Sample records for nasa mars reference

  1. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Astrophysics Data System (ADS)

    Hoffman, Stephen J.; Kaplan, David I.

    1997-07-01

    Personnel representing several NASA field centers have formulated a "Reference Mission" addressing human exploration of Mars. This report summarizes their work and describes a plan for the first human missions to Mars, using approaches that are technically feasible, have reasonable risks, and have relatively low costs. The architecture for the Mars Reference Mission builds on previous work of the Synthesis Group (1991) and Zubrin's (1991) concepts for the use of propellants derived from the Martian Atmosphere. In defining the Reference Mission, choices have been made. In this report, the rationale for each choice is documented; however, unanticipated technology advances or political decisions might change the choices in the future.

  2. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J. (Editor); Kaplan, David I. (Editor)

    1997-01-01

    Personnel representing several NASA field centers have formulated a "Reference Mission" addressing human exploration of Mars. This report summarizes their work and describes a plan for the first human missions to Mars, using approaches that are technically feasible, have reasonable risks, and have relatively low costs. The architecture for the Mars Reference Mission builds on previous work of the Synthesis Group (1991) and Zubrin's (1991) concepts for the use of propellants derived from the Martian Atmosphere. In defining the Reference Mission, choices have been made. In this report, the rationale for each choice is documented; however, unanticipated technology advances or political decisions might change the choices in the future.

  3. Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    1998-01-01

    This Addendum to the Mars Reference Mission was developed as a companion document to the NASA Special Publication 6107, "Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team." It summarizes changes and updates to the Mars Reference Missions that were developed by the Exploration Office since the final draft of SP 6107 was printed in early 1999. The Reference Mission is a tool used by the exploration community to compare and evaluate approaches to mission and system concepts that could be used for human missions to Mars. It is intended to identify and clarify system drivers, significant sources of cost, performance, risk, and schedule variation. Several alternative scenarios, employing different technical approaches to solving mission and technology challenges, are discussed in this Addendum. Comparing alternative approaches provides the basis for continual improvement to technology investment plan and a general understanding of future human missions to Mars. The Addendum represents a snapshot of work in progress in support of planning for future human exploration missions through May 1998.

  4. Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team

    NASA Technical Reports Server (NTRS)

    Connolly, John

    1998-01-01

    The Reference Mission was developed over a period of several years and was published in NASA Special Publication 6107 in July 1997. The purpose of the Reference Mission was to provide a workable model for the human exploration of Mars, which is described in enough detail that alternative strategies and implementations can be compared and evaluated. NASA is continuing to develop the Reference Mission and expects to update this report in the near future. It was the purpose of the Reference Mission to develop scenarios based on the needs of scientists and explorers who want to conduct research on Mars; however, more work on the surface-mission aspects of the Reference Mission is required and is getting under way. Some aspects of the Reference Mission that are important for the consideration of the surface mission definition include: (1) a split mission strategy, which arrives at the surface two years before the arrival of the first crew; (2) three missions to the outpost site over a 6-year period; (3) a plant capable of producing rocket propellant for lifting off Mars and caches of water, O, and inert gases for the life-support system; (4) a hybrid physico-chemical/bioregenerative life-support system, which emphasizes the bioregenerative system more in later parts of the scenario; (5) a nuclear reactor power supply, which provides enough power for all operations, including the operation of a bioregenerative life-support system as well as the propellant and consumable plant; (6) capability for at least two people to be outside the habitat each day of the surface stay; (7) telerobotic and human-operated transportation vehicles, including a pressurized rover capable of supporting trips of several days' duration from the habitat; (7) crew stay times of 500 days on the surface, with six-person crews; and (8) multiple functional redundancies to reduce risks to the crews on the surface. New concepts are being sought that would reduce the overall cost for this exploration

  5. The NASA environmental models of Mars

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.

    1991-01-01

    NASA environmental models are discussed with particular attention given to the Mars Global Reference Atmospheric Model (Mars-GRAM) and the Mars Terrain simulator. The Mars-GRAM model takes into account seasonal, diurnal, and surface topography and dust storm effects upon the atmosphere. It is also capable of simulating appropriate random density perturbations along any trajectory path through the atmosphere. The Mars Terrain Simulator is a software program that builds pseudo-Martian terrains by layering the effects of geological processes upon one another. Output pictures of the constructed surfaces can be viewed from any vantage point under any illumination conditions. Attention is also given to the document 'Environment of Mars, 1988' in which scientific models of the Martian atmosphere and Martian surface are presented.

  6. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  7. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Hoffman, Stephen J.; Beaty, David W.

    2009-01-01

    This paper provides a summary of the 2007 Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration including how Constellation systems can be used. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  8. Review of NASA's Planned Mars Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Contents include the following: Executive Summary; Introduction; Scientific Goals for the Exploration of Mars; Overview of Mars Surveyor and Others Mars Missions; Key Issues for NASA's Mars Exploration Program; and Assessment of the Scientific Potential of NASA's Mars Exploration Program.

  9. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Astrophysics Data System (ADS)

    Justus, C. G.; James, B. F.

    1999-05-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  10. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    1999-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  11. The Mars Express - NASA Project at JPL

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Horttor, Richard L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S. W.; Goltz, G.

    2006-01-01

    This viewgraph presentation gives a general overview of the Mars Express NASA Project at JPL. The contents include: 1) Mars Express/NASA Project Overview; 2) Experiment-Investigator Matrix; 3) Mars Express Support of NASA's Mars Exploration Objectives; 4) U.S./NASA Support of Mars Express; 5) Mars Express Schedule (2003-2007); 6) Mars Express Data Rates; 7) MARSIS Overview Results; 8) MARSIS with Antennas Deployed; 9) MARSIS Science Objectives; 10) Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) Experiment Overview; 11) Mars Express Orbit Evolution; 12) MARSIS Science - Subsurface Sounding; 13) MARSIS-North Polar Ice Cap; 14) MARSIS Data-Buried Basin; 15) MARSIS over a Crater Basin; 16) MARSIS-Buried Basin; 17) Ionogram - Orbit 2032 (example from Science paper); 18) Ionogram-Orbit 2018 (example from Science paper); and 19) Recent MARSIS Results ESA Press Releases.

  12. Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    2001-01-01

    This document presents Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001) and its new features. As with the previous version (mars-2000), all parameterizations fro temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and season (Ls) use input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 70 km. Mars-GRAM 2001 is based on topography from the Mars Orbiter Laser Altimeter (MOLA) and includes new MGCM data at the topographic surface. A new auxiliary program allows Mars-GRAM output to be used to compute shortwave (solar) and longwave (thermal) radiation at the surface and top of atmosphere. This memorandum includes instructions on obtaining Mars-GRAN source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  13. Review of NASA's Planned Mars Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The exploration of Mars has long been a prime scientific objective of the U.S. planetary exploration program. Yet no U.S. spacecraft has successfully made measurements at Mars since the Viking missions of the late 1970s. Mars Observer, which was designed to conduct global observations from orbit, failed just before orbit insertion in 1993. The Russian spacecraft Phobos 2 did succeed in making some observations of the planet in 1989, but it was designed primarily to observe Phobos, the innermost satellite of Mars; the spacecraft failed 2 months after insertion into Mars orbit during the complex maneuvers required to rendezvous with the martian satellite. In fall 1996 NASA plans to launch Mars Pathfinder for a landing on the martian surface in mid-1997. This spacecraft is one of the first two missions in NASA's Discovery program that inaugurates a new style of planetary exploration in which missions are low-cost (less than $150 million) and have very focused science objectives. As can be seen in the comparative data presented in Box 1, this mission is considerably smaller in terms of cost, mass, and scope than NASA's previous Mars missions. NASA's FY 1995 budget initiated a continuing Mars exploration program, called Mars Surveyor, that involves multiple launches of spacecraft as small as or smaller than Mars Pathfinder to Mars over the next several launch opportunities, which recur roughly every 26 months. The first mission in the program, Mars Global Surveyor, set for launch late in 1996, is intended to accomplish many of the objectives of the failed Mars Observer. Like the Discovery program, Mars Surveyor is a continuing series of low-cost missions, each of which has highly focused science objectives. See Box 1 for comparative details of those Surveyor missions currently defined. Around the same time that the Mars Surveyor series was chosen as the centerpiece of NASA's solar system exploration program, the Committee on Planetary and Lunar Exploration (COMPLEX

  14. A Phobos-Deimos Mission as an Element of the NASA Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2011-01-01

    NASA has conducted a series of mission studies over the past 25 years examining the eventual exploration of the surface of Mars by humans. The latest version of this evolutionary series of design reference missions/architectures - Design Reference Architecture 5 or DRA-5 - was completed in 2007. This paper examines the implications of including a human mission to explore the moons of Mars and teleoperate robots in various locations, but not to land the human crews on Mars, as an element of this reference architecture. Such a mission has been proposed several times during this same 25 year evolution leading up to the completion of DRA-5 primarily as a mission of testing the in-space vehicles and operations while surface vehicles and landers are under development. But such a precursor or test mission has never been explicitly included as an element of this Architecture. This paper will first summarize the key features of the DRA-5 to provide context for the remainder of the assessment. This will include a description of the in-space vehicles that would be the subject of a shakedown test during the Mars orbital mission. A decision tree will be used to illustrate the factors that will be analyzed, and the sequence in which they will be addressed, for this assessment. The factors that will be analyzed include the type of interplanetary transfer orbit (opposition class versus conjunction class), the type of parking orbit (circular versus elliptical), and the type of propulsion technology (high thrust chemical versus nuclear thermal rocket). The manner in which each of these factors impacts an individual mission will be described. In addition to the direct impact of these factors, additional considerations impacting crew health and overall programmatic outcomes will be discussed. Numerical results for each of the factors in the decision tree will be grouped with derived qualitative impacts from crew health and programmatic consideration. These quantitative and qualitative

  15. Evaluating Mars Science Laboratory Landing Sites with the Mars Global Reference Atmospheric Model (Mars-GRAM 2005)

    NASA Technical Reports Server (NTRS)

    Justh, H. L.; Justus, C. G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL) [1]. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: (1) Thermal Emission Spectrometer (TES) mapping years 1 and 2, with Mars-GRAM data coming from NASA Ames Mars General Circulation Model (MGCM) results driven by observed TES dust optical depth or (2) TES mapping year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. Mars-GRAM 2005 has been validated [2] against Radio Science data, and both nadir and limb data from TES [3]. There are several new features included in Mars-GRAM 2005. The first is the option to use input data sets from MGCM model runs that were designed to closely simulate conditions observed during the first two years of TES observations at Mars. The TES Year 1 option includes values from April 1999 through January 2001. The TES Year 2 option includes values from February 2001 through December 2002. The second new feature is the option to read and use any auxiliary profile of temperature and density versus altitude. In exercising the auxiliary profile Mars-GRAM option, values from the auxiliary profile replace data from the original MGCM databases. Some examples of auxiliary profiles include data from TES nadir or limb observations and Mars mesoscale model output at a particular

  16. Power Requirements for The NASA Mars Design Reference Architecture (DRA) 5.0

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    2009-01-01

    This paper summarizes the power systems analysis results from NASA s recent Mars DRA 5.0 study which examined three architecture options and resulting mission requirements for a human Mars landing mission in the post-2030 timeframe. DRA 5.0 features a long approximately 500 day surface stay split mission using separate cargo and crewed Mars transfer vehicles. Two cargo flights, utilizing minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crew during the next mission opportunity approximately 26 months later. The pre-deployment of cargo poses unique challenges for set-up and emplacement of surface assets that results in the need for self or robotically deployed designs. Three surface architecture options were evaluated for breadth of science content, extent of exploration range/capability and variations in system concepts and technology. This paper describes the power requirements for the surface operations of the three mission options, power system analyses including discussion of the nuclear fission, solar photovoltaic and radioisotope concepts for main base power and long range mobility.

  17. NASA to Launch Mars Rover in 2020 Artist Concept

    NASA Image and Video Library

    2016-07-14

    NASA's Mars 2020 Project will re-use the basic engineering of NASA's Mars Science Laboratory/Curiosity to send a different rover to Mars, with new objectives and instruments. This artist's concept depicts the top of the 2020 rover's mast. http://photojournal.jpl.nasa.gov/catalog/PIA20760

  18. Comparing NASA and ESA Cost Estimating Methods for Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Hunt, Charles D.; vanPelt, Michel O.

    2004-01-01

    To compare working methodologies between the cost engineering functions in NASA Marshall Space Flight Center (MSFC) and ESA European Space Research and Technology Centre (ESTEC), as well as to set-up cost engineering capabilities for future manned Mars projects and other studies which involve similar subsystem technologies in MSFC and ESTEC, a demonstration cost estimate exercise was organized. This exercise was a direct way of enhancing not only cooperation between agencies but also both agencies commitment to credible cost analyses. Cost engineers in MSFC and ESTEC independently prepared life-cycle cost estimates for a reference human Mars project and subsequently compared the results and estimate methods in detail. As a non-sensitive, public domain reference case for human Mars projects, the Mars Direct concept was chosen. In this paper the results of the exercise are shown; the differences and similarities in estimate methodologies, philosophies, and databases between MSFC and ESTEC, as well as the estimate results for the Mars Direct concept. The most significant differences are explained and possible estimate improvements identified. In addition, the Mars Direct plan and the extensive cost breakdown structure jointly set-up by MSFC and ESTEC for this concept are presented. It was found that NASA applied estimate models mainly based on historic Apollo and Space Shuttle cost data, taking into account the changes in technology since then. ESA used models mostly based on European satellite and launcher cost data, taking into account the higher equipment and testing standards for human space flight. Most of NASA's and ESA s estimates for the Mars Direct case are comparable, but there are some important, consistent differences in the estimates for: 1) Large Structures and Thermal Control subsystems; 2) System Level Management, Engineering, Product Assurance and Assembly, Integration and Test/Verification activities; 3) Mission Control; 4) Space Agency Program Level

  19. NASA's Mars 2020 Rover Artist's Concept #1

    NASA Image and Video Library

    2017-05-23

    This artist's concept depicts NASA's Mars 2020 rover on the surface of Mars. The mission takes the next step by not only seeking signs of habitable conditions on Mars in the ancient past, but also searching for signs of past microbial life itself. The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA21635

  20. The Mars Express/NASA Project at JPL

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S. W.; Goltz, G.

    2005-01-01

    An overview of the Mars Express/NASA Project at JPL is presented. The topics include: 1) Mars Express Mission Experiments and Investigators; 2) Mars Advanced Radar for Subsurface and Ionospheric Soundig (MARSIS) Overview; 3) MARSIS Experiment Overview; 4) Interoperability Concept; 5) Mars Express Science Operations; 6) Mars Express Schedule (2003-2007);

  1. Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    2000-01-01

    This report presents Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000) and its new features. All parameterizations for temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and L(sub s) have been replaced by input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 170 km. A modified Stewart thermospheric model is still used for higher altitudes and for dependence on solar activity. "Climate factors" to tune for agreement with GCM data are no longer needed. Adjustment of exospheric temperature is still an option. Consistent with observations from Mars Global Surveyor, a new longitude-dependent wave model is included with user input to specify waves having 1 to 3 wavelengths around the planet. A simplified perturbation model has been substituted for the earlier one. An input switch allows users to select either East or West longitude positive. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  2. Technology Development for NASA Mars Missions

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    2005-01-01

    A viewgraph presentation on technology development for NASA Mars Missions is shown. The topics include: 1) Mars mission roadmaps; 2) Focus and Base Technology programs; 3) Technology Infusion; and 4) Feed Forward to Future Missions.

  3. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    NASA Administrator Charles Bolden speaks during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  4. The Mars Express/NASA Project at JPL

    NASA Astrophysics Data System (ADS)

    Thompson, T. W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S.; Goltz, G.

    2006-03-01

    The Mars Express/NASA Project at JPL supports much of the U.S. involvement in ESA's Mars Express mission. Mars Express has just completed its prime mission in late 2005 and has embarked on its first extended mission cycle.

  5. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Robert Lightfoot, NASA Associate Adminstrator, delivers closing remarks at an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  6. Large Parachute for NASA Mars Science Laboratory

    NASA Image and Video Library

    2009-04-22

    The parachute for NASA Mars Science Laboratory mission opens to a diameter of nearly 16 meters 51 feet. This image shows a duplicate qualification-test parachute inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, Calif. The Mars Science Laboratory will be launched in 2011 for a landing on Mars in 2012. Its parachute is the largest ever built to fly on an extraterrestrial mission. The parachute uses a configuration called disk-gap-band, with 80 suspension lines. Most of the orange and white fabric is nylon, though a small disk of heavier polyester is used near the vent in the apex of the canopy due to higher stresses there. http://photojournal.jpl.nasa.gov/catalog/PIA11994

  7. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Sam Scimemi, Director of NASA's International Space Station Division, speaks during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  8. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    David Miller, NASA Chief Technologist, participate in a panel discussion during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  9. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  10. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Jason Crusan, Director of NASA's Advanced Exploration Systems Division, speaks during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  11. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    William Gerstenmaier, NASA Associate Administrator for Human Exploration and Operations, speaks during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  12. NASA's Mars 2020 Rover Artist's Concept #2

    NASA Image and Video Library

    2017-11-17

    This artist's rendition depicts NASA's Mars 2020 rover studying a Mars rock outrcrop. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22105

  13. NASA's Mars 2020 Rover Artist's Concept #4

    NASA Image and Video Library

    2017-11-17

    This artist's concept depicts NASA's Mars 2020 rover exploring Mars. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22107

  14. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Ellen Stofan, NASA Chief Scientist, left, and David Miller, NASA Chief Technologist, right, participate in a panel discussion during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  15. Benefits of Mars ISRU Regolith Water Processing: A Case Study for the NASA Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Paz, Aaron; Mueller, Robert

    2016-01-01

    ISRU of Mars resources was baselined in 2009 Design Reference Architecture (DRA) 5.0, but only for Oxygen production using atmospheric CO2. The Methane (LCH4) needed for ascent propulsion of the Mars Ascent Vehicle (MAV) would need to be brought from Earth. However: Extracting water from the Martian Regolith enables the production of both Oxygen and Methane from Mars resources: Water resources could also be used for other applications including: Life support, radiation shielding, plant growth, etc. Water extraction was not baselined in DRA5.0 due to perceived difficulties and complexity in processing regolith. The NASA Evolvable Mars Campaign (EMC) requested studies to look at the quantitative benefits and trades of using Mars water ISRUPhase 1: Examined architecture scenarios for regolith water retrieval. Completed October 2015. Phase 2: Deep dive of one architecture concept to look at end-to-end system size, mass, power of a LCH4/LO2 ISRU production system

  16. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Randy Lillard, Program Executive for Technology Demonstration Missions of NASA's Space Technology Mission DIrectorate, speaks during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  17. Computer-Design Drawing for NASA 2020 Mars Rover

    NASA Image and Video Library

    2016-07-15

    NASA's 2020 Mars rover mission will go to a region of Mars thought to have offered favorable conditions long ago for microbial life, and the rover will search for signs of past life there. It will also collect and cache samples for potential return to Earth, for many types of laboratory analysis. As a pioneering step toward how humans on Mars will use the Red Planet's natural resources, the rover will extract oxygen from the Martian atmosphere. This 2016 image comes from computer-assisted-design work on the 2020 rover. The design leverages many successful features of NASA's Curiosity rover, which landed on Mars in 2012, but it adds new science instruments and a sampling system to carry out the new goals for the mission. http://photojournal.jpl.nasa.gov/catalog/PIA20759

  18. NASA Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Olson, Tim

    2017-01-01

    Since August 2012, the NASA Mars Science Laboratory (MSL) rover Curiosity has been operating on the Martian surface. The primary goal of the MSL mission is to assess whether Mars ever had an environment suitable for life. MSL Science Team member Dr. Tim Olson will provide an overview of the rover's capabilities and the major findings from the mission so far. He will also share some of his experiences of what it is like to operate Curiosity's science cameras and explore Mars as part of a large team of scientists and engineers.

  19. Mars Design Reference Architecture 5.0 Study: Executive Summary

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2008-01-01

    The NASA Mars Design Reference Architecture 5.0 Study seeks to update its long term goals and objective for human exploration missions; flight and surface systems for human missions and supporting infrastructure; operational concept for human and robotic exploration of Mars; key challenges including risk and cost drivers; and, its development schedule options. It additionally seeks to assess strategic linkages between lunar and Mars strategies and develop and understanding of methods for reducing the cost/risk of human Mars missions through investment in research, technology development, and synergy with other exploration plans. Recommendations are made regarding conjunction class (long-stay) missions which are seen as providing the best balance of cost, risk, and performance. Additionally, this study reviews entry, descent, and landing challenges; in-space transportation systems; launch vehicle and Orion assessments; risk and risk mitigation; key driving requirements and challenges; and, lunar linkages.

  20. NASA's Mars 2020 Rover Artist's Concept #7

    NASA Image and Video Library

    2017-11-17

    NASA's Mars 2020 rover looks at the horizon in this artist's concept. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22110

  1. NASA's Mars 2020 Rover Artist's Concept #6

    NASA Image and Video Library

    2017-11-17

    This artist's rendition depicts NASA's Mars 2020 rover studying its surroundings. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22109

  2. Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek

    The issue of extraterrestrial bases has recently been a very vivid one. There are orbital stations currently existing and humans will travel to Mars around 2030. They will need stations established there, which will provide them the proper living conditions. Firstly, it might be a small module brought from Earth (e.g. NASA Mars Design Reference Mission module (DRM)), in later stages equivalents of Earth houses may be built from local resources. The goal of this paper is to propose an architectural design for an intermediate stage — for a larger habitable unit transported from Earth. It is inspired by terrestrial portable architecture ideas. A pneumatic structure requires small volume during transportation. However, it provides large habitable space after deployment. It is designed for transport by DRM transportation module and its deployment is considerable easy and brief. An architectural solution analogous to a terrestrial house with a studio and a workshop was assumed. Its form was a result of technical and environmental limitations, and the need for an ergonomic interior. The spatial placement of following zones was carefully considered: residential, agricultural and science, as well as a garage with a workshop, transportation routes, and a control and communication center. The issues of Life Support System, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least 1.5 year. An Open Plan architectural solution was assumed in pneumatic modules, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation (e.g. damage of one of the pneumatic modules or a psychological ,,need of a change"). The architectural design focuses on ergonomic and psychological aspects of longer stay in hostile Martian environment. This solution provides Martian crew with a comfortable habitable

  3. NASA Ames Celebrates Curiosity Rover's Landing on Mars (Reporter Package)

    NASA Image and Video Library

    2012-08-08

    Nearly 7,000 people came to NASA Ames Research Center, Moffett Field, Calif., to watch the Mars Science Laboratory rover Curiosity land on Mars. A full day's worth of activities and discussions with local Mars experts informed attendees about the contributions NASA Ames made to the mission. The highlight of the event was the live NASA TV broadcast of MSL's entry, descent and landing on the Martian surface.

  4. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Randy Lillard, Program Executive for Technology Demonstration Missions of NASA's Space Technology Mission DIrectorate, speaks about the upcoming Low-Density Supersonic Decelerator demonstration during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  5. NASA's Mars 2020 Rover Artist's Concept #5

    NASA Image and Video Library

    2017-11-17

    This artist's concept shows a close-up of NASA's Mars 2020 rover studying an outcrop. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22108

  6. NASA's Mars 2020 Rover Artist's Concept #3

    NASA Image and Video Library

    2017-11-17

    This artist's rendition depicts NASA's Mars 2020 rover studying rocks with its robotic arm. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22106

  7. Human Exploration of Mars Design Reference Architecture 5.0

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.

    2009-01-01

    This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.

  8. The Mars Express/NASA Project at JPL

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S.; Goltz, G.

    2005-01-01

    ESA s Mars Express Mission involves international collaboration between the European Space Agency (ESA) and the European space agencies with the National Aeronautics and Space Administration (NASA) as a junior partner. The primary objective of this mission is to search for hydrologic resources on the surface of Mars. Mars Express was launched from Baikonur, Kazakhstan on June 2, 2003 and arrived at Mars on December 25, 2003. Orbital science observations started in January 2004.

  9. NASA's Mars 2020 Rover Artist's Concept #1 (Updated)

    NASA Image and Video Library

    2017-11-17

    This artist's concept depicts NASA's Mars 2020 rover exploring Mars. The mission will not only seek out and study an area likely to have been habitable in the distant past, but it will take the next, bold step in robotic exploration of the Red Planet by seeking signs of past microbial life itself. Mars 2020 will use powerful instruments to investigate rocks on Mars down to the microscopic scale of variations in texture and composition. It will also acquire and store samples of the most promising rocks and soils that it encounters, and set them aside on the surface of Mars. A future mission could potentially return these samples to Earth. Mars 2020 is targeted for launch in July/August 2020 aboard an Atlas V-541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. https://photojournal.jpl.nasa.gov/catalog/PIA22111

  10. NASA Facts, Mars as a Planet.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. Photographs, showing Mars as seen from Earth through a telescope, show dark markings and polar caps present. Photographs from Mariner 7, Mariner 4, and Mariner 9 are included. Presented is a composite of several Mariner 9…

  11. Newest is Biggest: Three Generations of NASA Mars Rovers

    NASA Image and Video Library

    2008-11-19

    Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project, to the twin Mars Exploration Rovers Spirit and Opportunity, to the Mars Science Laboratory rover.

  12. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Sam Scimemi, Director of NASA's International Space Station Division, left, Phil McAlister, Director of NASA's Commercial Spaceflight Division, second from left, Dan Dumbacher, Deputy Associate Administrator of NASA's Exploration Systems Development, center, Michele Gates, Senior Technical Advisor of NASA's Human Exploration and Operations Mission Directorate, second from right, and Jason Crusan, Director of NASA's Advanced Exploration Systems Division, right, sit on a panel during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  13. NASA's new Mars Exploration Program: the trajectory of knowledge.

    PubMed

    Garvin, J B; Figueroa, O; Naderi, F M

    2001-01-01

    NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."

  14. NASA's new Mars Exploration Program: the trajectory of knowledge

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Figueroa, O.; Naderi, F. M.

    2001-01-01

    NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils.".

  15. NASA's New Mars Exploration Program: The Trajectory of Knowledge

    NASA Astrophysics Data System (ADS)

    Garvin, James B.; Figueroa, Orlando; Naderi, Firouz M.

    2001-12-01

    NASA's newly restructured Mars Exploration Program (MEP) is finally on the way to Mars with the successful April 7 launch of the 2001 Mars Odyssey Orbiter. In addition, the announcement by the Bush Administration that the exploration of Mars will be a priority within NASA's Office of Space Science further cements the first decade of the new millennium as one of the major thrusts to understand the "new" Mars. Over the course of the past year and a half, an integrated team of managers, scientists, and engineers has crafted a revamped MEP to respond to the scientific as well as management and resource challenges associated with deep space exploration of the Red Planet. This article describes the new program from the perspective of its guiding philosophies, major events, and scientific strategy. It is intended to serve as a roadmap to the next 10-15 years of Mars exploration from the NASA viewpoint. [For further details, see the Mars Exploration Program web site (URL): http://mars.jpl.nasa.gov]. The new MEP will certainly evolve in response to discoveries, to successes, and potentially to setbacks as well. However, the design of the restructured strategy is attentive to risks, and a major attempt to instill resiliency in the program has been adopted. Mars beckons, and the next decade of exploration should provide the impetus for a follow-on decade in which multiple sample returns and other major program directions are executed. Ultimately the vision to consider the first human scientific expeditions to the Red Planet will be enabled. By the end of the first decade of this program, we may know where and how to look for the elusive clues associated with a possible martian biological record, if any was every preserved, even if only as "chemical fossils."

  16. Development of a NASA 2018 Mars Landed Mission Concept

    NASA Technical Reports Server (NTRS)

    Wilson, M. G.; Salvo, C. G.; Abilleira, F.; Sengstacken, A. J.; Allwood, A. G.; Backes, P. G.; Lindemann, R. A.; Jordan, J. F.

    2010-01-01

    Fundamental to NASA's Mars Exploration Program (MEP) is an ongoing development of an integrated and coordinated set of possible future candidate missions that meet fundamental science and programmatic objectives of NASA and the Mars scientific community. In the current planning horizon of the NASA MEP, a landed mobile surface exploration mission launching in the 2018 Mars launch opportunity exists as a candidate project to meet MEP in situ science and exploration objectives. This paper describes the proposed mission science objectives and the mission implementation concept developed for the 2018 opportunity. As currently envisioned, this mission concept seeks to explore a yet-to-be-selected site with high preservation potential for physical and chemical biosignatures, evaluate paleoenvironmental conditions, characterize the potential for preservation of biosignatures, and access multiple sequences of geological units in a search for evidence of past life and/or prebiotic chemistry at a site on Mars.

  17. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    Sam Scimemi, Director of NASA's International Space Station Division, second from left, Phil McAlister, Director of NASA's Commercial Spaceflight Division, third from left, Dan Dumbacher, Deputy Associate Administrator of NASA's Exploration Systems Development, center, Michele Gates, Senior Technical Advisor of NASA's Human Exploration and Operations Mission Directorate, second from right, and Jason Crusan, Director of NASA's Advanced Exploration Systems Division, right, sit on a panel during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  18. Science Instruments on NASA Mars 2020 Rover

    NASA Image and Video Library

    2015-06-10

    This 2015 diagram shows components of the investigations payload for NASA's Mars 2020 rover mission. Mars 2020 will re-use the basic engineering of NASA's Mars Science Laboratory to send a different rover to Mars, with new objectives and instruments, launching in 2020. The rover will carry seven instruments to conduct its science and exploration technology investigations. They are: Mastcam-Z, an advanced camera system with panoramic and stereoscopic imaging capability and the ability to zoom. The instrument also will determine mineralogy of the Martian surface and assist with rover operations. The principal investigator is James Bell, Arizona State University in Tempe. SuperCam, an instrument that can provide imaging, chemical composition analysis, and mineralogy. The instrument will also be able to detect the presence of organic compounds in rocks and regolith from a distance. The principal investigator is Roger Wiens, Los Alamos National Laboratory, Los Alamos, New Mexico. This instrument also has a significant contribution from the Centre National d'Etudes Spatiales, Institut de Recherche en Astrophysique et Planétologie (CNES/IRAP) France. Planetary Instrument for X-ray Lithochemistry (PIXL), an X-ray fluorescence spectrometer that will also contain an imager with high resolution to determine the fine-scale elemental composition of Martian surface materials. PIXL will provide capabilities that permit more detailed detection and analysis of chemical elements than ever before. The principal investigator is Abigail Allwood, NASA's Jet Propulsion Laboratory, Pasadena, California. Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC), a spectrometer that will provide fine-scale imaging and uses an ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds. SHERLOC will be the first UV Raman spectrometer to fly to the surface of Mars and will provide complementary measurements with other

  19. Explore Mars from the NASA Website

    ERIC Educational Resources Information Center

    Zhaoyao, Meng

    2005-01-01

    Here we show how to explore Mars based on data obtainable from the NASA website. The analysis and calculations of some physics questions provide interesting and useful examples of inquiry-based learning.

  20. Arm and Mast of NASA Mars Rover Curiosity

    NASA Image and Video Library

    2011-04-06

    The arm and the remote sensing mast of the Mars rover Curiosity each carry science instruments and other tools for NASA Mars Science Laboratory mission. This image shows the arm on the left and the mast just right of center.

  1. Human Exploration of Mars Design Reference Architecture 5.0, Addendum #2

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor); Watts Kevin D. (Editor)

    2014-01-01

    This report serves as the second Addendum to NASA-SP-2009-566, "Human Exploration of Mars Design Reference Architecture 5.0." The data and descriptions contained within this Addendum capture some of the key assessments and studies produced since publication of the original document, predominately covering those conducted from 2009 through 2012. The assessments and studies described herein are for the most part independent stand-alone contributions. Effort has not been made to assimilate the findings to provide an updated integrated strategy. That is a recognized future effort. This report should not be viewed as constituting a formal plan for the human exploration of Mars.

  2. HEDS-UP Mars Exploration Forum

    NASA Technical Reports Server (NTRS)

    Budden, Nancy Ann (Editor); Duke, Micheal B. (Editor)

    1998-01-01

    In the early 1990s, Duke and Budden convened a series of workshops addressing mission rationale, exploration objectives, and key constraints and issues facing human crews on Mars. The focal point was "why" the U.S. should fly humans to Mars. In the mid-1990s, strategies for a Mars mission matured and evolved, driven formally by NASA Johnson Space Center's Office of Exploration. In 1997, NASA published a report capturing the current thinking: the NASA Mars Reference Mission. In the 1997-1998 school year, HEDS-UP sponsored six universities to conduct design studies on Mars exploration, using the Reference Mission as a basis for their work. The 1998 Mars Exploration Forum presents the results of these university studies, suggesting "how" we might explore Mars, in terms of specific technical components that would enable human missions to Mars. A primary objective of the HEDS-UP Mars Exploration Forum was to provide a forum for active interaction among NASA, industry, and the university community on the subject of human missions to Mars. NASA scientists and engineers were asked to present the state of exploration for Mars mission options currently under study. This status "snapshot" of current Mars strategies set the stage for the six HEDS-UP universities to present their final design study results. Finally, a panel of industry experts discussed readiness for human missions to Mars as it pertains to the aerospace industries and technologies. A robust poster session provided the backdrop for government-industry-university discussions and allowed for feedback to NASA on the Mars Reference Mission. The common thread woven through the two days was discussion of technologies, proven and emerging, that will be required to launch, land, and sustain human crews on the Red Planet. As this decade (and indeed this millenium) draws to a close, Mars will continue to loom in our sights as the next target for human space exploration. It is our hope that the efforts of the Mars

  3. The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Lewis, Stephen R.; Steele, Liam J.; Holmes, James; Read, Peter L.; Valeanu, Alexandru; Smith, Michael D.; Kass, David; Kleinboehl, Armin; LMD Team, MGS/TES Team, MRO/MCS Team

    2016-10-01

    The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This four-dimensional dataset has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office.The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") located at the following URL: http://macdap.physics.ox.ac.uk/The first paper about MACDA reanalysis of TES retrievals appeared in 2006, although the acronym MACDA was not yet used at that time. Ten years later, MACDA v1.0 has been used by several researchers worldwide and has contributed to the advancement of the knowledge about the martian atmosphere in critical areas such as the radiative impact of water ice clouds, the solsticial pause in baroclinic wave activity, and the climatology and dynamics of polar vortices, to cite only a few. It is therefore timely to review the scientific results obtained by using such Mars reference atmospheric reanalysis, in order to understand what priorities the user community should focus on in the next decade.MACDA is an ongoing collaborative project, and work funded by NASA MDAP Programme is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance

  4. NASA Facts, Mars and Earth.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. In this publication, emphasis is placed on the sun's planetary system with note made that there is no one theory for the origin and subsequent evolution of the Solar System that is generally accepted. Ideas from many scientists…

  5. Mars Global Reference Atmospheric Model (Mars-GRAM) and Database for Mission Design

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Johnson, D. L.

    2003-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model, while above 80 km it is based on Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiting Laser Altimeter. Validation studies are described comparing Mars-GRAM with Mars Global Surveyor Radio Science and Thermal Emission Spectrometer data. RS data from 2480 profiles were used, covering latitudes 75 deg S to 72 deg N, surface to approximately 40 km, for seasons ranging from areocentric longitude of Sun (Ls) = 70-160 deg and 265-310 deg. RS data spanned a range of local times, mostly 0-9 hours and 18-24 hours. For interests in aerocapture and precision landing, comparisons concentrated on atmospheric density. At a fixed height of 20 km, RS density varied by about a factor of 2.5 over ranges of latitudes and Ls values observed. Evaluated at matching positions and times, these figures show average RSMars-GRAM density ratios were generally 1+/-)0.05, except at heights above approximately 25 km and latitudes above approximately 50 deg N. Average standard deviation of RSMars-GRAM density ratio was 6%. TES data were used covering surface to approximately 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of a Mars global dust storm). Depending on season, TES data covered latitudes 85 deg S to 85 deg N. Most TES data were concentrated near local times 2 hours and 14 hours. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (greater than 45 deg N), or at most altitudes in the southern hemisphere at Ls approximately 90 and 180 deg. Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of

  6. The supercam instrument on the NASA Mars 2020 mission: optical design and performance

    NASA Astrophysics Data System (ADS)

    Perez, R.; Parès, Laurent P.; Newell, R.; Robinson, S.; Bernardi, P.; Réess, J.-M.; Caïs, Ph.; McCabe, K.; Maurice, S.; Wiens, R. C.

    2017-09-01

    NASA is developing the MARS 2020 mission, which includes a rover that will land and operate on the surface of Mars. MARS 2020, scheduled for launch in July, 2020, is designed to conduct an assessment of Mars' past habitability, search for potential biosignatures, demonstrate progress toward the future return of samples to Earth, and contribute to NASA's Human Exploration and Space Technology Programs.

  7. NASA/Haughton-Mars Project 2006 Lunar Medical Contingency Simulation

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.

    2007-01-01

    A viewgraph presentation describing NASA's Haughton-Mars Project (HMP) medical requirements and lunar surface operations is shown. The topics onclude: 1) Mission Purpose/ Overview; 2) HMP as a Moon/Mars Analog; 3) Simulation objectives; 4) Discussion; and 5) Forward work.

  8. Tenth Anniversary Image from Camera on NASA Mars Orbiter

    NASA Image and Video Library

    2012-02-29

    NASA Mars Odyssey spacecraft captured this image on Feb. 19, 2012, 10 years to the day after the camera recorded its first view of Mars. This image covers an area in the Nepenthes Mensae region north of the Martian equator.

  9. NASA's Space Launch System (SLS) Program: Mars Program Utilization

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    NASA's Space Launch System is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's orbit (BEO), as directed by the NASA Authorization Act of 2010 and NASA's 2011 Strategic Plan. This paper describes how the SLS can dramatically change the Mars program's science and human exploration capabilities and objectives. Specifically, through its high-velocity change (delta V) and payload capabilities, SLS enables Mars science missions of unprecedented size and scope. By providing direct trajectories to Mars, SLS eliminates the need for complicated gravity-assist missions around other bodies in the solar system, reducing mission time, complexity, and cost. SLS's large payload capacity also allows for larger, more capable spacecraft or landers with more instruments, which can eliminate the need for complex packaging or "folding" mechanisms. By offering this capability, SLS can enable more science to be done more quickly than would be possible through other delivery mechanisms using longer mission times.

  10. NASA Mars 2020 Rover Mission: New Frontiers in Science

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  11. Ablative Heat Shield Studies for NASA Mars/Earth Return Entry Vehicles

    DTIC Science & Technology

    1990-09-01

    RETURN ENTRY VEHICLES by Michael K. Hamm September, 1990 NASA Thesis Advisor: William D. Henline Thesis Co-Advisor: Max F. Platzer Approved for public...STUDIES FOR NASA MARS/EARTH RETURN ENTRY VEHICLES (UNCLASSIFIED) 12. PERSONAL AUTHOR(S) Harm, Michael, K. 13a TYPE OF REPORT 13b TIME COVERED 14 DATE OF...theoretical values. The tests were performed to ascertain if RSI type materials could be used for entry vehicles proposed in NASA Mars missions. 20

  12. NASA's strategy for Mars exploration in the 1990s and beyond

    NASA Astrophysics Data System (ADS)

    Huntress, W. T.; Feeley, T. J.; Boyce, J. M.

    NASA's Office of Space Science is changing its approach to all its missions, both current and future. Budget realities are necessitating that we change the way we do business and the way we look at NASA's role in the U.S. Government. These challenges are being met by a new and innovative approach that focuses on achieving a balanced world-class space science program that requires less U.S. resources while providing an enhanced role for technology and education as integral components of our Research and Development (R&D) programs. Our Mars exploration plans, especially the Mars Surveyor program, are a key feature of this new NASA approach to space science. The Mars Surveyor program will be affordable, engaging to the public with global and close-up images of Mars, have high scientific value, employ a distributed risk strategy (two launches per opportunity), and will use significant advanced technologies.

  13. Artist Rendering of NASA Dawn Spacecraft Approaching Mars

    NASA Image and Video Library

    2009-05-23

    Artist rendering of NASA's Dawn spacecraft approaching Mars. Dawn, part of NASA's Discovery Program of competitively selected missions, was launched in 2007 to orbit the large asteroid Vesta and the dwarf planet Ceres. The two bodies have very different properties from each other. By observing them both with the same set of instruments, Dawn will probe the early solar system and specify the properties of each body. http://photojournal.jpl.nasa.gov/catalog/PIA18152

  14. Journey to Mars Update on This Week @NASA – September 30, 2016

    NASA Image and Video Library

    2016-09-30

    NASA Administrator Charlie Bolden joined other leaders of the world’s space agencies to discuss the latest technological breakthroughs and developments in space exploration at the 67th International Astronautical Congress, Sept. 26-30th in Guadalajara, Mexico. At the event, NASA discussed new elements to its multi-phase Journey to Mars to extend the human footprint all the way to the Red Planet. NASA will continue operations aboard the International Space Station through 2024. Work currently underway aboard the station to encourage commercial development of low-Earth orbit, develop deep space systems, life support and human health is part of the Earth Reliant phase of the Journey to Mars. In the 2020s, during the Proving Ground phase when NASA steps out farther, the agency now plans to send an astronaut crew on a yearlong mission to a deep space destination near the moon. They will conduct activities to verify habitation and test our readiness for Mars. A round-trip robotic Mars sample return mission is being targeted for the 2020s, as part of the Earth Independent phase before finally sending humans on a mission to orbit Mars in the early 2030s. Also, Zurbuchen Named Head of NASA Science, Hubble Spots Possible Water Plumes on Europa, Rosetta’s Mission Ends, and Armstrong Celebrates 70 Years of Flight Research!

