Sample records for nasa ocean color

  1. Quality and Consistency of the NASA Ocean Color Data Record

    NASA Technical Reports Server (NTRS)

    Franz, Bryan A.

    2012-01-01

    The NASA Ocean Biology Processing Group (OBPG) recently reprocessed the multimission ocean color time-series from SeaWiFS, MODIS-Aqua, and MODIS-Terra using common algorithms and improved instrument calibration knowledge. Here we present an analysis of the quality and consistency of the resulting ocean color retrievals, including spectral water-leaving reflectance, chlorophyll a concentration, and diffuse attenuation. Statistical analysis of satellite retrievals relative to in situ measurements will be presented for each sensor, as well as an assessment of consistency in the global time-series for the overlapping periods of the missions. Results will show that the satellite retrievals are in good agreement with in situ measurements, and that the sensor ocean color data records are highly consistent over the common mission lifespan for the global deep oceans, but with degraded agreement in higher productivity, higher complexity coastal regions.

  2. NASA In Situ Data Needs to Support the Operational Calibration and Validation of Ocean Color Satellite Data Products

    NASA Technical Reports Server (NTRS)

    Werdel, P. Jeremy

    2012-01-01

    Calibrating ocean color satellite instruments and validating their data products requires temporal and spatial abundances of high quality in situ oceanographic data. The Consortium for Ocean Leadership Ocean Observing Initiative (OOl) is currently implementing a distributed array of in-water sensors that could provide a significant contribution to future ocean color activities. This workshop will scope the optimal way to use and possibly supplement the planned OOl infrastructure to maximize its utility and relevance for calibration and validation activities that support existing and planned NASA ocean color missions. Here, I present the current state of the art of NASA validation of ocean color data products, with attention to autonomous time-series (e.g., the AERONET -OC network of above-water radiometers), and outline NASA needs for data quality assurance metrics and adherence to community-vetted data collection protocols

  3. Mission to Planet Earth. The living ocean: Observing ocean color from space

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Measurements of ocean color are part of NASA's Mission to Planet Earth, which will assess how the global environment is changing. Using the unique perspective available from space, NASA will observe, monitor, and study large-scale environmental processes, focusing on quantifying climate change. NASA will distribute the results of these studies to researchers worldwide to furnish a basis for informed decisions on environmental protection and economic policy. This information packet includes discussion on the reasons for measuring ocean color, the carbon cycle and ocean color, priorities for global climate research, and SeWiFS (sea-viewing wide field-of-view sensor) global ocean color measurements.

  4. Ocean color imagery: Coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.

    1975-01-01

    Investigations into the feasibility of sensing ocean color from high altitude for determination of chlorophyll and sediment distributions were carried out using sensors on NASA aircraft, coordinated with surface measurements carried out by oceanographic vessels. Spectrometer measurements in 1971 and 1972 led to development of an imaging sensor now flying on a NASA U-2 and the Coastal Zone Color Scanner to fly on Nimbus G in 1978. Results of the U-2 effort show the imaging sensor to be of great value in sensing pollutants in the ocean.

  5. Suomi NPP VIIRS Ocean Color Data Product Early Mission Assessment

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin R.; Robinson, Wayne D.; Franz, Bryan A.; Eplee, Robert E., Jr.; Meister, Gerhard; Fireman, Gwyn F.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.

    2013-01-01

    Following the launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polarorbiting Partnership (NPP) spacecraft, the NASA NPP VIIRS Ocean Science Team (VOST) began an evaluation of ocean color data products to determine whether they could continue the existing NASA ocean color climate data record (CDR). The VOST developed an independent evaluation product based on NASA algorithms with a reprocessing capability. Here we present a preliminary assessment of both the operational ocean color data products and the NASA evaluation data products regarding their applicability to NASA science objectives.

  6. VIIRS On-Orbit Calibration for Ocean Color Data Processing

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E., Jr.; Turpie, Kevin R.; Fireman, Gwyn F.; Meister, Gerhard; Stone, Thomas C.; Patt, Frederick S.; Franz, Bryan; Bailey, Sean W.; Robinson, Wayne D.; McClain, Charles R.

    2012-01-01

    The NASA VIIRS Ocean Science Team (VOST) has the task of evaluating Suomi NPP VIIRS ocean color data for the continuity of the NASA ocean color climate data records. The generation of science quality ocean color data products requires an instrument calibration that is stable over time. Since the VIIRS NIR Degradation Anomaly directly impacts the bands used for atmospheric correction of the ocean color data (Bands M6 and M7), the VOST has adapted the VIIRS on-orbit calibration approach to meet the ocean science requirements. The solar diffuser calibration time series and the solar diffuser stability monitor time series have been used to derive changes in the instrument response and diffuser reflectance over time for bands M1-M11.

  7. Ocean color - Availability of the global data set

    NASA Technical Reports Server (NTRS)

    Feldman, Gene; Kuring, Norman; Ng, Carolyn; Esaias, Wayne; Mcclain, Chuck; Elrod, Jane; Maynard, Nancy; Endres, Dan

    1989-01-01

    The use of satellite observations of ocean color to provide reliable estimates of marine phytoplankton biomass on synoptic scales is examined. An overview is given of the Coastal Zone Color Scanner data processing system. The archiving and distribution of ocean color data are discussed, and NASA-sponsored archive sites are listed.

  8. Achieving Global Ocean Color Climate Data Records

    NASA Technical Reports Server (NTRS)

    Franz, Bryan

    2010-01-01

    Ocean color, or the spectral distribution of visible light upwelling from beneath the ocean surface, carries information on the composition and concentration of biological constituents within the water column. The CZCS mission in 1978 demonstrated that quantitative ocean color measurements could be. made from spaceborne sensors, given sufficient corrections for atmospheric effects and a rigorous calibration and validation program. The launch of SeaWiFS in 1997 represents the beginning of NASA's ongoing efforts to develop a continuous ocean color data record with sufficient coverage and fidelity for global change research. Achievements in establishing and maintaining the consistency of the time-series through multiple missions and varying instrument designs will be highlighted in this talk, including measurements from NASA'S MODIS instruments currently flying on the Terra and Aqua platforms, as well as the MERIS sensor flown by ESA and the OCM-2 sensor recently launched by ISRO.

  9. NASA Oceanic Processes Program, fiscal year 1983

    NASA Technical Reports Server (NTRS)

    Nelson, R. M. (Editor); Pieri, D. C. (Editor)

    1984-01-01

    Accomplishments, activities, and plans are highlighted for studies of ocean circulation, air sea interaction, ocean productivity, and sea ice. Flight projects discussed include TOPEX, the ocean color imager, the advanced RF tracking system, the NASA scatterometer, and the pilot ocean data system. Over 200 papers generated by the program are listed.

  10. Atmospheric correction for hyperspectral ocean color sensors

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Ahmad, Z.; Franz, B. A.; Knobelspiesse, K. D.

    2017-12-01

    NASA's heritage Atmospheric Correction (AC) algorithm for multi-spectral ocean color sensors is inadequate for the new generation of spaceborne hyperspectral sensors, such as NASA's first hyperspectral Ocean Color Instrument (OCI) onboard the anticipated Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission. The AC process must estimate and remove the atmospheric path radiance contribution due to the Rayleigh scattering by air molecules and by aerosols from the measured top-of-atmosphere (TOA) radiance. Further, it must also compensate for the absorption by atmospheric gases and correct for reflection and refraction of the air-sea interface. We present and evaluate an improved AC for hyperspectral sensors beyond the heritage approach by utilizing the additional spectral information of the hyperspectral sensor. The study encompasses a theoretical radiative transfer sensitivity analysis as well as a practical application of the Hyperspectral Imager for the Coastal Ocean (HICO) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensors.

  11. Improved Global Ocean Color Using Polymer Algorithm

    NASA Astrophysics Data System (ADS)

    Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques

    2010-12-01

    A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.

  12. Evaluation of VIIRS ocean color products

    NASA Astrophysics Data System (ADS)

    Wang, Menghua; Liu, Xiaoming; Jiang, Lide; Son, SeungHyun; Sun, Junqiang; Shi, Wei; Tan, Liqin; Naik, Puneeta; Mikelsons, Karlis; Wang, Xiaolong; Lance, Veronica

    2014-11-01

    The Suomi National Polar-orbiting Partnership (SNPP) was successfully launched on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP, which has 22 spectral bands (from visible to infrared) similar to the NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), is a multi-disciplinary sensor providing observations for the Earth's atmosphere, land, and ocean properties. In this paper, we provide some evaluations and assessments of VIIRS ocean color data products, or ocean color Environmental Data Records (EDR), including normalized water-leaving radiance spectra nLw(λ) at VIIRS five spectral bands, chlorophyll-a (Chl-a) concentration, and water diffuse attenuation coefficient at the wavelength of 490 nm Kd(490). Specifically, VIIRS ocean color products derived from the NOAA Multi-Sensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system are evaluated and compared with MODIS ocean color products and in situ measurements. MSL12 is now NOAA's official ocean color data processing system for VIIRS. In addition, VIIRS Sensor Data Records (SDR or Level- 1B data) have been evaluated. In particular, VIIRS SDR and ocean color EDR have been compared with a series of in situ data from the Marine Optical Buoy (MOBY) in the waters off Hawaii. A notable discrepancy of global deep water Chl-a derived from MODIS and VIIRS between 2012 and 2013 is observed. This discrepancy is attributed to the SDR (or Level-1B data) calibration issue and particularly related to VIIRS green band at 551 nm. To resolve this calibration issue, we have worked on our own sensor calibration by combining the lunar calibration effect into the current calibration method. The ocean color products derived from our new calibrated SDR in the South Pacific Gyre show that the Chl-a differences between 2012 and 2013 are significantly reduced. Although there are still some issues, our results show that VIIRS is capable of providing high-quality global

  13. Future U.S. ocean color missions-OCI, MODIS and HIRIS

    NASA Astrophysics Data System (ADS)

    Davis, C. O.

    The Coastal Zone Color Scanner (CZCS) launched by the National Aeronautics and Space Administration (NASA) on the Nimbus-7 Satellite in 1978 has provided exceptionally valuable data for studies of the productivity of the ocean, fisheries, the detection of oceanic fronts and currents, and the optical properties of the ocean. NASA has been working with the scientific community, the National Oceanographic and Atmospheric Administration (NOAA), France's Centre National d'Etudes Spatiales (CNES), and industry to develop an Ocean Color Imager (OCI), a follow-on instrument which would provide the near real-time and global data necessary to fill these needs in the 1990's. The Earth Observing Satellite Company (EOSAT) is considering flying an ocean and land wide-field color instrument which would meet these needs on Landsat 6 or 7 planned for launch in 1989 and 1991, respectively. It would provide eight ocean color channels for improved atmospheric correction and in-water algorithms, global coverage and near real-time data for operational uses. In the mid 1990's NASA is planning to fly a Moderate Resolution Imaging Spectrometer (MODIS) and a High Resolution Imaging Spectrometer (HIRIS) as part of the Earth Observing System (Eos) on the Polar Platform of the Space Station. These instruments are array spectrometers which would provide full spectral resolution in the visible and infrared. This opens the possibility of separating different groups of phytoplankton, suspended sediments and other substances in the water. Also, HIRIS would have across track pointing ability which will allow high resolution rapid sampling of dynamic coastal areas and estuaries.

  14. Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI).

    PubMed

    Wang, Menghua; Ahn, Jae-Hyun; Jiang, Lide; Shi, Wei; Son, SeungHyun; Park, Young-Je; Ryu, Joo-Hyung

    2013-02-11

    The first geostationary ocean color satellite sensor, Geostationary Ocean Color Imager (GOCI), which is onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS), was successfully launched in June of 2010. GOCI has a local area coverage of the western Pacific region centered at around 36°N and 130°E and covers ~2500 × 2500 km(2). GOCI has eight spectral bands from 412 to 865 nm with an hourly measurement during daytime from 9:00 to 16:00 local time, i.e., eight images per day. In a collaboration between NOAA Center for Satellite Applications and Research (STAR) and Korea Institute of Ocean Science and Technology (KIOST), we have been working on deriving and improving GOCI ocean color products, e.g., normalized water-leaving radiance spectra (nLw(λ)), chlorophyll-a concentration, diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)), etc. The GOCI-covered ocean region includes one of the world's most turbid and optically complex waters. To improve the GOCI-derived nLw(λ) spectra, a new atmospheric correction algorithm was developed and implemented in the GOCI ocean color data processing. The new algorithm was developed specifically for GOCI-like ocean color data processing for this highly turbid western Pacific region. In this paper, we show GOCI ocean color results from our collaboration effort. From in situ validation analyses, ocean color products derived from the new GOCI ocean color data processing have been significantly improved. Generally, the new GOCI ocean color products have a comparable data quality as those from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellite Aqua. We show that GOCI-derived ocean color data can provide an effective tool to monitor ocean phenomenon in the region such as tide-induced re-suspension of sediments, diurnal variation of ocean optical and biogeochemical properties, and horizontal advection of river discharge. In particular, we show some examples of ocean

  15. Calibration Uncertainty in Ocean Color Satellite Sensors and Trends in Long-term Environmental Records

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin R.; Eplee, Robert E., Jr.; Franz, Bryan A.; Del Castillo, Carlos

    2014-01-01

    Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research.

  16. Implementation of an Analytical Raman Scattering Correction for Satellite Ocean-Color Processing

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Proctor, Christopher W.

    2016-01-01

    Raman scattering of photons by seawater molecules is an inelastic scattering process. This effect can contribute significantly to the water-leaving radiance signal observed by space-borne ocean-color spectroradiometers. If not accounted for during ocean-color processing, Raman scattering can cause biases in derived inherent optical properties (IOPs). Here we describe a Raman scattering correction (RSC) algorithm that has been integrated within NASA's standard ocean-color processing software. We tested the RSC with NASA's Generalized Inherent Optical Properties algorithm (GIOP). A comparison between derived IOPs and in situ data revealed that the magnitude of the derived backscattering coefficient and the phytoplankton absorption coefficient were reduced when the RSC was applied, whilst the absorption coefficient of colored dissolved and detrital matter remained unchanged. Importantly, our results show that the RSC did not degrade the retrieval skill of the GIOP. In addition, a timeseries study of oligotrophic waters near Bermuda showed that the RSC did not introduce unwanted temporal trends or artifacts into derived IOPs.

  17. Assessment of NPP VIIRS Ocean Color Data Products: Hope and Risk

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin R.; Meister, Gerhard; Eplee, Gene; Barnes, Robert A.; Franz, Bryan; Patt, Frederick S.; Robinson, Wayne d.; McClain, Charles R.

    2010-01-01

    For several years, the NASA/Goddard Space Flight Center (GSFC) NPP VIIRS Ocean Science Team (VOST) provided substantial scientific input to the NPP project regarding the use of Visible Infrared Imaging Radiometer Suite (VIIRS) to create science quality ocean color data products. This work has culminated into an assessment of the NPP project and the VIIRS instrument's capability to produce science quality Ocean Color data products. The VOST concluded that many characteristics were similar to earlier instruments, including SeaWiFS or MODIS Aqua. Though instrument performance and calibration risks do exist, it was concluded that programmatic and algorithm issues dominate concerns. Keywords: NPP, VIIRS, Ocean Color, satellite remote sensing, climate data record.

  18. Ocean Data from MODIS at the NASA Goddard DAAC

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory G.; Wharton, Stephen (Technical Monitor)

    2000-01-01

    Terra satellite carrying the Moderate Resolution Imaging Spectroradiometer (MODIS) was successfully launched on December 18, 1999. Some of the 36 different wavelengths that MODIS samples have never before been measured from space. New ocean data products, which have not been derived on a global scale before, are made available for research to the scientific community. For example, MODIS uses a new split window in the four-micron region for the better measurement of Sea Surface Temperature (SST), and provides the unprecedented ability (683 nm band) to measure chlorophyll fluorescence. At full ocean production, more than a thousand different ocean products in three major categories (ocean color, sea surface temperature, and ocean primary production) are archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) at the rate of approx. 230GB/day. The challenge is to distribute such large volumes of data to the ocean community. It is achieved through a combination of public and restricted EOS Data Gateways, the GES DAAC Search and Order WWW interface, and an FTP site that contains samples of MODIS data. A new Search and Order WWW interface at http://acdisx.gsfc.nasa.gov/data/ developed at the GES DAAC is based on a hierarchical organization of data, will always return non-zero results. It has a very convenient geographical representation of five-minute data granule coverage for each day MODIS Data Support Team (MDST) continues the tradition of quality support at the GES DAAC for the ocean color data from the Coastal Zone Color Scanner (CZCS) and the Sea Viewing Wide Field-of-View Sensor (SeaWiFS) by providing expert assistance to users in accessing data products, information on visualization tools, documentation for data products and formats (Hierarchical Data Format-Earth Observing System (HDF-EOS)), information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN DOCS/MODIS/index.html

  19. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    NASA Astrophysics Data System (ADS)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  20. Remote Sensing of Ocean Color

    NASA Astrophysics Data System (ADS)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  1. Ocean color measurements

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Austin, R. W.; Clark, D. K.; Hovis, W. A.; Yentsch, C. S.

    1985-01-01

    Ocean color observations by the Coastal Zone color scanner (CZCS) aboard the Nimbus-7 satellite are discussed, together with the factors contributing to the 'apparent' color of the ocean. The CZCS optical systems and the tecniques for extraction of the phytoplankton pigment concentration and the diffuse attenuation coefficient K from the 'apparent' water color are described in detail. Special consideration is given to the use of biooptical algorithms and the development of the K algorithm for the CZCS imagery. It is shown that under typical atmospheric conditions, the pigment concentration can be extracted from the satellite imagery to within + or - 30 percent over concentration ranges from 0 to 5 mg/cu m for the Morel case 1 water (Morel and Prieur, 1977), to which the oceanic waters belong as a rule.

  2. Flagging optically shallow pixels for improved analysis of ocean color data

    NASA Astrophysics Data System (ADS)

    McKinna, L. I. W.; Werdell, J.; Knowles, D., Jr.

    2016-02-01

    Ocean color remote-sensing is routinely used to derive marine geophysical parameters from sensor-observed water-leaving radiances. However, in clear geometrically shallow regions, traditional ocean color algorithms can be confounded by light reflected from the seafloor. Such regions are typically referred to as "optically shallow". When performing spatiotemporal analyses of ocean color datasets, optically shallow features such as coral reefs can lead to unexpected regional biases. Benthic contamination of the water-leaving radiance is dependent on bathymetry, water clarity and seafloor albedo. Thus, a prototype ocean color processing flag called OPTSHAL has been developed that takes all three variables into account. In the method described here, the optical depth of the water column at 547 nm, ζ(547), is predicted from known bathymetry and estimated inherent optical properties. If ζ(547) is less then the pre-defined threshold, a pixel is flagged as optically shallow. Radiative transfer modeling was used to identify the appropriate threshold value of ζ(547) for a generic benthic sand albedo. OPTSHAL has been evaluated within the NASA Ocean Biology Processing Group's L2GEN code. Using MODIS Aqua imagery, OPTSHAL was tested in two regions: (i) the Pedro Bank south-west of Jamaica, and (ii) the Great Barrier Reef, Australia. It is anticipated that OPTSHAL will benefit end-users when quality controlling derived ocean color products. Further, OPTSHAL may prove useful as a mechanism for switching between optically deep and shallow algorithms during ocean color processing.

  3. A Novel Scoring Metrics for Quality Assurance of Ocean Color Observations

    NASA Astrophysics Data System (ADS)

    Wei, J.; Lee, Z.

    2016-02-01

    Interpretation of the ocean bio-optical properties from ocean color observations depends on the quality of the ocean color data, specifically the spectrum of remote sensing reflectance (Rrs). The in situ and remotely measured Rrs spectra are inevitably subject to errors induced by instrument calibration, sea-surface correction and atmospheric correction, and other environmental factors. Great efforts have been devoted to the ocean color calibration and validation. Yet, there exist no objective and consensus criteria for assessment of the ocean color data quality. In this study, the gap is filled by developing a novel metrics for such data quality assurance and quality control (QA/QC). This new QA metrics is not intended to discard "suspicious" Rrs spectra from available datasets. Rather, it takes into account the Rrs spectral shapes and amplitudes as a whole and grades each Rrs spectrum. This scoring system is developed based on a large ensemble of in situ hyperspectral remote sensing reflectance data measured from various aquatic environments and processed with robust procedures. This system is further tested with the NASA bio-Optical Marine Algorithm Data set (NOMAD), with results indicating significant improvements in the estimation of bio-optical properties when Rrs spectra marked with higher quality assurance are used. This scoring system is further verified with simulated data and satellite ocean color data in various regions, and we envision higher quality ocean color products with the implementation of such a quality screening system.

  4. Merging Ocean Color Data from Multiple Missions. Chapter 12

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    2001-01-01

    Oceanic phytoplankton may play an important role in the cycling of carbon on the Earth, through the uptake of carbon dioxide in the process of photosynthesis. Although they are ubiquitous in the global oceans, their abundances and dynamics are difficult to estimate, primarily due to the vast spatial extent of the oceans and the short time scales over which their abundances can change. Consequently, the effects of oceanic phytoplankton on biogeochemical cycling, climate change, and fisheries are not well known. In response to the potential importance of phytoplankton in the global carbon cycle and the lack of comprehensive data, the National Aeronautics and Space Administration (NASA) and the international community have established high priority satellite missions designed to acquire and produce high quality ocean color data. Seven of the missions are routine global observational missions: the Ocean Color and Temperature Sensor (OCTS), the Polarization and Directionality of the Earth's Reflectances sensor (POLDER), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectrometer-AM (MODIS-AM), Medium Resolution Imaging Spectrometer (MERIS), Global Imager (GLI), and MODIS-PM. In addition, there are several other missions capable of providing ocean color data on smaller scales. Most of these missions contain the spectral band complement considered necessary to derive oceanic pigment concentrations (i.e., phytoplankton abundance) and other related parameters. Many contain additional bands that can provide important ancillary information about the optical and biological state of the oceans. Any individual ocean color mission is limited in ocean coverage due to sun glint and clouds. For example, one of the first proposed missions, the SeaWiFS, can provide about 45% coverage of the global ocean in four days and only about 15% in one day.

  5. Ocean Color and Earth Science Data Records

    NASA Astrophysics Data System (ADS)

    Maritorena, S.

    2014-12-01

    The development of consistent, high quality time series of biogeochemical products from a single ocean color sensor is a difficult task that involves many aspects related to pre- and post-launch instrument calibration and characterization, stability monitoring and the removal of the contribution of the atmosphere which represents most of the signal measured at the sensor. It is even more challenging to build Climate Data Records (CDRs) or Earth Science Data Records (ESDRs) from multiple sensors as design, technology and methodologies (bands, spectral/spatial resolution, Cal/Val, algorithms) differ from sensor to sensor. NASA MEaSUREs, ESA Climate Change Initiative (CCI) and IOCCG Virtual Constellation are some of the underway efforts that investigate or produce ocean color CDRs or ESDRs from the recent and current global missions (SeaWiFS, MODIS, MERIS). These studies look at key aspects of the development of unified data records from multiple sensors, e.g. the concatenation of the "best" individual records vs. the merging of multiple records or band homogenization vs. spectral diversity. The pros and cons of the different approaches are closely dependent upon the overall science purpose of the data record and its temporal resolution. While monthly data are generally adequate for biogeochemical modeling or to assess decadal trends, higher temporal resolution data records are required to look into changes in phenology or the dynamics of phytoplankton blooms. Similarly, short temporal resolution (daily to weekly) time series may benefit more from being built through the merging of data from multiple sensors while a simple concatenation of data from individual sensors might be better suited for longer temporal resolution (e.g. monthly time series). Several Ocean Color ESDRs were developed as part of the NASA MEaSUREs project. Some of these time series are built by merging the reflectance data from SeaWiFS, MODIS-Aqua and Envisat-MERIS in a semi-analytical ocean color

  6. NOAA-NASA Coastal Zone Color Scanner reanalysis effort.

    PubMed

    Gregg, Watson W; Conkright, Margarita E; O'Reilly, John E; Patt, Frederick S; Wang, Menghua H; Yoder, James A; Casey, Nancy W

    2002-03-20

    Satellite observations of global ocean chlorophyll span more than two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the National Oceanic and Atmospheric Administration and National Aeronautics and Space Administration (NOAA-NASA) CZCS reanalysis (NCR) effort. NCR consisted of (1) algorithm improvement (AI), where CZCS processing algorithms were improved with modernized atmospheric correction and bio-optical algorithms and (2) blending where in situ data were incorporated into the CZCS AI to minimize residual errors. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

  7. Satellite Ocean Color Sensor Design Concepts and Performance Requirements

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan

    2014-01-01

    In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to

  8. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).

  9. Merging Ocean Color Data From Multiple Missions. Chapter 6

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    2003-01-01

    Oceanic phytoplankton may play an important role in the cycling of carbon on the Earth, through the uptake of carbon dioxide in the process of photosynthesis. Although they are ubiquitous in the global oceans, their abundances and dynamics are difficult to estimate, primarily due to the vast spatial extent of the oceans and the short time scales over which their abundances can change. Consequently, the effects of oceanic phytoplankton on biogeochemical cycling, climate change, and fisheries are not well known. In response to the potential importance of phytoplankton in the global carbon cycle and the lack of comprehensive data, NASA and the international community have established high priority satellite missions designed to acquire and produce high quality ocean color data (Table 6.1). Ten of the missions are routine global observational missions: the Ocean Color and Temperature Sensor (OCTS), the Polarization and Directionality of the Earth's Reflectances sensor (POLDER), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectrometer-AM (MODIS-AM), Medium Resolution Imaging Spectrometer (MERIS), Global Imager (GLI), MODIS-PM, Super-GLI (S-GLI), and the Visible/Infrared Imager and Radiometer Suite (VIIRS) on the NPOESS Preparatory Project (NPP) and the National Polar-orbiting Operational Environmental Satellite System (NPOESS). In addition, there are several other missions capable of providing ocean color data on smaller scales. Most of these missions contain the spectral band complement considered necessary to derive oceanic chlorophyll concentrations and other related parameters. Many contain additional bands that can provide important ancillary information about the optical and biological state of the oceans.

  10. BOUSSOLE: A Joint CNRS-INSU, ESA, CNES, and NASA Ocean Color Calibration and Validation Activity

    NASA Technical Reports Server (NTRS)

    Antoine, David; Chami, Malik; Claustre, Herve; d'Ortenzio, Fabrizio; Morel, Andre; Becu, Guislain; Gentili, Bernard; Louis, Francis; Ras, Josephine; Roussier, Emmanuel; hide

    2006-01-01

    This report presents the Bouee pour l'acquisition de Series Optiques a Long Terme (BOUSSOLE) project, the primary objectives of which are to provide a long-term time series of optical properties in support of a) calibration and validation activities associated with satellite ocean color missions, and b) bio-optical research in oceanic waters. The following are included in the report: 1) an introduction to the rationale for establishing the project; 2) a definition of vicarious calibration and the specific requirements attached to it; 3) the organization of the project and the characteristics of the measurement site--in the northwestern Mediterranean Sea; 4) a qualitative overview of the collected data; 5) details about the buoy that was specifically designed and built for this project; 6) data collection protocols and data processing techniques; 7) a quantitative summary of the collected data, and a discussion of some sample results, including match-up analyses for the currently operational ocean color sensors, namely MERIS, SeaWiFS, and MODIS; and 8) preliminary results of the vicarious radiometric calibration of MERIS, including a tentative uncertainty budget. The results of this match-up analysis allow performance comparisons of various ocean color sensors to be performed, demonstrating the ability of the BOUSSOLE activity, i.e., combining a dedicated platform and commercial-off-the-shelf instrumentation, to provide data qualified to monitor the quality of ocean color products on the long term.

  11. Measurements of ocean color

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.

    1972-01-01

    An airborne instrument for determining ocean color and measurements made with the instrument are discussed. It was concluded that a clear relationship exists between the chlorophyll concentration and the color of the water. High altitude measurements from 50,000 feet are described and the effects of atmospheric scattering on the energy reaching the sensor are examined. The measured spectrum of ocean color at high and low altitudes is plotted.

  12. NASA Ocean Data Shows ‘Climate Dance’ of Plankton

    NASA Image and Video Library

    2014-09-29

    The greens and blues of the ocean color from NASA satellite data have provided new insights into how climate and ecosystem processes affect the growth cycles of phytoplankton—microscopic aquatic plants important for fish populations and Earth’s carbon cycle. At the bottom of the ocean’s food chain, phytoplankton account for roughly half of the net photosynthesis on Earth. Their photosynthesis consumes carbon dioxide and plays a key role in transferring carbon from the atmosphere to the ocean. Unlike the plant ecosystems on land, the amount of phytoplankton in the ocean is always followed closely by the abundance of organisms that eat phytoplankton, creating a perpetual dance between predators and prey. This new analysis shows how tiny imbalances in this predator-prey relationship, caused by environmental variability, give rise to massive phytoplankton blooms, having huge impacts on ocean productivity, fisheries and carbon cycling. The study was released Thursday, Sept. 25, in the journal Nature Climate Change. “The continuous year-in and year-out measurements provided by NASA’s ocean color satellites have dramatically changed our understanding of phytoplankton dynamics on the Earth,” said Mike Behrenfeld, author of the study and phytoplankton ecologist at Oregon State University, Corvallis, Oregon. “What we now see is a closely linked system of phytoplankton cell division and consumption lying at the heart of the plant’s annual cycle.” Behrenfeld calls this close predator-prey relationship the “Dance of the Plankton.” This view is different from previous perspectives that have simply focused on environmental resources used by phytoplankton to grow, such as nutrients and light. The new view is important because it reveals that tiny imbalances can greatly impact Earth’s ecology. Read more: 1.usa.gov/ZkVMHG Credit: NASA's Goddard Space Flight Center, Norman Kuring; USGS NASA image use policy. NASA Goddard Space Flight Center enables NASA

  13. Calibration Improvements in the Detector-to-Detector Differences for the MODIS Ocean Color Bands

    NASA Technical Reports Server (NTRS)

    Li, Yonghong; Angal, Amit; Wu, Aisheng; Geng, Xu; Link, Daniel; Xiong, Xiaoxiong

    2016-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), a major instrument within NASAs Earth Observation System missions, has operated for over 16 and 14 years onboard the Terra and Aqua satellites, respectively. Its reflective solar bands (RSB) covering a spectral range from 0.4 to 2.1 micrometers are primarily calibrated using the on-board solar diffuser(SD), with its on-orbit degradation monitored using the Solar Diffuser Stability Monitor. RSB calibrations are supplemented by near-monthly lunar measurements acquired from the instruments space-view port. Nine bands (bands 8-16) in the visible to near infrared spectral range from 0.412 to 0.866 micrometers are primarily used for ocean color observations.During a recent reprocessing of ocean color products, performed by the NASA Ocean Biology Processing Group, detector-to-detector differences of up to 1.5% were observed in bands 13-16 of Terra MODIS. This paper provides an overview of the current approach to characterize the MODIS detector-to-detector differences. An alternative methodology was developed to mitigate the observed impacts for bands 13-16. The results indicated an improvement in the detector residuals and in turn are expected to improve the MODIS ocean color products. This paper also discusses the limitations,subsequent enhancements, and the improvements planned for future MODIS calibration collections.

  14. Corrections to MODIS Terra Calibration and Polarization Trending Derived from Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Eplee, Robert E.; Franz, Bryan A.

    2014-01-01

    Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the SeaWiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only).

  15. Ocean-atmosphere science from the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission

    NASA Astrophysics Data System (ADS)

    Werdell, J.

    2016-12-01

    The new NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is a strategic climate continuity activity that will not only extend key heritage ocean color, cloud, and aerosol data records, but also enable new insight into oceanographic and atmospheric responses to Earth's changing climate. The primary PACE instrument will be a spectroradiometer that spans the ultraviolet to shortwave infrared region at 5 nm resolution with a ground sample distance of 1 km at nadir. This payload will likely be complemented by a multi-angle polarimeter with a similar spectral range. Scheduled for launch in 2022, this PACE instrument pair will revolutionize studies of global biogeochemistry and carbon cycles in the ocean-atmosphere system. Here, I present a PACE mission overview, with focus on instrument characteristics, core and advanced data products, and overarching science objectives.

  16. Ocean Color Measurements from Landsat-8 OLI using SeaDAS

    NASA Technical Reports Server (NTRS)

    Franz, Bryan Alden; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy

    2014-01-01

    The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.

  17. The Proposal for the NASA Sensor Intercalibration and Merger for Biological and Interdisciplinary Oceanic Studies(SIMBIOS) Program, 1995

    NASA Technical Reports Server (NTRS)

    McClain, Charles; Esaias, Wayne; Feldman, Gene; Gregg, Watson; Hooker, Stanford; Frouin, Robert

    2002-01-01

    As a result of the Earth Observing System (EOS) restructuring exercise during the last half of fiscal year 1994, the EOS Color mission, which was scheduled to be a data-buy with a 1998 launch was dropped from the EOS mission manifest primarily because of the number of international ocean color missions scheduled for launch in the 1998 time frame. In lieu of a new mission, NASA Goddard Space Flight Center (GSFC) was tasked by NASA Headquarters to develop an ocean color satellite calibration and validation plan for multiple sensors. The objective of the activity was to develop a methodology and operational capability to combine data products from the various ocean color missions in a manner that ensures the best possible global coverage and data quality. The program was called the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project coined from the biological term "symbiosis." This document is the original proposal that was developed and submitted in May 1995. SIMBIOS was approved in 1996 and initiated in 1997 with a project office and technical staff at GSFC and a science team to assist in the development of validation data sets, sensor calibration, atmospheric correction, and bio-optical and data merger algorithms. Since its inception, the SIMBIOS program has resulted in a broad-based international collaboration on the calibration and validation of a number of ocean color satellites.

  18. Ocean color modeling: Parameterization and interpretation

    NASA Astrophysics Data System (ADS)

    Feng, Hui

    The ocean color as observed near the water surface is determined mainly by dissolved and particulate substances, known as "optically-active constituents," in the upper water column. The goal of ocean color modeling is to interpret an ocean color spectrum quantitatively to estimate the suite of optically-active constituents near the surface. In recent years, ocean color modeling efforts have been centering upon three major optically-active constituents: chlorophyll concentration, colored dissolved organic matter, and scattering particulates. Many challenges are still being faced in this arena. This thesis generally addresses and deals with some critical issues in ocean color modeling. In chapter one, an extensive literature survey on ocean color modeling is given. A general ocean color model is presented to identify critical candidate uncertainty sources in modeling the ocean color. The goal for this thesis study is then defined as well as some specific objectives. Finally, a general overview of the dissertation is portrayed, defining each of the follow-up chapters to target some relevant objectives. In chapter two, a general approach is presented to quantify constituent concentration retrieval errors induced by uncertainties in inherent optical property (IOP) submodels of a semi-analytical forward model. Chlorophyll concentrations are retrieved by inverting a forward model with nonlinear IOPs. The study demonstrates how uncertainties in individual IOP submodels influence the accuracy of the chlorophyll concentration retrieval at different chlorophyll concentration levels. The important finding for this study shows that precise knowledge of spectral shapes of IOP submodels is critical for accurate chlorophyll retrieval, suggesting an improvement in retrieval accuracy requires precise spectral IOP measurements. In chapter three, three distinct inversion techniques, namely, nonlinear optimization (NLO), principal component analysis (PCA) and artificial neural network

  19. Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations.

    PubMed

    Krasnopolsky, Vladimir; Nadiga, Sudhir; Mehra, Avichal; Bayler, Eric; Behringer, David

    2016-01-01

    A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived "ocean color" (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA's operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed--signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN's generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.

  20. Atmospheric Correction for Satellite Ocean Color Radiometry

    NASA Technical Reports Server (NTRS)

    Mobley, Curtis D.; Werdell, Jeremy; Franz, Bryan; Ahmad, Ziauddin; Bailey, Sean

    2016-01-01

    This tutorial is an introduction to atmospheric correction in general and also documentation of the atmospheric correction algorithms currently implemented by the NASA Ocean Biology Processing Group (OBPG) for processing ocean color data from satellite-borne sensors such as MODIS and VIIRS. The intended audience is graduate students or others who are encountering this topic for the first time. The tutorial is in two parts. Part I discusses the generic atmospheric correction problem. The magnitude and nature of the problem are first illustrated with numerical results generated by a coupled ocean-atmosphere radiative transfer model. That code allow the various contributions (Rayleigh and aerosol path radiance, surface reflectance, water-leaving radiance, etc.) to the topof- the-atmosphere (TOA) radiance to be separated out. Particular attention is then paid to the definition, calculation, and interpretation of the so-called "exact normalized water-leaving radiance" and its equivalent reflectance. Part I ends with chapters on the calculation of direct and diffuse atmospheric transmittances, and on how vicarious calibration is performed. Part II then describes one by one the particular algorithms currently used by the OBPG to effect the various steps of the atmospheric correction process, viz. the corrections for absorption and scattering by gases and aerosols, Sun and sky reflectance by the sea surface and whitecaps, and finally corrections for sensor out-of-band response and polarization effects. One goal of the tutorial-guided by teaching needs- is to distill the results of dozens of papers published over several decades of research in atmospheric correction for ocean color remote sensing.

  1. Diurnal changes in ocean color in coastal waters

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  2. NASA Oceanic Processes Program, Fiscal Year 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Summaries are included for Nimbus 7, Seasat, TIROS-N, Altimetry, Color Radiometry, in situ data collection systems, Synthetic Aperture Radar (SAR)/Open Ocean, SAR/Sea Ice, Scatterometry, National Oceanic Satellite System, Free Flying Imaging Radar Experiment, TIROS-N/Scatterometer and/or ocean color scanner, and Ocean Topography Experiment. Summaries of individual research projects sponsored by the Ocean Processes Program are given. Twelve investigations for which contracting services are provided by NOAA are included.

  3. Role of oceanic air bubbles in atmospheric correction of ocean color imagery.

    PubMed

    Yan, Banghua; Chen, Bingquan; Stamnes, Knut

    2002-04-20

    Ocean color is the radiance that emanates from the ocean because of scattering by chlorophyll pigments and particles of organic and inorganic origin. Air bubbles in the ocean also scatter light and thus contribute to the water-leaving radiance. This additional water-leaving radiance that is due to oceanic air bubbles could violate the black pixel assumption at near-infrared wavelengths and be attributed to chlorophyll in the visible. Hence, the accuracy of the atmospheric correction required for the retrieval of ocean color from satellite measurements is impaired. A comprehensive radiative transfer code for the coupled atmosphere--ocean system is employed to assess the effect of oceanic air bubbles on atmospheric correction of ocean color imagery. This effect is found to depend on the wavelength-dependent optical properties of oceanic air bubbles as well as atmospheric aerosols.

  4. Role of oceanic air bubbles in atmospheric correction of ocean color imagery

    NASA Astrophysics Data System (ADS)

    Yan, Banghua; Chen, Bingquan; Stamnes, Knut

    2002-04-01

    Ocean color is the radiance that emanates from the ocean because of scattering by chlorophyll pigments and particles of organic and inorganic origin. Air bubbles in the ocean also scatter light and thus contribute to the water-leaving radiance. This additional water-leaving radiance that is due to oceanic air bubbles could violate the black pixel assumption at near-infrared wavelengths and be attributed to chlorophyll in the visible. Hence, the accuracy of the atmospheric correction required for the retrieval of ocean color from satellite measurements is impaired. A comprehensive radiative transfer code for the coupled atmosphere-ocean system is employed to assess the effect of oceanic air bubbles on atmospheric correction of ocean color imagery. This effect is found to depend on the wavelength-dependent optical properties of oceanic air bubbles as well as atmospheric aerosols.

  5. Satellite Ocean Color: Present Status, Future Challenges

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; McClain, Charles R.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    We are midway into our 5th consecutive year of nearly continuous, high quality ocean color observations from space. The Ocean Color and Temperature Scanner/Polarization and Directionality of the Earth's Reflectances (OCTS/POLDER: Nov. 1996 - Jun. 1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS: Sep. 1997 - present), and now the Moderate Resolution Imaging Spectrometer (MODIS: Sep. 2000 - present) have and are providing unprecedented views of chlorophyll dynamics on global scales. Global synoptic views of ocean chlorophyll were once a fantasy for ocean color scientists. It took nearly the entire 8-year lifetime of limited Coastal Zone Color Scanner (CZCS) observations to compile seasonal climatologies. Now SeaWIFS produces comparably complete fields in about 8 days. For the first time, scientists may observe spatial and temporal variability never before seen in a synoptic context. Even more exciting, we are beginning to plausibly ask questions of interannual variability. We stand at the beginning of long-time time series of ocean color, from which we may begin to ask questions of interdecadal variability and climate change. These are the scientific questions being addressed by users of the 18-year Advanced Very High Resolution Radiometer time series with respect to terrestrial processes and ocean temperatures. The nearly 5-year time series of ocean color observations now being constructed, with possibilities of continued observations, can put us at comparable standing with our terrestrial and physical oceanographic colleagues, and enable us to understand how ocean biological processes contribute to, and are affected by global climate change.

  6. SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Bailey, Sean W.; Shea, Donald M.; Feldman, Gene C.

    2014-01-01

    In clear shallow waters, light that is transmitted downward through the water column can reflect off the sea floor and thereby influence the water-leaving radiance signal. This effect can confound contemporary ocean color algorithms designed for deep waters where the seafloor has little or no effect on the water-leaving radiance. Thus, inappropriate use of deep water ocean color algorithms in optically shallow regions can lead to inaccurate retrievals of inherent optical properties (IOPs) and therefore have a detrimental impact on IOP-based estimates of marine parameters, including chlorophyll-a and the diffuse attenuation coefficient. In order to improve IOP retrievals in optically shallow regions, a semi-analytical inversion algorithm, the Shallow Water Inversion Model (SWIM), has been developed. Unlike established ocean color algorithms, SWIM considers both the water column depth and the benthic albedo. A radiative transfer study was conducted that demonstrated how SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Properties algorithm (GIOP) and Quasi-Analytical Algorithm (QAA), performed in optically deep and shallow scenarios. The results showed that SWIM performed well, whilst both GIOP and QAA showed distinct positive bias in IOP retrievals in optically shallow waters. The SWIM algorithm was also applied to a test region: the Great Barrier Reef, Australia. Using a single test scene and time series data collected by NASA's MODIS-Aqua sensor (2002-2013), a comparison of IOPs retrieved by SWIM, GIOP and QAA was conducted.

  7. Ocean Color Data at the Goddard DAAC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The apparent color of the ocean is determined by the interactions of incident light with substances or particles present in the water. The most significant constituents are free-floating photosynthetic organisms (phytoplankton) and inorganic particulates. Phytoplankton contain chlorophyll, which absorbs light at blue and red wavelengths and transmits in the green. Particulate matter can reflect and absorb light, which reduces the clarity (light transmission) of the water. Substances dissolved in water can also affect its color. Observations of ocean color from space, utilizing sensors specially designed to detect the small amount of light radiating from the sea surface, provide a global picture of the patterns of biological productivity in the world's oceans. For that reason, ocean color remote sensing data is a vital resource for biological oceanography. Unlike the limited area of the ocean that can be investigated from a research ship, data from a satellite sensor covers a large region and provides a comprehensive view of the marine environment.

  8. NASA Simulation Shows Ocean Turbulence in the North Atlantic

    NASA Image and Video Library

    2018-02-21

    This image shows a simulated snapshot of ocean turbulence in the North Atlantic Ocean in March 2012, from a groundbreaking super-high-resolution global ocean simulation (approximately 1.2 miles, or 2 kilometers, horizontal resolution) developed at JPL (http://wwwcvs.mitgcm.org/viewvc/MITgcm/MITgcm_contrib/llc_hires/llc_4320/). The colors represent the magnitude of surface relative vorticity, a measure of the spin of fluid parcels. The image emphasizes fast-rotating, small-scale (defined here as 6.2 to 31-mile, or 10 to 50 kilometer, range) turbulence, especially during the winter. High levels of relative vorticity caused by small-scale turbulence are believed to strongly transport heat and carbon vertically in the ocean. The image appears in a study (Su et al. 2018), entitled "Ocean submesoscales as a key component of the global heat budget," published recently in Nature Communications. The study suggests that upper-ocean small-scale turbulence transports heat upward in the ocean at a level five times larger than larger-scale heat transport by ocean eddies, significantly affecting the exchange of heat between the ocean interior and atmosphere. Such interactions have a crucial impact on the Earth's climate. A movie is available at https://photojournal.jpl.nasa.gov/catalog/PIA22256

  9. Comparing the Ocean Color Measurements Between MOS and SeaWiFS: A Vicarious Intercalibration Approach for MOS

    NASA Technical Reports Server (NTRS)

    Wang, Menghua; Franz, Bryan A.

    1998-01-01

    One of the primary goals of the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. The Modular Optoelectronic Scanner (MOS) is a German instrument that was launched in the spring of 1996 on the Indian IRS-P3 satellite. With the successful launch of NASA's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) in the summer of 1997, there are now two ocean color missions in concurrent operation and there is interest within the scientific community to compare data from these two sensors. In this paper, we describe our efforts to retrieve ocean optical properties from both SeaWiFS and MOS using consistent methods. We first briefly review the atmospheric correction, which removes more than 90% of the observed radiances in the visible, and then describe how the atmospheric correction algorithm used for the SeaWiFS data can be modified for application to other ocean color sensors. Next, since the retrieved water-leaving radiances in the visible between MOS and SeaWiFS are significantly different, we developed a vicarious intercalibration method to recalibrate the MOS spectral bands based on the optical properties of the ocean and atmosphere derived from the coincident SeaWiFS measurements. We present and discuss the MOS retrieved ocean optical properties before and after the vicarious calibration, and demonstrate the efficacy of this approach. We show that it is possible and efficient to vicariously intercalibrate sensors between one and another.

  10. Statistical Evaluation of VIIRS Ocean Color Products

    NASA Astrophysics Data System (ADS)

    Mikelsons, K.; Wang, M.; Jiang, L.

    2016-02-01

    Evaluation and validation of satellite-derived ocean color products is a complicated task, which often relies on precise in-situ measurements for satellite data quality assessment. However, in-situ measurements are only available in comparatively few locations, expensive, and not for all times. In the open ocean, the variability in spatial and temporal scales is longer, and the water conditions are generally more stable. We use this fact to perform extensive statistical evaluations of consistency for ocean color retrievals based on comparison of retrieved data at different times, and corresponding to various retrieval parameters. We have used the NOAA Multi-Sensor Level-1 to Level-2 (MSL12) ocean color data processing system for ocean color product data derived from the Visible Infrared Imaging Radiometer Suite (VIIRS). We show the results for statistical dependence of normalized water-leaving radiance spectra with respect to various parameters of retrieval geometry, such as solar- and sensor-zenith angles, as well as physical variables, such as wind speed, air pressure, ozone amount, water vapor, etc. In most cases, the results show consistent retrievals within the relevant range of retrieval parameters, showing a good performance with the MSL12 in the open ocean. The results also yield the upper bounds of solar- and sensor-zenith angles for reliable ocean color retrievals, and also show a slight increase of VIIRS-derived normalized water-leaving radiances with wind speed and water vapor concentration.

  11. Neural Networks Technique for Filling Gaps in Satellite Measurements: Application to Ocean Color Observations

    PubMed Central

    Nadiga, Sudhir; Mehra, Avichal; Bayler, Eric; Behringer, David

    2016-01-01

    A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA's operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN's generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series. PMID:26819586

  12. Applications of Geostationary Ocean Color Imager (GOCI) observations

    NASA Astrophysics Data System (ADS)

    Park, Y. J.

