the early 1960s using the B-57B aircraft. The pilots would take the aircraft up into the troposphere and open the solar cell to the sunlight. The aircraft would steadily descend while instruments recorded how much energy was being captured by the solar cell. From this data, Brandhorst could determine the estimated power for a particular solar cell at any altitude. Pilot Earle Boyer joined NASA Lewis in October 1962. He had flown Convair F-102 Delta Dagger fighters in the Air Force and served briefly in the National Guard before joining the Langley Research Center. Boyer was only at Langley a few months before he transferred to Cleveland. He flew the B-57B, a Convair F-106 Delta Dart, Gulfstream G-1 with an experimental turboprop, Learjet and many other aircraft over the next 32 years at Lewis.

  5. NASA Breakthrough Propulsion Physics Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Editor); Williamson, Gary Scott (Editor)

    1999-01-01

    In August 1997, NASA sponsored a 3-day workshop to assess the prospects emerging from physics that may eventually lead to creating propulsion breakthroughs -the kind of breakthroughs that could revolutionize space flight and enable human voyages to other star systems. Experiments and theories were discussed regarding the coupling of gravity and electromagnetism, vacuum fluctuation energy, warp drives and wormholes, and superluminal quantum tunneling. Because the propulsion goals are presumably far from fruition, a special emphasis was to identify affordable, near-term, and credible research tasks that could make measurable progress toward these grand ambitions. This workshop was one of the first steps for the new NASA Breakthrough Propulsion Physics program led by the NASA Lewis Research Center.

  6. Solid State Technology Branch of NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A collection of papers written by the members of the Solid State Technology Branch of NASA LeRC from Jun. 1991 - Jun. 1992 is presented. A range of topics relating to superconductivity, Monolithic Microwave Circuits (MMIC's), coplanar waveguides, and material characterization is covered.

  7. Mars Pathfinder Rover-Lewis Research Center Technology Experiments Program

    NASA Technical Reports Server (NTRS)

    Stevenson, Steven M.

    1997-01-01

    An overview of NASA's Mars Pathfinder Program is given and the development and role of three technology experiments from NASA's Lewis Research Center and carried on the Mars Pathfinder rover is described. Two recent missions to Mars were developed and managed by the Jet Propulsion Laboratory, and launched late last year: Mars Global Surveyor in November 1996 and Mars Pathfinder in December 1996. Mars Global Surveyor is an orbiter which will survey the planet with a number of different instruments, and will arrive in September 1997, and Mars Pathfinder which consists of a lander and a small rover, landing on Mars July 4, 1997. These are the first two missions of the Mars Exploration Program consisting of a ten year series of small robotic martian probes to be launched every 26 months. The Pathfinder rover will perform a number of technology and operational experiments which will provide the engineering information necessary to design and operate more complex, scientifically oriented surface missions involving roving vehicles and other machinery operating in the martian environment. Because of its expertise in space power systems and technologies, space mechanisms and tribology, Lewis Research Center was asked by the Jet Propulsion Laboratory, which is heading the Mars Pathfinder Program, to contribute three experiments concerning the effects of the martian environment on surface solar power systems and the abrasive qualities of the Mars surface material. In addition, rover static charging was investigated and a static discharge system of several fine Tungsten points was developed and fixed to the rover. These experiments and current findings are described herein.

  8. Arctic Sea Ice Is Losing Its Bulwark Against Warming Summers

    NASA Image and Video Library

    2017-12-08

    Arctic sea ice, the vast sheath of frozen seawater floating on the Arctic Ocean and its neighboring seas, has been hit with a double whammy over the past decades: as its extent shrunk, the oldest and thickest ice has either thinned or melted away, leaving the sea ice cap more vulnerable to the warming ocean and atmosphere. “What we’ve seen over the years is that the older ice is disappearing,” said Walt Meier, a sea ice researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This older, thicker ice is like the bulwark of sea ice: a warm summer will melt all the young, thin ice away but it can’t completely get rid of the older ice. But this older ice is becoming weaker because there’s less of it and the remaining old ice is more broken up and thinner, so that bulwark is not as good as it used to be.” Read more: go.nasa.gov/2dPJ9zT NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

    2013-01-01

    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

  10. The International Cometary Explorer (ICE)wallsheet teacher's guide

    NASA Technical Reports Server (NTRS)

    Maran, S. P. (Editor)

    1985-01-01

    On September 11, 1985, the veteran NASA spacecraft ISEE-3 which has been renamed the International Cometary Explorer (ICE) will make the first visit of a spacecraft to a comet. A teachers' guide to the NASA wallsheet on the ICE and its mission is presented. This circumstance of course results from the current interest in the return of Halley's Comet. This teacher's guide will be helpful in understanding scientists strong interest in sending the ICE spacecraft to investigate the tail of a much less famous object Comet Giacobin-Zinner.

  11. Electro-impulse de-icing testing analysis and design

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Schrag, R. L.; Bernhart, W. D.; Friedberg, R. A.

    1988-01-01

    Electro-Impulse De-Icing (EIDI) is a method of ice removal by sharp blows delivered by a transient electromagnetic field. Detailed results are given for studies of the electrodynamic phenomena. Structural dynamic tests and computations are described. Also reported are ten sets of tests at NASA's Icing Research Tunnel and flight tests by NASA and Cessna Aircraft Company. Fabrication of system components are described and illustrated. Fatigue and electromagnetic interference tests are reported. Here, the necessary information for the design of an EIDI system for aircraft is provided.