  15. Mid-2017 Map of NASA's Curiosity Mars Rover Mission

    NASA Image and Video Library

    2017-07-11

    This map shows the route driven by NASA's Curiosity Mars rover, from the location where it landed in August 2012 to its location in July 2017, and its planned path to additional geological layers of lower Mount Sharp. The blue star near top center marks "Bradbury Landing," the site where Curiosity arrived on Mars on Aug. 5, 2012, PDT (Aug. 6, EDT and Universal Time). Blue triangles mark waypoints investigated by Curiosity on the floor of Gale Crater and, starting with "Pahrump Hills," on Mount Sharp. The Sol 1750 label identifies the rover's location on July 9, 2017, the 1,750th Martian day, or sol, since the landing. In July 2017, the mission is examining "Vera Rubin Ridge" from the downhill side of the ridge. Spectrometry observations from NASA's Mars Reconnaissance Orbiter have detected hematite, an iron-oxide mineral, in the ridge. Curiosity's planned route continues to the top of the ridge and then to geological units where clay minerals and sulfate minerals have been detected from orbit. The base image for the map is from the High Resolution Imaging Science Experiment (HiRISE) camera on the Mars Reconnaissance Orbiter. North is up. "Bagnold Dunes" form a band of dark, wind-blown material at the foot of Mount Sharp. https://photojournal.jpl.nasa.gov/catalog/PIA21720

  16. NASA Today - Mars Observer Segment (Part 4 of 6)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This videotape consists of eight segments from the NASA Today News program. The first segment is an announcement that there was no date set for the launch of STS-51, which had been postponed due to mechanical problems. The second segment describes the MidDeck Dynamic Experiment Facility. The third segment is about the scheduled arrival of the Mars Observer at Mars, it shows an image of Mars as seen from the approaching Observer spacecraft, and features an animation of the approach to Mars, including the maneuvers that are planned to put the spacecraft in the desired orbit. The fourth segment describes a discovery from an infrared spectrometer that there is nitrogen ice on Pluto. The fifth segment discusses the Aerospace for Kids (ASK) program at the Goddard Space Flight Center (GSFC). The sixth segment is about the high school and college summer internship programs at GSFC. The seventh segment announces a science symposium being held at Johnson Space Center. The last segment describes the National Air and Space Museum and NASA's cooperation with the Smithsonian Institution.

  17. The NASA Langley Mars Tumbleweed Rover Prototype

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Chattin, Richard L.; Copeland, Benjamin M.; Krizann, Shawn A.

    2005-01-01

    Mars Tumbleweed is a concept for an autonomous rover that would achieve mobility through use of the natural winds on Mars. The wind-blown nature of this vehicle make it an ideal platform for conducting random surveys of the surface, scouting for signs of past or present life as well as examining the potential habitability of sites for future human exploration. NASA Langley Research Center (LaRC) has been studying the dynamics, aerodynamics, and mission concepts of Tumbleweed rovers and has recently developed a prototype Mars Tumbleweed Rover for demonstrating mission concepts and science measurement techniques. This paper will provide an overview of the prototype design, instrumentation to be accommodated, preliminary test results, and plans for future development and testing of the vehicle.

  18. Mars Surface Habitability Options

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Simon, Matthew; Smitherman, David; Howard, Robert; Toups, Larry; Hoffman, Stephen J.

    2015-01-01

    This paper reports on current habitability concepts for an Evolvable Mars Campaign (EMC) prepared by the NASA Human Spaceflight Architecture Team (HAT). For many years NASA has investigated alternative human Mars missions, examining different mission objectives, trajectories, vehicles, and technologies; the combinations of which have been referred to as reference missions or architectures. At the highest levels, decisions regarding the timing and objectives for a human mission to Mars continue to evolve while at the lowest levels, applicable technologies continue to advance. This results in an on-going need for assessments of alternative system designs such as the habitat, a significant element in any human Mars mission scenario, to provide meaningful design sensitivity characterizations to assist decision-makers regarding timing, objectives, and technologies. As a subset of the Evolvable Mars Campaign activities, the habitability team builds upon results from past studies and recommends options for Mars surface habitability compatible with updated technologies.

  19. The Thermal Infrared Sensor onboard NASA's Mars 2020 Mission

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Perez-Izquierdo, J.; Sebastian, E.; Ramos, M.; Bravo, A.; Mazo, M.; Rodriguez-Manfredi, J. A.

    2017-12-01

    NASA's Mars 2020 rover mission is scheduled for launch in July/August 2020 and will address key questions about the potential for life on Mars. The Mars Environmental Dynamics Analyzer (MEDA) is one of the seven instruments onboard the rover [1] and has been designed to assess the environmental conditions across the rover traverse. MEDA will extend the current record of in-situ meteorological measurements at the surface [2] to other locations on Mars. The Thermal InfraRed Sensor (TIRS) [3] is one of the six sensors comprising MEDA. TIRS will use three downward-looking channels to measure (1) the surface skin temperature (with high heritage from the Rover Environmental Monitoring Station onboard the Mars Science Laboratory mission [4]), (2) the upwelling thermal infrared radiation from the surface and (3) the reflected solar radiation at the surface, and two upward-looking channels to measure the (4) downwelling thermal infrared radiation at the surface and (5) the atmospheric temperature. In combination with other MEDA's sensors, TIRS will allow the quantification of the surface energy budget [5] and the determination of key geophysical properties of the terrain such as the albedo and thermal inertia with an unprecedented spatial resolution. Here we present a general description of the TIRS, with focus on its scientific requirements and results from field campaigns showing the performance of the different channels. References:[1] Rodríguez-Manfredi, J. A. et al. (2014), MEDA: An environmental and meteorological package for Mars 2020, LPSC, 45, 2837. [2] Martínez, G.M. et al. (2017), The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity, Space Science Reviews, 1-44. [3] Pérez-Izquierdo, J. et al. (2017), The Thermal Infrared Sensor (TIRS) of the Mars Environmental Dynamics Analyzer (MEDA) Instrument onboard Mars 2020, IEEE. [4] Sebastián, E. et al. (2010), The Rover Environmental Monitoring Station Ground

  20. Additions to Mars Global Reference Atmospheric Model (MARS-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie

    1992-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification was also made which allows heights to go 'below' local terrain height and return 'realistic' pressure, density, and temperature, and not the surface values, as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local 'valley' areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch versions of Mars-GRAM are presented.

  1. Additions to Mars Global Reference Atmospheric Model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1991-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification has also been made which allows heights to go below local terrain height and return realistic pressure, density, and temperature (not the surface values) as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local valley areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch version of Mars-GRAM are presented.

  2. The Collaborative Information Portal and NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan

    2005-01-01

    The Collaborative Information Portal was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory for NASA's Mars Exploration Rover mission. Mission managers, engineers, scientists, and researchers used this Internet application to view current staffing and event schedules, download data and image files generated by the rovers, receive broadcast messages, and get accurate times in various Mars and Earth time zones. This article describes the features, architecture, and implementation of this software, and concludes with lessons we learned from its deployment and a look towards future missions.

  3. Optimizing Mars Sphere of Influence Maneuvers for NASA's Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond G.; Komar, D. R.; Chai, Patrick; Qu, Min

    2016-01-01

    NASA's Human Spaceflight Architecture Team is refining human exploration architectures that will extend human presence to the Martian surface. For both Mars orbital and surface missions, NASA's Evolvable Mars Campaign assumes that cargo and crew can be delivered repeatedly to the same destination. Up to this point, interplanetary trajectories have been optimized to minimize the total propulsive requirements of the in-space transportation systems, while the pre-deployed assets and surface systems are optimized to minimize their respective propulsive requirements separate from the in-space transportation system. There is a need to investigate the coupled problem of optimizing the interplanetary trajectory and optimizing the maneuvers within Mars's sphere of influence. This paper provides a description of the ongoing method development, analysis and initial results of the effort to resolve the discontinuity between the interplanetary trajectory and the Mars sphere of influence trajectories. Assessment of Phobos and Deimos orbital missions shows the in-space transportation and crew taxi allocations are adequate for missions in the 2030s. Because the surface site has yet to be selected, the transportation elements must be sized to provide enough capability to provide surface access to all landing sites under consideration. Analysis shows access to sites from elliptical parking orbits with a lander that is designed for sub-periapsis landing location is either infeasible or requires expensive orbital maneuvers for many latitude ranges. In this case the locus of potential arrival perigee vectors identifies the potential maximum north or south latitudes accessible. Higher arrival velocities can decrease reorientation costs and increase landing site availability. Utilizing hyperbolic arrival and departure vectors in the optimization scheme will increase transportation site accessibility and provide more optimal solutions.

  4. Advance Inspection of NASA Next Mars Landing Site

    NASA Image and Video Library

    2017-03-29

    This map shows footprints of images taken from Mars orbit by the High Resolution Imaging Science Experiment (HiRISE) camera as part of advance analysis of the area where NASA's InSight mission will land in 2018. The final planned image of the set is targeted to fill in the yellow-outlined rectangle on March 30, 2017. HiRISE is one of six science instruments on NASA's Mars Reconnaissance Orbiter, which reached Mars in 2006 and surpassed 50,000 orbits on March 27, 2017. The map covers an area about 100 miles (160 kilometers) across. HiRISE has been used since 2006 to inspect dozens of candidate landing sites on Mars, including the sites where the Phoenix and Curiosity missions landed in 2008 and 2012. The site selected for InSight's Nov. 26, 2018, landing is on a flat plain in the Elysium Planitia region of Mars, between 4 and 5 degrees north of the equator. HiRISE images are detailed enough to reveal individual boulders big enough to be a landing hazard. The March 30 observation that completes the planned advance imaging of this landing area brings the number of HiRISE images of the area to 73. Some are pairs covering the same ground. Overlapping observations provide stereoscopic, 3-D information for evaluating characteristics such as slopes. On this map, coverage by stereo pairs is coded in pale blue, compared to the gray-green of single HiRISE image footprints. The ellipses on the map are about 81 miles (130 kilometers) west-to-east by about 17 miles (27 kilometers) north-to-south. InSight has about 99 percent odds of landing within the ellipse for which it is targeted. The three ellipses indicate landing expectations for three of the possible InSight launch dates: white outline for launch at the start of the launch period, on May 5, 2018; blue for launch on May 26, 2018; orange for launch on June 8, 2018. InSight -- an acronym for "Interior Exploration using Seismic Investigations, Geodesy and Heat Transport" -- will study the deep interior of Mars to improve

  5. PADME (Phobos And Deimos & Mars Environment): A Proposed NASA Discovery Mission

    NASA Astrophysics Data System (ADS)

    Lee, Pascal

    2014-11-01

    Ever the since their discovery in 1877 by American astronomer Asaph Hall, the two moons of Mars, Phobos and Deimos, have been enigmas. Spacecraft missions have revealed irregular-shaped small bodies with different densities, morphologies, and evolutionary histories. Spectral data suggest that they might be akin to D-type asteroids, although compositional interpretations of the spectra are ambiguous. The origin of Phobos and Deimos remains unknown. There are three prevailing hypotheses for their origin: 1) They are captured asteroids, possibly primitive D-type bodies from the outer main belt or beyond; 2) They are reaccreted impact ejecta from Mars; 3) They are remnants of Mars’s formation. Each one of these hypotheses has radically different and important implications regarding the evolution of the solar system, and/or the formation and evolution of planets and satellites, including the delivery of water and organics to the inner solar system. The Phobos And Deimos & Mars Environment (PADME) mission is a proposed NASA Discovery mission that will test these hypotheses, by investigating simultaneously the internal structure of Phobos and Deimos, and the composition and dynamics of their surface and near-surface materials. PADME would launch in 2020 and reach Mars orbit in early 2021. PADME would then begin a series of slow and increasingly close flybys of Phobos first, then of Deimos. PADME would use the proven LADEE spacecraft and mature instrument systems to enable a low-cost and low risk approach to carrying out its investigation. In addition to achieving its scientific objectives, PADME would fill strategic knowledge gaps identified by NASA’s SBAG and HEOMD for planning future, more ambitious robotic landed or sample return missions to Phobos and/or Deimos, and eventual human missions to Mars Orbit. PADME would be built, managed, and operated by NASA Ames Research Center. Partners include the SETI Institute, NASA JPL, NASA GSFC, NASA JSC, NASA KSC, LASP

  6. NASA Software Lets You Explore Mars, the Asteroid Vesta and the Moon

    NASA Image and Video Library

    2016-10-06

    NASA wants you to use your web browser to explore Mars, the Moon and the asteroid Vesta! The three portals are some of NASA's planetary mapping and modeling web portals. It makes it easy for mission planners, scientists, students and the public to visualize details on the surface of Mars, the Moon and Vesta, as seen with a variety of instruments aboard a number of spacecraft.

  7. NASA Facts, Mars as a Member of the Solar System.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. In this publication, emphasis is placed on the planet Mars as a member of the Solar System and a detailed description is given related to historical accounts of the planet's existence and its travels. The physical…

  8. NASA Participates in Mars Day Activities at National Air and Space Museum

    NASA Image and Video Library

    2017-07-21

    NASA participated in the July 21 Mars Day event at the Smithsonian National Air and Space Museum (NASM) in Washington, D.C. The museum hosts this annual event, which includes exhibits, speakers and educational activities, to celebrate the Red Planet.    Jim Green, director of NASA’s Planetary Science Division, along with other NASA scientists and engineers, was on hand to talk with visitors about the agency’s Mars exploration missions. There was also a Mars concept rover on display, developed by vehicle designers the Parker Brothers with advice from NASA. The vehicle is currently on an East Coast tour from its home base at the Kennedy Space Center Visitor’s Complex in Florida. The concept rover is designed to engage and educate the public by demonstrating the types of features and equipment a future human exploration vehicle may need.

  9. NASA Mars Rover Curiosity at JPL, Side View

    NASA Image and Video Library

    2011-04-06

    The rover for NASA Mars Science Laboratory mission, named Curiosity, is about 3 meters 10 feet long, not counting the additional length that the rover arm can be extended forward. The front of the rover is on the left in this side view.

  10. A concept for NASA's Mars 2016 astrobiology field laboratory.

    PubMed

    Beegle, Luther W; Wilson, Michael G; Abilleira, Fernando; Jordan, James F; Wilson, Gregory R

    2007-08-01

    The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.

  11. Probing below the Surface of Mars. ITEA/NASA-JPL Learning Activity.

    ERIC Educational Resources Information Center

    Urquhart, Mary; Urquhart, Sally

    2000-01-01

    This activity, developed by NASA's Jet Propulsion Laboratory, involves students in recording and graphing temperature data to learn about NASA's Mars Microprobe Mission, Deep Space 2, and how the properties of a material affect the transfer of heat. (Author/JOW)

  12. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.

    2008-01-01

    Engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL)1. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: a) TES Mapping Years 1 and 2, with Mars-GRAM data coming from MGCM model results driven by observed TES dust optical depth; and b) TES Mapping Year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Mars-GRAM 2005 has been validated2 against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES)

  13. Mars Lander Deck of NASA's InSight Mission

    NASA Image and Video Library

    2017-08-28

    This view looks upward toward the InSight Mars lander suspended upside down. It shows the top of the lander's science deck with the mission's two main science instruments -- the Seismic Experiment for Interior Structure (SEIS) and the Heat Flow and Physical Properties Probe (HP3) -- plus the robotic arm and other subsystems installed. The photo was taken Aug. 9, 2017, in a Lockheed Martin clean room facility in Littleton, Colorado. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in May 2018 and land on Mars Nov. 26, 2018. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21847

  14. Mars Sample Return: Do Australians trust NASA?

    NASA Astrophysics Data System (ADS)

    Joyce, S.; Tomkins, C. S.; Weinstein, P.

    2008-09-01

    Mars Sample Return (MSR) represents an important scientific goal in space exploration. Any sample return mission will be extremely challenging from a scientific, economic and technical standpoint. But equally testing, will be communicating with a public that may have a very different perception of the mission. A MSR mission will generate international publicity and it is vital that NASA acknowledge the nature and extent of public concern about the mission risks and, perhaps equally importantly, the public’s confidence in NASA’s ability to prepare for and manage these risks. This study investigated the level of trust in NASA in an Australian population sample, and whether this trust was dependent on demographic variables. Participants completed an online survey that explored their attitudes towards NASA and a MSR mission. The results suggested that people believe NASA will complete the mission successfully but have doubts as to whether NASA will be honest when communicating with the public. The most significant finding to emerge from this study was that confidence in NASA was significantly (p < 0.05) related to the respondent’s level of knowledge regarding the risks and benefits of MSR. These results have important implications for risk management and communication.

  15. Methane Measurements by NASA Curiosity in Mars Gale Crater

    NASA Image and Video Library

    2014-12-16

    This graphic shows tenfold spiking in the abundance of methane in the Martian atmosphere surrounding NASA Curiosity Mars rover, as detected by a series of measurements made with the Tunable Laser Spectrometer instrument in the rover laboratory suite.

  16. NASA Participates in Mars Day Activities at the National Air and Space Museum

    NASA Image and Video Library

    2017-07-21

    NASA participated in the July 21 Mars Day event at the Smithsonian National Air and Space Museum (NASM) in Washington, D.C. The museum hosts this annual event, which includes exhibits, speakers and educational activities, to celebrate the Red Planet. Jim Green, director of NASA’s Planetary Science Division, along with other NASA scientists and engineers, was on hand to talk with visitors about the agency’s Mars exploration missions. There was also a Mars concept rover on display, developed by vehicle designers the Parker Brothers with advice from NASA. The vehicle is currently on an East Coast tour from its home base at the Kennedy Space Center Visitor’s Complex in Florida. The concept rover is designed to engage and educate the public by demonstrating the types of features and equipment a future human exploration vehicle may need.

  17. Nuclear Thermal Rocket/Vehicle Characteristics And Sensitivity Trades For NASA's Mars Design Reference Architecture (DRA) 5.0 Study

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2009-01-01

    This paper summarizes Phase I and II analysis results from NASA's recent Mars DRA 5.0 study which re-examined mission, payload and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal rocket (NTR) propulsion was again identified as the preferred in-space transportation system over chemical/aerobrake because of its higher specific impulse (I(sub sp)) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit (IMLEO) which is important for reducing the number of Ares-V heavy lift launches and overall mission cost. DRA 5.0 features a long surface stay (approximately 500 days) split mission using separate cargo and crewed Mars transfer vehicles (MTVs). All vehicles utilize a common core propulsion stage with three 25 klbf composite fuel NERVA-derived NTR engines (T(sub ex) approximately 2650 - 2700 K, p(sub ch) approximately 1000 psia, epsilon approximately 300:1, I(sub sp) approximately 900 - 910 s, engine thrust-toweight ratio approximately 3.43) to perform all primary mission maneuvers. Two cargo flights, utilizing 1-way minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crewed MTV during the next mission opportunity (approximately 26 months later). The cargo payload elements aerocapture (AC) into Mars orbit and are enclosed within a large triconicshaped aeroshell which functions as payload shroud during launch, then as an aerobrake and thermal protection system during Mars orbit capture and subsequent entry, descent and landing (EDL) on Mars. The all propulsive crewed MTV is a 0-gE vehicle design that utilizes a fast conjunction trajectory that allows approximately 6-7 month 1-way transit times to and from Mars. Four 12.5 kW(sub e) per 125 square meter rectangular photovoltaic arrays provide the crewed MTV with

  18. Current NASA Plans for Mars In Situ Resource Utilization

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald

    2018-01-01

    The presentation is to provide relevant information to the NASA funded Center for the Utilization of Biological Engineering in Space (CUBES) Institute. The presentation cover the following: 1) What is In Situ Resource Utilization (ISRU), 2) What are the resources of interest at the Moon and Mars, 3) ISRU-related mission requirements and ISRU economics, 4) Challenges and Risk for ISRU, 5) Concept of Operation for Mars ISRU Systems, 6) Current State of the Art (SOA) in ISRU, and 7) Current ISRU development and mission status.

  19. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    NASA Technical Reports Server (NTRS)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  20. NASA's Decadal Planning Team Mars Mission Analysis Summary

    NASA Astrophysics Data System (ADS)

    Drake, Bret G.

    2007-02-01

    In June 1999 the NASA Administrator chartered an internal NASA task force, termed the Decadal Planning Team, to create new integrated vision and strategy for space exploration. The efforts of the Decadal Planning Team evolved into the Agency-wide team known as the NASA Exploration Team (NEXT). This team was also instructed to identify technology roadmaps to enable the science-driven exploration vision, established a cross-Enterprise, cross-Center systems engineering team with emphasis focused on revolutionary not evolutionary approaches. The strategy of the DPT and NEXT teams was to "Go Anywhere, Anytime" by conquering key exploration hurdles of space transportation, crew health and safety, human/robotic partnerships, affordable abundant power, and advanced space systems performance. Early emphasis was placed on revolutionary exploration concepts such as rail gun and electromagnetic launchers, propellant depots, retrograde trajectories, nano structures, and gas core nuclear rockets to name a few. Many of these revolutionary concepts turned out to be either not feasible for human exploration missions or well beyond expected technology readiness for near-term implementation. During the DPT and NEXT study cycles, several architectures were analyzed including missions to the Earth-Sun Libration Point (L2), the Earth-Moon Gateway and L1, the lunar surface, Mars (both short and long stays), one-year round trip Mars, and near-Earth asteroids. Common emphasis of these studies included utilization of the Earth-Moon Libration Point (L1) as a staging point for exploration activities, current (Shuttle) and near-term launch capabilities (EELV), advanced propulsion, and robust space power. Although there was much emphasis placed on utilization of existing launch capabilities, the team concluded that missions in near-Earth space are only marginally feasible and human missions to Mars were not feasible without a heavy lift launch capability. In addition, the team concluded that

  1. NASA's Decadal Planning Team Mars Mission Analysis Summary

    NASA Technical Reports Server (NTRS)

    Drake, Bret G. (Editor)

    2007-01-01

    In June 1999 the NASA Administrator chartered an internal NASA task force, termed the Decadal Planning Team, to create new integrated vision and strategy for space exploration. The efforts of the Decadal Planning Team evolved into the Agency-wide team known as the NASA Exploration Team (NEXT). This team was also instructed to identify technology roadmaps to enable the science-driven exploration vision, established a cross-Enterprise, cross-Center systems engineering team with emphasis focused on revolutionary not evolutionary approaches. The strategy of the DPT and NEXT teams was to "Go Anywhere, Anytime" by conquering key exploration hurdles of space transportation, crew health and safety, human/robotic partnerships, affordable abundant power, and advanced space systems performance. Early emphasis was placed on revolutionary exploration concepts such as rail gun and electromagnetic launchers, propellant depots, retrograde trajectories, nano structures, and gas core nuclear rockets to name a few. Many of these revolutionary concepts turned out to be either not feasible for human exploration missions or well beyond expected technology readiness for near-term implementation. During the DPT and NEXT study cycles, several architectures were analyzed including missions to the Earth-Sun Libration Point (L2), the Earth-Moon Gateway and L1, the lunar surface, Mars (both short and long stays), one-year round trip Mars, and near-Earth asteroids. Common emphasis of these studies included utilization of the Earth-Moon Libration Point (L1) as a staging point for exploration activities, current (Shuttle) and near-term launch capabilities (EELV), advanced propulsion, and robust space power. Although there was much emphasis placed on utilization of existing launch capabilities, the team concluded that missions in near-Earth space are only marginally feasible and human missions to Mars were not feasible without a heavy lift launch capability. In addition, the team concluded that

  2. The NASA Mars Conference

    NASA Astrophysics Data System (ADS)

    Reiber, Duke B.

    Papers about Mars and Mars exploration are presented, covering topics such as Martian history, geology, volcanism, channels, moons, atmosphere, meteorology, water on the planet, and the possibility of life. The unmanned exploration of Mars is discussed, including the Phobos Mission, the Mars Observer, the Mars Aeronomy Observer, the seismic network, Mars sample return missions, and the Mars Ball, an inflatable-sectored-tire rover concept. Issues dealing with manned exploration of Mars are examined, such as the reasons for exploring Mars, mission scenarios, a transportation system for routine visits, technologies for Mars expeditions, the human factors for Mars missions, life support systems, living and working on Mars, and the report of the National Commission on Space.

  3. The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Read, Peter; Lewis, Stephen; Steele, Liam; Holmes, James; Valeanu, Alexandru

    2016-07-01

    The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office. The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") at the following URL: http://macdap.physics.ox.ac.uk/ MACDA is an ongoing collaborative project, and work is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) retrievals of thermal and dust opacity profiles. MACDA 2.0 is also going to be based on an improved version of the underlying MGCM and an updated scheme to fully assimilate (radiative active) tracers, such as dust and water ice.

  4. Mars Global Reference Atmospheric Model (Mars-GRAM 3.34): Programmer's Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.; Johnson, Dale L.

    1996-01-01

    This is a programmer's guide for the Mars Global Reference Atmospheric Model (Mars-GRAM 3.34). Included are a brief history and review of the model since its origin in 1988 and a technical discussion of recent additions and modifications. Examples of how to run both the interactive and batch (subroutine) forms are presented. Instructions are provided on how to customize output of the model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and 'map' of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through common lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.

  5. JPL-20180505-INSIGHf-0001-NASA InSight on Its Way to Mars

    NASA Image and Video Library

    2018-05-05

    Making history as the first interplanetary launch from the West Coast, NASA's InSight spacecraft is now soaring towards Mars. The spacecraft, which lifted off from Vandenberg Air Force Base in Central California, will be the first mission to study the deep interior of Mars. Its instruments include a seismometer to detect marsquakes for the first time and a heat flow p[robe that will embed itself as deep as about 16 feet (5 meters) below the surface of Mars.

  6. NASA's Advanced Exploration Systems Mars Transit Habitat Refinement Point of Departure Design

    NASA Technical Reports Server (NTRS)

    Simon, Matthew; Latorella, Kara; Martin, John; Cerro, Jeff; Lepsch, Roger; Jefferies, Sharon; Goodliff, Kandyce; McCleskey, Carey; Smitherman, David; Stromgren, Chel

    2017-01-01

    This paper describes the recently developed point of departure design for a long duration, reusable Mars Transit Habitat, which was established during a 2016 NASA habitat design refinement activity supporting the definition of NASA's Evolvable Mars Campaign. As part of its development of sustainable human Mars mission concepts achievable in the 2030s, the Evolvable Mars Campaign has identified desired durations and mass/dimensional limits for long duration Mars habitat designs to enable the currently assumed solar electric and chemical transportation architectures. The Advanced Exploration Systems Mars Transit Habitat Refinement Activity brought together habitat subsystem design expertise from across NASA to develop an increased fidelity, consensus design for a transit habitat within these constraints. The resulting design and data (including a mass equipment list) contained in this paper are intended to help teams across the agency and potential commercial, academic, or international partners understand: 1) the current architecture/habitat guidelines and assumptions, 2) performance targets of such a habitat (particularly in mass, volume, and power), 3) the driving technology/capability developments and architectural solutions which are necessary for achieving these targets, and 4) mass reduction opportunities and research/design needs to inform the development of future research and proposals. Data presented includes: an overview of the habitat refinement activity including motivation and process when informative; full documentation of the baseline design guidelines and assumptions; detailed mass and volume breakdowns; a moderately detailed concept of operations; a preliminary interior layout design with rationale; a list of the required capabilities necessary to enable the desired mass; and identification of any worthwhile trades/analyses which could inform future habitat design efforts. As a whole, the data in the paper show that a transit habitat meeting the 43

  7. CNES-NASA Studies of the Mars Sample Return Orbiter Aerocapture Phase

    NASA Technical Reports Server (NTRS)

    Fraysse, H.; Powell, R.; Rousseau, S.; Striepe, S.

    2000-01-01

    A Mars Sample Return (MSR) mission has been proposed as a joint CNES (Centre National d'Etudes Spatiales) and NASA effort in the ongoing Mars Exploration Program. The MSR mission is designed to return the first samples of Martian soil to Earth. The primary elements of the mission are a lander, rover, ascent vehicle, orbiter, and an Earth entry vehicle. The Orbiter has been allocated only 2700 kg on the launch phase to perform its part of the mission. This mass restriction has led to the decision to use an aerocapture maneuver at Mars for the orbiter. Aerocapture replaces the initial propulsive capture maneuver with a single atmospheric pass. This atmospheric pass will result in the proper apoapsis, but a periapsis raise maneuver is required at the first apoapsis. The use of aerocapture reduces the total mass requirement by approx. 45% for the same payload. This mission will be the first to use the aerocapture technique. Because the spacecraft is flying through the atmosphere, guidance algorithms must be developed that will autonomously provide the proper commands to reach the desired orbit while not violating any of the design parameters (e.g. maximum deceleration, maximum heating rate, etc.). The guidance algorithm must be robust enough to account for uncertainties in delivery states, atmospheric conditions, mass properties, control system performance, and aerodynamics. To study this very critical phase of the mission, a joint CNES-NASA technical working group has been formed. This group is composed of atmospheric trajectory specialists from CNES, NASA Langley Research Center and NASA Johnson Space Center. This working group is tasked with developing and testing guidance algorithms, as well as cross-validating CNES and NASA flight simulators for the Mars atmospheric entry phase of this mission. The final result will be a recommendation to CNES on the algorithm to use, and an evaluation of the flight risks associated with the algorithm. This paper will describe the

  8. Mars Global Reference Atmospheric Model (Mars-GRAM): Release No. 2 - Overview and applications

    NASA Technical Reports Server (NTRS)

    James, B.; Johnson, D.; Tyree, L.

    1993-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM), a science and engineering model for empirically parameterizing the temperature, pressure, density, and wind structure of the Martian atmosphere, is described with particular attention to the model's newest version, Mars-GRAM, Release No. 2 and to the improvements incorporated into the Release No. 2 model as compared with the Release No. 1 version. These improvements include (1) an addition of a new capability to simulate local-scale Martian dust storms and the growth and decay of these storms; (2) an addition of the Zurek and Haberle (1988) wave perturbation model, for simulating tidal perturbation effects; and (3) a new modular version of Mars-GRAM, for incorporation as a subroutine into other codes.

  9. NASA Curiosity rover hits organic pay dirt on Mars

    NASA Astrophysics Data System (ADS)

    Voosen, Paul

    2018-06-01

    Since NASA's Curiosity rover landed on Mars in 2012, it has sifted samples of soil and ground-up rock for signs of organic molecules—the complex carbon chains that on Earth form the building blocks of life. Past detections have been so faint that they could be just contamination. Now, samples taken from two different drill sites on an ancient lakebed have yielded complex organic macromolecules that look strikingly similar to kerogen, the goopy fossilized building blocks of oil and gas on Earth. At a few dozen parts per million, the detected levels are 100 times higher than previous finds, but scientists still cannot say whether they have origins in biology or geology. The discovery positions scientists to begin searching for direct evidence of past life on Mars and bolsters the case for returning rock samples from the planet, an effort that begins with the Mars 2020 rover.

  10. Microscopes for NASA's Phoenix Mars Lander

    NASA Technical Reports Server (NTRS)

    2007-01-01

    One part of the Microscopy, Electrochemistry, and Conductivity Analyzer instrument for NASA's Phoenix Mars Lander is a pair of telescopes with a special wheel (on the right in this photograph) for presenting samples to be inspected with the microscopes. A horizontally mounted optical microscope (on the left in this photograph) and an atomic force microscope will examine soil particles and possibly ice particles.

    The shapes and the size distributions of soil particles may tell scientists about environmental conditions the material has experienced. Tumbling rounds the edges. Repeated wetting and freezing causes cracking. Clay minerals formed during long exposure to water have distinctive, platy particles shapes.

  11. Obama sets out NASA's new mission to Mars

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2010-05-01

    US President Barack Obama has announced a new direction for NASA that includes plans to send astronauts to an asteroid by 2025. Speaking last month at Florida's Kennedy Space Center, the launching location for US manned spaceflights, Obama also called for a new "heavy-lift" rocket design to take astronauts on a mission to orbit Mars by the mid-2030s that will "eventually" be used to transport humans to the Martian surface.

  12. Upgrades, Current Capabilities and Near-Term Plans of the NASA ARC Mars Climate

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Kahre, Melinda April; Haberle, Robert M.; Schaeffer, James R.

    2012-01-01

    We describe and review recent upgrades to the ARC Mars climate modeling framework, in particular, with regards to physical parameterizations (i.e., testing, implementation, modularization and documentation); the current climate modeling capabilities; selected research topics regarding current/past climates; and then, our near-term plans related to the NASA ARC Mars general circulation modeling (GCM) project.

  13. The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.; Christensen, P.; Smith, D. E.; Neumann, G. A.; Kirk, R. L.; Caplinger, M. A.; Albee, A. A.; Seregina, N. V.; Neukum, G.; Archinal, B. A.

    2014-12-01

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses in the year 2000 tied Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to update the location of Airy-0. Based upon this tie and radiometric tracking of landers/rovers from Earth, new expressions for the Mars spin axis direction, spin rate, and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Since the Mars Global Surveyor mission and Mars Orbiter Laser Altimeter global digital terrain model were completed some time ago, a more exhaustive study has been performed to determine the accuracy of the Airy-0 location and orientation of Mars at the standard epoch. Thermal Emission Imaging System (THEMIS) IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be about 0.001° east of its predicted location using the currently defined International Astronomical Union (IAU) prime meridian location. Information on this new location and how it was derived will be provided to the NASA Mars Exploration Program Geodesy and Cartography Working Group for their assessment. This NASA group will make a recommendation to the IAU Working Group on Cartographic Coordinates and Rotational Elements to update the expression for the Mars spin axis direction, spin rate, and prime meridian location.

  14. Estimated Radiation on Mars, Hits per Cell Nucleus

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This global map of Mars shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.

    The estimates are based on cosmic-radiation measurements made on the way to Mars by the Mars radiation environment experiment, an instrument on NASA's 2001 Mars Odyssey spacecraft, plus information about Mars' surface elevations from the laser altimeter instrument on NASA's Mars Global Surveyor. The areas of Mars expected to have least radiation are where elevation is lowest, because those areas have more atmosphere above them to block out some of the radiation. Earth's thick atmosphere shields us from most cosmic radiation, but Mars has a much thinner atmosphere than Earth does.

    Colors in the map refer to the estimated average number of times per year each cell nucleus in a human there would be hit by a high-energy cosmic ray particle. The range is generally from two hits (color-coded green), a moderate risk level, to eight hits (coded red), a high risk level.

    NASA's Jet Propulsion Laboratory, Pasadena, Calif. manages the 2001 Mars Odyssey and Mars Global Surveyor missions for NASA's Office of Space Science, Washington D.C. The Mars radiation environment experiment was developed by NASA's Johnson Space Center. Lockheed Martin Astronautics, Denver, is the prime contractor for Odyssey, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Human Mars Missions: Cost Driven Architecture Assessments

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin

    1998-01-01

    This report investigates various methods of reducing the cost in space transportation systems for human Mars missions. The reference mission for this task is a mission currently under study at NASA. called the Mars Design Reference Mission, characterized by In-Situ propellant production at Mars. This study mainly consists of comparative evaluations to the reference mission with a view to selecting strategies that would reduce the cost of the Mars program as a whole. One of the objectives is to understand the implications of certain Mars architectures, mission modes, vehicle configurations, and potentials for vehicle reusability. The evaluations start with year 2011-2014 conjunction missions which were characterized by their abort-to-the-surface mission abort philosophy. Variations within this mission architecture, as well as outside the set to other architectures (not predicated on an abort to surface philosophy) were evaluated. Specific emphasis has been placed on identifying and assessing overall mission risk. Impacts that Mars mission vehicles might place upon the Space Station, if it were to be used as an assembly or operations base, were also discussed. Because of the short duration of this study only on a few propulsion elements were addressed (nuclear thermal, cryogenic oxygen-hydrogen, cryogenic oxygen-methane, and aerocapture). Primary ground rules and assumptions were taken from NASA material used in Marshall Space Flight Center's own assessment done in 1997.

  16. Mars Odyssey Seen by Mars Global Surveyor

    NASA Image and Video Library

    2005-05-19

    This view is an enlargement of an image of NASA Mars Odyssey spacecraft taken by the Mars Orbiter Camera aboard NASA Mars Global Surveyor while the two spacecraft were about 90 kilometers 56 miles apart.

  17. Contact Instrument Calibration Targets on Mars Rover Curiosity

    NASA Image and Video Library

    2012-02-07

    Two instruments at the end of the robotic arm on NASA Mars rover Curiosity will use calibration targets attached to a shoulder joint of the arm. The penny is a size reference giving the public a familiar object for perceiving size on Mars easily.

  18. Fast Track Lunar NTR Systems Assessment for NASA's First Lunar Outpost and Its Evolvability to Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Alexander, Stephen W.

    1995-01-01

    Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. A 'standardized' set of engine and stage components are identified and used in a 'building block' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I(sub sp)) of 900 seconds, and an engine thrust-to-weight ratio of 4. 3. For the National Aeronautics and Space Administrations (NASA) First Lunar Outpost (FLO) mission, and expendable NTR stage powered by two such engines can deliver approximately 96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH2) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH2 capacity to approximately 20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The 'modular' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions.

  19. Applications of Mars Global Reference Atmospheric Model (Mars-GRAM 2005) Supporting Mission Site Selection for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  20. A Study for Mars Manned Exploration

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Scimemi, Sam

    2012-01-01

    Over the last five decades there have been numerous studies devoted to developing, launching and conducting a manned mission to Mars by both Russian and U.S. organizations. These studies have proposed various crew sizes, mission length, propulsion systems, habitation modules, and scientific goals. As a first step towards establishing an international partnership approach to a Mars mission, the most recent Russian concepts are explored and then compared to NASA's latest Mars reference mission.

  1. Possible Scenarios for Mars Manned Exploration

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Schumacher, Daniel M.

    2012-01-01

    Over the last five decades there have been numerous studies devoted to developing, launching and conducting a manned mission to Mars by both Russian and U.S. organizations. These studies have proposed various crew sizes, mission length, propulsion systems, habitation modules, and scientific goals. As a first step towards establishing an international partnership approach to a Mars mission, the most recent Russian concepts are explored and then compared to NASA's current Mars reference mission.

  2. NASA's Phoenix Lander on Mars, Nearly a Decade Later

    NASA Image and Video Library

    2018-02-20

    This is one of two images taken nearly a decade apart of NASA's Mars Phoenix Lander and related hardware around the mission's May 25, 2008, landing site on far-northern Mars. By late 2017, dust had obscured much of what was visible two months after the landing. Both images were taken by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The one with three patches of darker ground -- where landing events removed dust -- was taken on July 20, 2008. It is Fig. 1, an excerpt of HiRISE observation PSP_009290_2485. The one with a more even coating of pale dust throughout the area was taken on Dec. 21, 2017. It is Fig. 2, an excerpt of HiRISE observation ESP_053451_2485. Both cover an area roughly 300 meters wide at 68 degrees north latitude, 234 degrees east longitude, and the two are closely matched in viewing and illumination geometry, from about five Martian years apart in northern hemisphere summers. An animation comparing the two images shows a number of changes between mid-2008 and late 2017. The lander (top) appears darker, and is now covered by dust. The dark spot created by the heat shield impact (right) is brighter, again due to dust deposition. The back shell and parachute (bottom) shows a darker parachute and brighter area of impact disturbance, thanks again to deposits of dust. We also see that the parachute has shifted in the wind, moving to the east. In August 2008, Phoenix completed its three-month mission studying Martian ice, soil and atmosphere. The lander worked for two additional months before reduced sunlight caused energy to become insufficient to keep the lander functioning. The solar-powered robot was not designed to survive through the dark and cold conditions of a Martian arctic winter. An animation and both images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22223

  3. Humans to Mars: Fifty Years of Mission Planning, 1950-2000

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.

    2001-01-01

    Contents of this document include: On the Grand Scale; Earliest NASA Concepts; EMPIRE and After; A Hostile Environment; Apogee; Viking and the Resources of Mars; The Case for Mars; Challengers; Space Exploration Initiative; and Design Reference Mission.

  4. Examining Mars with SPICE

    NASA Technical Reports Server (NTRS)

    Acton, Charles H.; Bachman, Nathaniel J.; Bytof, Jeff A.; Semenov, Boris V.; Taber, William; Turner, F. Scott; Wright, Edward D.

    1999-01-01

    The International Mars Conference highlights the wealth of scientific data now and soon to be acquired from an international armada of Mars-bound robotic spacecraft. Underlying the planning and interpretation of these scientific observations around and upon Mars are ancillary data and associated software needed to deal with trajectories or locations, instrument pointing, timing and Mars cartographic models. The NASA planetary community has adopted the SPICE system of ancillary data standards and allied tools to fill the need for consistent, reliable access to these basic data and a near limitless range of derived parameters. After substantial rapid growth in its formative years, the SPICE system continues to evolve today to meet new needs and improve ease of use. Adaptations to handle landers and rovers were prototyped on the Mars pathfinder mission and will next be used on Mars '01-'05. Incorporation of new methods to readily handle non-inertial reference frames has vastly extended the capability and simplified many computations. A translation of the SPICE Toolkit software suite to the C language has just been announced. To further support cartographic calculations associated with Mars exploration the SPICE developers at JPL have recently been asked by NASA to work with cartographers to develop standards and allied software for storing and accessing control net and shape model data sets; these will be highly integrated with existing SPICE components. NASA specifically supports the widest possible utilization of SPICE capabilities throughout the international space science community. With NASA backing the Russian Space Agency and Russian Academy of Science adopted the SPICE standards for the Mars 96 mission. The SPICE ephemeris component will shortly become the international standard for agencies using the Deep Space Network. U.S. and European scientists hope that ESA will employ SPICE standards on the Mars Express mission. SPICE is an open set of standards, and

  5. SOLAR SYSTEM EXPLORATION: A More Cautious NASA Sets Plans for Mars.

    PubMed

    Lawler, A

    2000-11-03

    Twice burned by mission failures last year, NASA managers last week unveiled a new 15-year blueprint for Mars exploration. The revamped strategy allows for doing more science, but at a slower pace, while delaying a sample return until well into the next decade.