    2016-02-01

    Ocean color remote-sensing technique opened a new era for biological oceanography by providing the global distribution of phytoplankton biomass every a few days. It has been proved useful for a variety of applications in coastal waters as well as oceanic waters. However, most ocean color sensors deliver less than one image per day for low and middle latitude areas, and this once a day image is insufficient to resolve transient or high frequency processes. Korean Geostationary Ocean Color Imager (GOCI), the first ever ocean color instrument operated on geostationary orbit, is collecting ocean color radiometry (OCR) data (multi-band radiances at the visible to NIR spectral wavelengths) since July, 2010. GOCI has an unprecedented capability to provide eight OCR images a day with a 500m resolution for the North East Asian seas Monitoring the spatial and temporal variability is important to understand many processes occurring in open ocean and coastal environments. With a series of images consecutively acquired by GOCI, we are now able to look into (sub-)diurnal variabilities of coastal ocean color products such as phytoplankton biomass, suspended particles concentrations, and primary production. The eight images taken a day provide another way to derive maps of ocean current velocity. Compared to polar orbiters, GOCI delivers more frequent images with constant viewing angle, which enables to better monitor and thus respond to coastal water issues such as harmful algal blooms, floating green and brown algae. The frequent observation capability for local area allows us to respond timely to natural disasters and hazards. GOCI images are often useful to identify sea fog, sea ice, wild fires, volcanic eruptions, transport of dust aerosols, snow covered area, etc.

  13. Advances in radiometry for ocean color

    USGS Publications Warehouse

    Brown, S.W.; Clark, D.K.; Johnson, B.C.; Yoon, H.; Lykke, K.R.; Flora, S.J.; Feinholz, M.E.; Souaidia, N.; Pietras, C.; Stone, T.C.; Yarbrough, M.A.; Kim, Y.S.; Barnes, R.A.; Mueller, J.L.

    2004-01-01

    We have presented a number of recent developments in radiometry that directly impact the uncertainties achievable in ocean-color research. Specifically, a new (2000) U. S. national irradiance scale, a new LASER-based facility for irradiance and radiance responsivity calibrations, and applications of the LASER facility for the calibration of sun photometers and characterization of spectrographs were discussed. For meaningful long-time-series global chlorophyll-a measurements, all instruments involved in radiometric measurements, including satellite sensors, vicarious calibration sensors, sensors used in the development of bio-optical algorithms and atmospheric characterization need to be fully characterized and corrected for systematic errors, including, but not limited to, stray light. A unique, solid-state calibration source is under development to reduce the radiometric uncertainties in ocean color instruments, in particular below 400 nm. Lunar measurements for trending of on-orbit sensor channel degradation were described. Unprecedented assessments, within 0.1 %, of temporal stability and drift in a satellite sensor's radiance responsivity are achievable with this approach. These developments advance the field of ocean color closer to the desired goal of reducing the uncertainty in the fundamental radiometry to a small component of the overall uncertainty in the derivation of remotely sensed ocean-color data products such as chlorophyll a.

  14. Diurnal changes in ocean color sensed in satellite imagery

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermuelen, Ryan; Soto, Inia; Ladner, Sherwin; Ondrusek, Michael; Yang, Haoping

    2017-07-01

    Measurements of diurnal changes in ocean color in turbid coastal regions in the Gulf of Mexico were characterized using above water spectral radiometry from a National Aeronautics and Space Administration (aerosol robotic network-WaveCIS CSI-06) site that can provide 8 to 10 observations per day. Satellite capability to detect diurnal changes in ocean color was characterized using hourly overlapping afternoon orbits of the visual infrared imaging radiometer suite (VIIRS) Suomi National Polar-orbiting Partnership ocean color sensor and validated with in situ observations. The monthly cycle of diurnal changes was investigated for different water masses using VIIRS overlaps. Results showed the capability of satellite observations to monitor hourly color changes in coastal regions that can be impacted by vertical movement of optical layers, in response to tides, resuspension, and river plume dispersion. The spatial variability of VIIRS diurnal changes showed the occurrence and displacement of phytoplankton blooming and decaying processes. The diurnal change in ocean color was above 20%, which represents a 30% change in chlorophyll-a. Seasonal changes in diurnal ocean color for different water masses suggest differences in summer and winter responses to surface processes. The diurnal changes observed using satellite ocean color can be used to define the following: surface processes associated with biological activity, vertical changes in optical depth, and advection of water masses.

  15. Ocean Color Data at the Goddard Earth Sciences (GES) DAAC: CZCS, SeaWiFS, OCTS, MODIS-Terra, MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Goddard Earth Sciences Distributed Active Archive Center (DAAC) is the designated archive for all of the ocean color data produced by NASA satellite missions. The DAAC is a long-term, high volume, secure repository for many different kinds of environmental data. With respect to ocean color, the Goddard DAAC holds all the data obtained during the eight-year mission of the Coastal Zone Color Scanner (CZCS). The DAAC is currently receiving data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the MODIS-Terra instrument. The DAAC recently received reformatted data from the Ocean Color and Temperature Scanner (OCTS) and will also archive MODIS-Aqua Ocean products. In addition to its archive and distribution services, the Goddard DAAC strives to improve data access, ease-of-use, and data applicability for a broad spectrum of customers. The DAAC's data support teams practice dual roles, both insuring the integrity of the DAAC data archive and serving the user community with answers to user inquiries, online and print documentation, and customized data services.

  16. Simultaneous aerosol/ocean products retrieved during the 2014 SABOR campaign using the NASA Research Scanning Polarimeter (RSP)

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Burton, S. P.; Liu, X.; Hu, Y.; Stamnes, K. H.; Chowdhary, J.; Brian, C.

    2017-12-01

    The SABOR (Ship-Aircraft Bio-Optical Research) campaign was conducted during the summer of 2014, in the Atlantic Ocean, over the Chesapeake Bay and the eastern coastal region of the United States. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft. We present results from the new "MAPP" algorithm for RSP that is based on optimal estimation and that can retrieve simultaneous aerosol microphysical properties (including effective radius, single-scattering albedo, and real refractive index) and ocean color products using accurate radiative transfer and Mie calculations. The algorithm was applied to data collected during SABOR to retrieve aerosol microphysics and ocean products for all Aerosols-Above-Ocean (AAO) scenes. The RSP MAPP products are compared against collocated aerosol extinction and backscatter profiles collected by the NASA LaRC airborne High Spectral Resolution Lidar (HSRL-1), including lidar depth profiles of the ocean diffuse attenuation coefficient and the hemispherical backscatter coefficient.

  17. Optimization of Ocean Color Algorithms: Application to Satellite Data Merging

    NASA Technical Reports Server (NTRS)

    Maritorena, Stephane; Siegel, David A.; Morel, Andre

    2003-01-01

    The objective of our program is to develop and validate a procedure for ocean color data merging which is one of the major goals of the SIMBIOS project. The need for a merging capability is dictated by the fact that since the launch of MODIS on the Terra platform and over the next decade, several global ocean color missions from various space agencies are or will be operational simultaneously. The apparent redundancy in simultaneous ocean color missions can actually be exploited to various benefits. The most obvious benefit is improved coverage. The patchy and uneven daily coverage from any single sensor can be improved by using a combination of sensors. Beside improved coverage of the global Ocean the merging of Ocean color data should also result in new, improved, more diverse and better data products with lower uncertainties. Ultimately, ocean color data merging should result in the development of a unified, scientific quality, ocean color time series, from SeaWiFS to NPOESS and beyond. Various approaches can be used for ocean color data merging and several have been tested within the frame of the SIMBIOS program. As part of the SIMBIOS Program, we have developed a merging method for ocean color data. Conversely to other methods our approach does not combine end-products like the subsurface chlorophyll concentration (chl) from different sensors to generate a unified product. Instead, our procedure uses the normalized water-leaving radiances (L(sub WN)(lambda)) from single or multiple sensors and uses them in the inversion of a semi-analytical ocean color model that allows the retrieval of several ocean color variables simultaneously. Beside ensuring simultaneity and consistency of the retrievals (all products are derived from a single algorithm), this model-based approach has various benefits over techniques that blend end-products (e.g. chlorophyll): 1) it works with single or multiple data sources regardless of their specific bands, 2) it exploits band

  18. Colors after the Storms

    NASA Image and Video Library

    2015-10-26

    Damaging heavy rains fell on South Carolina in the southeastern United States at the beginning of October 2015. Much of that water had, by mid October, flowed into the Atlantic Ocean bringing with it heavy loads of sediment, nutrients, and dissolved organic material. The above VIIRS image shows the runoff as it interacts with ocean currents on October 15, 2015. Credit: NASA/Goddard/SuomiNPP/VIIRS via NASA's OceanColor

  19. Real-time test of MOCS algorithm during Superflux 1980. [ocean color algorithm for remotely detecting suspended solids

    NASA Technical Reports Server (NTRS)

    Grew, G. W.

    1981-01-01

    A remote sensing experiment was conducted in which success depended upon the real-time use of an algorithm, generated from MOCS (multichannel ocean color sensor) data onboard the NASA P-3 aircraft, to direct the NOAA ship Kelez to oceanic stations where vitally needed sea truth could be collected. Remote data sets collected on two consecutive days of the mission were consistent with the sea truth for low concentrations of chlorophyll a. Two oceanic regions of special interest were located. The algorithm and the collected data are described.

  20. NASA Aquarius Maps Ocean Salinity Structure

    NASA Image and Video Library

    2012-06-12

    NASA Aquarius instrument on the Aquarius/SAC-D observatory gives an unprecedented look at a key factor involved in the formation of an oceanic wave feature in the tropical Pacific and Atlantic Oceans that influences global climate patterns.

  1. The color metamerism evaluation of paint based on ocean spectrum

    NASA Astrophysics Data System (ADS)

    Chen, Zhongwei; Huang, Hao; Liao, Ningfang

    2018-03-01

    The surface color of the sea is affected by many factors and will be different the due to the material difference in the sea. And the difference will be reflected in the ocean spectrum. If the paint materials of a ship can simulate the ocean surface color and the ocean spectrum at the same time. This will minimize the metamerism. In this paper, the method of metamerism is used to evaluate paint based on ocean spectrum, so that the color of the material affected by the light source will be reflected in the metamerism index.

  2. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms

    PubMed Central

    Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean

  3. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

    PubMed

    Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean

  4. Satellite Ocean Color Validation Using Merchant Ships. Chapter 10

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Cutchin, David L.; Deschamps, Pierre-Yves

    2001-01-01

    A collaborative measurement program for evaluating satellite-derived ocean color has been developed based on ships of opportunity (merchant, oceanographic) and specific instrumentation, the SIMBAD radiometer. The purpose of the measurement program is to complement, in a cost-effective way, dedicated evaluation experiments at sea, which are expensive, cannot be carried out over the full range of expected oceanic and atmospheric conditions, and generally provide a few match-ups. Ships participate in the program on a volunteer basis or at a very small cost, and measurement procedures do not interfere with other ship activities. The SIMBAD radiometer is a portable, easy-to-operate instrument that measures the basic ocean color variables, namely aerosol optical thickness and water-leaving radiance, in typical spectral bands of ocean-color sensors, i.e., 443, 490, 560, 670, and 870 nm. Measuring these variables at the time of satellite overpass is usually sufficient to verify satellite-derived ocean color and to evaluate atmospheric correction algorithms. Any ordinary crew can learn quickly how to make measurements. Importantly, the ship is not required to stop, making it possible to collect data along regular routes traveled by merchant ships in the world's oceans.

  5. Use of Real Time Satellite Infrared and Ocean Color to Produce Ocean Products

    NASA Astrophysics Data System (ADS)

    Roffer, M. A.; Muller-Karger, F. E.; Westhaver, D.; Gawlikowski, G.; Upton, M.; Hall, C.

    2014-12-01

    Real-time data products derived from infrared and ocean color satellites are useful for several types of users around the world. Highly relevant applications include recreational and commercial fisheries, commercial towing vessel and other maritime and navigation operations, and other scientific and applied marine research. Uses of the data include developing sampling strategies for research programs, tracking of water masses and ocean fronts, optimizing ship routes, evaluating water quality conditions (coastal, estuarine, oceanic), and developing fisheries and essential fish habitat indices. Important considerations for users are data access and delivery mechanisms, and data formats. At this time, the data are being generated in formats increasingly available on mobile computing platforms, and are delivered through popular interfaces including social media (Facebook, Linkedin, Twitter and others), Google Earth and other online Geographical Information Systems, or are simply distributed via subscription by email. We review 30 years of applications and describe how we develop customized products and delivery mechanisms working directly with users. We review benefits and issues of access to government databases (NOAA, NASA, ESA), standard data products, and the conversion to tailored products for our users. We discuss advantages of different product formats and of the platforms used to display and to manipulate the data.

  6. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing

    NASA Astrophysics Data System (ADS)

    Werdell, P. Jeremy; McKinna, Lachlan I. W.; Boss, Emmanuel; Ackleson, Steven G.; Craig, Susanne E.; Gregg, Watson W.; Lee, Zhongping; Maritorena, Stéphane; Roesler, Collin S.; Rousseaux, Cécile S.; Stramski, Dariusz; Sullivan, James M.; Twardowski, Michael S.; Tzortziou, Maria; Zhang, Xiaodong

    2018-01-01

    Ocean color measured from satellites provides daily global, synoptic views of spectral water-leaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches.

  7. Calibration Adjustments to the MODIS Aqua Ocean Color Bands

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard

    2012-01-01

    After the end of the SeaWiFS mission in 2010 and the MERIS mission in 2012, the ocean color products of the MODIS on Aqua are the only remaining source to continue the ocean color climate data record until the VIIRS ocean color products become operational (expected for summer 2013). The MODIS on Aqua is well beyond its expected lifetime, and the calibration accuracy of the short wavelengths (412nm and 443nm) has deteriorated in recent years_ Initially, SeaWiFS data were used to improve the MODIS Aqua calibration, but this solution was not applicable after the end of the SeaWiFS mission_ In 2012, a new calibration methodology was applied by the MODIS calibration and support team using desert sites to improve the degradation trending_ This presentation presents further improvements to this new approach. The 2012 reprocessing of the MODIS Aqua ocean color products is based on the new methodology.

  8. Effects of Whitecaps on Satellite-Derived Ocean Color

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    2000-01-01

    During the 3.25 years of the project, various aspects of satellite ocean-color remote sensing were investigated, including effect of whitecaps on atmospheric correction, validity of aerosol models, and evaluation of ocean-color products. Algorithms to estimate pigment concentration and photo-synthetically active radiation (PAR) were developed, and studies of geophysical phenomena, such as the 1998 Asian Dust event, were performed. The influence of solar radiation absorption by phytoplankton on mixed layer dynamics, ocean circulation, and climate was also investigated. The project's results and findings are described.

  9. Eddies in the Southern Ocean

    NASA Image and Video Library

    2015-04-08

    The cloud cover over the Southern Ocean occasionally parts as it did on January 1, 2015 just west of the Drake Passage where the VIIRS instrument on the Suomi NPP satellite glimpsed the above collection of ocean-color delineated eddies which have diameters ranging from a couple of kilometers to a couple of hundred kilometers. Recent studies indicate that eddy activity has been increasing in the Southern Ocean with possible implications for climate change. Credit: NASA's OceanColor/Suomi NPP/VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Microradiometers Reveal Ocean Health, Climate Change

    NASA Technical Reports Server (NTRS)

    2013-01-01

    When NASA researcher Stanford Hooker is in the field, he pays close attention to color. For Hooker, being in the field means being at sea. On one such research trip to the frigid waters of the Arctic, with a Coast Guard icebreaker looming nearby and the snow-crusted ice shelf a few feet away, Hooker leaned over the edge of his small boat and lowered a tethered device into the bright turquoise water, a new product devised by a NASA partner and enabled by a promising technology for oceanographers and atmospheric scientists alike. Color is a function of light. Pure water is clear, but the variation in color observed during a visit to the beach or a flight along a coastline depends on the water s depth and the constituents in it, how far down the light penetrates and how it is absorbed and scattered by dissolved and suspended material. Hooker cares about ocean color because of what it can reveal about the health of the ocean, and in turn, the health of our planet. "The main thing we are interested in is the productivity of the water," Hooker says. The seawater contains phytoplankton, microscopic plants, which are the food base for the ocean s ecosystems. Changes in the water s properties, whether due to natural seasonal effects or human influence, can lead to problems for delicate ecosystems such as coral reefs. Ocean color can inform researchers about the quantities and distribution of phytoplankton and other materials, providing clues as to how the world ocean is changing. NASA s Coastal Zone Color Scanner, launched in 1978, was the first ocean color instrument flown on a spacecraft. Since then, the Agency s ocean color research capabilities have become increasingly sophisticated with the launch of the SeaWiFS instrument in 1997 and the twin MODIS instruments carried into orbit on NASA s Terra (1999) and Aqua (2002) satellites. The technology provides sweeping, global information on ocean color on a scale unattainable by any other means. One issue that arises from

  11. Ocean Color Inferred from Radiometers on Low-Flying Aircraft.

    PubMed

    Churnside, James H; Wilson, James J

    2008-02-08

    The color of sunlight reflected from the ocean to orbiting visible radiometers hasprovided a great deal of information about the global ocean, after suitable corrections aremade for atmospheric effects. Similar ocean-color measurements can be made from a lowflyingaircraft to get higher spatial resolution and to obtain measurements under clouds.A different set of corrections is required in this case, and we describe algorithms to correctfor clouds and sea-surface effects. An example is presented and errors in the correctionsdiscussed.

  12. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    NASA Astrophysics Data System (ADS)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  13. Colors after the Storms

    NASA Image and Video Library

    2017-12-08

    Damaging heavy rains fell on South Carolina in the southeastern United States at the beginning of October 2015. Much of that water had, by mid October, flowed into the Atlantic Ocean bringing with it heavy loads of sediment, nutrients, and dissolved organic material. The above VIIRS image shows the runoff as it interacts with ocean currents on October 15, 2015. Credit: NASA/Goddard/SuomiNPP/VIIRS via NASA's OceanColor NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. VIIRS Product Evaluation at the Ocean PEATE

    NASA Technical Reports Server (NTRS)

    Patt, Frederick S.; Feldman, Gene C.

    2010-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) mission will support the continuation of climate records generated from NASA missions. The NASA Science Data Segment (SDS) relies upon discipline-specific centers of expertise to evaluate the NPP data products for suitability as climate data records, The Ocean Product Evaluation and Analysis Tool Element (PEATE) will build upon Well established NASA capabilities within the Ocean Color program in order to evaluate the NPP Visible and Infrared Imager/Radiometer Suite (VIIRS) Ocean Color and Chlorophyll data products. The specific evaluation methods will support not only the evaluation of product quality but also the sources of differences with existing data records.

  15. Estimating Advective Near-surface Currents from Ocean Color Satellite Images

    DTIC Science & Technology

    2015-01-01

    of surface current information. The present study uses the sequential ocean color products provided by the Geostationary Ocean Color Imager (GOCI) and...on the SuomiNational Polar-Orbiting Partner- ship (S-NPP) satellite. The GOCI is the world’s first geostationary orbit satellite sensor over the...used to extract the near-surface currents by the MCC algorithm. We not only demonstrate the retrieval of currents from the geostationary satellite ocean

  16. Ocean Color Inferred from Radiometers on Low-Flying Aircraft

    PubMed Central

    Churnside, James H.; Wilson, James J.

    2008-01-01

    The color of sunlight reflected from the ocean to orbiting visible radiometers has provided a great deal of information about the global ocean, after suitable corrections are made for atmospheric effects. Similar ocean-color measurements can be made from a low-flying aircraft to get higher spatial resolution and to obtain measurements under clouds. A different set of corrections is required in this case, and we describe algorithms to correct for clouds and sea-surface effects. An example is presented and errors in the corrections discussed. PMID:27879739

  17. Real Data and Rapid Results: Ocean Color Data Analysis with Giovanni (GES DISC Interactive Online Visualization and ANalysis Infrastructure)

    NASA Technical Reports Server (NTRS)

    Acker, J. G.; Leptoukh, G.; Kempler, S.; Gregg, W.; Berrick, S.; Zhu, T.; Liu, Z.; Rui, H.; Shen, S.

    2004-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has taken a major step addressing the challenge of using archived Earth Observing System (EOS) data for regional or global studies by developing an infrastructure with a World Wide Web interface which allows online, interactive, data analysis: the GES DISC Interactive Online Visualization and ANalysis Infrastructure, or "Giovanni." Giovanni provides a data analysis environment that is largely independent of underlying data file format. The Ocean Color Time-Series Project has created an initial implementation of Giovanni using monthly Standard Mapped Image (SMI) data products from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission. Giovanni users select geophysical parameters, and the geographical region and time period of interest. The system rapidly generates a graphical or ASCII numerical data output. Currently available output options are: Area plot (averaged or accumulated over any available data period for any rectangular area); Time plot (time series averaged over any rectangular area); Hovmeller plots (image view of any longitude-time and latitude-time cross sections); ASCII output for all plot types; and area plot animations. Future plans include correlation plots, output formats compatible with Geographical Information Systems (GIs), and higher temporal resolution data. The Ocean Color Time-Series Project will produce sensor-independent ocean color data beginning with the Coastal Zone Color Scanner (CZCS) mission and extending through SeaWiFS and Moderate Resolution Imaging Spectroradiometer (MODIS) data sets, and will enable incorporation of Visible/lnfrared Imaging Radiometer Suite (VIIRS) data, which will be added to Giovanni. The first phase of Giovanni will also include tutorials demonstrating the use of Giovanni and collaborative assistance in the development of research projects using the SeaWiFS and Ocean Color Time-Series Project data in the online Laboratory

  18. Eddies in the Southern Ocean

    NASA Image and Video Library

    2015-04-08

    The cloud cover over the Southern Ocean occasionally parts as it did on January 1, 2015 just west of the Drake Passage where the VIIRS instrument on the Suomi NPP satellite glimpsed the above collection of ocean-color delineated eddies which have diameters ranging from a couple of kilometers to a couple of hundred kilometers. Recent studies indicate that eddy activity has been increasing in the Southern Ocean with possible implications for climate change. Credit: NASA's OceanColor/Suomi NPP/VIIRS

  19. Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space

    DTIC Science & Technology

    2000-02-20

    Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses

  20. Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    2005-01-01

    Assimilation of satellite ocean color data is a relatively new phenomenon in ocean sciences. However, with routine observations from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), launched in late 1997, and now with new data from the Moderate Resolution Imaging Spectroradometer (MODIS) Aqua, there is increasing interest in ocean color data assimilation. Here SeaWiFS chlorophyll data were assimilated with an established thre-dimentional global ocean model. The assimilation improved estimates of hlorophyll and primary production relative to a free-run (no assimilation) model. This represents the first attempt at ocean color data assimilation using NASA satellites in a global model. The results suggest the potential of assimilation of satellite ocean chlorophyll data for improving models.

  1. A Decade of Satellite Ocean Color Observations

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.

    2009-01-01

    After the successful Coastal Zone Color Scanner (CZCS, 1978-1986), demonstration that quantitative estimations of geophysical variables such as chlorophyll a and diffuse attenuation coefficient could be derived from top of the atmosphere radiances, a number of international missions with ocean color capabilities were launched beginning in the late 1990s. Most notable were those with global data acquisition capabilities, i.e., the Ocean Color and Temperature Sensor (OCTS 1996-1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, United States, 1997-present), two Moderate Resolution Imaging Spectroradiometers, (MODIS, United States, Terra/2000-present and Aqua/2002-present), the Global Imager (GLI, Japan, 2002-2003), and the Medium Resolution Imaging Spectrometer (MERIS, European Space Agency, 2002-present). These missions have provided data of exceptional quality and continuity, allowing for scientific inquiries into a wide variety of marine research topics not possible with the CZCS. This review focuses on the scientific advances made over the past decade using these data sets.

  2. Optimization of Ocean Color Algorithms: Application to Satellite Data Merging

    NASA Technical Reports Server (NTRS)

    Ritorena, Stephane; Siegel, David A.; Morel, Andre

    2004-01-01

    The objective of the program is to develop and validate a procedure for ocean color data merging, which is one of the major goals of the SIMBIOS project. As part of the SIMBIOS Program, we have developed a merging method for ocean color data. Conversely to other methods our approach does not combine end-products like the subsurface chlorophyll concentration (chl) from different sensors to generate a unified product. Instead, our procedure uses the normalized water-leaving radiances L((sub wN)(lambda)) from single or multiple sensors and uses them in the inversion of a semi-analytical ocean color model that allows the retrieval of several ocean color variables simultaneously. Beside ensuring simultaneity and consistency of the retrievals (all products are derived from a single algorithm), this model-based approach has various benefits over techniques that blend end-products (e.g. chlorophyll): 1) It works with single or multiple data sources regardless of their specific bands; 2) It exploits band redundancies and band differences; 3) It accounts for uncertainties in the L((sub wN)(lambda)) data; 4) It provides uncertainty estimates for the retrieved variables.

  3. Ocean Color Optical Property Data Derived from OCTS and POLDER: A Comparison Study

    NASA Technical Reports Server (NTRS)

    Wang, Menghua; Isaacman, Alice; Franz, Bryan A.; McClain, Charles R.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    We describe our efforts in studying and comparing the ocean color data derived from the Japanese Ocean Color and Temperature Scanner (OCTS) and the French Polarization and Directionality of the Earth's Reflectances (POLDER). OCTS and POLDER were both on board Japan's Sun-synchronous Advanced Earth Observing Satellite (ADEOS-1) from August 1996 to June 1997, collecting about 10 months of global ocean color data. This provides a unique opportunity for developing methods and strategies for the merging of ocean color data from multiple ocean color sensors. In this paper, we describe our approach in developing consistent data processing algorithms for both OCTS and POLDER and using a common in situ data set to vicariously calibrate the two sensors. Therefore, the OCTS and POLDER-measured radiances are effectively bridged through common in situ measurements. With this approach in processing data from two different sensors, the only differences in the derived products from OCTS and POLDER are the differences inherited from the instrument characteristics. Results show that there are no obvious bias differences between the OCTS and POLDER-derived ocean color products, whereas the differences due to noise, which stem from variations in sensor characteristics, are difficult to correct. It is possible, however, to reduce noise differences with some data averaging schemes. The ocean color data from OCTS and POLDER can therefore be compared and merged in the sense that there is no significant bias between two.

  4. Detection of ocean color changes from high altitudes

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.; Forman, M. L.; Blaine, L. R.

    1973-01-01

    The detection of ocean color changes, thought to be due to chlorophyll concentrations and gelbstoffe variations, is attempted from high altitude (11.3km) and low altitude (0.3km). The atmospheric back scattering is shown to reduce contrast, but not sufficiently to obscure color change detection at high altitudes.

  5. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 6; Special Topics in Ocean Optics Protocols and Appendices; Revised

    NASA Technical Reports Server (NTRS)

    Mueller, J. L. (Editor); Fargion, Giulietta S. (Editor); McClain, Charles R. (Editor)

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 (Mueller and Fargion 2002, Volumes 1 and 2) is entirely superseded by the six volumes of Revision 4 listed above.

  6. Satellite Ocean-Color Validation Using Ships of Opportunity. Chapter 5

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Cutchin, David L.; Gross-Colzy, Lydwine; Poteau, Antoine; Deschamps, Pierre-Yves

    2003-01-01

    The investigation s main objective is to collect from platforms of opportunity (merchant ships, research vessels) concomitant normalized water-leaving radiance and aerosol optical thickness data over the world s oceans. A global, long-term data set of these variables is needed to verify whether satellite retrievals of normalized water-leaving radiance are within acceptable error limits and, eventually, to adjust atmospheric correction schemes. To achieve this objective, volunteer officers, technicians, and scientists onboard the selected ships collect data from portable SIMBAD and Advanced SIMBAD (SIMBADA) radiometers. These instruments are specifically designed for evaluation of satellite-derived ocean color. They measure radiance in spectral bands typical of ocean-color sensors. The SIMBAD version measures in 5 spectral bands centered at 443, 490, 560, 670, and 870 nm, and the Advanced SIMBAD version in 11 spectral bands centered at 350, 380, 412, 443, 490, 510, 565, 620, 670, 750, and 870 nm. Aerosol optical thickness is obtained by viewing the sun disk like a classic sun photometer. Normalized water-leaving radiance, or marine reflectance, is obtained by viewing the ocean surface through a vertical polarizer in a specific geometry (nadir angle of 45o and relative azimuth angle of 135deg) to minimize direct sun glint and reflected sky radiation. The SIMBAD and SIMBADA data, after proper quality control and processing, are delivered to the SIMBIOS project office for inclusion in the SeaBASS archive. They complement data collected in a similar way by the Laboratoire d'Optique Atmospherique of the University of Lille, France. The SIMBAD and SIMBADA data are used to check the radiometric calibration of satellite ocean-color sensors after launch and to evaluate derived ocean-color variables (i.e., normalized water-leaving radiance, aerosol optical thickness, and aerosol type). Analysis of the SIMBAD and SIMBADA data provides information on the accuracy of satellite

  7. Validation of ocean color sensors using a profiling hyperspectral radiometer

    NASA Astrophysics Data System (ADS)

    Ondrusek, M. E.; Stengel, E.; Rella, M. A.; Goode, W.; Ladner, S.; Feinholz, M.

    2014-05-01

    Validation measurements of satellite ocean color sensors require in situ measurements that are accurate, repeatable and traceable enough to distinguish variability between in situ measurements and variability in the signal being observed on orbit. The utility of using a Satlantic Profiler II equipped with HyperOCR radiometers (Hyperpro) for validating ocean color sensors is tested by assessing the stability of the calibration coefficients and by comparing Hyperpro in situ measurements to other instruments and between different Hyperpros in a variety of water types. Calibration and characterization of the NOAA Satlantic Hyperpro instrument is described and concurrent measurements of water-leaving radiances conducted during cruises are presented between this profiling instrument and other profiling, above-water and moored instruments. The moored optical instruments are the US operated Marine Optical BuoY (MOBY) and the French operated Boussole Buoy. In addition, Satlantic processing versions are described in terms of accuracy and consistency. A new multi-cast approach is compared to the most commonly used single cast method. Analysis comparisons are conducted in turbid and blue water conditions. Examples of validation matchups with VIIRS ocean color data are presented. With careful data collection and analysis, the Satlantic Hyperpro profiling radiometer has proven to be a reliable and consistent tool for satellite ocean color validation.

  8. NOAA activities in support of in situ validation observations for satellite ocean color products and related ocean science research

    NASA Astrophysics Data System (ADS)

    Lance, V. P.; DiGiacomo, P. M.; Ondrusek, M.; Stengel, E.; Soracco, M.; Wang, M.

    2016-02-01

    The NOAA/STAR ocean color program is focused on "end-to-end" production of high quality satellite ocean color products. In situ validation of satellite data is essential to produce the high quality, "fit for purpose" ocean color products that support users and applications in all NOAA line offices, as well as external (both applied and research) users. The first NOAA/OMAO (Office of Marine and Aviation Operations) sponsored research cruise dedicated to VIIRS SNPP validation was completed aboard the NOAA Ship Nancy Foster in November 2014. The goals and objectives of the 2014 cruise are highlighted in the recently published NOAA/NESDIS Technical Report. A second dedicated validation cruise is planned for December 2015 and will have been completed by the time of this meeting. The goals and objectives of the 2015 cruise will be discussed in the presentation. Participants and observations made will be reported. The NOAA Ocean Color Calibration/Validation (Cal/Val) team also works collaboratively with others programs. A recent collaboration with the NOAA Ocean Acidification program on the East Coast Ocean Acidification (ECOA) cruise during June-July 2015, where biogeochemical and optical measurements were made together, allows for the leveraging of in situ observations for satellite validation and for their use in the development of future ocean acidification satellite products. Datasets from these cruises will be formally archived at NOAA and Digital Object Identifier (DOI) numbers will be assigned. In addition, the NOAA Coast/OceanWatch Program is working to establish a searchable database. The beta version will begin with cruise data and additional in situ calibration/validation related data collected by the NOAA Ocean Color Cal/Val team members. A more comprehensive searchable NOAA database, with contributions from other NOAA ocean observation platforms and cruise collaborations is envisioned. Progress on these activities will be reported.

  9. NASA-NOAA's Suomi NPP Satellite Gets Colorful Look at Hurricane Blanca

    NASA Image and Video Library

    2015-06-05

    NASA-NOAA's Suomi NPP satellite flew over Hurricane Blanca in the Eastern Pacific Ocean and gathered infrared data on the storm that was false-colored to show locations of the strongest thunderstorms within the storm. The Visible Infrared Imaging Radiometer Suite or VIIRS instrument aboard the satellite gathered infrared data of the storm that was made into an image at the University of Wisconsin-Madison. The image was false-colored to show temperature. Coldest cloud top temperatures indicate higher, stronger, thunderstorms within a tropical cyclone. Those are typically the strongest storms with potential for heavy rainfall. VIIRS is a scanning radiometer that collects visible and infrared imagery and "radiometric" measurements. Basically it means that VIIRS data is used to measure cloud and aerosol properties, ocean color, sea and land surface temperature, ice motion and temperature, fires, and Earth's albedo (reflected light). The VIIRS image from June 5 at 8:11 UTC (4:11 a.m. EDT) showed two areas of coldest cloud top temperatures and strongest storms were west-southwest and east-northeast of the center of Blanca's circulation center. On June 5 at 5 a.m. EDT (0900 UTC) Blanca's maximum sustained winds were near 105 mph (165 kph) with higher gusts. The National Hurricane Center (NHC) forecast expects some strengthening during the next day or so. Weakening is forecast to begin by late Saturday. At that time, NHC placed the center of Hurricane Blanca near latitude 14.3 North, longitude 106.2 West. That puts the center about 350 miles (560 km) south-southwest of Manzanillo, Mexico and about 640 miles (1,030 km) south-southeast of Cabo San Lucas, Mexico. The estimated minimum central pressure is 968 millibars (28.59 inches). Blanca is moving toward the northwest near 10 mph (17 kph). A northwestward to north-northwestward motion at a similar forward speed is expected to continue through Saturday night. Blanca has been stirring up surf along the coast of southwestern

  10. NASA Oceanic Processes Program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This, the Sixth Annual Report for NASA's Oceanic Processes Program, provides an overview of recent accomplishments, present activities, and future plans. Although the report was prepared for Fiscal Year 1985 (October 1, 1984 to September 30, 1985), the period covered by the Introduction extends into June 1986. Sections following the Introduction provide summaries of current flight projects and definition studies, brief descriptions of individual research activities, and a bibliography of refereed journal articles appearing within the past two years.

  11. The Living Ocean. SeaWiFS: Studying Ocean Color from Space. Teacher's Guide with Activities

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This educational document, designed for grades 9 to 10, discusses the observation of oceans from space. Topics covered include ocean color, the role of phytoplankton, the carbon cycle, and the greenhouse effect. Activities and discussion questions are presented.

  12. Seahawk: An Advanced Cubesat Mission for Sustained Ocean Color Monitoring

    NASA Technical Reports Server (NTRS)

    Morrison, John M.; Jeffrey, Hazel; Gorter, Hessel; Anderson, Pamela; Clark, Craig; Holmes, Alan; Feldman, Gene C.; Pratt, Frederick S.

    2016-01-01

    Sustained ocean color monitoring is vital to understanding the marine ecosystem. It has been identified as an Essential Climate Variable (ECV) and is a vital parameter in understanding long-term climate change. Furthermore, observations can be beneficial in observing oil spills, harmful algal blooms and the health of fisheries. Space-based remote sensing, through MERIS, SeaWiFS and MODIS instruments, have provided a means of observing the vast area covered by the ocean which would otherwise be impossible using ships alone. However, the large pixel size makes measurements of lakes, rivers, estuaries and coastal zones difficult. Furthermore, retirement of a number of widely used and relied upon ocean observation instruments, particularly MERIS and SeaWiFS, leaves a significant gap in ocean color observation opportunities. This paper presents an overview of the SeaHawk mission, a collaborative effort between Clyde Space Ltd., the University of North Carolina Wilmington, Cloudland Instruments, and Goddard Spaceflight Center, funded by the Gordon and Betty Moore Foundation. The goal of the project is to enhance the ability to observe ocean color in high temporal and spatial resolution through use of a low-cost, next-generation ocean color sensor flown aboard a CubeSat. The final product will be 530 times smaller (0.0034 vs 1.81cu m) and 115 time less massive (3.4 vs 390.0 kg) but with a ground resolution 10 times better whilst maintaining a signal/noise ratio 50 that of SeaWiFs. This paper will describe the objectives of the mission, outline the payload specification and the spacecraft platform to support it.

  13. Update of NASA's ocean colour activities

    NASA Technical Reports Server (NTRS)

    Yoder, J. A.

    1987-01-01

    The NIMBUS-7 Coastal Zone Color Scanner (CZCS) status and processing are reviewed, and future American ocean color instruments are introduced. The CZCS is probably dead, but an attempt to restart it is planned. A wide field instrument for LANDSAT-6 and 7 (WIFS) and a wiskbroom imaging spectrometer (MODIS-T) for Columbus Polar Platforms are outlined. The WIFS and MODIS-T specifications are similar: 64 bands in the range 400 to 1030 nm, with 15 to 30 nm bandwidth; 1 km resolution from 850 km altitude; 64 km footprint along track; 1500 km scan across track; and 10 yr continuous operation life.

  14. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  15. Radiometric Measurement Comparison Using the Ocean Color Temperature Scanner (OCTS) Visible and Near Infrared Integrating Sphere

    PubMed Central

    Johnson, B. Carol; Sakuma, F.; Butler, J. J.; Biggar, S. F.; Cooper, J. W.; Ishida, J.; Suzuki, K.

    1997-01-01

    As a part of the pre-flight calibration and validation activities for the Ocean Color and Temperature Scanner (OCTS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color satellite instruments, a radiometric measurement comparison was held in February 1995 at the NEC Corporation in Yokohama, Japan. Researchers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the University of Arizona Optical Sciences Center (UA), and the National Research Laboratory of Metrology (NRLM) in Tsukuba, Japan used their portable radiometers to measure the spectral radiance of the OCTS visible and near-infrared integrating sphere at four radiance levels. These four levels corresponded to the configuration of the OCTS integrating sphere when the calibration coefficients for five of the eight spectral channels, or bands, of the OCTS instrument were determined. The measurements of the four radiometers differed by −2.7 % to 3.9 % when compared to the NEC calibration of the sphere and the overall agreement was within the combined measurement uncertainties. A comparison of the measurements from the participating radiometers also resulted in agreement within the combined measurement uncertainties. These results are encouraging and demonstrate the utility of comparisons using laboratory calibration integrating sphere sources. Other comparisons will focus on instruments that are scheduled for spacecraft in the NASA study of climate change, the Earth Observing System (EOS). PMID:27805113

  16. Visible Infrared Imaging Radiometer Suite (VIIRS) and uncertainty in the ocean color calibration methodology

    NASA Astrophysics Data System (ADS)

    Turpie, Kevin R.; Eplee, Robert E.; Meister, Gerhard

    2015-09-01

    During the first few years of the Suomi National Polar-orbiting Partnership (NPP) mission, the NASA Ocean Color calibration team continued to improve on their approach to the on-orbit calibration of the Visible Infrared Imaging Radiometer Suite (VIIRS). As the calibration was adjusted for changes in ocean band responsitivity, the team also estimated a theoretic residual error in the calibration trends well within a few tenths of a percent, which could be translated into trend uncertainties in regional time series of surface reflectance and derived products, where biases as low as a few tenths of a percent in certain bands can lead to significant effects. This study looks at effects from spurious trends inherent to the calibration and biases that arise between reprocessing efforts because of extrapolation of the timedependent calibration table. With the addition of new models for instrument and calibration system trend artifacts, new calibration trends led to improved estimates of ocean time series uncertainty. Table extrapolation biases are presented for the first time. The results further the understanding of uncertainty in measuring regional and global biospheric trends in the ocean using VIIRS, which better define the roles of such records in climate research.

  17. Optimization Of Ocean Color Algorithms: Application To Satellite And In Situ Data Merging. Chapter 9

    NASA Technical Reports Server (NTRS)

    Maritorena, Stephane; Siegel, David A.; Morel, Andre

    2003-01-01

    The objective of our program is to develop and validate a procedure for ocean color data merging which is one of the major goals of the SIMBIOS project (McClain et al., 1995). The need for a merging capability is dictated by the fact that since the launch of MODIS on the Terra platform and over the next decade, several global ocean color missions from various space agencies are or will be operational simultaneously. The apparent redundancy in simultaneous ocean color missions can actually be exploited to various benefits. The most obvious benefit is improved coverage (Gregg et al., 1998; Gregg & Woodward, 1998). The patchy and uneven daily coverage from any single sensor can be improved by using a combination of sensors. Beside improved coverage of the global ocean the merging of ocean color data should also result in new, improved, more diverse and better data products with lower uncertainties. Ultimately, ocean color data merging should result in the development of a unified, scientific quality, ocean color time series, from SeaWiFS to NPOESS and beyond. Various approaches can be used for ocean color data merging and several have been tested within the frame of the SIMBIOS program (see e.g. Kwiatkowska & Fargion, 2003, Franz et al., 2003). As part of the SIMBIOS Program, we have developed a merging method for ocean color data. Conversely to other methods our approach does not combine end-products like the subsurface chlorophyll concentration (chl) from different sensors to generate a unified product. Instead, our procedure uses the normalized waterleaving radiances (LwN( )) from single or multiple sensors and uses them in the inversion of a semianalytical ocean color model that allows the retrieval of several ocean color variables simultaneously. Beside ensuring simultaneity and consistency of the retrievals (all products are derived from a single algorithm), this model-based approach has various benefits over techniques that blend end-products (e.g. chlorophyll

  18. Remote assessment of ocean color for interpretation of satellite visible imagery: A review

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Morel, A. Y.

    1983-01-01

    An assessment is presented of the state-of-the-art of remote, (satellite-based) Coastal Zone Color (CZCS) Scanning of color variations in the ocean due to phytoplankton. Attention is given to physical problems associated with ocean color remote sensing, in-water algorithms for the correction of atmospheric effects, constituent retrieval algorithms and application of the algorithms to CZCS imagery. The applicability of CZCS to both near-coast and mid-ocean waters is considered, and it is concluded that while differences between the two environments are complex, universal algorithms can be used for the case of mid-ocean waters, and site-specific algorithms are adequate for CZCS imaging of the near-coast oceanic environment. A short description of CVCS and some sample photographs are provided in an appendix.

  19. Design of components for the NASA OCEAN project

    NASA Technical Reports Server (NTRS)

    Wright, Jenna (Editor); Clift, James; Dumais, Bryan; Gardner, Shannon; Hernandez, Juan Carlos; Nolan, Laura; Park, Mia; Peoples, Don; Phillips, Elizabeth; Tillman, Mark

    1993-01-01

    The goal of the Fall 1993 semester of the EGM 4000 class was to design, fabricate, and test components for the 'Ocean CELSS Experimental Analog NASA' Project (OCEAN Project) and to aid in the future development of NASA's Controlled Ecological Life Support System (CELSS). The OCEAN project's specific aims are to place a human, Mr. Dennis Chamberland from NASA's Life Science Division of Research, into an underwater habitat off the shore of Key Largo, FL for three months. During his stay, he will monitor the hydroponic growth of food crops and evaluate the conditions necessary to have a successful harvest of edible food. The specific designs chosen to contribute to the OCEAN project by the EGM 4000 class are in the areas of hydroponic habitat monitoring, human health monitoring, and production of blue/green algae. The hydroponic monitoring system focused on monitoring the environment of the plants. This included the continuous sensing of the atmospheric and hydroponic nutrient solution temperatures. Methods for monitoring the continuous flow of the hydroponic nutrient solution across the plants and the continuous supply of power for these sensing devices were also incorporated into the design system. The human health monitoring system concentrated on continuously monitoring various concerns of the occupant in the underwater living habitat of the OCEAN project. These concerns included monitoring the enclosed environment for dangerous levels of carbon monoxide and smoke, high temperatures from fire, and the ceasing of the continuous airflow into the habitat. The blue/green algae project emphasized both the production and harvest of a future source of food. This project did not interact with any part of the OCEAN project. Rather, it was used to show the possibility of growing this kind of algae as a supplemental food source inside a controlled ecological life support system.

  20. Vicarious calibration of the Geostationary Ocean Color Imager.

    PubMed

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram; Oh, Im Sang

    2015-09-07

    Measurements of ocean color from Geostationary Ocean Color Imager (GOCI) with a moderate spatial resolution and a high temporal frequency demonstrate high value for a number of oceanographic applications. This study aims to propose and evaluate the calibration of GOCI as needed to achieve the level of radiometric accuracy desired for ocean color studies. Previous studies reported that the GOCI retrievals of normalized water-leaving radiances (nLw) are biased high for all visible bands due to the lack of vicarious calibration. The vicarious calibration approach described here relies on the assumed constant aerosol characteristics over the open-ocean sites to accurately estimate atmospheric radiances for the two near-infrared (NIR) bands. The vicarious calibration of visible bands is performed using in situ nLw measurements and the satellite-estimated atmospheric radiance using two NIR bands over the case-1 waters. Prior to this analysis, the in situ nLw spectra in the NIR are corrected by the spectrum optimization technique based on the NIR similarity spectrum assumption. The vicarious calibration gain factors derived for all GOCI bands (except 865nm) significantly improve agreement in retrieved remote-sensing reflectance (Rrs) relative to in situ measurements. These gain factors are independent of angular geometry and possible temporal variability. To further increase the confidence in the calibration gain factors, a large data set from shipboard measurements and AERONET-OC is used in the validation process. It is shown that the absolute percentage difference of the atmospheric correction results from the vicariously calibrated GOCI system is reduced by ~6.8%.

  1. The tongue of the ocean as a remote sensing ocean color calibration range

    NASA Technical Reports Server (NTRS)

    Strees, L. V.

    1972-01-01

    In general, terrestrial scenes remain stable in content from both temporal and spacial considerations. Ocean scenes, on the other hand, are constantly changing in content and position. The solar energy that enters the ocean waters undergoes a process of scattering and selective spectral absorption. Ocean scenes are thus characterized as low level radiance with the major portion of the energy in the blue region of the spectrum. Terrestrial scenes are typically of high level radiance with their spectral energies concentrated in the green-red regions of the visible spectrum. It appears that for the evaluation and calibration of ocean color remote sensing instrumentation, an ocean area whose optical ocean and atmospheric properties are known and remain seasonably stable over extended time periods is needed. The Tongue of the Ocean, a major submarine channel in the Bahama Banks, is one ocean are for which a large data base of oceanographic information and a limited amount of ocean optical data are available.

  2. Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry.

    PubMed

    Franz, Bryan A; Bailey, Sean W; Werdell, P Jeremy; McClain, Charles R

    2007-08-01

    The retrieval of ocean color radiometry from space-based sensors requires on-orbit vicarious calibration to achieve the level of accuracy desired for quantitative oceanographic applications. The approach developed by the NASA Ocean Biology Processing Group (OBPG) adjusts the integrated instrument and atmospheric correction system to retrieve normalized water-leaving radiances that are in agreement with ground truth measurements. The method is independent of the satellite sensor or the source of the ground truth data, but it is specific to the atmospheric correction algorithm. The OBPG vicarious calibration approach is described in detail, and results are presented for the operational calibration of SeaWiFS using data from the Marine Optical Buoy (MOBY) and observations of clear-water sites in the South Pacific and southern Indian Ocean. It is shown that the vicarious calibration allows SeaWiFS to reproduce the MOBY radiances and achieve good agreement with radiometric and chlorophyll a measurements from independent in situ sources. We also find that the derived vicarious gains show no significant temporal or geometric dependencies, and that the mission-average calibration reaches stability after approximately 20-40 high-quality calibration samples. Finally, we demonstrate that the performance of the vicariously calibrated retrieval system is relatively insensitive to the assumptions inherent in our approach.