  12. NASA/OAI Collaborative Aerospace Internship and Fellowship Program

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA/OAI Collaborative Aerospace Internship and Fellowship Program is a collaborative undertaking by the Office of Educational Programs at the NASA Lewis Research Center and the Department of Workforce Enhancement at the Ohio Aerospace Institute. This program provides 12 or 14 week internships for undergraduate and graduate students of science and engineering, and for secondary school teachers. Each item is assigned a NASA mentor who facilitates a research assignment. An important aspect of the program is that it includes students with diverse social, cultural and economic backgrounds. The purpose of this report is to document the program accomplishments for 1996.

  13. Comparative Views of Arctic Sea Ice Growth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA researchers have new insights into the mysteries of Arctic sea ice, thanks to the unique abilities of Canada's Radarsat satellite. The Arctic is the smallest of the world's four oceans, but it may play a large role in helping scientists monitor Earth's climate shifts.

    Using Radarsat's special sensors to take images at night and to peer through clouds, NASA researchers can now see the complete ice cover of the Arctic. This allows tracking of any shifts and changes, in unprecedented detail, over the course of an entire winter. The radar-generated, high-resolution images are up to 100 times better than those taken by previous satellites.

    The two images above are separated by nine days (earlier image on the left). Both images represent an area (approximately 96 by 128 kilometers; 60 by 80 miles)located in the Baufort Sea, north of the Alaskan coast. The brighter features are older thicker ice and the darker areas show young, recently formed ice. Within the nine-day span, large and extensive cracks in the ice cover have formed due to ice movement. These cracks expose the open ocean to the cold, frigid atmosphere where sea ice grows rapidly and thickens.

    Using this new information, scientists at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., can generate comprehensive maps of Arctic sea ice thickness for the first time. 'Before we knew only the extent of the ice cover,' said Dr. Ronald Kwok, JPL principal investigator of a project called Sea Ice Thickness Derived From High Resolution Radar Imagery. 'We also knew that the sea ice extent had decreased over the last 20 years, but we knew very little about ice thickness.'

    'Since sea ice is very thin, about 3 meters (10 feet) or less,'Kwok explained, 'it is very sensitive to climate change.'

    Until now, observations of polar sea ice thickness have been available for specific areas, but not for the entire polar region.

    The new radar mapping technique has also given scientists a close look at

  14. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  15. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; VanZante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2014-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Centers Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and flow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  16. Flow Quality Surveys in the Settling Chamber of the NASA Glenn Icing Research Tunnel (2011 Tests)

    NASA Technical Reports Server (NTRS)

    Steen, Laura E.; Van Zante, Judith Foss; Broeren, Andy P.; Kubiak, Mark J.

    2012-01-01

    In 2011, the heat exchanger and refrigeration plant for NASA Glenn Research Center's Icing Research Tunnel (IRT) were upgraded. Flow quality surveys were performed in the settling chamber of the IRT in order to understand the effect that the new heat exchanger had on the flow quality upstream of the spray bars. Measurements were made of the total pressure, static pressure, total temperature, airspeed, and ow angle (pitch and yaw). These measurements were directly compared to measurements taken in 2000, after the previous heat exchanger was installed. In general, the flow quality appears to have improved with the new heat exchanger.

  17. Ice Shapes on a Tail Rotor

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Testing of a thermally-protected helicopter rotor in the Icing Research Tunnel (IRT) was completed. Data included inter-cycle and cold blade ice shapes. Accreted ice shapes were thoroughly documented, including tracing, scanning and photographing. This was the first time this scanning capability was used outside of NASA. This type of data has never been obtained for a rotorcraft before. This data will now be used to validate the latest generation of icing analysis tools.

  18. Capabilities of LEWICE 1.6 and Comparison With Experimental Data

    DOT National Transportation Integrated Search

    1996-01-01

    A research project is underway at NASA Lewis to produce a computer code which can accurately predict ice growth under any meteorological conditions for any aircraft surface. The most recent release of this code is LEWICE 1.6. This paper will demonstr...

  19. Comparison of LEWICE 1.6 and LEWICE/NS with IRT experimental data from modern air foil tests

    DOT National Transportation Integrated Search

    1998-01-01

    A research project is underway at NASA Lewis to produce a computer code which can accurately predict ice growth under any meteorological conditions for any aircraft surface. The most recent release of this code is LEWICE 1.6. This code is modular in ...

  20. Thin Ice Area Extraction in the Seasonal Sea Ice Zones of the Northern Hemisphere Using Modis Data

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Naoki, K.; Cho, K.

    2018-04-01

    Sea ice has an important role of reflecting the solar radiation back into space. However, once the sea ice area melts, the area starts to absorb the solar radiation which accelerates the global warming. This means that the trend of global warming is likely to be enhanced in sea ice areas. In this study, the authors have developed a method to extract thin ice area using reflectance data of MODIS onboard Terra and Aqua satellites of NASA. The reflectance of thin sea ice in the visible region is rather low. Moreover, since the surface of thin sea ice is likely to be wet, the reflectance of thin sea ice in the near infrared region is much lower than that of visible region. Considering these characteristics, the authors have developed a method to extract thin sea ice areas by using the reflectance data of MODIS (NASA MYD09 product, 2017) derived from MODIS L1B. By using the scatter plots of the reflectance of Band 1 (620 nm-670 nm) and Band 2 (841 nm-876 nm)) of MODIS, equations for extracting thin ice area were derived. By using those equations, most of the thin ice areas which could be recognized from MODIS images were well extracted in the seasonal sea ice zones in the Northern Hemisphere, namely the Sea of Okhotsk, the Bering Sea and the Gulf of Saint Lawrence. For some limited areas, Landsat-8 OLI images were also used for validation.