  6. Mission to Mars: Connecting Diverse Student Groups with NASA Experts

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Jones, David; Sadowski-Fugitt, Leslie; Kowrach, Nicole

    2012-01-01

    The Museum of Science and Industry in Chicago has formulated an innovative approach to inspiring the next generation to pursue STEM education. Middle school students in Chicago and at nearby Challenger Learning Centers work in teams to design a mission to Mars. Each mission includes real time access to NASA experts through partnerships with Marshall Space Flight Center, Johnson Space Center, and the Jet Propulsion Laboratory. Interactive videoconferencing connects students at the museum with students at a Challenger Learning Center and with NASA experts. This paper describes the approach, the results from the program s first year, and future opportunities for nationwide expansion.

  7. Advancing the Journey to Mars on This Week @NASA – October 30, 2015

    NASA Image and Video Library

    2015-10-30

    During an Oct. 28 keynote speech at the Center for American Progress, in Washington, NASA Administrator Charlie Bolden spoke about the advancement made on the journey to Mars and what lies ahead for future administrations and policy makers. NASA’s recently released report “Journey to Mars: Pioneering Next Steps in Space Exploration,” outlines its plan to reach Mars in phases – with technology demonstrations and research aboard the International Space Station, followed by hardware and procedure development in the proving ground around the moon, before sending humans to the Red Planet. Also, Space station spacewalk, Another record in space for Kelly, Mars Landing Sites/ Exploration Zones Workshop, Cassini’s “deep dive” flyby and more!

  8. Model of Mars-Bound MarCO CubeSat

    NASA Image and Video Library

    2015-06-12

    Engineers for NASA's MarCO technology demonstration display a full-scale mechanical mock-up of the small craft in development as part of NASA's next mission to Mars. Mechanical engineer Joel Steinkraus and systems engineer Farah Alibay are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO (Mars Cube One) CubeSats for a March 2016 launch. MarCO is the first interplanetary mission using CubeSat technologies for small spacecraft. The briefcase-size MarCO twins will ride along on an Atlas V launch vehicle lifting off from Vandenberg Air Force Base, California, with NASA's next Mars lander, InSight. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). After launch, the two MarCO CubeSats and InSight will be navigated separately to Mars. The MarCO twins will fly past the planet in September 2016 just as InSight is descending through the atmosphere and landing on the surface. MarCO is a technology demonstration mission to relay communications from InSight to Earth during InSight's descent and landing. InSight communications during that critical period will also be recorded by NASA's Mars Reconnaissance Orbiter for delayed transmission to Earth. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. After launch, the MarCO twins and InSight will be navigated separately to Mars. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission

  9. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  10. NASA Ames Science Instrument Launches Aboard New Mars Rover (CheMin)

    NASA Image and Video Library

    2011-11-23

    When NASA's Mars Science Laboratory lands in a region known as Gale Crater in August of 2012, it will be poised to carry out the most sophisticated chemical analysis of the Martian surface to date. One of the 10 instruments on board the rover Curiosity will be CheMin - short for chemistry and mineralogy. Developed by Ames researcher David Blake and his team, it will use new technology to analyze and identify minerals in the Martian rocks and soil. Youtube: NASA Ames Scientists Develop MSL Science Instrument

  11. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    represent the best available 3D reference frame for Mars showing co-registration with MOLA<25m (loc.cit.). In our work, the reference generated by HRSC terrain corrected orthorectified images is used as a common reference frame to co-register all available high-resolution orbital NASA products into a common 3D coordinate system, thus allowing the examination of the changes that happen on the surface of Mars over time (such as seasonal flows [McEwen et al., 2011] or new impact craters [Byrne, et al., 2009]). In order to accomplish such a tedious manual task, we have developed an automatic co-registration pipeline that produces orthorectified versions of the NASA images in realistic time (i.e. from ~15 minutes to 10 hours per image depending on size). In the first step of this pipeline, tie-points are extracted from the target NASA image and the reference HRSC image or image mosaic. Subsequently, the HRSC areo-reference information is used to transform the HRSC tie-points pixel coordinates into 3D "world" coordinates. This way, a correspondence between the pixel coordinates of the target NASA image and the 3D "world" coordinates is established for each tie-point. This set of correspondences is used to estimate a non-rigid, 3D to 2D transformation model, which transforms the target image into the HRSC reference coordinate system. Finally, correlation of the transformed target image and the HRSC image is employed to fine-tune the orthorectification results, thus generating results with sub-pixel accuracy. This method, which has been proven to be accurate, robust to resolution differences and reliable when dealing with partially degraded data and fast, will be presented, along with some example co-registration results that have been achieved by using it. Acknowledgements: The research leading to these results has received partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7

  12. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  13. Images From Comet’s Mars Flyby On This Week @NASA - October 24, 2014

    NASA Image and Video Library

    2014-10-24

    Several Mars-based NASA spacecraft had prime viewing positions for comet Siding Spring’s October 19 close flyby of the Red Planet. Early images included a composite photo from NASA’s Hubble Space Telescope that combined shots of Mars, the comet, and a star background to illustrate Siding Spring’s distance from Mars at closest approach. Also, images from the Mars Reconnaissance Orbiter’s HiRISE camera, which represent the highest-resolution views ever acquired of a comet that came from the Oort Cloud, at the outer fringe of the solar system. The comet flyby – only about 87,000 miles from Mars – was much closer than any other known comet flyby of a planet. Also, Partial solar eclipse, Space station spacewalk, Preparing to release Dragon, Cygnus launch update, Welding begins on SLS, Astronaut class visits Glenn and more!

  14. MarCOs, Mars and Earth

    NASA Image and Video Library

    2018-03-29

    An artist's rendering of the twin Mars Cube One (MarCO) spacecraft flying over Mars with Earth in the distance. The MarCOs will be the first CubeSats -- a kind of modular, mini-satellite -- flown in deep space. They're designed to fly along behind NASA's InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight's entry, descent and landing back to Earth. Though InSight's mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. https://photojournal.jpl.nasa.gov/catalog/PIA22316

  15. Mars Odyssey Seen by Mars Global Surveyor 3-D

    NASA Image and Video Library

    2005-05-19

    This stereoscopic picture of NASA Mars Odyssey spacecraft was created from two views of that spacecraft taken by the Mars Orbiter Camera on NASA Mars Global Surveyor. 3D glasses are necessary to view this image.

  16. ourney to Mars: An international effort on This Week @NASA – October 16, 2015

    NASA Image and Video Library

    2015-10-16

    During meetings and public events at the International Astronautical Congress (IAC), Oct. 12-16 in Jerusalem, NASA Administrator Charlie Bolden and several other NASA officials highlighted the agency’s recently released plan to send astronauts to Mars in the 2030’s. They also emphasized the need for international partnerships and cooperation to make a mission of this magnitude a reality, the importance of harnessing enthusiasm for space exploration and the need to encourage young people to develop the skills we’ll need for the Journey to Mars. Also, New American record in space, Flyby of Saturnian moon, Next launch for Cygnus, Access to space for small satellites and more! JPL Open House is a big draw.

  17. Recent Upgrades to the NASA Ames Mars General Circulation Model: Applications to Mars' Water Cycle

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M. A.; Haberle, R. M.; Montmessin, F.; Wilson, R. J.; Schaeffer, J.

    2008-09-01

    We report on recent improvements to the NASA Ames Mars general circulation model (GCM), a robust 3D climate-modeling tool that is state-of-the-art in terms of its physics parameterizations and subgrid-scale processes, and which can be applied to investigate physical and dynamical processes of the present (and past) Mars climate system. The most recent version (gcm2.1, v.24) of the Ames Mars GCM utilizes a more generalized radiation code (based on a two-stream approximation with correlated k's); an updated transport scheme (van Leer formulation); a cloud microphysics scheme that assumes a log-normal particle size distribution whose first two moments are treated as atmospheric tracers, and which includes the nucleation, growth and sedimentation of ice crystals. Atmospheric aerosols (e.g., dust and water-ice) can either be radiatively active or inactive. We apply this version of the Ames GCM to investigate key aspects of the present water cycle on Mars. Atmospheric dust is partially interactive in our simulations; namely, the radiation code "sees" a prescribed distribution that follows the MGS thermal emission spectrometer (TES) year-one measurements with a self-consistent vertical depth scale that varies with season. The cloud microphysics code interacts with a transported dust tracer column whose surface source is adjusted to maintain the TES distribution. The model is run from an initially dry state with a better representation of the north residual cap (NRC) which accounts for both surface-ice and bare-soil components. A seasonally repeatable water cycle is obtained within five Mars years. Our sub-grid scale representation of the NRC provides for a more realistic flux of moisture to the atmosphere and a much drier water cycle consistent with recent spacecraft observations (e.g., Mars Express PFS, corrected MGS/TES) compared to models that assume a spatially uniform and homogeneous north residual polar cap.

  18. PADME (Phobos And Deimos and Mars Environment): A Proposed NASA Discovery Mission to Investigate the Two Moons of Mars

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; Benna, Mehdi; Britt, Daniel; Colaprete, Anthony; Davis, Warren; Delory, Greg; Elphic, Richard; Fulsang, Ejner; Genova, Anthony; Glavin, Daniel; hide

    2015-01-01

    After 40 years of solar system exploration by spacecraft, the origin of Mars's satellites, remains vexingly unknown. There are three prevailing hypotheses concerning their origin: H1: They are captured small bodies from the outer main belt or beyond; H2: They are reaccreted Mars impact ejecta; H3: They are remnants of Mars' formation. There are many variants of these hypotheses, but as stated, these three capture the key ideas and constraints on their nature. So far, data and modeling have not allowed any one of these hypotheses to be verified or excluded. Each one of these hypotheses has important implications for the evolution of the solar system, the formation and evolution of planets and satellites, and the delivery of water and organics to Early Mars and Early Earth. Determining the origin of Phobos and Deimos is identified by the NASA and the NRC Decadal Survey as the most important science goal at these bodies.

  19. Reference reactor module for NASA's lunar surface fission power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I; Kapernick, Richard J; Dixon, David D

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on themore » lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.« less

  20. Mars Express Seen by Mars Global Surveyor

    NASA Image and Video Library

    2005-05-19

    This picture of the European Space Agency Mars Express spacecraft by the Mars Orbiter Camera on NASA Mars Global Surveyor is from the first successful imaging of any spacecraft orbiting Mars taken by another spacecraft orbiting Mars.

  1. Our Newest Mission to Mars on This Week @NASA – May 5, 2018

    NASA Image and Video Library

    2018-05-05

    Our newest mission to Mars is on its way, Vice President Pence visits our Jet Propulsion Laboratory, and observing our planet’s ever-changing water cycle – a few of the stories to tell you about – This Week at NASA!

  2. Report of the NASA Science Definition Team for the Mars Science Orbiter (MSO)

    NASA Technical Reports Server (NTRS)

    Smith, Michael

    2007-01-01

    NASA is considering that its Mars Exploration Program (MEP) will launch an orbiter to Mars in the 2013 launch opportunity. To further explore this opportunity, NASA has formed a Science Definition Team (SDT) for this orbiter mission, provisionally called the Mars Science Orbiter (MSO). Membership and leadership of the SDT are given in Appendix 1. Dr. Michael D. Smith chaired the SDT. The purpose of the SDT was to define the: 1) Scientific objectives of an MSO mission to be launched to Mars no earlier than the 2013 launch opportunity, building on the findings for Plan A [Atmospheric Signatures and Near-Surface Change] of the Mars Exploration Program Analysis Group (MEPAG) Second Science Analysis Group (SAG-2); 2) Science requirements of instruments that are most likely to make high priority measurements from the MSO platform, giving due consideration to the likely mission, spacecraft and programmatic constraints. The possibilities and opportunities for international partners to provide the needed instrumentation should be considered; 3) Desired orbits and mission profile for optimal scientific return in support of the scientific objectives, and the likely practical capabilities and the potential constraints defined by the science requirements; and 4) Potential science synergies with, or support for, future missions, such as a Mars Sample Return. This shall include imaging for evaluation and certification of future landing sites. As a starting point, the SDT was charged to assume spacecraft capabilities similar to those of the Mars Reconnaissance Orbiter (MRO). The SDT was further charged to assume that MSO would be scoped to support telecommunications relay of data from, and commands to, landed assets, over a 10 Earth year period following orbit insertion. Missions supported by MSO may include planned international missions such as EXOMARS. The MSO SDT study was conducted during October - December 2007. The SDT was directed to complete its work by December 15, 2007

  3. Advantages of a Modular Mars Surface Habitat Approach

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Hoffman, Stephan J.; Andrews, Alida; Watts, Kevin

    2018-01-01

    Early crewed Mars mission concepts developed by the National Aeronautics and Space Administration (NASA) assumed a single, large habitat would house six crew members for a 500-day Mars surface stay. At the end of the first mission, all surface equipment, including the habitat, -would be abandoned and the process would be repeated at a different Martian landing site. This work was documented in a series of NASA publications culminating with the Mars Design Reference Mission 5.0 (NASA-SP-2009-566). The Evolvable Mars Campaign (EMC) explored whether re-using surface equipment at a single landing site could be more affordable than the Apollo-style explore-abandon-repeat mission cadence. Initial EMC assumptions preserved the single, monolithic habitat, the only difference being a new requirement to reuse the surface habitat for multiple expedition crews. A trade study comparing a single large habitat versus smaller, modular habitats leaned towards the monolithic approach as more mass-efficient. More recent work has focused on the operational aspects of building up Mars surface infrastructure over multiple missions, and has identified compelling advantages of the modular approach that should be considered before making a final decision. This paper explores Mars surface mission operational concepts and integrated system analysis, and presents an argument for the modular habitat approach.

  4. Diverse Orbits Around Mars Graphic

    NASA Image and Video Library

    2015-05-04

    This graphic depicts the relative shapes and distances from Mars for five active orbiter missions plus the planet's two natural satellites. It illustrates the potential for intersections of the spacecraft orbits. The number of active orbiter missions at Mars increased from three to five in 2014. With the increased traffic, NASA has augmented a process for anticipating orbit intersections and avoiding collisions. NASA's Mars Odyssey and MRO (Mars Reconnaissance Orbiter) travel near-circular orbits. The European Space Agency's Mars Express, NASA's MAVEN (Mars Atmosphere and Volatile Evolution) and India's MOM (Mars Orbiter Mission), travel more elliptical orbits. Phobos and Deimos are the two natural moons of Mars. http://photojournal.jpl.nasa.gov/catalog/PIA19396

  5. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  6. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    NASA Technical Reports Server (NTRS)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASA's science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of new commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of a SpaceX Dragon capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  7. In Brief: NASA's Phoenix spacecraft lands on Mars

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Kumar, Mohi

    2008-06-01

    After a 9.5-month, 679-million-kilometer flight from Florida, NASA's Phoenix spacecraft made a soft landing in Vastitas Borealis in Mars's northern polar region on 25 May. The lander, whose camera already has returned some spectacular images, is on a 3-month mission to examine the area and dig into the soil of this site-chosen for its likelihood of having frozen water near the surface-and analyze samples. In addition to a robotic arm and robotic arm camera, the lander's instruments include a surface stereo imager; thermal and evolved-gas analyzer; microscopy, electrochemistry, and conductivity analyzer; and a meteorological station that is tracking daily weather and seasonal changes.

  8. Extending the NASA Ames Mars General Circulation Model to Explore Mars’ Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Brecht, Amanda; Hollingsworth, J.; Kahre, M.; Schaeffer, J.

    2013-10-01

    The NASA Ames Mars General Circulation Model (MGCM) upper boundary has been extended to ~120 km altitude (p ~10-5 mbar). The extension of the MGCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere 70 - 120 km). Moreover, it provides the opportunity to support future missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). This modification to the radiative transfer forcing (i.e., RT code) has been significantly tested in a 1D vertical column and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented. Brecht is supported by NASA’s Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA.

  9. Mars-GRAM 2010: Improving the Precision of Mars-GRAM

    NASA Technical Reports Server (NTRS)

    Justh, H. L.; Justus, C. G.; Ramey, H. S.

    2011-01-01

    It has been discovered during the Mars Science Laboratory (MSL) site selection process that the Mars Global Reference Atmospheric Model (Mars-GRAM) when used for sensitivity studies for Thermal Emission Spectrometer (TES) MapYear=0 and large optical depth values, such as tau=3, is less than realistic. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from TES. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: (1) TES mapping year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from NASA Ames Mars General Circulation Model (MGCM) results driven by selected values of globally-uniform dust optical depth, or (2) TES mapping years 1 and 2, with Mars-GRAM data coming from MGCM results driven by observed TES dust optical depth. From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames MGCM. Above 80 km, Mars-GRAM is based on the University of Michigan Mars Thermospheric General Circulation Model (MTGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This choice of data has led to discrepancies that have become apparent during recent sensitivity studies for MapYear=0 and large optical depths. Unrealistic energy absorption by time-invariant atmospheric dust leads to an unrealistic thermal energy balance on the polar caps. The outcome is an inaccurate cycle of condensation/sublimation of the polar caps and, as a consequence, an inaccurate cycle of total atmospheric mass and global-average surface pressure. Under an assumption of unchanged temperature profile and hydrostatic equilibrium, a given percentage change in surface pressure would produce a corresponding percentage

  10. International exploration of Mars. A special bibliography

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This bibliography lists 173 reports, articles, and other documents introduced into the NASA Scientific and Technical Information Database on the exploration of Mars. Historical references are cited for background. The bibliography was created for the 1991 session of the International Space University.

  11. Using NASA's Reference Architecture: Comparing Polar and Geostationary Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Ullman, Richard; Burnett, Michael

    2013-01-01

    The JPSS and GOES-R programs are housed at NASA GSFC and jointly implemented by NASA and NOAA to NOAA requirements. NASA's role in the JPSS Ground System is to develop and deploy the system according to NOAA requirements. NASA's role in the GOES-R ground segment is to provide Systems Engineering expertise and oversight for NOAA's development and deployment of the system. NASA's Earth Science Data Systems Reference Architecture is a document developed by NASA's Earth Science Data Systems Standards Process Group that describes a NASA Earth Observing Mission Ground system as a generic abstraction. The authors work within the respective ground segment projects and are also separately contributors to the Reference Architecture document. Opinions expressed are the author's only and are not NOAA, NASA or the Ground Projects' official positions.

  12. Pancam: A Multispectral Imaging Investigation on the NASA 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.

    2003-01-01

    One of the six science payload elements carried on each of the NASA Mars Exploration Rovers (MER; Figure 1) is the Panoramic Camera System, or Pancam. Pancam consists of three major components: a pair of digital CCD cameras, the Pancam Mast Assembly (PMA), and a radiometric calibration target. The PMA provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. The calibration target provides a set of reference color and grayscale standards for calibration validation, and a shadow post for quantification of the direct vs. diffuse illumination of the scene. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover in up to 12 unique wavelengths. The major characteristics of Pancam are summarized.

  13. Modular Growth NTR Space Transportation System for Future NASA Human Lunar, NEA and Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) is a proven, high thrust propulsion technology that has twice the specific impulse (I(sub sp) approx.900 s) of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - everything required for affordable human missions beyond LEO. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower IMLEO, versatile vehicle design, and growth potential. Furthermore, the NTR requires no large technology scale-ups since the smallest engine tested during the Rover program - the 25 klb(sub f) "Pewee" engine is sufficient for human Mars missions when used in a clustered engine configuration. The "Copernicus" crewed Mars transfer vehicle developed for DRA 5.0 was an expendable design sized for fast-conjunction, long surface stay Mars missions. It therefore has significant propellant capacity allowing a reusable "1-year" round trip human mission to a large, high energy near Earth asteroid (NEA) like Apophis in 2028. Using a "split mission" approach, Copernicus and its two key elements - a common propulsion stage and integrated "saddle truss" and LH2 drop tank assembly - configured as an Earth Return Vehicle / propellant tanker, can also support a short round trip (approx.18 month) / short orbital stay (60 days) Mars reconnaissance mission in the early 2030's before a landing is attempted. The same short stay orbital mission can be performed with an "all-up" vehicle by adding an "in-line" LH2 tank to Copernicus to supply the extra propellant needed for this higher energy, opposition-class mission. To transition to a

  14. Independent Verification of Mars-GRAM 2010 with Mars Climate Sounder Data

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Burns, Kerry L.

    2014-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission and engineering applications. Applications of Mars-GRAM include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Atmospheric influences on landing site selection and long-term mission conceptualization and development can also be addressed utilizing Mars-GRAM. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte Carlo mode, to perform high-fidelity engineering end-to-end simulations for entry, descent, and landing. Mars-GRAM is an evolving software package resulting in improved accuracy and additional features. Mars-GRAM 2005 has been validated against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES). From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). Above 80 km, Mars-GRAM is based on the University of Michigan Mars Thermospheric General Circulation Model (MTGCM). The most recent release of Mars-GRAM 2010 includes an update to Fortran 90/95 and the addition of adjustment factors. These adjustment factors are applied to the input data from the MGCM and the MTGCM for the mapping year 0 user-controlled dust case. The adjustment factors are expressed as a function of height (z), latitude and areocentric solar longitude (Ls).

  15. Human Health and Performance Aspects of the Mars Design Reference Mission

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2000-01-01

    This paper will describe the current planning for exploration-class missions, emphasizing the medical, and human factors aspects of such expeditions. The details of mission architecture are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mar, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stressors will include environmental factors such as prolonged exposure to radiation, weightlessness in transit, and hypogravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must also be considered. Results of planning for assuring human health and performance will be presented.

  16. Hinners Point Above Floor of Marathon Valley on Mars

    NASA Image and Video Library

    2015-09-25

    This Martian scene shows contrasting textures and colors of "Hinners Point," at the northern edge of "Marathon Valley," and swirling reddish zones on the valley floor to the left. The view combines six frames taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity on Aug. 14, 2015, during the 4,108th Martian day, or sol, of the rover's work on Mars. The summit takes its informal name as a tribute to Noel Hinners (1935-2014). For NASA's Apollo program, Hinners played important roles in selection of landing sites on the moon and scientific training of astronauts. He then served as NASA associate administrator for space science, director of the Smithsonian National Air and Space Museum, director of NASA's Goddard Space Flight Center, NASA chief scientist and associate deputy administrator of NASA. Subsequent to responsibility for the Viking Mars missions while at NASA, he spent the latter part of his career as vice president for flight systems at Lockheed Martin, where he had responsibility for the company's roles in development and operation of NASA's Mars Global Surveyor, Mars Reconnaissance Orbiter, Mars Odyssey, Phoenix Mars Lander, Stardust and Genesis missions. Marathon Valley cuts generally east-west through the western rim of Endeavour Crater. The valley's name refers to the distance Opportunity drove from its 2004 landing site to arrival at this location in 2014. The valley was a high-priority destination for the rover mission because observations from orbit detected clay minerals there. Dark rocks on Hinners Point show a pattern dipping downward toward the interior of Endeavour, to the right from this viewing angle. The strong dip may have resulted from the violence of the impact event that excavated the crater. Brighter rocks make up the valley floor. The reddish zones there may be areas where water has altered composition. Inspections by Opportunity have found compositions there are higher in silica and lower in iron than the

  17. Mars Briefing

    NASA Image and Video Library

    2011-08-04

    Colin Dundas, a research geologist with the U.S. Geological Survey, speaks during a briefing, Thursday, Aug. 4, 2011, at NASA Headquarters in Washington. Observations from NASA's Mars Reconnaissance Orbiter (MRO) have revealed possible flowing water during the warmest months on Mars. Dark, finger-like features appear and extend down some Martian slopes during late spring through summer, fade in winter, and return during the next spring. Repeated observations have tracked the seasonal changes in these recurring features on several steep slopes in the middle latitudes of Mars' southern hemisphere. Photo Credit: (NASA/Paul E. Alers)

  18. A Revised Thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM Version 3.4)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.; James, B. F.

    1996-01-01

    This report describes the newly-revised model thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM, Version 3.4). It also provides descriptions of other changes made to the program since publication of the programmer's guide for Mars-GRAM Version 3.34. The original Mars-GRAM model thermosphere was based on the global-mean model of Stewart. The revised thermosphere is based largely on parameterizations derived from output data from the three-dimensional Mars Thermospheric Global Circulation Model (MTGCM). The new thermospheric model includes revised dependence on the 10.7 cm solar flux for the global means of exospheric temperature, temperature of the base of the thermosphere, and scale height for the thermospheric temperature variations, as well as revised dependence on orbital position for global mean height of the base of the thermosphere. Other features of the new thermospheric model are: (1) realistic variations of temperature and density with latitude and time of day, (2) more realistic wind magnitudes, based on improved estimates of horizontal pressure gradients, and (3) allowance for user-input adjustments to the model values for mean exospheric temperature and for height and temperature at the base of the thermosphere. Other new features of Mars-GRAM 3.4 include: (1) allowance for user-input values of climatic adjustment factors for temperature profiles from the surface to 75 km, and (2) a revised method for computing the sub-solar longitude position in the 'ORBIT' subroutine.

  19. MarCO CubeSat Engineers 3

    NASA Image and Video Library

    2016-01-20

    Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect one of the two MarCO CubeSats. Joel Steinkraus, MarCO lead mechanical engineer, left, and Andy Klesh, MarCO chief engineer, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20343

  20. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available

  1. MarCO CubeSat Engineers 1

    NASA Image and Video Library

    2016-01-20

    Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect the MarCO test bed, which contains components that are identical to those built for a flight to Mars. Cody Colley, left, MarCO integration and test deputy, and Shannon Statham, MarCO integration and test lead, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20341

  2. Making milestones on the journey to Mars on This Week @NASA – August 7, 2015

    NASA Image and Video Library

    2015-08-07

    NASA’s Curiosity rover celebrated the 3-year anniversary of its landing on Mars recently. Since landing, Curiosity has driven nearly seven miles to its current location at Mount Sharp, and found evidence of past conditions suitable for microbial life. To mark the anniversary, NASA is unveiling two new online tools that will bring the Mars experience to a new generation of explorers. “Mars Trek” is a free, web-based application that uses more than 40 years of Mars exploration data, to provide high-quality imagery of the planet’s features. "Experience Curiosity" is a 3-D simulation program that also uses real data, to take viewers along with Curiosity during the rover’s expeditions on the Martian surface. Since NASA’s robotic explorers became the first to study the Red Planet, advances in technology have enabled Mars exploration missions to continue making important scientific discoveries and pave the way for humans to reach Mars in the 2030s. Also, Newman visits composites tech facility, Future ISS crews, CubeSat Launch Initiative and Look, up in the sky!

  3. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    Paul Mahaffy (right), principal investigator for Curiosity's Sample Analysis at Mars (SAM) investigation at NASA's Goddard Space Flight Center in Maryland, demonstrates how the SAM instrument drilled and captured rock samples on the surface of Mars at a news conference, Tuesday, March 12, 2013 at NASA Headquarters in Washington. The analysis of the rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  4. The NASA master directory: Quick reference guide

    NASA Technical Reports Server (NTRS)

    Satin, Karen (Editor); Kanga, Carol (Editor)

    1989-01-01

    This is a quick reference guide to the NASA Master Directory (MD), which is a free, online, multidisciplinary directory of space and Earth science data sets (NASA and non-NASA data) that are of potential interest to the NASA-sponsored research community. The MD contains high-level descriptions of data sets, other data systems and archives, and campaigns and projects. It provides mechanisms for searching for data sets by important criteria such as geophysical parameters, time, and spatial coverage, and provides information on ordering the data. It also provides automatic connections to a number of data systems such as the NASA Climate Data System, the Planetary Data System, the NASA Ocean Data System, the Pilot Land Data System, and others. The MD includes general information about many data systems, data centers, and coordinated data analysis projects, It represents the first major step in the Catalog Interoperability project, whose objective is to enable researchers to quickly and efficiently identify, obtain information about, and get access to space and Earth science data. The guide describes how to access, use, and exit the MD and lists its features.

  5. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    NASA Technical Reports Server (NTRS)

    Law, E.; Day, B.

    2017-01-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  6. Mars Trek: An Interactive Web Portal for Current and Future Missions to Mars

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B.

    2017-09-01

    NASA's Mars Trek (https://marstrek.jpl.nasa.gov) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped data products from past and current missions to Mars. During the past year, the capabilities and data served by Mars Trek have been significantly expanded beyond its original design as a public outreach tool. At the request of NASA's Science Mission Directorate and Human Exploration Operations Mission Directorate, Mars Trek's technology and capabilities are now being extended to support site selection and analysis activities for the first human missions to Mars.

  7. MarCO CubeSat Engineers 2

    NASA Image and Video Library

    2016-01-20

    Engineers for NASA's MarCO (Mars Cube One) technology demonstration inspect one of the two MarCO CubeSats. Cody Colley, MarCO integration and test deputy, left, and Andy Klesh, MarCO chief engineer, are on the team at NASA's Jet Propulsion Laboratory, Pasadena, California, preparing twin MarCO CubeSats. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20342

  8. Mars Surface Mission Workshop

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    1997-01-01

    A workshop was held at the Lunar and Planetary Institute on September 4-5, 1997, to address the surface elements of the Mars Reference Mission now being reviewed by NASA. The workshop considered the current reference mission and addressed the types of activities that would be expected for science and resource exploration and facilities operations. A set of activities was defined that can be used to construct "vignettes" of the surface mission. These vignettes can form the basis for describing the importance of the surface mission, for illustrating aspects of the surface mission, and for allowing others to extend and revise these initial ideas. The topic is rich with opportunities for additional conceptualization. It is recommended that NASA consider supporting university design teams to conduct further analysis of the possibilities.

  9. NASA Mars rover: a testbed for evaluating applications of covariance intersection

    NASA Astrophysics Data System (ADS)

    Uhlmann, Jeffrey K.; Julier, Simon J.; Kamgar-Parsi, Behzad; Lanzagorta, Marco O.; Shyu, Haw-Jye S.

    1999-07-01

    The Naval Research Laboratory (NRL) has spearheaded the development and application of Covariance Intersection (CI) for a variety of decentralized data fusion problems. Such problems include distributed control, onboard sensor fusion, and dynamic map building and localization. In this paper we describe NRL's development of a CI-based navigation system for the NASA Mars rover that stresses almost all aspects of decentralized data fusion. We also describe how this project relates to NRL's augmented reality, advanced visualization, and REBOT projects.

  10. Atmospheric Rotational Effects on Mars Based on the NASA Ames General Circulation Model: Angular Momentum Approach

    NASA Technical Reports Server (NTRS)

    Sanchez, Braulio V.; Haberle, Robert M.; Schaeffer, James

    2004-01-01

    The objective of the investigation is to determine the motion of the rotational axis of Mars as a result of mass variations in the atmosphere and condensation and sublimation of CO2 ice on the polar caps. A planet experiences this type of motion if it has an atmosphere, which is changing its mass distribution with respect to the solid body of the planet and/or it is asymmetrically changing the amount of ice at the polar caps. The physical principle involved is the conservation of angular momentum, one can get a feeling for it by sitting on a well oiled swivel chair holding a rotating wheel on a horizontal direction and then changing the rotation axis of the wheel to a vertical direction. The person holding the wheel and the chair would begin to rotate in opposite direction to the rotation of the wheel. The motions of Mars atmosphere and the ice caps variations are obtained from a mathematical model developed at the NASA Ames Research Center. The model produces outputs for a time span of one Martian year, which is equivalent to 687 Earth days. The results indicate that Mars axis of rotation moves in a spiral with respect to a reference point on the surface of the planet. It can move as far away as 35.3 cm from the initial location as a result of both mass variations in the atmosphere and asymmetric ice variations at the polar caps. Furthermore the pole performs close to two revolutions around the reference point during a Martian year. This motion is a combination of two motions, one produced by the atmospheric mass variations and another due to the variations in the ice caps. The motion due to the atmospheric variations is a spiral performing about two and a half revolutions around the reference point during which the pole can move as far as 40.9 cm. The motion due to variations in the ice caps is a spiral performing almost three revolutions during which the pole can move as far as 32.8 cm.

  11. The Specters of Mars

    NASA Image and Video Library

    2017-07-13

    This image from NASA's Mars Reconnaissance Orbiter shows Malea Planum,a polar region in the Southern hemisphere of Mars, directly south of Hellas Basin, which contains the lowest point of elevation on the planet. The region contains ancient volcanoes of a certain type, referred to as "paterae." Patera is the Latin word for a shallow drinking bowl, and was first applied to volcanic-looking features, with scalloped-edged calderas. Malea is also a low-lying plain, known to be covered in dust. These two pieces of information provide regional context that aid our understanding of the scene and features contained in our image. The area rises gradually to a ridge (which can be seen in this Context Camera image) and light-colored dust is blown away by gusts of the Martian wind, which accelerate up the slope to the ridge, leading to more sharp angles of contact between light and dark surface materials. https://photojournal.jpl.nasa.gov/catalog/PIA21784

  12. The Panoramic Camera (Pancam) Investigation on the NASA 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Dingizian, A.; Brown, D.; Morris, R. V.; Arneson, H. M.; Johnson, M. J.

    2003-01-01

    The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover (MER) missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360 of azimuth and from zenith to nadir, providing a complete view of the scene around the rover.

  13. A new Mars radiation environment model with visualization

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clowdsley, M. S.; Singleterry, R. C.; Wilson, J. W.

    2004-01-01

    A new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (OCR) has been developed at the NASA Langley Research Center. Solar modulated primary particles rescaled for Mars conditions are transported through the Martian atmosphere, with temporal properties modeled with variable timescales, down to the surface, with altitude and backscattering patterns taken into account. The Martian atmosphere has been modeled by using the Mars Global Reference Atmospheric Model--version 2001 (Mars-GRAM 2001). The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g., CO2 ice, H2O ice) along with its time variation throughout the Martian year. Particle transport has been performed with the HZETRN heavy ion code. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Mars Curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Parents and children, such as Myron and Trey (age 3) Cummings, enjoyed exploring Mars using an interactive touch table. Midway through the day of activities, visitors in the Science on a Sphere auditorium also enjoyed a presentation on Mars and the Curiosity mission by Dr. Steven Williams, a NASA expert on Mars.

  15. Mars Rover/Sample Return (MRSR) Mission: Mars Rover Technology Workshop

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A return to the surface of Mars has long been an objective of NASA mission planners. The ongoing Mars Rover and Sample Return (MRSR) mission study represents the latest stage in that interest. As part of NASA's preparation for a possible MRSR mission, a technology planning workshop was held to attempt to define technology requirements, options, and preliminary plans for the principal areas of Mars rover technology. The proceedings of that workshop are presented.

  16. The Exploration of Mars Launch and Assembly Simulation

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Stromgren, Chel; Mattfeld, Bryan; Cirillo, William; Goodliff, Kandyce

    2016-01-01

    Advancing human exploration of space beyond Low Earth Orbit, and ultimately to Mars, is of great interest to NASA, other organizations, and space exploration advocates. Various strategies for getting to Mars have been proposed. These include NASA's Design Reference Architecture 5.0, a near-term flyby of Mars advocated by the group Inspiration Mars, and potential options developed for NASA's Evolvable Mars Campaign. Regardless of which approach is used to get to Mars, they all share a need to visualize and analyze their proposed campaign and evaluate the feasibility of the launch and on-orbit assembly segment of the campaign. The launch and assembly segment starts with flight hardware manufacturing and ends with final departure of a Mars Transfer Vehicle (MTV), or set of MTVs, from an assembly orbit near Earth. This paper describes a discrete event simulation based strategic visualization and analysis tool that can be used to evaluate the launch campaign reliability of any proposed strategy for exploration beyond low Earth orbit. The input to the simulation can be any manifest of multiple launches and their associated transit operations between Earth and the exploration destinations, including Earth orbit, lunar orbit, asteroids, moons of Mars, and ultimately Mars. The simulation output includes expected launch dates and ascent outcomes i.e., success or failure. Running 1,000 replications of the simulation provides the capability to perform launch campaign reliability analysis to determine the probability that all launches occur in a timely manner to support departure opportunities and to deliver their payloads to the intended orbit. This allows for quantitative comparisons between alternative scenarios, as well as the capability to analyze options for improving launch campaign reliability. Results are presented for representative strategies.

  17. Mars Curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Parents and children, such as Myron and Trey (age 3) Cummings, enjoyed exploring Mars using an interactive touch table (top right photo). Midway through the day of activities, visitors in the Science on a Sphere auditorium also enjoyed a presentation on Mars and the Curiosity mission by Dr. Steven Williams, a NASA expert on Mars.

  18. NASAs Evolvable Mars Campaign: Mars Moons Robotic Precursor

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Abercromby, Andrew F. J.; Abell, Paul A.; Love, Stanley G.; Lee, David E.; Chappell, Steven P.; Howe, A. Scott; Friedensen, Victoria

    2015-01-01

    Human exploration missions to the moons of Mars are being considered within NASA's Evolvable Mars Campaign (EMC) as an intermediate step for eventual human exploration and pioneering of the surface of Mars. A range of mission architectures is being evaluated in which human crews would explore one or both moons for as little as 14 days or for as long as 500 days with a variety of orbital and surface habitation and mobility options being considered. Relatively little is known about the orbital, surface, or subsurface characteristics of either moon. This makes them interesting but challenging destinations for human exploration missions during which crewmembers must be able to effectively conduct scientific exploration without being exposed to undue risks due to radiation, dust, micrometeoroids, or other hazards. A robotic precursor mission to one or both moons will be required to provide data necessary for the design and operation of subsequent human systems and for the identification and prioritization of scientific exploration objectives. This paper identifies and discusses considerations for the design of such a precursor mission based on current human mission architectures. Objectives of a Mars' moon precursor in support of human missions are expected to include: 1) identifying hazards on the surface and the orbital environment at up to 50-km distant retrograde orbits; 2) collecting data on physical characteristics for planning of detailed human proximity and surface operations; 3) performing remote sensing and in situ science investigations to refine and focus future human scientific activities; and 4) prospecting for in situ resource utilization. These precursor objectives can be met through a combination or remote sensing (orbital) and in-situ (surface) measurements. Analysis of spacecraft downlink signals using radio science techniques would measure the moon's mass, mass distribution, and gravity field, which will be necessary to enable trajectory planning

  19. JPL Tech Works Mars 2020 Descent Stage

    NASA Image and Video Library

    2018-03-13

    A technician works on the descent stage for NASA's Mars 2020 mission inside JPL's Spacecraft Assembly Facility. Mars 2020 is slated to carry NASA's next Mars rover to the Red Planet in July of 2020. https://photojournal.jpl.nasa.gov/catalog/PIA22342

  20. Size Contrast for Mars CubeSat

    NASA Image and Video Library

    2015-06-12

    The full-scale mock-up of NASA's MarCO CubeSat held by Farah Alibay, a systems engineer at NASA's Jet Propulsion Laboratory, is dwarfed by the one-half-scale model of NASA's Mars Reconnaissance Orbiter behind her. MarCO, short for Mars Cube One, is the first interplanetary use of CubeSat technologies for small spacecraft. JPL is preparing two MarCO twins for launch in March 2016. They will ride along on an Atlas V launch vehicle lifting off from Vandenberg Air Force Base, California, with NASA's next Mars lander, InSight. MarCO is a technology demonstration aspect of the InSight mission. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). After launch, the two MarCO CubeSats and InSight will be navigated separately to Mars. The MarCO twins will fly past the planet in September 2016 just as InSight is descending through the atmosphere and landing on the surface. MarCO is a technology demonstration to relay communications from InSight to Earth during InSight's descent and landing. InSight communications during that critical period will also be recorded by NASA's Mars Reconnaissance Orbiter for delayed transmission to Earth. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa

  1. Pioneering Objectives and Activities on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Hoffman, Stephen J.

    2015-01-01

    Human Mars missions have been a topic of sustained interest within NASA, which continues to use its resources to examine many different mission objectives, trajectories, vehicles, and technologies, the combinations of which are often referred to as reference missions or architectures. The current investigative effort, known as the Evolvable Mars Campaign (EMC), is examining alternatives that can pioneer an extended human presence on Mars that is Earth independent. These alternatives involve combinations of all the factors just mentioned. This paper is focused on the subset of these factors involved with objectives and activities that take place on the surface of Mars. "Pioneering" is a useful phrase to encapsulate the current approach being used to address this situation - one of its primary definitions is "a person or group that originates or helps open up a new line of thought or activity or a new method or technical development". Thus, in this scenario, NASA would be embarking on a path to "pioneer" a suite of technologies and operations that will result in an Earth independent, extended stay capability for humans on Mars. This paper will describe (a) the concept of operation determined to be best suited for the initial emplacement, (b) the functional capabilities determined to be necessary for this emplacement, with representative examples of systems that could carry out these functional capabilities and one implementation example (i.e., delivery sequence) at a representative landing site, and will (c) discuss possible capabilities and operations during subsequent surface missions.

  2. Report on the survey for electrostatic discharges on Mars using NASA's Deep Space Network (DSN)

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Majid, W.; Geldzahler, B.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Mars atmosphere has strong dust activity. It is suggested that the larger regional storms are capable of producing electric fields large enough to initiate electrostatic discharges. The storms have charging process similar to terrestrial dust devils and have hot cores and complicated vortex winds similar to terrestrial thunderstorms. However, due to uncertainties in our understanding of the electrical environment of the storms and absence of related in-situ measurements, the existence (or non-existence) of such electrostatic discharges on the planet is yet to be confirmed. Knowing about the electrical activity on Mars is essential for future human explorations of the planet. We have recently launched a long-term monitoring campaign at NASA's Madrid Deep Space Communication Complex (MDSCC) to search for powerful discharges on Mars. The search occurs during routine tracking of Mars orbiting spacecraft by Deep Space Network (DSN) radio telescope. In this presentation, we will report on the result of processing and analysis of the data from the first six months of our campaign.