  3. Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing.

    PubMed

    Wang, Menghua

    2006-12-10

    The current ocean color data processing system for the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the moderate resolution imaging spectroradiometer (MODIS) uses the Rayleigh lookup tables that were generated using the vector radiative transfer theory with inclusion of the polarization effects. The polarization effects, however, are not accounted for in the aerosol lookup tables for the ocean color data processing. I describe a study of the aerosol polarization effects on the atmospheric correction and aerosol retrieval algorithms in the ocean color remote sensing. Using an efficient method for the multiple vector radiative transfer computations, aerosol lookup tables that include polarization effects are generated. Simulations have been carried out to evaluate the aerosol polarization effects on the derived ocean color and aerosol products for all possible solar-sensor geometries and the various aerosol optical properties. Furthermore, the new aerosol lookup tables have been implemented in the SeaWiFS data processing system and extensively tested and evaluated with SeaWiFS regional and global measurements. Results show that in open oceans (maritime environment), the aerosol polarization effects on the ocean color and aerosol products are usually negligible, while there are some noticeable effects on the derived products in the coastal regions with nonmaritime aerosols.

  4. An Empirical Approach to Ocean Color Data: Reducing Bias and the Need for Post-Launch Radiometric Re-Calibration

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; O'Reilly, John E.; Esaias, Wayne E.

    2009-01-01

    A new empirical approach is developed for ocean color remote sensing. Called the Empirical Satellite Radiance-In situ Data (ESRID) algorithm, the approach uses relationships between satellite water-leaving radiances and in situ data after full processing, i.e., at Level-3, to improve estimates of surface variables while relaxing requirements on post-launch radiometric re-calibration. The approach is evaluated using SeaWiFS chlorophyll, which is the longest time series of the most widely used ocean color geophysical product. The results suggest that ESRID 1) drastically reduces the bias of ocean chlorophyll, most impressively in coastal regions, 2) modestly improves the uncertainty, and 3) reduces the sensitivity of global annual median chlorophyll to changes in radiometric re-calibration. Simulated calibration errors of 1% or less produce small changes in global median chlorophyll (less than 2.7%). In contrast, the standard NASA algorithm set is highly sensitive to radiometric calibration: similar 1% calibration errors produce changes in global median chlorophyll up to nearly 25%. We show that 0.1% radiometric calibration error (about 1% in water-leaving radiance) is needed to prevent radiometric calibration errors from changing global annual median chlorophyll more than the maximum interannual variability observed in the SeaWiFS 9-year record (+/- 3%), using the standard method. This is much more stringent than the goal for SeaWiFS of 5% uncertainty for water leaving radiance. The results suggest ocean color programs might consider less emphasis of expensive efforts to improve post-launch radiometric re-calibration in favor of increased efforts to characterize in situ observations of ocean surface geophysical products. Although the results here are focused on chlorophyll, in principle the approach described by ESRID can be applied to any surface variable potentially observable by visible remote sensing.

  5. A real-time photo-realistic rendering algorithm of ocean color based on bio-optical model

    NASA Astrophysics Data System (ADS)

    Ma, Chunyong; Xu, Shu; Wang, Hongsong; Tian, Fenglin; Chen, Ge

    2016-12-01

    A real-time photo-realistic rendering algorithm of ocean color is introduced in the paper, which considers the impact of ocean bio-optical model. The ocean bio-optical model mainly involves the phytoplankton, colored dissolved organic material (CDOM), inorganic suspended particle, etc., which have different contributions to absorption and scattering of light. We decompose the emergent light of the ocean surface into the reflected light from the sun and the sky, and the subsurface scattering light. We establish an ocean surface transmission model based on ocean bidirectional reflectance distribution function (BRDF) and the Fresnel law, and this model's outputs would be the incident light parameters of subsurface scattering. Using ocean subsurface scattering algorithm combined with bio-optical model, we compute the scattering light emergent radiation in different directions. Then, we blend the reflection of sunlight and sky light to implement the real-time ocean color rendering in graphics processing unit (GPU). Finally, we use two kinds of radiance reflectance calculated by Hydrolight radiative transfer model and our algorithm to validate the physical reality of our method, and the results show that our algorithm can achieve real-time highly realistic ocean color scenes.

  6. An Overview of Ocean Lidar Studies At NRL Stennis, NOAA ESRL and NASA LaRC (Invited)

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Arnone, R. A.; Churnside, J. H.

    2009-12-01

    (Author List: Robert A Arnone, James H Churnside, Yongxiang Hu) Naval interests in ocean LIDAR systems has several areas which include the use of LIDAR for bathymetry mapping, underwater imaging systems and characterizing the vertical bio-optical scattering layers. Ocean LIDAR provides a new capability of extending surface bio-optical properties retrieved form ocean color imagery into the subsurface. The relationships between bio-optical scattering layers and physical properties such as mixed layer depth are being developed and LIDAR profiles can provide a significant contribution. These techniques for combining the vertical bio-optical structure with physical models and satellite ocean color using data assimilation are providing new capability in characterize the 3d ocean volume. The LIDAR capability in resolving the vertical ocean structure can provide the next generation remote sensing information for ocean characterization. Over the last ten years, NOAA has been developing and testing lidar for aerial surveys of fish schools and plankton aggregations. We have flown the lidar on numerous aircraft, ranging in size from a four-seat Cessna to a Casa twin-engine cargo plane. Surveys have covered both inland and offshore waters on both coasts of North America and the Atlantic waters of Europe. The species of interest have generally been near surface schooling fishes like sardines, anchovies, herring, mackerel, and menhaden. Plankton studies have included both zooplankton and phytoplankton. There are several general conclusions that can be drawn from the results of this work. The penetration depth of the lidar varies from about 15 m in very turbid inland waters to over 50 m in blue offshore waters. Reliable detection of fish schools and plankton layers requires filtering and application of a threshold to remove background scattering levels. The correlation between the results of a lidar survey and traditional acoustic or net surveys generally depends on the time delay

  7. Hyperspectral Imager for the Coastal Ocean (HICO): Overview, Operational Updates, and Coastal Ocean Applications

    NASA Technical Reports Server (NTRS)

    Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Evans, Cynthia A.; Stefanov, William L.

    2014-01-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) was built to measure in-water properties of complex coastal regions. HICO enables synoptic coverage; 100-meter spatial resolution for sampling the variability and spatial irregularity of coastal waters; and high spectral resolution to untangle the signals from chlorophyll, colored dissolved organic matter, suspended sediments and varying bottom types. HICO was built by the Naval Research Laboratory, installed on the International Space Station (ISS) in September 2009, and operated for ONR for the first three years. In 2013, NASA assumed sponsorship of operations in order to leverage HICO's ability to address their Earth monitoring mission. This has opened up access of HICO data to the broad research community. Over 8000 images are now available on NASA's Ocean Color Website (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi). Oregon State University's HICO website (http://hico.coas.oregonstate.edu) remains the portal for researchers to request new collections and access their requested data. We will present updates on HICO's calibration and improvements in geolocation and show examples of the use of HICO data to address issues in the coastal ocean and Great Lakes.

  8. Enhancing moderate-resolution ocean color products over coastal/inland waters (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevan, Nima; Schott, John R.; Zibordi, Giuseppe

    2016-10-01

    With the successful launch of Landsat-8 in 2013 followed by a very recent launch of Sentinel-2A, we are entering a new area where frequent moderate resolution water quality products over coastal/inland waters will be available to scientists and operational agencies. Although designed for land observations, the Operational Land Imager (OLI) has proven to provide high-fidelity products in these aquatic systems where coarse-resolution ocean color imagers fail to provide valid observations. High-quality, multi-scale ocean color products can give insights into the biogeochemical/physical processes from the upstream in watersheds, into near-shore regions, and further out in ocean basins. In this research, we describe a robust cross-calibration approach, which facilitates seamless ocean color products at multi scales. The top-of-atmosphere (TOA) OLI imagery is cross-calibrated against near-simultaneous MODIS and VIIRS ocean color observations in high-latitude regions. This allows for not only examining the overall relative performance of OLI but also for characterizing non-uniformity (i.e., banding) across its swath. The uncertainty of this approach is, on average, found to be less than 0.5% in the blue channels. The adjustments made for OLI TOA reflectance products are then validated against in-situ measurements of remote sensing reflectance collected in research cruises or at the AERONET-OC.

  9. Underway Sampling of Marine Inherent Optical Properties on the Tara Oceans Expedition as a Novel Resource for Ocean Color Satellite Data Product Validation

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Proctor, Christopher W.; Boss, Emmanuel; Leeuw, Thomas; Ouhssain, Mustapha

    2013-01-01

    Developing and validating data records from operational ocean color satellite instruments requires substantial volumes of high quality in situ data. In the absence of broad, institutionally supported field programs, organizations such as the NASA Ocean Biology Processing Group seek opportunistic datasets for use in their operational satellite calibration and validation activities. The publicly available, global biogeochemical dataset collected as part of the two and a half year Tara Oceans expedition provides one such opportunity. We showed how the inline measurements of hyperspectral absorption and attenuation coefficients collected onboard the R/V Tara can be used to evaluate near-surface estimates of chlorophyll-a, spectral particulate backscattering coefficients, particulate organic carbon, and particle size classes derived from the NASA Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODISA). The predominant strength of such flow-through measurements is their sampling rate-the 375 days of measurements resulted in 165 viable MODISA-to-in situ match-ups, compared to 13 from discrete water sampling. While the need to apply bio-optical models to estimate biogeochemical quantities of interest from spectroscopy remains a weakness, we demonstrated how discrete samples can be used in combination with flow-through measurements to create data records of sufficient quality to conduct first order evaluations of satellite-derived data products. Given an emerging agency desire to rapidly evaluate new satellite missions, our results have significant implications on how calibration and validation teams for these missions will be constructed.

  10. Use of satellite ocean color observations to refine understanding of global geochemical cycles

    NASA Technical Reports Server (NTRS)

    Walsh, J. J.; Dieterle, D. A.

    1985-01-01

    In October 1978, the first satellite-borne color sensor, the Coastal Zone Color Scanner (CZCS), was launched aboard Nimbus-7 with four visible and two infrared bands, permitting a sensitivity about 60 times that of the Landsat-1 multispectral scanner. The CZCS radiance data can be utilized to estimate ocean chlorophyll concentrations by detecting shifts in sea color, particularly in oceanic waters. The obtained data can be used in studies regarding problems of overfishing, and, in addition, in investigations concerning the consequences of man's accelerated extraction of nitrogen from the atmosphere and addition of carbon to the atmosphere. The satellite data base is considered along with a simulation analysis, and ships providing ground-truth chlorophyll measurements in the ocean.

  11. The Airborne Ocean Color Imager - System description and image processing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.; Slye, Robert E.; Klooster, Steven A.; Freedman, Richard S.; Carle, Mark; Mcgregor, Lloyd F.

    1992-01-01

    The Airborne Ocean Color Imager was developed as an aircraft instrument to simulate the spectral and radiometric characteristics of the next generation of satellite ocean color instrumentation. Data processing programs have been developed as extensions of the Coastal Zone Color Scanner algorithms for atmospheric correction and bio-optical output products. The latter include several bio-optical algorithms for estimating phytoplankton pigment concentration, as well as one for the diffuse attenuation coefficient of the water. Additional programs have been developed to geolocate these products and remap them into a georeferenced data base, using data from the aircraft's inertial navigation system. Examples illustrate the sequential data products generated by the processing system, using data from flightlines near the mouth of the Mississippi River: from raw data to atmospherically corrected data, to bio-optical data, to geolocated data, and, finally, to georeferenced data.

  12. Monitoring the VIIRS ocean color band calibration using the Rayleigh scattering method

    NASA Astrophysics Data System (ADS)

    Wang, Wenhui; Cao, Changyong

    2014-11-01

    Post-launch monitoring of radiometric accuracy and stability of VIIRS (Visible Infrared Imaging Radiometer Suite) Solar Reflective Bands (RSB) at high gain stage (HGS) is essential for ocean color applications. This study investigates the absolute radiometric calibration accuracy of VIIRS bands M1-M5 at HGS using selected clear-sky dark ocean surfaces where top of atmosphere (TOA) signal is dominated by Rayleigh scattering. Vicarious gains were estimated using ratios between satellite observed and radiative transfer model simulated TOA reflectance. VIIRS TOA reflectance was simulated using 6SV (Second Simulation of a Satellite Signal in the Solar Spectrum - Vector, version 1.1). Input parameters required by the 6SV, including atmospheric profiles, wind speed and direction, aerosol optical thickness, and chlorophyll-a concentration, were obtained from the NASA Modern-Era Retrospective Analysis for Research and Applications reanalysis products, VIIRS aerosol optical thickness product, and previous studies. The Rayleigh scattering method developed in this study was applied to June to August 2014 VIIRS observations over six oceanic sites. Preliminary results indicated that the 3-month averaged vicarious gain for bands M1, M2, and M5 are close to 1. Relatively larger vicarious gains were observed in the other two bands, especially in band M4. The Rayleigh scattering calibration results generally agree with results from the VIIRS deep convective clouds time series analysis.

  13. Integrating Ocean Color Observations and Nowcast/Forecast of Bio-Optical Properties into the Naval Research Laboratory Coastal Ocean Model (NCOM)

    DTIC Science & Technology

    2006-09-30

    Jolliff, J. K., J.C. Kindle, B. Penta, R . Arnone, Z. Lee, C. Rowley (2005), Towards an Ocean Color Data Assimilation System: Analysis of Ocean Color...and Hydrodynamic Processes, Eos Trans., AGU, 87(36), Ocean Sci. Meet. Suppl., Abstract OS53K-04 Jolliff, J.K., J.C. Kindle, B. Penta, R . Arnone, Z...WQ(N 0.10,..--------~ r ------------------, B) BOOM O.!Or---------------------------, C)NWC ··Q·41 Znm ··Q·443nm ··Q·490nm " 0 ·5 !Onm .. a ·SSSnm

  14. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.

    PubMed

    Wang, Menghua; Shi, Wei; Jiang, Lide

    2012-01-16

    A regional near-infrared (NIR) ocean normalized water-leaving radiance (nL(w)(λ)) model is proposed for atmospheric correction for ocean color data processing in the western Pacific region, including the Bohai Sea, Yellow Sea, and East China Sea. Our motivation for this work is to derive ocean color products in the highly turbid western Pacific region using the Geostationary Ocean Color Imager (GOCI) onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS). GOCI has eight spectral bands from 412 to 865 nm but does not have shortwave infrared (SWIR) bands that are needed for satellite ocean color remote sensing in the turbid ocean region. Based on a regional empirical relationship between the NIR nL(w)(λ) and diffuse attenuation coefficient at 490 nm (K(d)(490)), which is derived from the long-term measurements with the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, an iterative scheme with the NIR-based atmospheric correction algorithm has been developed. Results from MODIS-Aqua measurements show that ocean color products in the region derived from the new proposed NIR-corrected atmospheric correction algorithm match well with those from the SWIR atmospheric correction algorithm. Thus, the proposed new atmospheric correction method provides an alternative for ocean color data processing for GOCI (and other ocean color satellite sensors without SWIR bands) in the turbid ocean regions of the Bohai Sea, Yellow Sea, and East China Sea, although the SWIR-based atmospheric correction approach is still much preferred. The proposed atmospheric correction methodology can also be applied to other turbid coastal regions.

  15. Remote sensing of ocean color and detection of chlorophyll content

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Lecompte, P.; Viollier, M.

    1977-01-01

    The chlorophyll enrichment of the water in an equatorial upwelling was surveyed and described with the aid of a radiometer specially designed for the airborne measurement of ocean color. A relation is proposed between airborne measurement of difference of albedos at two wavelengths in the blue and green, and the concentration of chlorophyll in the ocean.

  16. Corrections to the MODIS Aqua Calibration Derived From MODIS Aqua Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan Alden

    2013-01-01

    Ocean color products such as, e.g., chlorophyll-a concentration, can be derived from the top-of-atmosphere radiances measured by imaging sensors on earth-orbiting satellites. There are currently three National Aeronautics and Space Administration sensors in orbit capable of providing ocean color products. One of these sensors is the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, whose ocean color products are currently the most widely used of the three. A recent improvement to the MODIS calibration methodology has used land targets to improve the calibration accuracy. This study evaluates the new calibration methodology and describes further calibration improvements that are built upon the new methodology by including ocean measurements in the form of global temporally averaged water-leaving reflectance measurements. The calibration improvements presented here mainly modify the calibration at the scan edges, taking advantage of the good performance of the land target trending in the center of the scan.

  17. Dynamic Range and Sensitivity Requirements of Satellite Ocean Color Sensors: Learning from the Past

    NASA Technical Reports Server (NTRS)

    Hu, Chuanmin; Feng, Lian; Lee, Zhongping; Davis, Curtiss O.; Mannino, Antonio; McClain, Charles R.; Franz, Bryan A.

    2012-01-01

    Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated. Past and current sensors used different signal levels, formats, and conventions to specify these critical parameters, making it difficult to make cross-sensor comparisons or to establish standards for future sensor design. The goal of this study is to quantify these parameters under uniform conditions for widely used past and current sensors in order to provide a reference for the design of future ocean color radiometers. Using measurements from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite (MODISA) under various solar zenith angles (SZAs), typical (L(sub typical)) and maximum (L(sub max)) at-sensor radiances from the visible to the shortwave IR were determined. The Ltypical values at an SZA of 45 deg were used as constraints to calculate SNRs of 10 multiband sensors at the same L(sub typical) radiance input and 2 hyperspectral sensors at a similar radiance input. The calculations were based on clear-water scenes with an objective method of selecting pixels with minimal cross-pixel variations to assure target homogeneity. Among the widely used ocean color sensors that have routine global coverage, MODISA ocean bands (1 km) showed 2-4 times higher SNRs than the Sea-viewing Wide Field-of-view Sensor (Sea-WiFS) (1 km) and comparable SNRs to the Medium Resolution Imaging Spectrometer (MERIS)-RR (reduced resolution, 1.2 km), leading to different levels of precision in the retrieved Chl data product. MERIS-FR (full resolution, 300 m) showed SNRs lower than MODISA and MERIS-RR with the gain in spatial resolution. SNRs of all MODISA ocean bands and SeaWiFS bands (except the SeaWiFS near-IR bands

  18. Subtropical Gyre Variability Observed by Ocean Color Satellites

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio R.; Christian, James R.

    2002-01-01

    The subtropical gyres of the world are extensive, coherent regions that occupy about 40% of the surface of the earth. Once thought to be homogeneous and static habitats, there is increasing evidence that mid-latitude gyres exhibit substantial physical and biological variability on a variety of time scales. While biological productivity within these oligotrophic regions may be relatively small, their immense size makes their total contribution significant. Global distributions of dynamic height derived from satellite altimeter data, and chlorophyll concentration derived from satellite ocean color data, show that the dynamic center of the gyres, the region of maximum dynamic height where the thermocline is deepest, does not coincide with the region of minimum chlorophyll concentration. The physical and biological processes by which this distribution of ocean properties is maintained, and the spatial and temporal scales of variability associated with these processes, are analyzed using global surface chlorophyll-a concentrations, sea surface height, sea surface temperature and surface winds from operational satellite and meteorological sources, and hydrographic data from climatologies and individual surveys. Seasonal and interannual variability in the areal extent of the subtropical gyres are examined using 8 months (November 1996 - June 1997) of OCTS and nearly 5 years (September 1997 - June 02) of SeaWiFS ocean color data and are interpreted in the context of climate variability and measured changes in other ocean properties (i.e., wind forcing, surface currents, Ekman pumping, and vertical mixing). The North Pacific and North Atlantic gyres are observed to be shrinking over this period, while the South Pacific, South Atlantic, and South Indian Ocean gyres appear to be expanding.

  19. Comparative analysis of GOCI ocean color products.

    PubMed

    Amin, Ruhul; Lewis, Mark David; Lawson, Adam; Gould, Richard W; Martinolich, Paul; Li, Rong-Rong; Ladner, Sherwin; Gallegos, Sonia

    2015-10-12

    The Geostationary Ocean Color Imager (GOCI) is the first geostationary ocean color sensor in orbit that provides bio-optical properties from coastal and open waters around the Korean Peninsula at unprecedented temporal resolution. In this study, we compare the normalized water-leaving radiance (nLw) products generated by the Naval Research Laboratory Automated Processing System (APS) with those produced by the stand-alone software package, the GOCI Data Processing System (GDPS), developed by the Korean Ocean Research & Development Institute (KORDI). Both results are then compared to the nLw measured by the above water radiometer at the Ieodo site. This above-water radiometer is part of the Aerosol Robotic NETwork (AeroNET). The results indicate that the APS and GDPS processed  correlates well within the same image slot where the coefficient of determination (r²) is higher than 0.84 for all the bands from 412 nm to 745 nm. The agreement between APS and the AeroNET data is higher when compared to the GDPS results. The Root-Mean-Squared-Error (RMSE) between AeroNET and APS data ranges from 0.24 [mW/(cm²srμm)] at 555 nm to 0.52 [mW/(cm²srμm)]  at 412 nm while RMSE between AeroNET and GDPS data ranges from 0.47 [mW/(cm²srμm)] at 443 nm to 0.69 [mW/(cm²srμm)]  at 490 nm.

  20. Comparative Analysis of GOCI Ocean Color Products

    PubMed Central

    Amin, Ruhul; Lewis, Mark David; Lawson, Adam; Gould, Richard W.; Martinolich, Paul; Li, Rong-Rong; Ladner, Sherwin; Gallegos, Sonia

    2015-01-01

    The Geostationary Ocean Color Imager (GOCI) is the first geostationary ocean color sensor in orbit that provides bio-optical properties from coastal and open waters around the Korean Peninsula at unprecedented temporal resolution. In this study, we compare the normalized water-leaving radiance (nLw) products generated by the Naval Research Laboratory Automated Processing System (APS) with those produced by the stand-alone software package, the GOCI Data Processing System (GDPS), developed by the Korean Ocean Research & Development Institute (KORDI). Both results are then compared to the nLw measured by the above water radiometer at the Ieodo site. This above-water radiometer is part of the Aerosol Robotic NETwork (AeroNET). The results indicate that the APS and GDPS processed nLw correlates well within the same image slot where the coefficient of determination (r2) is higher than 0.84 for all the bands from 412 nm to 745 nm. The agreement between APS and the AeroNET data is higher when compared to the GDPS results. The Root-Mean-Squared-Error (RMSE) between AeroNET and APS data ranges from 0.24 [mW/(cm2srμm)] at 555 nm to 0.52 [mW/(cm2srμm)] at 412 nm while RMSE between AeroNET and GDPS data ranges from 0.47 [mW/(cm2srμm)] at 443 nm to 0.69 [mW/(cm2srμm)] at 490 nm. PMID:26473861

  1. Validation of MERIS Ocean Color Algorithms in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Marullo, S.; D'Ortenzio, F.; Ribera D'Alcalà, M.; Ragni, M.; Santoleri, R.; Vellucci, V.; Luttazzi, C.

    2004-05-01

    Satellite ocean color measurements can contribute, better than any other source of data, to quantify the spatial and time variability of ocean productivity and, tanks to the success of several satellite missions starting with CZCS up to SeaWiFS, MODIS and MERIS, it is now possible to start doing the investigation of interannual variations and compare level of production during different decades ([1],[2]). The interannual variability of the ocean productivity at global and regional scale can be correctly measured providing that chlorophyll estimate are based on well calibrated algorithms in order to avoid regional biases and instrumental time shifts. The calibration and validation of Ocean Color data is then one of the most important tasks of several research projects worldwide ([3], [4]). Algorithms developed to retrieve chlorophyll concentration need a specific effort to define the error ranges associated to the estimates. In particular, the empirical algorithms, calculated on regression with in situ data, require independent records to verify the degree of uncertainties associated. In addition several evidences demonstrated that regional algorithms can improve the accuracy of the satellite chlorophyll estimates [5]. In 2002, Santoleri et al. (SIMBIOS) first showed a significant overestimation of the SeaWiFS derived chlorophyll concentration in Mediterranean Sea when the standard global NASA algorithms (OC4v2 and OC4v4) are used. The same authors [6] proposed two preliminary new algorithms for the Mediterranean Sea (L-DORMA and NL-DORMA) on a basis of a bio-optical data set collected in the basin from 1998 to 2000. In 2002 Bricaud et al., [7] analyzing other bio-optical data collected in the Mediterranean, confirmed the overestimation of the chlorophyll concentration in oligotrophic conditions and proposed a new regional algorithm to be used in case of low concentrations. Recently, the number of in situ observations in the basin was increased, permitting a first

  2. Characteristic vector analysis as a technique for signature extraction of remote ocean color data

    NASA Technical Reports Server (NTRS)

    Grew, G. W.

    1977-01-01

    Characteristic vector analysis is being used to extract spectral signatures of suspended matter in the ocean from remote ocean color data collected with MOCS (Multichannel Ocean Color Sensor), a multispectral scanner. Spectral signatures appear to be obtainable either directly from characteristic vectors or through a transformation of these eigenvectors. Quantification of the suspended matter associated with each resulting signature seems feasible using associated coefficients generated by the technique. This paper presents eigenvectors associated with algae, 'sediment', acid waste, sewage sludge, and oil. The results suggest an efficient method of transmitting from satellites multispectral data of pollution in our oceans.

  3. Estimating Particulate Inorganic Carbon Concentrations of the Global Ocean From Ocean Color Measurements Using a Reflectance Difference Approach

    NASA Astrophysics Data System (ADS)

    Mitchell, C.; Hu, C.; Bowler, B.; Drapeau, D.; Balch, W. M.

    2017-11-01

    A new algorithm for estimating particulate inorganic carbon (PIC) concentrations from ocean color measurements is presented. PIC plays an important role in the global carbon cycle through the oceanic carbonate pump, therefore accurate estimations of PIC concentrations from satellite remote sensing are crucial for observing changes on a global scale. An extensive global data set was created from field and satellite observations for investigating the relationship between PIC concentrations and differences in the remote sensing reflectance (Rrs) at green, red, and near-infrared (NIR) wavebands. Three color indices were defined: two as the relative height of Rrs(667) above a baseline running between Rrs(547) and an Rrs in the NIR (either 748 or 869 nm), and one as the difference between Rrs(547) and Rrs(667). All three color indices were found to explain over 90% of the variance in field-measured PIC. But, due to the lack of availability of Rrs(NIR) in the standard ocean color data products, most of the further analysis presented here was done using the color index determined from only two bands. The new two-band color index algorithm was found to retrieve PIC concentrations more accurately than the current standard algorithm used in generating global PIC data products. Application of the new algorithm to satellite imagery showed patterns on the global scale as revealed from field measurements. The new algorithm was more resistant to atmospheric correction errors and residual errors in sun glint corrections, as seen by a reduction in the speckling and patchiness in the satellite-derived PIC images.

  4. Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2010-01-01

    This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.

  5. Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  6. A Semianalytical Ocean Color Inversion Algorithm with Explicit Water Column Depth and Substrate Reflectance Parameterization

    NASA Technical Reports Server (NTRS)

    Mckinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.

    2015-01-01

    A semianalytical ocean color inversion algorithm was developed for improving retrievals of inherent optical properties (IOPs) in optically shallow waters. In clear, geometrically shallow waters, light reflected off the seafloor can contribute to the water-leaving radiance signal. This can have a confounding effect on ocean color algorithms developed for optically deep waters, leading to an overestimation of IOPs. The algorithm described here, the Shallow Water Inversion Model (SWIM), uses pre-existing knowledge of bathymetry and benthic substrate brightness to account for optically shallow effects. SWIM was incorporated into the NASA Ocean Biology Processing Group's L2GEN code and tested in waters of the Great Barrier Reef, Australia, using the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua time series (2002-2013). SWIM-derived values of the total non-water absorption coefficient at 443 nm, at(443), the particulate backscattering coefficient at 443 nm, bbp(443), and the diffuse attenuation coefficient at 488 nm, Kd(488), were compared with values derived using the Generalized Inherent Optical Properties algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA). The results indicated that in clear, optically shallow waters SWIM-derived values of at(443), bbp(443), and Kd(443) were realistically lower than values derived using GIOP and QAA, in agreement with radiative transfer modeling. This signified that the benthic reflectance correction was performing as expected. However, in more optically complex waters, SWIM had difficulty converging to a solution, a likely consequence of internal IOP parameterizations. Whilst a comprehensive study of the SWIM algorithm's behavior was conducted, further work is needed to validate the algorithm using in situ data.

  7. Oceans Beyond Earth on This Week @NASA – April 14, 2017

    NASA Image and Video Library

    2017-04-14

    Two long-running NASA missions are providing new details about ocean bearing moons of Jupiter and Saturn – further heightening scientific interest in these and other “ocean worlds” in our solar system and beyond. The details – discussed during an April 13 NASA science briefing – include the announcement by the Cassini mission that a key ingredient for life has been found in the ocean on Saturn's moon Enceladus. Meanwhile, researchers using the Hubble Space Telescope observed a probable plume erupting from the surface of Jupiter's moon Europa, at the same location where Hubble saw evidence of a plume in 2014. Researchers say this could be circumstantial evidence of water erupting from the moon’s interior. Hubble's monitoring of plume activity on Europa and Cassini's long-term investigation of Enceladus are laying the groundwork for NASA's Europa Clipper mission, which is being planned for launch in the 2020s. Also, Expedition 50 Returns Home Safely, Next Space Station Crew at Launch Site, Student Launch Event, Groundbreaking for New Lab, and Yuri’s Night, First Space Shuttle Mission Celebrated!

  8. NASA 360 - Talks Alien Ocean

    NASA Image and Video Library

    2015-11-13

    Could life exist on Europa? It may sound farfetched, but this Jovian moon is the most likely place to find life in our solar system thanks to an enormous underground ocean positioned just beneath its icy surface. Watch as Robert Pappalardo, Europa Project Scientist at NASA Jet Propulsion Laboratory, discusses Europa, its potential for life, and the upcoming mission that is being planned to visit this compelling moon. This video was developed from a live recording at the AIAA SPACE 2015 conference in September 2015. To watch the full talk given at the conference please visit: http://bit.ly/1LPWZwV

  9. Cloud Retrieval Information Content Studies with the Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Ocean Color Imager (OCI)

    NASA Astrophysics Data System (ADS)

    Coddington, Odele; Platnick, Steven; Pilewskie, Peter; Schmidt, Sebastian

    2016-04-01

    The NASA Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Science Definition Team (SDT) report released in 2012 defined imager stability requirements for the Ocean Color Instrument (OCI) at the sub-percent level. While the instrument suite and measurement requirements are currently being determined, the PACE SDT report provided details on imager options and spectral specifications. The options for a threshold instrument included a hyperspectral imager from 350-800 nm, two near-infrared (NIR) channels, and three short wave infrared (SWIR) channels at 1240, 1640, and 2130 nm. Other instrument options include a variation of the threshold instrument with 3 additional spectral channels at 940, 1378, and 2250 nm and the inclusion of a spectral polarimeter. In this work, we present cloud retrieval information content studies of optical thickness, droplet effective radius, and thermodynamic phase to quantify the potential for continuing the low cloud climate data record established by the MOderate Resolution and Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) missions with the PACE OCI instrument (i.e., non-polarized cloud reflectances and in the absence of midwave and longwave infrared channels). The information content analysis is performed using the GEneralized Nonlinear Retrieval Analysis (GENRA) methodology and the Collection 6 simulated cloud reflectance data for the common MODIS/VIIRS algorithm (MODAWG) for Cloud Mask, Cloud-Top, and Optical Properties. We show that using both channels near 2 microns improves the probability of cloud phase discrimination with shortwave-only cloud reflectance retrievals. Ongoing work will extend the information content analysis, currently performed for dark ocean surfaces, to different land surface types.

  10. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2013-09-20

    A new flag/masking scheme has been developed for identifying stray light and cloud shadow pixels that significantly impact the quality of satellite-derived ocean color products. Various case studies have been carried out to evaluate the performance of the new cloud contamination flag/masking scheme on ocean color products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). These include direct visual assessments, detailed quantitative case studies, objective statistic analyses, and global image examinations and comparisons. The National Oceanic and Atmospheric Administration (NOAA) Multisensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system has been used in the study. The new stray light and cloud shadow identification method has been shown to outperform the current stray light flag in both valid data coverage and data quality of satellite-derived ocean color products. In addition, some cloud-related flags from the official VIIRS-SNPP data processing software, i.e., the Interface Data Processing System (IDPS), have been assessed. Although the data quality with the IDPS flags is comparable to that of the new flag implemented in the NOAA-MSL12 ocean color data processing system, the valid data coverage from the IDPS is significantly less than that from the NOAA-MSL12 using the new stray light and cloud shadow flag method. Thus, the IDPS flag/masking algorithms need to be refined and modified to reduce the pixel loss, e.g., the proposed new cloud contamination flag/masking can be implemented in IDPS VIIRS ocean color data processing.

  11. Satellite Ocean Biology: Past, Present, Future

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  12. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    EPA Science Inventory

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  13. Sensitivity of Calibration Gains to Ocean Color Processing in Coastal and Open Waters Using Ensembles Members for NPP-VIIRS

    DTIC Science & Technology

    2014-07-01

    a different impact on spectral normalized water leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll ). We...leaving radiances and the derived ocean color products (inherent optical properties, chlorophyll ). We evaluated the influence of gains from open and...34gain" on ocean color products. These products include the spectral Remote Sensing Reflectance (RRS), chlorophyll concentration, and Inherent Optical

  14. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans

    NASA Astrophysics Data System (ADS)

    Blondeau-Patissier, David; Gower, James F. R.; Dekker, Arnold G.; Phinn, Stuart R.; Brando, Vittorio E.

    2014-04-01

    The need for more effective environmental monitoring of the open and coastal ocean has recently led to notable advances in satellite ocean color technology and algorithm research. Satellite ocean color sensors' data are widely used for the detection, mapping and monitoring of phytoplankton blooms because earth observation provides a synoptic view of the ocean, both spatially and temporally. Algal blooms are indicators of marine ecosystem health; thus, their monitoring is a key component of effective management of coastal and oceanic resources. Since the late 1970s, a wide variety of operational ocean color satellite sensors and algorithms have been developed. The comprehensive review presented in this article captures the details of the progress and discusses the advantages and limitations of the algorithms used with the multi-spectral ocean color sensors CZCS, SeaWiFS, MODIS and MERIS. Present challenges include overcoming the severe limitation of these algorithms in coastal waters and refining detection limits in various oceanic and coastal environments. To understand the spatio-temporal patterns of algal blooms and their triggering factors, it is essential to consider the possible effects of environmental parameters, such as water temperature, turbidity, solar radiation and bathymetry. Hence, this review will also discuss the use of statistical techniques and additional datasets derived from ecosystem models or other satellite sensors to characterize further the factors triggering or limiting the development of algal blooms in coastal and open ocean waters.

  15. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    NASA Astrophysics Data System (ADS)

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes

  16. Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations

    NASA Astrophysics Data System (ADS)

    Ciavatta, S.; Brewin, R. J. W.; Skákala, J.; Polimene, L.; de Mora, L.; Artioli, Y.; Allen, J. I.

    2018-02-01

    We assimilated phytoplankton functional types (PFTs) derived from ocean color into a marine ecosystem model, to improve the simulation of biogeochemical indicators and emerging properties in a shelf sea. Error-characterized chlorophyll concentrations of four PFTs (diatoms, dinoflagellates, nanoplankton, and picoplankton), as well as total chlorophyll for comparison, were assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The reanalysis simulations spanned the years 1998-2003. The skill of the reference and reanalysis simulations in estimating ocean color and in situ biogeochemical data were compared by using robust statistics. The reanalysis outperformed both the reference and the assimilation of total chlorophyll in estimating the ocean-color PFTs (except nanoplankton), as well as the not-assimilated total chlorophyll, leading the model to simulate better the plankton community structure. Crucially, the reanalysis improved the estimates of not-assimilated in situ data of PFTs, as well as of phosphate and pCO2, impacting the simulation of the air-sea carbon flux. However, the reanalysis increased further the model overestimation of nitrate, in spite of increases in plankton nitrate uptake. The method proposed here is easily adaptable for use with other ecosystem models that simulate PFTs, for, e.g., reanalysis of carbon fluxes in the global ocean and for operational forecasts of biogeochemical indicators in shelf-sea ecosystems.

  17. Surveillance of waste disposal activity at sea using satellite ocean color imagers: GOCI and MODIS

    NASA Astrophysics Data System (ADS)

    Hong, Gi Hoon; Yang, Dong Beom; Lee, Hyun-Mi; Yang, Sung Ryull; Chung, Hee Woon; Kim, Chang Joon; Kim, Young-Il; Chung, Chang Soo; Ahn, Yu-Hwan; Park, Young-Je; Moon, Jeong-Eon

    2012-09-01

    Korean Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua observations of the variation in ocean color at the sea surface were utilized to monitor the impact of nutrient-rich sewage sludge disposal in the oligotrophic area of the Yellow Sea. MODIS revealed that algal blooms persisted in the spring annually at the dump site in the Yellow Sea since year 2000 to the present. A number of implications of using products of the satellite ocean color imagers were exploited here based on the measurements in the Yellow Sea. GOCI observes almost every hour during the daylight period, every day since June 2011. Therefore, GOCI provides a powerful tool to monitor waste disposal at sea in real time. Tracking of disposal activity from a large tanker was possible hour by hour from the GOCI timeseries images compared to MODIS. Smaller changes in the color of the ocean surface can be easily observed, as GOCI resolves images at smaller scales in space and time in comparison to polar orbiting satellites, e.g., MODIS. GOCI may be widely used to monitor various marine activities in the sea, including waste disposal activity from ships.

  18. Generalized ocean color inversion model for retrieving marine inherent optical properties.

    PubMed

    Werdell, P Jeremy; Franz, Bryan A; Bailey, Sean W; Feldman, Gene C; Boss, Emmanuel; Brando, Vittorio E; Dowell, Mark; Hirata, Takafumi; Lavender, Samantha J; Lee, ZhongPing; Loisel, Hubert; Maritorena, Stéphane; Mélin, Fréderic; Moore, Timothy S; Smyth, Timothy J; Antoine, David; Devred, Emmanuel; d'Andon, Odile Hembise Fanton; Mangin, Antoine

    2013-04-01

    Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future emsemble applications.

  19. Generalized Ocean Color Inversion Model for Retrieving Marine Inherent Optical Properties

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.; Feldman, Gene C.; Boss, Emmanuel; Brando, Vittorio E.; Dowell, Mark; Hirata, Takafumi; Lavender, Samantha J.; Lee, ZhongPing; hide

    2013-01-01

    Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons. To initiate community-wide discussion of these limitations, NASA organized two workshops that deconstructed SAAs to identify similarities and uniqueness and to progress toward consensus on a unified SAA. This effort resulted in the development of the generalized IOP (GIOP) model software that allows for the construction of different SAAs at runtime by selection from an assortment of model parameterizations. As such, GIOP permits isolation and evaluation of specific modeling assumptions, construction of SAAs, development of regionally tuned SAAs, and execution of ensemble inversion modeling. Working groups associated with the workshops proposed a preliminary default configuration for GIOP (GIOP-DC), with alternative model parameterizations and features defined for subsequent evaluation. In this paper, we: (1) describe the theoretical basis of GIOP; (2) present GIOP-DC and verify its comparable performance to other popular SAAs using both in situ and synthetic data sets; and, (3) quantify the sensitivities of their output to their parameterization. We use the latter to develop a hierarchical sensitivity of SAAs to various model parameterizations, to identify components of SAAs that merit focus in future research, and to provide material for discussion on algorithm uncertainties and future ensemble applications.

  20. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 4; Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols; Revised

    NASA Technical Reports Server (NTRS)

    Mueller, J. L. (Editor); Fargion, Giuletta S. (Editor); McClain, Charles R. (Editor); Pegau, Scott; Zaneveld, J. Ronald V.; Mitchell, B. Gregg; Kahru, Mati; Wieland, John; Stramska, Malgorzat

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 (Mueller and Fargion 2002, Volumes 1 and 2) is entirely superseded by the six volumes of Revision 4 listed above.

  1. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS 'Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of OUT planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center.

  2. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  3. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS , SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  4. Uncertainties in Coastal Ocean Color Products: Impacts of Spatial Sampling

    NASA Technical Reports Server (NTRS)

    Pahlevan, Nima; Sarkar, Sudipta; Franz, Bryan A.

    2016-01-01

    With increasing demands for ocean color (OC) products with improved accuracy and well characterized, per-retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g., instrument calibration, atmospheric correction, inversion algorithms) in the uncertainty of an OC observation, less attention has been paid to uncertainties associated with spatial sampling. In this paper, we simulate MODIS (aboard both Aqua and Terra) and VIIRS OC products using 30 m resolution OC products derived from the Operational Land Imager (OLI) aboard Landsat-8, to examine impacts of spatial sampling on both cross-sensor product intercomparisons and in-situ validations of R(sub rs) products in coastal waters. Various OLI OC products representing different productivity levels and in-water spatial features were scanned for one full orbital-repeat cycle of each ocean color satellite. While some view-angle dependent differences in simulated Aqua-MODIS and VIIRS were observed, the average uncertainties (absolute) in product intercomparisons (due to differences in spatial sampling) at regional scales are found to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the R(sub rs)(443), R(sub rs)(482), R(sub rs)(561), R(sub rs)(655), Chla, K(sub d)(482), and b(sub bp)(655) products, respectively. It is also found that, depending on in-water spatial variability and the sensor's footprint size, the errors for an in-situ validation station in coastal areas can reach as high as +/- 18%. We conclude that a) expected biases induced by the spatial sampling in product intercomparisons are mitigated when products are averaged over at least 7 km × 7 km areas, b) VIIRS observations, with improved consistency in cross-track spatial sampling, yield more precise calibration/validation statistics than that of MODIS, and c) use of a single pixel centered on in-situ coastal stations provides an optimal sampling size for

  5. Does Ocean Color Data Assimilation Improve Estimates of Global Ocean Inorganic Carbon?

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Ocean color data assimilation has been shown to dramatically improve chlorophyll abundances and distributions globally and regionally in the oceans. Chlorophyll is a proxy for phytoplankton biomass (which is explicitly defined in a model), and is related to the inorganic carbon cycle through the interactions of the organic carbon (particulate and dissolved) and through primary production where inorganic carbon is directly taken out of the system. Does ocean color data assimilation, whose effects on estimates of chlorophyll are demonstrable, trickle through the simulated ocean carbon system to produce improved estimates of inorganic carbon? Our emphasis here is dissolved inorganic carbon, pC02, and the air-sea flux. We use a sequential data assimilation method that assimilates chlorophyll directly and indirectly changes nutrient concentrations in a multi-variate approach. The results are decidedly mixed. Dissolved organic carbon estimates from the assimilation model are not meaningfully different from free-run, or unassimilated results, and comparisons with in situ data are similar. pC02 estimates are generally worse after data assimilation, with global estimates diverging 6.4% from in situ data, while free-run estimates are only 4.7% higher. Basin correlations are, however, slightly improved: r increase from 0.78 to 0.79, and slope closer to unity at 0.94 compared to 0.86. In contrast, air-sea flux of C02 is noticeably improved after data assimilation. Global differences decline from -0.635 mol/m2/y (stronger model sink from the atmosphere) to -0.202 mol/m2/y. Basin correlations are slightly improved from r=O.77 to r=0.78, with slope closer to unity (from 0.93 to 0.99). The Equatorial Atlantic appears as a slight sink in the free-run, but is correctly represented as a moderate source in the assimilation model. However, the assimilation model shows the Antarctic to be a source, rather than a modest sink and the North Indian basin is represented incorrectly as a sink

  6. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols

    NASA Technical Reports Server (NTRS)

    Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.

    2003-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.

  7. Assessment, Validation, and Refinement of the Atmospheric Correction Algorithm for the Ocean Color Sensors. Chapter 19

    NASA Technical Reports Server (NTRS)

    Wang, Menghua

    2003-01-01

    The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994). The accuracy and effectiveness of the atmospheric correction directly affect the remotely retrieved ocean bio-optical products. On the other hand, for ocean color remote sensing, in order to obtain the required accuracy in the derived water-leaving signals from satellite measurements, an on-orbit vicarious calibration of the whole system, i.e., sensor and algorithms, is necessary. In addition, it is important to address issues of (i) cross-calibration of two or more sensors and (ii) in-orbit vicarious calibration of the sensor-atmosphere system. The goal of these researches is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. In the past year, much efforts have been on (a) understanding and correcting the artifacts appeared in the SeaWiFS-derived ocean and atmospheric produces; (b) developing an efficient method in generating the SeaWiFS aerosol lookup tables, (c) evaluating the effects of calibration error in the near-infrared (NIR) band to the atmospheric correction of the ocean color remote sensors, (d) comparing the aerosol correction algorithm using the singlescattering epsilon (the current SeaWiFS algorithm) vs. the multiple-scattering epsilon method, and (e) continuing on activities for the International Ocean-Color Coordinating Group (IOCCG) atmospheric correction working group. In this report, I will briefly present and discuss these and some other research activities.

  8. An overview of mesoscales distribution of ocean color in the North Atlantic

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.

    1989-01-01

    The spatial changes in phytoplankton abundance is the result of regional differences in the amount of nutrient fluxed into the euphotic zone. The energy contributing to this flux is derived from ocean currents. A close coupling between physics and biology of the system accounts for mesoscale features associated with fluid dynamics being reflected by changes in ocean color.

  9. Contents of the NASA ocean data system archive, version 11-90

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Ocean Data System (NODS) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and surface pigment concentration. NODS will become the Data Archive and Distribution Service of the JPL Distributed Active Archive Center for the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  10. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products.

    PubMed

    Stamnes, S; Hostetler, C; Ferrare, R; Burton, S; Liu, X; Hair, J; Hu, Y; Wasilewski, A; Martin, W; van Diedenhoven, B; Chowdhary, J; Cetinić, I; Berg, L K; Stamnes, K; Cairns, B

    2018-04-01

    We present an optimal-estimation-based retrieval framework, the microphysical aerosol properties from polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular total and polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High-Spectral-Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ångstrøm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within ±0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar + polarimeter retrieval using both HSRL and RSP measurements.

  11. Performance metrics for the assessment of satellite data products: an ocean color case study

    PubMed Central

    Seegers, Bridget N.; Stumpf, Richard P.; Schaeffer, Blake A.; Loftin, Keith A.; Werdell, P. Jeremy

    2018-01-01

    Performance assessment of ocean color satellite data has generally relied on statistical metrics chosen for their common usage and the rationale for selecting certain metrics is infrequently explained. Commonly reported statistics based on mean squared errors, such as the coefficient of determination (r2), root mean square error, and regression slopes, are most appropriate for Gaussian distributions without outliers and, therefore, are often not ideal for ocean color algorithm performance assessment, which is often limited by sample availability. In contrast, metrics based on simple deviations, such as bias and mean absolute error, as well as pair-wise comparisons, often provide more robust and straightforward quantities for evaluating ocean color algorithms with non-Gaussian distributions and outliers. This study uses a SeaWiFS chlorophyll-a validation data set to demonstrate a framework for satellite data product assessment and recommends a multi-metric and user-dependent approach that can be applied within science, modeling, and resource management communities. PMID:29609296

  12. Near Real Time Operational Satellite Ocean Color Products From NOAA OSPO CoastWatch Okeanos System:: Status and Challenges

    NASA Astrophysics Data System (ADS)

    Banghua Yan, B.