  3. Human Mars Landing Site and Impacts on Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Bussey, Ben; Hoffman, Stephen J.

    2016-01-01

    NASA has begun a process to identify and discuss candidate locations where humans could land, live and work on the Martian surface. These locations are referred to as Exploration Zones (EZs). Given current mission concepts, an EZ is a collection of Regions of Interest (ROIs) that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains a landing site and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. These candidate EZs will be used by NASA as part of a multi-year process of determining where and how humans could explore Mars. In the near term this process includes: (a) identifying locations that would maximize the potential science return from future human exploration missions, (b) identifying locations with the potential for resources required to support humans, (c) developing concepts and engineering systems needed by future human crews to conduct operations within an EZ, and (d) identifying key characteristics of the proposed candidate EZs that cannot be evaluated using existing data sets, thus helping to define precursor measurements needed in advance of human missions. Existing and future robotic spacecraft will be tasked to gather data from specific Mars surface sites within the representative EZs to support these NASA activities. The proposed paper will describe NASA's initial steps for identifying and evaluating candidate EZs and ROIs. This includes plans for the "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" to be held in October 2015 at which proposals for EZs and ROIs will be presented and discussed. It will also include a discussion of how these considerations are (or will be) taken into account as future robotic Mars missions are

  4. Mars Equipment Transport System

    NASA Technical Reports Server (NTRS)

    Sorrells, Cindy; Geiger, Michelle; Ohanlon, Sean; Pieloch, Stuart; Brogan, Nick

    1993-01-01

    Mechanical Engineering Senior Design Project 1 (ME4182) is a part of the NASA/University Advanced Design Program. Under this program, NASA allocates money and resources to students to be used in design work for a specified topic. The current topic is the exploration and colonization of Mars. The specific area in which we are to work is the transportation of the modules in which astronauts will live while on Mars. NASA is concerned about the weight of the module transferring system, as the shipping cost to Mars is quite expensive. NASA has specified that the weight of the system is to be minimized in order to reduce the shipping costs.

  5. Mars Weather Map, Aug. 4, 2012

    NASA Image and Video Library

    2012-08-05

    This global map of Mars was acquired on Aug. 4, 2012, by the Mars Color Imager instrument on NASA Mars Reconnaissance Orbiter to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.

  6. Analysis of a spacecraft life support system for a Mars mission.

    PubMed

    Czupalla, M; Aponte, V; Chappell, S; Klaus, D

    2004-01-01

    This report summarizes a trade study conducted as part of the Fall 2002 semester Spacecraft Life Support System Design course (ASEN 5116) in the Aerospace Engineering Sciences Department at the University of Colorado. It presents an analysis of current life support system technologies and a preliminary design of an integrated system for supporting humans during transit to and on the surface of the planet Mars. This effort was based on the NASA Design Reference Mission (DRM) for the human exploration of Mars [NASA Design Reference Mission (DRM) for Mars, Addendum 3.0, from the world wide web: http://exploration.jsc.nasa.gov/marsref/contents.html.]. The integrated design was broken into four subsystems: Water Management, Atmosphere Management, Waste Processing, and Food Supply. The process started with the derivation of top-level requirements from the DRM. Additional system and subsystem level assumptions were added where clarification was needed. Candidate technologies were identified and characterized based on performance factors. Trade studies were then conducted for each subsystem. The resulting technologies were integrated into an overall design solution using mass flow relationships. The system level trade study yielded two different configurations--one for the transit to Mars and another for the surface habitat, which included in situ resource utilization. Equivalent System Mass analyses were used to compare each design against an open-loop (non-regenerable) baseline system. c2003 International Astronautical Federation. Published by Elsevier Ltd. All rights reserved.

  7. Solar Electric Propulsion for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Hack, Kurt J.

    1998-01-01

    Highly propellant-efficient electric propulsion is being combined with advanced solar power technology to provide a non-nuclear transportation option for the human exploration of Mars. By virtue of its high specific impulse, electric propulsion offers a greater change in spacecraft velocity for each pound of propellant than do conventional chemical rockets. As a result, a mission to Mars based on solar electric propulsion (SEP) would require fewer heavy-lift launches than a traditional all-chemical space propulsion scenario would. Performance, as measured by mass to orbit and trip time, would be comparable to the NASA design reference mission for human Mars exploration, which utilizes nuclear thermal propulsion; but it would avoid the issues surrounding the use of nuclear reactors in space.

  8. MarCO Flight Hardware 1

    NASA Image and Video Library

    2016-01-20

    One of the two MarCO (Mars Cube One) CubeSat spacecraft, with its insides displayed, is seen at NASA's Jet Propulsion Laboratory, Pasadena, California. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20345

  9. MarCO Flight Hardware 2

    NASA Image and Video Library

    2016-01-20

    One of the two MarCO (Mars Cube One) CubeSat spacecraft is seen at NASA's Jet Propulsion Laboratory, Pasadena, California. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20346

  10. Human Mars Mission Overview and Dust Storm Impacts on Site Selection

    NASA Astrophysics Data System (ADS)

    Hoffman, S. J.

    2017-06-01

    This presentation briefly reviews NASA's current approach to human exploration of Mars and key features placed on locations (referred to as Exploration Zones) for these activities. Impacts of dust and dust storms on selecting an EZ are discussed.

  11. Data Assimilation as a Tool for Developing a Mars International Reference Atmosphere

    NASA Technical Reports Server (NTRS)

    Houben, Howard

    2005-01-01

    A new paradigm for a Mars International Reference Atmosphere is proposed. In general, as is certainly now the case for Mars, there are sufficient observational data to specify what the full atmospheric state was under a variety of circumstances (season, dustiness, etc.). There are also general circulation models capable of deter- mining the evolution of these states. If these capabilities are combined-using data assimilation techniques-the resulting analyzed states can be probed to answer a wide variety of questions, whether posed by scientists, mission planners, or others. This system would fulfill all the purposes of an international reference atmosphere and would make the scientific results of exploration missions readily available to the community. Preliminary work on a website that would incorporate this functionality has begun.

  12. Mars Program Independent Assessment Team Report

    NASA Technical Reports Server (NTRS)

    Young, Thomas; Arnold, James; Brackey, Thomas; Carr, Michael; Dwoyer, Douglas; Fogleman, Ronald; Jacobson, Ralph; Kottler, Herbert; Lyman, Peter; Maguire, Joanne

    2000-01-01

    The Mars Climate Orbiter failed to achieve Mars orbit on September 23, 1999. On December 3, 1999, Mars Polar Lander and two Deep Space 2 microprobes failed. As a result, the NASA Administrator established the Mars Program Independent Assessment Team (MPIAT) with the following charter: 1) Review and analyze successes and failures of recent Mars and Deep Space Missions which include: a) Mars Global Surveyor, b) Mars Climate Orbiter, c) Pathfinder, d) Mars Polar Lander, e) Deep Space 1, and f) Deep Space 2; 2) Examine the relationship between and among, NASA Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), NASA Headquarters, and industry partners; 3) Assess effectiveness of involvement of scientists; 4) Identify lessons learned from successes and failures; 5) Review revised Mars Surveyor Program to assure lessons learned are utilized; 6) Oversee Mars Polar Lander and Deep Space 2 failure reviews; and 7) Complete by March 15, 2000. In-depth reviews were conducted at NASA Headquarters, JPL, and Lockheed Martin Astronautics (LMA). Structured reviews, informal sessions with numerous Mars Program participants, and extensive debate and discussion within the MPIAT establish the basis for this report. The review process began on January 7, 2000, and concluded with a briefing to the NASA Administrator on March 14, 2000. This report represents the integrated views of the members of the MPIAT who are identified in the appendix. In total, three related reports have been produced: a summary report, this report entitled "Mars Program Independent Assessment Team Report," and the "Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions".

  13. Solar-Electrochemical Power System for a Mars Mission

    NASA Technical Reports Server (NTRS)

    Withrow, Colleen A.; Morales, Nelson

    1994-01-01

    This report documents a sizing study of a variety of solar electrochemical power systems for the intercenter NASA study known as 'Mars Exploration Reference Mission'. Power systems are characterized for a variety of rovers, habitation modules, and space transport vehicles based on requirements derived from the reference mission. The mission features a six-person crew living on Mars for 500 days. Mission power requirements range from 4 kWe to 120 kWe. Primary hydrogen and oxygen fuel cells, regenerative hydrogen and oxygen fuel cells, sodium sulfur batteries advanced photovoltaic solar arrays of gallium arsenide on germanium with tracking and nontracking mechanisms, and tent solar arrays of gallium arsenide on germanium are evaluated and compared.

  14. Landing Area Narrowed for 2016 InSight Mission to Mars

    NASA Image and Video Library

    2013-09-04

    The process of selecting a site for NASA's next landing on Mars, planned for September 2016, has narrowed to four semifinalist sites located close together in the Elysium Planitia region of Mars. The mission known by the acronym InSight will study the Red Planet's interior, rather than surface features, to advance understanding of the processes that formed and shaped the rocky planets of the inner solar system, including Earth. The location of the cluster of semifinalist landing sites for InSight is indicated on this near-global topographic map of Mars, which also indicates landing sites of current and past NASA missions to the surface of Mars. The mission's full name is Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport. The location of Elysium Planitia close to the Martian equator meets an engineering requirement for the stationary InSight lander to receive adequate solar irradiation year-round on its photovoltaic array. The location also meets an engineering constraint for low elevation, optimizing the amount of atmosphere the spacecraft can use for deceleration during its descent to the surface. The number of candidate landing sites for InSight was trimmed from 22 down to four in August 2013. This down-selection facilitates focusing the efforts to further evaluate the four sites. Cameras on NASA's Mars Reconnaissance Orbiter will be used to gather more information about them before the final selection. The topographic map uses data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor spacecraft. The color coding on this map indicates elevation relative to a reference datum, since Mars has no "sea level." The lowest elevations are presented as dark blue; the highest as white. The difference between green and orange in the color coding is about 2.5 miles (4 kilometers) vertically. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using

  15. Humans to Mars Summit 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden delivers the opening keynote address at the Humans to Mars Summit on April 22, 2014 at George Washington University in Washington, DC. Administrator Bolden spoke of NASA's path to the human exploration of Mars during his remarks. Photo Credit: (NASA/Joel Kowsky)

  16. A Reliable Service-Oriented Architecture for NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan; Keely, Leslie; Hehner, Dennis; Chan, Louise

    2005-01-01

    The Collaborative Information Portal (CIP) was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory (JPL) for NASA's highly successful Mars Exploration Rover (MER) mission. Both MER and CIP have performed far beyond their original expectations. Mission managers and engineers ran CIP inside the mission control room at JPL, and the scientists ran CIP in their laboratories, homes, and offices. All the users connected securely over the Internet. Since the mission ran on Mars time, CIP displayed the current time in various Mars and Earth time zones, and it presented staffing and event schedules with Martian time scales. Users could send and receive broadcast messages, and they could view and download data and image files generated by the rovers' instruments. CIP had a three-tiered, service-oriented architecture (SOA) based on industry standards, including J2EE and web services, and it integrated commercial off-the-shelf software. A user's interactions with the graphical interface of the CIP client application generated web services requests to the CIP middleware. The middleware accessed the back-end data repositories if necessary and returned results for these requests. The client application could make multiple service requests for a single user action and then present a composition of the results. This happened transparently, and many users did not even realize that they were connecting to a server. CIP performed well and was extremely reliable; it attained better than 99% uptime during the course of the mission. In this paper, we present overviews of the MER mission and of CIP. We show how CIP helped to fulfill some of the mission needs and how people used it. We discuss the criteria for choosing its architecture, and we describe how the developers made the software so reliable. CIP's reliability did not come about by chance, but was the result of several key design decisions. We conclude with some of the important

  17. Mars Weather Map, 2008

    NASA Image and Video Library

    2012-08-04

    This global map of Mars was acquired on Oct. 28, 2008, by the Mars Color Imager instrument on NASA MRO. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.

  18. Lunar COTS: An Economical and Sustainable Approach to Reaching Mars

    NASA Technical Reports Server (NTRS)

    Zuniga, Allison F.; Rasky, Daniel; Pittman, Robert B.; Zapata, Edgar; Lepsch, Roger

    2015-01-01

    The NASA COTS (Commercial Orbital Transportation Services) Program was a very successful program that developed and demonstrated cost-effective development and acquisition of commercial cargo transportation services to the International Space Station (ISS). The COTS acquisition strategy utilized a newer model than normally accepted in traditional procurement practices. This new model used Space Act Agreements where NASA entered into partnerships with industry to jointly share cost, development and operational risks to demonstrate new capabilities for mutual benefit. This model proved to be very beneficial to both NASA and its industry partners as NASA saved significantly in development and operational costs while industry partners successfully expanded their market share of the global launch transportation business. The authors, who contributed to the development of the COTS model, would like to extend this model to a lunar commercial services program that will push development of technologies and capabilities that will serve a Mars architecture and lead to an economical and sustainable pathway to transporting humans to Mars. Over the past few decades, several architectures for the Moon and Mars have been proposed and studied but ultimately halted or not even started due to the projected costs significantly exceeding NASA's budgets. Therefore a new strategy is needed that will fit within NASA's projected budgets and takes advantage of the US commercial industry along with its creative and entrepreneurial attributes. The authors propose a new COTS-like program to enter into partnerships with industry to demonstrate cost-effective, cis-lunar commercial services, such as lunar transportation, lunar ISRU operations, and cis-lunar propellant depots that can enable an economical and sustainable Mars architecture. Similar to the original COTS program, the goals of the proposed program, being notionally referred to as Lunar Commercial Orbital Transfer Services (LCOTS

  19. Gale Crater is Low on Mars

    NASA Image and Video Library

    2012-08-02

    Gale Crater on Mars, where NASA Curiosity rover is set to land, belongs to a family of large, very old craters shown here on this elevation map. The data come from the Mars Orbiter Laser Altimeter instrument on NASA Mars Global Surveyor.

  20. Mars Weather Map, Aug. 2, 2012

    NASA Image and Video Library

    2012-08-04

    This global map of Mars was acquired on Aug. 2, 2012, by the Mars Color Imager instrument on NASA Mars Reconnaissance Orbiter. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity.

  1. Mars Science Laboratory's Descent Stage

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This portion of NASA's Mars Science Laboratory, called the descent stage, does its main work during the final few minutes before touchdown on Mars.

    The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground.

    The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Mission for NASA's Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  2. NASA Design Projects at UC Berkeley for NASA's HEDS-UP Program

    NASA Astrophysics Data System (ADS)

    Kuznetz, Lawrence

    1998-01-01

    Missions to Mars have been a topic for study since the advent of the space age. But funding has been largely reserved for the unmanned probes such as Viking, Pathfinder and Global Surveyer. Financial and political constraints have relegated human missions, on the other hand, to backroom efforts such as the Space Exploration Initiative (SEI) of 1989-1990. With the new found enthusiasm from Pathfinder and the meteorite ALH84001, however, there is renewed interest in human exploration of Mars. This is manifest in the new Human Exploration and Development of Space (HEDS) program that NASA has recently initiated. This program, through its University Projects (HEDS-UP) office has taken the unusual step of soliciting creative solutions from universities. For its part in the HEDS-UP program, the University of California at Berkeley was asked to study the issues of Habitat design, Space Suits for Mars, Environmental Control and Life Support Systems, Countermeasures to Hypogravity and Crew Size/Mix. These topics were investigated as design projects in "Mars by 2012", an on-going class for undergraduates and graduate students. The methodology of study was deemed to be as important as the design projects themselves and for that we were asked to create an Interactive Design Environment. The Interactive Design Environment (IDE) is an electronic "office" that allows scientists and engineers, as well as other interested parties, to interact with and critique engineering designs as they progress. It usually takes the form of a website that creates a "virtual office" environment. That environment is a place where NASA and others can interact with and critique the university designs for potential inclusion in the Mars Design Reference Mission.

  3. Mars Exploration Rover, Vertical Artist Concept

    NASA Image and Video Library

    2003-12-15

    An artist's concept portrays a NASA Mars Exploration Rover on the surface of Mars. Two rovers, Spirit and Opportunity, will reach Mars in January 2004. Each has the mobility and toolkit to function as a robotic geologist. http://photojournal.jpl.nasa.gov/catalog/PIA04928

  4. Mars Exploration Rovers: 4 Years on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2008-01-01

    This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond.

  5. Six Landing Sites on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The landing site chosen for NASA's Phoenix Mars Lander, at about 68 degrees north latitude, is much farther north than the sites where previous spacecraft have landed on Mars.

    Color coding on this map indicates relative elevations based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. Red is higher elevation; blue is lower elevation. In longitude, the map extends from 70 degrees (north) to minus 70 degrees (south).

  6. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    Paul Mahaffy, principal investigator for Curiosity's Sample Analysis at Mars (SAM) investigation at NASA's Goddard Space Flight Center in Maryland, answer's a reporters question at a news conference, Tuesday, March 12, 2013 at NASA Headquarters in Washington. The news conference covered the findings that the analysis of the rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  7. Computer processing of Mars Odyssey THEMIS IR imaging, MGS MOLA altimetry and Mars Express stereo imaging to locate Airy-0, the Mars prime meridian reference

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Neukum, Gerhard; Smith, David E.; Christensen, Philip; Neumann, Gregory; Albee, Arden; Caplinger, Michael; Seregina, N. V.; Kirk, Randolph L.

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses were made in year 2000 to tie Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to improve the location accuracy of Airy-0. Based upon this tie and radiometric tracking of landers / rovers from earth, new expressions for the Mars spin axis direction, spin rate and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Now that the Mars Global Surveyor mission and the Mars Orbiter Laser Altimeter global digital terrain model are complete, a more exhaustive study has been performed to determine the location of Airy-0 relative to the global terrain grid. THEMIS IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be within 50 meters of the currently defined IAU prime meridian, with this offset at the limiting absolute accuracy of the global terrain grid. Additional outputs of this study were a controlled multi-band photomosaic of Airy, precision alignment and geometric models of the ten THEMIS IR bands and a controlled multi-band photomosaic of Gale crater used to validate the Mars Surface Laboratory operational map products supporting their successful landing on Mars.

  8. Humans to Mars Summit 2014

    NASA Image and Video Library

    2014-04-22

    Michael Gazarik, NASA Associate Administrator for Space Technology gives a short presentation on NASA's human exploration path to Mars during a panel discussion moderated by PBS NewsHour's Miles O'Brien at the Humans to Mars Summit on April 22, 2014 at George Washington University in Washington, DC. Photo Credit: (NASA/Joel Kowsky)

  9. Humans to Mars Summit 2014

    NASA Image and Video Library

    2014-04-22

    NASA Administrator Charles Bolden answers questions from the audience after giving the opening keynote address at the Humans to Mars Summit on April 22, 2014 at George Washington University in Washington, DC. Administrator Bolden spoke of NASA's path to the human exploration of Mars during his remarks. Photo Credit: (NASA/Joel Kowsky)

  10. Both MarCO Spacecraft

    NASA Image and Video Library

    2018-03-29

    Engineer Joel Steinkraus stands with both of the Mars Cube One (MarCO) spacecraft at NASA's Jet Propulsion Laboratory. The one on the left is folded up the way it will be stowed on its rocket; the one on the right has its solar panels fully deployed, along with its high-gain antenna on top. The MarCOs will be the first CubeSats -- a kind of modular, mini-satellite -- flown in deep space. They're designed to fly along behind NASA's InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight's entry, descent and landing back to Earth. Though InSight's mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. https://photojournal.jpl.nasa.gov/catalog/PIA22319

  11. Known Locations of Carbonate Rocks on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Green dots show the locations of orbital detections of carbonate-bearing rocks on Mars, determined by analysis of targeted observations by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) acquired through January 2008. The spectrometer is on NASA's Mars Reconnaissance Orbiter.

    The base map is color-coded global topography (red is high, blue is low) overlain on mosaicked daytime thermal infrared images. The topography data are from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor. The thermal infrared imagery is from the Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter.

    The CRISM team, led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., includes expertise from universities, government agencies and small businesses in the United States and abroad. Arizona State University, Tempe, operates the Thermal Emission Imaging System, which the university developed in collaboration with Raytheon Santa Barbara Remote Sensing.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and Mars Odyssey projects for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiters.

  12. MarCO Being Tested in Sunlight

    NASA Image and Video Library

    2018-03-29

    Engineer Joel Steinkraus uses sunlight to test the solar arrays on one of the Mars Cube One (MarCO) spacecraft at NASA's Jet Propulsion Laboratory. The MarCOs will be the first CubeSats -- a kind of modular, mini-satellite -- flown into deep space. They're designed to fly along behind NASA's InSight lander on its cruise to Mars. If they make the journey to Mars, they will test a relay of data about InSight's entry, descent and landing back to Earth. Though InSight's mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. https://photojournal.jpl.nasa.gov/catalog/PIA22317

  13. Mars global reference atmosphere model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.

    1992-01-01

    Mars-GRAM is an empirical model that parameterizes the temperature, pressure, density, and wind structure of the Martian atmosphere from the surface through thermospheric altitudes. In the lower atmosphere of Mars, the model is built around parameterizations of height, latitudinal, longitudinal, and seasonal variations of temperature determined from a survey of published measurements from the Mariner and Viking programs. Pressure and density are inferred from the temperature by making use of the hydrostatic and perfect gas laws relationships. For the upper atmosphere, the thermospheric model of Stewart is used. A hydrostatic interpolation routine is used to insure a smooth transition from the lower portion of the model to the Stewart thermospheric model. Other aspects of the model are discussed.

  14. Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder Effort

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Lee, Kristopher A.; Miller, Scott T.; Vorndran, Kenneth A.; Vaden, Karl R.; Ross, Eric P.; Powell, Bobby C.; Moses, Robert W.

    2017-01-01

    The NASA Engineering Safety Center (NESC) Systems Engineering (SE) Technical Discipline Team (TDT) initiated the Model Based Systems Engineering (MBSE) Pathfinder effort in FY16. The goals and objectives of the MBSE Pathfinder include developing and advancing MBSE capability across NASA, applying MBSE to real NASA issues, and capturing issues and opportunities surrounding MBSE. The Pathfinder effort consisted of four teams, with each team addressing a particular focus area. This paper focuses on Pathfinder team 1 with the focus area of architectures and mission campaigns. These efforts covered the timeframe of February 2016 through September 2016. The team was comprised of eight team members from seven NASA Centers (Glenn Research Center, Langley Research Center, Ames Research Center, Goddard Space Flight Center IV&V Facility, Johnson Space Center, Marshall Space Flight Center, and Stennis Space Center). Collectively, the team had varying levels of knowledge, skills and expertise in systems engineering and MBSE. The team applied their existing and newly acquired system modeling knowledge and expertise to develop modeling products for a campaign (Program) of crew and cargo missions (Projects) to establish a human presence on Mars utilizing In-Situ Resource Utilization (ISRU). Pathfinder team 1 developed a subset of modeling products that are required for a Program System Requirement Review (SRR)/System Design Review (SDR) and Project Mission Concept Review (MCR)/SRR as defined in NASA Procedural Requirements. Additionally, Team 1 was able to perform and demonstrate some trades and constraint analyses. At the end of these efforts, over twenty lessons learned and recommended next steps have been identified.

  15. First Image from MarCO-B

    NASA Image and Video Library

    2018-05-15

    The first image captured by one of NASA's Mars Cube One (MarCO) CubeSats. The image, which shows both the CubeSat's unfolded high-gain antenna at right and the Earth and its moon in the center, was acquired by MarCO-B on May 9. MarCO is a pair of small spacecraft accompanying NASA's InSight (Interior Investigations Using Seismic Investigations, Geodesy and Heat Transport) lander. Together, MarCO-A and MarCO-B are the first CubeSats ever sent to deep space. InSight is the first mission to ever explore Mars' deep interior. If the MarCO CubeSats make the entire journey to Mars, they will attempt to relay data about InSight back to Earth as the lander enters the Martian atmosphere and lands. MarCO will not collect any science, but are intended purely as a technology demonstration. They could serve as a pathfinder for future CubeSat missions. An annotated version is available at https://photojournal.jpl.nasa.gov/catalog/PIA22323

  16. Microreactor System Design for a NASA In Situ Propellant Production Plant on Mars

    NASA Technical Reports Server (NTRS)

    TeGrotenhuis, W. E.; Wegeng, R. S.; Vanderwiel, D. P.; Whyatt, G. A.; Viswanathan, V. V.; Schielke, K. P.; Sanders, G. B.; Peters, T. A.; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    The NASA In Situ Resource Utilization (ISRU) program is planning near-term missions to Mars that will include chemical processes for converting the carbon dioxide (CO2) and possibly water from the Martian environment to propellants, oxygen, and other useful chemicals. The use of indigenous resources reduces the size and weight of the payloads from Earth significantly, representing enormous cost savings that make human exploration of Mars affordable. Extraterrestrial chemical processing plants will need to be compact, lightweight, highly efficient under reduced gravity, and extraordinarily reliable for long periods. Microchemical and thermal systems represent capability for dramatic reduction in size and weight, while offering high reliability through massive parallelization. In situ propellant production (ISPP), one aspect of the ISRU program, involves collecting and pressurizing atmospheric CO2, conversion reactions, chemical separations, heat exchangers, and cryogenic storage. A preliminary system design of an ISPP plant based on microtechnology has demonstrated significant size, weight, and energy efficiency gains over the current NASA baseline. Energy management is a strong driver for Mars-based processes, not only because energy is a scarce resource, but because heat rejection is problematic; the low pressure environment makes convective heat transfer ineffective. Energy efficiency gains are largely achieved in the microchemical plant through extensive heat recuperation and energy cascading, which has a small size and weight penalty because the added micro heat exchangers are small. This leads to additional size and weight gains by reducing the required area of waste heat radiators. The microtechnology-based ISPP plant is described in detail, including aspects of pinch analysis for optimizing the heat exchanger network. Three options for thermochemical compression Of CO2 from the Martian atmosphere, adsorption, absorption, and cryogenic freezing, are presented

  17. Fission Surface Power Technology Development Testing at NASA's Early Flight Fission Test Facility

    NASA Technical Reports Server (NTRS)

    Houts. Michael G.

    2009-01-01

    Fission surface power (FSP) systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at polar locations, at locations away from the poles, or in permanently shaded regions, with excellent performance at all sites. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass anywhere on the lunar surface. The reference FSP system (FSPS) is also readily extensible for use on Mars. At Mars the system would be capable of operating through global dust storms and providing year-round power at any Martian latitude. Under the NASA Exploration Technology Development Program (ETDP), NASA and the Department of Energy (DOE) have begun technology development on Fission Surface Power (FSP). The primary customer for this technology is the NASA Constellation Program which is responsible for the development of surface systems to support human exploration on the moon and Mars. The objectives of the FSP technology project are: 1) Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FSP design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow Agency decision-makers to consider FSP as a viable option for flight development. To be mass efficient, FSP systems must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial systems. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference FSP system uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage

  18. Interpreting Radar View near Mars' South Pole, Orbit 1360

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A radargram from the Shallow Subsurface Radar instrument (SHARAD) on NASA's Mars Reconnaissance Orbiter is shown in the upper-right panel and reveals detailed structure in the polar layered deposits of the south pole of Mars.

    The sounding radar collected the data presented here during orbit 1360 of the mission, on Nov. 10, 2006.

    The horizontal scale in the radargram is distance along the ground track. It can be referenced to the ground track map shown in the lower right. The radar traversed from about 74 degrees to 85 degrees south latitude, or about 650 kilometers (400 miles). The ground track map shows elevation measured by the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. Green indicates low elevation; reddish-white indicates higher elevation. The traverse proceeds up onto a plateau formed by the layers.

    The vertical scale on the radargram is time delay of the radar signals reflected back to Mars Reconnaissance Orbiter from the surface and subsurface. For reference, using an assumed velocity of the radar waves in the subsurface, time is converted to depth below the surface at one place: about 800 meters (2,600 feet) to one of the strongest subsurface reflectors. This reflector marks the base of the polar layered deposits. The color scale varies from black for weak reflections to white for strong reflections.

    The middle panel shows mapping of the major subsurface reflectors, some of which can be traced for a distance of 100 kilometers (60 miles) or more. The layering manifests the recent climate history of Mars, recorded by the deposition and removal of ice and dust.

    The Shallow Subsurface Radar was provided by the Italian Space Agency (ASI). Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science

  19. Mars Ice Age, Simulated

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 17, 2003

    This simulated view shows Mars as it might have appeared during the height of a possible ice age in geologically recent time.

    Of all Solar System planets, Mars has the climate most like that of Earth. Both are sensitive to small changes in orbit and tilt. During a period about 2.1 million to 400,000 years ago, increased tilt of Mars' rotational axis caused increased solar heating at the poles. A new study using observations from NASA's Mars Global Surveyor and Mars Odyssey orbiters concludes that this polar warming caused mobilization of water vapor and dust into the atmosphere, and buildup of a surface deposit of ice and dust down to about 30 degrees latitude in both hemispheres. That is the equivalent of the southern Unites States or Saudi Arabia on Earth. Mars has been in an interglacial period characterized by less axial tilt for about the last 300,000 years. The ice-rich surface deposit has been degrading in the latitude zone of 30 degrees to 60 degrees as water-ice returns to the poles.

    In this illustration prepared for the December 18, 2003, cover of the journal Nature, the simulated surface deposit is superposed on a topography map based on altitude measurements by Global Surveyor and images from NASA's Viking orbiters of the 1970s.

    Mars Global Surveyor and Mars Odyssey are managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Office of Space Science, Washington.

  20. Mars Helicopter (Artist's Concept)

    NASA Image and Video Library

    2018-05-25

    This artist concept shows the Mars Helicopter, a small, autonomous rotorcraft, which will travel with NASA's Mars 2020 rover mission, currently scheduled to launch in July 2020, to demonstrate the viability and potential of heavier-than-air vehicles on the Red Planet. https://photojournal.jpl.nasa.gov/catalog/PIA22460

  1. Mars Weather Map, Aug. 5

    NASA Image and Video Library

    2012-08-10

    This global map of Mars was acquired on Aug. 5, 2012, by the Mars Color Imager instrument on NASA MRO. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.

  2. Hinners Point Above Floor of Marathon Valley on Mars Enhanced Color

    NASA Image and Video Library

    2015-09-25

    This Martian scene shows contrasting textures and colors of "Hinners Point," at the northern edge of "Marathon Valley," and swirling reddish zones on the valley floor to the left. In this version of the image, the landscape is presented in enhanced color to make differences in surface materials more easily visible. The summit takes its informal name as a tribute to Noel Hinners (1935-2014). For NASA's Apollo program, Hinners played important roles in selection of landing sites on the moon and scientific training of astronauts. He then served as NASA associate administrator for space science, director of the Smithsonian National Air and Space Museum, director of NASA's Goddard Space Flight Center, NASA chief scientist and associate deputy administrator of NASA. Subsequent to responsibility for the Viking Mars missions while at NASA, he spent the latter part of his career as vice president for flight systems at Lockheed Martin, where he had responsibility for the company's roles in development and operation of NASA's Mars Global Surveyor, Mars Reconnaissance Orbiter, Mars Odyssey, Phoenix Mars Lander, Stardust and Genesis missions. Marathon Valley cuts generally east-west through the western rim of Endeavour Crater. The valley's name refers to the distance Opportunity drove from its 2004 landing site to arrival at this location in 2014. The valley was a high-priority destination for the rover mission because observations from orbit detected clay minerals there. Dark rocks on Hinners Point show a pattern dipping downward toward the interior of Endeavour, to the right from this viewing angle. The strong dip may have resulted from the violence of the impact event that excavated the crater. Brighter rocks make up the valley floor. The reddish zones there may be areas where water has altered composition. Inspections by Opportunity have found compositions there are higher in silica and lower in iron than the typical composition of rocks on Endeavour's rim. The scene spans

  3. NASA’s Mars Lander Launches

    NASA Image and Video Library

    2018-05-05

    NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) was launched May 5 on a United Launch Alliance Atlas V rocket, from Vandenberg Air Force Base in Central California. NASA also flew a technology demonstration called Mars Cube One (MarCO) on the Atlas V to separately go to Mars. NASA has a long and successful track record at Mars. InSight will drill into the Red Planet to study the crust, mantle and core of Mars. It will help scientists understand the formation and early evolution of all rocky planets, including Earth.

  4. Humans to Mars Summit 2014

    NASA Image and Video Library

    2014-04-22

    Miles O'Brien, science correspondant for PBS NewsHour, left, leads a panel discussion on Mars exploration with William Gerstenmaier, NASA Associatate Administrator for Human Explorations and Operations, center, and Michael Gazarik, NASA Associate Administrator for Space Technology, left, at the Humans to Mars Summit on April 22, 2014 at George Washington University in Washington, DC. Photo Credit: (NASA/Joel Kowsky)

  5. Revisiting Nuclear Thermal Propulsion for Human Mars Exploration

    NASA Technical Reports Server (NTRS)

    Percy, Thomas K.; Rodriguez, Mitchell

    2017-01-01

    Nuclear Thermal Propulsion (NTP) has long been considered as a viable in-space transportation alternative for delivering crew and cargo to the Martian system. While technology development work in nuclear propulsion has continued over the year, general interest in NTP propulsion applications has historically been tied directly to the ebb and flow of interest in sending humans to explore Mars. As far back as the 1960’s, plans for NTP-based human Mars exploration have been proposed and periodically revisited having most recently been considered as part of NASA Design Reference Architecture (DRA) 5.0. NASA has been investigating human Mars exploration strategies tied to its current Journey to Mars for the past few years however, NTP has only recently been added into the set of alternatives under consideration for in-space propulsion under the Mars Study Capability (MSC) team, formerly the Evolvable Mars Campaign (EMC) team. The original charter of the EMC was to find viable human Mars exploration approaches that relied heavily on technology investment work already underway, specifically related to the development of large Solar Electric Propulsion (SEP) systems. The EMC team baselined several departures from traditional Mars exploration ground rules to enable these types of architectures. These ground rule changes included lower energy conjunction class trajectories with corresponding longer flight times, aggregation of mission elements in cis-Lunar space rather than Low Earth Orbit (LEO) and, in some cases, the pre-deployment of Earth return propulsion systems to Mars. As the MSC team continues to refine the in-space transportation trades, an NTP-based architecture that takes advantage of some of these ground rule departures is being introduced.

  6. Command generator tracker based direct model reference adaptive tracking guidance for Mars atmospheric entry

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Peng, Yuming

    2012-01-01

    In order to accurately deliver an entry vehicle through the Martian atmosphere to the prescribed parachute deployment point, active Mars entry guidance is essential. This paper addresses the issue of Mars atmospheric entry guidance using the command generator tracker (CGT) based direct model reference adaptive control to reduce the adverse effect of the bounded uncertainties on atmospheric density and aerodynamic coefficients. Firstly, the nominal drag acceleration profile meeting a variety of constraints is planned off-line in the longitudinal plane as the reference model to track. Then, the CGT based direct model reference adaptive controller and the feed-forward compensator are designed to robustly track the aforementioned reference drag acceleration profile and to effectively reduce the downrange error. Afterwards, the heading alignment logic is adopted in the lateral plane to reduce the crossrange error. Finally, the validity of the guidance algorithm proposed in this paper is confirmed by Monte Carlo simulation analysis.

  7. Intrepid Crater on Mars Stereo

    NASA Image and Video Library

    2010-11-18

    Intrepid crater on Mars carries the name of the lunar module of NASA Apollo 12 mission, which landed on Earth moon Nov. 19, 1969. NASA Mars Exploration Rover Opportunity recorded this stereo view on Nov. 11, 2010. 3D glasses are necessary.

  8. Operationalizing the 21st Century Learning Skills Framework for the NASA Mission to Mars Program

    NASA Astrophysics Data System (ADS)

    Smith, Burgess; Research, MSI; Evaluation Team; Interactive Videoconferences Teamlt/p>, MSI

    2013-06-01

    Internal evaluators working with the NASA Mission to Mars program, an out-of-school collaborative videoconferencing program at the Museum of Science and Industry Chicago (MSI), developed an observation protocol to collect evidence about the collaborative learning opportunities offered by the program’s unique technology. Details about the protocol’s development are discussed, along with results of the pilot observations of the program.

  9. Mars Topography

    NASA Image and Video Library

    2001-01-17

    These maps are global false-color topographic views of Mars at different orientations from NASA Mars Orbiter Laser Altimeter MOLA. The maps are orthographic projections that contain over 200,000,000 points and about 5,000,000 altimetric crossovers.

  10. Mars Up Close

    NASA Image and Video Library

    2014-08-05

    Ken Edgett, principal investigator, MAHLI Camera, Mars Exploration Program, discusses what we’ve learned from Curiosity and the other Mars rovers during a “Mars Up Close” panel discussion, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  11. Middleware and Web Services for the Collaborative Information Portal of NASA's Mars Exploration Rovers Mission

    NASA Technical Reports Server (NTRS)

    Sinderson, Elias; Magapu, Vish; Mak, Ronald

    2004-01-01

    We describe the design and deployment of the middleware for the Collaborative Information Portal (CIP), a mission critical J2EE application developed for NASA's 2003 Mars Exploration Rover mission. CIP enabled mission personnel to access data and images sent back from Mars, staff and event schedules, broadcast messages and clocks displaying various Earth and Mars time zones. We developed the CIP middleware in less than two years time usins cutting-edge technologies, including EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed as a collection of independent, hot-deployable web services, providing secure access to back end file systems and databases. Throughout the middleware we enabled crosscutting capabilities such as runtime service configuration, security, logging and remote monitoring. This paper presents our approach to mitigating the challenges we faced, concluding with a review of the lessons we learned from this project and noting what we'd do differently and why.

  12. How Mars is losing its atmosphere on This Week @NASA – November 6, 2015

    NASA Image and Video Library

    2015-11-06

    New findings by NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission indicate that solar wind is currently stripping away the equivalent of about 1/4 pound of gas every second from the Martian atmosphere. MAVEN tracked a series of dramatic solar storms passing through the Martian atmosphere in March and found the loss was accelerated. This could suggest that violent solar activity in the distant past may have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life, to the cold, arid planet Mars is today. Also, 15 Years on space station, and counting!, Spacewalk for space station maintenance, NASA seeking future astronauts, Commercial Crew access tower progress and First SLS flight engine placed for testing!

  13. Review of NASA approach to space radiation risk assessments for Mars exploration.

    PubMed

    Cucinotta, Francis A

    2015-02-01

    Long duration space missions present unique radiation protection challenges due to the complexity of the space radiation environment, which includes high charge and energy particles and other highly ionizing radiation such as neutrons. Based on a recommendation by the National Council on Radiation Protection and Measurements, a 3% lifetime risk of exposure-induced death for cancer has been used as a basis for risk limitation by the National Aeronautics and Space Administration (NASA) for low-Earth orbit missions. NASA has developed a risk-based approach to radiation exposure limits that accounts for individual factors (age, gender, and smoking history) and assesses the uncertainties in risk estimates. New radiation quality factors with associated probability distribution functions to represent the quality factor's uncertainty have been developed based on track structure models and recent radiobiology data for high charge and energy particles. The current radiation dose limits are reviewed for spaceflight and the various qualitative and quantitative uncertainties that impact the risk of exposure-induced death estimates using the NASA Space Cancer Risk (NSCR) model. NSCR estimates of the number of "safe days" in deep space to be within exposure limits and risk estimates for a Mars exploration mission are described.

  14. Mars Up Close

    NASA Image and Video Library

    2014-08-05

    John Grant, geologist and long-term planner, Curiosity Mars Science Laboratory, discusses what we’ve learned from Curiosity and the other Mars rovers during a “Mars Up Close” panel discussion, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  15. Water Flowing on Mars Today on This Week @NASA – October 2, 2015

    NASA Image and Video Library

    2015-10-02

    A major scientific discovery was announced by NASA at a Sept. 28 news conference. From its vantage point high above the Martian surface, NASA’s Mars Reconnaissance Orbiter (MRO) spacecraft has found the strongest evidence yet, that under certain circumstances, liquid water has been found on Mars. Researchers say an imaging spectrometer on MRO detected signatures of hydrated minerals on slopes where downhill streaks, known as Recurring Slope Lineae (RSL) are seen. In the past, RSL flows have been described as possibly related to liquid water. But the new findings of hydrated minerals is key evidence. Hydrated salts can lower the freezing point of liquid brine – and produce liquid water. Also, Life beyond Earth in the next decade?, “The Martian” screening event, Cargo ship departs space station, New cargo ship delivers to space station, Rare double celestial treat and Espacio a Tierra!

  16. Mars exploration study workshop 2

    NASA Astrophysics Data System (ADS)

    Duke, Michael B.; Budden, Nancy Ann

    1993-11-01

    A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.

  17. Mars exploration study workshop 2

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.; Budden, Nancy Ann

    1993-01-01

    A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.

  18. Mars Up Close

    NASA Image and Video Library

    2014-08-05

    Guest attending the National Geographic “Mars Up Close” panel discussion, look at full scale models of the Spirit/Opportunity, left, and Curiosity, Mars rovers, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Guest listened to a panel of distinguished space scientists and Mars experts involved in current Mars exploration that shared what we’ve learned from Curiosity and the other Mars rovers. Photo Credit: (NASA/Bill Ingalls)

  19. Locations of Ice-Exposing Fresh Craters on Mars

    NASA Image and Video Library

    2013-12-10

    This map of Mars indicates locations of new craters that have excavated ice blue and those that have not red. Albedo information comes from NASA Mars Odyssey orbiter, and the map comes from NASA Mars Global Surveyor orbiter.