    2016-02-01

    Near real-time (NRT) ocean color (OC) satellite operation products are generated and distributed in NOAA Okeanos Operational Product System, by using the CWAPS including the Multi-Sensor Level (MSL) 12 and the chlorophyll-a frontal algorithms. Current OC operational products include daily chlorophyll concentration (anomaly), water turbidity, remote sensing reflectance and chlorophyll frontal products from Moderate-resolution Imaging Spectroradiometer (MODIS)/Aqua. The products have been widely applied to USA local and state ecosystem research, ecosystem observations, and fisheries managements for coastal and regional forecasting of ocean water quality, phytoplankton concentrations, and primary production. Users of the products have the National Ocean Service, National Marine Fisheries Service, National Weather Service, and Oceanic and Atmospheric Research. Recently, the OC products are being extended to S-NPP VIIRS to provide global NRT ocean color products to user community suh as National Weatrher Service for application for Global Data Assimilation System and Real-Time Ocean Forecast System. However, there remain some challenges in application of the products due to certain product quality and coverage issues. Recent efforts were made to provide a comprehensive web-based Quality Assurance (QA) tool for monitoring OC products quality in near real time mode, referring to http://www.ospo.noaa.gov/Products/ocean/color_new/color.htm. The new QA monitoring tool includes but not limited to the following advanced features applicable for MODIS/Aqua and NPP/VIIRS OC products: 1) Monitoring product quality in NRT mode; 2) Monitoring the availability and quality of OC products with time; 3) Detecting anomalous OC products due to low valid pixels and other quality issues. As an example, potential application and challenges of the ocean color products to oceanic oil spill detection are investigated. It is thus expected that the Okeanos ocean color operational system in

  13. Modeling and Assimilating Ocean Color Radiances

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Radiances are the source of information from ocean color sensors to produce estimates of biological and geochemical constituents. They potentially provide information on various other aspects of global biological and chemical systems, and there is considerable work involved in deriving new information from these signals. Each derived product, however, contains errors that are derived from the application of the radiances, above and beyond the radiance errors. A global biogeochemical model with an explicit spectral radiative transfer model is used to investigate the potential of assimilating radiances. The results indicate gaps in our understanding of radiative processes in the oceans and their relationships with biogeochemical variables. Most important, detritus optical properties are not well characterized and produce important effects of the simulated radiances. Specifically, there does not appear to be a relationship between detrital biomass and its optical properties, as there is for chlorophyll. Approximations are necessary to get beyond this problem. In this reprt we will discuss the challenges in modeling and assimilation water-leaving radiances and the prospects for improving our understanding of biogeochemical process by utilizing these signals.

  14. Sensor-centric calibration and characterization of the VIIRS Ocean Color bands using Suomi NPP operational data

    NASA Astrophysics Data System (ADS)

    Pratt, P.

    2012-12-01

    Ocean color bands on VIIRS span the visible spectrum and include two NIR bands. There are sixteen detectors per band and two HAM (Half-angle mirror) sides giving a total of thirty two independent systems. For each scan, thirty two hundred pixels are collected and each has a fixed specific optical path and a dynamic position relative to the earth geoid. For a given calibration target where scene variation is minimized, sensor characteristics can be observed. This gives insight into the performance and calibration of the instrument from a sensor-centric perspective. Calibration of the blue bands is especially challenging since there are few blue targets on land. An ocean region called the South Pacific Gyre (SPG) was chosen for its known stability and large area to serve as a calibration target for this investigation. Thousands of pixels from every granule that views the SPG are collected daily through an automated system and tabulated along with the detector, HAM and scan position. These are then collated and organized in a sensor-centric set of tables. The data are then analyzed by slicing by each variable and then plotted in a number of ways over time. Trends in the data show that the VIIRS sensor is largely behaving as expected according to heritage data and also reveals weaknesses where additional characterization of the sensor is possible. This work by Northrop Grumman NPP CalVal Team is supporting the VIIRS on-orbit calibration and validation teams for the sensor and ocean color as well as providing scientists interested in performing ground truth with results that show which detectors and scan angles are the most reliable over time. This novel approach offers a comprehensive sensor-centric on-orbit characterization of the VIIRS instrument on the NASA Suomi NPP mission.

  15. Stochastic inversion of ocean color data using the cross-entropy method.

    PubMed

    Salama, Mhd Suhyb; Shen, Fang

    2010-01-18

    Improving the inversion of ocean color data is an ever continuing effort to increase the accuracy of derived inherent optical properties. In this paper we present a stochastic inversion algorithm to derive inherent optical properties from ocean color, ship and space borne data. The inversion algorithm is based on the cross-entropy method where sets of inherent optical properties are generated and converged to the optimal set using iterative process. The algorithm is validated against four data sets: simulated, noisy simulated in-situ measured and satellite match-up data sets. Statistical analysis of validation results is based on model-II regression using five goodness-of-fit indicators; only R2 and root mean square of error (RMSE) are mentioned hereafter. Accurate values of total absorption coefficient are derived with R2 > 0.91 and RMSE, of log transformed data, less than 0.55. Reliable values of the total backscattering coefficient are also obtained with R2 > 0.7 (after removing outliers) and RMSE < 0.37. The developed algorithm has the ability to derive reliable results from noisy data with R2 above 0.96 for the total absorption and above 0.84 for the backscattering coefficients. The algorithm is self contained and easy to implement and modify to derive the variability of chlorophyll-a absorption that may correspond to different phytoplankton species. It gives consistently accurate results and is therefore worth considering for ocean color global products.

  16. Use of ocean color scanner data in water quality mapping

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1981-01-01

    Remotely sensed data, in combination with in situ data, are used in assessing water quality parameters within the San Francisco Bay-Delta. The parameters include suspended solids, chlorophyll, and turbidity. Regression models are developed between each of the water quality parameter measurements and the Ocean Color Scanner (OCS) data. The models are then extended to the entire study area for mapping water quality parameters. The results include a series of color-coded maps, each pertaining to one of the water quality parameters, and the statistical analysis of the OCS data and regression models. It is found that concurrently collected OCS data and surface truth measurements are highly useful in mapping the selected water quality parameters and locating areas having relatively high biological activity. In addition, it is found to be virtually impossible, at least within this test site, to locate such areas on U-2 color and color-infrared photography.

  17. NASA Reveals New Discoveries on Oceans Beyond Earth During Science Briefing

    NASA Image and Video Library

    2017-04-13

    During a NASA science briefing on April 13, representatives from the agency discussed new results about ocean worlds in our solar system based on data gathered by NASA’s Cassini spacecraft and the Hubble Space Telescope. The two veteran missions are providing tantalizing new details about icy, ocean-bearing moons of Jupiter and Saturn, further enhancing the scientific interest of these and other "ocean worlds" in our solar system and beyond. New research from Cassini indicates that hydrogen gas, which could potentially provide a chemical energy source for life, is pouring into the ocean of Saturn's icy moon Enceladus from hydrothermal vents in the seafloor. The Cassini spacecraft detected the hydrogen in the plume of gas and icy material spraying from Enceladus during its deepest dive through the plume on Oct. 28, 2015.This means that ocean microbes -- if any exist there -- could use the hydrogen to produce energy NASA’s Hubble Space Telescope saw a probable plume of material erupting from the moon’s surface on 2016, at the same location where Hubble saw evidence of a plume in 2014. These images bolster evidence that the Europa plumes could be a real phenomenon, flaring up intermittently in the same region on the moon's surface. Both Cassini and Hubble investigations are laying the groundwork for NASA's Europa Clipper mission, which is being planned for launch in the 2020s.

  18. Analysis of Photosynthetic Rate and Bio-Optical Components from Ocean Color Imagery

    NASA Technical Reports Server (NTRS)

    Kiefer, Dale A.; Stramski, Dariusz

    1997-01-01

    Our research over the last 5 years indicates that the successful transformation of ocean color imagery into maps of bio-optical properties will require continued development and testing of algorithms. In particular improvements in the accuracy of predicting from ocean color imagery the concentration of the bio-optical components of sea as well as the rate of photosynthesis will require progress in at least three areas: (1) we must improve mathematical models of the growth and physiological acclimation of phytoplankton; (2) we must better understand the sources of variability in the absorption and backscattering properties of phytoplankton and associated microparticles; and (3) we must better understand how the radiance distribution just below the sea surface varies as a function sun and sky conditions and inherent optical properties.

  19. Inter-Sensor Comparison of Satellite Ocean Color Products from GOCI and MODIS

    DTIC Science & Technology

    2013-02-26

    current map for this region. However the NOCOM modeled and GOCI measured data need to be validate using in-situ measurements. ...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION...Ocean Model (NCOM). 15. SUBJECT TERMS satellite ocean color products, GOCI, MODIS, phytoplankton 16. SECURITY CLASSIFICATION OF: a. REPORT

  20. NASA Captures First Color Image of Mercury from Orbit

    NASA Image and Video Library

    2011-03-30

    NASA image acquired: March 29, 2011 The first image acquired by MESSENGER from orbit around Mercury was actually part of an eight-image sequence, for which images were acquired through eight of the WAC’s eleven filters. Here we see a color version of that first imaged terrain; in this view the images obtained through the filters with central wavelengths of 1000 nm, 750 nm, and 430 nm are displayed in red, green, and blue, respectively. One of MESSENGER’s measurement objectives is to create an eight-color global base map at a resolution of 1 km/pixel (0.6 miles/pixel) to help understand the variations of composition across Mercury’s surface. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft ever to orbit the planet Mercury. The mission is currently in its commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  1. Fuzzy Classification of Ocean Color Satellite Data for Bio-optical Algorithm Constituent Retrievals

    NASA Technical Reports Server (NTRS)

    Campbell, Janet W.

    1998-01-01

    The ocean has been traditionally viewed as a 2 class system. Morel and Prieur (1977) classified ocean water according to the dominant absorbent particle suspended in the water column. Case 1 is described as having a high concentration of phytoplankton (and detritus) relative to other particles. Conversely, case 2 is described as having inorganic particles such as suspended sediments in high concentrations. Little work has gone into the problem of mixing bio-optical models for these different water types. An approach is put forth here to blend bio-optical algorithms based on a fuzzy classification scheme. This scheme involves two procedures. First, a clustering procedure identifies classes and builds class statistics from in-situ optical measurements. Next, a classification procedure assigns satellite pixels partial memberships to these classes based on their ocean color reflectance signature. These membership assignments can be used as the basis for a weighting retrievals from class-specific bio-optical algorithms. This technique is demonstrated with in-situ optical measurements and an image from the SeaWiFS ocean color satellite.

  2. Regional impacts of ocean color on tropical Pacific variability

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-08-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  3. Regional impacts of ocean color on tropical Pacific variability

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-02-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  4. NASA oceanic processes program: Status report, fiscal year 1980

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Goals, philosophy, and objectives of NASA's Oceanic Processes Program are presented as well as detailed information on flight projects, sensor developments, future prospects, individual investigator tasks, and recent publications. A special feature is a group of brief descriptions prepared by leaders in the oceanographic community of how remote sensing might impact various areas of oceanography during the coming decade.

  5. FLIPPER: Validation for Remote Ocean Imaging

    NASA Technical Reports Server (NTRS)

    2006-01-01

    one of the determining factors in the planet s ability to support life is the same factor that makes the Blue Planet blue: water. Therefore, NASA researchers have a focused interest in understanding Earth s oceans and their ability to continue sustaining life. A critical objective in this study is to understand the global processes that control the changes of carbon and associated living elements in the oceans. Since oceans are so large, one of the most widely used methods of this research is remote sensing, using satellites to observe changes in the ocean color that may be indicative of changes occurring at the surface. Major changes in carbon are due to photosynthesis conducted by phytoplankton, showing, among other things, which areas are sustaining life. Although valuable for large-scale pictures of an ocean, remote sensing really only provides a surface, and therefore incomplete, depiction of that ocean s sustainability. True and complete testing of the water requires local testing in conjunction with the satellite images in order to generate the necessary algorithm parameters to calculate ocean health. For this reason, NASA has spearheaded research to provide onsite validation for its satellite imagery surveys.

  6. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS)

    NASA Astrophysics Data System (ADS)

    Ryu, Joo-Hyung; Han, Hee-Jeong; Cho, Seongick; Park, Young-Je; Ahn, Yu-Hwan

    2012-09-01

    GOCI, the world's first geostationary ocean color satellite, provides images with a spatial resolution of 500 m at hourly intervals up to 8 times a day, allowing observations of short-term changes in the Northeast Asian region. The GOCI Data Processing System (GDPS), a specialized data processing software for GOCI, was developed for real-time generation of various products. This paper describes GOCI characteristics and GDPS workflow/products, so as to enable the efficient utilization of GOCI. To provide quality images and data, atmospheric correction and data analysis algorithms must be improved through continuous Cal/Val. GOCI-II will be developed by 2018 to facilitate in-depth studies on geostationary ocean color satellites.

  7. Ocean Drifters Get the Facts

    NASA Technical Reports Server (NTRS)

    2001-01-01

    With the help of Small Business Innovation Research (SBIR) funding from NASA's Goddard Space Flight Center, of Greenbelt, Maryland, Clearwater Instrumentation, of Watertown, Massachusetts, created the ClearSat-Autonomous Drifting Ocean Station (ADOS). The multi-sensor array ocean drifting station was developed to support observations of Earth by NASA satellites. It is a low-cost device for gathering an assortment of data necessary to the integration of present and future satellite measurements of biological and physical processes. Clearwater Instrumentation developed its ADOS technology based on Goddard's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) project, but on a scale that is practical for commercial use. ADOS is used for the in situ measuring of ocean surface layer properties such as ocean color, surface thermal structure, and surface winds. Thus far, multiple ADOS units have been sold to The Scripps Institution of Oceanography, where they are being applied in the field of academic science research. Fisheries can also benefit, because ADOS can locate prime cultivation conditions for this fast-growing industry.

  8. A design study for an advanced ocean color scanner system. [spaceborne equipment

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Fraser, R. S.; Thompson, L. L.; Bahethi, O.

    1980-01-01

    Along with a colorimetric data analysis scheme, the instrumental parameters which need to be optimized in future spaceborne ocean color scanner systems are outlined. With regard to assessing atmospheric effects from ocean colorimetry, attention is given to computing size parameters of the aerosols in the atmosphere, total optical depth measurement, and the aerosol optical thickness. It is suggested that sensors based on the use of linear array technology will meet hardware objectives.

  9. Remote sensing of atmospheric aerosol and ocean color for the COMS/GOCI

    NASA Astrophysics Data System (ADS)

    Lee, Kwon-Ho; Kim, Young J.; Kim, Gwan C.; Wong, Man S.; Ahn, Yu H.

    2010-10-01

    The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS) requires accurate atmospheric correction for the purpose of qualified ocean remote sensing. Since its eight bands are affected by atmospheric constituents such as gases, molecules and atmospheric aerosols, understanding of aerosolradiation interactions is needed. Aerosol optical properties based on sun-photometer measurements are used to analysis aerosol optical thickness (AOT) under various aerosol type and loadings. It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. These results will be useful for aerosol retrieval of COMS/GOCI data processing.

  10. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the “MAPP” algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamnes, S.; Hostetler, C.; Ferrare, R.

    We present an optimal estimation based retrieval framework, the Microphysical Aerosol Properties from Polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High Spectral Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355, 532, and 1064 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ã…ngstrømmore » exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio- Optical Research (SABOR) campaign. For the SABOR campaign, 71% RSP MAPP retrievals fall within 0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.925 and root-mean-square deviation of 0.04. For the TCAP campaign, 55% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.925 and root-mean-square deviation of 0.07. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.96 and a root-mean-square deviation of also 0.07. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar+polarimeter retrieval using both HSRL and RSP measurements.« less

  11. Neural Network Technique for Global Ocean Color (Chl-a) Estimates Bridging Multiple Satellite Missions

    NASA Astrophysics Data System (ADS)

    Garraffo, Z. D.; Nadiga, S.; Krasnopolsky, V.; Mehra, A.; Bayler, E. J.; Kim, H. C.; Behringer, D.

    2016-02-01

    A Neural Network (NN) technique is used to produce consistent global ocean color estimates, bridging multiple satellite ocean color missions by linking ocean color variability - primarily driven by biological processes - with the physical processes of the upper ocean. Satellite-derived surface variables - sea-surface temperature (SST) and sea-surface height (SSH) fields - are used as signatures of upper-ocean dynamics. The NN technique employs adaptive weights that are tuned by applying statistical learning (training) algorithms to past data sets, providing robustness with respect to random noise, accuracy, fast emulations, and fault-tolerance. This study employs Sea-viewing Wide Field-of-View Sensor (SeaWiFS) chlorophyll-a data for 1998-2010 in conjunction with satellite SSH and SST fields. After interpolating all data sets to the same two-degree latitude-longitude grid, the annual mean was removed and monthly anomalies extracted . The NN technique wass trained for even years of that period and tested for errors and bias for the odd years. The NN output are assessed for: (i) bias, (ii) variability, (iii) root-mean-square error (RMSE), and (iv) cross-correlation. A Jacobian is evaluated to estimate the impact of each input (SSH, SST) on the NN chlorophyll-a estimates. The differences between an ensemble of NNs vs a single NN are examined. After the NN is trained for the SeaWiFS period, the NN is then applied and validated for 2005-2015, a period covered by other satellite missions — the Moderate Resolution Imaging Spectroradiometer (MODIS AQUA) and the Visible Imaging Infrared Radiometer Suite (VIIRS).

  12. A Practical Application of Ocean Color Methodology to an Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Moisan, Tiffany A.; Swift, Robert N.; Campbell, Brian A.; Yungel, James K.; Linkswiler, Matthew A.; Nolan, Jessica

    2008-01-01

    Recently there have been newly launched ocean color satellites which target the coastlines at unprecedented scales. Science education curricula can benefit from the provision of small low-cost spectroradiometers and curriculum supplemental materials that can be incorporated in a "hands on" teaching approach to explain and demonstrate remote…

  13. Primary analysis of the ocean color remote sensing data of the HY-1B/COCTS

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun; Gong, Fang

    2009-01-01

    China had successfully launched her second ocean color satellite HY-1B on 11 Apr., 2007, which was the successor of the HY-1A satellite launched on 15 May, 2002. There were two sensors onboard HY-1B, named the Chinese Ocean Color and Temperature Scanner (COCTS) and the Coastal Zone Imager (CZI) respectively, and COCTS was the main sensor. COCTS had not only eight visible and near-infrared wave bands similar to the SeaWiFS, but also two more thermal infrared wave bands to measure the sea surface temperature. Therefore, COCTS had broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. In this paper, the main characteristics of COCTS were described firstly. Then, using the crosscalibration method, the vicarious calibration of COCTS was carried out by the synchronous remote sensing data of SeaWiFS, and the results showed that COCTS had well linear responses for the visible light bands with the correlation coefficients more than 0.98, however, the performances of the near infrared wavelength bands were not good as visible light bands. Using the vicarious calibration result, the operational atmospheric correction (AC) algorithm of COCTS was developed based on the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT generated by the coupled ocean-atmospheric vector radiative transfer numerical model named PCOART. The AC algorithm had been validated by the simulated radiance data at the top-of-atmosphere, and the results showed the errors of the water-leaving reflectance retrieved by the AC algorithm were less than 0.0005, which met the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the AC algorithm was applied to the HY-1B/COCTS remote sensing data, and the corresponding ocean color remote sensing products have been generated.

  14. Cal/Val Study for Geostationary Ocean Color Imager

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Moon, J.; Min, J.; Cho, S.; Ahn, Y.

    2009-12-01

    GOCI, the first Geostationary Ocean Color Imager, shall be operated in a staring-frame capture mode onboard its Communication Ocean and Meteorological Satellite (COMS) and tentatively scheduled for launch in 2010. The mission concept includes eight visible-to-near-infrared bands, 0.5 km pixel resolution, and a coverage region of 2,500 × 2,500 km2 centered at Korea. The GOCI is expected to provide SeaWiFS quality observations for a single study area with imaging interval of 1 hour from 10 am to 5 pm. Due to optically more complex waters of GOCI swath area, we developed new atmospheric correction and bio-optical algorithms for GOCI. The 1st objective is to compare and validate the water-leaving radiance using the radiometric data from spectroradiometer installed in Ieodo and Gaegeocho ocean research station. The 2nd objective is to calibrate and validate the bio-optical product by GDPS using the Dokdo buoy and in situ measurements. As the result of comparison of spectrum shape using the remote reflectance normalized 555 nm, most of all data was well matched. Validation result of local bio-optical algorithms installed in GDPS showed the less than 20 %.

  15. NASA's Newest SeaWinds Instrument Breezes Into Operation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.

    From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.

    Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.

    'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.'

    'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other

  16. SeaWiFS technical report series. Volume 17: Ocean color in the 21st century. A strategy for a 20-year time series

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.; Brown, Otis B.; Evans, Robert H.; Gordon, Howard R.; Carder, Kendall L.; Mueller-Karger, Frank E.; Esaias, Wayne E.; Hooker, Stanford B.; Firestone, Elaine R.

    1994-01-01

    Beginning with the upcoming launch of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), there should be almost continuous measurements of ocean color for nearly 20 years if all of the presently planned national and international missions are implemented. This data set will present a unique opportunity to understand the coupling of physical and biological processes in the world ocean. The presence of multiple ocean color sensors will allow the eventual development of an ocean color observing system that is both cost effective and scientifically based. This report discusses the issues involved and makes recommendations intended to ensure the maximum scientific return from this unique set of planned ocean color missions. An executive summary is included with this document which briefly discusses the primary issues and suggested actions to be considered.

  17. NASA's Airborne Science DC-8 displays new colors in a check flight over the Dryden Flight Research Center

    NASA Image and Video Library

    2004-02-24

    NASA's large Airborne Science research aircraft, a modified DC-8 airliner, displayed new colors in a check flight Feb. 24, 2004, over its home base, the NASA Dryden Flight Research Center at Edwards AFB, California.

  18. Variability of the reflectance coefficient of skylight from the ocean surface and its implications to ocean color.

    PubMed

    Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan

    2018-04-16

    The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.

  19. Effect of Mineral Dust on Ocean Color Retrievals From Space: A Radiative Transfer Simulation Study

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Franz, B. A.

    2016-02-01

    In this paper we examine the effect of mineral aerosols (dust) on the retrieval of ocean colors from space. Mineral aerosols are one of the major components of all aerosols found in the earth's atmosphere. These are mainly soil particles that originate from arid and semiarid regions of the world and are blown away by winds thousands of kilometers away from their source regions. The radii of these aerosols are between 0.1 and 1.0 μm and their resident time in the atmosphere is about 21 days. The primary focus of this paper is to estimate the remote sensing reflectance (Rrs) errors in the presence of absorbing aerosols over ocean. The present study is based on radiative transfer (RT) simulations, and it is particularly relevant to ocean color retrievals from sensors like MODIS, MERIS, VIIRS, and the future PACE/OCI. In the simulations, we have used mineralogy to determine the spectral dependence of aerosol refractive index, and modeled the aerosols to represent dust over Cape Verde (Sal Island). As a part of this study, we will present the results for retrieved aerosol optical thickness (τ), Angstrom exponent (α), and remote sensing reflectance (Rrs) and compare them with similar results for non-absorbing aerosols. In addition, we will show how aerosol layer height affects the ocean color retrievals.

  20. Surface currents in the Bohai Sea derived from the Korean Geostationary Ocean Color Imager (GOCI)

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Wang, M.

    2016-02-01

    The first geostationary ocean color satellite sensor, the Geostationary Ocean Color Imager (GOCI) onboard the Korean Communication, Ocean, and Meteorological Satellite can monitor and measure ocean phenomena over an area of 2500 × 2500 km2 around the western Pacific region centered at 36°N and 130°E. Hourly measurements during the day around 9:00 to 16:00 local time are a unique capability of GOCI to monitor ocean features of higher temporal variability. In this presentation, we show some recent results of GOCI-derived ocean surface currents in the Bohai Sea using the Maximum Cross-Correlation (MCC) feature tracking method and compare the results with altimetry-inversed tidal current observations produced from Oregon State University (OSU) Tidal Inversion Software (OTIS). The performance of the GOCI-based MCC method is assessed and the discrepancies between the GOCI- and OTIS-derived currents are evaluated. A series of sensitivity studies are conducted with images from various satellite products and of various time differences, MCC adjustable parameters, and influence from other forcings such as wind, to find the best setups for optimal MCC performance. Our results demonstrate that GOCI can effectively provide real-time monitoring of not only water optical, biological, and biogeochemical variability, but also the physical dynamics in the region.

  1. Development of ocean color algorithms for estimating chlorophyll-a concentrations and inherent optical properties using gene expression programming (GEP).

    PubMed

    Chang, Chih-Hua

    2015-03-09

    This paper proposes new inversion algorithms for the estimation of Chlorophyll-a concentration (Chla) and the ocean's inherent optical properties (IOPs) from the measurement of remote sensing reflectance (Rrs). With in situ data from the NASA bio-optical marine algorithm data set (NOMAD), inversion algorithms were developed by the novel gene expression programming (GEP) approach, which creates, manipulates and selects the most appropriate tree-structured functions based on evolutionary computing. The limitations and validity of the proposed algorithms are evaluated by simulated Rrs spectra with respect to NOMAD, and a closure test for IOPs obtained at a single reference wavelength. The application of GEP-derived algorithms is validated against in situ, synthetic and satellite match-up data sets compiled by NASA and the International Ocean Color Coordinate Group (IOCCG). The new algorithms are able to provide Chla and IOPs retrievals to those derived by other state-of-the-art regression approaches and obtained with the semi- and quasi-analytical algorithms, respectively. In practice, there are no significant differences between GEP, support vector regression, and multilayer perceptron model in terms of the overall performance. The GEP-derived algorithms are successfully applied in processing the images taken by the Sea Wide Field-of-view Sensor (SeaWiFS), generate Chla and IOPs maps which show better details of developing algal blooms, and give more information on the distribution of water constituents between different water bodies.

  2. How ocean color can steer Pacific tropical cyclones

    NASA Astrophysics Data System (ADS)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  3. Optical Moorings-of-Opportunity for Validation of Ocean Color Satellites

    DTIC Science & Technology

    2008-01-01

    at the midpoint of the two depths is given by: K , z d dz lnE , z , , d dλ λ λ λ ( ) = − ( )[ ] ( ) = − ( ) ( ) ( ) 4a 1 z ln E , z E , z 4bd 2 d 1...Biological Oceanography Program ( TD : OCE-9627281, OCE-9730471, OCE-9819477), NASA ( TD : NAS5-97127), the ONR Ocean Engineering and Marine Systems Program

  4. Using the NASA Giovanni DICCE Portal to Investigate Land-Ocean Linkages with Satellite and Model Data

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Zalles, Daniel; Krumhansl, Ruth

    2012-01-01

    Data-enhanced Investigations for Climate Change Education (DICCE), a NASA climate change education project, employs the NASA Giovanni data system to enable teachers to create climate-related classroom projects using selected satellite and assimilated model data. The easy-to-use DICCE Giovanni portal (DICCE-G) provides data parameters relevant to oceanic, terrestrial, and atmospheric processes. Participants will explore land-ocean linkages using the available data in the DICCE-G portal, in particular focusing on temperature, ocean biology, and precipitation variability related to El Ni?o and La Ni?a events. The demonstration includes the enhanced information for educators developed for the DICCE-G portal. The prototype DICCE Learning Environment (DICCE-LE) for classroom project development will also be demonstrated.

  5. Remote sensing of ocean color in the Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, N. G.

    1988-01-01

    The main objectives of the research are: to increase the understanding of biological production (and carbon fluxes) along the ice edge, in frontal regions, and in open water areas of the Arctic and the physical factors controlling that production through the use of satellite and aircraft remote sensing techniques; and to develop relationships between measured radiances from the Multichannel Aircraft Radiometer System (MARS) and the bio-optical properties of the water in the Arctic and adjacent seas. Several recent Coastal Zone Color Scanner (CZCS) studies in the Arctic have shown that, despite constraints imposed by cloud cover, satellite ocean color is a useful means of studying mesoscale physical and biological oceanographic phenomena at high latitudes. The imagery has provided detailed information on ice edge and frontal processes such as spring breakup and retreat of the ice edge, influence of ice on ice effects of stratification on phytoplankton production, river sediment transport, effects of spring runoff, water mass boundaries, circulation patterns, and eddy formation in Icelandic waters and in the Greenland, Barents, Norwegian, and Bering Seas.

  6. Atmospheric correction of ocean color sensors: analysis of the effects of residual instrument polarization sensitivity.

    PubMed

    Gordon, H R; Du, T; Zhang, T

    1997-09-20

    We provide an analysis of the influence of instrument polarization sensitivity on the radiance measured by spaceborne ocean color sensors. Simulated examples demonstrate the influence of polarization sensitivity on the retrieval of the water-leaving reflectance rho(w). A simple method for partially correcting for polarization sensitivity--replacing the linear polarization properties of the top-of-atmosphere reflectance with those from a Rayleigh-scattering atmosphere--is provided and its efficacy is evaluated. It is shown that this scheme improves rho(w) retrievals as long as the polarization sensitivity of the instrument does not vary strongly from band to band. Of course, a complete polarization-sensitivity characterization of the ocean color sensor is required to implement the correction.

  7. Application of the airborne ocean color imager for commercial fishing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.

    1993-01-01

    The objective of the investigation was to develop a commercial remote sensing system for providing near-real-time data (within one day) in support of commercial fishing operations. The Airborne Ocean Color Imager (AOCI) had been built for NASA by Daedalus Enterprises, Inc., but it needed certain improvements, data processing software, and a delivery system to make it into a commercial system for fisheries. Two products were developed to support this effort: the AOCI with its associated processing system and an information service for both commercial and recreational fisheries to be created by Spectro Scan, Inc. The investigation achieved all technical objectives: improving the AOCI, creating software for atmospheric correction and bio-optical output products, georeferencing the output products, and creating a delivery system to get those products into the hands of commercial and recreational fishermen in near-real-time. The first set of business objectives involved Daedalus Enterprises and also were achieved: they have an improved AOCI and new data processing software with a set of example data products for fisheries applications to show their customers. Daedalus' marketing activities showed the need for simplification of the product for fisheries, but they successfully marketed the current version to an Italian consortium. The second set of business objectives tasked Spectro Scan to provide an information service and they could not be achieved because Spectro Scan was unable to obtain necessary venture capital to start up operations.

  8. Images of Earth and Space: The Role of Visualization in NASA Science

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Fly through the ocean at breakneck speed. Tour the moon. Even swim safely in the boiling sun. You can do these things and more in a 17 minute virtual journey through Earth and space. The trek is by way of colorful scientific visualizations developed by the NASA/Goddard Space Flight Center's Scientific Visualization Studio and the NASA HPCC Earth and Space Science Project investigators. Various styles of electronic music and lay-level narration provide the accompaniment.

  9. Solutions Network Formulation Report: Improving NOAA's PORTS(R) Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice

    2007-01-01

    The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the

  10. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 1; Revised

    NASA Technical Reports Server (NTRS)

    Mueller, James L. (Editor); Fargion, Giulietta (Editor); Mueller, J. L.; Trees, C.; Austin, R. W.; Pietras, C.; Hooker, S.; Holben, B.; McClain, Charles R.; Clark, D. K.; hide

    2002-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the SIMBIOS Project. It supersedes the earlier version, and is organized into four parts: Introductory Background, Instrument Characteristics, Field Measurements and Data Analysis, Data Reporting and Archival. Changes in this revision include the addition of three new chapters: (1) Fundamental Definitions, Relationships and Conventions; (2) MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols; and (3) Normalized Water-Leaving Radiance and Remote Sensing Reflectance: Bidirectional Reflectance and Other Factors. Although the present document represents another significant, incremental improvement in the ocean optics protocols, there are several protocols that have either been overtaken by recent technological progress, or have been otherwise identified as inadequate. Revision 4 is scheduled for completion sometime in 2003. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational Project. The contributions are published as submitted, after only minor editing to correct obvious grammatical or clerical errors.

  11. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Volume 2; Revised

    NASA Technical Reports Server (NTRS)

    Mueller, James L. (Editor); Fargion, Giulietta S. (Editor); Trees, C.; Austin, R. W.; Pietras, C. (Editor); Hooker, S.; Holben, B.; McClain, Charles R.; Clark, D. K.; Yuen, M.

    2002-01-01

    This document stipulates protocols for measuring bio-optical and radiometric data for the SIMBIOS Project. It supersedes the earlier version, and is organized into four parts: Introductory Background, Instrument Characteristics, Field Measurements and Data Analysis, Data Reporting and Archival. Changes in this revision include the addition of three new chapters: (1) Fundamental Definitions, Relationships and Conventions; (2) MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols; and (3) Normalized Water-Leaving Radiance and Remote Sensing Reflectance: Bidirectional Reflectance and Other Factors. Although the present document represents another significant, incremental improvement in the ocean optics protocols, there are several protocols that have either been overtaken by recent technological progress, or have been otherwise identified as inadequate. Revision 4 is scheduled for completion sometime in 2003. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational Project. The contributions are published as submitted, after only minor editing to correct obvious grammatical or clerical errors.

  12. The application analysis of the multi-angle polarization technique for ocean color remote sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Yongchao; Zhu, Jun; Yin, Huan; Zhang, Keli

    2017-02-01

    The multi-angle polarization technique, which uses the intensity of polarized radiation as the observed quantity, is a new remote sensing means for earth observation. With this method, not only can the multi-angle light intensity data be provided, but also the multi-angle information of polarized radiation can be obtained. So, the technique may solve the problems, those could not be solved with the traditional remote sensing methods. Nowadays, the multi-angle polarization technique has become one of the hot topics in the field of the international quantitative research on remote sensing. In this paper, we firstly introduce the principles of the multi-angle polarization technique, then the situations of basic research and engineering applications are particularly summarized and analysed in 1) the peeled-off method of sun glitter based on polarization, 2) the ocean color remote sensing based on polarization, 3) oil spill detection using polarization technique, 4) the ocean aerosol monitoring based on polarization. Finally, based on the previous work, we briefly present the problems and prospects of the multi-angle polarization technique used in China's ocean color remote sensing.

  13. Monitoring Land Based Sources of Pollution over Coral Reefs using VIIRS Ocean Color Products

    NASA Astrophysics Data System (ADS)

    Geiger, E.; Strong, A. E.; Eakin, C. M.; Wang, M.; Hernandez, W. J.; Cardona Maldonado, M. A.; De La Cour, J. L.; Liu, G.; Tirak, K.; Heron, S. F.; Skirving, W. J.; Armstrong, R.; Warner, R. A.

    2016-02-01

    NOAA's Coral Reef Watch (CRW) program and the NESDIS Ocean Color Team are developing new products to monitor land based sources of pollution (LBSP) over coral reef ecosystems using the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the S-NPP satellite. LBSP are a major threat to corals that can cause disease and mortality, disrupt critical ecological reef functions, and impede growth, reproduction, and larval settlement, among other impacts. From VIIRS, near-real-time satellite products of Chlorophyll-a, Kd(490), and sea surface temperature are being developed for three U.S. Coral Reef Task Force priority watershed sites - Ka'anapali (West Maui, Hawai'i), Faga'alu (American Samoa), and Guánica Bay (Puerto Rico). Background climatological levels of these parameters are being developed to construct anomaly products. Time-series data are being generated to monitor changes in water quality in near-real-time and provide information on historical variations, especially following significant rain events. A pilot calibration/validation field study of the VIIRS-based ocean color products is underway in Puerto Rico; we plan to expand this validation effort to the other two watersheds. Working with local resource managers, we have identified a focal area for product development and validation for each watershed and its associated local reefs. This poster will present preliminary results and identify a path forward to ensure marine resource managers understand and correctly use the new ocean color products, and to help NOAA CRW refine its satellite products to maximize their benefit to coral reef management. NOAA - National Oceanic and Atmospheric Administration NESDIS - NOAA/National Environmental Satellite, Data, and Information Service S-NPP - Suomi National Polar-orbiting Partnership

  14. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing

    NASA Astrophysics Data System (ADS)

    Lee, Zhongping; Hu, Chuanmin; Shang, Shaoling; Du, Keping; Lewis, Marlon; Arnone, Robert; Brewin, Robert

    2013-09-01

    Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd(λ)). Following radiative transfer theory, Kd is a function of angular distribution of incident light and water's absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to evolve the empirical Kd to a semianalytical Kd that is not only spectrally flexible, but also the sun-angle effect is accounted for explicitly. Here, the semianalytical model developed in Lee et al. (2005b) is revised to account for the shift of phase function between molecular and particulate scattering from the short to long wavelengths. Further, using field data collected independently from oligotrophic ocean to coastal waters covering >99% of the Kd range for the global oceans, the semianalytically derived Kd was evaluated and found to agree with measured data within ˜7-26%. The updated processing system was applied to MODIS measurements to reveal the penetration of UVA-visible radiation in the global oceans, where an empirical procedure to correct Raman effect was also included. The results indicated that the penetration of the blue-green radiation for most oceanic waters is ˜30-40% deeper than the commonly used euphotic zone depth; and confirmed that at a depth of 50-70 m there is still ˜10% of the surface UVA radiation (at 360 nm) in most oligotrophic waters. The results suggest a necessity to modify or expand the light attenuation product from satellite ocean-color measurements in order to be more applicable for studies of ocean physics and biogeochemistry.

  15. Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate.

    PubMed

    Dierssen, Heidi M

    2010-10-05

    Phytoplankton biomass and productivity have been continuously monitored from ocean color satellites for over a decade. Yet, the most widely used empirical approach for estimating chlorophyll a (Chl) from satellites can be in error by a factor of 5 or more. Such variability is due to differences in absorption and backscattering properties of phytoplankton and related concentrations of colored-dissolved organic matter (CDOM) and minerals. The empirical algorithms have built-in assumptions that follow the basic precept of biological oceanography--namely, oligotrophic regions with low phytoplankton biomass are populated with small phytoplankton, whereas more productive regions contain larger bloom-forming phytoplankton. With a changing world ocean, phytoplankton composition may shift in response to altered environmental forcing, and CDOM and mineral concentrations may become uncoupled from phytoplankton stocks, creating further uncertainty and error in the empirical approaches. Hence, caution is warranted when using empirically derived Chl to infer climate-related changes in ocean biology. The Southern Ocean is already experiencing climatic shifts and shows substantial errors in satellite-derived Chl for different phytoplankton assemblages. Accurate global assessments of phytoplankton will require improved technology and modeling, enhanced field observations, and ongoing validation of our "eyes in space."

  16. Marine mammal distribution in the open ocean: a comparison of ocean color data products and levant time scales

    NASA Astrophysics Data System (ADS)

    Ohern, J.

    2016-02-01

    Marine mammals are generally located in areas of enhanced surface primary productivity, though they may forage much deeper within the water column and higher on the food chain. Numerous studies over the past several decades have utilized ocean color data from remote sensing instruments (CZCS, MODIS, and others) to asses both the quantity and time scales over which surface primary productivity relates to marine mammal distribution. In areas of sustained upwelling, primary productivity may essentially grow in the secondary levels of productivity (the zooplankton and nektonic species on which marine mammals forage). However, in many open ocean habitats a simple trophic cascade does not explain relatively short time lags between enhanced surface productivity and marine mammal presence. Other dynamic features that entrain prey or attract marine mammals may be responsible for the correlations between marine mammals and ocean color. In order to investigate these features, two MODIS (moderate imaging spectroradiometer) data products, the concentration as well as the standard deviation of surface chlorophyll were used in conjunction with marine mammal sightings collected within Ecuadorian waters. Time lags between enhanced surface chlorophyll and marine mammal presence were on the order of 2-4 weeks, however correlations were much stronger when the standard deviation of spatially binned images was used, rather than the chlorophyll concentrations. Time lags also varied between Balaenopterid and Odontocete cetaceans. Overall, the standard deviation of surface chlorophyll proved a useful tool for assessing potential relationships between marine mammal sightings and surface chlorophyll.

  17. Two-color short-pulse laser altimeter measurements of ocean surface backscatter

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Mcgarry, Jan F.

    1987-01-01

    The timing and correlation properties of pulsed laser backscatter from the ocean surface have been measured with a two-color short-pulse laser altimeter. The Nd:YAG laser transmitted 70- and 35-ps wide pulses simultaneously at 532 and 355 nm at nadir, and the time-resolved returns were recorded by a receiver with 800-ps response time. The time-resolved backscatter measured at both 330-m and 1291-m altitudes showed little pulse broadening due to the submeter laser spot size. The differential delay of the 355-nm and 532-nm backscattered waveforms were measured with a rms error of about 75 ps. The change in aircraft altitudes also permitted the change in atmospheric pressure to be estimated by using the two-color technique.

  18. The Correlation Between Atmospheric Dust Deposition to the Surface Ocean and SeaWiFS Ocean Color: A Global Satellite-Based Analysis

    NASA Technical Reports Server (NTRS)

    Erickson, D. J., III; Hernandez, J.; Ginoux, P.; Gregg, W.; Kawa, R.; Behrenfeld, M.; Esaias, W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Since the atmospheric deposition of iron has been linked to primary productivity in various oceanic regions, we have conducted an objective study of the correlation of dust deposition and satellite remotely sensed surface ocean chlorophyll concentrations. We present a global analysis of the correlation between atmospheric dust deposition derived from a satellite-based 3-D atmospheric transport model and SeaWiFs estimates of ocean color. We use the monthly mean dust deposition fields of Ginoux et al. which are based on a global model of dust generation and transport. This model is driven by atmospheric circulation from the Data Assimilation Office (DAO) for the period 1995-1998. This global dust model is constrained by several satellite estimates of standard circulation characteristics. We then perform an analysis of the correlation between the dust deposition and the 1998 SeaWIFS ocean color data for each 2.0 deg x 2.5 deg lat/long grid point, for each month of the year. The results are surprisingly robust. The region between 40 S and 60 S has correlation coefficients from 0.6 to 0.95, statistically significant at the 0.05 level. There are swaths of high correlation at the edges of some major ocean current systems. We interpret these correlations as reflecting areas that have shear related turbulence bringing nitrogen and phosphorus from depth into the surface ocean, and the atmospheric supply of iron provides the limiting nutrient and the correlation between iron deposition and surface ocean chlorophyll is high. There is a region in the western North Pacific with high correlation, reflecting the input of Asian dust to that region. The southern hemisphere has an average correlation coefficient of 0.72 compared that in the northern hemisphere of 0.42 consistent with present conceptual models of where atmospheric iron deposition may play a role in surface ocean biogeochemical cycles. The spatial structure of the correlation fields will be discussed within the context

  19. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2001-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  20. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies Including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers Of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software. tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tin) algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  1. Performance metrics for the assessment of satellite data products: an ocean color case study

    EPA Science Inventory

    Performance assessment of ocean color satellite data has generally relied on statistical metrics chosen for their common usage and the rationale for selecting certain metrics is infrequently explained. Commonly reported statistics based on mean squared errors, such as the coeffic...

  2. Phytoplankton bloom in the North Atlantic Ocean

    NASA Image and Video Library

    2017-12-08

    On July 23, 2013 the deep blue waters of the central North Atlantic Ocean provided a background for a spectacular bloom of phytoplankton. The Moderate Resolution Imaging Spectroradiometer (MODIS) captured this true-color image of the event at 16:25 UTC (12:25 p.m. EDT) that same day. Phytoplankton are tiny single-celled photosynthetic organisms that live suspended in a watery environment. They are primary producers in the ocean, forming the base of the marine food chain, and, like terrestrial plants, take up carbon dioxide, make carbohydrates from energy from light, and release oxygen. Phytoplankton live in the ocean year round, but are usually not visible. When light, nutrients and water temperature are just right, however, a colony can explode into growth, creating huge blooms that stain the ocean for miles. While each organism lives only a short time, the high reproductive means that a bloom can last for days or weeks. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Validation of Ocean Color Satellite Data Products in Under Sampled Marine Areas. Chapter 6

    NASA Technical Reports Server (NTRS)

    Subramaniam, Ajit; Hood, Raleigh R.; Brown, Christopher W.; Carpenter, Edward J.; Capone, Douglas G.

    2001-01-01

    The planktonic marine cyanobacterium, Trichodesmium sp., is broadly distributed throughout the oligotrophic marine tropical and sub-tropical oceans. Trichodesmium, which typically occurs in macroscopic bundles or colonies, is noteworthy for its ability to form large surface aggregations and to fix dinitrogen gas. The latter is important because primary production supported by N2 fixation can result in a net export of carbon from the surface waters to deep ocean and may therefore play a significant role in the global carbon cycle. However, information on the distribution and density of Trichodesmium from shipboard measurements through the oligotrophic oceans is very sparse. Such estimates are required to quantitatively estimate total global rates of N2 fixation. As a result current global rate estimates are highly uncertain. Thus in order to understand the broader biogeochemical importance of Trichodesmium and N2 fixation in the oceans, we need better methods to estimate the global temporal and spatial variability of this organism. One approach that holds great promise is satellite remote sensing. Satellite ocean color sensors are ideal instruments for estimating global phytoplankton biomass, especially that due to episodic blooms, because they provide relatively high frequency synoptic information over large areas. Trichodesmium has a combination of specific ultrastructural and biochemical features that lend themselves to identification of this organism by remote sensing. Specifically, these features are high backscatter due to the presence of gas vesicles, and absorption and fluorescence of phycoerythrin. The resulting optical signature is relatively unique and should be detectable with satellite ocean color sensors such as the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS).

  4. Aerosol Absorption Retrievals from the PACE Broad Spectrum Ocean Color Instrument (OCI)

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine A.; Levy, Robert C.; Gupta, Pawan; Ahmad, Ziauddin; Martins, J. Vanderlei; Lima, Adriana Rocha; Torres, Omar

    2016-01-01

    The PACE (Pre-­Aerosol, Clouds and ocean Ecosystem) mission, anticipated for launch in the early 2020s, is designed to characterize oceanic and atmospheric properties. The primary instrument on-­-board will be a moderate resolution (approximately 1 km nadir) radiometer, called the Ocean Color Instrument (OCI). OCI will provide high spectral resolution (5 nm) from the UV to NIR (350 - 800 nm), with additional spectral bands in the NIR and SWIR. The OCI itself is an excellent instrument for atmospheric objectives, providing measurements across a broad spectral range that in essence combines the capabilities of MODIS and OMI, but with the UV channels from OMI to be available at moderate resolution. (Image credit: PACE Science Definition Team Report). Objective: Can we make use of the UV-­SWIR measurements to derive information about aerosol absorption when aerosol loading is high?

  5. Assessment of NOAA Processed OceanSat-2 Scatterometer Ocean Surface Vector Wind Products

    NASA Astrophysics Data System (ADS)

    Chang, P.; Jelenak, Z.; Soisuvarn, S.