  20. Seasonal Frost Changes on Mars

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Observations by NASA's 2001 Mars Odyssey spacecraft show a comparison of wintertime (left) and summertime (right) views of the north polar region of Mars in intermediate-energy, or epithermal, neutrons. The maps are based on data from the high-energy neutron detector, an instrument in Odyssey's gamma-ray spectrometer suite. Soil enriched by hydrogen is indicated by the purple and deep blue colors on the maps. Progressively smaller amounts of hydrogen are shown in the colors light blue, green, yellow and red. The hydrogen is believed to be in the form of water ice. In some areas, the abundance of water ice is estimated to be up to 90% by volume. In winter, much of the hydrogen is hidden beneath a layer of carbon dioxide frost (dry ice). In the summer, the hydrogen is revealed because the carbon dioxide frost has dissipated. A shaded-relief rendition of topography is superimposed on these maps for geographic reference.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency and Institute for Space Research (IKI), which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Layered Ice Near the South Pole of Mars

    NASA Image and Video Library

    2017-12-12

    The two largest ice sheets in the inner solar system are here on Earth, Antarctica and Greenland. The third largest is at the South Pole of Mars and a small part of it is shown in this image from NASA's Mars Reconnaissance Orbiter (MRO). Much like the terrestrial examples, this ice sheet is layered and scientists refer to it as the South Polar layered deposits. The ice layers contain information about past climates on Mars and deciphering this record has been a major goal of Mars science for decades. This slope, near the ice sheet's edge, shows the internal layers that have this climate record. With stereo images, we can tell the heights of these layers so we can measure their thickness and try to unravel the climatic information they contain. (Be sure to view the digital terrain model for this observation.) The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 25.0 centimeters (9.8 inches) per pixel (with 1 x 1 binning); objects on the order of 75 centimeters (29.5 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22125

  2. Mars Up Close

    NASA Image and Video Library

    2014-08-05

    Dr. Jim Green, NASA‘s Planetary Science Division Director and Head of Mars Program, discusses what we’ve learned from Curiosity and the other Mars rovers during a “Mars Up Close” panel discussion, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  3. Mars entry guidance based on an adaptive reference drag profile

    NASA Astrophysics Data System (ADS)

    Liang, Zixuan; Duan, Guangfei; Ren, Zhang

    2017-08-01

    The conventional Mars entry tracks a fixed reference drag profile (FRDP). To improve the landing precision, a novel guidance approach that utilizes an adaptive reference drag profile (ARDP) is presented. The entry flight is divided into two phases. For each phase, a family of drag profiles corresponding to various trajectory lengths is planned. Two update windows are investigated for the reference drag profile. At each window, the ARDP is selected online from the profile database according to the actual range-to-go. The tracking law for the selected drag profile is designed based on the feedback linearization. Guidance approaches using the ARDP and the FRDP are then tested and compared. Simulation results demonstrate that the proposed ARDP approach achieves much higher guidance precision than the conventional FRDP approach.

  4. Coherent Frequency Reference System for the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Tucker, Blake C.; Lauf, John E.; Hamell, Robert L.; Gonzaler, Jorge, Jr.; Diener, William A.; Tjoelker, Robert L.

    2010-01-01

    The NASA Deep Space Network (DSN) requires state-of-the-art frequency references that are derived and distributed from very stable atomic frequency standards. A new Frequency Reference System (FRS) and Frequency Reference Distribution System (FRD) have been developed, which together replace the previous Coherent Reference Generator System (CRG). The FRS and FRD each provide new capabilities that significantly improve operability and reliability. The FRS allows for selection and switching between frequency standards, a flywheel capability (to avoid interruptions when switching frequency standards), and a frequency synthesis system (to generate standardized 5-, 10-, and 100-MHz reference signals). The FRS is powered by redundant, specially filtered, and sustainable power systems and includes a monitor and control capability for station operations to interact and control the frequency-standard selection process. The FRD receives the standardized 5-, 10-, and 100-MHz reference signals and distributes signals to distribution amplifiers in a fan out fashion to dozens of DSN users that require the highly stable reference signals. The FRD is also powered by redundant, specially filtered, and sustainable power systems. The new DSN Frequency Distribution System, which consists of the FRS and FRD systems described here, is central to all operational activities of the NASA DSN. The frequency generation and distribution system provides ultra-stable, coherent, and very low phase-noise references at 5, l0, and 100 MHz to between 60 and 100 separate users at each Deep Space Communications Complex.

  5. Alternate: MarCO Being Tested in Sunlight

    NASA Image and Video Library

    2018-03-29

    Engineer Joel Steinkraus uses sunlight to test the solar arrays on one of the Mars Cube One (MarCO) spacecraft at NASA's Jet Propulsion Laboratory. The MarCOs will be the first CubeSats -- a kind of modular, mini-satellite -- flown into deep space. They're designed to fly along behind NASA's InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight's entry, descent and landing back to Earth. Though InSight's mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. https://photojournal.jpl.nasa.gov/catalog/PIA22318

  6. Frost on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows bluish-white frost seen on the Martian surface near NASA's Phoenix Mars Lander. The image was taken by the lander's Surface Stereo Imager on the 131st Martian day, or sol, of the mission (Oct. 7, 2008). Frost is expected to continue to appear in images as fall, then winter approach Mars' northern plains.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Mars Up Close

    NASA Image and Video Library

    2014-08-05

    Pan Conrad, deputy principal investigator, Sample Analysis at Mars team, NASA‘s Goddard Space Flight Center, discusses what we’ve learned from Curiosity and the other Mars rovers during a “Mars Up Close” panel discussion, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. Photo Credit: (NASA/Bill Ingalls)

  8. Mars Rover Concept Vehicle

    NASA Image and Video Library

    2017-06-05

    Crowds gather around the scientifically-themed Mars rover concept vehicle at the Kennedy Space Center Visitor Complex. It is a part of the "Summer of Mars" program designed to provide a survey of NASA's studies of the Red Planet. The builders of the rover, Parker Brothers Concepts of Port Canaveral, Florida, incorporated input into its design from NASA subject matter experts.

  9. Mars Rock Analysis Briefing

    NASA Image and Video Library

    2013-03-12

    David Blake, principal investigator for Curiosity's Chemistry and Mineralogy investigation at NASA's Ames Research Center in Calif., speaks at a news conference presenting findings of the Curiosity rover's analysis of the first sample of rock powder collected on Mars, Tuesday, March 12, 2013 in Washington. The rock sample collected shows ancient Mars could have supported living microbes. Photo Credit: (NASA/Carla Cioffi)

  10. Image Relayed by MAVEN Mars Orbiter from Curiosity Mars Rover

    NASA Image and Video Library

    2014-11-10

    The first demonstration of NASA MAVEN Mars orbiter capability to relay data from a Mars surface mission, on Nov. 6, 2014, included this image, taken Oct. 23, 2014, by Curiosity Navigation Camera, showing part of Pahrump Hills outcrop.

  11. Mars Reconnaissance Orbiter Observes Changes

    NASA Image and Video Library

    2017-02-08

    NASA's Mars Reconnaissance Orbiter has been observing Mars in sharp detail for more than a decade, enabling it to document many types of changes, such as the way winds alter the appearance of this recent impact site. The space-rock impact that created this blast zone occurred sometime between September 2005 and February 2006, as bracketed by observations made with the Mars Orbiter Camera on NASA's Mars Global Surveyor spacecraft. The location is between two large volcanos, named Ascraeus Mons and Pavonis Mons, in a dusty area of the Tharsis region of Mars. During the period from 2007 to 2012, winds blowing through the pass between the volcanoes darkened some regions and brightened others, probably by removing and depositing dust. The view covers an area about 1.0 mile (1.6 kilometers) across, at 7 degrees north latitude, 248 degrees east longitude. North is toward the top. An animation is availalble at http://photojournal.jpl.nasa.gov/catalog/PIA21267

  12. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    NASA chief scientist, Dr. Waleed Abdalati, speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  13. A Martian Telecommunications Network: UHF Relay Support of the Mars Exploration Rovers by the Mars Global Surveyor, Mars Odyssey, and Mars Express Orbiters

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Barbieri, A.; Brower, E.; Estabrook, P.; Gibbs, R.; Horttor, R.; Ludwinski, J.; Mase, R.; McCarthy, C.; Schmidt, R.; hide

    2004-01-01

    NASA and ESA have established an international network of Mars orbiters, outfitted with relay communications payloads, to support robotic exploration of the red planet. Starting in January, 2004, this network has provided the Mars Exploration Rovers with telecommunications relay services, significantly increasing rover engineering and science data return while enhancing mission robustness and operability. Augmenting the data return capabilities of their X-band direct-to-Earth links, the rovers are equipped with UHF transceivers allowing data to be relayed at high rate to the Mars Global Surveyor (MGS), Mars Odyssey, and Mars Express orbiters. As of 21 July, 2004, over 50 Gbits of MER data have been obtained, with nearly 95% of that data returned via the MGS and Odyssey UHF relay paths, allowing a large increase in science return from the Martian surface relative to the X-band direct-to-Earth link. The MGS spacecraft also supported high-rate UHF communications of MER engineering telemetry during the critical period of entry, descent, and landing (EDL), augmenting the very low-rate EDL data collected on the X-band direct-to-Earth link. Through adoption of the new CCSDS Proximity-1 Link Protocol, NASA and ESA have achieved interoperability among these Mars assets, as validated by a successful relay demonstration between Spirit and Mars Express, enabling future interagency cross-support and establishing a truly international relay network at Mars.

  14. Mars Science Laboratory Rover Taking Shape

    NASA Image and Video Library

    2008-11-19

    This image taken in August 2008 in a clean room at NASA JPL, Pasadena, Calif., shows NASA next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

  15. Aeroshell for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver.

    This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested.

    The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent.

    The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet.

    In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell.

    The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in

  16. In-Space Transportation for NASA's Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Percy, Thomas K.; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    As the nation embarks on a new and bold journey to Mars, significant work is being done to determine what that mission and those architectural elements will look like. The Evolvable Mars Campaign, or EMC, is being evaluated as a potential approach to getting humans to Mars. Built on the premise of leveraging current technology investments and maximizing element commonality to reduce cost and development schedule, the EMC transportation architecture is focused on developing the elements required to move crew and equipment to Mars as efficiently and effectively as possible both from a performance and a programmatic standpoint. Over the last 18 months the team has been evaluating potential options for those transportation elements. One of the key aspects of the EMC is leveraging investments being made today in missions like the Asteroid Redirect Mission (ARM) mission using derived versions of the Solar Electric Propulsion (SEP) propulsion systems and coupling them with other chemical propulsion elements that maximize commonality across the architecture between both transportation and Mars operations elements. This paper outlines the broad trade space being evaluated including the different technologies being assessed for transportation elements and how those elements are assembled into an architecture. Impacts to potential operational scenarios at Mars are also investigated. Trades are being made on the size and power level of the SEP vehicle for delivering cargo as well as the size of the chemical propulsion systems and various mission aspects including Inspace assembly and sequencing. Maximizing payload delivery to Mars with the SEP vehicle will better support the operational scenarios at Mars by enabling the delivery of landers and habitation elements that are appropriately sized for the mission. The purpose of this investigation is not to find the solution but rather a suite of solutions with potential application to the challenge of sending cargo and crew to Mars

  17. Mars Up Close

    NASA Image and Video Library

    2014-08-05

    Marc Kaufman, space news writer, National Geographic and The Washington Post, and author of the new National Geographic book “Mars Up Close”, kicks off a panel discussion of Mars experts involved in current Mars exploration, Tuesday, August 5, 2014, at the National Geographic Society headquarters in Washington. The panelist shared what we’ve learned from Curiosity and the other Mars rovers surveying the red planet. Photo Credit: (NASA/Bill Ingalls)

  18. Mars Science Laboratory Rover Taking Shape

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image taken in August 2008 in a clean room at NASA's Jet Propulsion Laboratory, Pasadena, Calif., shows NASA's next Mars rover, the Mars Science Laboratory, in the course of its assembly, before additions of its arm, mast, laboratory instruments and other equipment.

    The rover is about 9 feet wide and 10 feet long.

    Viewing progress on the assembly are, from left: NASA Associate Administrator for Science Ed Weiler, California Institute of Technology President Jean-Lou Chameau, JPL Director Charles Elachi, and JPL Associate Director for Flight Projects and Mission Success Tom Gavin.

    JPL, a division of Caltech, manages the Mars Science Laboratory project for the NASA Science Mission Directorate, Washington.

  19. Human Mars Lander Design for NASA's Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Chapman, Jack; Sutherlin, Steve; Taylor, Brian; Fabisinski, Leo; Collins, Tim; Cianciolo Dwyer, Alicia; Samareh, Jamshid; Robertson, Ed; Studak, Bill; hide

    2016-01-01

    Landing humans on Mars will require entry, descent, and landing capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. To better assess entry, descent, and landing technology options and sensitivities to future human mission design variations, a series of design studies on human-class Mars landers has been initiated. This paper describes the results of the first design study in the series of studies to be completed in 2016 and includes configuration, trajectory and subsystem design details for a lander with Hypersonic Inflatable Aerodynamic Decelerator (HIAD) entry technology. Future design activities in this series will focus on other entry technology options.

  20. A Martian Meteorite for Mars 2020

    NASA Image and Video Library

    2018-02-13

    Rohit Bhartia of NASA's Mars 2020 mission holds a slice of a meteorite scientists have determined came from Mars. This slice will likely be used here on Earth for testing a laser instrument for NASA's Mars 2020 rover; a separate slice will go to Mars on the rover. Martian meteorites are believed to be the result of impacts to the Red Planet's surface, resulting in rock being blasted into the atmosphere. After traveling through space for eons, some of these rocks entered Earth's atmosphere. Scientists determine whether they are true Martian meteorites based on their rock and noble gas chemistry and mineralogy. The gases trapped in these meteorites bear the unique fingerprint of the Martian atmosphere, as recorded by NASA's Viking mission in 1976. The rock types also show clear signs of igneous processing not possible on smaller bodies, such as asteroids. https://photojournal.jpl.nasa.gov/catalog/PIA22245

  1. Interpreting Radar View near Mars' South Pole, Orbit 1334

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A radargram from the Shallow Subsurface Radar instrument (SHARAD) on NASA's Mars Reconnaissance Orbiter is shown in the upper-right panel and reveals detailed structure in the polar layered deposits of the south pole of Mars.

    The sounding radar collected the data presented here during orbit 1334 of the mission, on Nov. 8, 2006.

    The horizontal scale in the radargram is distance along the ground track. It can be referenced to the ground track map shown in the lower right. The radar traversed from about 75 to 85 degrees south latitude, or about 590 kilometers (370 miles). The ground track map shows elevation measured by the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. Green indicates low elevation; reddish-white indicates higher elevation. The traverse proceeds up onto a plateau formed by the layers.

    The vertical scale on the radargram is time delay of the radar signals reflected back to Mars Reconnaissance Orbiter from the surface and subsurface. For reference, using an assumed velocity of the radar waves in the subsurface, time is converted to depth below the surface at one place: about 1,500 meters (5,000 feet) to one of the deeper subsurface reflectors. The color scale varies from black for weak reflections to white for strong reflections.

    The middle panel shows mapping of the major subsurface reflectors, some of which can be traced for a distance of 100 kilometers (60 miles) or more. The layers are not all horizontal and the reflectors are not always parallel to one another. Some of this is due to variations in surface elevation, which produce differing velocity path lengths for different reflector depths. However, some of this behavior is due to spatial variations in the deposition and removal of material in the layered deposits, a result of the recent climate history of Mars.

    The Shallow Subsurface Radar was provided by the Italian Space Agency (ASI). Its operations are led by the University of Rome and its

  2. Lowering SAM Instrument into Curiosity Mars Rover

    NASA Image and Video Library

    2011-01-18

    In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.

  3. Installing SAM Instrument into Curiosity Mars Rover

    NASA Image and Video Library

    2011-01-18

    In this photograph, technicians and engineers inside a clean room at NASA Jet Propulsion Laboratory, Pasadena, Calif., position NASA Sample Analysis at Mars SAM above the mission Mars rover, Curiosity, for installing the instrument.

  4. Mars 2020 MOXIE Laboratory and Principal Investigator

    NASA Image and Video Library

    2016-07-15

    One investigation on NASA's Mars 2020 rover will extract oxygen from the Martian atmosphere. It is called MOXIE, for Mars Oxygen In-Situ Resource Utilization Experiment. In this image, MOXIE Principal Investigator Michael Hecht, of the Massachusetts Institute of Technology, Cambridge, is in the MOXIE development laboratory at NASA's Jet Propulsion Laboratory, Pasadena, California. Mars' atmosphere is mostly carbon dioxide. Demonstration of the capability for extracting oxygen from it, under Martian environmental conditions, will be a pioneering step toward how humans on Mars will use the Red Planet's natural resources. Oxygen can be used in the rocket http://photojournal.jpl.nasa.gov/catalog/PIA20761

  5. Mars Sample Return in the Context of the Mars Exploration Program

    NASA Astrophysics Data System (ADS)

    Garvin, J. B.

    2002-05-01

    The scientific priorities developed for the scientific exploration of Mars by the Mars Exploration Program Assessment Group [MEPAG, 2001] and as part of the Committee on Planetary and Lunar Exploration (COMPLEX) recent assessment of the NASA Mars Exploration Program [COMPLEX, 2001] all involve a campaign of Mars Sample Return (MSR) missions. Such MSR missions are required to address in a definitive manner most of the highest priority investigations within overarching science themes which include: (1) biological potential (past or present); (2) climate (past or present); (3) solid planet (surface and interior, past and present); (4) knowledge necessary to prepare for eventual human exploration of Mars. NASA's current Mars Exploration Program (MEP) contains specific flight mission developments and plans only for the present decade (2002-2010), including a cascade of missions designed to set the stage for an inevitable campaign of MSR missions sometime in the second decade (2011-2020). Studies are presently underway to examine implementation options for a first MSR mission in which at least 500g of martian materials (including lithic fragments) would be returned to Earth from a landing vicinity carefully selected on the basis of the comprehensive orbital and surface-based remote sensing campaign that is ongoing (MGS, ODYSSEY) and planned (MER, MRO, 2009 MSL). Key to the first of several MSR's is attention to risk, cost, and enabling technologies that facilitate access to most scientifically-compelling martian materials at very local scales. The context for MSR's in the upcoming decade remains a vital part of NASA's scientific strategy for Mars exploration.

  6. Mars-Gram Validation with Mars Global Surveyor Data

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many b4ars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Arizona Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiting Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with Mars Global Surveyor Radio Science (RS) and Thermal Emission Spectrometer (TES) data. RS data from 2480 profiles were used, covering latitudes 75deg S to 72deg N, surface to approx. 40 km, for seasons ranging from areocentric longitude of Sun (Ls) = 70-160deg and 265-310deg. RS data spanned a range of local times, mostly 0-9 hours and 18-24 hours. For interests in aerocapture and precision landing, comparisons concentrated on atmospheric density. At a fixed height of 20 km, measured RS density varied by about a factor of 2.5 over the range of latitudes and Ls values observed. Evaluated at matching positions and times, average RS/Mars-GRAM density ratios were generally lf0.05, except at heights above approx. 25 km and latitudes above approx.50deg N. Average standard deviation of RS/Mars-GRAM density ratio was 6%. TES data were used covering surface to approx. 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of Mars global dust storm). Depending on season, TES data covered latitudes 85deg S to 85deg N. Most TES data were concentrated near local times 2 hours and 14 hours. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (> 45deg N), or at most altitudes in the southern hemisphere at Ls approx. 90 and 180deg). Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of approx. 6

  7. New NASA Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  8. Overview of the Mission Design Reference Trajectory for NASA's Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; McCarty, Steven L.; Lantoine, Gregory B.; Qu, Min; Shen, Haijun; Smith, David A.; Vavrina, Matthew A.

    2017-01-01

    The National Aeronautics and Space Administration's (NASA's) recently cancelled Asteroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus class near-Earth asteroid and provide the capability to capture and retrieve a boulder off of the surface of the asteroid and bring the asteroidal material back to cislunar space. Leveraging the best of NASA's science, technology, and human exploration efforts, this mission was originally conceived to support observation campaigns, advanced solar electric propulsion, and NASA's Space Launch System heavy-lift rocket and Orion crew vehicle. The asteroid characterization and capture portion of ARM was referred to as the Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where astronauts would visit and study it. The purpose of this paper is to document the final reference trajectory of ARRM and the challenges and unique methods employed in the trajectory design of the mission.

  9. Planetary protection requirements for orbiter and netlander elements of the CNES/NASA Mars sample return mission

    NASA Astrophysics Data System (ADS)

    Debus, A.

    In the framework of Mars exploration, particularly for missions dedicated to the search for life or for traces of ancient forms of life, NASA and CNES have decided to join their efforts in order to build a Mars sample return mission. Taking into account article IX of the OUTER SPACE TREATY (Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial, referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966, ratified in London / Washington January 27, 1967) and in order to comply with the COSPAR planetary protection recommendations, a common planetary protection program has to be established. Mars in-situ experimentations are limited by the size and the mass of the instruments necessary to perform exobiology investigations and, consequently, it appears that the best way to conduct such experiments is to bring back Mars samples to Earth. A sample return mission enables the use of a very large number of instruments and analysis protocols, giving exobiologists the best chance to find living entities or organic compounds related to life. Such a mission is complicated from a planetary protection point of view, it combines constraints for the protection of both the Mars environment as well as Earth, including the preservation of samples to ensure the validity of exobiological experiments.

  10. Mars exploration advances: Missions to Mars - Mars base

    NASA Technical Reports Server (NTRS)

    Dejarnette, Fred R.; Mckay, Christopher P.

    1992-01-01

    An overview is presented of Mars missions and related planning with attention given to four mission architectures in the light of significant limitations. Planned unpiloted missions are discussed including the Mars Orbital Mapping Mission, the Mars Rover Sample Return, the Mars Aeronomy Orbiter, and the Mars Environmental Survey. General features relevant to the missions are mentioned including launch opportunities, manned-mission phases, and propulsion options. The four mission architectures are set forth and are made up of: (1) the Mars-exploration infrastructures; (2) science emphasis for the moon and Mars; (3) the moon to stay and Mars exploration; and (4) space resource utilization. The possibility of robotic missions to the moon and Mars is touched upon and are concluded to be possible by the end of the century. The ramifications of a Mars base are discussed with specific reference to habitability and base activities, and the human missions are shown to require a heavy-lift launcher and either chemical/aerobrake or nuclear-thermal propulsion system.

  11. Anomaly Trends for Missions to Mars: Mars Global Surveyor and Mars Odyssey

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Hoffman, Alan R.

    2008-01-01

    Conducted as a part of NASA Ultra-Reliability effort: Goal is to design for increased reliability in all NASA missions. Desire is to increase reliability by a factor of 10. Study provides a baseline for current technology. Analyzed anomalies for spacecraft orbiting Mars. Long lived spacecraft. Comparison with current rover missions and past orbiters. Looked for trends to assist design of future missions.

  12. 50 Years of Mars Exploration

    NASA Image and Video Library

    2015-08-20

    2015 marks 50 years of successful NASA missions to Mars starting with Mariner 4 in 1965. Since then, a total of 15 robotic missions led by various NASA centers have laid the groundwork for future human missions to the Red Planet. The journey to Mars continues with additional robotic missions planned for 2016 and 2020, and human missions in the 2030s.

  13. Mars curiosity mission

    NASA Image and Video Library

    2012-08-04

    NASA welcomed hundreds of children and accompanying adults to its INFINITY visitor center on Aug. 4, offering Mars-related activities that focused attention on the space agency's Curiosity mission to the Red Planet. Among other attractions, 3-D images from Mars provided 'Wow!' glimpses of the Red Planet. In addition to the Mars activities, visitors were able to tour other space-related exhibits at the center.

  14. MarCOs Cruise in Deep Space

    NASA Image and Video Library

    2018-03-29

    An artist's rendering of the twin Mars Cube One (MarCO) spacecraft as they fly through deep space. The MarCOs will be the first CubeSats -- a kind of modular, mini-satellite -- attempting to fly to another planet. They're designed to fly along behind NASA's InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight's entry, descent and landing back to Earth. Though InSight's mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. https://photojournal.jpl.nasa.gov/catalog/PIA22314

  15. Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition

    NASA Technical Reports Server (NTRS)

    Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie

    2007-01-01

    This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.

  16. Mars Rover Concept Vehicle

    NASA Image and Video Library

    2017-06-05

    The scientifically-themed Mars rover concept vehicle operates on an electric motor, powered by solar panels and a 700-volt battery. The back section opens and serves as a laboratory which can disconnect for autonomous research. While this exact rover is not expected to operate on Mars, one or more of its elements could make its way into a rover astronauts will drive on the Red Planet. The "Summer of Mars" promotion is designed to provide guests with a better understanding of NASA's studies of the Red Planet. The builders of the rover, Parker Brothers Concepts of Port Canaveral, Florida, incorporated input into its design from NASA subject matter experts.

  17. Habitable Mars Ascent Vehicle (MAV) Concept. [Mars Ascent Vehicle (MAV) Layout and Configuration: 6-Crew, Habitable, Nested Tank Concept

    NASA Technical Reports Server (NTRS)

    Dang, Victor; Rucker, Michelle

    2013-01-01

    NASA's ultimate goal is the human exploration of Mars. Among the many difficult aspects of a trip to Mars is the return mission that would transport the astronauts from the Martian surface back into Mars orbit. One possible conceptual design to accomplish this task is a two-stage Mars Ascent Vehicle (MAV). In order to assess this design, a general layout and configuration for the spacecraft must be developed. The objective of my internship was to model a conceptual MAV design to support NASA's latest human Mars mission architecture trade studies, technology prioritization decisions, and mass, cost, and schedule estimates.

  18. Integrated Surface Power Strategy for Mars

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle

    2015-01-01

    A National Aeronautics and Space Administration (NASA) study team evaluated surface power needs for a conceptual crewed 500-day Mars mission. This study had four goals: 1. Determine estimated surface power needed to support the reference mission; 2. Explore alternatives to minimize landed power system mass; 3. Explore alternatives to minimize Mars Lander power self-sufficiency burden; and 4. Explore alternatives to minimize power system handling and surface transportation mass. The study team concluded that Mars Ascent Vehicle (MAV) oxygen propellant production drives the overall surface power needed for the reference mission. Switching to multiple, small Kilopower fission systems can potentially save four to eight metric tons of landed mass, as compared to a single, large Fission Surface Power (FSP) concept. Breaking the power system up into modular packages creates new operational opportunities, with benefits ranging from reduced lander self-sufficiency for power, to extending the exploration distance from a single landing site. Although a large FSP trades well for operational complexity, a modular approach potentially allows Program Managers more flexibility to absorb late mission changes with less schedule or mass risk, better supports small precursor missions, and allows a program to slowly build up mission capability over time. A number of Kilopower disadvantages-and mitigation strategies-were also explored.

  19. Mars for Earthlings: An Analog Approach to Mars in Undergraduate Education

    PubMed Central

    Kahmann-Robinson, Julia

    2014-01-01

    Abstract Mars for Earthlings (MFE) is a terrestrial Earth analog pedagogical approach to teaching undergraduate geology, planetary science, and astrobiology. MFE utilizes Earth analogs to teach Mars planetary concepts, with a foundational backbone in Earth science principles. The field of planetary science is rapidly changing with new technologies and higher-resolution data sets. Thus, it is increasingly important to understand geological concepts and processes for interpreting Mars data. MFE curriculum is topically driven to facilitate easy integration of content into new or existing courses. The Earth-Mars systems approach explores planetary origins, Mars missions, rocks and minerals, active driving forces/tectonics, surface sculpting processes, astrobiology, future explorations, and hot topics in an inquiry-driven environment. Curriculum leverages heavily upon multimedia resources, software programs such as Google Mars and JMARS, as well as NASA mission data such as THEMIS, HiRISE, CRISM, and rover images. Two years of MFE class evaluation data suggest that science literacy and general interest in Mars geology and astrobiology topics increased after participation in the MFE curriculum. Students also used newly developed skills to create a Mars mission team presentation. The MFE curriculum, learning modules, and resources are available online at http://serc.carleton.edu/marsforearthlings/index.html. Key Words: Mars—Geology—Planetary science—Astrobiology—NASA education. Astrobiology 14, 42–49. PMID:24359289

  20. NASA Facts, The Viking Mission.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of publications of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. The Viking mission to Mars, consisting of two unmanned NASA spacecraft launched in August and September, 1975, is described. A description of the spacecraft and their paths is given. A diagram identifying the…

  1. Mars Soil-Based Resource Processing and Planetary Protection

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Mueller, R. P.

    2015-01-01

    The ability to extract and process resources at the site of exploration into products and services, commonly referred to as In Situ Resource Utilization (ISRU), can have significant benefits for robotic and human exploration missions. In particular, the ability to use in situ resources to make propellants, fuel cell reactants, and life support consumables has been shown in studies to significantly reduce mission mass, cost, and risk, while enhancing or enabling missions not possible without the incorporation of ISRU. In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study. For the first time in a large scale Mars architecture study, water from Mars soil was considered as a potential resource. At the time of the study, knowledge of water resources (their form, concentration, and distribution) was extremely limited. Also, due to lack of understanding of how to apply planetary protection rules and requirements to ISRU soil-based excavation and processing, an extremely conservative approach was incorporated where only the top several centimeters of ultraviolet (UV) radiated soil could be processed (assumed to be 3% water by mass). While results of the Mars DRA 5.0 study showed that combining atmosphere processing to make oxygen and methane with soil processing to extract water provided the lowest mission mass, atmosphere processing to convert carbon dioxide (CO2) into oxygen was baselined for the mission since it was the lowest power and risk option. With increased knowledge and further clarification of Mars planetary protection rules, and the recent release of the Mars Exploration Program Analysis Group (MEPAG) report on "Special Regions and the Human Exploration of Mars", it is time to reexamine potential water resources on Mars, options for soil processing to extract water, and the implications with respect to planetary protection and Special Regions on Mars.

  2. Radiation Measurements on Mars

    NASA Image and Video Library

    2013-12-09

    Micrograys are unit of measurement for absorbed radiation dose. The vertical axis is in micrograys per day. The RAD instrument on NASA Curiosity Mars rover monitors the natural radiation environment at the surface of Mars.

  3. Strengthening the Mars Telecommunications Network

    NASA Image and Video Library

    2016-11-29

    On Nov. 22, 2016, a NASA radio aboard the European Space Agency's (ESA's) Trace Gas Orbiter, which arrived at Mars the previous month, succeeded in its first test of receiving data transmitted from NASA Mars rovers, both Opportunity and Curiosity. This graphic depicts the geometry of Opportunity transmitting data to the orbiter, using the ultra-high frequency (UHF) band of radio wavelengths. The orbiter received that data using one of its twin Electra UHF-band radios. Data that the orbiter's Electra received from the two rovers was subsequently transmitted from the orbiter to Earth, using the orbiter's main X-band radio. The Trace Gas Orbiter is part of ESA's ExoMars program. During the initial months after its Oct. 19, 2016, arrival, it is flying in a highly elliptical orbit. Each loop takes 4.2 days to complete, with distances between the orbiter and the planet's surface ranging from about 60,000 miles (about 100,000 kilometers) to less than 200 miles (less than 310 kilometers). Later, the mission will reshape the orbit to a near-circular path about 250 miles (400 kilometers) above the surface of Mars. Three NASA orbiters and one other ESA orbiter currently at Mars also have relayed data from Mars rovers to Earth. This strategy enables receiving much more data from the surface missions than would be possible with a direct-to-Earth radio link from rovers or stationary landers. Successful demonstration of the capability added by the Trace Gas Orbiter strengthens and extends the telecommunications network at Mars for supporting future missions to the surface of the Red Planet. http://photojournal.jpl.nasa.gov/catalog/PIA21139

  4. MarCO CubeSat Model

    NASA Image and Video Library

    2016-01-20

    Joel Steinkraus, lead mechanical engineer for the MarCO (Mars Cube One) CubeSat spacecraft, adjusts a model of one of the two spacecraft. The mock-up in the photo is in a configuration to show the deployed position of components that correspond to MarCO's two solar panels and two antennas. During launch, those components will be stowed for a total vehicle size of about 14.4 inches (36.6 centimeters) by 9.5 inches (24.3 centimeters) by 4.6 inches (11.8 centimeters). The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20344

  5. The Mars Sample Return Project

    NASA Technical Reports Server (NTRS)

    O'Neil, W. J.; Cazaux, C.

    2000-01-01

    The Mars Sample Return (MSR) Project is underway. A 2003 mission to be launched on a Delta III Class vehicle and a 2005 mission launched on an Ariane 5 will culminate in carefully selected Mars samples arriving on Earth in 2008. NASA is the lead agency and will provide the Mars landed elements, namely, landers, rovers, and Mars ascent vehicles (MAVs). The French Space Agency CNES is the largest international partner and will provide for the joint NASA/CNES 2005 Mission the Ariane 5 launch and the Earth Return Mars Orbiter that will capture the sample canisters from the Mars parking orbits the MAVs place them in. The sample canisters will be returned to Earth aboard the CNES Orbiter in the Earth Entry Vehicles provided by NASA. Other national space agencies are also expected to participate in substantial roles. Italy is planning to provide a drill that will operate from the Landers to provide subsurface samples. Other experiments in addition to the MSR payload will also be carried on the Landers. This paper will present the current status of the design of the MSR missions and flight articles. c 2000 American Institute of Aeronautics and Astronautics, Inc. Published by Elsevier Science Ltd.

  6. Mars Hand Lens Imager Sends Ultra High-Res Photo from Mars

    NASA Image and Video Library

    2013-10-17

    This image of a U.S. penny on a calibration target was taken by the Mars Hand Lens Imager MAHLI aboard NASA Curiosity rover in Gale Crater on Mars. At 14 micrometers per pixel, this is the highest-resolution image that MAHLI can acquire.

  7. How Habitable Might an Exo-Mars Be?

    NASA Image and Video Library

    2017-12-13

    How habitable might an Exo-Mars be? It's a complex question but one that NASA's Mars Atmosphere and Volatile Evolution (MAVEN) mission can help answer. To receive the same amount of starlight as Mars receives from our Sun, a planet orbiting an M-type red dwarf would have to be positioned much closer to its star than Mercury is to the Sun. https://photojournal.jpl.nasa.gov/catalog/PIA22075

  8. Interpreting Radar View near Mars' North Pole, Orbit 1512

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A radargram from the Shallow Subsurface Radar instrument (SHARAD) on NASA's Mars Reconnaissance Orbiter is shown in the upper-right panel and reveals detailed structure in the polar layered deposits of the north pole of Mars (with blowups shown in the upper-left panels). The sounding radar collected the data presented here during orbit 1512 of the mission, on Nov. 22, 2006.

    The horizontal scale in the radargram is distance along the ground track. It can be referenced to the ground track map shown in the lower right. The radar traversed from about 83.5 degrees to 80.5 degrees north latitude, or about 180 kilometers (110 miles). The ground track map shows elevation measured by the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. Green indicates low elevation; reddish-white indicates higher elevation. The traverse is from the high elevation of the plateau formed by the layers to the lowlands below.

    The vertical scale on the radargram is time delay of the radar signals reflected back to Mars Reconnaissance Orbiter from the surface and subsurface. For reference, using an assumed velocity of the radar waves in the subsurface, time is converted to depth below the surface in two places: about 600 meters (2,000 feet) to the lowest of an upper series of bright reflectors and about 2,000 meters (6,500 feet) to the base of the polar layered deposits. The color scale of the radargram varies from black for weak reflections to bright yellow for strong reflections.

    The lower-left panel is a image from the Mars Orbiter Camera on Mars Global Surveyor showing exposed polar layering in the walls of a canyon near the north pole. The layering is divided into a finely structured upper unit (labeled 'Upper PLD') and less-well-defined stratigraphy in the lower unit (labeled 'Lower PLD'). The radargram clearly reveals the complexity of the layering in the upper unit, additional reflections from the lower unit, and the base of the entire stack of

  9. Assessing Group Dynamics in a Mars Simulation

    NASA Astrophysics Data System (ADS)

    Bishop, S. L.

    2007-10-01

    International interest in psychosocial functioning generally and issues of group and inter-group function for space crews has increased as focus has shifted towards longer duration spaceflight and, particularly, the issues involved in sending a human crew to Mars (Kanas, et al., 2001; Dawson, 2002). Planning documents for a human mission to Mars such as the NASA Design Reference Mission (DRM 1.0) emphasize the need for adaptability of crewmembers and autonomy in the crew as a whole (Hoffman and Kaplan, 1997). Similarly a major study by the International Space University (ISU, 1991) emphasized the need for autonomy and initiative for a Mars crew given that many of the scenarios that will be encountered on Mars cannot be rehearsed on earth and given the lack of any realistic possibility for rescue of the crew. This research project was only one subset of data collected during the larger AustroMars Expedition at the Mars Desert Research Facility (MDRS) in 2006. The participating crew comprises part of a multi-year investigation on teams utilizing the MDRS facility. The program of research has included numerous researchers since 2002 with a progressive evolution of key foci addressing stress, personality, coping, adaptation, cognitive functioning, and group identity assessed across the duration period of the individual missions.

  10. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (third from left), mission manager and project engineer, Mars Science Laboratory (MSL), Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. From left to right, Watkins is joined by Dwayne Brown, NASA Headquarters public affairs officer; Michael Meyer, lead scientist Mars Exploration Program, NASA Headquarters; Watkins; John Grant, geologist, Smithsonian National Air and Space Museum in Washington; Dawn Sumner, geologist, University of California, Davis and John Grotzinger, MSL project scientist, JPL. Photo Credit: (NASA/Carla Cioffi)

  11. Analysis of Shroud Options in Support of the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Feldman, Stuart; Borowski, Stanley; Engelund, Walter; Hundley, Jason; Monk, Timothy; Munk, Michelle

    2010-01-01

    In support of the Mars Design Reference Architecture (DRA) 5.0, the NASA study team analyzed several shroud options for use on the Ares V launch vehicle.1,2 These shroud options included conventional "large encapsulation" shrouds with outer diameters ranging from 8.4 to 12.9 meters (m) and overall lengths of 22.0 to 54.3 meters, along with a "nosecone-only" shroud option used for Mars transfer vehicle component delivery. Also examined was a "multi-use" aerodynamic encapsulation shroud used for launch, Mars aerocapture, and entry, descent, and landing of the cargo and habitat landers. All conventional shroud options assessed for use on the Mars launch vehicles were the standard biconic design derived from the reference shroud utilized in the Constellation Program s lunar campaign. It is the purpose of this paper to discuss the technical details of each of these shroud options including material properties, structural mass, etc., while also discussing both the volume and mass of the various space transportation and surface system payload elements required to support a "minimum launch" Mars mission strategy, as well as the synergy, potential differences and upgrade paths that may be required between the Lunar and Mars mission shrouds.

  12. Rotorcraft as Mars Scouts

    NASA Technical Reports Server (NTRS)

    Young, L. A.; Aiken, E. W.; Gulick, V.; Mancinelli, R.; Briggs, G. A.; Rutkowski, Michael (Technical Monitor)

    2002-01-01

    A new approach for the robotic exploration of Mars is detailed in this paper: the use of small, ultralightweight, autonomous rotary-wing aerial platforms. Missions based on robotic rotorcraft could make excellent candidates for NASA Mars Scout program. The paper details the work to date and future planning required for the development of such 'Mars rotorcraft.'

  13. Mars: The Viking Discoveries.

    ERIC Educational Resources Information Center

    French, Bevan M.

    This booklet describes the results of NASA's Viking spacecraft on Mars. It is intended to be useful for the teacher of basic courses in earth science, space science, astronomy, physics, or geology, but is also of interest to the well-informed layman. Topics include why we should study Mars, how the Viking spacecraft works, the winds of Mars, the…

  14. Lifting SAM Instrument for Installation into Mars Rover

    NASA Image and Video Library

    2011-01-18

    NASA Sample Analysis at Mars SAM instrument, largest of the 10 science instruments for NASA Mars Science Laboratory mission, will examine samples of Martian rocks, soil and atmosphere for information about chemicals that are important to life.

  15. Radiation Assessment Detector for Mars Science Laboratory

    NASA Image and Video Library

    2010-11-09

    The Radiation Assessment Detector, shown prior to its September 2010 installation onto NASA Mars rover Curiosity, will aid future human missions to Mars by providing information about the radiation environment on Mars and on the way to Mars.

  16. Radiation Exposure Comparisons with Mars Trip Calculation

    NASA Image and Video Library

    2013-12-09

    Measurements with the MSL RAD on NASA Curiosity Mars rover during the flight to Mars and now on the surface of Mars enable an estimate of the radiation astronauts would be exposed to on an expedition to Mars.

  17. NASA puts JWST Back on Track, but ExoMars Collaboration Looks Unlikely; Marsquakes happening yesterday, geologically; UFOs from black holes control shape of galaxies

    NASA Astrophysics Data System (ADS)

    2012-04-01

    NASA's funding plans put the James Webb Space Telescope firmly on track for a launch in 2018, to widespread relief, but the essentially flat funding settlement for 2013 overall means something has to go. Planetary science seems hardest hit, with the especial blow for European planetary scientists of NASA pulling out of ExoMars, the ESA-led mission to look for signs of life on Mars. Images from the High Resolution Imaging Science Experiment have shown boulders displaced by seismic activity on Mars in the past few million years, and possibly much more recently than that. The bigger the supermassive black hole at the centre of a galaxy, the faster the stars in the galactic bulge rotate. Why this should be so has been something of a puzzle, but now a mechanism that is both powerful and common enough to do the job has been identified.

  18. Mars as a Destination in a Capability-Driven Framework

    NASA Technical Reports Server (NTRS)

    Hoffman, S. J.; Drake, B. G.; Baker, J. D.; Voels, S. A.