    2011-12-01

    The Indian Space Research Organization (ISRO) launched the Oceansat-2 satellite on 23 September 2009. Oceansat-2 carries a radar scatterometer instrument (OSCAT) capable of measuring ocean surface vector winds (OSVW) and an ocean color monitor (OCM), which will retrieve sea spectral reflectance. Oceansat-2 is ISRO's second in a series of satellites dedicated to ocean research. It will provide continuity to the services and applications of the Oceansat-1 OCM data along with additional data from a Ku-band pencil beam scatterometer. Oceansat-2 is a three-axis, body stabilized spacecraft placed into a near circular sun-synchronous orbit, at an altitude of 720 kilometers (km), with an equatorial crossing time of around 1200 hours. ISRO, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) share the common goal of optimizing the quality and maximizing the utility of the Oceansat-2 data for the benefit of future global and regional scientific and operational applications. NOAA, NASA and EUMETSAT have been collaboratively working with ISRO on the assessment and analysis of OSCAT data to help facilitate continuation of QuikSCAT's decade-long Ku-band scatterometer data record. NOAA's interests are focused on the utilization of OSCAT data to support operational weather forecasting and warning in the marine environment. OSCAT has the potential to significantly mitigate the loss of NASA's QuikSCAT, which has negatively impacted NOAA's marine forecasting and warning services. Since March 2011 NOAA has been receiving near real time OSCAT measurements via EumetSat. NOAA has developed its own OSCAT wind processor. This processor produces ocean surface vector winds with resolution of 25km. Performance of NOAA OSCAT product will and its availability to larger user community will be presented and discussed.

  6. Quantifying the Bering Strait Oceanic Fluxes and their Impacts on Sea-Ice and Water Properties in the Chukchi and Beaufort Seas and Western Arctic Ocean for 2013-2014

    DTIC Science & Technology

    2013-09-30

    Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard Space...of Arctic bathymetry aids scientists and map makers, Eos Trans., 81(9), 89, 93, 96. Weingartner, T. J., S. Danielson, Y. Sasaki, V. Pavlov , and M

  7. Empirical ocean color algorithms and bio-optical properties of the western coastal waters of Svalbard, Arctic

    NASA Astrophysics Data System (ADS)

    Son, Young-Sun; Kim, Hyun-cheol

    2018-05-01

    Chlorophyll (Chl) concentration is one of the key indicators identifying changes in the Arctic marine ecosystem. However, current Chl algorithms are not accurate in the Arctic Ocean due to different bio-optical properties from those in the lower latitude oceans. In this study, we evaluated the current Chl algorithms and analyzed the cause of the error in the western coastal waters of Svalbard, which are known to be sensitive to climate change. The NASA standard algorithms showed to overestimate the Chl concentration in the region. This was due to the high non-algal particles (NAP) absorption and colored dissolved organic matter (CDOM) variability at the blue wavelength. In addition, at lower Chl concentrations (0.1-0.3 mg m-3), chlorophyll-specific absorption coefficients were ∼2.3 times higher than those of other Arctic oceans. This was another reason for the overestimation of Chl concentration. OC4 algorithm-based regionally tuned-Svalbard Chl (SC4) algorithm for retrieving more accurate Chl estimates reduced the mean absolute percentage difference (APD) error from 215% to 49%, the mean relative percentage difference (RPD) error from 212% to 16%, and the normalized root mean square (RMS) error from 211% to 68%. This region has abundant suspended matter due to the melting of tidal glaciers. We evaluated the performance of total suspended matter (TSM) algorithms. Previous published TSM algorithms generally overestimated the TSM concentration in this region. The Svalbard TSM-single band algorithm for low TSM range (ST-SB-L) decreased the APD and RPD errors by 52% and 14%, respectively, but the RMS error still remained high (105%).

  8. The NOAA-NASA CZCS Reanalysis Effort

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; OReilly, John E.; Patt, Frederick S.; Wang, Meng-Hua; Yoder, James; Casey-McCabe, Nancy; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Satellite observations of global ocean chlorophyll span over two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the NOAA-NASA CZCS Reanalysis (NCR) Effort. NCR consisted of 1) algorithm improvement (AI), where CZCS processing algorithms were improved using modernized atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the CZCS AI to minimize residual errors. The results indicated major improvement over the previously available CZCS archive. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

  9. Evaluation of the VIIRS Ocean Color Monitoring Performance in Coastal Regions

    DTIC Science & Technology

    2013-09-17

    collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1...part of the VIIRS sensor calibration and validation efforts, our group has been continuously monitoring the validity of the VIlRS’s OC and atmospheric...the necessity for monitoring and assessing the validity and consistency of VIIRS’ ocean color pioducts. especially for coaslal waters. 15. SUBJECT

  10. Evaluation of a reflectance model used in the SeaWiFS ocean color algorithm: implications for chlorophyll concentration retrievals

    NASA Astrophysics Data System (ADS)

    Yan, Banghua; Stamnes, Knut; Toratani, Mitsuhiro; Li, Wei; Stamnes, Jakob J.

    2002-10-01

    For the atmospheric correction of ocean-color imagery obtained over Case I waters with the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) instrument the method currently used to relax the black-pixel assumption in the near infrared (NIR) relies on (1) an approximate model for the nadir NIR remote-sensing reflectance and (2) an assumption that the water-leaving radiance is isotropic over the upward hemisphere. Radiance simulations based on a comprehensive radiative-transfer model for the coupled atmosphere-ocean system and measurements of the nadir remote-sensing reflectance at 670 nm compiled in the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) database are used to assess the validity of this method. The results show that (1) it is important to improve the flexibility of the reflectance model to provide more realistic predictions of the nadir NIR water-leaving reflectance for different ocean regions and (2) the isotropic assumption should be avoided in the retrieval of ocean color, if the chlorophyll concentration is larger than approximately 6, 10, and 40 mg m-3 when the aerosol optical depth is approximately 0.05, 0.1, and 0.3, respectively. Finally, we extend our scope to Case II ocean waters to gain insight and enhance our understanding of the NIR aspects of ocean color. The results show that the isotropic assumption is invalid in a wider range than in Case I waters owing to the enhanced water-leaving reflectance resulting from oceanic sediments in the NIR wavelengths.

  11. Determining phytoplankton community structure from ocean color at the Martha's Vineyard Coastal Observatory (MVCO)

    NASA Astrophysics Data System (ADS)

    Kramer, S. J.; Sosik, H. M.; Roesler, C. S.

    2016-02-01

    Satellite remote sensing of ocean color allows for estimates of phytoplankton biomass on broad spatial and temporal scales. Recently, a variety of approaches have been offered for determining phytoplankton taxonomic composition or phytoplankton functional types (PFTs) from remote sensing reflectance. These bio-optical algorithms exploit spectral differences to discriminate waters dominated by different types of cells. However, the efficacy of these models remains difficult to constrain due to limited datasets for detailed validation. In this study, we examined the region around the Martha's Vineyard Coastal Observatory (MVCO), a near-shore location on the New England shelf with optically complex coastal waters. This site offers many methods for detailed validation of ocean color algorithms: an AERONET-OC above-water radiometry system provides sea-truth ocean color observations; time series of absorption and backscattering coefficients are measured; and phytoplankton composition is assessed with a combination of continuous in situ flow cytometry and intermittent discrete sampling for HPLC pigments. Our analysis showed that even models originally parameterized for the Northwest Atlantic perform poorly in capturing the variability in relationships between optical properties and water constituents at coastal sites such as MVCO. We refined models with local parameterizations of variability in absorption and backscattering coefficients, and achieved much better agreement of modeled and observed relationships between predicted spectral reflectance, chlorophyll concentration, and indices of phytoplankton composition such as diatom dominance. Applying these refined models to satellite remote sensing imagery offers the possibility of describing large-scale variations in phytoplankton community structure both at MVCO and on the surrounding shelf over space and time.

  12. Seasonal to Decadal-Scale Variability in Satellite Ocean Color and Sea Surface Temperature for the California Current System

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Kahru, Mati; Marra, John (Technical Monitor)

    2002-01-01

    Support for this project was used to develop satellite ocean color and temperature indices (SOCTI) for the California Current System (CCS) using the historic record of CZCS West Coast Time Series (WCTS), OCTS, WiFS and AVHRR SST. The ocean color satellite data have been evaluated in relation to CalCOFI data sets for chlorophyll (CZCS) and ocean spectral reflectance and chlorophyll OCTS and SeaWiFS. New algorithms for the three missions have been implemented based on in-water algorithm data sets, or in the case of CZCS, by comparing retrieved pigments with ship-based observations. New algorithms for absorption coefficients, diffuse attenuation coefficients and primary production have also been evaluated. Satellite retrievals are being evaluated based on our large data set of pigments and optics from CalCOFI.

  13. NASA's Airborne Science DC-8, displaying new colors in a check flight Feb. 24, 2004, over the Dryden Flight Research Center

    NASA Image and Video Library

    2004-02-24

    NASA's large Airborne Science research aircraft, a modified DC-8 airliner, displayed new colors in a check flight Feb. 24, 2004, over its home base, the NASA Dryden Flight Research Center at Edwards AFB, California.

  14. Pluto in Extended Color

    NASA Image and Video Library

    2015-09-24

    This cylindrical projection map of Pluto, in enhanced, extended color, is the most detailed color map of Pluto ever made by NASA New Horizons. It uses recently returned color imagery from the New Horizons Ralph camera, which is draped onto a base map of images from the NASA's spacecraft's Long Range Reconnaissance Imager (LORRI). The map can be zoomed in to reveal exquisite detail with high scientific value. Color variations have been enhanced to bring out subtle differences. Colors used in this map are the blue, red, and near-infrared filter channels of the Ralph instrument. http://photojournal.jpl.nasa.gov/catalog/PIA19956

  15. NASA's DC-8 Airborne Science research aircraft, in new colors and markings, takes off Feb. 24, 2004

    NASA Image and Video Library

    2004-02-24

    NASA's DC-8 Airborne Science research aircraft, in new colors and markings, takes off Feb. 24, 2004. Dark panels on lower fuselage are synthetic aperture radar antennas enabling sophisticated studies of Earth features.

  16. NASA's DC-8 Airborne Science research aircraft, in new colors and markings, in flight Feb. 24, 2004

    NASA Image and Video Library

    2004-02-24

    NASA's DC-8 Airborne Science research aircraft, in new colors and markings, in flight Feb. 24, 2004. Dark panels on lower fuselage are synthetic aperture radar antennas enabling sophisticated studies of Earth features.

  17. Ocean Color and Evidence of Chlorophyll Signature in the TOMS Minimum Reflectivity Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Z.; Herman, J. R.; Bhartia, P. K.

    2003-01-01

    Analysis of the TOMS minimum reflectivity data for 380 nm channel (R380) show regions of high reflectivity values (approx. 7 to 8%) over Sargasso Sea in the Northern Atlantic, anti-cyclonic region in the Southern Atlantic, and a large part of the ocean in the Southern Pacific, and low values (5 approx. 6 %) over the rest of the open ocean. Through radiative transfer simulations we show that these features are highly correlated with the distribution of chlorophyll in the ocean. Theoretical minimum reflectivity values derived with the help of CZCS chlorophyll concentration data as input into a vector ocean-atmosphere radiative transfer code developed by Ahmad and Fraser show very good agreement with TOMS minimum reflectivity data for the winter season of year 1980. For the summer season of year 1980, good qualitative agreement is observed in the equatorial and northern hemisphere but not as good in the southern hemisphere. Also, for cloud-free conditions, we find a very strong correlation between R340 minus R380 values and the chlorophyll concentration in the ocean. Results on the possible effects of absorbing and non-absorbing aerosols on the TOMS minimum reflectivity will also be presented. The results also imply that ocean color will affect the aerosol retrieval over oceans unless corrected.

  18. A Network for Standardized Ocean Color Validation Measurements

    NASA Technical Reports Server (NTRS)

    Zibordi, Giuseppe; Holben, Brent; Hooker, Stanford; Melin, Frederic; Berthon, Jean-Francois; Slutsker, Ilya; Giles, David; Vandemark, Doug; Feng, Hui; Rutledge, Ken; hide

    2006-01-01

    The Aerosol Robotic Network (AERONET) was developed to support atmospheric studies at various scales with measurements from worldwide distributed autonomous sunphotometers [Holben et al. 1998]. AERONET has now extended its support to marine applications through the additional capability of measuring the radiance emerging from the sea with modified sun-photometers installed on offshore platforms like lighthouses, navigation aids, oceanographic and oil towers. The functionality of this added network component called AERONET - Ocean Color (AERONET-OC), has been verified at different sites and deployment structures over a four year testing phase. Continuous or occasional deployment platforms (see Fig. 1) included: the Acqua Alta Oceanographic Tower (AAOT) of the Italian National Research Council in the northern Adriatic Sea since spring 2002; the Martha s Vineyard Coastal Observatory (MVCO) tower of the Woods Hole Oceanographic Institution in the Atlantic off the Massachusetts coast for different periods since spring 2004; the TOTAL Abu-Al-Bukhoosh oil Platform (AABP, shown through an artistic rendition in Fig. 1) in the Persian (Arabian) Gulf in fall 2004; the Gustaf Dal n Lighthouse Tower (GDLT) of the Swedish Maritime Administration in the Baltic Sea in summer 2005; and the platform at the Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE) site located in the Atlantic Ocean off the Virginia coast since fall 2005. Data collected during the network testing phase, confirm the capability of AERONET-OC to support the validation of marine optical remote sensing products through standardized measurements of normalized water-leaving radiance, LWN, and aerosol optical thickness, a, at multiple coastal sites.

  19. Monitoring of hourly variations in coastal water turbidity using the geostationary ocean color imager (GOCI)

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ryu, J.

    2011-12-01

    Temporal variations of suspended sediment concentration (SSC) in coastal water are the key to understanding the pattern of sediment movement within coastal area, in particular, such as in the west coast of the Korean Peninsula which is influenced by semi-diurnal tides. Remote sensing techniques can effectively monitor the distribution and dynamic changes in seawater properties across wide areas. Thus, SSC on the sea surface has been investigated using various types of satellite-based sensors. An advantage of Geostationary Ocean Color Imager (GOCI), the world's first geostationary ocean color observation satellite, over other ocean color satellite images is that it can obtain data every hour during the day and makes it possible to monitor the ocean in real time. In this study, hourly variations in turbidity on the coastal waters were estimated quantitatively using GOCI. Thirty three water samples were obtained on the coastal water surface in southern Gyeonggi Bay, located on the west coast of Korea. Water samples were filtered using 25-mm glass fiber filters (GF/F) for the estimation of SSC. The radiometric characteristics of the surface water, such as the total water-leaving radiance (LwT, W/m2/nm/sr), the sky radiance (Lsky, W/m2/nm/sr) and the downwelling irradiance, were also measured at each sampling location. In situ optical properties of the surface water were converted into remote sensing reflectance (Rrs) and then were used to develop an algorithm to generate SSC images in the study area. GOCI images acquired on the same day as the samples acquisition were used to generate the map of turbidity and to estimate the difference in SSC displayed in each image. The estimation of the time-series variation in SSC in a coastal, shallow-water area affected by tides was successfully achieved using GOCI data that had been acquired at hourly intervals during the daytime.

  20. Airborne Mission Concept for Coastal Ocean Color and Ecosystems Research

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Morrow, John H.; Kudela, Raphael M.; Palacios, Sherry L.; Torres Perez, Juan L.; Hayashi, Kendra; Dunagan, Stephen E.

    2016-01-01

    NASA airborne missions in 2011 and 2013 over Monterey Bay, CA, demonstrated novel above- and in-water calibration and validation measurements supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The resultant airborne data characterize contemporaneous coastal atmospheric and aquatic properties plus sea-truth observations from state-of-the-art instrument systems spanning a next-generation spectral domain (320-875 nm). This airborne instrument suite for calibration, validation, and research flew at the lowest safe altitude (ca. 100 ft or 30 m) as well as higher altitudes (e.g., 6,000 ft or 1,800 m) above the sea surface covering a larger area in a single synoptic sortie than ship-based measurements at a few stations during the same sampling period. Data collection of coincident atmospheric and aquatic properties near the sea surface and at altitude allows the input of relevant variables into atmospheric correction schemes to improve the output of corrected imaging spectrometer data. Specific channels support legacy and next-generation satellite capabilities, and flights are planned to within 30 min of satellite overpass. This concept supports calibration and validation activities of ocean color phenomena (e.g., river plumes, algal blooms) and studies of water quality and coastal ecosystems. The 2011 COAST mission flew at 100 and 6,000 ft on a Twin Otter platform with flight plans accommodating the competing requirements of the sensor suite, which included the Coastal-Airborne In-situ Radiometers (C-AIR) for the first time. C-AIR (Biospherical Instruments Inc.) also flew in the 2013 OCEANIA mission at 100 and 1,000 ft on the Twin Otter below the California airborne simulation of the proposed NASA HyspIRI satellite system comprised of an imaging spectrometer and thermal infrared multispectral imager on the ER-2 at 65,000 ft (20,000 m). For both missions, the Compact-Optical Profiling System (Biospherical

  1. SeaWiFS technical report series. Volume 1: An overview of SeaWiFS and ocean color

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Esaias, Wayne E.; Feldman, Gene C.; Gregg, Watson W.; Mcclain, Charles R.

    1992-01-01

    The purpose of this series of technical reports is to provide current documentation of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project activities, instrument performance, algorithms, and operations. This documentation is necessary to ensure that critical information related to the quality and calibration of the satellite data is available to the scientific community. SeaWiFS will bring to the ocean community a welcomed and improved renewal of the ocean color remote sensing capability lost when the Nimbus-7 Coastal Zone Color Scanner (CZCS) ceased operating in 1986. The goal of SeaWiFS, scheduled to be launched in August 1993, is to examine oceanic factors that affect global change. Because of the role of phytoplankton in the global carbon cycle, data obtained from SeaWiFS will be used to assess the ocean's role in this cycle, as well as other biogeochemical cycles. SeaWiFS data will be used to help elucidate the magnitude and variability of the annual cycle of primary production by marine phytoplankton and to determine the distribution and timing of spring blooms. The observations will help to visualize the dynamics of ocean and costal currents, the physics of mixing, and the relationships between ocean physics and large-scale patterns of productivity. The data will help fill the gap in ocean biological observations between those of the CZCS and the upcoming Moderate Resolution Imaging Spectrometer (MODIS) on the Earth Observing System-A (EOS-A) satellite.

  2. Atmospheric correction of the ocean color observations of the medium resolution imaging spectrometer (MERIS)

    NASA Astrophysics Data System (ADS)

    Antoine, David; Morel, Andre

    1997-02-01

    An algorithm is proposed for the atmospheric correction of the ocean color observations by the MERIS instrument. The principle of the algorithm, which accounts for all multiple scattering effects, is presented. The algorithm is then teste, and its accuracy assessed in terms of errors in the retrieved marine reflectances.

  3. Classification of Hyperspectral or Trichromatic Measurements of Ocean Color Data into Spectral Classes.

    PubMed

    Prasad, Dilip K; Agarwal, Krishna

    2016-03-22

    We propose a method for classifying radiometric oceanic color data measured by hyperspectral satellite sensors into known spectral classes, irrespective of the downwelling irradiance of the particular day, i.e., the illumination conditions. The focus is not on retrieving the inherent optical properties but to classify the pixels according to the known spectral classes of the reflectances from the ocean. The method compensates for the unknown downwelling irradiance by white balancing the radiometric data at the ocean pixels using the radiometric data of bright pixels (typically from clouds). The white-balanced data is compared with the entries in a pre-calibrated lookup table in which each entry represents the spectral properties of one class. The proposed approach is tested on two datasets of in situ measurements and 26 different daylight illumination spectra for medium resolution imaging spectrometer (MERIS), moderate-resolution imaging spectroradiometer (MODIS), sea-viewing wide field-of-view sensor (SeaWiFS), coastal zone color scanner (CZCS), ocean and land colour instrument (OLCI), and visible infrared imaging radiometer suite (VIIRS) sensors. Results are also shown for CIMEL's SeaPRISM sun photometer sensor used on-board field trips. Accuracy of more than 92% is observed on the validation dataset and more than 86% is observed on the other dataset for all satellite sensors. The potential of applying the algorithms to non-satellite and non-multi-spectral sensors mountable on airborne systems is demonstrated by showing classification results for two consumer cameras. Classification on actual MERIS data is also shown. Additional results comparing the spectra of remote sensing reflectance with level 2 MERIS data and chlorophyll concentration estimates of the data are included.

  4. The Hyperspectral Imager for the Coastal Ocean (HICO): Four Years Operating on the International Space Station (Invited)

    NASA Astrophysics Data System (ADS)

    Davis, C. O.; Nahorniak, J.; Tufillaro, N.; Kappus, M.

    2013-12-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) is the first spaceborne imaging spectrometer designed to sample the coastal ocean. HICO images selected coastal regions at 92 m spatial resolution with full spectral coverage (88 channels covering 400 to 900 nm) and a high signal-to-noise ratio to resolve the complexity of the coastal ocean. Under sponsorship of the Office of Naval Research, HICO was built by the Naval Research Laboratory, which continues to operate the sensor. HICO has been operating on the International Space Station since October 2009 and has collected over 8000 scenes for more than 50 users. As Project Scientist I have been the link to the international ocean optics community primarily through our OSU HICO website (http://hico.oregonstate.edu). HICO operations are now under NASA support and HICO data is now also be available through the NASA Ocean Color Website (http://oceancolor.gsfc.nasa.gov ). Here we give a brief overview of HICO data and operations and discuss the unique challenges and opportunities that come from operating on the International Space Station.

  5. Color Image of Mercury from NASA's MESSENGER Satellite

    NASA Image and Video Library

    2017-12-08

    NASA image acquired September 3, 2011 Dominici crater, the very bright crater to the top of this image, exhibits bright rays and contains hollows. This crater lies upon the peak ring of Homer Basin, a very degraded peak ring basin that has been filled by volcanism. This image contains several examples of craters that have excavated materials from depth that are spectrally distinct from the surface volcanic layers, providing windows into the subsurface. MESSENGER scientists are estimating the approximate depths of these spectrally distinct materials by applying knowledge of how impacts excavate material during the cratering process. The 1000, 750, and 430 nm bands of the Wide Angle Camera are displayed in red, green, and blue, respectively. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 250-meter/pixel (820 feet/pixel) morphology base map or the 1-kilometer/pixel (0.6 miles/pixel) color base map. It is not possible to cover all of Mercury's surface at this high resolution during MESSENGER's one-year mission, but several areas of high scientific interest are generally imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System

  6. Predicting minimum uncertainties in the inversion of ocean color geophysical parameters based on Cramer-Rao bounds.

    PubMed

    Jay, Sylvain; Guillaume, Mireille; Chami, Malik; Minghelli, Audrey; Deville, Yannick; Lafrance, Bruno; Serfaty, Véronique

    2018-01-22

    We present an analytical approach based on Cramer-Rao Bounds (CRBs) to investigate the uncertainties in estimated ocean color parameters resulting from the propagation of uncertainties in the bio-optical reflectance modeling through the inversion process. Based on given bio-optical and noise probabilistic models, CRBs can be computed efficiently for any set of ocean color parameters and any sensor configuration, directly providing the minimum estimation variance that can be possibly attained by any unbiased estimator of any targeted parameter. Here, CRBs are explicitly developed using (1) two water reflectance models corresponding to deep and shallow waters, resp., and (2) four probabilistic models describing the environmental noises observed within four Sentinel-2 MSI, HICO, Sentinel-3 OLCI and MODIS images, resp. For both deep and shallow waters, CRBs are shown to be consistent with the experimental estimation variances obtained using two published remote-sensing methods, while not requiring one to perform any inversion. CRBs are also used to investigate to what extent perfect a priori knowledge on one or several geophysical parameters can improve the estimation of remaining unknown parameters. For example, using pre-existing knowledge of bathymetry (e.g., derived from LiDAR) within the inversion is shown to greatly improve the retrieval of bottom cover for shallow waters. Finally, CRBs are shown to provide valuable information on the best estimation performances that may be achieved with the MSI, HICO, OLCI and MODIS configurations for a variety of oceanic, coastal and inland waters. CRBs are thus demonstrated to be an informative and efficient tool to characterize minimum uncertainties in inverted ocean color geophysical parameters.

  7. Fall colors in eastern United States and Canada

    NASA Image and Video Library

    2014-10-01

    As temperatures dropped and daylight began to shorten, autumn colors began to wash over the deciduous forests of North America. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image of the northeastern United States and Canada on September 27, 2014. Washes of orange, brown and yellow are brightest in the Upper Peninsula of Michigan, upstate New York, New Hampshire, Vermont, Maine, and southern Quebec and Ontario. Also, faint traces of phytoplankton blooms can be seen in the offshore waters of the Atlantic Ocean. The transition of autumn leaves from green, to glowing with colors, to browning and dropping to the ground, involve several complex interactions and reactions. However, length of sunlight and the temperature changes are dominant factors. Topography also plays a role, as does latitude. Temperature tends to drop faster at higher elevations and at higher latitudes, and day length shortens more quickly at higher latitudes. Color change tends to begin in the north and sweep southward, and change begins at mountain tops then moves into valleys. As explained by the U.S. Forest Service, certain species of trees produce certain colors. Oaks generally turn red, brown, or russet; hickories become golden bronze; aspen and yellow-poplar turn golden. Maples differ by species. Red maple turns brilliant scarlet; sugar maple, orange-red; and black maple, yellow. Leaves of some trees, such as elms, simply become brown. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Accurately Measuring the Color of the Ocean on Earth and from Space: Uncertainties Revisited and A Report from the Community-Led Spectral Absorption Workshop to Update and Revise the NASA Inherent Optical Properties Protocol

    NASA Technical Reports Server (NTRS)

    Neeley, Aimee Renee

    2014-01-01

    The color of the ocean (apparent optical properties or AOPs) is determined by the spectral scattering and absorption of light by its dissolved and particulate constituents.The absorption and scattering properties of the water column are the so-called inherent optical properties.

  9. Global Distribution of Aerosols Over the Open Ocean as Derived from the Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Stegmann, P. M.; Tindale, N. W.

    1999-01-01

    Climatological maps of monthly mean aerosol radiance levels derived from the coastal zone color scanner (CZCS) were constructed for the world's ocean basins. This is the first study to use the 7.5.-year CZCS data set to examine the distribution and seasonality of aerosols over the open ocean on a global scale. Examination of our satellite images found the most prominent large-scale patch of elevated aerosol radiances in each month off the coast of northwest Africa. The well-known, large-scale plumes of elevated aerosol levels in the Arabian Sea, the northwest Pacific, and off the east coast of North America were also successfully captured. Radiance data were extracted from 13 major open-ocean zones, ranging from the subpolar to equatorial regions. Results from these extractions revealed the aerosol load in both subpolar and subtropical zones to be higher in the Northern Hemisphere than in the Southern Hemisphere. Aerosol radiances in the subtropics of both hemispheres were about 2 times higher in summer than in winter. In subpolar regions, aerosol radiances in late spring/early summer were almost 3 times that observed in winter. In general, the aerosol signal was higher during the warmer months and lower during the cooler months, irrespective of location. A comparison between our mean monthly aerosol radiance maps with mean monthly chlorophyll maps (also from CZCS) showed similar seasonality between aerosol and chlorophyll levels in the subpolar zones of both hemispheres, i.e., high levels in summer, low levels in winter. In the subtropics of both hemispheres, however, chlorophyll levels were higher in winter months which coincided with a depressed aerosol signal. Our results indicate that the near-IR channel on ocean color sensors can be used to successfully capture well-known, large-scale aerosol plumes on a global scale and that future ocean color sensors may provide a platform for long-term synoptic studies of combined aerosol-phytoplankton productivity

  10. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    NASA Technical Reports Server (NTRS)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with

  11. Ocean-color Satellites and the Phytoplankton-dust Connection

    NASA Technical Reports Server (NTRS)

    Stegmann, P. M.

    2000-01-01

    Results of a time series of satellite measurements of aerosol radiance made with two ocean-color sensors are presented. Data from the Coastal Zone Color Scanner (CZCS) were collected from 1978 to 1986. The follow-on sensor, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), has been transmitting data since September 1997. Both CZCS and SeaWiFS images successfully depicted regions of well-known, large-scale mineral aerosol plumes, the seasonality of which corresponds to that found by other satellite and land-based platforms. Aerosol radiance extractions were made for two subregions in the North Atlantic, both of which are recipients of regular mineral aerosol deposits originating from northwest Africa. In the almost eight-year time series obtained with CZCS, the annual cycle in both subregions follows a similar pattern each year and agrees well with results from the published literature. However, there is interannual variability and the observed fluctuations may be linked to climatic shifts associated with the North Atlantic Oscillation. The SeaWiFS annual cycle of aerosol radiance in both subregions closely followed that found in the CZCS climatology; SeaWiFS-measured aerosol optical thickness mirrors aerosol radiance to a high degree. The higher temporal resolution offered by the SeaWiFS data demonstrates the sporadic nature of dust events throughout the entire year and not only during the high dust season.

  12. Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component.

    PubMed

    Gordon, H R; Wang, M

    1992-07-20

    The first step in the coastal zone color scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering contribution, Lr(r), to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm Lr(r), is computed by assuming that the ocean surface is flat. Computations of the radiance leaving a Rayleigh-scattering atmosphere overlying a rough Fresnel-reflecting ocean are presented to assess the radiance error caused by the flat-ocean assumption. The surface-roughness model is described in detail for both scalar and vector (including polarization) radiative transfer theory. The computations utilizing the vector theory show that the magnitude of the error significantly depends on the assumptions made in regard to the shadowing of one wave by another. In the case of the coastal zone color scanner bands, we show that for moderate solar zenith angles the error is generally below the 1 digital count level, except near the edge of the scan for high wind speeds. For larger solar zenith angles, the error is generally larger and can exceed 1 digital count at some wavelengths over the entire scan, even for light winds. The error in Lr(r) caused by ignoring surface roughness is shown to be the same order of magnitude as that caused by uncertainties of +/- 15 mb in the surface atmospheric pressure or of +/- 50 Dobson units in the ozone concentration. For future sensors, which will have greater radiometric sensitivity, the error caused by the flat-ocean assumption in the computation of Lr(r) could be as much as an order of magnitude larger than the noise-equivalent spectral radiance in certain situations.

  13. Characteristic vector analysis of inflection ratio spectra: New technique for analysis of ocean color data

    NASA Technical Reports Server (NTRS)

    Grew, G. W.

    1985-01-01

    Characteristic vector analysis applied to inflection ratio spectra is a new approach to analyzing spectral data. The technique applied to remote data collected with the multichannel ocean color sensor (MOCS), a passive sensor, simultaneously maps the distribution of two different phytopigments, chlorophyll alpha and phycoerythrin, the ocean. The data set presented is from a series of warm core ring missions conducted during 1982. The data compare favorably with a theoretical model and with data collected on the same mission by an active sensor, the airborne oceanographic lidar (AOL).

  14. Spectral Variability of Airborne Ocean Color Data Linked to Variations in Lidar Backscattering Profiles

    DTIC Science & Technology

    2009-01-01

    1008.3 r <•-• ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 703Q 4 ’𔃻 iJL:,. iUn’i i’-"Vt... global ocean color sensors (e.g., MODIS). Also, this resolution roughly matches the swath of MicroSAS radiometric measurements in the visible range

  15. NASA-NOAA's Suomi NPP Satellite Captures Night-time Look at Cyclone Felleng

    NASA Image and Video Library

    2017-12-08

    NASA-NOAA's Suomi NPP satellite captured this false-colored night-time image of Cyclone Felleng during the night on Jan. 28, 2013. Felleng is located in the Southern Indian Ocean, and is northwest of Madagascar. The image revealed some pretty cold overshooting tops, topping at ~170K. The image shows some interesting gravity waves propagating out from the storm in both the thermal and visible imagery. For full storm history on NASA's Hurricane Web Page, visit: www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013... Credit: William Straka, UWM/NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. NASA-NOAA's Suomi NPP Satellite Captures Night-time Look at Cyclone Felleng

    NASA Image and Video Library

    2013-01-31

    NASA-NOAA's Suomi NPP satellite captured this false-colored night-time image of Cyclone Felleng during the night on Jan. 28, 2013. Felleng is located in the Southern Indian Ocean, and is northwest of Madagascar. The image revealed some pretty cold overshooting tops, topping at ~170K. The image shows some interesting gravity waves propagating out from the storm in both the thermal and visible imagery. For full storm history on NASA's Hurricane Web Page, visit: www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013... Credit: William Straka, UWM/NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Greenland's Coast in Holiday Colors

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Vibrant reds, emerald greens, brilliant whites, and pastel blues adorn this view of the area surrounding the Jakobshavn Glacier on the western coast of Greenland. The image is a false-color (near-infrared, green, blue) view acquired by the Multi-angle Imaging SpectroRadiometer's nadir camera. The brightness of vegetation in the near-infrared contributes to the reddish hues; glacial silt gives rise to the green color of the water; and blue-colored melt ponds are visible in the bright white ice. A scattering of small icebergs in Disco Bay adds a touch of glittery sparkle to the scene.

    The large island in the upper left is called Qeqertarsuaq. To the east of this island, and just above image center, is the outlet of the fast-flowing Jakobshavn (or Ilulissat) glacier. Jakobshavn is considered to have the highest iceberg production of all Greenland glaciers and is a major drainage outlet for a large portion of the western side of the ice sheet. Icebergs released from the glacier drift slowly with the ocean currents and pose hazards for shipping along the coast.

    The Multi-angle Imaging SpectroRadiometer views the daylit Earth continuously and the entire globe between 82 degrees north and 82 degrees south latitude is observed every 9 days. These data products were generated from a portion of the imagery acquired on June 18, 2003 during Terra orbit 18615. The image cover an area of about 254 kilometers x 210 kilometers, and use data from blocks 34 to 35 within World Reference System-2 path 10.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  18. Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  19. Ocean color remote sensing using polarization properties of reflected sunlight

    NASA Technical Reports Server (NTRS)

    Frouin, R.; Pouliquen, E.; Breon, F.-M.

    1994-01-01

    The effects of the atmosphere and surface on sunlight backscattered to space by the ocean may be substantially reduced by using the unpolarized component of reflectance instead of total reflectance. At 450 nm, a wavelength of interest in ocean color remote sensing, and for typical conditions, 45% of the unpolarized reflectance may originate from the water body instead of 20% of the total reflectance, which represents a gain of a factor 2.2 in useful signal for water composition retrieval. The best viewing geometries are adjacent to the glitter region; they correspond to scattering angles around 100 deg, but they may change slightly depending on the polarization characteristics of the aerosols. As aerosol optical thickness increases, the atmosphere becomes less efficient at polarizing sunlight, and the enhancement of the water body contribution to unpolarized reflectance is reduced. Since the perturbing effects are smaller on unpolarized reflectance, at least for some viewing geometries, they may be more easily corrected, leading to a more accurate water-leaving signal and, therefore, more accurate estimates of phytoplankton pigment concentration.

  20. The results of initial analysis of OSTA-1/Ocean Color Experiment (OCE) imagery

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hart, W. D.

    1982-01-01

    Ocean view images from the Ocean Color Experiment (OCE) were produced at three widely separated locations on the Earth. Digital computer enhancement and band ratioing techniques were applied to radiometrically corrected OCE spectral data to emphasize patterns of chlorophyll distribution and, in one shallow, clear water case, bottom topography. The chlorophyll pattern in the Yellow Sea between China and Korea was evident in a scene produced from Shuttle Orbit 24. The effects of the discharge from the Yangtze and other rivers were also observed. Two scenes from orbits 30 and 32 revealed the movement of patches of plankton in the Gulf of Cadiz. Geometrical corrections to these images permitted the existing ocean current velocities in the vicinity to be deduced. The variability in water depth over the Grand Bahama Bank was estimated by using the blue-green OCE channel. The very clear water conditions in the area caused bottom reflected sunlight to produce a sensor signal which was related inversely to the depth of the water.

  1. The Design & Development of the Ocean Color Instrument Precision Superduplex Hybrid Bearing Cartridge

    NASA Technical Reports Server (NTRS)

    Schepis, Joseph; Woodard, Timothy; Hakun, Claef; Bergandy, Konrad; Church, Joseph; Ward, Peter; Lee, Michael; Conti, Alfred; Guzek, Jeffrey

    2018-01-01

    A high precision, high-resolution Ocean Color Imaging (OCI) instrument is under development for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission which requires a pair of medium speed mechanisms to scan the ocean surface continuously. The design of the rotating telescope (RT) mechanism operating at 360 RPM and the half-angle mirror (HAM) mechanism synchronized at 180 RPM was concern for maintaining pointing precision over the required life and continuous operations. An effort was undertaken with the manufacturer to design and analyze a special bearing configuration to minimize axial and radial runout, minimize torque, and maintain nominal contact stresses and stiffness over the operating temperature range and to maximize life. The bearing design, development effort, analysis and testing will be discussed as will the technical challenges that this specific design imposed upon the mechanism engineers. Bearing performance, runout as achieved and verified during encoder installation and operating torque will be described.

  2. Moon - False Color Mosaic

    NASA Image and Video Library

    1996-01-29

    This false-color photograph is a composite of 15 images of the Moon taken through three color filters NASA's Galileo solid-state imaging system during the spacecraft passage through the Earth-Moon system on December 8, 1992. http://photojournal.jpl.nasa.gov/catalog/PIA00132

  3. New NASA Imagery Sheds Additional Perspectives on Tsunami

    NASA Image and Video Library

    2005-01-12

    The island of Phuket on the Indian Ocean coast of Thailand is a major tourist destination and was also in the path of the tsunami that washed ashore on December 26, 2004. These simulated natural color ASTER images show a 27 kilometer (17-mile) long stretch of coast north of the Phuket airport on December 31 (right), along with an image acquired two years earlier (left). The changes along the coast are obvious where the vegetation has been stripped away. http://photojournal.jpl.nasa.gov/catalog/PIA07227

  4. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll

    NASA Astrophysics Data System (ADS)

    Antoine, David; André, Jean-Michel; Morel, André

    A fast method has been proposed [Antoine and Morel, this issue] to compute the oceanic primary production from the upper ocean chlorophyll-like pigment concentration, as it can be routinely detected by a spaceborne ocean color sensor. This method is applied here to the monthly global maps of the photosynthetic pigments that were derived from the coastal zone color scanner (CZCS) data archive [Feldman et al., 1989]. The photosynthetically active radiation (PAR) field is computed from the astronomical constant and by using an atmospheric model, thereafter combined with averaged cloud information, derived from the International Satellite Cloud Climatology Project (ISCCP). The aim is to assess the seasonal evolution, as well as the spatial distribution of the photosynthetic carbon fixation within the world ocean and for a ``climatological year,'' to the extent that both the chlorophyll information and the cloud coverage statistics actually are averages obtained over several years. The computed global annual production actually ranges between 36.5 and 45.6 Gt C yr-1 according to the assumption which is made (0.8 or 1) about the ratio of active-to-total pigments (recall that chlorophyll and pheopigments are not radiometrically resolved by CZCS). The relative contributions to the global productivity of the various oceans and zonal belts are examined. By considering the hypotheses needed in such computations, the nature of the data used as inputs, and the results of the sensitivity studies, the global numbers have to be cautiously considered. Improving the reliability of the primary production estimates implies (1) new global data sets allowing a higher temporal resolution and a better coverage, (2) progress in the knowledge of physiological responses of phytoplankton and therefore refinements of the time and space dependent parameterizations of these responses.

  5. The Yellow Sea [high res

    NASA Image and Video Library

    2015-02-27

    Remote sensing of ocean color in the Yellow Sea can be a challenge. Phytoplankton, suspended sediments, and dissolved organic matter color the water while various types of aerosols modify those colors before they are "seen" by orbiting radiometers. The Aqua-MODIS data used to create the above image were collected on February 24, 2015. NASA's OceanColor Web is supported by the Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Center. Our responsibilities include the collection, processing, calibration, validation, archive and distribution of ocean-related products from a large number of operational, satellite-based remote-sensing missions providing ocean color, sea surface temperature and sea surface salinity data to the international research community since 1996. Credit: NASA/Goddard/Ocean Color NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Shaded Relief with Height as Color, Kerguelen Island, south Indian Ocean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These two images show exactly the same area, Kerguelen Island in the southern Indian Ocean. The image on the left was created using the best global topographic data set previously available, the U.S. Geological Survey's GTOPO30. In contrast, the much more detailed image on the right was generated with data from the Shuttle Radar Topography Mission, which collected enough measurements to map 80 percent of Earth's landmass at this level of precision.

    Discovered in 1772 by French navigator Chevalier Yves deKerguelen-Tremarac, Kerguelen is the largest of a group of 300 islands, islets and reefs that make up the Kerguelen Archipelago. The islands lie atop the Kerguelen-Gaussberg Ridge and are built up of a thick series of lava flows with deposits of fragmented volcanic rock and some granite. Ice covers about one-third of the island, with the large Cook Glacier visible as the tan-colored region at the center-left. The highest point at 1,850 meters (6,068 feet) is glacier-covered Mount Ross, located near the bottom center. The coastline of the main island is highly irregular with a large number of peninsulas linked to the island by narrow isthmuses. Remarkably, although the island is 120 by 140 kilometers (75 by 87 miles) in size no point is more than 20 kilometers (12 miles) from the sea.

    For some parts of the globe, Shuttle Radar Topography Mission measurements are 30 times more precise than previously available topographical information, according to NASA scientists. Mission data will be a welcome resource for national and local governments, scientists, commercial enterprises, and members of the public alike. The applications are as diverse as earthquake and volcano studies, flood control, transportation, urban and regional planning, aviation, recreation, and communications. The data's military applications include mission planning and rehearsal, modeling, and simulation.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission

  7. Monitoring and Predicting the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Field Program

    NASA Astrophysics Data System (ADS)

    Exports Science Definition Team

    2016-04-01

    Ocean ecosystems play a critical role in the Earth's carbon cycle and its quantification on global scales remains one of the greatest challenges in global ocean biogeochemistry. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) science plan is to develop a predictive understanding of the export and fate of global ocean primary production and its implications for the Earth's carbon cycle in present and future climates. NASA's satellite ocean-color data record has revolutionized our understanding of global marine systems. EXPORTS is designed to advance the utility of NASA ocean color assets to predict how changes in ocean primary production will impact the global carbon cycle. EXPORTS will create a predictive understanding of both the export of organic carbon from the euphotic zone and its fate in the underlying "twilight zone" (depths of 500 m or more) where variable fractions of exported organic carbon are respired back to CO2. Ultimately, it is the sequestration of deep organic carbon transport that defines the impact of ocean biota on atmospheric CO2 levels and hence climate. EXPORTS will generate a new, detailed understanding of ocean carbon transport processes and pathways linking upper ocean phytoplankton processes to the export and fate of organic matter in the underlying twilight zone using a combination of field campaigns, remote sensing and numerical modeling. The overarching objective for EXPORTS is to ensure the success of future satellite missions by establishing mechanistic relationships between remotely sensed signals and carbon cycle processes. Through a process-oriented approach, EXPORTS will foster new insights on ocean carbon cycling that will maximize its societal relevance and be a key component in the U.S. investment to understand Earth as an integrated system.

  8. MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols. Chapter 2

    NASA Technical Reports Server (NTRS)

    Clark, Dennis K.; Yarbrough, Mark A.; Feinholz, Mike; Flora, Stephanie; Broenkow, William; Kim, Yong Sung; Johnson, B. Carol; Brown, Steven W.; Yuen, Marilyn; Mueller, James L.

    2003-01-01

    The Marine Optical Buoy (MOBY) is the centerpiece of the primary ocean measurement site for calibration of satellite ocean color sensors based on independent in situ measurements. Since late 1996, the time series of normalized water-leaving radiances L(sub WN)(lambda) determined from the array of radiometric sensors attached to MOBY are the primary basis for the on-orbit calibrations of the USA Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Japanese Ocean Color and Temperature Sensor (OCTS), the French Polarization Detection Environmental Radiometer (POLDER), the German Modular Optoelectronic Scanner on the Indian Research Satellite (IRS1-MOS), and the USA Moderate Resolution Imaging Spectrometer (MODIS). The MOBY vicarious calibration L(sub WN)(lambda) reference is an essential element in the international effort to develop a global, multi-year time series of consistently calibrated ocean color products using data from a wide variety of independent satellite sensors. A longstanding goal of the SeaWiFS and MODIS (Ocean) Science Teams is to determine satellite-derived L(sub WN)(labda) with a relative combined standard uncertainty of 5 %. Other satellite ocean color projects and the Sensor Intercomparison for Marine Biology and Interdisciplinary Oceanic Studies (SIMBIOS) project have also adopted this goal, at least implicitly. Because water-leaving radiance contributes at most 10 % of the total radiance measured by a satellite sensor above the atmosphere, a 5 % uncertainty in L(sub WN)(lambda) implies a 0.5 % uncertainty in the above-atmosphere radiance measurements. This level of uncertainty can only be approached using vicarious-calibration approaches as described below. In practice, this means that the satellite radiance responsivity is adjusted to achieve the best agreement, in a least-squares sense, for the L(sub WN)(lambda) results determined using the satellite and the independent optical sensors (e.g. MOBY). The end result of this approach is to

  9. The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Sayer, Andrew M.; Ahmad, Ziauddin; Franz, Bryan A.

    2016-01-01

    As atmospheric reflectance dominates top-of-the-atmosphere radiance over ocean, atmospheric correction is a critical component of ocean color retrievals. This paper explores the operational Sea-viewing Wide Field-of-View Sensor (SeaWiFS) algorithm atmospheric correction with approximately 13 000 coincident surface-based aerosol measurements. Aerosol optical depth at 440 nm (AOD(sub 440)) is overestimated for AOD below approximately 0.1-0.15 and is increasingly underestimated at higher AOD; also, single-scattering albedo (SSA) appears overestimated when the actual value less than approximately 0.96.AOD(sub 440) and its spectral slope tend to be overestimated preferentially for coarse-mode particles. Sensitivity analysis shows that changes in these factors lead to systematic differences in derived ocean water-leaving reflectance (Rrs) at 440 nm. The standard SeaWiFS algorithm compensates for AOD anomalies in the presence of nonabsorbing, medium-size-dominated aerosols. However, at low AOD and with absorbing aerosols, in situ observations and previous case studies demonstrate that retrieved Rrs is sensitive to spectral AOD and possibly also SSA anomalies. Stratifying the dataset by aerosol-type proxies shows the dependence of the AOD anomaly and resulting Rrs patterns on aerosol type, though the correlation with the SSA anomaly is too subtle to be quantified with these data. Retrieved chlorophyll-a concentrations (Chl) are affected in a complex way by Rrs differences, and these effects occur preferentially at high and low Chl values. Absorbing aerosol effects are likely to be most important over biologically productive waters near coasts and along major aerosol transport pathways. These results suggest that future ocean color spacecraft missions aiming to cover the range of naturally occurring and anthropogenic aerosols, especially at wavelengths shorter than 440 nm, will require better aerosol amount and type constraints.

  10. Investigation the Behavior of Modis Ocean Color Products Under the 2008 Red Tide in the Eastern Persian Gulf

    NASA Astrophysics Data System (ADS)

    Ghanea, M.; Moradi, M.; Kabiri, K.

    2015-12-01

    Biophysical properties of water undergo serious variations under red tide (RT) outbreak. During RT conditions, algal blooms spread out in the estuarine, marine and fresh waters due to different triggering factors such as nutrient loading, marine currents, and monsoonal winds. The Persian Gulf (PG) was a talent region subjected to different RTs in recent decade. A massive RT started from the Strait of Hormuz in October 2008 and extended towards the northern parts of the PG covering more than 1200 km of coastlines. The bloom of microorganism C. Polykrikoides was the main specie that generated large fish mortalities, and hampered marine industries, and water desalination appliances. Ocean color satellite data have many advantages to monitor and alarm RT occurrences, such as wide and continuous extent, short time of imagery, high accessibility, and appropriate estimation of ocean color parameters. Since 1999, MODerate Resolution Imaging Spectroradiometer (MODIS) satellite sensor has estimated satellite derived chlorophyll-a (Chl-a), normalized fluorescence line height (nFLH), and diffuse attenuation coefficient at 490nm (kd490). It provides a capability to study the behavior of these parameters during RT and normal conditions. This study monitors variations in satellite derived Chl-a, nFLH, and kd490 under both RT and normal conditions of the PG between 2002 and 2008. Up to now, daily and monthly variations in these products were no synchronously investigated under RT conditions in the PG. In doing so, the MODIS L1B products were provided from NASA data archive. They were corrected for Rayleigh scattering and gaseous absorption, and atmospheric interference in turbid coastal waters, and then converted to level 2 data. In addition, Enhanced Red Green Blue (ERGB) image was used to illustrate better water variations. ERGB image was built with three normalized leaving water radiance between 443 to 560nm. All the above data processes were applied by SeaDAS 7 software

  11. Quantifying the Bering Strait Oceanic Fluxes and their Impacts on Sea-Ice and Water Properties in the Chukchi and Beaufort Seas and Western Arctic Ocean for 2013-2014

    DTIC Science & Technology

    2014-09-30

    Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard...was extremely good. The ADCPs and lower level temperature and salinity sensors all returned complete records. All 3 moorings also carried upper... Pavlov , and M. Kulakov (1999), The Siberian Coastal Current: a wind- and buoyancy-forced Arctic coastal current, J. Geophys. Res., 104(C12), 29697

  12. Coastal Zone Color Scanner (CZCS): Imagery of near-surface phytoplankton pigment concentrations from the first coastal ocean dynamics experiment (CODE-1), March - July 1981

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.; Zion, P. M.

    1984-01-01

    As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.

  13. NASA Sees Hurricane Olaf Move into Central Pacific Ocean

    NASA Image and Video Library

    2017-12-08

    On Oct. 19 at 19:35 UTC (3:35 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite saw Hurricane Olaf moving into the central Pacific Ocean with a visible eye. Powerful thunderstorms circled the eye and extended in a thick band in the eastern quadrant from north to south. At 5 a.m. EDT (0900 UTC) on Oct. 20, Hurricane Olaf's center was located near latitude 10.3 north and longitude 140.4 west. That's about 1,175 miles (1,890 km) east-southeast of Hilo, Hawaii. Despite being so far from Hawaii and because Olaf is a powerful hurricane, large swells generated by Olaf will begin to arrive along east facing shores of the main Hawaiian Islands over the next couple of days. The CPHC said that resultant surf will be large...potentially life-threatening and damaging. Olaf is moving toward the west-northwest near 10 mph (17 kph) and the Central Pacific Hurricane Center (CPHC), who has taken over forecast responsibilities now that Olaf has crossed the 140 degree longitude line, expects Olaf to turn toward the west-northwest and then northwest by October 21. Maximum sustained winds are near 150 mph (240 kph). Olaf is a category four hurricane on the Saffir-Simpson Hurricane wind scale. Some additional strengthening is forecast on Tuesday, Oct. 20 and fluctuations in intensity are possible Tuesday night and Wednesday. The estimated minimum central pressure is 938 millibars. Olaf is expected to remain a major hurricane for the next couple of days and begin curving to the northeast and away from Hawaii by Friday, October 23. For updates, visit: www.prh.noaa.gov/cphc. Credit: NASA Goddard's MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on

  14. Suomi NPP Satellite Views of Tropical Cyclone Mahasen in the Northern Indian Ocean

    NASA Image and Video Library

    2017-12-08

    The first tropical cyclone in the Northern Indian Ocean this season has been getting better organized as seen in NASA satellite imagery. Tropical Cyclone Mahasen is projected to track north through the Bay of Bengal and make landfall later this week. On May 13, NASA-NOAA's Suomi NPP satellite captured various night-time and day-time imagery that showed Mesospheric Gravity Waves, lightning, and heavy rainfall in false-colored imagery. For more information and updates on Cyclone Mahasen, visit NASA's Hurricane page at www.nasa.gov/hurricane. Image Credit: UWM-CIMSS/William Straka III/NASA/NOAA Text Credit: NASA Goddard/Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Improved ocean-color remote sensing in the Arctic using the POLYMER algorithm

    NASA Astrophysics Data System (ADS)

    Frouin, Robert; Deschamps, Pierre-Yves; Ramon, Didier; Steinmetz, François

    2012-10-01

    Atmospheric correction of ocean-color imagery in the Arctic brings some specific challenges that the standard atmospheric correction algorithm does not address, namely low solar elevation, high cloud frequency, multi-layered polar clouds, presence of ice in the field-of-view, and adjacency effects from highly reflecting surfaces covered by snow and ice and from clouds. The challenges may be addressed using a flexible atmospheric correction algorithm, referred to as POLYMER (Steinmetz and al., 2011). This algorithm does not use a specific aerosol model, but fits the atmospheric reflectance by a polynomial with a non spectral term that accounts for any non spectral scattering (clouds, coarse aerosol mode) or reflection (glitter, whitecaps, small ice surfaces within the instrument field of view), a spectral term with a law in wavelength to the power -1 (fine aerosol mode), and a spectral term with a law in wavelength to the power -4 (molecular scattering, adjacency effects from clouds and white surfaces). Tests are performed on selected MERIS imagery acquired over Arctic Seas. The derived ocean properties, i.e., marine reflectance and chlorophyll concentration, are compared with those obtained with the standard MEGS algorithm. The POLYMER estimates are more realistic in regions affected by the ice environment, e.g., chlorophyll concentration is higher near the ice edge, and spatial coverage is substantially increased. Good retrievals are obtained in the presence of thin clouds, with ocean-color features exhibiting spatial continuity from clear to cloudy regions. The POLYMER estimates of marine reflectance agree better with in situ measurements than the MEGS estimates. Biases are 0.001 or less in magnitude, except at 412 and 443 nm, where they reach 0.005 and 0.002, respectively, and root-mean-squared difference decreases from 0.006 at 412 nm to less than 0.001 at 620 and 665 nm. A first application to MODIS imagery is presented, revealing that the POLYMER algorithm is

  16. SeaWinds - Oceans, Land, Polar Regions

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.

    This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.

    The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.

    The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.

    NASA's Earth Science Enterprise is a long-term research and technology program designed to

  17. Using the multiangle polarimetric measuring capabilities of the 2010 NASA/Glory mission to separate atmospheric scattering contributions from radiances emerging from open oceans in the visible part of the spectrum

    NASA Astrophysics Data System (ADS)

    Chowdhary, J.; Cairns, B.; Mishchenko, M. I.; Carlson, B. E.

    2009-12-01

    Answering the question of what measurements represent benchmarks for the state of the climate of the Earth is one that is of crucial importance for determining what remote sensing measurements will be made in the future. The Aerosol Polarimetry Sensor (APS), scheduled for launch into the A-train in 2010 onboard the NASA/Glory Mission, will provide multiangle, multispectral polarized reflectance measurements of sunlight reflected by the Earth’s atmosphere-surface system. The accuracy of aerosol retrievals from these measurements has already been demonstrated in field campaigns with data obtained by an airborne version of the APS, namely, the Research Scanning Polarimeter (RSP). There are several factors contributing to the success of these retrievals. One of these is the better tools available for the analyses of polarized reflectance than for the analyses of total reflectance which allows the atmospheric scattering contributions to be separated from reflection by the lower boundary whether the underlying surface be land, an ocean or lake, or even clouds. The one we focus on here is the capability to use polarization to separate atmospheric scattering from water- leaving radiances. We review a radiative transfer model for underwater light scattering that computes these radiances, and apply the results to analyses of data obtained by the RSP over the open ocean during the MILAGRO field campaign. We demonstrate that the sensitivity of remotely sensed polarized reflectances to variations in the ocean color is much smaller than that of total reflectances. Uncertainties in underwater light scattering properties that are difficult to quantify, such as absorption by colored dissolved organic materials, have a negligible effect on the polarized reflectances whereas the reflectances are substantially affected in the blue/UV part of the spectrum. This of course means that, while the polarized reflectances can be used to characterize the atmosphere, valuable information can

  18. A Pluto Color Combo

    NASA Image and Video Library

    2015-07-06

    This color version of NASA's New Horizons Long Range Reconnaissance Imager (LORRI) picture of Pluto taken July 3, 2015, was created by adding color data from the Ralph instrument gathered earlier in the mission. The LORRI image was taken from a range of 7.8 million miles (12.5 million km), with a central longitude of 19°. http://photojournal.jpl.nasa.gov/catalog/PIA19699

  19. Melas Chasma - False Color

    NASA Image and Video Library

    2015-02-27

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Melas Chasma. Orbit Number: 4622 Latitude: -12.797 Longitude: 288.629 Instrument: VIS Captured: 2002-12-30 00:28 http://photojournal.jpl.nasa.gov/catalog/PIA19218

  20. NASA CNES SWOT Agreement

    NASA Image and Video Library

    2014-05-02

    NASA Administrator Charles Bolden, left, and Centre National d'Études Spatiales (CNES) President Jean-Yves Le Gall sign an agreement to move from feasibility studies to implementation of the Surface Water and Ocean Topography (SWOT) mission, Friday, May 2, 2014 at NASA Headquarters in Washington. The SWOT mission will use wide swath altimetry technology to produce high-resolution elevation measurements of the surface of lakes, reservoirs, and wetlands and of the ocean surface. Photo Credit: (NASA/Bill Ingalls)

  1. Intersatellite comparisons and evaluations of three ocean color products along the Zhejiang coast, eastern China

    NASA Astrophysics Data System (ADS)

    Cui, Qiyuan; Wang, Difeng; Gong, Fang; Pan, Delu; Hao, Zengzhou; Wang, Tianyu; Zhu, Qiankun

    2017-10-01

    With its broad spatial coverage and fine temporal resolution, ocean color remote sensing data represents an effective tool for monitoring large areas of ocean, and has the potential to provide crucial information in coastal waters where routine monitoring is either lacking or unsatisfactory. The semi-analytical or empirical algorithms that work well in Case 1 waters encounter many problems in offshore areas where the water is often optically complex and presents difficulties for atmospheric correction. Zhejiang is one of the most developed provinces in eastern China, and its adjacent seas have been greatly affected by recent rapid economic development. Various islands and semi-closed bays along the Zhejiang coast promote the formation of muddy tidal flats. Moreover, large quantities of terrestrial substances coming down with the Yangtze River and other local rivers also have a great impact on the coastal waters of the province. MODIS, VIIRS and GOCI are three commonly used ocean color sensors covering the East China Sea. Several ocean color products such as remote-sensing reflectance (Rrs) and the concentrations of chlorophyll a (Chl-a) and total suspended matter (TSM) of the above three sensors on the Zhejiang coast have been evaluated. Cloud-free satellite images with synchronous field measurements taken between 2012 and 2015 were used for comparison. It is shown that there is a good correlation between the MODIS and GOCI spectral data, while some outliers were found in the VIIRS images. The low signal-to-noise ratio at short wavelengths in highly turbid waters also reduced the correlation between different sensors. In addition, it was possible to obtain more valid data with GOCI in shallow waters because of the use of an appropriate atmospheric correction algorithm. The standard Chl-a and TSM products of the three satellites were also evaluated, and it was found that the Chl-a and TSM concentrations calculated by the OC3G and Case 2 algorithms, respectively

  2. A novel method for destriping of OCM-2 data and radiometric performance analysis for improved ocean color data products

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh Kumar; Shanmugam, Palanisamy

    2018-06-01

    Despite the capability of Ocean Color Monitor aboard Oceansat-2 satellite to provide frequent, high-spatial resolution, visible and near-infrared images for scientific research on coastal zones and climate data records over the global ocean, the generation of science quality ocean color products from OCM-2 data has been hampered by serious vertical striping artifacts and poor calibration of detectors. These along-track stripes are the results of variations in the relative response of the individual detectors of the OCM-2 CCD array. The random unsystematic stripes and bandings on the scene edges affect both visual interpretation and radiometric integrity of remotely sensed data, contribute to confusion in the aerosol correction process, and multiply and propagate into higher level ocean color products generated by atmospheric correction and bio-optical algorithms. Despite a number of destriping algorithms reported in the literature, complete removal of stripes without residual effects and signal distortion in both low- and high-level products is still challenging. Here, a new operational algorithm has been developed that employs an inverted gaussian function to estimate error fraction parameters, which are uncorrelated and vary in spatial, spectral and temporal domains. The algorithm is tested on a large number of OCM-2 scenes from Arabian Sea and Bay of Bengal waters contaminated with severe stripes. The destriping effectiveness of this approach is then evaluated by means of various qualitative and quantitative analyses, and by comparison with the results of the previously reported method. Clearly, the present method is more effective in terms of removing the stripe noise while preserving the radiometric integrity of the destriped OCM-2 data. Furthermore, a preliminary time-dependent calibration of the OCM-2 sensor is performed with several match-up in-situ data to evaluate its radiometric performance for ocean color applications. OCM-2 derived water

  3. Radiometry from Bio-Argo Floats: a New Strategy to Validate Ocean Color Products at the Global Scale.

    NASA Astrophysics Data System (ADS)

    Organelli, E.; Claustre, H.; Serra, R.; Bricaud, A.; Schmechtig, C.; D'Ortenzio, F.; Poteau, A.; Mangin, A.; Leymarie, E.; Obolensky, G.; Prieur, L. M.; Dall'Olmo, G.; Xing, X.

    2016-02-01

    Thanks to a new generation of Bio-Argo floats equipped with sensors for PAR (Photosynthetically Available Irradiance) and downward irradiance measurements at selected wavelengths (i.e., 380, 412 and 490 nm), the number of radiometric measurements has been dramatically increasing and data are available for diverse open ocean systems, including winter periods with harsh seas when ships can hardly sample. More than 6500 radiometric profiles have so far been acquired around solar noon in the upper 250 m of the ocean. These radiometric profiles, acquired simultaneously to other key biogeochemical and bio-optical variables (chlorophyll a, CDOM, light backscattering), represent a fruitful data source for validation of Ocean Color (OC) products. Two different strategies can be implemented: direct validation of satellite OC products and identification of regions characterized by bio-optical anomalies. Diffuse attenuation coefficients (Kd) derived from these profiles, after a specifically developed quality control, are used for these purposes.A good agreement is observed between satellite-derived Kd values at 490 nm and their Bio-Argo counterparts. However, satellite overestimates low in situ Kd values found in very clear waters (e.g., Atlantic and Pacific Sub-Tropical Gyres). The analysis of the spectral Kd variability in the surface ocean shows the potential of Bio-Argo floats in identifying those regions with optical properties departing from global bio-optical relationships. Divergences of the ratio between Kd values at 380 nm and those at 490 nm from global bio-optical models are observed in areas such as the Mediterranean Sea and the North Atlantic in winter. This might cause difficulties in retrieving biogeochemical parameters from satellite data. Hence, delineation of "anomalous" regions by Bio-Argo floats represents a useful strategy for planning dedicated cruises, setting mooring buoys or using CAL/VAL floats in order to improve Ocean Color applications.

  4. NASA/GSFC Research Activities for the Global Ocean Carbon Cycle: A Prospectus for the 21st Century

    NASA Technical Reports Server (NTRS)

    Gregg, W. W.; Behrenfield, M. J.; Hoge, F. E.; Esaias, W. E.; Huang, N. E.; Long, S. R.; McClain, C. R.

    2000-01-01

    There are increasing concerns that anthropogenic inputs of carbon dioxide into the Earth system have the potential for climate change. In response to these concerns, the GSFC Laboratory for Hydrospheric Processes has formed the Ocean Carbon Science Team (OCST) to contribute to greater understanding of the global ocean carbon cycle. The overall goals of the OCST are to: 1) detect changes in biological components of the ocean carbon cycle through remote sensing of biooptical properties, 2) refine understanding of ocean carbon uptake and sequestration through application of basic research results, new satellite algorithms, and improved model parameterizations, 3) develop and implement new sensors providing critical missing environmental information related to the oceanic carbon cycle and the flux of CO2 across the air-sea interface. The specific objectives of the OCST are to: 1) establish a 20-year time series of ocean color, 2) develop new remote sensing technologies, 3) validate ocean remote sensing observations, 4) conduct ocean carbon cycle scientific investigations directly related to remote sensing data, emphasizing physiological, empirical and coupled physical/biological models, satellite algorithm development and improvement, and analysis of satellite data sets. These research and mission objectives are intended to improve our understanding of global ocean carbon cycling and contribute to national goals by maximizing the use of remote sensing data.

  5. NASA CNES SWOT Agreement

    NASA Image and Video Library

    2014-05-02

    NASA Administrator Charles Bolden, left, and Centre National d'Études Spatiales (CNES) President Jean-Yves Le Gall talk after signing an agreement to move from feasibility studies to implementation of the Surface Water and Ocean Topography (SWOT) mission, Friday, May 2, 2014 at NASA Headquarters in Washington. The SWOT mission will use wide swath altimetry technology to produce high-resolution elevation measurements of the surface of lakes, reservoirs, and wetlands and of the ocean surface. Photo Credit: (NASA/Bill Ingalls)

  6. Applications of Satellite Ocean Color Imagery for Detecting and Monitoring Harmful Algal Blooms in the Olympic Peninsula Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, Ashley C.; Stumpf, Richard P.; Tomlinson, Michelle C.

    2003-08-01

    Harmful algal blooms (HABs) attributed to Pseudo-nitzschia species, a diatom that produces Domoic acid, are a common occurrence and serious threat along the coast of the US Northwest. Monitoring these events or providing advanced warning of their occurrence at the coast would provide an important aid to fisheries managers. Remote sensing, which is being used in the Gulf of Mexico for HAB detection and forecasting (of a different algae), could provide a tool for monitoring and warnings. Chlorophyll and SST imagery are being used to support a research and monitoring program for the region, and HAB monitoring techniques used inmore » the Gulf of Mexico are being examined for their potential utility along the Washington coast. The focus of this study is to determine the efficacy of using satellite ocean color imagery for HAB monitoring off of Washingtons Olympic Peninsula region, and to provide support in the form of ocean color imagery products for management and mitigation efforts.« less

  7. Pluto Color Map

    NASA Image and Video Library

    2017-01-20

    This new, detailed global mosaic color map of Pluto is based on a series of three color filter images obtained by the Ralph/Multispectral Visual Imaging Camera aboard New Horizons during the NASA spacecraft's close flyby of Pluto in July 2015. The mosaic shows how Pluto's large-scale color patterns extend beyond the hemisphere facing New Horizons at closest approach- which were imaged at the highest resolution. North is up; Pluto's equator roughly bisects the band of dark red terrains running across the lower third of the map. Pluto's giant, informally named Sputnik Planitia glacier - the left half of Pluto's signature "heart" feature -- is at the center of this map. http://photojournal.jpl.nasa.gov/catalog/PIA11707

  8. Windstreaks -- False Color

    NASA Image and Video Library

    2015-01-30

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows windstreaks in Daedalia Planum.

  9. Hurricane Harvey's Rapid Wind Intensification seen by NASA's SMAP

    NASA Image and Video Library

    2017-08-28

    The rapid intensification of Hurricane Harvey is seen in this pair of images of ocean surface wind speeds as observed by the radiometer instrument aboard NASA's Soil Moisture Active Passive (SMAP) satellite at 7:29 a.m. CDT Aug. 24th, 2017 (left) and at 7 p.m. CDT Aug. 26th (right). Color indicates wind speed, with red being highest and blue lowest. The images show Harvey's maximum wind speeds increased from approximately 56 miles per hour (25 meters per second) to about 107 miles per hour (47.8 meters per second) in the 36 hours just before landfall. The higher wind speeds estimated near the mouth of the Mississippi River are erroneous and are due to errors in the ancillary sea-surface-salinity data product used by SMAP to estimate extreme wind speeds. https://photojournal.jpl.nasa.gov/catalog/PIA21884

  10. Assimilation of satellite color observations in a coupled ocean GCM-ecosystem model

    NASA Technical Reports Server (NTRS)

    Sarmiento, Jorge L.

    1992-01-01

    Monthly average coastal zone color scanner (CZCS) estimates of chlorophyll concentration were assimilated into an ocean global circulation model(GCM) containing a simple model of the pelagic ecosystem. The assimilation was performed in the simplest possible manner, to allow the assessment of whether there were major problems with the ecosystem model or with the assimilation procedure. The current ecosystem model performed well in some regions, but failed in others to assimilate chlorophyll estimates without disrupting important ecosystem properties. This experiment gave insight into those properties of the ecosystem model that must be changed to allow data assimilation to be generally successful, while raising other important issues about the assimilation procedure.

  11. Crater - False Color

    NASA Image and Video Library

    2015-01-14

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Acidalia Planitia.

  12. Specificity of Atmospheric Correction of Satellite Data on Ocean Color in the Far East

    NASA Astrophysics Data System (ADS)

    Aleksanin, A. I.; Kachur, V. A.

    2017-12-01

    Calculation errors in ocean-brightness coefficients in the Far Eastern are analyzed for two atmospheric correction algorithms (NIR and MUMM). The daylight measurements in different water types show that the main error component is systematic and has a simple dependence on the magnitudes of the coefficients. The causes of the error behavior are considered. The most probable explanation for the large errors in ocean-color parameters in the Far East is a high concentration of continental aerosol absorbing light. A comparison between satellite and in situ measurements at AERONET stations in the United States and South Korea has been made. It is shown the errors in these two regions differ by up to 10 times upon close water turbidity and relatively high aerosol optical-depth computation precision in the case of using the NIR correction of the atmospheric effect.

  13. Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms

    USGS Publications Warehouse

    Stumpf, Richard P.

    2001-01-01

    The new satellite ocean color sensors offer a means of detecting and monitoring algal blooms in the ocean and coastal zone. Beginning with SeaWiFS (Sea Wide Field-of-view Sensor) in September 1997, these sensors provide coverage every 1 to 2 days with 1-km pixel view at nadir. Atmospheric correction algorithms designed for the coastal zone combined with regional chlorophyll algorithms can provide good and reproducible estimates of chlorophyll, providing the means of monitoring various algal blooms. Harmful algal blooms (HABs) caused by Karenia brevis in the Gulf of Mexico are particularly amenable to remote observation. The Gulf of Mexico has relatively clear water and K. brevis, in bloom conditions, tends to produce a major portion of the phytoplankton biomass. A monitoring program has begun in the Gulf of Mexico that integrates field data from state monitoring programs with satellite imagery, providing an improved capability for the monitoring of K. brevis blooms.

  14. Atmospheric correction of AVIRIS data in ocean waters

    NASA Technical Reports Server (NTRS)

    Terrie, Gregory; Arnone, Robert

    1992-01-01

    Hyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc. Ocean color was used from satellite for describing the spatial variability of chlorophyll, water clarity (K(sub 490)), suspended sediment concentration, currents etc. Additionally, with improved atmospheric correction methods, ocean color results produced global products of spectral water leaving radiance (L(sub W)). Ocean color results clearly indicated strong applications for characterizing the spatial and temporal variability of bio-optical oceanography. These studies were largely the results of advanced atmospheric correction techniques applied to multispectral imagery. The atmosphere contributes approximately 80 percent - 90 percent of the satellite received radiance in the blue-green portion of the spectrum. In deep ocean waters, maximum transmission of visible radiance is achieved at 490nm. Conversely, nearly all of the light is absorbed by the water at wavelengths greater than about 650nm and thus appears black. These spectral ocean properties are exploited by algorithms developed for the atmospheric correction used in satellite ocean color processing. The objective was to apply atmospheric correction techniques that were used for procesing satellite Coastal

  15. Automated ocean color product validation for the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Davis, Curtiss O.; Tufillaro, Nicholas; Jones, Burt; Arnone, Robert

    2012-06-01

    Automated match ups allow us to maintain and improve the products of current satellite ocean color sensors (MODIS, MERIS), and new sensors (VIIRS). As part of the VIIRS mission preparation, we have created a web based automated match up tool that provides access to searchable fields for date, site, and products, and creates match-ups between satellite (MODIS, MERIS, VIIRS), and in-situ measurements (HyperPRO and SeaPRISM). The back end of the system is a 'mySQL' database, and the front end is a `php' web portal with pull down menus for searchable fields. Based on selections, graphics are generated showing match-ups and statistics, and ascii files are created for downloads for the matchup data. Examples are shown for matching the satellite data with the data from Platform Eureka SeaPRISM off L.A. Harbor in the Southern California Bight.

  16. Moon Color Visualizations

    NASA Image and Video Library

    1996-01-29

    These color visualizations of the Moon were obtained by NASA Galileo spacecraft as it left the Earth after completing its first Earth Gravity Assist. The images were acquired Dec. 8-9, 1990. http://photojournal.jpl.nasa.gov/catalog/PIA00075

  17. Channel - False Color

    NASA Image and Video Library

    2015-05-25

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of an unnamed channel in Terra Cimmeria.

  18. False Color Surface

    NASA Image and Video Library

    2014-12-26

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the region near Nili Fossae.

  19. Crater - False Color

    NASA Image and Video Library

    2015-05-26

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of an unnamed crater in Terra Cimmeria.

  20. Ocean Opportunities. A Guide to What the Oceans Have to Offer.

    ERIC Educational Resources Information Center

    Burtis, William S.

    High school students interested in ocean-related careers will find their imagination piqued by "Ocean Opportunities." As the ocean's resources are recognized more and more as extremely important economically, yet very fragile, study of those resources is burgeoning. This multi-color booklet describes the exciting opportunities which ocean research…

  1. Color Between Moons

    NASA Image and Video Library

    2010-02-05

    Two of Saturn moons straddle the planet rings in this color view from NASA Cassini spacecraft. Mimas is closest to NASA Cassini spacecraft here. Epimetheus is on the far side of the rings. Saturn shadow cuts across the middle of the rings.

  2. Satellite Ocean Data Tools in the high school classroom.

    NASA Astrophysics Data System (ADS)

    Tweedie, M.; Snyder, H. D.

    2007-12-01

    The NASA-sponsored Ocean Motion website (http://www.oceanmotion.org) documents the story of humankind's interest in and observations of surface currents from the early seafaring Polynesians to present day satellite observations. Ocean surface current patterns impact our lives through their influences on the weather, climate, commerce, natural disasters and sea life. The Ocean Motion web site provides inquiry based, classroom ready materials for high school teachers and students to study ocean surface currents. In addition to the information resources posted on the website, there are also investigations that lead students to explore patterns and relationships through data products (color- coded map images, time series graphs and data tables). These investigations are done through an interactive browser interface that provides access to a wealth of oceanography data. This presentation focuses on use of surface current data and models in student investigations to illustrate application of basic science principles found in high school science curriculum. Skills developed using data to discover patterns and relationships will serve students in other courses as well as empower them to become stewards of the Earths environment.

  3. Improved Chlorophyll-a Algorithm for the Satellite Ocean Color Data in the Northern Bering Sea and Southern Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Lee, Sang Heon; Ryu, Jongseong; Park, Jung-woo; Lee, Dabin; Kwon, Jae-Il; Zhao, Jingping; Son, SeungHyun

    2018-03-01

    The Bering and Chukchi seas are an important conduit to the Arctic Ocean and are reported to be one of the most productive regions in the world's oceans in terms of high primary productivity that sustains large numbers of fishes, marine mammals, and sea birds as well as benthic animals. Climate-induced changes in primary production and production at higher trophic levels also have been observed in the northern Bering and Chukchi seas. Satellite ocean color observations could enable the monitoring of relatively long term patterns in chlorophyll-a (Chl-a) concentrations that would serve as an indicator of phytoplankton biomass. The performance of existing global and regional Chl-a algorithms for satellite ocean color data was investigated in the northeastern Bering Sea and southern Chukchi Sea using in situ optical measurements from the Healy 2007 cruise. The model-derived Chl-a data using the previous Chl-a algorithms present striking uncertainties regarding Chl-a concentrations-for example, overestimation in lower Chl-a concentrations or systematic overestimation in the northeastern Bering Sea and southern Chukchi Sea. Accordingly, a simple two band ratio (R rs(443)/R rs(555)) algorithm of Chl-a for the satellite ocean color data was devised for the northeastern Bering Sea and southern Chukchi Sea. The MODIS-derived Chl-a data from July 2002 to December 2014 were produced using the new Chl-a algorithm to investigate the seasonal and interannual variations of Chl-a in the northern Bering Sea and the southern Chukchi Sea. The seasonal distribution of Chl-a shows that the highest (spring bloom) Chl-a concentrations are in May and the lowest are in July in the overall area. Chl-a concentrations relatively decreased in June, particularly in the open ocean waters of the Bering Sea. The Chl-a concentrations start to increase again in August and become quite high in September. In October, Chl-a concentrations decreased in the western area of the Study area and the Alaskan

  4. NPOESS Preparatory Project Validation Program for Ocean Data Products from VIIRS

    NASA Astrophysics Data System (ADS)

    Arnone, R.; Jackson, J. M.

    2009-12-01

    The National Polar-orbiting Operational Environmental Satellite Suite (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems (NGAS), will execute the NPP Validation program to ensure the data products comply with the requirements of the sponsoring agencies. Data from the NPP Visible/Infrared Imager/Radiometer Suite (VIIRS) will be used to produce Environmental Data Records (EDR's) of Ocean Color/Chlorophyll and Sea Surface Temperature. The ocean Cal/Val program is designed to address an “end to end” capability from sensor to end product and is developed based on existing ongoing government satellite ocean remote sensing capabilities that are currently in use with NASA research and Navy and NOAA operational products. Therefore, the plan focuses on the extension of known reliable methods and capabilities currently used with the heritage sensors that will be extended to the NPP and NPOESS ocean product Cal/Val effort. This is not a fully “new” approach but it is designed to be the most reliable and cost effective approach to developing an automated Cal/Val system for VIIRS while retaining highly accurate procedures and protocols. This presentation will provide an overview of the approaches, data and schedule for the validation of the NPP VIIRS Ocean environmental data products.

  5. Infuence of Averaging Method on the Evaluation of a Coastal Ocean Color Event on the U.S. Northeast Coast

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Uz, Stephanie Schollaert; Shen, Suhung; Leptoukh, Gregory G.

    2010-01-01

    Application of appropriate spatial averaging techniques is crucial to correct evaluation of ocean color radiometric data, due to the common log-normal or mixed log-normal distribution of these data. Averaging method is particularly crucial for data acquired in coastal regions. The effect of averaging method was markedly demonstrated for a precipitation-driven event on the U.S. Northeast coast in October-November 2005, which resulted in export of high concentrations of riverine colored dissolved organic matter (CDOM) to New York and New Jersey coastal waters over a period of several days. Use of the arithmetic mean averaging method created an inaccurate representation of the magnitude of this event in SeaWiFS global mapped chl a data, causing it to be visualized as a very large chl a anomaly. The apparent chl a anomaly was enhanced by the known incomplete discrimination of CDOM and phytoplankton chlorophyll in SeaWiFS data; other data sources enable an improved characterization. Analysis using the geometric mean averaging method did not indicate this event to be statistically anomalous. Our results predicate the necessity of providing the geometric mean averaging method for ocean color radiometric data in the Goddard Earth Sciences DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni).

  6. Europa In Color

    NASA Image and Video Library

    1997-09-07

    False color has been used here to enhance the visibility of certain features in this composite of three images of the Minos Linea region on Jupiter moon Europa taken on 28 June 1996 by NASA Galileo spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA00275

  7. Makhambet Crater - False Color

    NASA Image and Video Library

    2015-01-29

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows Makhambet Crater.

  8. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea

    NASA Astrophysics Data System (ADS)

    Zibordi, G.; Mélin, F.; Berthon, J.-F.; Talone, M.

    2015-03-01

    The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A) and the Visible/Infrared Imager/Radiometer Suite (VIIRS) is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the ocean color component of the Aerosol Robotic Network (AERONET-OC). The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities to those observed at the Gloria site. Results from the comparison of normalized water-leaving radiance LWN indicate biases of a few percent between satellite-derived and in situ data at the center wavelengths relevant for the determination of chlorophyll a concentrations (443-547 nm, or equivalent). Remarkable is the consistency between the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm) and red (i.e., 667 nm, or equivalent) center wavelengths, confirming difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.

  9. In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea

    NASA Astrophysics Data System (ADS)

    Zibordi, G.; Mélin, F.; Berthon, J.-F.; Talone, M.

    2014-12-01

    The accuracy of primary satellite ocean color data products from the Moderate Resolution Imaging Spectroradiometer on-board Aqua (MODIS-A) and the Visible/Infrared Imager/Radiometer Suite (VIIRS), is investigated in the Western Black Sea using in situ measurements from the Gloria site included in the Ocean Color component of the Aerosol Robotic Network (AERONET-OC). The analysis is also extended to an additional well-established AERONET-OC site in the northern Adriatic Sea characterized by optically complex coastal waters exhibiting similarities with those observed at the Gloria site. Results from the comparison of normalized-water leaving radiance LWN indicate biases of a few percent between satellite derived and in situ data at the center-wavelengths relevant for the determination of chlorophyll a concentration (443-547 nm, or equivalent). Remarkable is the consistency among the annual cycle determined with time series of satellite-derived and in situ LWN ratios at these center-wavelengths. Contrarily, the differences between in situ and satellite-derived LWN are pronounced at the blue (i.e., 412 nm) and red (i.e., 667 nm, or equivalent) center-wavelengths, suggesting difficulties in confidently applying satellite-derived radiometric data from these spectral regions for quantitative analysis in optically complex waters.

  10. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Haser, Fritz; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  11. Renaudot Crater - False Color

    NASA Image and Video Library

    2015-01-15

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Renaudot Crater.

  12. Granicus Valles - False Color

    NASA Image and Video Library

    2015-01-12

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Granicus Valles.

  13. Candor Labes - False Color

    NASA Image and Video Library

    2014-12-25

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Candor Labes.

  14. Coprates Chasma - False Color

    NASA Image and Video Library

    2015-01-08

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.

  15. Schaeberle Crater - False Color

    NASA Image and Video Library

    2015-01-26

    The THEMIS VIS camera contains 5 filters. The data from different filters can create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Schaeberle Crater, including small dunes.

  16. Nili Patera - False Color

    NASA Image and Video Library

    2015-01-02

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Nili Patera.

  17. Atlantis Chaos - False Color

    NASA Image and Video Library

    2014-12-23

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Atlantis Chaos.

  18. Coprates Chasma - False Color

    NASA Image and Video Library

    2015-01-01

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.

  19. Hargraves Crater - False Color

    NASA Image and Video Library

    2015-01-13

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Hargraves Crater.

  20. Reull Vallis - False Color

    NASA Image and Video Library

    2014-12-18

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Reull Vallis.

  1. The Rich Color Variations of Pluto

    NASA Image and Video Library

    2015-09-24

    NASA's New Horizons spacecraft captured this high-resolution enhanced color view of Pluto on July 14, 2015. The image combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC). Pluto's surface sports a remarkable range of subtle colors, enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a complex geological and climatological story that scientists have only just begun to decode. The image resolves details and colors on scales as small as 0.8 miles (1.3 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA19952

  2. Seasonal estimates of DOC standing stocks in Apalachicola Bay estuary: Towards a better understanding using field, ocean color and model data

    NASA Astrophysics Data System (ADS)

    D'Sa, E. J.; Joshi, I.; Osburn, C. L.; Bianchi, T. S.; Ko, D. S.; Oviedo-Vargas, D.; Arellano, A.; Ward, N.

    2016-12-01

    Apalachicola Bay, a semi-enclosed estuary located in Florida's panhandle, is well known for its water quality and oyster yields. We present the use of combined field and ocean color satellite observations and the outputs of a high-resolution hydrodynamic model to study the influence of physical processes on the distribution and the transport of terrestrially derived CDOM and DOC to shelf waters during the spring and fall of 2015. Determination of DOC stocks were based on the development of a CDOM algorithm (R2 = 0.87, N = 9) for the VIIRS ocean color sensor, and the assessment of CDOM - DOC relationships (R2 = 0.88, N = 13 in March; R2 = 0.83, N = 24 in November) for the Apalachicola Bay. Satellite-derived CDOM and DOC maps together with model-based salinity distributions revealed their spatial extent, sources and transport to the shelf water. Furthermore, strong seasonal influence on DOM distribution in the bay was associated with inputs from Apalachicola and Carrabelle Rivers and the surrounding marshes. Estimates of DOC standing stocks in the bay obtained using ocean color data and high-resolution bathymetry showed relatively higher stocks in November ( 3.71 × 106 kg C, 560 km2) than in March ( 4.07 × 106 kg C, 560 km2) despite lower river discharge in dry season. Results of DOC flux estimates from the bay to coastal waters will also be presented.

  3. Ares Vallis - False Color

    NASA Image and Video Library

    2014-12-31

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of of Ares Vallis.

  4. Coprates Chasma - False Color

    NASA Image and Video Library

    2014-12-10

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.

  5. Capen Crater - False Color

    NASA Image and Video Library

    2015-01-21

    The THEMIS VIS camera contains 5 filters. The data from different filters can create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows small dunes of the floor of Capen Crater in Terra Sabea.

  6. Utopia Planitia - False Color

    NASA Image and Video Library

    2015-01-20

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Utopia Planitia.

  7. Hebes Chasma - False Color

    NASA Image and Video Library

    2014-12-08

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Hebes Chasma.

  8. Kasei Valles - False Color

    NASA Image and Video Library

    2015-01-07

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows a portion of Kasei Vallis.

  9. Melas Chasma - False Color

    NASA Image and Video Library

    2014-12-09

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Melas Chasma.

  10. Coprates Chasma - False Color

    NASA Image and Video Library

    2014-12-11

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.

  11. Eos Chasma - False Color

    NASA Image and Video Library

    2014-12-16

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of of Eos Chasma.

  12. Ascraeus Mons - False Color

    NASA Image and Video Library

    2015-01-06

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows the southern flank of Ascraeus Mons.

  13. Syrtis Major - False Color

    NASA Image and Video Library

    2015-01-09

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows a region in Syrtis Major.

  14. Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm.

    PubMed

    Lee, ZhongPing; Arnone, Robert; Hu, Chuanmin; Werdell, P Jeremy; Lubac, Bertrand

    2010-01-20

    Following the theory of error propagation, we developed analytical functions to illustrate and evaluate the uncertainties of inherent optical properties (IOPs) derived by the quasi-analytical algorithm (QAA). In particular, we evaluated the effects of uncertainties of these optical parameters on the inverted IOPs: the absorption coefficient at the reference wavelength, the extrapolation of particle backscattering coefficient, and the spectral ratios of absorption coefficients of phytoplankton and detritus/gelbstoff, respectively. With a systematically simulated data set (46,200 points), we found that the relative uncertainty of QAA-derived total absorption coefficients in the blue-green wavelengths is generally within +/-10% for oceanic waters. The results of this study not only establish theoretical bases to evaluate and understand the effects of the various variables on IOPs derived from remote-sensing reflectance, but also lay the groundwork to analytically estimate uncertainties of these IOPs for each pixel. These are required and important steps for the generation of quality maps of IOP products derived from satellite ocean color remote sensing.

  15. Pluto in True Color

    NASA Image and Video Library

    2015-07-25

    Four images from NASA's New Horizons' Long Range Reconnaissance Imager (LORRI) were combined with color data from the Ralph instrument to create this global view of Pluto. (The lower right edge of Pluto in this view currently lacks high-resolution color coverage.) The images, taken when the spacecraft was 280,000 miles (450,000 kilometers) away, show features as small as 1.4 miles (2.2 kilometers), twice the resolution of the single-image view taken on July 13. http://photojournal.jpl.nasa.gov/catalog/PIA19857

  16. Enhanced Color Mercury Map

    NASA Image and Video Library

    2017-12-08

    This colorful view of Mercury was produced by using images from the color base map imaging campaign during MESSENGER's primary mission. These colors are not what Mercury would look like to the human eye, but rather the colors enhance the chemical, mineralogical, and physical differences between the rocks that make up Mercury's surface. This specific color combination places the second principle component in the red channel, the first principle component in the green channel, and the ratio of the 430 nm/1000 nm filters in the blue channel. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Mount Sharp Panorama in Raw Colors

    NASA Image and Video Library

    2013-03-15

    This mosaic of images from the Mastcam onboard NASA Mars rover Curiosity shows Mount Sharp in raw color. Raw color shows the scene colors as they would look in a typical smart-phone camera photo, before any adjustment.

  18. Evaluation of Ocean Color Scanner (OCS) photographic and digital data: Santa Barbara Channel test site, 29 October 1975 overflight

    NASA Technical Reports Server (NTRS)

    Kraus, S. P.; Estes, J. E.; Kronenberg, M. R.; Hajic, E. J.

    1977-01-01

    A summary of Ocean Color Scanner data was examined to evaluate detection and discrimination capabilities of the system for marine resources, oil pollution and man-made sea surface targets of opportunity in the Santa Barbara Channel. Assessment of the utility of OCS for the determination of sediment transport patterns along the coastal zone was a secondary goal. Data products provided 1975 overflight were in digital and analog formats. In evaluating the OCS data, automated and manual procedures were employed. A total of four channels of data in digital format were analyzed, as well as three channels of color combined imagery, and four channels of black and white imagery. In addition, 1:120,000 scale color infrared imagery acquired simultaneously with the OCS data were provided for comparative analysis purposes.

  19. Moon - False Color Mosaic

    NASA Image and Video Library

    1996-01-29

    This false-color mosaic of part of the Moon was constructed from 54 images taken by the imaging system aboard NASA's Galileo as the spacecraft flew past the Moon on December 7, 1992. http://photojournal.jpl.nasa.gov/catalog/PIA00129

  20. Multi-layer Clouds Over the South Indian Ocean

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The complex structure and beauty of polar clouds are highlighted by these images acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on April 23, 2003. These clouds occur at multiple altitudes and exhibit a noticeable cyclonic circulation over the Southern Indian Ocean, to the north of Enderbyland, East Antarctica.

    The image at left was created by overlying a natural-color view from MISR's downward-pointing (nadir) camera with a color-coded stereo height field. MISR retrieves heights by a pattern recognition algorithm that utilizes multiple view angles to derive cloud height and motion. The opacity of the height field was then reduced until the field appears as a translucent wash over the natural-color image. The resulting purple, cyan and green hues of this aesthetic display indicate low, medium or high altitudes, respectively, with heights ranging from less than 2 kilometers (purple) to about 8 kilometers (green). In the lower right corner, the edge of the Antarctic coastline and some sea ice can be seen through some thin, high cirrus clouds.

    The right-hand panel is a natural-color image from MISR's 70-degree backward viewing camera. This camera looks backwards along the path of Terra's flight, and in the southern hemisphere the Sun is in front of this camera. This perspective causes the cloud-tops to be brightly outlined by the sun behind them, and enhances the shadows cast by clouds with significant vertical structure. An oblique observation angle also enhances the reflection of light by atmospheric particles, and accentuates the appearance of polar clouds. The dark ocean and sea ice that were apparent through the cirrus clouds at the bottom right corner of the nadir image are overwhelmed by the brightness of these clouds at the oblique view.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude

  1. Tyrrhena Terra - False Color

    NASA Image and Video Library

    2014-12-12

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of an unnamed crater in Tyrrhena Terra.

  2. Pollack Crater - False Color

    NASA Image and Video Library

    2015-01-16

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Pollack Crater.

  3. Sulci Gordii - False Color

    NASA Image and Video Library

    2014-12-29

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Sulci Gordii east of Olympus Mons.

  4. Becquerel Crater - False Color

    NASA Image and Video Library

    2015-03-17

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Becquerel Crater.

  5. Antoniadi Crater - False Color

    NASA Image and Video Library

    2014-12-22

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Antoniadi Crater.

  6. Hecates Tholus - False Color

    NASA Image and Video Library

    2014-12-30

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the flank of Hecates Tholus.

  7. Calahorra Crater - False Color

    NASA Image and Video Library

    2014-12-24

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Calahorra Crater in Chryse Planitia.

  8. Gusev Crater - False Color

    NASA Image and Video Library

    2015-01-19

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows windstreaks on the floor of Gusev Crater.

  9. Terra Cimmeria - False Color

    NASA Image and Video Library

    2015-07-15

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Cimmeria.

  10. Olympus Mons - False Color

    NASA Image and Video Library

    2015-01-05

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the caldera at the summit of Olympus Mons.

  11. Daga Vallis - False Color

    NASA Image and Video Library

    2014-12-19

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Daga Vallis on Eos Mensa.

  12. Proctor Crater - False Color

    NASA Image and Video Library

    2014-12-15

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Proctor Crater.

  13. Ganges Chasma - False Color

    NASA Image and Video Library

    2015-01-27

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the interior of Ganges Chasma.

  14. CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation.

    PubMed

    Vantrepotte, Vincent; Danhiez, François-Pierre; Loisel, Hubert; Ouillon, Sylvain; Mériaux, Xavier; Cauvin, Arnaud; Dessailly, David

    2015-01-12

    Increasing our knowledge on dissolved organic carbon (DOC) spatio-temporal distribution in the coastal ocean represents a crucial challenge for better understanding the role of these ecosystems in the global oceanic carbon cycle. The assessment of DOC concentration from the absorption properties of the colored part of the dissolved organic matter (a(cdom)) was investigated from an extensive data set covering a variety of coastal environments. Our results confirmed that variation in the a(cdom)(412) to DOC ratio (a*(cdom)(412)) can be depicted from the CDOM spectral slope in the UV domain (S(275-295)). They also evidenced that regional first order variation in both a*(cdom)(412) and S(275-295) are highly correlated to variation in a(cdom)(412). From these observations, generalized relationships for estimating a*(cdom)(412) from S(275-295) or a(cdom)(412) were parameterized from our development sites (N = 158; English Channel, French Guiana, Hai Phong Bay) and tested against an independent data set covering others coastal regions (N = 223; French Polynesia, Rhone River estuary, Gulf of Maine, Chesapeake Bay, Southern Middle Atlantic Bight) demonstrating the possibility to derive DOC estimates from in situ CDOM optical properties with an average accuracy of ~16% over very contrasted coastal environments (with DOC ranging from 50 to 250 µmol.L(-1)). The applicability of these generalized approaches was evaluated in the context of ocean color remote sensing observation emphasizing the limits of S(275-295)-based formulations and the potential for a(cdom)-based approaches to represent a compelling alternative for assessing synoptic DOC distribution.

  15. Scale Closure in Upper Ocean Optical Properties: From Single Particles to Ocean Color

    NASA Technical Reports Server (NTRS)

    Green, Rebecca E.

    2002-01-01

    Predictions of chlorophyll concentration from satellite ocean color are an indicator of primary productivity, with implications for foodwebs, fisheries, and the global carbon cycle. Models describing the relationship between optical properties and chlorophyll do not account for much of the optical variability observed in natural waters, because of the presence of seawater constituents that do not covary with phytoplankton pigments. in order to understand variability in these models, the optical contributions of seawater constituents were investigated. A combination of Mie theory and flow cytometry was used to determine the diameter, complex refractive index, and optical cross-sections of individual particles. In New England continental shelf waters, eukaryotic phytoplankton were the main particle contributors to absorption and scaftering. Minerals were the main contributor to backscattering (bb) in the spring, whereas in the summer both minerals and detritus contributed to bb. Synechococcus and heterotrophic bacteria were relatively unimportant optically. Seasonal differences in the spectral shape of remote sensing reflectance, Rrs, were contributed to approximately equally by eukaryotic phytoplankton absorption, dissolved absorption, and non-phytoplankton bb. Differences between measurements of bb and Prs and modeled values based on chlorophyll concentration were caused by higher dissolved absorption and non-phytoplankton bb than were assumed by the model.