    2011-01-01

    This paper describes NASA s current plans for the exploration of Mars by human crews within NASA s Capability-Driven Framework (CDF). The CDF describes an approach for progressively extending human explorers farther into the Solar System for longer periods of time as allowed by developments in technology and spacecraft systems. Within this framework, Mars defines the most challenging objective currently envisioned for human spaceflight. The paper first describes the CDF and potential destinations being considered within this framework. For destinations relevant to the exploration of Mars, this includes both the Martian surface and the two moons of Mars. This is followed by a brief review of our evolving understanding of Mars to provide the context for the specific objectives set for human exploration crews. This includes results from robotic missions and goals set for future Martian exploration by NASA's community-based forum, the Mars Exploration Program Analysis Group (MEPAG) and the MEPAG-sponsored Human Exploration of Mars - Science Analysis Group (HEM-SAG). The paper then reviews options available for human crews to reach Mars and return to Earth. This includes a discussion of the rationale used to select from among these options for envisioned Mars exploration missions. The paper then concludes with a description of technological and operational challenges that still face NASA in order to be able to achieve the exploration goals for Mars within the CDF.

  19. Austere Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Price, Hoppy; Hawkins, Alisa M.; Tadcliffe, Torrey O.

    2009-01-01

    The Design Reference Architecture 5 (DRA 5) is the most recent concept developed by NASA to send humans to Mars in the 2030 time frame using Constellation Program elements. DRA 5 is optimized to meet a specific set of requirements that would provide for a robust exploration program to deliver a new six-person crew at each biennial Mars opportunity and provide for power and infrastructure to maintain a highly capable continuing human presence on Mars. This paper examines an alternate architecture that is scaled back from DRA 5 and might offer lower development cost, lower flight cost, and lower development risk. It is recognized that a mission set using this approach would not meet all the current Constellation Mars mission requirements; however, this 'austere' architecture may represent a minimum mission set that would be acceptable from a science and exploration standpoint. The austere approach is driven by a philosophy of minimizing high risk or high cost technology development and maximizing development and production commonality in order to achieve a program that could be sustained in a flat-funded budget environment. Key features that would enable a lower technology implementation are as follows: using a blunt-body entry vehicle having no deployable decelerators, utilizing aerobraking rather than aerocapture for placing the crewed element into low Mars orbit, avoiding the use of liquid hydrogen with its low temperature and large volume issues, using standard bipropellant propulsion for the landers and ascent vehicle, and using radioisotope surface power systems rather than a nuclear reactor or large area deployable solar arrays. Flat funding within the expected NASA budget for a sustained program could be facilitated by alternating cargo and crew launches for the biennial Mars opportunities. This would result in two assembled vehicles leaving Earth orbit for Mars per Mars opportunity. The first opportunity would send two cargo landers to the Mars surface to

  20. Happy Mars Solstice!

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager (SSI) in the late afternoon of the 30th Martian day of the mission, or Sol 30 (June 25, 2008). This is hours after the beginning of Martian northern summer. SSI used its natural-color filters, therefore the color is the color you would see on Mars. The image shows shadows from the SSI (left) and from the meteorological station mast (right) stretching toward the east as the sun dropped low in the west.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver

  1. Size Comparison: Three Generations of Mars Rovers

    NASA Image and Video Library

    2008-11-19

    Full-scale models of three generations of NASA Mars rovers show the increase in size from the Sojourner rover of the Mars Pathfinder project, to the twin Mars Exploration Rovers Spirit and Opportunity, to the Mars Science Laboratory rover.

  2. Mars Pathfinder Status at Launch

    NASA Technical Reports Server (NTRS)

    Spear, A. J.; Freeman, Delma C., Jr.; Braun, Robert D.

    1996-01-01

    The Mars Pathfinder Flight System is in final test, assembly and launch preparations at the Kennedy Space Center in Florida. Launch is scheduled for 2 Dec. 1996. The Flight System development, in particular the Entry, Descent, and Landing (EDL) system, was a major team effort involving JPL, other NASA centers and industry. This paper provides a summary Mars Pathfinder description and status at launch. In addition, a section by NASA's Langley Research Center, a key EDL contributor, is provided on their support to Mars Pathfinder. This section is included as an example of the work performed by Pathfinder team members outside JPL.

  3. Mars Science Laboratory Atlas V First Stage Booster

    NASA Image and Video Library

    2011-09-07

    NASA Administrator Charles Bolden walks around the United Launch Alliance Atlas V first stage booster with United Launch Alliance Vice President of Mission operations Jim Sponnick, NASA Mission Manager for Launch Services Wanda Harding, NASA Senior Advisor Mike French, and White House Fellow Debra Kurshan, Wednesday, Sept. 7, 2011, at the Cape Canaveral Air Force Station in Cape Canaveral, Fla. The booster will help send NASA's Mars Science Laboratory Curiosity rover to Mars later this year. Photo Credit: (NASA/Bill Ingalls)

  4. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    NASA Astrophysics Data System (ADS)

    1999-09-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  5. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  6. Relay Support for the Mars Science Laboratory and the Coming Decade of Mars Relay Network Evolution

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Arnold, Bradford W.; Bell, David J.; Bruvold, Kristoffer N.; Gladden, Roy E.; Ilott, Peter A.; Lee, Charles H.

    2012-01-01

    In the past decade, an evolving network of Mars relay orbiters has provided telecommunication relay services to the Mars Exploration Rovers, Spirit and Opportunity, and to the Mars Phoenix Lander, enabling high-bandwidth, energy-efficient data transfer and greatly increasing the volume of science data that can be returned from the Martian surface, compared to conventional direct-to-Earth links. The current relay network, consisting of NASA's Odyssey and Mars Reconnaissance Orbiter and augmented by ESA's Mars Express Orbiter, stands ready to support the Mars Science Laboratory, scheduled to arrive at Mars on Aug 6, 2012, with new capabilities enabled by the Electra and Electra-Lite transceivers carried by MRO and MSL, respectively. The MAVEN orbiter, planned for launch in 2013, and the ExoMars/Trace Gas Orbiter, planned for launch in 2016, will replenish the on-orbit relay network as the current orbiter approach their end of life. Currently planned support scenarios for this future relay network include an ESA EDL Demonstrator Module deployed by the 2016 ExoMars/TGO orbiter, and the 2018 NASA/ESA Joint Rover, representing the first step in a multimission Mars Sample Return campaign.

  7. Stars and Cosmic Rays Observed from Mars

    NASA Image and Video Library

    2004-03-12

    In this five-minute exposure taken from the surface of Mars by NASA Spirit rover, stars appear as streaks due to the rotation of the planet, and instantaneous cosmic-ray hits appear as points of light. Spirit took the image with its panoramic camera on March 11, 2004, after waking up during the martian night for a communication session with NASA's Mars Global Surveyor orbiter. Other exposures were also taken. The images tested the capabilities of the rover for night-sky observations. Scientists will use the results to aid planning for possible future astronomical observations from Mars. The difference in Mars' rotation, compared to Earth's, gives the star trails in this image a different orientation than they would have in a comparable exposure taken from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA05551

  8. Weighing Molecules on Mars

    NASA Image and Video Library

    2012-11-02

    New results from the Sample Analysis at Mars, or SAM, instrument on NASA Curiosity rover detected about 2,000 times as much argon-40 as argon-36, which weighs less, confirming the connection between Mars and Martian meteorites found on Earth.

  9. Mars Odyssey All Stars: Chasma Boreale

    NASA Image and Video Library

    2010-12-09

    Chasma Boreale is a long, flat-floored valley that cuts deep into Mars north polar icecap. This image is part of an All Star set marking the occasion of NASA Mars Odyssey as the longest-working Mars spacecraft in history.

  10. Optical Navigation Demonstration Near Mars

    NASA Image and Video Library

    2006-03-10

    This image showing the position of the Martian moon Deimos against a background of stars is part of a successful technology demonstration completed by NASA Mars Reconnaissance Orbiter before arrival at Mars

  11. Stars in Orion as Seen from Mars

    NASA Image and Video Library

    2004-03-11

    Stars in the upper portion of the constellation Orion the Hunter, including the bright shoulder star Betelgeuse and Orion three-star belt, appear in this image taken from the surface of Mars by the panoramic camera on NASA rover Spirit. Spirit imaged stars on March 11, 2004, after it awoke during the martian night for a communication session with NASA's Mars Global Surveyor orbiter. This image is an eight-second exposure. Longer exposures were also taken. The images tested the capabilities of the rover for night-sky observations. Scientists will use the results to aid planning for possible future astronomical observations from Mars. http://photojournal.jpl.nasa.gov/catalog/PIA05546

  12. Spectrometer Images of Candidate Landing Sites for Next Mars Rover

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This composite shows four examples of 'browse' products the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument obtained of areas on Mars near proposed landing sites for NASA's 2009 Mars Science Laboratory. These examples are from two of more than 30 candidate sites. They are enhanced color images of West Candor chasm (A) and Nili Fossae trough (B); and false color images indicating the presence of hydrated (water-containing) minerals in West Candor (C); and clay-like (phyllosilicate) minerals in Nili Fossae (D).

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  13. Turbulent Lava Flow in Mars Athabasca Valles

    NASA Image and Video Library

    2010-01-11

    This combination of images, taken by NASA Mars Reconnaissance Orbiter, helped researchers analyze the youngest flood lava on Mars, which is in Athabasca Valles, in the Elysium Planitia region of equatorial Mars.

  14. Electrical and chemical interactions at Mars Workshop, part 1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Electrical and Chemical Interactions at Mars Workshop, hosted by NASA Lewis Research Center on November 19 and 20, 1991, was held with the following objectives in mind: (1) to identify issues related to electrical and chemical interactions between systems and their local environments on Mars, and (2) to recommend means of addressing those issues, including the dispatch of robotic spacecraft to Mars to acquire necessary information. The workshop began with presentations about Mars' surface and orbital environments, Space Exploration Initiative (SEI) systems, environmental interactions, modeling and analysis, and plans for exploration. Participants were then divided into two working groups: one to examine the surface of Mars; and the other, the orbit of Mars. The working groups were to identify issues relating to environmental interactions; to state for each issue what is known and what new knowledge is needed; and to recommend ways to fulfill the need. Issues were prioritized within each working group using the relative severity of effects as a criterion. Described here are the two working groups' contributions. A bibliography of materials used during the workshop and suggested reference materials is included.

  15. Landscape of Former Lakes and Streams on Northern Mars

    NASA Image and Video Library

    2016-09-15

    Valleys younger than better-known ancient valley networks on Mars are evident on the landscape in the northern Arabia Terra region of Mars, particularly in the area mapped here with color-coded topographical information overlaid onto a photo mosaic. The area includes a basin informally named "Heart Lake" at upper left (northwest). Data from the Mars Orbiter Laser Altimeter (MOLA) on NASA's Mars Global Surveyor orbiter are coded here as white and purple for lower elevations, yellow for higher elevation. The elevation information is combined with a mosaic of images from the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter, covering an area about 120 miles (about 190 kilometers) wide. The mapped area is centered near 35.91 degrees north latitude, 1 degree east longitude on Mars. These lakes and streams held water several hundred million years after better-known ancient lake environments on Mars, according to 2016 findings. http://photojournal.jpl.nasa.gov/catalog/PIA20838

  16. Preparation for Analytical Measurements on Mars

    NASA Image and Video Library

    2015-03-31

    A Sample Analysis at Mars (SAM) team member at NASA's Goddard Space Flight Center, Greenbelt, Maryland, prepares the SAM testbed for an experiment. This test copy of the SAM suite of instruments is inside a chamber that, when closed, can model the pressure and temperature environment that SAM sees inside NASA's Curiosity rover on Mars. Many weeks of testing are often needed to develop and refine sequences of operations that SAM uses for making specific measurements on Mars. This was the case with preparation to pull a volume of gas from the atmosphere and extract the heavy noble gas xenon. SAM's measurements of different types of xenon in the Martian atmosphere provide clues about the planet's history. http://photojournal.jpl.nasa.gov/catalog/PIA19149

  17. Sample Analysis at Mars (SAM) Media Day

    NASA Image and Video Library

    2017-12-08

    On Saturday, November 26, NASA is scheduled to launch the Mars Science Laboratory (MSL) mission featuring Curiosity, the largest and most advanced rover ever sent to the Red Planet. The Curiosity rover bristles with multiple cameras and instruments, including Goddard's Sample Analysis at Mars (SAM) instrument suite. By looking for evidence of water, carbon, and other important building blocks of life in the Martian soil and atmosphere, SAM will help discover whether Mars ever had the potential to support life. Curiosity will be delivered to Gale crater, a 96-mile-wide crater that contains a record of environmental changes in its sedimentary rock, in August 2012. ----- NASA image November 18, 2010 The Sample Analysis at Mars (SAM) instrument is considered one of the most complicated instruments ever to land on the surface of another planet. Equipped with a gas chromatograph, a quadruple mass spectrometer, and a tunable laser spectrometer, SAM will carry out the initial search for organic compounds when the Mars Science Laboratory (MSL) rover lands in 2012. Credit: NASA/GSFC/Ed Campion NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Send Your Students to Mars for Their next Research Project

    ERIC Educational Resources Information Center

    Lindgren, Charles

    2006-01-01

    The NASA's Mars Student Imaging Project (MSIP) is led by the Arizona State University (ASU) Mars Education Program, a major partner of NASA's Mars Exploration Program. MSIP is based on the National Science Education Standards and includes curriculum on terrestrial planet characteristics, experimental design, and proposal writing. Three spacecraft…

  19. Mars Comet Encounter Briefing

    NASA Image and Video Library

    2014-10-09

    Dwayne Brown, NASA public affairs officer, moderates a media briefing where panelists outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. Photo Credit: (NASA/Joel Kowsky)

  20. Mars Odyssey Observes Deimos

    NASA Image and Video Library

    2018-02-22

    Colors in this image of the Martian moon Deimos indicate a range of surface temperatures detected by observing the moon on February 15, 2018, with the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter. The left edge of the small moon is in darkness, and the right edge in sunlight. Temperature information was derived from thermal-infrared imaging such as the grayscale image shown smaller at lower left with the moon in the same orientation. The color-coding merges information from THEMIS observations made in 10 thermal-infrared wavelength bands. This was the first observation of Deimos by Mars Odyssey; the spacecraft first imaged Mars' other moon, Phobos, on September 29, 2017. Researchers have been using THEMIS to examine Mars since early 2002, but the maneuver turning the orbiter around to point the camera at Phobos was developed only recently. https://photojournal.jpl.nasa.gov/catalog/PIA22250

  1. Dragon Scales of Mars

    NASA Image and Video Library

    2017-07-11

    This intriguing surface texture is the result of rock interacting with water, as observed by NASA's Mars Reconnaissance Orbiter. The rock was then eroded and later exposed to the surface. The pinkish, almost dragon-like scaled texture represents Martian bedrock that has specifically altered into a clay-bearing rock. The nature of the water responsible for the alteration, and how it interacted with the rock to form the clay remains poorly understood. Not surprisingly, the study of such altered rocks on Mars is an area of active investigation by the Mars science community. Understanding such interactions, and how they happened, help scientists to understand the past climate on Mars, and if the red planet ever harbored life. Recent studies indicate that the early Martian climate may not have been as warm, wet, and Earth-like, as previously suggested. This is not a problem for finding life on Mars as one might think. Ongoing studies of dry and cold environments on Earth shows that life finds ways to adapt to such extremes. Such work provides hope for finding evidence for life on other planets, like Mars, someday. https://photojournal.jpl.nasa.gov/catalog/PIA21781

  2. Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    First of NASA's Discovery missions. Launched in December 1996 and arrived at Mars on 4 July 1997. Mainly intended as a technology demonstration mission. Used airbags to cushion the landing on Mars. The Carl Sagan Memorial station returned images of an ancient flood plain in Ares Vallis. The 10 kg Sojourner rover used an x-ray spectrometer to study the composition of rocks and travelled about 100 ...

  3. "The Moon Village and Journey to Mars enable each other"

    NASA Astrophysics Data System (ADS)

    Beldavs, Vidvuds

    2016-07-01

    NASA has proposed the Journey to Mars, a multi-decade collaborative international effort to establish permanent manned operations on the Martian surface as well as in orbit, most likely on the Martian moons. NASA's proposed the Journey to Mars has come under politically motivated attack as illusory, as beyond NASA's capabilities and anticipated NASA budgets in the foreseeable future. [1]. Other concerns come from various communities of researchers concerned about securing sustaining funding for their largely robotic research missions. ESA's Director General Dietrich Woerner's proposed Moon Village faces challenges ESA member states concerned about sustaining funding for projects already underway or in planning. Both the Journey to Mars and Moon Village raise the question - who will or who can pay for it? The 2013 US Research Council study suggested potential benefits to a mission to Mars from activities on the Moon [2]. The NASA funded Flexible Lunar Architecture study came to similar conclusions using a different methodology [3]. A logistics analysis by an MIT team suggested the possibility of cost savings through use of lunar water for propellant to reach Mars [4]. The highly promising private-public financing approach has been examined for potential application to funding the costs of reaching Mars [5]. Insofar as the feasibility of utilization of lunar water has not been determined these conclusions are speculative. This study will examine the following alternative scenarios for establishing sustainable, manned operations on Mars and permanent manned operations on the Moon: A. NASA-led Journey to Mars without an ESA-led Moon Village B. ESA-led Moon Village without NASA-led Journey to Mars C. NASA-led Journey to Mars with an ESA-led Moon Village D. Shared Infrastructure scenario - NASA-led Journey to Mars with ESA-led Moon Village and with a potential JAXA-led space-based-solar power initiative E. Space Industrialization scenario - Shared Infrastructure scenario

  4. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Dawn Sumner, geologist, University of California, Davis speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  5. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grant, geologist, Smithsonian National Air and Space Museum in Washington, speaks at a Mars Science Laboratory (MSL) press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The Mars Science Laboratory (MSL), or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  6. Bird's Eye View of Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This artist's concept shows NASA's future Mars Reconnaissance Orbiter mission over the red planet.

    NASA plans to launch this multipurpose spacecraft in August 2005 to advance our understanding of Mars through detailed observation, to examine potential landing sites for future surface missions and to provide a high-data-rate communications relay for those missions.

    The orbiter's shallow radar experiment, one of six science instruments on board, is designed to probe the internal structure of Mars' polar ice caps, as well as to gather information planet-wide about underground layers of ice, rock and, perhaps, liquid water, which might be accessible from the surface.

  7. Mars Science Laboratory Atlas V First Stage Booster

    NASA Image and Video Library

    2011-09-07

    NASA Administrator Charles Bolden, second from left, talks with United Launch Alliance Vice President of Mission operations Jim Sponnick, along with NASA Mission Manager for Launch Services Wanda Harding, left, White House Fellow Debra Kurshan, right, and NASA Senior Advisor Mike French, background, in front of the United Launch Alliance Atlas V first stage booster, Wednesday, Sept. 7, 2011, at the Cape Canaveral Air Force Station in Cape Canaveral, Fla. The booster will help send NASA's Mars Science Laboratory Curiosity rover to Mars later this year. Photo Credit: (NASA/Bill Ingalls)

  8. An inside look at NASA planetology

    NASA Technical Reports Server (NTRS)

    Dwornik, S. E.

    1976-01-01

    Staffing, financing and budget controls, and research grant allocations of NASA are reviewed with emphasis on NASA-supported research in planetary geological sciences: studies of the composition, structure, and history of solar system planets. Programs, techniques, and research grants for studies of Mars photographs acquired through Mariner 6-10 flights are discussed at length, and particularly the handling of computer-enhanced photographic data. Scheduled future NASA-sponsored planet exploration missions (to Mars, Jupiter, Saturn, Uranus) are mentioned.

  9. Exploring Mars

    NASA Astrophysics Data System (ADS)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  10. A Vision for the Exploration of Mars: Robotic Precursors Followed by Humans to Mars Orbit in 2033

    NASA Technical Reports Server (NTRS)

    Sellers, Piers J.; Garvin, James B.; Kinney, Anne L.; Amato, Michael J.; White, Nicholas E.

    2012-01-01

    The reformulation of the Mars program gives NASA a rare opportunity to deliver a credible vision in which humans, robots, and advancements in information technology combine to open the deep space frontier to Mars. There is a broad challenge in the reformulation of the Mars exploration program that truly sets the stage for: 'a strategic collaboration between the Science Mission Directorate (SMD), the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Technologist, for the next several decades of exploring Mars'.Any strategy that links all three challenge areas listed into a true long term strategic program necessitates discussion. NASA's SMD and HEOMD should accept the President's challenge and vision by developing an integrated program that will enable a human expedition to Mars orbit in 2033 with the goal of returning samples suitable for addressing the question of whether life exists or ever existed on Mars

  11. Phoenix Mars Lander in Testing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  12. Estimated Radiation Dosage on Mars

    NASA Image and Video Library

    2002-03-01

    This global map of Mars, based on data from NASA Mars Odyssey, shows the estimated radiation dosages from cosmic rays reaching the surface, a serious health concern for any future human exploration of the planet.

  13. Mountainous Crater Rim on Mars

    NASA Image and Video Library

    2013-10-17

    This is a screen shot from a high-definition simulated movie of Mojave Crater on Mars, based on images taken by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  14. Mars Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Kerslake, Thomas W.; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    NASA missions to Mars, both robotic and human, rely on solar arrays for the primary power system. Mars presents a number of challenges for solar power system operation, including a dusty atmosphere which modifies the spectrum and intensity of the incident solar illumination as a function of time of day, degradation of the array performance by dust deposition, and low temperature operation. The environmental challenges to Mars solar array operation will be discussed and test results of solar cell technology operating under Mars conditions will be presented, along with modeling of solar cell performance under Mars conditions. The design implications for advanced solar arrays for future Mars missions is discussed, and an example case, a Martian polar rover, are analyzed.

  15. Strain-Life Assessment of Grainex Mar-M 247 for NASA's Turbine Seal Test Facility

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Halford, Gary R.; Steinetz, Bruce M.; Rimnac, Clare M.

    2004-01-01

    NASA s Turbine Seal Test Facility is used to test air-to-air seals for use primarily in advanced jet engine applications. Combinations of high temperature, high speed, and high pressure limit the disk life, due to the concern of crack initiation in the bolt holes of the Grainex Mar-M 247 disk. The primary purpose of this current work is to determine an inspection interval to ensure safe operation. The current work presents high temperature fatigue strain-life data for test specimens cut from an actual Grainex Mar-M 247 disk. Several different strain-life models were compared to the experimental data including the Manson-Hirschberg Method of Universal Slopes, the Halford-Nachtigall Mean Stress Method, and the Modified Morrow Method. The Halford-Nachtigall Method resulted in only an 18 percent difference between predicted and experimental results. Using the experimental data at a 99.95 percent prediction level and the presence of 6 bolt holes it was found that the disk should be inspected after 665 cycles based on a total strain of 0.5 percent at 649 C.

  16. Curiosity Flying Over Mars

    NASA Image and Video Library

    2012-08-06

    NASA Curiosity rover and its parachute were spotted by NASA Mars Reconnaissance Orbiter as Curiosity descended to the surface on Aug. 5 PDT Aug. 6 EDT. Curiosity and its parachute are in the small white box at center.

  17. Mars Orbiter Observes Comet Siding Spring Animation

    NASA Image and Video Library

    2014-11-07

    This frame from an animated artist rendering begins with NASA Mars Reconnaissance Orbiter spacecraft above Mars. The movie then transitions to a sequence of HiRISE images of the comet taken as it flew past Mars.

  18. MAVEN at Mars Artist Concept

    NASA Image and Video Library

    2011-11-18

    This artist concept depicts NASA Mars Atmosphere and Volatile EvolutioN MAVEN spacecraft near Mars. MAVEN is in development for launch in 2013 and will be the first mission devoted to understanding the Martian upper atmosphere.

  19. Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the Art

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Paz, A.; Oryshchyn, L.; Araghi, K.; Muscatello, A.; Linne, D.; Kleinhenz, J.; Peters, T.

    2015-01-01

    In 1978, a ground breaking paper titled, "Feasibility of Rocket Propellant Production on Mars" by Ash, Dowler, and Varsi discussed how ascent propellants could be manufactured on the Mars surface from carbon dioxide collected from the atmosphere to reduce launch mass. Since then, the concept of making mission critical consumables such as propellants, fuel cell reactants, and life support consumables from local resources, commonly known as In-Situ Resource Utilization (ISRU), for robotic and human missions to Mars has been studied many times. In the late 1990's, NASA initiated a series of Mars Human Design Reference Missions (DRMs), the first of which was released in 1997. These studies primarily focused on evaluating the impact of making propellants on Mars for crew ascent to Mars orbit, but creating large caches of life support consumables (water & oxygen) as a backup for regenerative life support systems for long-duration surface stays (>500 days) was also considered in Mars DRM 3.0. Until science data from the Mars Odyssey orbiter and subsequent robotic missions revealed that water may be widely accessable across the surface of Mars, prior Mars ISRU studies were limited to processing Mars atmospheric resources (carbon dioxide, nitrogen, argon, oxygen, and water vapor). In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study which considered water on Mars as a potential resource for the first time in a human mission architecture. While knowledge of both water resources on Mars and the hardware required to excavate and extract the water were very preliminary, the study concluded that a significant reduction in mass and significant enhancements to the mission architecture were possible if Mars water resources were utilized. Two subsequent Mars ISRU studies aimed at reexamining ISRU technologies, processing options, and advancements in the state-of-the-art since 2007 and to better understand the volume and packaging associated

  20. Mars Weather-Station Tools on Rover Mast

    NASA Image and Video Library

    2015-04-13

    The Rover Environmental Monitoring Station (REMS) on NASA's Curiosity Mars rover includes temperature and humidity sensors mounted on the rover's mast. One of the REMS booms extends to the left from the mast in this view. Spain provided REMS to NASA's Mars Science Laboratory Project. The monitoring station has provided information about air pressure, relative humidity, air temperature, ground temperature, wind and ultraviolet radiation in all Martian seasons and at all times of day or night. This view is a detail from a January 2015 Curiosity self-portrait. The self-portrait, at PIA19142, was assembled from images taken by Curiosity's Mars Hand Lens Imager. http://photojournal.jpl.nasa.gov/catalog/PIA19164

  1. Mars Science Laboratory Spacecraft Assembled for Testing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions.

    These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  2. Testing Phoenix Mars Lander Parachute in Idaho

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander will parachute for nearly three minutes as it descends through the Martian atmosphere on May 25, 2008. Extensive preparations for that crucial period included this drop test near Boise, Idaho, in October 2006.

    The parachute used for the Phoenix mission is similar to ones used by NASA's Viking landers in 1976. It is a 'disk-gap-band' type of parachute, referring to two fabric components -- a central disk and a cylindrical band -- separated by a gap.

    Although the Phoenix parachute has a smaller diameter (11.8 meters or 39 feet) than the parachute for the 2007 Mars Pathfinder landing (12.7 meters or 42 feet), its Viking configuration results in slightly larger drag area. The smaller physical size allows for a stronger system because, given the same mass and volume restrictions, a smaller parachute can be built using higher strength components. The Phoenix parachute is approximately 1.5 times stronger than Pathfinder's. Testing shows that it is nearly two times stronger than the maximum opening force expected during its use at Mars.

    Engineers used a dart-like weight for the drop testing in Idaho. On the Phoenix spacecraft, the parachute is attached the the backshell. The backshell is the upper portion of a capsule around the lander during the flight from Earth to Mars and protects Phoenix during the initial portion of the descent through Mars' atmosphere.

    Phoenix will deploy its parachute at about 12.6 kilometers (7.8 miles) in altitude and at a velocity of 1.7 times the speed of sound. A mortar on the spacecraft fires to deploy the parachute, propelling it away from the backshell into the supersonic flow. The mortar design for Phoenix is essentially the same as Pathfinder's. The parachute and mortar are collectively called the 'parachute decelerator system.' Pioneer Aerospace, South Windsor, Conn., produced this system for Phoenix. The same company provided the parachute decelerator systems for Pathfinder, Mars Polar

  3. NASA Advisory Council: Fact-Finding Session

    NASA Technical Reports Server (NTRS)

    Cohen, Aaron; Martin, Franklin D.; Craig, Mark K.; Duke, Michael B.

    1992-01-01

    The principal agenda item for this fact-finding meeting of the NASA Advisory Council was NASA's preliminary planning of options to implement the President's initiative for establishing a base on the Moon and launching a human expedition to Mars. NASA's presentation (1) reviewed the key elements in the President's speech of July 20, 1989, summoning the Nation to launch a new exploration initiative to the Moon and Mars; (2) outlined five candidate options analyzed in terms of schedule and scale of effort (for a return to the Moon and for a voyage to Mars); (3) outlined tentative robotic mission milestones for both a 'vigorous deployment' option and a 'paced deployment' option; (4) reviewed Earth-to-orbit delivery requirements for a lunar heavy-lift launch vehicle, the National Space Transportation System, and a Mars heavy-lift launch vehicle; (5) summarized the associated Space Station Freedom requirements; (6) outlined the technology as well as human factors requirements for the candidate options; and (7) summarized the themes and approaches that could be employed for the science aspects of a national Moon/Mars exploration program.

  4. MarsQuest: Bringing the Excitement of Mars Exploration to the Public

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J. B.; Klug, S. L.

    2002-12-01

    We are living in an extraordinary era of Mars exploration. NASA's Odyssey spacecraft has recently discovered vast amounts of hydrogen beneath the surface of Mars, suggesting the presence of sub-surface ice. Two Mars Exploration Rovers are scheduled to land in early 2004. To bring the excitement and discoveries of Mars exploration to the public, the Space Science Institute (SSI) of Boulder, CO, has developed a comprehensive Mars Education Program that includes: 1) large and small traveling exhibits, 2) workshops for museum and classroom educators (in partnership with the Mars Education Program at Arizona State University (ASU)), and 3) an interactive Website called MarsQuest Online (in partnership with TERC and JPL). All three components will be presented and offered as a good model for actively involving scientists and their discoveries to improve science education in museums and the classroom. The centerpiece of SSI's Mars Education Program is the 5,000-square-foot traveling exhibition, MarsQuest: Exploring the Red Planet, which was developed with support from the National Science Foundation (NSF), NASA, and several corporate donors. The MarsQuest exhibit is nearing the end of a highly successful, fully-booked three-year tour. The Institute plans to send an enhanced and updated MarsQuest on a second three-year tour and is also developing Destination: Mars, a mini-version of MarsQuest designed for smaller venues. Workshops for museum educators, docents, and local teachers are conducted at host sites. These workshops were developed collaboratively by Dr. Cheri Morrow, SSI's Education and Public Outreach Manager, and Sheri Klug, Director of the Mars K-12 Education Program at ASU. They are designed to inspire and empower participants to extend the excitement and science content of the exhibitions into classrooms and museum-based education programs in an ongoing fashion. The MarsQuest Online project is developing a Website that will use the MarsQuest exhibit as a

  5. MarsQuest: Bringing the Excitement of Mars Exploration to the Public

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J. B.; Klug, S. L.

    2002-09-01

    We are living in an extraordinary era of Mars exploration. NASA's Odyssey spacecraft has recently discovered vast amounts of hydrogen beneath the surface of Mars, suggesting the presence of sub-surface ice. Two Mars Exploration Rovers are scheduled to land in early 2004. To bring the excitement and discoveries of Mars exploration to the public, the Space Science Institute (SSI) of Boulder, CO, has developed a comprehensive Mars Education Program that includes: 1) large and small traveling exhibits, 2) workshops for museum and classroom educators (in partnership with the Mars Education Program at Arizona State University (ASU)), and 3) an interactive Website called MarsQuest Online (in partnership with TERC and JPL). All three components will be presented and offered as a good model for actively involving scientists and their discoveries to improve science education in museums and the classroom. The centerpiece of SSI's Mars Education Program is the 5,000-square-foot traveling exhibition, MarsQuest: Exploring the Red Planet, which was developed with support from the National Science Foundation (NSF), NASA, and several corporate donors. The MarsQuest exhibit is nearing the end of a highly successful, fully-booked three-year tour. The Institute plans to send an enhanced and updated MarsQuest on a second three-year tour and is also developing Destination: Mars, a mini-version of MarsQuest designed for smaller venues. Workshops for museum educators, docents, and local teachers are conducted at host sites. These workshops were developed collaboratively by Dr. Cheri Morrow, SSI's Education and Public Outreach Manager, and Sheri Klug, Director of the Mars K-12 Education Program at ASU. They are designed to inspire and empower participants to extend the excitement and science content of the exhibitions into classrooms and museum-based education programs in an ongoing fashion. The MarsQuest Online project is developing a Website that will use the MarsQuest exhibit as a

  6. Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars

    NASA Technical Reports Server (NTRS)

    Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce

    2014-01-01

    Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using

  7. Phoenix--the first Mars Scout mission.

    PubMed

    Shotwell, Robert

    2005-01-01

    NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project. c2005 Elsevier Ltd. All rights reserved.

  8. Mars Comet Encounter Briefing

    NASA Image and Video Library

    2014-10-09

    Jim Green, director, Planetary Science Division, NASA Headquarters, Washington gives remarks during a media briefing where he and other panelists outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. Photo Credit: (NASA/Joel Kowsky)

  9. Escape from Mars

    NASA Image and Video Library

    2017-07-10

    This image from NASA's Mars Reconnaissance Orbiter shows one of millions of small (10s of meters in diameter) craters and their ejecta material that dot the Elysium Planitia region of Mars. The small craters were likely formed when high-speed blocks of rock were thrown out by a much larger impact (about 10-kilometers in diameter) and fell back to the ground. Some of these blocks may actually escape Mars, which is how we get samples in the form of meteorites that fall to Earth. Other ejected blocks have insufficient velocity, or the wrong trajectory, to escape the Red Planet. As such, when one of these high-speed blocks impacts the surface, it makes what is called a "secondary" crater. These secondaries can form dense "chains" or "rays," which are radial to the crater that formed them. https://photojournal.jpl.nasa.gov/catalog/PIA21769

  10. NASA's Flexible Path for the Human Exploration

    NASA Technical Reports Server (NTRS)

    Soeder, James F.

    2016-01-01

    The idea of human exploration of Mars has been a topic in science fiction for close to a century. For the past 50 years it has been a major thrust in NASAs space mission planning. Currently, NASA is pursuing a flexible development path with the final goal to have humans on Mars. To reach Mars, new hardware will have to be developed and many technology hurdles will have to be overcome. This presentation discusses Mars and its Moons; the flexible path currently being followed; the hardware under development to support exploration; and the technical and organizational challenges that must be overcome to realize the age old dream of humans traveling to Mars.

  11. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    Michael Watkins (right), mission manager and Mars Science Laboratory (MSL) engineer, Jet Propulsion Lab, Pasadena, Calif., speaks at a press conference, as Michael Meyer, Mars Exploration Program lead scientist looks on, at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL, or Curiosity, is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  12. Mars Science Laboratory Rover Closeout

    NASA Image and Video Library

    2011-11-10

    The Mars Science Laboratory mission rover, Curiosity, is prepared for final integration into the complete NASA spacecraft in this photograph taken inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.

  13. Mars Science Laboratory Descent Stage

    NASA Image and Video Library

    2011-11-10

    The descent stage of NASA Mars Science Laboratory spacecraft is being lifted during assembly of the spacecraft in this photograph taken inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.

  14. Mars Descent Imager for Curiosity

    NASA Image and Video Library

    2010-07-19

    A pocketknife provides scale for this image of the Mars Descent Imager camera; the camera will fly on the Curiosity rover of NASA Mars Science Laboratory mission. Malin Space Science Systems, San Diego, Calif., supplied the camera for the mission.

  15. Mars Volcanic Cone with Hydrothermal Deposits

    NASA Image and Video Library

    2010-10-31

    This false color image from NASA Mars Reconnaissance Orbiter indicates that the volcanic cone in the Nili Patera caldera on Mars has hydrothermal mineral deposits on the southern flanks and nearby terrains.

  16. The NASA 2003 Mars Exploration Rover Panoramic Camera (Pancam) Investigation

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Squyres, S. W.; Herkenhoff, K. E.; Maki, J.; Schwochert, M.; Morris, R. V.; Athena Team

    2002-12-01

    The Panoramic Camera System (Pancam) is part of the Athena science payload to be launched to Mars in 2003 on NASA's twin Mars Exploration Rover missions. The Pancam imaging system on each rover consists of two major components: a pair of digital CCD cameras, and the Pancam Mast Assembly (PMA), which provides the azimuth and elevation actuation for the cameras as well as a 1.5 meter high vantage point from which to image. Pancam is a multispectral, stereoscopic, panoramic imaging system, with a field of regard provided by the PMA that extends across 360o of azimuth and from zenith to nadir, providing a complete view of the scene around the rover. Pancam utilizes two 1024x2048 Mitel frame transfer CCD detector arrays, each having a 1024x1024 active imaging area and 32 optional additional reference pixels per row for offset monitoring. Each array is combined with optics and a small filter wheel to become one "eye" of a multispectral, stereoscopic imaging system. The optics for both cameras consist of identical 3-element symmetrical lenses with an effective focal length of 42 mm and a focal ratio of f/20, yielding an IFOV of 0.28 mrad/pixel or a rectangular FOV of 16o\\x9D 16o per eye. The two eyes are separated by 30 cm horizontally and have a 1o toe-in to provide adequate parallax for stereo imaging. The cameras are boresighted with adjacent wide-field stereo Navigation Cameras, as well as with the Mini-TES instrument. The Pancam optical design is optimized for best focus at 3 meters range, and allows Pancam to maintain acceptable focus from infinity to within 1.5 meters of the rover, with a graceful degradation (defocus) at closer ranges. Each eye also contains a small 8-position filter wheel to allow multispectral sky imaging, direct Sun imaging, and surface mineralogic studies in the 400-1100 nm wavelength region. Pancam has been designed and calibrated to operate within specifications from -55oC to +5oC. An onboard calibration target and fiducial marks provide

  17. Mars Science Laboratory Cruise Stage

    NASA Image and Video Library

    2011-11-10

    The cruise stage of NASA Mars Science Laboratory spacecraft is being prepared for final stacking of the spacecraft in this photograph from inside the Payload Hazardous Servicing Facility at NASA Kennedy Space Center, Fla.

  18. Exobiology on Mars

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); Marshall, J. R. (Editor); Andersen, D. (Editor)

    1990-01-01

    Descriptions of several instrument concepts that were generated during a workshop entitled, Exobiology Instrument Concepts for a Soviet Mars 94/94 Mission, held at NASA Ames Research Center in 1989 are presented. The objective was to define and describe instrument concepts for exobiology and related science that would be compatible with the mission types under discussion for the 1994 and 1996 Soviet Mars missions. Experiments that use existing technology were emphasized. The concepts discussed could also be used on U.S. missions that follow Mars Observer.

  19. Mars Science Laboratory Heatshield Flight Data Analysis

    NASA Technical Reports Server (NTRS)

    Mahzari, Milad; White, Todd

    2017-01-01

    NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.

  20. Color Image of Phoenix Lander on Mars Surface

    NASA Image and Video Library

    2008-05-27

    This is an enhanced-color image from Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment HiRISE camera. It shows the NASA Mars Phoenix lander with its solar panels deployed on the Mars surface

  1. Hydrated Minerals Exposed at Stokes, Northern Mars

    NASA Image and Video Library

    2010-06-24

    This view of Stokes Crater is a mosaic of images taken by NASA Mars Reconnaissance Orbiter and ESA Mars Express showing at least one of the nine craters in the northern lowlands of Mars with exposures of hydrated minerals detected from orbit.

  2. Curiosity: The Next Mars Rover Artist Concept

    NASA Image and Video Library

    2011-05-19

    This artist concept features NASA Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars past or present ability to sustain microbial life. The rover examines a rock on Mars with a set of tools at the end of the rover arm.

  3. So You Want to Go To Mars? Episode 1

    NASA Image and Video Library

    2018-04-10

    So you want to go to Mars? The International Space Station (ISS) is helping us get there. This short 1.18 minute video highlights several ways the ISS is helping NASA extend human presence into deep space. Orion Spacecraft and SLS webpage https://www.nasa.gov/content/j2m-getting-to-mars-sls-and-orion International Space Station https://www.nasa.gov/mission_pages/station/main/index.html HD Download: https://archive.org/details/jsc2018m000132_SoYouWantToGoToMars_E1 Youtube: https://youtu.be/UCNNTwlu9kE

  4. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  5. Grainex Mar-M 247 Turbine Disk Life Study for NASA's High Temperature High Speed Turbine Seal Test Facility

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.

    2015-01-01

    An experimental and analytical fatigue life study was performed on the Grainex Mar-M 247 disk used in NASA s Turbine Seal Test Facility. To preclude fatigue cracks from growing to critical size in the NASA disk bolt holes due to cyclic loading at severe test conditions, a retirement-for-cause methodology was adopted to detect and monitor cracks within the bolt holes using eddy-current inspection. For the NASA disk material that was tested, the fatigue strain-life to crack initiation at a total strain of 0.5 percent, a minimum to maximum strain ratio of 0, and a bolt hole temperature of 649 C was calculated to be 665 cycles using -99.95 percent prediction intervals. The fatigue crack propagation life was calculated to be 367 cycles after implementing a safety factor of 2 on life. Thus, the NASA disk bolt hole total life or retirement life was determined to be 1032 cycles at a crack depth of 0.501 mm. An initial NASA disk bolt hole inspection at 665 cycles is suggested with 50 cycle inspection intervals thereafter to monitor fatigue crack growth.

  6. InSight/SEIS@Mars Educational program : Sharing the InSight NASA mission and the Seismic Discovery of Mars with a International Network of classes

    NASA Astrophysics Data System (ADS)

    Lognonne, P. H.; Berenguer, J. L.; Sauron, A.; Denton, P.; Carrer, D.; Taber, J.; Bravo, T. K.; Gaboriaud, A.; Houston Jones, J.; Banerdt, W. B.; Martinuzzi, J. M.

    2015-12-01

    The InSIght mission will deploy in September 2016 a Geophysical Station on Mars, equipped with a suite of geophysical instruments, including 3 axis Very Broad Band Seismometer, 3 axis Short Period Seismometer, 3 axis Flux gate Magnetometer, Heat flow probe, geodetic beacon, infrasound/microbarometer, wind sensors and cameras. As for all NASA missions, Children and teenagers will be associated to the mission in the framework of the K12 InSight program, part of it being associated to the SEIS instrument.The two faces of the InSight/SEIS Education program are directed toward the promotion of Space Technologies and of Space Science.For Space technologies, this has already started with the InSight Elysium Educational project. The goal of the project, supported by CNES and performed by Technical High School near Toulouse, was the fabrication of a full scale mockup of the lander (see more at https://jeunes.cnes.fr/fr/elysium-le-jumeau-terrestre-dinsight ). The mockup was exhibited during the June, 2015 Paris air show. More than 300 students participated to the Elysium project.For Space Science, this will be made with the SEIS@Mars Educational project. Its plan is to transmit the SEIS data to a network of several hundred of middle and high schools worldwide, associated to existing "seismo(graph) at school" programs in the United States (https://www.iris.edu/hq/sis), France (www.edusismo.org) Switzerland (www.seismoatschool.ethz.ch) and United Kingdom (http://www.bgs.ac.uk/schoolseismology/). If the transmission of these data to the SEIS@school network will be automatic after their release by the NASA Planetary Data System, an earlier transmission will be made, especially after mid 2017, but also before through the integration of selected Schools to the project activities: the selected classrooms will perform the same activities as the project scientists. They will have to process rapidly the proprietary data in order to identify MarsQuake(s) and will be allowed to perform

  7. Mars Sample Return Architecture Overview

    NASA Astrophysics Data System (ADS)

    Edwards, C. D.; Vijendran, S.

    2018-04-01

    NASA and ESA are exploring potential concepts for a Sample Retrieval Lander and Earth Return Orbiter that could return samples planned to be collected and cached by the Mars 2020 rover mission. We provide an overview of the Mars Sample Return architecture.

  8. Multiple Instruments Used for Mars Carbon Estimate

    NASA Image and Video Library

    2015-09-02

    Researchers estimating the amount of carbon held in the ground at the largest known carbonate-containing deposit on Mars utilized data from three different NASA Mars orbiters. Each image in this pair covers the same area about 36 miles (58 kilometers) wide in the Nili Fossae plains region of Mars' northern hemisphere. The tally of carbon content in the rocks of this region is a key piece in solving a puzzle of how the Martian atmosphere has changed over time. Carbon dioxide from the atmosphere on early Mars reacted with surface rocks to form carbonate, thinning the atmosphere. The image on the left presents data from the Thermal Emission Imaging System (THEMIS) instrument on NASA's Mars Odyssey orbiter. The color coding indicates thermal inertia -- the property of how quickly a surface material heats up or cools off. Sand, for example (blue hues), cools off quicker after sundown than bedrock (red hues) does. The color coding in the image on the right presents data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on NASA's Mars Reconnaissance Orbiter. From the brightness at many different wavelengths, CRISM data can indicate what minerals are present on the surface. In the color coding used here, green hues are consistent with carbonate-bearing materials, while brown or yellow hues are olivine-bearing sands and locations with purple hues are basaltic in composition. The gray scale base map is a mosaic of daytime THEMIS infrared images. Annotations point to areas with different surface compositions. The scale bar indicates 20 kilometers (12.4 miles). http://photojournal.jpl.nasa.gov/catalog/PIA19816

  9. NASA scientific and technical publications: A catalog of special publications, reference publications, conference publications, and technical papers, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This catalog lists 190 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered into the NASA scientific and technical information database during accession year 1989. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided.

  10. NASA scientific and technical publications: A catalog of Special Publications, Reference Publications, Conference Publications, and Technical Papers, 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This catalog lists 239 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered in the NASA scientific and technical information database during accession year 1987. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided.

  11. Mars Global Reference Atmospheric Model (Mars-GRAM 2005) Applications for Mars Science Laboratory Mission Site Selection Processes

    NASA Technical Reports Server (NTRS)

    Justh, H. L.; Justus, C. G.

    2007-01-01

    The new Mars-GRAM auxiliary profile capability, using data from TES observations, mesoscale model output, or other sources, allows a potentially higher fidelity representation of the atmosphere, and a more accurate way of estimating inherent uncertainty in atmospheric density and winds. Figure 3 indicates that, with nominal value rpscale=1, Mars-GRAM perturbations would tend to overestimate observed or mesoscale-modeled variability. To better represent TES and mesoscale model density perturbations, rpscale values as low as about 0.4 could be used. Some trajectory model implementations of Mars-GRAM allow the user to dynamically change rpscale and rwscale values with altitude. Figure 4 shows that an mscale value of about 1.2 would better replicate wind standard deviations from MRAMS or MMM5 simulations at the Gale, Terby, or Melas sites. By adjusting the rpscale and rwscale values in Mars-GRAM based on figures such as Figure 3 and 4, we can provide more accurate end-to-end simulations for EDL at the candidate MSL landing sites.

  12. Mars Technologies Spawn Durable Wind Turbines

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2013-01-01

    Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When theres a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small

  13. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  14. Flight Testing the Landing Radar for Mars Science Laboratory

    NASA Image and Video Library

    2011-06-21

    A NASA Dryden Flight Research Center F/A-18 852 aircraft performs a roll during June 2011 flight tests of a Mars landing radar. A test model of the landing radar for NASA Mars Science Laboratory mission is inside a pod under the aircraft left wing.

  15. EU-FP7-iMars: Analysis of Mars Multi-Resolution Images using Auto-Coregistration, Data Mining and Crowd Source Techniques: an overview and a request for scientific inputs.

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter; Gwinner, Klaus; van Gasselt, Stephan; Ivanov, Anton; Morley, Jeremy; Houghton, Robert; Bamford, Steven; Yershov, Vladimir; Sidirpoulos, Panagiotis; Kim, Jungrack

    2014-05-01

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 7 years, especially in 3D imaging of surface shape (down to resolutions of 10cm) and subsequent terrain correction of imagery from orbiting spacecraft. This has led to the ability to be able to overlay different epochs back to the mid-1970s, examine time-varying changes (such as the recent discovery of boulder movement [Orloff et al., 2011] or the sublimation of sub-surface ice revealed by meteoritic impact [Byrne et al., 2009] as well as examine geophysical phenomena, such as surface roughness on different length scales. Consequently we are seeing a dramatic improvement in our understanding of surface formation processes. Since January 2004 the ESA Mars Express has been acquiring global data, especially HRSC stereo (12.5-25m nadir images) with 87% coverage with images ≤25m and more than 65% useful for stereo mapping (e.g. atmosphere sufficiently clear). It has been demonstrated [Gwinner et al., 2010] that HRSC has the highest possible planimetric accuracy of ≤25m and is well co-registered with MOLA, which represents the global 3D reference frame. HRSC 3D and terrain-corrected image products therefore represent the best available 3D reference data for Mars. NASA began imaging the surface of Mars, initially from flybys in the 1960s with the first orbiter with images ≤100m in the late 1970s from Viking Orbiter. The most recent orbiter to begin imaging in November 2006 is the NASA MRO which has acquired surface imagery of around 1% of the Martian surface from HiRISE (at ≡20cm) and ≡5% from CTX (≡6m) in stereo. Unfortunately, for most of these NASA images, especially MGS, MO, VO and HiRISE their accuracy of georeferencing is often worse than the quality of Mars reference data from HRSC. This reduces their value for analysing

  16. Segments on Western Rim of Endeavour Crater, Mars

    NASA Image and Video Library

    2017-04-19

    This orbital image of the western rim of Mars' Endeavour Crater covers an area about 5 miles (8 kilometers) east-west by about 9 miles (14 kilometers) north-south and indicates the names of some of the raised segments of the rim. NASA's Mars Exploration Rover Opportunity arrived at Endeavour in 2011 after exploring smaller craters to the northwest during its first six years on Mars. It initially explored the "Cape York" segment, then headed south. It reached the northern end of "Cape Tribulation" in late 2014 and the southern tip of that segment in April 2017. A key destination in the "Cape Byron" segment is "Perseverance Valley," where the rover team plans to investigate whether the valley was carved by water, wind or a debris flow initiated by water. This image is from the Context Camera on NASA's Mars Reconnaissance Orbiter. Malin Space Science Systems, San Diego, California, built and operates that camera. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, built and operates Opportunity. https://photojournal.jpl.nasa.gov/catalog/PIA21490

  17. Simulating the Current Water Cycle with the NASA Ames Mars Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R. A.; Montmessin, F.

    2017-12-01

    The water cycle is a critical component of the current Mars climate system, and it is now widely recognized that water ice clouds significantly affect the nature of the simulated water cycle. Two processes are key to implementing clouds in a Mars global climate model (GCM): the microphysical processes of formation and dissipation, and their radiative effects on atmospheric heating/cooling rates. Together, these processes alter the thermal structure, change the atmospheric dynamics, and regulate inter-hemispheric transport. We have made considerable progress using the NASA Ames Mars GCM to simulate the current-day water cycle with radiatively active clouds. Cloud fields from our baseline simulation are in generally good agreement with observations. The predicted seasonal extent and peak IR optical depths are consistent MGS/TES observations. Additionally, the thermal response to the clouds in the aphelion cloud belt (ACB) is generally consistent with observations and other climate model predictions. Notably, there is a distinct gap in the predicted clouds over the North Residual Cap (NRC) during local summer, but the clouds reappear in this simulation over the NRC earlier than the observations indicate. Polar clouds are predicted near the seasonal CO2 ice caps, but the column thicknesses of these clouds are generally too thick compared to observations. Our baseline simulation is dry compared to MGS/TES-observed water vapor abundances, particularly in the tropics and subtropics. These areas of disagreement appear to be a consistent with other current water cycle GCMs. Future avenues of investigation will target improving our understanding of what controls the vertical extent of clouds and the apparent seasonal evolution of cloud particle sizes within the ACB.

  18. Human Mars Landing Site and Impacts on Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  19. Clay Minerals in Mawrth Vallis Region of Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold.

    The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green.

    The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter.

    Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars.

    CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  20. Research from the NASA Twins Study and Omics in Support of Mars Missions

    NASA Technical Reports Server (NTRS)

    Kundrot, C.; Shelhamer, M.; Scott, G.

    2015-01-01

    The NASA Twins Study, NASA's first foray into integrated omic studies in humans, illustrates how an integrated omics approach can be brought to bear on the challenges to human health and performance on a Mars mission. The NASA Twins Study involves US Astronaut Scott Kelly and his identical twin brother, Mark Kelly, a retired US Astronaut. No other opportunity to study a twin pair for a prolonged period with one subject in space and one on the ground is available for the foreseeable future. A team of 10 principal investigators are conducting the Twins Study, examining a very broad range of biological functions including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. A novel aspect of the study is the integrated study of molecular, physiological, cognitive, and microbiological properties. Major sample and data collection from both subjects for this study began approximately six months before Scott Kelly's one year mission on the ISS, continue while Scott Kelly is in flight and will conclude approximately six months after his return to Earth. Mark Kelly will remain on Earth during this study, in a lifestyle unconstrained by this study, thereby providing a measure of normal variation in the properties being studied. An overview of initial results and the future plans will be described as well as the technological and ethical issues raised for spaceflight studies involving omics.

  1. Mars Odyssey View of Morning Clouds in Canyon

    NASA Image and Video Library

    2016-04-05

    Light blue clouds fill Coprates Chasma on Mars, part of Valles Marineris, the vast Grand Canyon of Mars. The clouds are mostly ice crystals and they appear blue in color in this image from NASA Mars Odyssey.

  2. NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  3. The use of harmonic drives on NASA's Mars Exploration Rover

    NASA Technical Reports Server (NTRS)

    Krishnan, S.; Voorhees, C.

    2001-01-01

    The Mars Exploration Rover (MER) mission will send two 185 kg rovers to Mars in 2003 to continue the scientific community's search for evidence of past water on Mars. These twin robotic vehicles will carry harmonic drives and their performance will be characterized at various temperatures, speeds and loads.

  4. News and Views: NASA puts JWST back on track, but ExoMars collaboration looks unlikely; Marsquakes happening yesterday, geologically; UFOs from black holes control shape of galaxies

    NASA Astrophysics Data System (ADS)

    2012-04-01

    NASA's funding plans put the James Webb Space Telescope firmly on track for a launch in 2018, to widespread relief, but the essentially flat funding settlement for 2013 overall means something has to go. Planetary science seems hardest hit, with the especial blow for European planetary scientists of NASA pulling out of ExoMars, the ESA-led mission to look for signs of life on Mars. Images from the High Resolution Imaging Science Experiment have shown boulders displaced by seismic activity on Mars in the past few million years, and possibly much more recently than that. The bigger the supermassive black hole at the centre of a galaxy, the faster the stars in the galactic bulge rotate. Why this should be so has been something of a puzzle, but now a mechanism that is both powerful and common enough to do the job has been identified.

  5. Ongoing Mars Missions: Extended Mission Plans

    NASA Astrophysics Data System (ADS)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  6. Polygon Patterned Ground on Mars and on Earth

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Some high-latitude areas on Mars (left) and Earth (right) exhibit similarly patterned ground where shallow fracturing has drawn polygons on the surface.

    This patterning may result from cycles of contraction and expansion.

    The left image shows ground within the targeted landing area NASA's Phoenix Mars Lander before the winter frost had entirely disappeared from the surface.

    The bright ice in shallow crevices accentuates the area's polygonal fracturing pattern. The polygons are a few meters (several feet) across.

    The image is a small portion of an exposure taken in March 2008 by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter.

    The image on the right is an aerial view of similarly patterned ground in Antarctica.

    The Phoenix Mission is led by the University of Arizona on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory. Spacecraft development is by Lockheed Martin Space Systems.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace & Technologies Corp., Boulder, Colo.

  7. Search for the Mars 2 Debris Field

    NASA Image and Video Library

    2014-10-29

    NASA Mars Reconnaissance Orbiter acquired this image to aid in the search for the missing lander, Mars 2. If the debris field is found, it could serve as a future landing location to study the effects of crash landing on the Martian surface. Despite the recent successes of missions landing on Mars, like the Mars Science Laboratory (Curiosity) or the arrival of new satellites, such as India's MOM orbiter, the Red Planet is also a graveyard of failed missions. The Soviet Mars 2 lander was the first man-made object to touch the surface of the Red Planet when it crashed landed on 27 November 1971. It is believed that the descent stage malfunctioned after the lander entered the atmosphere at too steep an angle. Attempts to contact the probe after the crash were unsuccessful. http://photojournal.jpl.nasa.gov/catalog/PIA18888

  8. Close-up of a Mars Meteorite

    NASA Image and Video Library

    2018-02-13

    Close-up of a slice of a meteorite scientists have determined came from Mars. This slice will likely be used here on Earth for testing a laser instrument for NASA's Mars 2020 rover; a separate slice will go to Mars on the rover. Martian meteorites are believed to be the result of impacts to the Red Planet's surface, resulting in rock being heaved into the atmosphere. After traveling through space for eons, some of these rocks entered Earth's atmosphere. Scientists determine whether they are true Martian meteorites based on their rock and noble gas chemistry and mineralogy. The gases trapped in these meteorites bear the unique fingerprint of the Martian atmosphere, as recorded by NASA's Viking mission in 1976. The rock types also show clear signs of igneous processing not possible on smaller bodies, such as asteroids. https://photojournal.jpl.nasa.gov/catalog/PIA22246

  9. Mars Odyssey All Stars: Bacolor Crater

    NASA Image and Video Library

    2010-12-09

    Bacolor Crater is a magnificent impact feature about 20 kilometers 12 miles wide. This image is part of an All Star set marking the occasion of NASA Mars Odyssey as the longest-working Mars spacecraft in history.

  10. Opportunity Late Afternoon View of Mars

    NASA Image and Video Library

    2012-02-03

    NASA Mars Exploration Rover Opportunity captured this low-light raw image during the late afternoon of the rover 2,847th Martian sol Jan. 27, 2012. The rover is positioned for the Mars winter at Greeley Haven.

  11. Boots on Mars: Earth Independent Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Burnett, Josephine; Gill, Tracy R.; Ellis, Kim Gina

    2017-01-01

    This package is for the conduct of a workshop during the International Space University Space Studies Program in the summer of 2017 being held in Cork, Ireland. It gives publicly available information on NASA and international plans to move beyond low Earth orbit to Mars and discusses challenges and capabilities. This information will provide the participants a basic level of insight to develop a response on their perceived obstacles to a future vision of humans on Mars.

  12. Anomaly Trends for Missions to Mars: Mars Global Surveyor and Mars Odyssey

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Hoffman, Alan R.

    2008-01-01

    The long term flight operations of the Mars Global Surveyor and Mars Odyssey spacecraft give us an excellent chance to examine the operations of two long lived spacecraft in orbit around Mars during overlapping time periods. This study examined the anomalies for each mission maintained for NASA at the Jet Propulsion Laboratory. By examining the anomalies each mission encountered during their multiyear missions, trends were identified related to when anomalies occurred during each mission, the types of anomalies encountered, and corrective actions taken to mitigate the effects of the anomalies. As has been discovered in previous studies the numbers of anomalies directly correlate with mission activity and show a decreasing trend with elapsed mission time. Trend analysis also identified a heavy emphasis on software as the source or solution to anomalies for both missions.

  13. Opportunity Rover Nears Mars Marathon Feat

    NASA Image and Video Library

    2015-02-10

    In February 2015, NASA Mars Exploration Rover Opportunity is approaching a cumulative driving distance on Mars equal to the length of a marathon race. This map shows the rover position relative to where it could surpass that distance.

  14. Stationary eddies in the Mars general circulation as simulated by the NASA-Ames GCM

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.; Pollack, J. B.; Haberle, Robert M.

    1993-01-01

    Quasistationary eddies are prominent in a large set of simulations of the Mars general circulation performed with the NASA-Ames GCM. Various spacecraft observations have at least hinted at the existence of such eddies in the Mars atmosphere. The GCM stationary eddies appear to be forced primarily by the large Mars topography, and (to a much lesser degree) by spatial variations in the surface albedo and thermal inertia. The stationary eddy circulations exhibit largest amplitudes at high altitudes (above 30-40 km) in the winter extratropical regions. In these regions they are of planetary scale, characterized largely by zonal wavenumbers 1 and 2. Southern Hemisphere winter appears to be dominated by a very strong wave 1 pattern, with both waves 1 and 2 being prominent in the Northern Hemisphere winter regime. This difference seems to be basically understandable in terms of differences in the topography in the two hemispheres. The stationary eddies in the northern winter extratropics are found to increase in amplitude with dust loading. This behavior appears to be at least partly associated with changes in the structure of the zonal-mean flow that favor a greater response to wave 1 topographic forcing. There are also strong stationary eddy circulations in the tropics and in the summer hemisphere. The eddies in the summer subtropics and extratropics arc substantially stronger in southern summer than in northern summer. The summer hemisphere stationary circulations are relatively shallow and are characterized by smaller zonal scales than those in the winter extratropics.

  15. Cameras on Mars 2020 Rover

    NASA Image and Video Library

    2017-10-31

    This image presents a selection of the 23 cameras on NASA's 2020 Mars rover. Many are improved versions of the cameras on the Curiosity rover, with a few new additions as well. https://photojournal.jpl.nasa.gov/catalog/PIA22103

  16. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  17. Pratt & Whitney ESCORT derivative for mars surface power

    NASA Astrophysics Data System (ADS)

    Feller, Gerald J.; Joyner, Russell

    1999-01-01

    The purpose of this paper is to address the applicability of a common reactor system design from the Pratt & Whitney ESCORT nuclear thermal rocket engine concept to support current NASA mars surface-based power requirements. The ESCORT is a bimodal engine capable of supporting a wide range of propulsive thermal and vehicle electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In addition to an expander cycle propulsive mode, the ESCORT is capable of operating in an electrical power mode. In this mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. Recent Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential mars transfer missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. Additionally, these requirements detailed a surface power system capable of providing approximately 160 kW of electrical energy over an approximate 10 year period within a given weight and volume envelope. Current NASA studies use a SP-100 reactor (0.8 MT) and a NERVA derivative (1.6 MT) as baseline systems. A mobile power cart of approximate dimensions 1.7 m×4.5 m×4.4 m has been conceptualized to transport the reactor power system on the Mars Surface. The 63.25 cm diameter and 80.25 cm height of the ESCORT and its 1.3 MT of weight fit well within the current weight and volume target range of the NASA DRM requirements. The modifications required to the ESCORT reactor system to support this upgraded electrical power requirements along with operation in the Martian atmospheric conditions are addressed in this paper. Sufficient excess reactivity and burnup capability

  18. 2018 Giant Dust Storm on Mars

    NASA Image and Video Library

    2018-06-13

    This set of images from NASA's Mars Reconnaissance Orbiter (MRO) shows a fierce, giant dust storm is kicking up on Mars, with rovers on the surface indicated as icons. The spread of the storm can be seen in the salmon-colored overlay. These images from MRO's Mars Color Imager start from May 31, when the dust event was first detected, and go through June 11, 2018. MRO creates global maps of Mars but roll maneuvers for targeted observations produce gaps in the coverage, which appear as black gores in the maps. On some days there are data drops where partial or full orbits of coverage are missing. Green and purple observed in the south polar region indicate saturated pixels. Latitude is indicated along the vertical axis. Longitude is indicated along the horizontal axis. https://photojournal.jpl.nasa.gov/catalog/PIA22519

  19. Distant Perspective of MarCOs Cruise in Deep Space

    NASA Image and Video Library

    2018-03-29

    An artist's rendering of the twin Mars Cube One (MarCO) spacecraft on their cruise in deep space. The MarCOs will be the first CubeSats -- a kind of modular, mini-satellite -- attempting to fly to another planet. They're designed to fly along behind NASA's InSight lander on its cruise to Mars. If they make the journey, they will test a relay of data about InSight's entry, descent and landing back to Earth. Though InSight's mission will not depend on the success of the MarCOs, they will be a test of how CubeSats can be used in deep space. https://photojournal.jpl.nasa.gov/catalog/PIA22315

  20. Instrument Deployment for Mars Rovers

    NASA Technical Reports Server (NTRS)

    Pedersen, Liam; Bualat, Maria; Kunz, C.; Lee, Susan; Sargent, Randy; Washington, Rich; Wright, Anne; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Future Mars rovers, such as the planned 2009 MSL rover, require sufficient autonomy to robustly approach rock targets and place an instrument in contact with them. It took the 1997 Sojourner Mars rover between 3 and 5 communications cycles to accomplish this. This paper describes the technologies being developed and integrated onto the NASA Ames K9 prototype Mars rover to both accomplish this in one cycle, and to extend the complexity and duration of operations that a Mars rover can accomplish without intervention from mission control.

  1. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Melissa Trainer, Sample Analysis at, Mars (SAM) team member and Charles Malespin, SAM Deputy Principal Investigator and Operations Test Lead discuss research being done in the SAM lab being carried by the Curiosity Rover on the surface of Mars. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Destination Mars Grand Opening

    NASA Image and Video Library

    2016-09-18

    Apollo 11 astronaut Buzz Aldrin, left and Erisa Hines of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, try out Microsoft HoloLens mixed reality headset during a preview of the new Destination: Mars experience at the Kennedy Space Center Visitor Complex. Destination: Mars gives guests an opportunity to “visit” several sites on Mars using real imagery from NASA’s Curiosity Mars Rover. Based on OnSight, a tool created by NASA’s Jet Propulsion Laboratory in Pasadena, California, the experience brings guests together with a holographic version of Aldrin and Curiosity rover driver Hines as they are guided to Mars using Microsoft HoloLens mixed reality headset. Photo credit: NASA/Charles Babir

  3. Destination Mars Grand Opening

    NASA Image and Video Library

    2016-09-18

    A ceremonial ribbon is cut for the opening of new Destination: Mars experience at the Kennedy Space Center Visitor Complex. From the left are Therrin Protze, chief operating officer of the visitor complex, center director Bob Cabana, Apollo 11 astronaut Buzz Aldrin, Kudo Tsunoda of Microsoft, and Jeff Norris of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. Destination: Mars gives guests an opportunity to “visit” several sites on Mars using real imagery from NASA’s Curiosity Mars Rover. Based on OnSight, a tool created by JPL, the experience brings guests together with a holographic version of Aldrin as they are guided to Mars using Microsoft HoloLens mixed reality headset. Photo credit: NASA/Charles Babir

  4. Administrator Bridenstine: InSight Will Map the Inside of Mars

    NASA Image and Video Library

    2018-05-05

    NASA Administrator Jim Bridenstine shares thoughts on the Mars InSight mission, the search for evidence of life beyond Earth, returning humans to the Moon and why Earth is his favorite planet. To learn more about InSight, visit https://mars.nasa.gov/insight/.

  5. Mars Rover Concept Vehicle

    NASA Image and Video Library

    2017-06-05

    The scientifically-themed Mars rover concept vehicle operates on an electric motor, powered by solar panels and a 700-volt battery. The rover separates in the middle with the front area designed for scouting and equipped with a radio and navigation provided by the Global Positioning System. The back section serves as a full laboratory which can disconnect for autonomous research. The "Summer of Mars" promotion is designed to provide guests with a better understanding of NASA's studies of the Red Planet. The builders of the rover, Parker Brothers Concepts of Port Canaveral, Florida, incorporated input into its design from NASA subject matter experts.

  6. Overview of the MARS Laser Communications Demonstration Project

    NASA Technical Reports Server (NTRS)

    Edward, Bernard L.; Townes, Stephen A.; Bondurant, Roy S.; Scozzafava, Joseph J.; Boroson, Don M.; Parvin, Ben A.; Biswas, Abhijit; Pillsbury, Alan D.; Khatri, Farzana I.; Burnside, Jamie W.

    2003-01-01

    This paper provides an overview of the Mars Laser Communications Demonstration Project, a joint project between NASA s Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory, California Institute of Technology (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT/LL). It reviews the strawman designs for the flight and ground segments, the critical technologies required, and the concept of operations. It reports preliminary conclusions from the Mars Lasercom Study conducted at MIT/LL and on additional work done at JPL and GSFC. The lasercom flight terminal will be flown on the Mars Telecom Orbiter (MTO) to be launched by NASA in 2009, and will demonstrate a technology which has the potential of vastly improving NASA s ability to communicate throughout the solar system.

  7. Recent select Sample Analysis at Mars (SAM) Testbed analog results

    NASA Astrophysics Data System (ADS)

    Malespin, C.; McAdam, A.; Teinturier, S.; Eigenbrode, J. L.; Freissinet, C.; Knudson, C. A.; Lewis, J. M.; Millan, M.; Steele, A.; Stern, J. C.; Williams, A. J.

    2017-12-01

    The Sample Analysis at Mars (SAM) testbed (TB) is a high fidelity replica of the flight instrument currently onboard the Curiosity rover in Gale Crater, Mars1. The SAM testbed is housed in a Mars environment chamber at NASA Goddard Space Flight Center (GSFC), which can replicate both thermal and environmental conditions. The testbed is used to validate and test new experimental procedures before they are implemented on Mars, but it is also used to analyze analog samples which assists in the interpretation of results from the surface. Samples are heated using the same experimental protocol as on Mars to allow for direct comparison with Martian sampling conditions. Here we report preliminary results from select samples that were loaded into the SAM TB, including meteorites, an organically rich iron oxide, and a synthetic analog to the Martian Cumberland sample drilled by the rover at Yellowknife Bay. Each of these samples have been analyzed under SAM-like conditions using breadboard and lab instrument systems. By comparing the data from the lab systems and SAM TB, further insight on results from Mars can be gained. References: [1] Mahaffy, P. R., et al. (2013), Science, 341(6143), 263-266, doi:10.1126/science.1237966.

  8. Hubble Takes Mars Portrait Near Close Approach

    NASA Image and Video Library

    2017-12-08

    Mars is looking mighty fine in this portrait nabbed by the Hubble Space Telescope on a near close approach! Read more: go.nasa.gov/1rWYiBT The Hubble Space Telescope is more well known for its picturesque views of nebulae and galaxies, but it's also useful for studying our own planets, including Mars. Hubble imaged Mars on May 12, 2016 - ten days before Mars would be on the exact opposite side of the Earth from the Sun. Bright, frosty polar caps, and clouds above a vivid, rust-colored landscape reveal Mars as a dynamic seasonal planet in this NASA Hubble Space Telescope view taken on May 12, 2016, when Mars was 50 million miles from Earth. The Hubble image reveals details as small as 20 to 30 miles across. The large, dark region at far right is Syrtis Major Planitia, one of the first features identified on the surface of the planet by seventeenth-century observers. Christiaan Huygens used this feature to measure the rotation rate of Mars. (A Martian day is about 24 hours and 37 minutes.) Today we know that Syrtis Major is an ancient, inactive shield volcano. Late-afternoon clouds surround its summit in this view. A large oval feature to the south of Syrtis Major is the bright Hellas Planitia basin. About 1,100 miles across and nearly five miles deep, it was formed about 3.5 billion years ago by an asteroid impact. The orange area in the center of the image is Arabia Terra, a vast upland region in northern Mars that covers about 2,800 miles. The landscape is densely cratered and heavily eroded, indicating that it could be among the oldest terrains on the planet. Dried river canyons (too small to be seen here) wind through the region and empty into the large northern lowlands. Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J. Bell (ASU), and M. Wolff (Space Science Institute) #nasagoddard #mars #hubble #space NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics

  9. Micro-Pressure Sensors for Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Catling, David C.

    1996-01-01

    The joint research interchange effort was directed at the following principal areas: u further development of NASA-Ames' Mars Micro-meteorology mission concept as a viable NASA space mission especially with regard to the science and instrument specifications u interaction with the flight team from NASA's New Millennium 'Deep-Space 2' (DS-2) mission with regard to selection and design of micro-pressure sensors for Mars u further development of micro-pressure sensors suitable for Mars The research work undertaken in the course of the Joint Research Interchange should be placed in the context of an ongoing planetary exploration objective to characterize the climate system on Mars. In particular, a network of small probes globally-distributed on the surface of the planet has often been cited as the only way to address this particular science goal. A team from NASA Ames has proposed such a mission called the Micrometeorology mission, or 'Micro-met' for short. Surface pressure data are all that are required, in principle, to calculate the Martian atmospheric circulation, provided that simultaneous orbital measurements of the atmosphere are also obtained. Consequently, in the proposed Micro-met mission a large number of landers would measure barometric pressure at various locations around Mars, each equipped with a micro-pressure sensor. Much of the time on the JRI was therefore spent working with the engineers and scientists concerned with Micro-met to develop this particular mission concept into a more realistic proposition.

  10. Mars Odyssey All Stars: Cerberus Crack

    NASA Image and Video Library

    2010-12-09

    Geological faulting has opened cracks in the Cerberus region that slice through flat plains and mesas alike. This image is part of an All Star set marking the occasion of NASA Mars Odyssey as the longest-working Mars spacecraft in history.

  11. Mars Odyssey All Stars: Polar Dunes

    NASA Image and Video Library

    2010-12-09

    A sea of dark dunes, sculpted by the wind into long lines, surrounds the northern polar cap covering an area as big as Texas in this false-color image from NASA Mars Odyssey, the longest-working Mars spacecraft in history.

  12. Preparing for Mars: The Evolvable Mars Campaign 'Proving Ground' Approach

    NASA Technical Reports Server (NTRS)

    Bobskill, Marianne R.; Lupisella, Mark L.; Mueller, Rob P.; Sibille, Laurent; Vangen, Scott; Williams-Byrd, Julie

    2015-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence beyond Low Earth Orbit, we are in the early stages of planning missions within the framework of an Evolvable Mars Campaign. Initial missions would be conducted in near-Earth cis-lunar space and would eventually culminate in extended duration crewed missions on the surface of Mars. To enable such exploration missions, critical technologies and capabilities must be identified, developed, and tested. NASA has followed a principled approach to identify critical capabilities and a "Proving Ground" approach is emerging to address testing needs. The Proving Ground is a period subsequent to current International Space Station activities wherein exploration-enabling capabilities and technologies are developed and the foundation is laid for sustained human presence in space. The Proving Ground domain essentially includes missions beyond Low Earth Orbit that will provide increasing mission capability while reducing technical risks. Proving Ground missions also provide valuable experience with deep space operations and support the transition from "Earth-dependence" to "Earth-independence" required for sustainable space exploration. A Technology Development Assessment Team identified a suite of critical technologies needed to support the cadence of exploration missions. Discussions among mission planners, vehicle developers, subject-matter-experts, and technologists were used to identify a minimum but sufficient set of required technologies and capabilities. Within System Maturation Teams, known challenges were identified and expressed as specific performance gaps in critical capabilities, which were then refined and activities required to close these critical gaps were identified. Analysis was performed to identify test and demonstration opportunities for critical technical capabilities across the Proving Ground spectrum of missions. This suite of critical capabilities is expected to

  13. Mars: On the Path Or In The Way?

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2012-01-01

    Explore Mars may not be the highest and best use of government-? funded human space flight. However, Explore Mars is pervasively accepted as the ultimate goal for human space flight. This meme has become refractory within the human space flight community despite dramatic contextual changes since Apollo: human space flight is no longer central to commonly-?held national priorities, NASA's fraction of the federal budget has diminished 8 fold, over 60 enabling technology challenges have been identified, and the stunning achievements of robotic Mars exploration have accelerated. The Explore Mars vision has not kept pace with these changes.An unprecedented budgetary commitment would have to be sustained for an unprecedented number of decades to achieve the Explore Mars goal. Further, the goal's justification as uniquely able to definitively determine Mars habitability is brittle, and not driving current planning in any case; yet NASA owns the choice of this goal and has authority to change it. Three alternative goals for government investment in human space flight meet NASA's own expressed rationale at least as well as Explore Mars, some with far greater capacity to regain the cultural centrality of human space flight and to grow by attracting private capital. At a minimum the human space flight advocacy community should address the pragmatics of choosing such a vulnerable goal.

  14. NASA scientific and technical publications: A catalog of special publications, reference publications, conference publications, and technical papers, 1987-1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This catalog lists 783 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered into NASA Scientific and Technical Information Database during the year's 1987 through 1990. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided.

  15. CO2 Condensation Models for Mars

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Haberle, R.

    2004-01-01

    During the polar night in both hemispheres of Mars, regions of low thermal emission, frequently referred to as "cold spots", have been observed by Mariner 9, Viking and Mars Global Surveyor (MGS) spacecraft. These cold spots vary in time and appear to be associated with topographic features suggesting that they are the result of a spectral-emission effect due to surface accumulation of fine-grained frost or snow. Presented here are simulations of the Martian polar night using the NASA Ames General Circulation Cloud Model. This cloud model incorporates all the microphysical processes of carbon dioxide cloud formation, including nucleation, condensation and sedimentation and is coupled to a surface frost scheme that includes both direct surface condensation and precipitation. Using this cloud model we simulate the Mars polar nights and compare model results to observations from the Thermal Emission Spectrometer (TES) and the Mars Orbiter Laser Altimeter (MOLA). Model predictions of "cold spots" compare well with TES observations of low emissivity regions, both spatially and as a function of season. The model predicted frequency of CO2 cloud formation also agrees well with MOLA observations of polar night cloud echoes. Together the simulations and observations in the North indicate a distinct shift in atmospheric state centered about Ls 270 which we believe may be associated with the strength of the polar vortex.

  16. Rhythmic Layering in Danielson Crater on Mars

    NASA Image and Video Library

    2011-11-21

    Rhythmic patterns of sedimentary layering in Danielson Crater on Mars result from periodic changes in climate related to changes in tilt of the planet in this image was taken by NASA Mars Reconnaissance Orbiter.

  17. Mars Researchers Rendezvous on Remote Arctic Island

    NASA Technical Reports Server (NTRS)

    2002-01-01

    ice.

    The data were captured on June 28, 2001, during the early part of the arctic summer, when sea ice becomes thinner and begins to move depending upon localized currents and winds. In winter the entire region is locked with several meters of nearly motionless sea ice, which acts as a thermodynamic barrier to the loss of heat from the comparatively warm ocean to the colder atmosphere. Summer melting of sea ice can be observed at the two large, dark regions of open water; one is present in the Jones Sound (near the top to the left of center), and another appears in the Wellington Channel (left-hand edge). A large crack caused by tidal heaving has broken the ice cover over the Parry Channel (lower right-hand corner). A substantial ice cap permanently occupies the easternmost third of the island (upper right). Surface features such as dendritic meltwater channels incised into the island's surface are apparent. The Haughton-Mars project site is located slightly to the left and above image center, in an area which appears with relatively little surface ice, near the island's inner 'elbow.'

    The images were acquired during Terra orbit 8132 and cover an area of about 334 kilometers x 229 kilometers. They utilize data from blocks 27 to 31 within World Reference System-2 path 42.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  18. NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, Brian; Law, Emily

    2016-10-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also

  19. NASA scientific and technical publications: A catalog of special publications, reference publications, conference publications, and technical papers, 1991-1992

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This catalog lists 458 citations of all NASA Special Publications, NASA Reference Publications, NASA Conference Publications, and NASA Technical Papers that were entered into the NASA Scientific and Technical Information database during accession year 1991 through 1992. The entries are grouped by subject category. Indexes of subject terms, personal authors, and NASA report numbers are provided.

  20. Phoenix Mars Lander with Solar Arrays Open

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA's next Mars-bound spacecraft, the Phoenix Mars Lander, was partway through assembly and testing at Lockheed Martin Space Systems, Denver, in September 2006, progressing toward an August 2007 launch from Florida. In this photograph, spacecraft specialists work on the lander after its fan-like circular solar arrays have been spread open for testing. The arrays will be in this configuration when the spacecraft is active on the surface of Mars.

    Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. It will dig into the surface, test scooped-up samples for carbon-bearing compounds and serve as NASA's first exploration of a potential modern habitat on Mars.

    The Phoenix mission is led by Principal Investigator Peter H. Smith of the University of Arizona, Tucson, with project management at NASA's Jet Propulsion Laboratory and development partnership with Lockheed Martin Space Systems. International contributions for Phoenix are provided by the Canadian Space Agency, the University of Neuchatel (Switzerland), the University of Copenhagen, and the Max Planck Institute in Germany. JPL is a division of the California Institute of Technology in Pasadena.

  1. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander spacecraft undergoes spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  2. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  3. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  4. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  5. Phoenix Mars Lander Spacecraft Heat Shield Installation

    NASA Image and Video Library

    2007-05-11

    In the Payload Hazardous Servicing Facility, technicians install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  6. Opportunity Surroundings After 25 Miles on Mars

    NASA Image and Video Library

    2014-08-14

    This July 29, 2014, panorama combines several images from the navigation camera on NASA Mars Exploration Rover Opportunity to show the rover surroundings after surpassing 25 miles 40.23 kilometers of total driving on Mars.

  7. Mars at 43 Million Miles From Earth

    NASA Image and Video Library

    2001-06-26

    NASA Earth-orbiting Hubble Space Telescope took the picture on June 26, 2001 when Mars was approximately 43 million miles 68 million km from Earth -- the closest Mars has ever been to Earth since 1988.

  8. Visualizing a Solar Storm's Effect on Mars Atmosphere (Illustration)

    NASA Image and Video Library

    2017-12-13

    This illustration depicts charged particles from a solar storm stripping away charged particles of Mars' atmosphere, one of the processes of Martian atmosphere loss studied by NASA's MAVEN mission, beginning in 2014. Unlike Earth, Mars lacks a global magnetic field that could deflect charged particles emanating from the Sun. https://photojournal.jpl.nasa.gov/catalog/PIA22076

  9. NASA STEM Event

    NASA Image and Video Library

    2013-01-19

    School children watch a TV program showing how the Mars rover Curiosity landed on Mars during an Science, Technology, Engineering, and Math (STEM) education event held at the Ritz-Carlton Hotel in Arlington, VA on Saturday, Jan. 19, 2013. Students were able to meet with Astronaut Melvin, conduct experiments, build their own space jab, and touch a mockup space suit. Photo Credit: (NASA/Bill Ingalls)

  10. Parachute Opening During Tests for Mars Science Laboratory

    NASA Image and Video Library

    2009-04-22

    Testing during March and April 2009 inside the world largest wind tunnel, at NASA Ames Research Center, Moffett Field, Calif., qualified the parachute for NASA next Mars rover. The parachute for NASA's Mars Science Laboratory mission, to be launched in 2011 and land on Mars in 2012, is the largest ever built to fly on an extraterrestrial mission. This image shows the qualification-test parachute beginning to open a few seconds after it was launched from a mortar into an 80-mile-per-hour (36-meter-per-second) wind. The parachute uses a configuration called disk-gap-band. It has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 16 meters (51 feet). Most of the orange and white fabric is nylon, though a small disk of heavier polyester is used near the vent in the apex of the canopy due to higher stresses there. http://photojournal.jpl.nasa.gov/catalog/PIA11992

  11. Parachute Opening During Tests for Mars Science Laboratory

    NASA Image and Video Library

    2009-04-22

    Testing during March and April 2009 inside the world largest wind tunnel, at NASA Ames Research Center, Moffett Field, Calif., qualified the parachute for NASA next Mars rover. The parachute for NASA's Mars Science Laboratory mission, to be launched in 2011 and land on Mars in 2012, is the largest ever built to fly on an extraterrestrial mission. This image shows the qualification-test parachute beginning to open a few seconds after it was launched from a mortar into an 80-mile-per-hour (36-meter-per-second) wind. The parachute uses a configuration called disk-gap-band. It has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 16 meters (51 feet). Most of the orange and white fabric is nylon, though a small disk of heavier polyester is used near the vent in the apex of the canopy due to higher stresses there. http://photojournal.jpl.nasa.gov/catalog/PIA11993

  12. Meditations on the new space vision: The moon as a stepping stone to mars

    NASA Astrophysics Data System (ADS)

    Mendell, W. W.