  16. Hints at Ceres Composition from Color

    NASA Image and Video Library

    2015-09-30

    This map-projected view of Ceres was created from images taken by NASA's Dawn spacecraft during its high-altitude mapping orbit, in August and September, 2015. Images taken using infrared (920 nanometers), red (750 nanometers) and blue (440 nanometers) spectral filters were combined to create this false-color view. Redder colors indicate places on Ceres' surface that reflect light strongly in the infrared, while bluish colors indicate enhanced reflectivity at short (bluer) wavelengths; green indicates places where albedo, or overall brightness, is strongly enhanced. Scientists use this technique in order to highlight subtle color differences across Ceres, which would appear fairly uniform in natural color. This can provide valuable insights into the mineral composition of the surface, as well as the relative ages of surface features. http://photojournal.jpl.nasa.gov/catalog/PIA19977

  17. Smoke from Canadian fires over the Atlantic Ocean

    NASA Image and Video Library

    2017-12-08

    Generally the old saying “where there is smoke, there is fire” rings true, but when thick, hot smoke rises high aloft into the atmosphere it may travel hundreds, sometimes thousands of kilometers away from the source. This was the case on July 6, 2013 when the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flying on NASA’s Terra satellite captured this true-color image of a thick river of smoke curling across the Atlantic Ocean. In the west of the image, the green land of Canada can be seen, most of which is covered by a thin gray haze. A thick veil of smoke obscures much of southern Canada, and this tan-gray veil blows to the east, then to the northeast. The color of the smoke appears both tan and gray, and is stretched into brush-stroke like curves across the ocean, which disappears from view under the smoke. The smoke filled plume is so high that it even hides the bright white clouds from view as it travels over them. Fires have been burning across Canada since early June, especially in Manitoba and Quebec. Rain in Quebec on July 5 helped diminish the fires in that location, although a severe fire was ignited when a freight train carrying oil derailed in the small, picturesque town of Lac-Megantic. This accident, which occurred on July 6, the same day this image was captured, killed at least 35 people and poured thick smoke into the skies. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Saheki Crater - False Color

    NASA Image and Video Library

    2015-06-26

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the rim and floor of Saheki Crater.

  19. NASA's Global Hawk

    NASA Image and Video Library

    2014-09-23

    View from a Chase Plane; HS3 Science Flight 8 Wraps Up The chase plane accompanying NASA's Global Hawk No. 872 captured this picture on Sept. 19 after the Global Hawk completed science flight #8 where it gathered data from a weakening Tropical Storm Edouard over the North Atlantic Ocean. Credit: NASA -- The Hurricane and Severe Storm Sentinel (HS3) is a five-year mission specifically targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. HS3 is motivated by hypotheses related to the relative roles of the large-scale environment and storm-scale internal processes. Read more: espo.nasa.gov/missions/hs3/mission-gallery NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA Spots an "Eye" of Smoke and Phytoplankton near Cape Barren Island

    NASA Image and Video Library

    2017-12-08

    NASA-NOAA's Suomi NPP satellite passed over Australia's Cape Barren Island and captured an image of phytoplankton and smoke from fires that resembled an eye and eyebrow. The Tasmanian Fire Service reported that a vegetation fire near Thunder and Lightning Bay, Cape Barren Island started on December 4 and was still blazing on December 8. Cape Barren Island is one of a trail of islands in the Bass Strait of the South Pacific Ocean, between southeastern Australia and Tasmania. This natural-color satellite image from Dec. 7 was collected by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument that flies aboard NASA-NOAA's Suomi NPP satellite. The red dots in the image represent heat signatures from the fires as detected by VIIRS. A light grey stream of smoke was blowing to the southeast in what could be seen as the "eyebrow" to the "eye" or swirl of blue and green phytoplankton below it. Phytoplankton are tiny microscopic plant-like organisms that form the base of the marine food chain. Like land plants, phytoplankton contain chlorophyll which is used in photosynthesis to turn sunlight into chemical energy. The chlorophyll gives the phytoplankton their green color, which is visible from space when large numbers of the organism group together. NASA image courtesy MODIS Rapid Response Team #nasagoddard #earth #smoke #Phytoplankton #science b>NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Moon - False Color Mosaic

    NASA Image and Video Library

    1996-02-05

    This false-color mosaic was constructed from a series of 53 images taken through three spectral filters by NASA's Galileo imaging system as the spacecraft flew over the northern regions of the Moon on December 7, 1992. http://photojournal.jpl.nasa.gov/catalog/PIA00131

  2. Some Insights of Spectral Optimization in Ocean Color Inversion

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert

    2011-01-01

    In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.

  3. Jupiter's Clouds of Many Colors

    NASA Image and Video Library

    2017-06-15

    NASA's Juno spacecraft was racing away from Jupiter following its seventh close pass of the planet when JunoCam snapped this image on May 19, 2017, from about 29,100 miles (46,900 kilometers) above the cloud tops. The spacecraft was over 65.9 degrees south latitude, with a lovely view of the south polar region of the planet. This image was processed to enhance color differences, showing the amazing variety in Jupiter's stormy atmosphere. The result is a surreal world of vibrant color, clarity and contrast. Four of the white oval storms known as the "String of Pearls" are visible near the top of the image. Interestingly, one orange-colored storm can be seen at the belt-zone boundary, while other storms are more of a cream color. https://photojournal.jpl.nasa.gov/catalog/PIA21392

  4. NASA Captures 'EPIC' Earth Image

    NASA Image and Video Library

    2017-12-08

    A NASA camera on the Deep Space Climate Observatory satellite has returned its first view of the entire sunlit side of Earth from one million miles away. This color image of Earth was taken by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope. The image was generated by combining three separate images to create a photographic-quality image. The camera takes a series of 10 images using different narrowband filters -- from ultraviolet to near infrared -- to produce a variety of science products. The red, green and blue channel images are used in these color images. The image was taken July 6, 2015, showing North and Central America. The central turquoise areas are shallow seas around the Caribbean islands. This Earth image shows the effects of sunlight scattered by air molecules, giving the image a characteristic bluish tint. The EPIC team is working to remove this atmospheric effect from subsequent images. Once the instrument begins regular data acquisition, EPIC will provide a daily series of Earth images allowing for the first time study of daily variations over the entire globe. These images, available 12 to 36 hours after they are acquired, will be posted to a dedicated web page by September 2015. The primary objective of DSCOVR, a partnership between NASA, the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Air Force, is to maintain the nation’s real-time solar wind monitoring capabilities, which are critical to the accuracy and lead time of space weather alerts and forecasts from NOAA. For more information about DSCOVR, visit: www.nesdis.noaa.gov/DSCOVR/

  5. Colored Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 7 May 2004 This daytime visible color image was collected on May 30, 2002 during the Southern Fall season in Atlantis Chaos.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -34.5, Longitude 183.6 East (176.4 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  6. Rose-Colored Jupiter

    NASA Image and Video Library

    2018-03-15

    This image captures a close-up view of a storm with bright cloud tops in the northern hemisphere of Jupiter. NASA's Juno spacecraft took this color-enhanced image on Feb. 7 at 5:38 a.m. PST (8:38 a.m. EST) during its 11th close flyby of the gas giant planet. At the time, the spacecraft was 7,578 miles (12,195 kilometers) from the tops of Jupiter's clouds at 49.2 degrees north latitude. Citizen scientist Matt Brealey processed the image using data from the JunoCam imager. Citizen scientist Gustavo B C then adjusted colors and embossed Matt Brealey's processing of this storm. https://photojournal.jpl.nasa.gov/catalog/PIA21981

  7. Bayesian Model for Matching the Radiometric Measurements of Aerospace and Field Ocean Color Sensors

    PubMed Central

    Salama, Mhd. Suhyb; Su, Zhongbo

    2010-01-01

    A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R2 > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors. PMID:22163615

  8. Bayesian model for matching the radiometric measurements of aerospace and field ocean color sensors.

    PubMed

    Salama, Mhd Suhyb; Su, Zhongbo

    2010-01-01

    A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R(2) > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors.

  9. Remote sensing of the diffuse attenuation coefficient of ocean water. [coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Austin, R. W.

    1981-01-01

    A technique was devised which uses remotely sensed spectral radiances from the sea to assess the optical diffuse attenuation coefficient, K (lambda) of near-surface ocean water. With spectral image data from a sensor such as the coastal zone color scanner (CZCS) carried on NIMBUS-7, it is possible to rapidly compute the K (lambda) fields for large ocean areas and obtain K "images" which show synoptic, spatial distribution of this attenuation coefficient. The technique utilizes a relationship that has been determined between the value of K and the ratio of the upwelling radiances leaving the sea surface at two wavelengths. The relationship was developed to provide an algorithm for inferring K from the radiance images obtained by the CZCS, thus the wavelengths were selected from those used by this sensor, viz., 443, 520, 550 and 670 nm. The majority of the radiance arriving at the spacecraft is the result of scattering in the atmospheric and is unrelated to the radiance signal generated by the water. A necessary step in the processing of the data received by the sensor is, therefore, the effective removal of these atmospheric path radiance signals before the K algorithm is applied. Examples of the efficacy of these removal techniques are given together with examples of the spatial distributions of K in several ocean areas.

  10. Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors.

    PubMed

    Lee, Zhongping; Shang, Shaoling; Hu, Chuanmin; Zibordi, Giuseppe

    2014-05-20

    Using 901 remote-sensing reflectance spectra (R(rs)(λ), sr⁻¹, λ from 400 to 700 nm with a 5 nm resolution), we evaluated the correlations of R(rs)(λ) between neighboring spectral bands in order to characterize (1) the spectral interdependence of R(rs)(λ) at different bands and (2) to what extent hyperspectral R(rs)(λ) can be reconstructed from multiband measurements. The 901 R(rs) spectra were measured over a wide variety of aquatic environments in which water color varied from oceanic blue to coastal green or brown, with chlorophyll-a concentrations ranging from ~0.02 to >100  mg  m⁻³, bottom depths from ~1  m to >1000  m, and bottom substrates including sand, coral reef, and seagrass. The correlation coefficient of R(rs)(λ) between neighboring bands at center wavelengths λ(k) and λ(l), r(Δλ)(λ(k), λ(l)), was evaluated systematically, with the spectral gap (Δλ=λ(l)-λ(k)) changing between 5, 10, 15, 20, 25, and 30 nm, respectively. It was found that r(Δλ) decreased with increasing Δλ, but remained >0.97 for Δλ≤20  nm for all spectral bands. Further, using 15 spectral bands between 400 and 710 nm, we reconstructed, via multivariant linear regression, hyperspectral R(rs)(λ) (from 400 to 700 nm with a 5 nm resolution). The percentage difference between measured and reconstructed R(rs) for each band in the 400-700 nm range was generally less than 1%, with a correlation coefficient close to 1.0. The mean absolute error between measured and reconstructed R(rs) was about 0.00002  sr⁻¹ for each band, which is significantly smaller than the R(rs) uncertainties from all past and current ocean color satellite radiometric products. These results echo findings of earlier studies that R(rs) measurements at ~15 spectral bands in the visible domain can provide nearly identical spectral information as with hyperspectral (contiguous bands at 5 nm spectral resolution) measurements. Such results provide insights for data

  11. Optimization of Instrument Requirements for NASAs GEO-CAPE Coastal Mission Concept Based On Sensor Capability And Cost Studies

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio

    2015-01-01

    NASA's GEOstationary Coastal and Air Pollution Events (GEOCAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). GEO-CAPE is currently in pre-formulation (pre- Phase) A with no established launch date. NASA continues to support science and engineering studies to reduce mission risk. Instrument design lab (IDL) studies were commissioned in 2014 to design and cost two implementations for geostationary ocean color instruments (1) Wide-Angle Spectrometer (WAS) and (2) Filter Radiometer (FR) and (3) a cost scaling study to compare the costs for implementing different science performance requirements.

  12. Cosmic Ocean Dweller

    NASA Image and Video Library

    2010-11-17

    A colorful creature in a starry sea stands out in this image from NASA Wide-field Infrared Explorer; infrared light that has been assigned visible colors we see with our eyes. The jellyfish-looking object is actually a very close pair of dying stars.

  13. NASA Supercomputer Improves Prospects for Ocean Climate Research

    NASA Technical Reports Server (NTRS)

    Menemenlis, D.; Hill, C.; Adcroft, A.; Campin, J. -M.; Cheng, B.; Ciotti, B.; Fukumori, I.; Heimbach, P.; Henze, C.; Kohl, A.; hide

    2005-01-01

    Estimates of ocean circulation constrained by in situ and remotely sensed observations have become routinely available during the past five years, and they are being applied to myriad scientific and operational problems [Stammer et al.,2002]. Under the Global Ocean Data Assimilation Experiment (GODAE), several regional and global estimates have evolved for applications in climate research, seasonal forecasting, naval operations, marine safety, fisheries,the offshore oil industry, coastal management, and other areas. This article reports on recent progress by one effort, the consortium for Estimating the Circulation and Climate of the Ocean (ECCO), toward a next-generation synthesis of ocean and sea-ice data that is global, that covers the full ocean depth, and that permits eddies.

  14. NASA Ocean Altimeter Pathfinder Project. Report 1; Data Processing Handbook

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.; Beckley, Brian D.; Ray, Richard D.; Wang, Yan-Ming; Tsaoussi, Lucia; Brenner, Anita; Williamson, Ron

    1998-01-01

    The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-sedes data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. This report describes the processing schemes used to produce a consistent data set and two of the products derived f rom these data. Other reports have been produced that: a) describe the validation of these data sets against tide gauge measurements and b) evaluate the statistical properties of the data that are relevant to climate change. The use of satellite altimetry for earth observations was proposed in the early 1960s. The first successful space based radar altimeter experiment was flown on SkyLab in 1974. The first successful satellite radar altimeter was flown aboard the Geos-3 spacecraft between 1975 and 1978. While a useful data set was collected from this mission for geophysical studies, the noise in the radar measured and incomplete global coverage precluded ft from inclusion in the Ocean Altimeter Pathfinder program. This program initiated its analysis with the Seasat mission, which was the first satellite radar altimeter flown for oceanography.

  15. An Example Crossover Experiment for Testing New Vicarious Calibration Techniques for Satellite Ocean Color Radiometry

    NASA Technical Reports Server (NTRS)

    Voss, Kenneth J.; McLean, Scott; Lewis, Marlon; Johnson, Carol; Flora, Stephanie; Feinholz, Michael; Yarbrough, Mark; Trees, Charles; Twardowski, Mike; Clark, Dennis

    2010-01-01

    Vicarious calibration of ocean color satellites involves the use of accurate surface measurements of water-leaving radiance to update and improve the system calibration of ocean color satellite sensors. An experiment was performed to compare a free-fall technique with the established MOBY measurement. We found in the laboratory that the radiance and irradiance instruments compared well within their estimated uncertainties for various spectral sources. The spectrally averaged differences between the NIST values for the sources and the instruments were less than 2.5% for the radiance sensors and less than 1.5% for the irradiance sensors. In the field, the sensors measuring the above-surface downwelling irradiance performed nearly as well as they had in the laboratory, with an average difference of less than 2%. While the water-leaving radiance, L(sub w) calculated from each instrument agreed in almost all cases within the combined instrument uncertainties (approximately 7%), there was a relative bias between the two instrument classes/techniques that varied spectrally. The spectrally averaged (400 nm to 600 nm) difference between the two instrument classes/techniques was 3.1 %. However the spectral variation resulted in the free fall instruments being 0.2% lower at 450 nm and 5.9% higher at 550 nm. Based on the analysis of one matchup, the bias in the L(sub w), was similar to that observed for L(sub u)(1 m) with both systems, indicating the difference did not come from propagating L(sub u)(1 m) to L(sub w).

  16. Miranda - Highest Resolution Color Picture

    NASA Image and Video Library

    1999-08-30

    This color composite of the Uranian satellite Miranda was taken by NASA Voyager 2 on January 24, 1986. Miranda, just 480 km 300 mi across, is the smallest of Uranus five major satellites. http://photojournal.jpl.nasa.gov/catalog/PIA00042

  17. Streaked Craters in False-Color

    NASA Image and Video Library

    2010-03-29

    A false-color view of Saturn moon Mimas from NASA Cassini spacecraft accentuates terrain-dependent color differences and shows dark streaks running down the sides of some of the craters on the region of the moon that leads in its orbit around Saturn.

  18. North Polar Cap - False Color

    NASA Image and Video Library

    2015-01-28

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows the margin of the north polar cap.

  19. Ares Vallis Tributary - False Color

    NASA Image and Video Library

    2014-12-17

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of a tributary channel that empties into Ares Vallis.

  20. Occator in False Color

    NASA Image and Video Library

    2015-12-09

    This representation of Ceres' Occator Crater in false colors shows differences in the surface composition. Red corresponds to a wavelength range around 0.97 micrometers (near infrared), green to a wavelength range around 0.75 micrometers (red, visible light) and blue to a wavelength range of around 0.44 micrometers (blue, visible light). Occator measures about 60 miles (90 kilometers) wide. Scientists use false color to examine differences in surface materials. The color blue on Ceres is generally associated with bright material, found in more than 130 locations, and seems to be consistent with salts, such as sulfates. It is likely that silicate materials are also present. The images were obtained by the framing camera on NASA's Dawn spacecraft from a distance of about 2,700 miles (4,400 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20180

  1. Melas Chasma - False Color

    NASA Image and Video Library

    2015-10-08

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of the floor of Melas Chasma. The dark blue region in this false color image is sand dunes. Orbit Number: 12061 Latitude: -12.2215 Longitude: 289.105 Instrument: VIS Captured: 2004-09-02 10:11 http://photojournal.jpl.nasa.gov/catalog/PIA19793

  2. Spectral variability of sea surface skylight reflectance and its effect on ocean color.

    PubMed

    Cui, Ting-Wei; Song, Qing-Jun; Tang, Jun-Wu; Zhang, Jie

    2013-10-21

    In this study, sea surface skylight spectral reflectance ρ(λ) was retrieved by means of the non-linear spectral optimization method and a bio-optical model. The spectral variability of ρ(λ) was found to be mainly influenced by the uniformity of the incident skylight, and a model is proposed to predict the ρ(λ) spectral dependency based on skylight reflectance at 750 nm. It is demonstrated that using the spectrally variable ρ(λ), rather than a constant, yields an improved agreement between the above-water remote sensing reflectance R(rs)(λ) estimates and concurrent profiling ones. The findings of this study highlight the necessity to re-process the relevant historical above-water data and update ocean color retrieval algorithms accordingly.

  3. Using Remote Sensing and Field Observations of Colored Dissolved Organic Material (CDOM) to Improve Understanding of Carbon Dynamics at the Land-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Lai, L.; Tzortziou, M.; Gilerson, A.; Foster, R.

    2013-12-01

    Dissolved Organic Matter (DOM) and its colored component, (CDOM) are sensitive indicators of environmental pollution, nutrient enrichment, water quality and plays a key role in a broad range of processes and climate-related biogeochemical cycles in estuarine and coastal ecosystems. Because of its strong influence on how ocean color is viewed, CDOM can provide an invaluable optical tool for coastal zone environmental assessment and from space. There is a continuous cycle of sources and sinks of CDOM from terrestrial sources to the wetlands to the estuaries and to the ocean waters. Terrestrial inputs from natural processes, anthropogenic activities, exchanges with the atmosphere, rich biodiversity and high primary productivity, physical, photochemical and microbial processes affect not only the amount but also the quality and optical signature of CDOM in near-shore waters. In this study, new measurements are presented of the optical characteristics of CDOM collected from the Chesapeake Bay estuarine environment. Measured parameters include absorption spectra, estimated spectral slopes, slope ratios, DOC-specific CDOM absorption as well as 3D CDOM fluorescence emission-excitation matrices. Such results will provide insight of the measured CDOM in this complex environment and the complex process that affect CDOM quality and amount during transport to the estuary and coastal ocean. New field campaigns will be conducted in August and September in the Chesapeake Bay estuary and the coast of the Gulf of Mexico to collect more samples for analysis of CDOM dynamics and link field observations and measurements to satellite ocean color retrievals of estuarine biogeochemical processes. In addition, advanced satellite CDOM data distribution and usage is discussed as it has considerable operational value and practical application beyond the scientific community and research. Keywords: CDOM, carbon dynamics, estuaries, coastal ecosystems, optical properties, satellite applications

  4. Estimating the marine signal in the near infrared for atmospheric correction of satellite ocean-color imagery over turbid waters

    NASA Astrophysics Data System (ADS)

    Bourdet, Alice; Frouin, Robert J.

    2014-11-01

    The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.

  5. Melas Chasma - False Color

    NASA Image and Video Library

    2017-07-13

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Melas Chasma. Orbit Number: 59750 Latitude: -10.5452 Longitude: 290.307 Instrument: VIS Captured: 2015-06-03 12:33 https://photojournal.jpl.nasa.gov/catalog/PIA21705

  6. Melas Chasma - False Color

    NASA Image and Video Library

    2015-08-21

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Melas Chasma. Orbit Number: 10289 Latitude: -9.9472 Longitude: 285.933 Instrument: VIS Captured: 2004-04-09 12:43 http://photojournal.jpl.nasa.gov/catalog/PIA19756

  7. The Living Ocean.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This teaching guide contains information, activities, and discussion questions and answers about oceans for grades nine and ten. The information section covers the following topics: studying global ocean color from space, what can be seen from space, phytoplankton, carbon dioxide, and the greenhouse effect of the earth. (MKR)

  8. Colorful Equatorial Gullies in Krupac Crater

    NASA Image and Video Library

    2017-05-02

    Although large gullies (ravines) are concentrated at higher latitudes, there are gullies on steep slopes in equatorial regions, as seen in this image captured by NASA's Mars Reconnaissance Orbiter (MRO). The colors of the gully deposits match the colors of the eroded source materials. Krupac is a relatively young impact crater, but exposes ancient bedrock. Krupac Crater also hosts some of the most impressive recurring slope lineae (RSL) on equatorial Mars outside of Valles Marineris. https://photojournal.jpl.nasa.gov/catalog/PIA21605

  9. Titania High-Resolution Color Composite

    NASA Image and Video Library

    1996-01-29

    This high-resolution color composite of Titania was made from NASA Voyager 2 images taken Jan. 24, 1986, as the spacecraft neared its closest approach to Uranus. A large, trenchlike feature is seen near the terminator. http://photojournal.jpl.nasa.gov/catalog/PIA00036

  10. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  11. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  12. Color Map of Ceres Elliptical Projection

    NASA Image and Video Library

    2016-03-22

    This global map elliptical map from NASA Dawn spacecraft shows the surface of Ceres in enhanced color, encompassing infrared wavelengths beyond human visual range. Some areas near the poles are black where Dawn color imaging coverage is incomplete.

  13. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane; Kudela, Raphael; Hooker, Stanford; Morrow, John; Russell, Philip; Palacios, Sherry; Livingston, John M.; Negrey, Kendra; Torres-Perez, Juan; Broughton, Jennifer

    2014-01-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of

  14. Improving Coastal Ocean Color Validation Capabilities through Application of Inherent Optical Properties (IOPs)

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio

    2008-01-01

    Understanding how the different components of seawater alter the path of incident sunlight through scattering and absorption is essential to using remotely sensed ocean color observations effectively. This is particularly apropos in coastal waters where the different optically significant components (phytoplankton, detrital material, inorganic minerals, etc.) vary widely in concentration, often independently from one another. Inherent Optical Properties (IOPs) form the link between these biogeochemical constituents and the Apparent Optical Properties (AOPs). understanding this interrelationship is at the heart of successfully carrying out inversions of satellite-measured radiance to biogeochemical properties. While sufficient covariation of seawater constituents in case I waters typically allows empirical algorithms connecting AOPs and biogeochemical parameters to behave well, these empirical algorithms normally do not hold for case I1 regimes (Carder et al. 2003). Validation in the context of ocean color remote sensing refers to in-situ measurements used to verify or characterize algorithm products or any assumption used as input to an algorithm. In this project, validation capabilities are considered those measurement capabilities, techniques, methods, models, etc. that allow effective validation. Enhancing current validation capabilities by incorporating state-of-the-art IOP measurements and optical models is the purpose of this work. Involved in this pursuit is improving core IOP measurement capabilities (spectral, angular, spatio-temporal resolutions), improving our understanding of the behavior of analytical AOP-IOP approximations in complex coastal waters, and improving the spatial and temporal resolution of biogeochemical data for validation by applying biogeochemical-IOP inversion models so that these parameters can be computed from real-time IOP sensors with high sampling rates. Research cruises supported by this project provides for collection and

  15. NASA Ocean Altimeter Pathfinder Project. Report 2; Data Set Validation

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.; Ray, Richard D.; Beckley, Brian D.; Bremmer, Anita; Tsaoussi, Lucia S.; Wang, Yan-Ming

    1999-01-01

    The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how existing satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-series data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. Details are currently presented in two technical reports: Report# 1: Data Processing Handbook Report #2: Data Set Validation This report describes the validation of the data sets against a global network of high quality tide gauge measurements and provides an estimate of the error budget. The first report describes the processing schemes used to produce the geodetic consistent data set comprised of SEASAT, GEOSAT, ERS-1, TOPEX/ POSEIDON, and ERS-2 satellite observations.

  16. Terra Cimmeria - False Color

    NASA Image and Video Library

    2016-10-11

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows dust devil tracks (dark blue linear feature) in Terra Cimmeria. Orbit Number: 43463 Latitude: -53.1551 Longitude: 125.069 Instrument: VIS Captured: 2011-10-01 23:55 http://photojournal.jpl.nasa.gov/catalog/PIA21009

  17. Russell Crater - False Color

    NASA Image and Video Library

    2017-06-01

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Russell Crater in Noachis Terra. Orbit Number: 59591 Latitude: -54.471 Longitude: 13.1288 Instrument: VIS Captured: 2015-05-21 10:57 https://photojournal.jpl.nasa.gov/catalog/PIA21674

  18. Solutions Network Formulation Report. Improving NOAA's Tides and Currents Through Enhanced Data Inputs from NASA's Ocean Surface Topography Mission

    NASA Technical Reports Server (NTRS)

    Guest, DeNeice C.

    2006-01-01

    The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.

  19. NASA's Carbon Monitoring System Flux-Pilot Project: A Multi-Component Analysis System for Carbon-Cycle Research and Monitoring

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Gunson, M.; Potter, C.; Jucks, K.

    2012-01-01

    The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The

  20. Space Radar Image of North Atlantic Ocean

    NASA Image and Video Library

    1999-04-15

    This is a radar image showing surface features on the open ocean in the northeast Atlantic Ocean. There is no land mass in this image. The purple line in the lower left of the image is the stern wake of a ship. The ship creating the wake is the bright white spot on the middle, left side of the image. The ship's wake is about 28 kilometers (17 miles) long in this image and investigators believe that is because the ship may be discharging oil. The oil makes the wake last longer and causes it to stand out in this radar image. A fairly sharp boundary or front extends from the lower left to the upper right corner of the image and separates two distinct water masses that have different temperatures. The different water temperature affects the wind patterns on the ocean. In this image, the light green area depicts rougher water with more wind, while the purple area is calmer water with less wind. The dark patches are smooth areas of low wind, probably related to clouds along the front, and the bright green patches are likely due to ice crystals in the clouds that scatter the radar waves. The overall "fuzzy" look of this image is caused by long ocean waves, also called swells. Ocean radar imagery allows the fine detail of ocean features and interactions to be seen, such as the wake, swell, ocean front and cloud effects, which can then be used to enhance the understanding of ocean dynamics on smaller and smaller scales. The image is centered at 42.8 degrees north latitude, 26.2 degrees west longitude and shows an area approximately 35 kilometers by 65 kilometers (22 by 40 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is L-band vertically transmitted, vertically received. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR

  1. Polar Cap Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 May 2004 This daytime visible color image was collected on June 6, 2003 during the Southern Spring season near the South Polar Cap Edge.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -77.8, Longitude 195 East (165 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  2. Filters for Color Imaging and for Science

    NASA Image and Video Library

    2013-03-18

    The color cameras on NASA Mars rover Curiosity, including the pair that make up the rover Mastcam instrument, use the same type of Bayer pattern RGB filter as found in typical commercial color cameras.

  3. Ganymede Color Global

    NASA Image and Video Library

    1998-08-03

    Natural color view of Ganymede from NASA Galileo spacecraft during its first encounter with the satellite. The dark areas are the older, more heavily cratered regions and the light areas are younger, tectonically deformed regions.

  4. Ocean color remote sensing of turbid plumes in the southern California coastal waters during storm events

    NASA Astrophysics Data System (ADS)

    Lahet, Florence; Stramski, Dariusz

    2007-09-01

    Water-leaving radiance data obtained from MODIS-Aqua satellite images at spatial resolution of 250 m (band 1 at 645 nm) and 500 m (band 4 at 555 nm) were used to analyze the correlation between plume area and rainfall during strong storm events in coastal waters of Southern California. Our study is focused on the area between Point Loma and the US-Mexican border in San Diego, which is influenced by terrigenous input of particulate and dissolved materials from San Diego and Tijuana watersheds and non-point sources along the shore. For several events of intense rainstorms that occurred in the winter of 2004-2005, we carried out a correlational analysis between the satellite-derived plume area and rainfall parameters. We examined several rainfall parameters and methods for the estimation of plume area. We identified the optimal threshold values of satellite-derived normalized water-leaving radiances at 645 nm and 555 nm for distinguishing the plume from ambient ocean waters. The satellite-derived plume size showed high correlation with the amount of precipitated water accumulated during storm event over the San Diego and Tijuana watersheds. Our results support the potential of ocean color imagery with relatively high spatial resolution for the study of turbid plumes in the coastal ocean.

  5. False Color Image of Volcano Sapas Mons

    NASA Image and Video Library

    1996-02-05

    This false-color image obtained by NASA Magellan spacecraft shows the volcano Sapas Mons, which is located in the broad equatorial rise called Atla Regio. http://photojournal.jpl.nasa.gov/catalog/PIA00203

  6. Remote quantification of Cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI).

    PubMed

    Noh, Jae Hoon; Kim, Wonkook; Son, Seung Hyun; Ahn, Jae-Hyun; Park, Young-Je

    2018-03-01

    Accurate and timely quantification of widespread harmful algal bloom (HAB) distribution is crucial to respond to the natural disaster, minimize the damage, and assess the environmental impact of the event. Although various remote sensing-based quantification approaches have been proposed for HAB since the advent of the ocean color satellite sensor, there have been no algorithms that were validated with in-situ quantitative measurements for the red tide occurring in the Korean seas. Furthermore, since the geostationary ocean color imager (GOCI) became available in June 2010, an algorithm that exploits its unprecedented observation frequency (every hour during the daytime) has been highly demanded to better track the changes in spatial distribution of red tide. This study developed a novel red tide quantification algorithm for GOCI that can estimate hourly chlorophyll-a (Chl a) concentration of Cochlodinium (Margalefidinium) polykrikoides, one of the major red tide species around Korean seas. The developed algorithm has been validated using in-situ Chl a measurements collected from a cruise campaign conducted in August 2013, when a massive C. polykrikoides bloom devastated Korean coasts. The proposed algorithm produced a high correlation (R 2 =0.92) with in-situ Chl a measurements with robust performance also for high Chl a concentration (300mg/m 3 ) in East Sea areas that typically have a relatively low total suspended particle concentration (<0.5mg/m 3 ). Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Estimates of phytoplankton class-specific and total primary production in the Mediterranean Sea from satellite ocean color observations

    NASA Astrophysics Data System (ADS)

    Uitz, Julia; Stramski, Dariusz; Gentili, Bernard; D'Ortenzio, Fabrizio; Claustre, Hervé

    2012-06-01

    An approach that combines a recently developed procedure for improved estimation of surface chlorophyll a concentration (Chlsurf) from ocean color and a phytoplankton class-specific bio-optical model was used to examine primary production in the Mediterranean Sea. Specifically, this approach was applied to the 10 year time series of satellite Chlsurfdata from the Sea-viewing Wide Field-of-view Sensor. We estimated the primary production associated with three major phytoplankton classes (micro, nano, and picophytoplankton), which also yielded new estimates of the total primary production (Ptot). These estimates of Ptot (e.g., 68 g C m-2 yr-1for the entire Mediterranean basin) are lower by a factor of ˜2 and show a different seasonal cycle when compared with results from conventional approaches based on standard ocean color chlorophyll algorithm and a non-class-specific primary production model. Nanophytoplankton are found to be dominant contributors to Ptot (43-50%) throughout the year and entire basin. Micro and picophytoplankton exhibit variable contributions to Ptot depending on the season and ecological regime. In the most oligotrophic regime, these contributions are relatively stable all year long with picophytoplankton (˜32%) playing a larger role than microphytoplankton (˜22%). In the blooming regime, picophytoplankton dominate over microphytoplankton most of the year, except during the spring bloom when microphytoplankton (27-38%) are considerably more important than picophytoplankton (20-27%).

  8. Ocean Color and the Equatorial Annual Cycle in the Pacific

    NASA Astrophysics Data System (ADS)

    Hammann, A. C.; Gnanadesikan, A.

    2012-12-01

    The presence of chlorophyll, colored dissolved organic matter (CDOM) and other scatterers in ocean surface waters affect the flux divergence of solar radiation and thus the vertical distribution of radiant heating of the ocean. While this may directly alter the local mixed-layer depth and temperature (Martin 1985; Strutton & Chavez 2004), non-local changes are propagated through advection (Manizza et al. 2005; Murtugudde et al. 2002; Nakamoto et al. 2001; Sweeny et al. 2005). In and coupled feedbacks (Lengaigne et al. 2007; Marzeion & Timmermann 2005). Anderson et al. (2007), Anderson et al. (2009) and Gnanadesikan & Anderson (2009) have performed a series of experiments with a fully coupled climate model which parameterizes the e-folding depth of solar irradiance in terms of surface chlorophyll-a concentration. The results have so far been discussed with respect to the climatic mean state and ENSO variability in the tropical Pacific. We extend the discussion here to the Pacific equatorial annual cycle. The focus of the coupled experiments has been the sensitivity of the coupled system to regional differences in chlorophyll concentration. While runs have been completed with realistic SeaWiFS-derived monthly composite chlorophyll ('green') and with a globally chlorophyll-free ocean ('blue'), the concentrations in two additional runs have been selectively set to zero in specific regions: the oligotrophic subtropical gyres ('gyre') in one case and the mesotrophic gyre margins ('margin') in the other. The annual cycle of ocean temperatures exhibits distinctly reduced amplitudes in the 'blue' and 'margin' experiments, and a slight reduction in 'gyre' (while ENSO variability almost vanishes in 'blue' and 'gyre', but amplifies in 'margin' - thus the frequently quoted inverse correlation between ENSO and annual amplitudes holds only for the 'green' / 'margin' comparison). It is well-known that on annual time scales, the anomalous divergence of surface currents and vertical

  9. Gale Crater - False Color

    NASA Image and Video Library

    2017-02-15

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Gale Crater. Basaltic sands are dark blue in this type of false color combination. The Curiosity Rover is located in another portion of Gale Crater, far southwest of this image. Orbit Number: 51803 Latitude: -4.39948 Longitude: 138.116 Instrument: VIS Captured: 2013-08-18 09:04 http://photojournal.jpl.nasa.gov/catalog/PIA21312

  10. Vertical Distribution of Bacterial Communities in the Indian Ocean as Revealed by Analyses of 16S rRNA and nasA Genes.

    PubMed

    Jiang, Xuexia; Jiao, Nianzhi

    2016-09-01

    Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis.

  11. Fall's Changing Colors

    NASA Technical Reports Server (NTRS)

    2002-01-01

    As the clouds allowed during the past two months, the Sea-viewing Wide field-of-View Sensor (SeaWiFS) recorded the changing colors of eastern U.S. and Canadian vegetation. This series of true-color images from the fall of 2000 shows the deciduous forests of the region change from dark green to bright red and orange, and begin to drop their leaves. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  12. Hourly changes in sea surface salinity in coastal waters recorded by Geostationary Ocean Color Imager

    NASA Astrophysics Data System (ADS)

    Liu, Rongjie; Zhang, Jie; Yao, Haiyan; Cui, Tingwei; Wang, Ning; Zhang, Yi; Wu, Lingjuan; An, Jubai

    2017-09-01

    In this study, we monitored hourly changes in sea surface salinity (SSS) in turbid coastal waters from geostationary satellite ocean color images for the first time, using the Bohai Sea as a case study. We developed a simple multi-linear statistical regression model to retrieve SSS data from Geostationary Ocean Color Imager (GOCI) based on an in situ satellite matched-up dataset (R2 = 0.795; N = 41; Range: 26.4 to 31.9 psμ). The model was then validated using independent continuous SSS measurements from buoys, with the average percentage difference of 0.65%. The model was applied to GOCI images from the dry season during an astronomical tide to characterize hourly changes in SSS in the Bohai Sea. We found that the model provided reasonable estimates of the hourly changes in SSS and that trends in the modeled and measured data were similar in magnitude and direction (0.43 vs 0.33 psμ, R2 = 0.51). There were clear diurnal variations in the SSS of the Bohai Sea, with a regional average of 0.455 ± 0.079 psμ (0.02-3.77 psμ). The magnitude of the diurnal variations in SSS varied spatially, with large diurnal variability in the nearshore, particularly in the estuary, and small variability in the offshore area. The model for the riverine area was based on the inverse correlation between SSS and CDOM absorption. In the offshore area, the water mass of the North Yellow Sea, characterized by high SSS and low CDOM concentrations, dominated. Analysis of the driving mechanisms showed that the tidal current was the main control on hourly changes in SSS in the Bohai Sea.

  13. Crater - False Color

    NASA Image and Video Library

    2016-03-07

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Terra Sabaea.

  14. Visible and infrared imaging radiometers for ocean observations

    NASA Technical Reports Server (NTRS)

    Barnes, W. L.

    1977-01-01

    The current status of visible and infrared sensors designed for the remote monitoring of the oceans is reviewed. Emphasis is placed on multichannel scanning radiometers that are either operational or under development. Present design practices and parameter constraints are discussed. Airborne sensor systems examined include the ocean color scanner and the ocean temperature scanner. The costal zone color scanner and advanced very high resolution radiometer are reviewed with emphasis on design specifications. Recent technological advances and their impact on sensor design are examined.

  15. Enhance field water-color measurements with a Secchi disk and its implication for fusion of active and passive ocean-color remote sensing.

    PubMed

    Lee, Zhongping; Shang, Shaoling; Du, Keping; Liu, Bingyi; Lin, Gong; Wei, Jianwei; Li, Xiaolong

    2018-05-01

    Inversion of the total absorption (a) and backscattering coefficients of bulk water through a fusion of remote sensing reflectance (R rs ) and Secchi disk depth (Z SD ) is developed. An application of such a system to a synthesized wide-range dataset shows a reduction of ∼3 folds in the uncertainties of inverted a(λ) (in a range of ∼0.01-6.8  m -1 ) from R rs (λ) for the 350-560 nm range. Such a fusion is further proposed to process concurrent active (ocean LiDAR) and passive (ocean-color) measurements, which can lead to nearly "exact" analytical inversion of an R rs spectrum. With such a fusion, it is found that the uncertainty in the inverted total a in the 350-560 nm range could be reduced to ∼2% for the synthesized data, which can thus significantly improve the derivation of a coefficients of other varying components. Although the inclusion of Z SD places an extra constraint in the inversion of R rs , no apparent improvement over the quasi-analytical algorithm (QAA) was found when the fusion of Z SD and R rs was applied to a field dataset, which calls for more accurate determination of the absorption coefficients from water samples.

  16. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  17. A Binary Planet in Color

    NASA Image and Video Library

    2015-07-23

    This image from NASA New Horizons highlights the contrasting appearance of the two worlds: Charon is mostly gray, with a dark reddish polar cap, while Pluto shows a wide variety of subtle color variations. Pluto and Charon are shown in enhanced color in this image, which is the highest-resolution color image of the pair so far returned to Earth by New Horizons. It was taken at 06:49 UT on July 14, 2015, five hours before Pluto closest approach, from a range of 150,000 miles (250,000 kilometers), with the spacecraft's Ralph instrument. The image highlights the contrasting appearance of the two worlds: Charon is mostly gray, with a dark reddish polar cap, while Pluto shows a wide variety of subtle color variations, including yellowish patches on the north polar cap and subtly contrasting colors for the two halves of Pluto's "heart," informally named Tombaugh Regio, seen in the upper right quadrant of the image. In order to fit Pluto and Charon in the same frame in their correct relative positions, the image has been rotated so the north pole on both Pluto and Charon is pointing towards the upper left. The image was made with the blue, red, and near-infrared color filters of Ralph's Multispectral Visible Imaging Camera, and shows colors that are similar, but not identical, to what would be seen with the human eye, which is sensitive to a narrower range of wavelengths. http://photojournal.jpl.nasa.gov/catalog/PIA19856

  18. Ocean Observation Instrument

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Airborne Ocean Color Imager (AOCI) was developed by Daedalus Enterprises, Inc. for Ames Research Center under a Small Business Innovation Research (SBIR) contract as a simulator for an advanced oceanographic satellite instrument. The instrument measures water temperature and detects water color in nine wavelengths. Water color indicates chlorophyll content or phytoplankton. After EOCAP assistance and technical improvements, the AOCI was successfully commercialized by Daedalus Enterprises, Inc. One version provides commercial fishing fleets with information about fish locations, and the other is used for oceanographic research.

  19. Simulating PACE Global Ocean Radiances

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2017-01-01

    The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P < 0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and a CDOC (r =0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250-800 nm. These unassimilated radiances were within 0.074 mW/sq cm/micron/sr of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of 10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global

  20. he second X-43A and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Minutes later the X-43A separated from the Pegasus booster and accelerated to its intended speed of Mach 7.

  1. Ceres in Color

    NASA Image and Video Library

    2016-11-18

    This image of Ceres approximates how the dwarf planet's colors would appear to the eye. This view of Ceres, produced by the German Aerospace Center in Berlin, combines images taken during Dawn's first science orbit in 2015 using the framing camera's red, green and blue spectral filters. The color was calculated using a reflectance spectrum, which is based on the way that Ceres reflects different wavelengths of light and the solar wavelengths that illuminate Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA21079

  2. Radiative transfer simulations of the two-dimensional ocean glint reflectance and determination of the sea surface roughness.

    PubMed

    Lin, Zhenyi; Li, Wei; Gatebe, Charles; Poudyal, Rajesh; Stamnes, Knut

    2016-02-20

    An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications.

  3. Radiative Transfer Simulations of the Two-Dimensional Ocean Glint Reflectance and Determination of the Sea Surface Roughness

    NASA Technical Reports Server (NTRS)

    Lin, Zhenyi; Li, Wei; Gatebe, Charles; Poudyal, Rajesh; Stamnes, Knut

    2016-01-01

    An optimized discrete-ordinate radiative transfer model (DISORT3) with a pseudo-two-dimensional bidirectional reflectance distribution function (BRDF) is used to simulate and validate ocean glint reflectances at an infrared wavelength (1036 nm) by matching model results with a complete set of BRDF measurements obtained from the NASA cloud absorption radiometer (CAR) deployed on an aircraft. The surface roughness is then obtained through a retrieval algorithm and is used to extend the simulation into the visible spectral range where diffuse reflectance becomes important. In general, the simulated reflectances and surface roughness information are in good agreement with the measurements, and the diffuse reflectance in the visible, ignored in current glint algorithms, is shown to be important. The successful implementation of this new treatment of ocean glint reflectance and surface roughness in DISORT3 will help improve glint correction algorithms in current and future ocean color remote sensing applications.

  4. Development of the atmospheric correction algorithm for the next generation geostationary ocean color sensor data

    NASA Astrophysics Data System (ADS)

    Lee, Kwon-Ho; Kim, Wonkook

    2017-04-01

    The geostationary ocean color imager-II (GOCI-II), designed to be focused on the ocean environmental monitoring with better spatial (250m for local and 1km for full disk) and spectral resolution (13 bands) then the current operational mission of the GOCI-I. GOCI-II will be launched in 2018. This study presents currently developing algorithm for atmospheric correction and retrieval of surface reflectance over land to be optimized with the sensor's characteristics. We first derived the top-of-atmosphere radiances as the proxy data derived from the parameterized radiative transfer code in the 13 bands of GOCI-II. Based on the proxy data, the algorithm has been made with cloud masking, gas absorption correction, aerosol inversion, computation of aerosol extinction correction. The retrieved surface reflectances are evaluated by the MODIS level 2 surface reflectance products (MOD09). For the initial test period, the algorithm gave error of within 0.05 compared to MOD09. Further work will be progressed to fully implement the GOCI-II Ground Segment system (G2GS) algorithm development environment. These atmospherically corrected surface reflectance product will be the standard GOCI-II product after launch.

  5. Ocean color, a three component system?

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.; Owen, W. P.

    1972-01-01

    This study measures the concentrations of phytoplankton chlorophyll and yellow substance in the coastal waters of the Gulf of Maine. Sea surface observations attempt to delineate the principal biochemical parameters responsible for sea surface color. It is shown that the reddish-brown water changed to a blue-green in the open gulf.

  6. Craters - False Color

    NASA Image and Video Library

    2016-02-04

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image captured by NASA 2001 Mars Odyssey spacecraft shows a group of unnamed craters north of Fournier Crater.

  7. Dunes - False Color

    NASA Image and Video Library

    2015-12-01

    The THEMIS VIS camera contains 5 filters. Data from different filters can be combined in many ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows sand dunes and sand materials in depressions near the south pole. The dark blue tone shows the location of sand transport from one depression to another. Orbit Number: 16870 Latitude: -75.1264 Longitude: 348.882 Instrument: VIS Captured: 2005-10-03 09:18 http://photojournal.jpl.nasa.gov/catalog/PIA20105

  8. Color Infrared, Terra Sirenum

    NASA Image and Video Library

    2002-03-01

    This is the first high-resolution color infrared image taken of Mars. The image was constructed using three of the ten infrared filters on the thermal emission imaging system of NASA Mars Odyssey spacecraft.

  9. How Ocean Color Influences the Interplay Between Annual and Interannual Tropical Pacific Variability

    NASA Astrophysics Data System (ADS)

    Hammann, A. C.; Gnanadesikan, A.

    2010-12-01

    While the basic mechanisms responsible for ENSO have long been known, many details still evade our understanding. Since the behavior of the real climate system appears to be highly sensitive to such details, however, our ability to model, let alone predict it with any confidence has so far been rather restricted. Not only can small perturbations in many state variables lead to strongly amplified responses, but also do spatial and temporal scales of variability rarely occur in isolation from each other. Both points are born out in the study by Anderson et al. (2009), who removed surface chlorophyll in different regions of the tropical (but mostly off-equatorial) Pacific in a coupled ocean-atmosphere-land-ice model. Different removal patterns lead to large differences in the amplitudes of both ENSO and the equatorial annual cycle. Anderson et al.’s analysis focuses on ENSO and reveals that the transmission of off-equatorial perturbations to the equator happens mainly through a changed atmospheric response to SST anomalies. Here, we analyze the same data with respect to the annual cycle and how it interacts with ENSO. Guilyardi (2006) reports that observations and models alike show a zero-sum-type behavior of annual and ENSO-scale variability; increased spectral power in the annual band means decreased power in the ENSO band and vice versa. This is not the case for the different patterns of chlorophyll removal in our model, and hence it appears that this removal changes a fundamental part of its mean state. The dynamics of the annual cycle are likely influenced by oceanic meridional temperature advection, which provides another possible route for off-to-equatorial signal propagation. A common aspect of the tropical annual cycle in most coupled climate models is the presence of a double ITCZ instead of a single north-shifted one. Even though this appears to be unrelated to (albeit influenced by) the changes in ocean color, our model exhibits a much improved

  10. Russell Crater Dunes - False Color

    NASA Image and Video Library

    2017-07-07

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of the large dune form on the floor of Russell Crater. Orbit Number: 59672 Latitude: -54.337 Longitude: 13.1087 Instrument: VIS Captured: 2015-05-28 02:39 https://photojournal.jpl.nasa.gov/catalog/PIA21701

  11. Colorful Polar Layered Deposits

    NASA Image and Video Library

    2016-03-23

    The North Polar layered deposits provide a record of recent climate changes on Mars as seen by NASA Mars Reconnaissance Orbiter spacecraft. Color variations between layers are due to differences in composition of the dust.

  12. Influence of CDOM and particle composition on ocean color of the Eastern New Caledonia Lagoon during the CALIOPE cruises

    NASA Astrophysics Data System (ADS)

    Dupouy, Cécile; Röttgers, Rüdiger; Tedetti, Marc; Martias, Chloe; Murakami, Hiroshi; Doxaran, David; Lantoine, Francois; Rodier, Martine; Favareto, Luciane; Kampel, Milton; Goutx, Madeleine; Frouin, Robert J.

    2014-11-01

    Ocean color of tropical lagoons is dependent on bathymetry and bottom type, as well as input of coastal living and mineral particles and chromophoric dissolved organic matter (CDOM). The New Caledonia lagoon lies in the Southwestern Tropical Pacific around 21° 30'S and 166° 30'E, with a great marine biodiversity in UNESCO Heritage coral reefs, benthic sea grass, and benthic communities. They are largely connected to the open ocean in the southern and eastern parts, but only by narrow passes in the southwest part. The trophic state is linked to spatial variations in flushing times. High run offs due to rain carrying abundant chromophoric dissolved organic matter (CDOM) and particle loads may greatly impact the functioning of ecosystems while rivers and sewage effluents may induce localized impacts. Two oceanographic cruises (CALIOPE 1 in 2011 and CALIOPE 2 in 2014) were carried out off the Eastern Coast of New Caledonia during a calm dry period and during high winds, respectively. Multi- and hyper-spectral marine reflectance was measured with a SIMBADA instrument and a TRIOS radiometer system, together with inherent optical properties (total and CDOM absorption coefficients with a PSICAM, in situ absorption and scattering with an AC9, backscattering with a Hydroscat-6). Fluorescence of CDOM (EEM/PARAFAC) was measured on collected 0.2 μm filtered samples. In 2014, Satlantic and FieldSpec hyper-spectral radiometers were available for in-water profiling of upwelling radiance and downwelling irradiance and above-water reflectance measurements, respectively. Inherent and apparent optical data from the two cruises are compared and used to estimate ocean color algorithms performance and evaluate a Linear Matrix Inversion method, providing tools for remote sensing on this highly under-sampled coastal region of New Caledonia.

  13. Surface roughness considerations for atmospheric correction of ocean color sensors. I - The Rayleigh-scattering component. II - Error in the retrieved water-leaving radiance

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Wang, Menghua

    1992-01-01

    The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.

  14. New NASA Infrared Image of Irma Shows an Angry Eye

    NASA Image and Video Library

    2017-09-05

    Hurricane Irma is the strongest hurricane ever recorded outside the Caribbean Sea and Gulf of Mexico. These two images from the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite show what Hurricane Irma looked like when Aqua passed overhead just before 1 p.m. local time (10 a.m. PDT) on Sept. 5, 2017. Forecasts at the National Hurricane Center have Irma passing near the major islands to its west before turning northward near Florida this weekend. The first image (top) is an infrared snapshot from AIRS (see Figure 1 for larger image). In orange and red areas, the ocean surface shines through, while blue and purple areas represent cold, high clouds that obscure what lies below. Typical of well-developed hurricanes, Irma is nearly circular with a well-defined eye at its center. The eye is about 25 miles (40 kilometers) in diameter. Careful scrutiny shows a red pixel in the center of the eye, which means that AIRS achieved a bulls-eye with one of its "looks" and was able to see to the ocean between the dense clouds in the eye wall. The second image (bottom) shows the view through AIRS' microwave-colored "lenses" (see Figure 2 for larger image). Here the ocean surface looks yellow, while green represents various degrees of cloudiness. Blue shows areas where it is raining heavily. The eye is not apparent in this image because the "pixel size" of the microwave sounder, about 30 miles (50 kilometers), is larger than the eye and therefore cannot "thread the needle." The infrared sounder, on the other hand, has a pixel size of only 10 miles (16.5 kilometers) and can distinguish the small eye. https://photojournal.jpl.nasa.gov/catalog/PIA21941

  15. Eridania Planitia - False Color

    NASA Image and Video Library

    2016-06-22

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Eridania Planitia.

  16. Gale Crater - False Color

    NASA Image and Video Library

    2016-10-17

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Gale Crater.

  17. Ophir Chasma - False Color

    NASA Image and Video Library

    2016-04-28

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Ophir Chasma.

  18. Terra Sirenum - False Color

    NASA Image and Video Library

    2016-03-14

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Terra Sirenum.

  19. Capri Mensa - False Color

    NASA Image and Video Library

    2016-03-18

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Capri Mensa.

  20. Peraea Cavus - False Color

    NASA Image and Video Library

    2016-05-02

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Peraea Cavus.

  1. Martin Crater - False Color

    NASA Image and Video Library

    2016-03-09

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Martin Crater.

  2. Nili Fossae - False Color

    NASA Image and Video Library

    2016-04-27

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Nili Fossae.

  3. Remote sensing of ocean currents

    NASA Technical Reports Server (NTRS)

    Maul, G. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Monthly field experiments in support of the NOAA investigation of ocean color boundary determination using ERTS-1 data have been conducted since June 1972. The boundary between coastal waters and the Loop Current has been detected by ERTS-1 as a result of sea state changes as well as color differences. Ocean information is contained in all 24 channels of the Bendix MSS flown on the C-130 in June 1972; this includes UV, visible, reflected IR, and emitted IR. Computer enhancement of MSS data is revealing many features not shown in the NDPF product.

  4. Callisto Cutaway with Ocean

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept, a cutaway view of Jupiter's moon Callisto, is based on recent data from NASA's Galileo spacecraft which indicates a salty ocean may lie beneath Callisto's icy crust.

    These findings come as a surprise, since scientists previously believed that Callisto was relatively inactive. If Callisto has an ocean, that would make it more like another Jovian moon, Europa, which has yielded numerous hints of a subsurface ocean. Despite the tantalizing suggestion that there is an ocean layer on Callisto, the possibility that there is life in the ocean remains remote.

    Callisto's cratered surface lies at the top of an ice layer, (depicted here as a whitish band), which is estimated to be about 200 kilometers (124 miles) thick. Immediately beneath the ice, the thinner blue band represents the possible ocean, whose depth must exceed 10 kilometers (6 miles), according to scientists studying data from Galileo's magnetometer. The mottled interior is composed of rock and ice.

    Galileo's magnetometer, which studies magnetic fields around Jupiter and its moons, revealed that Callisto's magnetic field is variable. This may be caused by varying electrical currents flowing near Callisto's surface, in response to changes in the background magnetic field as Jupiter rotates. By studying the data, scientists have determined that the most likely place for the currents to flow would be a layer of melted ice with a high salt content.

    These findings were based on information gathered during Galileo's flybys of Callisto in November 1996, and June and September of 1997. JPL manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This artist's concept and other images and data received from Galileo are posted on the World Wide Web on the Galileo mission home page at http://galileo.jpl.nasa.gov . Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo

  5. Tyrrhena Terra - False Color

    NASA Image and Video Library

    2016-03-16

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows a hill in Tyrrhena Terra.

  6. Application synergies between the NASA Pre- Aerosol Cloud and ocean Ecosystem (PACE) and Hyperspectral Infrared Imager (HyspIRI) missions

    NASA Astrophysics Data System (ADS)

    Lee, C. M.; Omar, A. H.; Hook, S. J.; Tzortziou, M.; Luvall, J. C.; Turner, W. W.

    2016-02-01

    Observations from the Pre-Aerosol Cloud and ocean Ecosystem (PACE) and Hyperspectral InfraRed Imager (HyspIRI) satellite missions are highly complementary and have the potential to significantly advance understanding of various science and applications challenges in the ocean sciences and water quality communities. Scheduled for launch in the 2022 timeframe, PACE is designed to make climate-quality global measurements essential for understanding ocean biology, biogeochemistry and ecology, and determining the role of the ocean in global biogeochemical cycling and ocean ecology, and how it affects and is affected by climate change. PACE will provide high signal-to-noise, hyperspectral observations over an extended spectral range (UV to SWIR) and will have global coverage every 1-2 days, at approximately 1 km spatial resolution; furthermore, PACE is currently designed to include a polarimeter, which will vastly improve atmospheric correction algorithms over water bodies. The PACE mission will enable advances in applications across a range of areas, including oceans, climate, water resources, ecological forecasting, disasters, human health and air quality. HyspIRI, with contiguous measurements in VSWIR, and multispectral measurements in TIR, will be able to provide detailed spectral observations and higher spatial resolution (30 to 60-m) over aquatic systems, but at a temporal resolution that is approximately 5-16 days. HyspIRI would enable improved, detailed studies of aquatic ecosystems, including benthic communities, algal blooms, coral reefs, and wetland species distribution as well as studies of water quality indicators or pollutants such as oil spills, suspended sediment, and colored dissolved organic matter. Together, PACE and HyspIRI will be able to address numerous applications and science priorities, including improving and extending climate data records, and studies of inland, coastal and ocean environments.

  7. Calibration Image of Earth by Mars Color Imager

    NASA Image and Video Library

    2005-08-22

    Three days after the Mars Reconnaissance Orbiter Aug. 12, 2005, launch, the NASA spacecraft was pointed toward Earth and the Mars Color Imager camera was powered up to acquire a suite of color and ultraviolet images of Earth and the Moon.

  8. NASA's Terra Satellite Sees Shadows of Solar Eclipse

    NASA Image and Video Library

    2015-03-20

    During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA's Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse's shadow over the clouds in the Arctic Ocean. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Optically based technique for producing merged spectra of water-leaving radiances from ocean color remote sensing.

    PubMed

    Mélin, Frédéric; Zibordi, Giuseppe

    2007-06-20

    An optically based technique is presented that produces merged spectra of normalized water-leaving radiances L(WN) by combining spectral data provided by independent satellite ocean color missions. The assessment of the merging technique is based on a four-year field data series collected by an autonomous above-water radiometer located on the Acqua Alta Oceanographic Tower in the Adriatic Sea. The uncertainties associated with the merged L(WN) obtained from the Sea-viewing Wide Field-of-view Sensor and the Moderate Resolution Imaging Spectroradiometer are consistent with the validation statistics of the individual sensor products. The merging including the third mission Medium Resolution Imaging Spectrometer is also addressed for a reduced ensemble of matchups.

  10. Callisto False Color

    NASA Image and Video Library

    1996-09-26

    This false color picture of Callisto was taken by NASA's Voyager 2 on July 7, 1979 at a range of 1,094,666 kilometers (677,000 miles) and is centered on 11 degrees N and 171 degrees W. This rendition uses an ultraviolet image for the blue component. Because the surface displays regional contrast in UV, variations in surface materials are apparent. Notice in particular the dark blue haloes which surround bright craters in the eastern hemisphere. The surface of Callisto is the most heavily cratered of the Galilean satellites and resembles ancient heavily cratered terrains on the moon, Mercury and Mars. The bright areas are ejecta thrown out by relatively young impact craters. A large ringed structure, probably an impact basin, is shown in the upper left part of the picture. The color version of this picture was constructed by compositing black and white images taken through the ultraviolet, clear and orange filters. http://photojournal.jpl.nasa.gov/catalog/PIA00457

  11. Homestake Vein, False Color

    NASA Image and Video Library

    2011-12-07

    This false-color view of a mineral vein called Homestake comes from the panoramic camera Pancam on NASA Mars Exploration Rover Opportunity. The vein is about the width of a thumb and about 18 inches 45 centimeters long.

  12. Internal Ocean Waves

    NASA Image and Video Library

    2006-07-17

    The false-color VNIR image from NASA Terra spacecraft was acquired off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction.

  13. NASA Publications Guide

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The publication programs and management policies of NASA are described and the details that authors and publication specialists need to know to carry out the agency's mission of disseminating the scientific and technical information derived from its activities are highlighted. Topics covered include the various kinds of NASA formal publications; selection of publication medium; printing and distribution; and requirements concerning style and format standards, copyright transfers, the cover, color, and foldouts. The sections of a report are delineated and editorial and page make-up responsibilities are also discussed.

  14. Performance evaluation of ocean color satellite models for deriving accurate chlorophyll estimates in the Gulf of Saint Lawrence

    NASA Astrophysics Data System (ADS)

    Montes-Hugo, M.; Bouakba, H.; Arnone, R.

    2014-06-01

    The understanding of phytoplankton dynamics in the Gulf of the Saint Lawrence (GSL) is critical for managing major fisheries off the Canadian East coast. In this study, the accuracy of two atmospheric correction techniques (NASA standard algorithm, SA, and Kuchinke's spectral optimization, KU) and three ocean color inversion models (Carder's empirical for SeaWiFS (Sea-viewing Wide Field-of-View Sensor), EC, Lee's quasi-analytical, QAA, and Garver- Siegel-Maritorena semi-empirical, GSM) for estimating the phytoplankton absorption coefficient at 443 nm (aph(443)) and the chlorophyll concentration (chl) in the GSL is examined. Each model was validated based on SeaWiFS images and shipboard measurements obtained during May of 2000 and April 2001. In general, aph(443) estimates derived from coupling KU and QAA models presented the smallest differences with respect to in situ determinations as measured by High Pressure liquid Chromatography measurements (median absolute bias per cruise up to 0.005, RMSE up to 0.013). A change on the inversion approach used for estimating aph(443) values produced up to 43.4% increase on prediction error as inferred from the median relative bias per cruise. Likewise, the impact of applying different atmospheric correction schemes was secondary and represented an additive error of up to 24.3%. By using SeaDAS (SeaWiFS Data Analysis System) default values for the optical cross section of phytoplankton (i.e., aph(443) = aph(443)/chl = 0.056 m2mg-1), the median relative bias of our chl estimates as derived from the most accurate spaceborne aph(443) retrievals and with respect to in situ determinations increased up to 29%.

  15. Terra Sirenum - False Color

    NASA Image and Video Library

    2016-04-25

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sirenum.

  16. Arabia Terra - False Color

    NASA Image and Video Library

    2016-05-05

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Arabia Terra.

  17. Terra Sirenum - False Color

    NASA Image and Video Library

    2016-03-15

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sirenum.

  18. Terra Sirenum - False Color

    NASA Image and Video Library

    2016-05-06

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sirenum.

  19. Coprates Chasma - False Color

    NASA Image and Video Library

    2016-03-11

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Coprates Chasma.

  20. Terra Sabaea - False Color

    NASA Image and Video Library

    2016-03-08

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sabaea.

  1. Biodiversity of Pigmented Fungi Isolated from Marine Environment in La Réunion Island, Indian Ocean: New Resources for Colored Metabolites

    PubMed Central

    Llorente, Melissa; Magalon, Helene

    2017-01-01

    Marine ecosystems cover about 70% of the planet surface and are still an underexploited source of useful metabolites. Among microbes, filamentous fungi are captivating organisms used for the production of many chemical classes of secondary metabolites bound to be used in various fields of industrial application. The present study was focused on the collection, isolation, screening and genotyping of pigmented filamentous fungi isolated from tropical marine environments around La Réunion Island, Indian Ocean. About 150 micromycetes were revived and isolated from 14 marine samples (sediments, living corals, coral rubble, sea water and hard substrates) collected in four different locations. Forty-two colored fungal isolates belonging to 16 families, 25 genera and 31 species were further studied depending on their ability to produce pigments and thus subjected to molecular identification. From gene sequence analysis, the most frequently identified colored fungi belong to the widespread Penicillium, Talaromyces and Aspergillus genera in the family Trichocomaceae (11 species), then followed by the family Hypocreaceae (three species). This study demonstrates that marine biotopes in La Réunion Island, Indian Ocean, from coral reefs to underwater slopes of this volcanic island, shelter numerous species of micromycetes, from common or uncommon genera. This unstudied biodiversity comes along with the ability for some fungal marine inhabitants, to produce a range of pigments and hues. PMID:29371553

  2. Hurricane Gonzalo in the Atlantic Ocean

    NASA Image and Video Library

    2017-12-08

    On Oct. 16 at 17:45 UTC NASA's Terra satellite captured this image of Hurricane Gonzalo in the Atlantic Ocean. Image Credit: NASA Goddard MODIS Rapid Response Team-- NASA and NOAA satellites have been providing continuous coverage of Hurricane Gonzalo as it moves toward Bermuda. NASA's Terra satellite saw thunderstorms wrapped tightly around the center with large bands of thunderstorms wrapping into it. NOAA's GOES-East satellite provided and "eye-opening" view of Gonzalo, still a Category 4 hurricane on Oct. 16. A hurricane warning is in effect for Bermuda and that means that hurricane conditions are expected within the warning area, meaning the entire island. Read more: www.nasa.gov/content/goddard/gonzalo-atlantic-ocean/index... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    PubMed Central

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2017-01-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm−1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360–500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors. PMID:29201583

  4. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance.

    PubMed

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), S cdm (units: nm -1 ), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving S cdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized data set to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of S cdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  5. An Overview of SIMBIOS Program Activities and Accomplishments. Chapter 1

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; McClain, Charles R.

    2003-01-01

    The SIMBIOS Program was conceived in 1994 as a result of a NASA management review of the agency's strategy for monitoring the bio-optical properties of the global ocean through space-based ocean color remote sensing. At that time, the NASA ocean color flight manifest included two data buy missions, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Earth Observing System (EOS) Color, and three sensors, two Moderate Resolution Imaging Spectroradiometers (MODIS) and the Multi-angle Imaging Spectro-Radiometer (MISR), scheduled for flight on the EOS-Terra and EOS-Aqua satellites. The review led to a decision that the international assemblage of ocean color satellite systems provided ample redundancy to assure continuous global coverage, with no need for the EOS Color mission. At the same time, it was noted that non-trivial technical difficulties attended the challenge (and opportunity) of combining ocean color data from this array of independent satellite systems to form consistent and accurate global bio-optical time series products. Thus, it was announced at the October 1994 EOS Interdisciplinary Working Group meeting that some of the resources budgeted for EOS Color should be redirected into an intercalibration and validation program (McClain et al., 2002).

  6. Mawrth Vallis - False Color

    NASA Image and Video Library

    2015-09-30

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows where Mawrth Vallis empties into Chryse Planitia.

  7. Terra Sabaea - False Color

    NASA Image and Video Library

    2016-02-01

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image captured by NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sabaea.

  8. Capri Mensa - False Color

    NASA Image and Video Library

    2015-07-27

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Capri Mensa and Capri Chasma.

  9. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    NASA Physical Oceanography Program Scientist Eric Lindstrom talks about the instruments onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Various scientific instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  10. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    NASA Physical Oceanography Program Scientist Eric Lindstrom inspects an autonomous wave glider onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The autonomous gliders will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  11. Investigating Subtle Colors on Iapetus

    NASA Image and Video Library

    2015-04-06

    NASA Cassini spacecraft stared toward Saturn two-toned moon Iapetus for about a week in early 2015, in a campaign motivated in part to investigate subtle color differences within the moon bright terrain.

  12. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic-Theater 2002. Spectacular Visualizations of our Blue Marble

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    Spectacular Visualizations of our Blue Marble The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC). See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nicola Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  13. NASA Blue Marble 2007 East

    NASA Image and Video Library

    2010-03-12

    RELEASE DATE: OCTOBER 9, 2007 Credit: NASA/Goddard Space Flight Center/Reto Stöckli A day’s clouds. The shape and texture of the land. The living ocean. City lights as a beacon of human presence across the globe. This amazingly beautiful view of Earth from space is a fusion of science and art, a showcase for the remote-sensing technology that makes such views possible, and a testament to the passion and creativity of the scientists who devote their careers to understanding how land, ocean, and atmosphere—even life itself—interact to generate Earth’s unique (as far as we know!) life-sustaining environment. Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth’s atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA’s Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth’s night side are visualized from data collected by the Defense

  14. A modified Pegasus rocket drops steadily away after release from NASA's B-52B, before accelerating the X-43A over the Pacific Ocean on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket drop away from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Moments later the Pegasus booster ignited to accelerate the X-43A to its intended speed of Mach 7.

  15. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; hide

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic

  16. Exploiting the Capabilities of NASA's Giovanni System for Oceanographic Education

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Petrucio, Emil; Leptoukh, Gregory; Shen, Suhung

    2007-01-01

    The NASA Goddard Earth Science Data and Information Services Center (GES DISC) Giovanni system [GES DISC Interactive Online Visualization ANd aNalysis Infrastructure] has significant capabilities for oceanographic education and independent research utilizing ocean color radiometry data products. Giovanni allows Web-based data discovery and basic analyses, and can be used both for guided illustration of a variety of marine processes and phenomena, and for independent research investigations. Giovanni's capabilities are particularly suited for advanced secondary school science and undergraduate (college) education. This presentation will describe a variety of ways that Giovanni can be used for oceanographic education. Auxiliary information resources that can be utilized will also be described. Several testimonies of Giovanni usage for instruction will be provided, and a recent case history of Giovanni utilization for instruction and research at the undergraduate level is highlighted.

  17. Application of in situ observations, high frequency radars, and ocean color, to study suspended matter, particulate carbon, and dissolved organic carbon fluxes in coastal waters of the Barents Sea - the NORDFLUX project

    NASA Astrophysics Data System (ADS)

    Stramska, Malgorzata; Yngve Børsheim, Knut; Białogrodzka, Jagoda; Cieszyńska, Agata; Ficek, Dariusz; Wereszka, Marzena

    2016-04-01

    There is still a limited knowledge about suspended and dissolved matter fluxes transported from coastal regions into the open sea regions in the Arctic. The land/sea interface is environmentally important and sensitive to climate change. Important biogeochemical material entering the oceans (including carbon) passes through this interface, but too little is known about the efficiency of this transport. Our goal in the NORDFLUX program is to improve quantitative understanding of the environmental feedbacks involved in these processes through an interdisciplinary study with innovative in situ observations. Completed work includes two in situ experiments in the Norwegian fiord (Porsangerfjorden) in the summers of 2014 and 2015. Experiments used research boat for collection of water samples and in situ bio-optical data, an autonomous glider, mooring with T S sensors, and a high frequency radar system. We have used these data to derive spatial maps of water temperature, salinity, surface currents, chlorophyll fluorescence, dissolved organic matter (DOM) fluorescence, and inherent optical properties (IOPs) of the water. The interpretation of these data in terms of suspended matter concentration and composition is possible by in situ 'calibrations' using water samples from discrete hydrographic stations. Total suspended matter (TSM), particulate carbon (POC and PIC), and dissolved organic carbon (DOC) concentrations together with measured water currents will allow us to estimate reservoirs and fluxes. Concentrations and fluxes will be related to physical conditions and meteorological data. An important aspect of this project is the work on regional ocean color algorithms. Global ocean color (OC) algorithms currently used by NASA do not perform sufficiently well in coastal Case 2 waters. Our data sets will allow us to derive such local algorithms. We will then use these algorithms for interpretation of OC data in terms of TSM concentrations and composition and DOC. After

  18. Iani Chaos in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of a portion of the Iani Chaos region was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -2.6 Longitude 342.4 East (17.6 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The

  19. White Rock in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season.

    Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  20. Pit Crater - False Color

    NASA Image and Video Library

    2015-06-18

    The THEMIS VIS camera contains 5 filters. Data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows the central pit of an unnamed crater south of Coprates Catena.

  1. Terra Sabaea - False Color

    NASA Image and Video Library

    2016-02-05

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows a variety of surface materials in the plains of Sabaea Terra.

  2. Homestake Vein in Color

    NASA Image and Video Library

    2011-12-07

    This color view from NASA Mars Exploration Rover Opportunity of a mineral vein called Homestake and is found to be rich in calcium and sulfur. Homestake is near the edge of the Cape York segment of the western rim of Endeavour Crater.

  3. Earth - Pacific Ocean

    NASA Image and Video Library

    1996-01-29

    This color image of the Earth was obtained by NASA’s Galileo spacecraft early Dec. 12, 1990, when the spacecraft was about 1.6 million miles from the Earth. http://photojournal.jpl.nasa.gov/catalog/PIA00123

  4. Colorful Impact Ejecta from Hargraves Crater

    NASA Image and Video Library

    2017-05-08

    The collision that created Hargraves Crater impacted into diverse bedrock lithologies of ancient Mars; the impact ejecta is a rich mix of rock types with different colors and textures, as seen by NASA Mars Reconnaissance Orbiter. The crater is named after Robert Hargraves who discovered and studied meteorite impacts on the Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21609

  5. Color Image of Pluto

    NASA Image and Video Library

    2015-12-31

    Pluto nearly fills the frame in this image from the Long Range Reconnaissance Imager (LORRI) aboard New Horizons, taken on July 13, 2015, when the spacecraft was 476,000 miles (768,000 kilometers) from the surface. This is the last and most detailed image sent to Earth before the spacecraft's closest approach to Pluto on July 14. The color image has been combined with lower-resolution color information from the Ralph instrument that was acquired earlier on July 13. http://photojournal.jpl.nasa.gov/catalog/PIA20291

  6. Adjustments to the MODIS Terra Radiometric Calibration and Polarization Sensitivity in the 2010 Reprocessing

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan A.

    2011-01-01

    The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.

  7. Ocean Optical Database

    DTIC Science & Technology

    1992-05-01

    ocean color for retrieving ocean k(490) values are examined. The validation of the optical database from the satellite is accessed through comparison...for sharing results of this validation study. We wish to thank J. Mueller for helpful discussions in optics and satellite processing and for sharing his...of these data products are displayable as 512 x 512 8-bit image maps compatible with the PC-SeaPak image format. Valid data ranges are from 1 to 255

  8. Ares Vallis - False Color

    NASA Image and Video Library

    2015-09-18

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows the beginning of Ares Vallis at the edge of Iani Chaos.

  9. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    NASA Physical Oceanography Program Scientist Eric Lindstrom inspects a sensor-laden buoy prior to it being loaded onboard the Woods Hole Oceanographic Institution's vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  10. Hurricane Frances as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS and SeaWinds Scatterometer

    NASA Image and Video Library

    2004-08-30

    This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435

  11. This is NASA.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The mission of the National Aeronautics and Space Administration (NASA) is space exploration and research in space and aeronautics for peaceful purposes and for the benefit of all mankind. The organization and programs which have been established to carry out this mission are described. Full color illustrations for the book were selected from the…

  12. SATURN, IN NATURAL COLORS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has provided images of Saturn in many colors, from black-and-white, to orange, to blue, green, and red. But in this picture, image processing specialists have worked to provide a crisp, extremely accurate view of Saturn, which highlights the planet's pastel colors. Bands of subtle color - yellows, browns, grays - distinguish differences in the clouds over Saturn, the second largest planet in the solar system. Saturn's high-altitude clouds are made of colorless ammonia ice. Above these clouds is a layer of haze or smog, produced when ultraviolet light from the sun shines on methane gas. The smog contributes to the planet's subtle color variations. One of Saturn's moons, Enceladus, is seen casting a shadow on the giant planet as it passes just above the ring system. The flattened disk swirling around Saturn is the planet's most recognizable feature, and this image displays it in sharp detail. This is the planet's ring system, consisting mostly of chunks of water ice. Although it appears as if the disk is composed of only a few rings, it actually consists of tens of thousands of thin 'ringlets.' This picture also shows the two classic divisions in the ring system. The narrow Encke Gap is nearest to the disk's outer edge; the Cassini division, is the wide gap near the center. Scientists study Saturn and its ring system to gain insight into the birth of our solar system. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  13. Syrtis Major Planum - False Color

    NASA Image and Video Library

    2016-09-09

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Syrtis Major Planum.

  14. False Color View of Mercury

    NASA Image and Video Library

    2017-12-08

    This colorful view of Mercury was produced by using images from the color base map imaging campaign during MESSENGER's primary mission. These colors are not what Mercury would look like to the human eye, but rather the colors enhance the chemical, mineralogical, and physical differences between the rocks that make up Mercury's surface. To watch a movie of this colorful view of Mercury as a spinning globe go here: www.flickr.com/photos/gsfc/8497927473 Young crater rays, extending radially from fresh impact craters, appear light blue or white. Medium- and dark-blue areas are a geologic unit of Mercury's crust known as the "low-reflectance material", thought to be rich in a dark, opaque mineral. Tan areas are plains formed by eruption of highly fluid lavas. The giant Caloris basin is the large circular tan feature located just to the upper right of center of the image. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on

  15. The California Current System

    NASA Image and Video Library

    2017-12-08

    This February 8, 2016 composite image reveals the complex distribution of phytoplankton in one of Earth's eastern boundary upwelling systems — the California Current. Recent work suggests that our warming climate my be increasing the intensity of upwelling in such regions with possible repercussions for the species that comprise those ecosystems. NASA's OceanColor Web is supported by the Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Center. Our responsibilities include the collection, processing, calibration, validation, archive and distribution of ocean-related products from a large number of operational, satellite-based remote-sensing missions providing ocean color, sea surface temperature and sea surface salinity data to the international research community since 1996. Credit: NASA/Goddard/Suomin-NPP/VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. A modified Pegasus rocket drops away after release from NASA's B-52B before accelerating the X-43A over a Pacific Ocean test range on Nov. 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft and its modified Pegasus booster rocket drop away from NASA's B-52B launch aircraft over the Pacific Ocean on November 16, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, California. Moments later the Pegasus booster ignited to accelerate the X-43A to its intended speed of Mach 10.

  17. LIDAR and acoustics applications to ocean productivity

    NASA Technical Reports Server (NTRS)

    Collins, D. J.

    1982-01-01

    The requirements for the submersible, the instrumentation necessary to perform these measurements, and the optical and acoustical technology required to develop the ocean color scanner instrumentation are described. The development of a second generation ocean color scanner produced the need for coincident in situ scientific measurements which examine the primary productivity of the upper ocean on time and space scales which are large compared to the environmental scales. The vertical and horizontal variability of the biota, including the relationship between chlorophyll and primary productivity, the productivity of zooplankton, and the dynamic interaction between phytoplankton and zooplankton, and between these populations and the physical environment are investigated. A towed submersible will be constructed which accommodates both an underwater LIDAR instrument and a multifrequency sonar.

  18. Detection of Coccolithophore Blooms in Ocean Color Satellite Imagery: a Generalized Approach for Use with Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Moore, Timothy; Dowell, Mark; Franz, Bryan A.

    2012-01-01

    A generalized coccolithophore bloom classifier has been developed for use with ocean color imagery. The bloom classifier was developed using extracted satellite reflectance data from SeaWiFS images screened by the default bloom detection mask. In the current application, we extend the optical water type (OWT) classification scheme by adding a new coccolithophore bloom class formed from these extracted reflectances. Based on an in situ coccolithophore data set from the North Atlantic, the detection levels with the new scheme were between 1,500 and 1,800 coccolithophore cellsmL and 43,000 and 78,000 lithsmL. The detected bloom area using the OWT method was an average of 1.75 times greater than the default bloom detector based on a collection of SeaWiFS 1 km imagery. The versatility of the scheme is shown with SeaWiFS, MODIS Aqua, CZCS and MERIS imagery at the 1 km scale. The OWT scheme was applied to the daily global SeaWiFS imagery mission data set (years 19972010). Based on our results, average annual coccolithophore bloom area was more than two times greater in the southern hemisphere compared to the northern hemi- sphere with values of 2.00 106 km2 and 0.75 106 km2, respectively. The new algorithm detects larger bloom areas in the Southern Ocean compared to the default algorithm, and our revised global annual average of 2.75106 km2 is dominated by contributions from the Southern Ocean.

  19. Space-to-Ground: Color of the Sun: 04/27/2018

    NASA Image and Video Library

    2018-04-26

    NASA has a new administrator, a facility stands out as a "MVP", and just what color is the Sun? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  20. An Explosion of Infrared Color

    NASA Image and Video Library

    2010-12-09

    This oddly colorful nebula is the supernova remnant IC 443 as seen by NASA Wide-field Infrared Survey Explorer; the Jellyfish nebula is particularly interesting because it provides a look into how stellar explosions interact with their environment.

  1. Southern Dunes - False Color

    NASA Image and Video Library

    2015-12-04

    The THEMIS VIS camera contains 5 filters. Data from the filters can be combined in many ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows the region just west of the dune/polar cap image from earlier this week.

  2. NASA UAVSAR Images Colorado Slumgullion Landslide

    NASA Image and Video Library

    2012-08-15

    This false-color, oblique perspective image of the Slumgullion landslide in southwestern Colorado depicting its surface motion was created by data acquired by NASA UAVSAR between two airplane flights in August 2011.

  3. Yuty Crater Ejecta - False Color

    NASA Image and Video Library

    2016-04-26

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the ejecta from Yuty Crater.

  4. Investigating Rhône River plume (Gulf of Lions, France) dynamics using metrics analysis from the MERIS 300m Ocean Color archive (2002-2012)

    NASA Astrophysics Data System (ADS)

    Gangloff, Aurélien; Verney, Romaric; Doxaran, David; Ody, Anouck; Estournel, Claude

    2017-07-01

    In coastal environments, river plumes are major transport mechanisms for particulate matter, nutriments and pollutants. Ocean color satellite imagery is a valuable tool to explore river turbid plume characteristics, providing observations at high temporal and spatial resolutions of suspended particulate matter (SPM) concentration over a long time period, covering a wide range of hydro-meteorological conditions. We propose here to use the MERIS-FR (300m) Ocean Color archive (2002-2012) in order to investigate Rhône River turbid plume patterns generated by the two main forcings acting on the north-eastern part of the Gulf of Lions (France): wind and river freshwater discharge. Results are exposed considering plume metrics (area of extension, south-east-westernmost points, shape, centroid, SPM concentrations) extracted from satellite data using an automated image-processing tool. Rhône River turbid plume SPM concentrations and area of extension are shown to be mainly driven by the river outflow while wind direction acts on its shape and orientation. This paper also presents the region of influence of the Rhône River turbid plume over monthly and annual periods, and highlights its interannual variability.

  5. Influence of 1997/98 and 2006/2007 Indian Ocean Dipole on Phytoplankton Composition in the Eastern Tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mahapatra, K.; Okada, Y.

    2016-02-01

    The influence of Indian Ocean Dipole (IOD) events of varied intensity co-occurred with El Niño/Southern Oscillation (ENSO) in 1997/98 and 2006/2007 on phytoplankton functional types (PFTs) was assessed in the eastern tropical Indian Ocean using the NASA Ocean Biogeochemical Model (NOBM) and particle size distribution (PSD) parameters retrieved from satellite derived ocean color data. Response of the PFTs to the IOD events of 1997/98 and 2006/2007 was varied in term of magnitude and duration. Nitrate, chlorophyll and 2 PFTs (diatoms and chlorophytes) out of 4 PFTs (Diatoms, Chlorophytes, Coccolithophores and Cyanobacteria) were strongly correlated with the Dipole Mode Indices. The NOBM provided insight to the course of events leading to perturbations and evolution of biogeochemical processes associated with the IOD in a multi-phytoplankton context, against the backdrop of circulation and turbulence dynamics, irradiance availability, and the interaction among different PFTs. Different phases of the IOD cycle were well captured in the evolution of phytoplankton dynamics. Satellite-based retrievals of PSD parameters further characterized the specific biogeochemical setup that facilitated the PFTs to thrive and cross-dominate each other. We examined the potential impact of the IOD/ENSO events on the PFT-specific primary production. Significant correlation was noticed between DMI and PFT-specific primary production of diatoms and chlorophytes. We highlighted the need (1) to develop regional biogeochemical models to overcome the gaps in our understanding and elucidate the precise mechanism that drive the biogeochemical fluctuations in the region (2) to pursue further research on phenological aspects of PFTs to understand potential impact of climatological change on phytoplankton community and on annually recurring cycle of pelagic trophodynamics and ecosystem functions.

  6. NASA's SDO Sees Solar Flares

    NASA Image and Video Library

    2014-06-10

    A solar flare bursts off the left limb of the sun in this image captured by NASA's Solar Dynamics Observatory on June 10, 2014, at 7:41 a.m. EDT. This is classified as an X2.2 flare, shown in a blend of two wavelengths of light: 171 and 131 angstroms, colorized in gold and red, respectively. Credit: NASA/SDO/Goddard/Wiessinger NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. NASA Blue Marble 2007 West

    NASA Image and Video Library

    2010-03-12

    RELEASE DATE: OCTOBER 9, 2007 Credit: NASA/Goddard Space Flight Center/Reto Stöckli A day’s clouds. The shape and texture of the land. The living ocean. City lights as a beacon of human presence across the globe. This amazingly beautiful view of Earth from space is a fusion of science and art, a showcase for the remote-sensing technology that makes such views possible, and a testament to the passion and creativity of the scientists who devote their careers to understanding how land, ocean, and atmosphere—even life itself—interact to generate Earth’s unique (as far as we know!) life-sustaining environment. Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth’s atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA’s Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth’s night side are visualized from data collected by the Defense

  8. The Ocean Surface Topography Mission (OSTM)

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Vaze, Parag V.

    2008-10-01

    The Ocean Surface Topography Mission (OSTM), also known as Jason-2, will extend into the next decade the continuous climate data record of sea surface height measurements begun in 1992 by the joint NASA/Centre National d'Etudes Spatiales (CNES) TOPEX/Poseidon mission and continued by the NASA/CNES Jason-1 mission in 2001. This multi-decadal record has already helped scientists study the issue of global sea level rise and better understand how ocean circulation and climate change are related. With OSTM, high-precision ocean altimetry has come of age. The mission will serve as a bridge to transition the collection of these measurements to the world's weather and climate forecasting agencies. The agencies will use them for short- and seasonal-to-long-range weather and climate forecasting. OSTM is designed to last at least three years. It will be placed in the same orbit (1,336 kilometers) as Jason-1 and will move along the same ground track at an inclination of 66 degrees to the equator. It will repeat its ground track every 10 days, covering 95 percent of the world's ice-free oceans. A tandem mission between Jason-1 and OSTM will be conducted to further improve tide models in coastal and shallow seas, and to better understand the dynamics of ocean currents and eddies. OSTM is an international and interagency mission developed and operated as a four-party collaboration among NASA, the National Oceanic and Atmospheric Administration (NOAA), CNES, and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). CNES is providing the spacecraft, NASA and CNES are jointly providing the payload instruments and NASA is providing the launch vehicle. After completing the onorbit commissioning of the spacecraft, CNES will hand over operation and control of the spacecraft to NOAA. NOAA and EUMETSAT will generate the near-real-time products and distribute them to users. OSTM was launched from Vandenberg Air Force Base, California on June 20, 2008

  9. Topography of Io (color)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The images used to create this color composite of Io were acquired by Galileo during its ninth orbit (C9) of Jupiter and are part of a sequence of images designed to map the topography or relief on Io and to monitor changes in the surface color due to volcanic activity. Obtaining images at low illumination angles is like taking a picture from a high altitude around sunrise or sunset. Such lighting conditions emphasize the topography of the volcanic satellite. Several mountains up to a few miles high can be seen in this view, especially near the upper right. Some of these mountains appear to be tilted crustal blocks. Most of the dark spots correspond to active volcanic centers.

    North is to the top of the picture which merges images obtained with the clear, red, green, and violet filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. . The resolution is 8.3 kilometers per picture element. The image was taken on June 27, 1997 at a range of 817,000 kilometers by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  10. Global View of Io (Natural and False/Enhanced Color)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Global view of Jupiter's volcanic moon Io obtained on 07 September, 1996 Universal Time using the near-infrared, green, and violet filters of the Solid State Imaging system aboard NASA/JPL's Galileo spacecraft. The top disk is intended to show the satellite in natural color, similar to what the human eye would see (but colors will vary with display devices), while the bottom disk shows enhanced color to highlight surface details. The reddest and blackest areas are closely associated with active volcanic regions and recent surface deposits. Io was imaged here against the clouds of Jupiter. North is to the top of the frames. The finest details that can discerned in these frames are about 4.9 km across.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  11. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    NASA Physical Oceanography Program Scientist Eric Lindstrom boards the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Lindstrom will depart on Knorr Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  12. NASA/French Satellite Data Reveal New Details of Tsunami

    NASA Image and Video Library

    2005-01-12

    Displayed in blue color is the height of sea surface (shown in blue) measured by the Jason satellite two hours after the initial magnitude 9 earthquake hit the region (shown in red) southwest of Sumatra on December 26, 2004. The data were taken by a radar altimeter onboard the satellite along a track traversing the Indian Ocean when the tsunami waves had just filled the entire Bay of Bengal (see the model simulation inset image). The data shown are the changes of sea surface height from previous observations made along the same track 20-30 days before the earthquake, reflecting the signals of the tsunami waves. The maximum height of the leading wave crest was about 50 cm (or 1.6 ft), followed by a trough of sea surface depression of 40 cm. The directions of wave propagation along the satellite track are shown by the blue arrows. http://photojournal.jpl.nasa.gov/catalog/PIA07219

  13. Ocean-color remote sensing of the Nile delta shelf and SE Levantine basin and possible linkage to some mesoscale circulation features and Nile river run-off

    NASA Astrophysics Data System (ADS)

    Moufaddal, Wahid; Lavender, Samantha

    To date, and despite the passage of more than 30 years since the launch of the first satellite based ocean-color sensor, no systematic study of the variability of chlorophyll in the Egyptian Mediterranean coast off the Nile delta has been undertaken using this kind of data. Meantime, available in-situ measurements on chlorophyll and other nutrient parameters along this coast are indeed very modest and scarce. The lack of data has in turn created a large gap in our knowledge on the biogeochemical characteristics of the coastal water and impacts of the Aswan High Dam and other land-use changes on the marine ecosystems and nutrient budget in the Nile delta shelf and the SE Mediterranean. The present study aims to fill part of this gap through application of ocean-color remote sensing and satellite retrieval of phytoplankton chlorophyll. For this purpose a 10-year (1997-2006) monthly satellite dataset from ESA Globcolour project (an ESA Data User Element project: http://www.globcolour.info) was retrieved and subjected to time-series analysis. Results of this analysis revealed that the oceanic and coastal parts off the Nile delta coast and SE Mediterranean manifest from time to time some of the most interesting and dynamical marine features including meso-scale gyres, coastal filaments, localized algal blooms and higher concentration of phytoplankton chlorophyll. These features together with certain physical pro-cesses and surface run-off from Nile mouthes and other land-based sources were found to exert pronounced effects on the nutrient supply and quality of the coastal and oceanic surface waters in this region. Results reveled also that there has been a general upward trend in concentration of surface chlorophyll during the 10-year period from 1997 to 2006 with a coincident rise of the coastal fisheries implying that improvement of nutrient supply is most likely responsible for this rise. Results confirmed also shift of the Nile phytoplankton bloom in space and time

  14. NASA Langley Highlights, 1998

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Langley's mission is accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government Agencies, industry, other NASA Centers, the educational community, and the local community. This report contains highlights of some of the major accomplishments and applications that have been made by Langley researchers and by our university and industry colleagues during the past year. The highlights illustrate the broad range of research and technology activities carried out by NASA Langley Research Center and the contributions of this work toward maintaining United States' leadership in aeronautics and space research. A color electronic version of this report is available at URL http://larcpubs.larc.nasa.gov/randt/1998/.

  15. Neptune in False Color

    NASA Image and Video Library

    1996-01-29

    In this false color image of Neptune, objects that are deep in the atmosphere are blue, while those at higher altitudes are white. The image was taken by Voyager 2 wide-angle camera through an orange filter and two different methane filters. http://photojournal.jpl.nasa.gov/catalog/PIA00051

  16. Mimas Showing False Colors #1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    False color images of Saturn's moon, Mimas, reveal variation in either the composition or texture across its surface.

    During its approach to Mimas on Aug. 2, 2005, the Cassini spacecraft narrow-angle camera obtained multi-spectral views of the moon from a range of 228,000 kilometers (142,500 miles).

    The image at the left is a narrow angle clear-filter image, which was separately processed to enhance the contrast in brightness and sharpness of visible features. The image at the right is a color composite of narrow-angle ultraviolet, green, infrared and clear filter images, which have been specially processed to accentuate subtle changes in the spectral properties of Mimas' surface materials. To create this view, three color images (ultraviolet, green and infrared) were combined into a single black and white picture that isolates and maps regional color differences. This 'color map' was then superimposed over the clear-filter image at the left.

    The combination of color map and brightness image shows how the color differences across the Mimas surface materials are tied to geological features. Shades of blue and violet in the image at the right are used to identify surface materials that are bluer in color and have a weaker infrared brightness than average Mimas materials, which are represented by green.

    Herschel crater, a 140-kilometer-wide (88-mile) impact feature with a prominent central peak, is visible in the upper right of each image. The unusual bluer materials are seen to broadly surround Herschel crater. However, the bluer material is not uniformly distributed in and around the crater. Instead, it appears to be concentrated on the outside of the crater and more to the west than to the north or south. The origin of the color differences is not yet understood. It may represent ejecta material that was excavated from inside Mimas when the Herschel impact occurred. The bluer color of these materials may be caused by subtle differences in

  17. Wegener Crater Dunes - False Color

    NASA Image and Video Library

    2016-06-23

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows some of the dunes on the floor of Wegener Crater.

  18. Endeavour on the Horizon False Color

    NASA Image and Video Library

    2010-04-30

    NASA Mars Exploration Rover Opportunity used its panoramic camera Pancam to capture this false-color view of the rim of Endeavour crater, the rover destination in a multi-year traverse along the sandy Martian landscape.

  19. TOPEX/POSEIDON - Mapping the ocean surface

    NASA Technical Reports Server (NTRS)

    Yamarone, C. A.; Rosell, S.; Farless, D. L.

    1986-01-01

    Global efforts are under way to model the earth as a complete planet so that weather patterns may be predicted on time scales of months and years. A major limitation in developing models of global weather is the inability to model the circulation of the oceans including the geostrophic surface currents. NASA will soon be initiating a satellite program to correct this deficiency by directly measuring these currents using the science of radar altimetry. Measurement of the ocean topography with broad, frequent coverage of all ocean basins for a long period of time will allow the derivation of the spatial and temporal behavior of surface ocean currents. The TOPEX/POSEIDON mission is a cooperative effort between NASA and the French Centre National d'Etudes Spatiales. This paper describes the goals of this research mission, the data type to be acquired, the satellite and sensors to be used to acquire the data, and the methods by which the data are to be processed and utilized.

  20. Vast Ligeia Mare in False Color

    NASA Image and Video Library

    2013-05-22

    Ligeia Mare, shown here in a false color image from NASA Cassini mission, is the second largest known body of liquid on Saturn moon Titan. It is filled with liquid hydrocarbons, such as ethane and methane.