    2005-07-01

    The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity—governmental, international, or commercial—that can responsibly carry on lunar development past the exploration phase.

  13. Meditations on the new space vision: the Moon as a stepping stone to Mars.

    PubMed

    Mendell, W W

    2005-01-01

    The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase. Published by Elsevier Ltd.

  14. Parachute Testing for Mars Science Laboratory

    NASA Image and Video Library

    2007-12-20

    The team developing the landing system for NASA Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

  15. First Imaging of Laser-Induced Spark on Mars

    NASA Image and Video Library

    2014-07-16

    NASA Curiosity Mars rover used the Mars Hand Lens Imager MAHLI camera on its arm to catch the first images of sparks produced by the rover laser being shot at a rock on Mars. The left image is from before the laser zapped this rock, called Nova.

  16. Slope Gullies on Devon Island, Canadian Arctic: Possible Analogs for Gullies on Mars and Evidence for Recent Transient Environmental Change on Mars.

    NASA Astrophysics Data System (ADS)

    Lee, P.

    2002-12-01

    The origin and evolution of the relatively youthful slope gully features on Mars first reported by Malin and Edgett (2000) remain enigmatic. Two prevailing hypotheses concerning their formation involve the discharge of subsurface H2O at the gully sites: groundwater seepage (1) and/or the melting of ground-ice (2, 3). In the course of geologic field investigations on Devon Island, Canadian Arctic, we have identified morphologic and contextual analogs for the martian gullies that result from a radically different mechanism of formation (4). The gullies on Devon result mainly from the episodic melting of transient surface snow and ice deposits, with little contribution from subsurface H2O reservoirs. Timescales for gully formation on Devon Island are ­š104 years (5). The gullies on Devon suggest that the formation of gully features on Mars might not necessarily have involved discharges of subsurface H2O at the gully sites. Instead, gullies on Mars might be the result of transient surface snow and ice melting, which in turn might be the result of short-term changes in regional surface environmental conditions (on time-scales of ­š105-108 years?) possibly in association with high obliquity-induced climate change (6, 7) and/or volcanic activity. Acknowledgements: This research was conducted under the auspices of the NASA Haughton-Mars Project (HMP) with support from NASA and the National Geographic Society. References: (1) Malin, M. C. and K. S. Edgett 2000. Science 288, 2330-2335. (2) Mellon, M. T. and R. J. Phillips 2001. J. Geophys. Res. 106, 23165-23179. (3) Costard, F. et al. 2002. Science 295, 110-112. (4) Lee, P. et al. 2001. LPSC. XXXII, Houston, TX, Mar 12-16, 2001. (5) Lee, P, et al. 2002. LPSC XXXIII, Houston, TX, Mar 11-15, 2002. (6) Ward, W. R. (1973) Science 181, 260-262. (7) Touma, J. and J. Wisdom (1993) Science 259, 1294-1296.

  17. Descent Stage of Mars Science Laboratory During Assembly

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from early October 2008 shows personnel working on the descent stage of NASA's Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground. The larger three of the orange spheres in the descent stage are fuel tanks. The smaller two are tanks for pressurant gas used for pushing the fuel to the rocket engines.

    JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.

  18. Cruise Stage of NASA's InSight Spacecraft

    NASA Image and Video Library

    2017-08-28

    Lockheed Martin spacecraft specialists check the cruise stage of NASA's InSight spacecraft in this photo taken June 22, 2017, in a Lockheed Martin clean room facility in Littleton, Colorado. The cruise stage will provide vital functions during the flight from Earth to Mars, and then will be jettisoned before the InSight lander, enclosed in its aeroshell, enters Mars' atmosphere. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in May 2018 and land on Mars Nov. 26, 2018. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21845

  19. Parametric Analysis for Aurora Mars Manned Mission Concept Definition

    NASA Astrophysics Data System (ADS)

    Augros, P.; Bonnefond, F.; Ranson, S.

    In the frame of the Aurora program (ESA program), Europe plans to get its own vision about future Mars manned mission. Within this context, we have performed an end-to-end analysis of what could be these missions, focusing on transportation aspects and mobile in-situ infrastructure. This paper will define what is needed to land on Mars, what is needed to return from Mars surface, will explore the round trip options and their consequences on the mission design and feasibility and will analyze the launcher issue and the in-orbit assembly scenarios. The main results enable to rediscover a candidate mission based on a scenario close to the NASA reference mission (Ref [1]). The main interest, from transportation point of view, is that the spacecraft are similar: same insertion stage, same descent vehicle. Such design can be possible with deployable aeroshield for Mars entry vehicle, in-situ water and propellant production, improved habitat technology, conjunction like round trip (minimum V avoiding science fiction design), a launcher payload capability of 100 tons in LEO with a payload size of 30 m long and 7.5 m diameter. An alternative, limiting also the overall mass in LEO, could be a no Mars infrastructure deployment and a single spacecraft going to Mars and returning back to Earth. But it implies for the crew to stay in Mars orbit several months, waiting for the next opportunity ensuring a minimum V.

  20. Mars Ascent Vehicle Gross Lift-off Mass Sensitivities for Robotic Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Dux, Ian J.; Huwaldt, Joseph A.; McKamey, R. Steve; Dankanich, John W.

    2011-01-01

    The Mars ascent vehicle is a critical element of the robotic Mars Sample Return (MSR) mission. The Mars ascent vehicle must be developed to survive a variety of conditions including the trans-Mars journey, descent through the Martian atmosphere and the harsh Martian surface environments while maintaining the ability to deliver its payload to a low Mars orbit. The primary technology challenge of developing the Mars ascent vehicle system is designing for all conditions while ensuring the mass limitations of the entry descent and landing system are not exceeded. The NASA In-Space Propulsion technology project has initiated the development of Mars ascent vehicle technologies with propulsion system performance and launch environments yet to be defined. To support the project s evaluation and development of various technology options the sensitivity of the Mars ascent vehicle gross lift-off mass to engine performance, inert mass, target orbits, and launch conditions has been completed with the results presented herein.

  1. Mars-Flyby Comet in False Color

    NASA Image and Video Library

    2014-11-07

    This frame from a movie sequence of images from NASA Mars Reconnaissance Orbiter MRO shows comet C/2013 A1 Siding Spring before and after its close pass by Mars in October 2014. False color enhances subtle variations in brightness in the comet coma.

  2. Phobos Viewed from Mars

    NASA Image and Video Library

    2005-09-11

    Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. The first two images in this sequence show gradual enhancements in the surface detail of Mars' largest moon, Phobos, made possible through a combination technique known as "stacking." In "stacking," scientists use a mathematical process known as Laplacian sharpening to reinforce features that appear consistently in repetitive images and minimize features that show up only intermittently. In this view of Phobos, the large crater named Stickney is just out of sight on the moon's upper right limb. Spirit acquired the first two images with the panoramic camera on the night of sol 585 (Aug. 26,2005). The far right image of Phobos, for comparison, was taken by the High Resolution Stereo Camera on Mars Express, a European Space Agency orbiter. The third image in this sequence was derived from the far right image by making it blurrier for comparison with the panoramic camera images to the left http://photojournal.jpl.nasa.gov/catalog/PIA06335

  3. Mars Odyssey Observes Phobos

    NASA Image and Video Library

    2018-02-22

    Colors in this image of the Martian moon Phobos indicate a range of surface temperatures detected by observing the moon on February 15, 2018, with the Thermal Emission Imaging System (THEMIS) camera on NASA's Mars Odyssey orbiter. The left edge of the small moon is in darkness, and the right edge in sunlight. Phobos has an oblong shape with average diameter of about 14 miles (22 kilometers). Temperature information was derived from thermal-infrared imaging such as the grayscale image shown smaller at lower left with the moon in the same orientation. The color-coding merges information from THEMIS observations made in 10 thermal-infrared wavelength bands. This was the second observation of Phobos by Mars Odyssey; the first was on September 29, 2017. Researchers have been using THEMIS to examine Mars since early 2002, but the maneuver turning the orbiter around to point the camera at Phobos was developed only recently. https://photojournal.jpl.nasa.gov/catalog/PIA22249

  4. Mars Comet Encounter Briefing

    NASA Image and Video Library

    2014-10-09

    Dwayne Brown, NASA public affairs officer, left, moderates a media briefing where panelist, seated from left, Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California, outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Joel Kowsky)

  5. Mars Rover Curiosity in Artist Concept, Tall

    NASA Image and Video Library

    2011-05-26

    This artist concept features NASA Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011.

  6. Mars Rover Curiosity in Artist Concept, Wide

    NASA Image and Video Library

    2011-05-26

    This artist concept features NASA Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011.

  7. Global View of Mars Topography

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Annotated Version

    This global map of Mars is based on topographical information collected by the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter. Illumination is from the upper right. The image width is approximately 18,000 kilometers (11,185 miles). Candor Chasma forms part of the large Martian canyon system named Valles Marineris. The location of Southwest Candor Chasma is indicated in the annotated version.

  8. Mars Telecommunications Orbiter, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.

  9. Mars Global Coverage by Context Camera on MRO

    NASA Image and Video Library

    2017-03-29

    In early 2017, after more than a decade of observing Mars, the Context Camera (CTX) on NASA's Mars Reconnaissance Orbiter (MRO) surpassed 99 percent coverage of the entire planet. This mosaic shows that global coverage. No other camera has ever imaged so much of Mars in such high resolution. The mosaic offers a resolution that enables zooming in for more detail of any region of Mars. It is still far from the full resolution of individual CTX observations, which can reveal the shapes of features smaller than the size of a tennis court. As of March 2017, the Context Camera has taken about 90,000 images since the spacecraft began examining Mars from orbit in late 2006. In addition to covering 99.1 percent of the surface of Mars at least once, this camera has observed more than 60 percent of Mars more than once, checking for changes over time and providing stereo pairs for 3-D modeling of the surface. http://photojournal.jpl.nasa.gov/catalog/PIA21488

  10. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  11. Relays from Mars demonstrate international interplanetary networking

    NASA Astrophysics Data System (ADS)

    2004-08-01

    On 4 August at 14:24 CEST, as Mars Express flew over one of NASA’s Mars exploration rovers, Opportunity, it successfully received data previously collected and stored by the rover. The data, including 15 science images from the rover's nine cameras, were then downlinked to ESA’s European Space Operations Centre in Darmstadt (Germany) and immediately relayed to the Mars Exploration Rovers team based at the Jet Propulsion Laboratory in Pasadena, USA. NASA orbiters Mars Odyssey and Mars Global Surveyor have so far relayed most of the data produced by the rovers since they landed in January. Communication compatibility between Mars Express and the rovers had already been demonstrated in February, although at a low rate that did not convey much data. The 4 August session, at a transmit rate of 42.6 megabits in about six minutes, set a new mark for international networking around another planet. The success of this demonstration is the result of years of groundwork and was made possible because both Mars Express and the Mars rovers use the same communication protocol. This protocol, called Proximity-1, was developed by the international Consultative Committee for Space Data Systems, an international partnership for standardising techniques for handling space data. Mars Express was 1400 kilometres above the Martian surface during the 4 August session with Opportunity, with the goal of a reliable transfer of lots of data. Engineers for both agencies plan to repeat this display of international cooperation today, 10 August, with another set of Opportunity images. “We're delighted how well this has been working, and thankful to have Mars Express in orbit,” said Richard Horttor of NASA's Jet Propulsion Laboratory, Pasadena, California, project manager for NASA's role in Mars Express. JPL engineer Gary Noreen of the Mars Network Office said: “the capabilities that our international teamwork is advancing this month could be important in future exploration of Mars

  12. MarCO and Dispenser

    NASA Image and Video Library

    2018-04-19

    One of the MarCO CubeSats inside a cleanroom at Cal Poly San Luis Obispo, before being placed into its deployment box. The deployment box will eject the briefcase-sized CubeSat into space after launch. It and its twin will accompany the InSight Mars lander when it lifts off from Vandenberg Air Force Base in May. https://photojournal.jpl.nasa.gov/catalog/PIA22322

  13. World First MarsLink Mission Participants Learn and Enjoy Science

    ERIC Educational Resources Information Center

    Barry, Dana

    2005-01-01

    This article describes how students learn and experience the excitement of science by actively participating in the MarsLink Space Mission, an educational component of the National Aeronautics and Space Administration's (NASA) Mars Missions. This Mission has been made possible by Space Explorers, Inc., in collaboration with NASA. In the…

  14. Mars Comet Encounter Briefing

    NASA Image and Video Library

    2014-10-09

    Panelists, from left, Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California, are seen during a media briefing where they outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. (Photo credit: NASA/Joel Kowsky)

  15. Mars Science Laboratory Rover and Descent Stage

    NASA Image and Video Library

    2008-11-19

    In this February 17, 2009, image, NASA Mars Science Laboratory rover is attached to the spacecraft descent stage. The image was taken inside the Spacecraft Assembly Facility at NASA JPL, Pasadena, Calif.

  16. International Human Mission to Mars: Analyzing A Conceptual Launch and Assembly Campaign

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Stromgren, Chel; Arney, Dale; Cirillo, William; Goodliff, Kandyce

    2014-01-01

    In July of 2013, U.S. Congressman Kennedy (D-Mass.) successfully offered an amendment to H.R. 2687, the National Aeronautics and Space Administration Authorization Act of 2013. "International Participation—The President should invite the United States partners in the International Space Station program and other nations, as appropriate, to participate in an international initiative under the leadership of the United States to achieve the goal of successfully conducting a crewed mission to the surface of Mars." This paper presents a concept for an international campaign to launch and assemble a crewed Mars Transfer Vehicle. NASA’s “Human Exploration of Mars: Design Reference Architecture 5.0” (DRA 5.0) was used as the point of departure for this concept. DRA 5.0 assumed that the launch and assembly campaign would be conducted using NASA launch vehicles. The concept presented utilizes a mixed fleet of NASA Space Launch System (SLS), U.S. commercial and international launch vehicles to accomplish the launch and assembly campaign. This concept has the benefit of potentially reducing the campaign duration. However, the additional complexity of the campaign must also be considered. The reliability of the launch and assembly campaign utilizing SLS launches augmented with commercial and international launch vehicles is analyzed and compared using discrete event simulation.

  17. Nuclear thermal rocket workshop reference system Rover/NERVA

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  18. Humans to Mars Summit 2014

    NASA Image and Video Library

    2014-04-22

    William Gerstenmaier, NASA Associatate Administrator for Human Exploration and Operations, right, answers a question during a panel discussion moderated by PBS NewsHour's Miles O'Brien at the Humans to Mars Summit on April 22, 2014 at George Washington University in Washington, DC. Photo Credit: (NASA/Joel Kowsky)

  19. NASA Vision

    NASA Technical Reports Server (NTRS)

    Fenton, Mary (Editor); Wood, Jennifer (Editor)

    2003-01-01

    This newsletter contains several articles, primarily on International Space Station (ISS) crewmembers and their activities, as well as the activities of NASA administrators. Other subjects covered in the articles include the investigation of the Space Shuttle Columbia accident, activities at NASA centers, Mars exploration, a collision avoidance test on a unmanned aerial vehicle (UAV). The ISS articles cover landing in a Soyuz capsule, photography from the ISS, and the Expedition Seven crew.

  20. How Thick is the North Polar Ice Cap on Mars?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This map shows the thickness of the north polar layered deposits on Mars as measured by the Shallow Radar instrument on NASA's Mars Reconnaissance Orbiter.

    The Shallow Radar instrument was provided by the Italian Space Agency. Its operations are led by the University of Rome and its data are analyzed by a joint U.S.-Italian science team. JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington

  1. Solar Power on Mars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This chart illustrates the variation in available solar power for each of NASA's twin Mars Exploration Rovers over the course of approximately two Mars years. Two factors affect the amount of available power: the tilt of Mars' axis and the eccentricity of the Mars' orbit about the sun.

    The horizontal scale is the number of Martian days (sols) after the Jan. 4, 2004, (Universal Time) landing of Spirit at Mars' Gusev Crater. The vertical scale on the right indicates the amount of available solar power as a ratio of the amount available at the equator when Mars is closest to the sun (perihelion). The red line indicates power availability at Spirit's landing site (Gusev). The blue line indicates power availability at Opportunity's landing site (Meridiani).

    The vertical scale on the right applies to the dotted line, indicating the latitude north or south of Mars' equator where the noon sun is overhead at different times of the Martian year.

  2. Drilling into Mars

    NASA Image and Video Library

    2013-02-20

    This frame from an animation of NASA Curiosity rover shows the complicated suite of operations involved in conducting the rover first rock sample drilling on Mars and transferring the sample to the rover scoop for inspection.

  3. Interplanetary CubeSat for Technology Demonstration at Mars Artist Concept

    NASA Image and Video Library

    2015-06-12

    NASA's two MarCO CubeSats will be flying past Mars in September 2016 just as NASA's next Mars lander, InSight, is descending through the Martian atmosphere and landing on the surface. MarCO, for Mars Cube One, will provide an experimental communications relay to inform Earth quickly about the landing. This illustration depicts a moment during the lander's descent when it is transmitting data in the UHF radio band, and the twin MarCO craft are receiving those transmissions while simultaneously relaying the data to Earth in a different radio band. Each of the MarCO twins carries two solar panels for power, and both UHF-band and X-band radio antennas. As a technology demonstration, MarCO could lead to other "bring-your-own-relay" mission designs and also to use of miniature spacecraft for a wide diversity of interplanetary missions. MarCO is the first interplanetary use of CubeSat technologies for small spacecraft. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies to streamline development. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. The two briefcase-size MarCO CubeSats will ride along with InSight on an Atlas V launch vehicle lifting off in March 2016 from Vandenberg Air Force Base, California. MarCO is a technology demonstration aspect of the InSight mission and not needed for that mission's success. InSight, an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, will investigate the deep interior of Mars to advance understanding of how rocky planets, including Earth, formed and evolved. After launch, the MarCO twins and InSight will be navigated separately to Mars. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport

  4. Diverse Grains in Mars Sandstone Target Big Arm

    NASA Image and Video Library

    2015-07-01

    This view of a sandstone target called "Big Arm" covers an area about 1.3 inches (33 millimeters) wide in detail that shows differing shapes and colors of sand grains in the stone. Three separate images taken by the Mars Hand Lens Imager (MAHLI) camera on NASA's Curiosity Mars rover, at different focus settings, were combined into this focus-merge view. The Big Arm target on lower Mount Sharp is at a location near "Marias Pass" where a mudstone bedrock is in contact with overlying sandstone bedrock. MAHLI recorded the component images on May 29, 2015, during the 999th Martian day, or sol, of Curiosity's work on Mars. The rounded shape of some grains visible here suggests they traveled long distances before becoming part of the sediment that later hardened into sandstone. Other grains are more angular and may have originated closer to the rock's current location. Lighter and darker grains may have different compositions. MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. http://photojournal.jpl.nasa.gov/catalog/PIA19677

  5. Radiation Measurements During Trip From Earth to Mars

    NASA Image and Video Library

    2013-05-30

    This graphic shows the level of natural radiation detected by the Radiation Assessment Detector shielded inside NASA Mars Science Laboratory on the trip from Earth to Mars from December 2011 to July 2012.

  6. Schematic of Sample Analysis at Mars SAM Instrument

    NASA Image and Video Library

    2011-01-18

    This schematic illustration for NASA Mars Science Laboratory Sample Analysis at Mars SAM instrument shows major components of the microwave-oven-size instrument, which will examine samples of Martian rocks, soil and atmosphere.

  7. Radiation Levels on the Way to Mars

    NASA Image and Video Library

    2012-08-02

    This graphic shows the flux of radiation detected by NASA Mars Science Laboratory on the trip from Earth to Mars; the spikes in radiation levels occurred because of large solar energetic particle events caused by giant flares on the sun.

  8. Phoenix Mission Lander on Mars, Artist Concept

    NASA Image and Video Library

    2005-06-01

    NASA Phoenix Mars Lander, landed on May 25, 2008, and explored the history of water and monitored polar climate on Mars until communications ended in November, 2008, about six months after landing, when its solar panels ceased operating in the winter.

  9. Magnified Look at a Meteorite on Mars

    NASA Image and Video Library

    2009-08-06

    NASA Mars Exploration Rover Opportunity used its microscopic imager to get this view of the surface of a rock called Block Island during the 1,963rd Martian day, or sol, of the rover mission on Mars Aug. 1, 2009.

  10. Seasonal Changes in Northern Mars Dune Field

    NASA Image and Video Library

    2011-02-03

    Three images of the same location, taken by NASA Mars Reconnaissance Orbiter at different times on Mars, show seasonal activity causing sand avalanches and ripple changes on a Martian dune. Time sequence of the images progresses from top to bottom.

  11. Mars Science Laboratory Entry Guidance Improvements for Mars 2018 (DRAFT)

    NASA Technical Reports Server (NTRS)

    Garcia-Llama, Eduardo; Winski, Richard G.; Shidner, Jeremy D.; Ivanov, Mark C.; Grover, Myron R.; Prakash, Ravi

    2011-01-01

    In 2011, the Mars Science Laboratory (MSL) will be launched in a mission to deliver the largest and most capable rover to date to the surface of Mars. A follow on MSL-derived mission, referred to as Mars 2018, is planned for 2018. Mars 2018 goals include performance enhancements of the Entry, Descent and Landing over that of its predecessor MSL mission of 2011. This paper will discuss the main elements of the modified 2018 EDL preliminary design that will increase performance on the entry phase of the mission. In particular, these elements will increase the parachute deploy altitude to allow for more time margin during the subsequent descent and landing phases and reduce the delivery ellipse size at parachute deploy through modifications in the entry reference trajectory design, guidance trigger logic design, and the effect of additional navigation hardware.

  12. NASA MEVTV Program Working Group Meeting: Volcanism on Mars

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The purpose of this working group meeting is to focus predominantly on volcanism on Mars, prior to considering the more complex issues of interactions between volcanism and tectonism or between volcanism and global or regional volatile evolution. It is also hoped that the topical areas of research identified will aid the planetary geology community in understanding volcanism on Mars and its relationship to other physical processes.

  13. Mars Science Laboratory Press Conference

    NASA Image and Video Library

    2011-07-22

    John Grotzinger, Mars Science Laboratory (MSL) project scientist, Jet Propulsion Lab (JPL), Pasadena, Calif., answers a reporter's question at a press conference at the Smithsonian's National Air and Space Museum on Friday, July 22, 2011 in Washington. The MSL is scheduled to launch late this year from NASA's Kennedy Space Center in Florida and land in August 2012. Curiosity is twice as long and more than five times as heavy as previous Mars rovers. The rover will study whether the landing region at Gale crater had favorable environmental conditions for supporting microbial life and for preserving clues about whether life ever existed. Photo Credit: (NASA/Carla Cioffi)

  14. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  15. NASA Vision. Volume 1, No. 4

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Contents in this newsletter include the following: Honor award ceremony. NASA robotic geologist named Spirit began its seven-month journey to Mars. Around the Centers. NASA web site wins Webby Award. Global garden. Grows greener. NASA newest UAV makes successful flight. Summer interns join the NASA team. NASA maps bolts of lightning. Monumental tribute. Secret lives of galaxies unveiled in deep survey. New program sends nation's teachers "Back to school".

  16. Camera Test on Curiosity During Flight to Mars

    NASA Image and Video Library

    2012-05-07

    An in-flight camera check produced this out-of-focus image when NASA Mars Science Laboratory spacecraft turned on illumination sources that are part of the Curiosity rover Mars Hand Lens Imager MAHLI instrument.

  17. What on Mars is a High Thermal-Inertia Surface?

    NASA Image and Video Library

    2015-04-08

    Coprates Chasma is located in the huge canyon system, Vallis Marineris. NASA Mars Reconnaissance Orbiter finds indications of high thermal inertia. What do we mean when we describe a surface as having "high thermal inertia"? The term refers to the ability of a material to conduct and store heat, and in planetary science, its measure of the subsurface's ability to store heat during the day and reradiate it during the night. What causes thermal inertia? It depends on the composition of the terrain that we're studying. Here in Coprates Chasma, the site of this observation, we find indications of such high thermal inertia, so an image at high resolution may help us determine the composition and structure to give us an answer. http://photojournal.jpl.nasa.gov/catalog/PIA19357

  18. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  19. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    In the Payload Hazardous Servicing Facility, an overhead crane lifts the heat shield from the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  20. Phoenix Mars Lander Spacecraft Processing

    NASA Image and Video Library

    2007-05-10

    This closeup shows the spin test of the Phoenix Mars Lander in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.

  1. Mars Comet Encounter Briefing

    NASA Image and Video Library

    2014-10-09

    Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland gives remarks during a media briefing where he and other panelists outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. Photo Credit: (NASA/Joel Kowsky)

  2. EU-FP7-iMars: Analysis of Mars Multi-Resolution Images using Auto-Coregistration, Data Mining and Crowd Source Techniques: One year on with a focus on auto-DTM, auto-coregistration and citizen science.

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter; Sidiropoulos, Panagiotis; Yershov, Vladimir; Gwinner, Klaus; van Gasselt, Stephan; Walter, Sebastian; Ivanov, Anton; Morley, Jeremy; Sprinks, James; Houghton, Robert; Bamford, Stephen; Kim, Jung-Rack

    2015-04-01

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 8 years, especially in 3D imaging of surface shape (down to resolutions of 10cm) and subsequent terrain correction of imagery from orbiting spacecraft. This has led to the ability to be able to overlay different epochs back to the mid-1970s, examine time-varying changes (such as impact craters, RSLs, CO2 geysers, gullies, boulder movements and a host of ice-related phenomena). Consequently we are seeing a dramatic improvement in our understanding of surface formation processes. Since January 2004 the ESA Mars Express has been acquiring global data, especially HRSC stereo (12.5-25m nadir images) with 98% coverage with images ≤100m and more than 70% useful for stereo mapping (e.g. atmosphere sufficiently clear). It has been demonstrated [Gwinner et al., 2010] that HRSC has the highest possible planimetric accuracy of ≤25m and is well co-registered with MOLA, which represents the global 3D reference frame. HRSC 3D and terrain-corrected image products therefore represent the best available 3D reference data for Mars. Recently [Gwinner et al., 2015] have shown the ability to generate mosaiced DTM and BRDF-corrected surface reflectance maps. NASA began imaging the surface of Mars, initially from flybys in the 1960s with the first orbiter with images ≤100m in the late 1970s from Viking Orbiter. The most recent orbiter to begin imaging in November 2006 is the NASA MRO which has acquired surface imagery of around 1% of the Martian surface from HiRISE (at ≈25cm) and ≈5% from CTX (≈6m) in stereo. Unfortunately, for most of these NASA images, especially MGS, MO, VO and HiRISE their accuracy of georeferencing is often worse than the quality of Mars reference data from HRSC. This reduces their value for analysing changes in time

  3. Scaly-skinned Mars

    NASA Image and Video Library

    2002-12-20

    The style of erosion along the highlands-lowlands boundary of southern Elysium Planitia has produced a strange pattern of troughs that look like the skin of a reptile, as seen in this image from NASA Mars Odyssey spacecraft.

  4. Hydrated Minerals Exposed at Lyot, Northern Mars

    NASA Image and Video Library

    2010-06-24

    This view of Lyot Crater is a combined mapping by NASA Project Viking with elevation information from Mars Global Surveyor showing at least one of the nine craters in the northern lowlands of Mars with exposures of hydrated minerals detected from orbit.

  5. Students, Teachers, and Scientists Partner to Explore Mars

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Bebak, M.; Curtis, K.; Daniel, C.; Grigsby, B.; Herman, T.; Haynes, E.; Lineberger, D. H.; Pieruccini, S.; Ransom, S.; Reedy, K.; Spencer, C.; Steege, A.

    2003-12-01

    The Mars Exploration Rovers began their journey to the red planet in the summer of 2003 and, in early 2004, will begin an unprecedented level of scientific exploration on Mars, attracting the attention of scientists and the public worldwide. In an effort to engage students and teachers in this exciting endeavor, NASA's Mars Public Engagement Office, partnering with the Athena Science Investigation, coordinates a student-scientist research partnership program called the Athena Student Interns Program. The Athena Student Interns Program \\(ASIP\\) began in early 1999 as the LAPIS program, a pilot hands-on educational effort associated with the FIDO prototype Mars rover field tests \\(Arvidson, 2000\\). In ASIP, small groups of students and teachers selected through a national application process are paired with mentors from the mission's Athena Science Team to carry out an aspect of the mission. To prepare for actual operations during the landed rover mission, the students and teachers participate in one of the Science Team's Operational Readiness Tests \\(ORTs\\) at JPL using a prototype rover in a simulated Mars environment \\(Crisp, et al., in press. See also http://mars.jpl.nasa.gov/mer/fido/\\). Once the rovers have landed, each ASIP group will spend one week at JPL in mission operations, working as part of their mentor's own team to help manage and interpret data coming from Mars. To reach other teachers and students, each group gives school and community presentations, contributes to publications such as web articles and conference abstracts, and participates in NASA webcasts and webchats. Partnering with other groups and organizations, such as NASA's Solar System Ambassadors and the Housing and Urban Development Neighborhood Networks helps reach an even broader audience. ASIP is evaluated through the use of empowerment evaluation, a technique that actively involves participants in program assessment \\(Fetterman and Bowman, 2002\\). With the knowledge they

  6. Mars Science Laboratory Mission Curiosity Rover Stereo

    NASA Image and Video Library

    2011-07-22

    This stereo image of NASA Mars Science Laboratory Curiosity Rovert was taken May 26, 2011, in Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory in Pasadena, Calif. 3D glasses are necessary to view this image.

  7. Instrumentation and Methodology Development for Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    2002-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars were observed often from Earth. This environment provides an idea condition for triboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If triboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface temperature on Mars helps to prolong the charge decay on the dust particles and soil. To better understand the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to detect the velocity distribution, charge distribution and mass distribution of Martian charged dust particles. These sensors are fabricated at NASA Kenney Space Center, Electromagnetic Physics Testbed. The sensors will be tested and calibrated for simulated Mars atmosphere condition with JSC MARS-1 Martian Regolith simulant in this NASA laboratory.

  8. Following the water, the new program for Mars exploration.

    PubMed

    Hubbard, G Scott; Naderi, Firouz M; Garvin, James B

    2002-01-01

    In the wake of the loss of Mars Climate Orbiter and Mars Polar Lander in late 1999, NASA embarked on a major review of the failures and subsequently restructured all aspects of what was then called the Mars Surveyor Program--now renamed the Mars Exploration Program. This paper presents the process and results of this reexamination and defines a new approach which we have called "Program System Engineering". Emphasis is given to the scientific, technological, and programmatic strategies that were used to shape the new Program. A scientific approach known as "follow the water" is described, as is an exploration strategy we have called "seek--in situ--sample". An overview of the mission queue from continuing Mars Global Surveyor through a possible Mars Sample Return Mission launch in 2011 is provided. In addition, key proposed international collaborations, especially those between NASA, CNES and ASI are outlined, as is an approach for a robust telecommunications infrastructure. c2002 Published by Elsevier Science Ltd.

  9. Following the water, the new program for Mars exploration

    NASA Technical Reports Server (NTRS)

    Hubbard, G. Scott; Naderi, Firouz M.; Garvin, James B.

    2002-01-01

    In the wake of the loss of Mars Climate Orbiter and Mars Polar Lander in late 1999, NASA embarked on a major review of the failures and subsequently restructured all aspects of what was then called the Mars Surveyor Program--now renamed the Mars Exploration Program. This paper presents the process and results of this reexamination and defines a new approach which we have called "Program System Engineering". Emphasis is given to the scientific, technological, and programmatic strategies that were used to shape the new Program. A scientific approach known as "follow the water" is described, as is an exploration strategy we have called "seek--in situ--sample". An overview of the mission queue from continuing Mars Global Surveyor through a possible Mars Sample Return Mission launch in 2011 is provided. In addition, key proposed international collaborations, especially those between NASA, CNES and ASI are outlined, as is an approach for a robust telecommunications infrastructure. c2002 Published by Elsevier Science Ltd.

  10. Descent Stage of Mars Science Laboratory During Assembly

    NASA Image and Video Library

    2008-11-19

    This image from early October 2008 shows personnel working on the descent stage of NASA Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  11. Updates on Modeling the Water Cycle with the NASA Ames Mars Global Climate Model

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Montmessin, F.; Brecht, A. S.; Urata, R.; Klassen, D. R.; Wolff, M. J.

    2017-01-01

    Global Circulation Models (GCMs) have made steady progress in simulating the current Mars water cycle. It is now widely recognized that clouds are a critical component that can significantly affect the nature of the simulated water cycle. Two processes in particular are key to implementing clouds in a GCM: the microphysical processes of formation and dissipation, and their radiative effects on heating/ cooling rates. Together, these processes alter the thermal structure, change the dynamics, and regulate inter-hemispheric transport. We have made considerable progress representing these processes in the NASA Ames GCM, particularly in the presence of radiatively active water ice clouds. We present the current state of our group's water cycle modeling efforts, show results from selected simulations, highlight some of the issues, and discuss avenues for further investigation.­

  12. Solar Storm Triggers Whole-Planet Aurora at Mars

    NASA Image and Video Library

    2017-09-29

    These images show the sudden appearance of a bright aurora on Mars during a solar storm in September 2017. The purple-white color scheme shows the intensity of ultraviolet light seen on Mars' night side before (left) and during (right) the event. A simulated image of Mars for the same time and orientation has been added, with the dayside crescent visible on the right. The auroral emission appears brightest at the edges of the planet where the line of sight passes along the length of the glowing atmosphere layer. The data are from observations by the Imaging Ultraviolet Spectrograph instrument (IUVS) on NASA's Mars Atmosphere and Volatile Evolution orbiter, or MAVEN. Note that, unlike auroras on Earth, the Martian aurora is not concentrated at the planet's polar regions. This is because Mars has no strong magnetic field like Earth's to concentrate the aurora near the poles. https://photojournal.jpl.nasa.gov/catalog/PIA21855

  13. EU-FP7-iMars: Analysis of Mars Multi-Resolution Images using Auto-Coregistration, Data Mining and Crowd Source Techniques

    NASA Astrophysics Data System (ADS)

    Ivanov, Anton; Oberst, Jürgen; Yershov, Vladimir; Muller, Jan-Peter; Kim, Jung-Rack; Gwinner, Klaus; Van Gasselt, Stephan; Morley, Jeremy; Houghton, Robert; Bamford, Steven; Sidiropoulos, Panagiotis

    Understanding the role of different planetary surface formation processes within our Solar System is one of the fundamental goals of planetary science research. There has been a revolution in planetary surface observations over the last 15 years, especially in 3D imaging of surface shape. This has led to the ability to be able to overlay different epochs back to the mid-1970s, examine time-varying changes (such as the recent discovery of boulder movement, tracking inter-year seasonal changes and looking for occurrences of fresh craters. Consequently we are seeing a dramatic improvement in our understanding of surface formation processes. Since January 2004, the ESA Mars Express has been acquiring global data, especially HRSC stereo (12.5-25 m nadir images) with 87% coverage with more than 65% useful for stereo mapping. NASA began imaging the surface of Mars, initially from flybys in the 1960s and then from the first orbiter with image resolution less than 100 m in the late 1970s from Viking Orbiter. The most recent orbiter, NASA MRO, has acquired surface imagery of around 1% of the Martian surface from HiRISE (at ≈20 cm) and ≈5% from CTX (≈6 m) in stereo. Within the iMars project (http://i-Mars.eu), a fully automated large-scale processing (“Big Data”) solution is being developed to generate the best possible multi-resolution DTM of Mars. In addition, HRSC OrthoRectified Images (ORI) will be used as a georeference basis so that all higher resolution ORIs will be co-registered to the HRSC DTMs (50-100m grid) products generated at DLR and, from CTX (6-20 m grid) and HiRISE (1-3 m grids) on a large-scale Linux cluster based at MSSL. The HRSC products will be employed to provide a geographic reference for all current, future and historical NASA products using automated co-registration based on feature points and initial results will be shown here. In 2015, many of the entire NASA and ESA orbital images will be co-registered and the updated georeferencing

  14. Mars Comet Encounter Briefing

    NASA Image and Video Library

    2014-10-09

    Jim Green, director, Planetary Science Division, NASA Headquarters, Washington, left, is seen with fellow panelists Carey Lisse, senior astrophysicist, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, Kelly Fast, program scientist, Planetary Science Division, NASA Headquarters, Washington, and Padma Yanamandra-Fisher, senior research scientist, Space Science Institute, Rancho Cucamonga Branch, California during a media briefing where they outlined how space and Earth-based assets will be used to image and study comet Siding Spring during its Sunday, Oct. 19 flyby of Mars, Thursday, Oct. 9, 2014 at NASA Headquarters in Washington. Photo Credit: (NASA/Joel Kowsky)

  15. Mars Observer/Transfer Orbit Stage (TOS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In the Payload Hazardous Servicing Facility, the integrated Mars Observer/Transfer Orbit Stage (TOS) payload is ready for encapsulation in the Titan III nose fairing. The TOS booster maiden flight was dedicated to Thomas O. Paine, a former NASA administrator who strongly supported interplanetary exploration and was an early backer of the TOS program. Launched September 25, 1992 from the Kennedy Space Flight Center aboard a Titan III rocket and the TOS, the Mars Observer spacecraft was to be the first U.S. spacecraft to study Mars since the Viking missions 18 years prior. Unfortunately, the Mars Observer spacecraft fell silent just 3 days prior to entering orbit around Mars.

  16. Terrestrial Analogs to Mars: NRC Community Panel Decadal Report

    NASA Astrophysics Data System (ADS)

    Farr, T. G.

    2002-12-01

    A report was completed recently by a Community Panel for the NRC Decadal Study of Solar System Exploration. The desire was for a review of the current state of knowledge and for recommendations for action over the next decade. The topic of this panel, Terrestrial Analogs to Mars, was chosen to bring attention to the need for an increase in analog studies in support of the increased pace of Mars exploration. It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of martian meteorites), and computer and laboratory modeling. The combination of all of these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the overarching science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel considered the issues of data collection and archiving, value of field workshops, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities. Parts of this work were performed under contract to NASA.

  17. Mars-GRAM: Increasing the Precision of Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.; Badger, Andrew M.

    2010-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM's perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL). It has been discovered during the Mars Science Laboratory (MSL) site selection process that Mars-GRAM, when used for sensitivity studies for MapYear=0 and large optical depth values such as tau=3, is less than realistic. A comparison study between Mars atmospheric density estimates from Mars-GRAM and measurements by Mars Global Surveyor (MGS) has been undertaken for locations of varying latitudes, Ls, and LTST on Mars. The preliminary results from this study have validated the Thermal Emission Spectrometer (TES) limb data. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). MGCM results that were used for Mars-GRAM with MapYear=0 were from a MGCM run with a fixed value of tau=3 for the entire year at all locations. This has resulted in an imprecise atmospheric density at all altitudes. To solve this pressure-density problem, density factor values were determined for tau=.3, 1 and 3 that will adjust the input values of MGCM MapYear 0 pressure and density to achieve a better match of Mars-GRAM MapYear 0 with TES observations for MapYears 1 and 2 at comparable dust loading. The addition of these density factors to Mars-GRAM will improve the results of the sensitivity studies done for large optical depths.

  18. Mars Odyssey from Two Distances in One Image

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Why There are Two Images of Odyssey

    NASA's Mars Odyssey spacecraft appears twice in the same frame in this image from the Mars Orbiter Camera aboard NASA's Mars Global Surveyor. The camera's successful imaging of Odyssey and of the European Space Agency's Mars Express in April 2005 produced the first pictures of any spacecraft orbiting Mars taken by another spacecraft orbiting Mars.

    Mars Global Surveyor and Mars Odyssey are both in nearly circular, near-polar orbits. Odyssey is in an orbit slightly higher than that of Global Surveyor in order to preclude the possibility of a collision. However, the two spacecraft occasionally come as close together as 15 kilometers (9 miles).

    The images were obtained by the Mars Global Surveyor operations teams at Lockheed Martin Space System, Denver; JPL and Malin Space Science Systems.

    The two views of Mars Odyssey in this image were acquired a little under 7.5 seconds apart as Odyssey receded from a close flyby of Mars Global Surveyor. The geometry of the flyby (see Figure 1) and the camera's way of acquiring an image line-by-line resulted in the two views of Odyssey in the same frame. The first view (right) was taken when Odyssey was about 90 kilometers (56 miles) from Global Surveyor and moving more rapidly than Global Surveyor was rotating, as seen from Global Surveyor. A few seconds later, Odyssey was farther away -- about 135 kilometers (84 miles) -- and appeared to be moving more slowly. In this second view of Odyssey (left), the Mars Orbiter Camera's field-of-view overtook Odyssey.

    The Mars Orbiter Camera can resolve features on the surface of Mars as small as a few meters or yards across from Mars Global Surveyor's orbital altitude of 350 to 405 kilometers (217 to 252 miles). From a distance of 100 kilometers (62 miles), the camera would be able to resolve features substantially smaller than 1 meter or yard across.

    Mars Odyssey

  19. Estimated Radiation on Mars, Hits per Cell Nucleus

    NASA Image and Video Library

    2002-03-01

    This global map of Mars, based on data from NASA Mars Odyssey, shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.

  20. Mars Science Laboratory Spacecraft During Cruise, Artist Concept

    NASA Image and Video Library

    2011-10-03

    This is an artist concept of NASA Mars Science Laboratory spacecraft during its cruise phase between launch and final approach to Mars. The spacecraft includes a disc-shaped cruise stage on the left attached to the aeroshell.