A Sky View of Earth From Suomi NPP
2015-04-22
This composite image of southern Africa and the surrounding oceans was captured by six orbits of the NASA/NOAA Suomi National Polar-orbiting Partnership spacecraft on April 9, 2015, by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. Tropical Cyclone Joalane can be seen over the Indian Ocean. Winds, tides and density differences constantly stir the oceans while phytoplankton continually grow and die. Orbiting radiometers such as VIIRS allows scientists to track this variability over time and contribute to better understanding of ocean processes that are beneficial to human survival on Earth. The image was created by the Ocean Biology Processing Group at NASA's Goddard Space Flight Center in Greenbelt, Maryland. For more information, please visit: oceancolor.gsfc.nasa.gov/ and www.nasa.gov/npp Image Credit: Ocean Biology Processing Group at NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Oceanic Processes Program, fiscal year 1983
NASA Technical Reports Server (NTRS)
Nelson, R. M. (Editor); Pieri, D. C. (Editor)
1984-01-01
Accomplishments, activities, and plans are highlighted for studies of ocean circulation, air sea interaction, ocean productivity, and sea ice. Flight projects discussed include TOPEX, the ocean color imager, the advanced RF tracking system, the NASA scatterometer, and the pilot ocean data system. Over 200 papers generated by the program are listed.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
NASA Physical Oceanography Program Scientist Eric Lindstrom talks about the instruments onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Various scientific instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
NASA Physical Oceanography Program Scientist Eric Lindstrom inspects an autonomous wave glider onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The autonomous gliders will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
2015-02-27
Remote sensing of ocean color in the Yellow Sea can be a challenge. Phytoplankton, suspended sediments, and dissolved organic matter color the water while various types of aerosols modify those colors before they are "seen" by orbiting radiometers. The Aqua-MODIS data used to create the above image were collected on February 24, 2015. NASA's OceanColor Web is supported by the Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Center. Our responsibilities include the collection, processing, calibration, validation, archive and distribution of ocean-related products from a large number of operational, satellite-based remote-sensing missions providing ocean color, sea surface temperature and sea surface salinity data to the international research community since 1996. Credit: NASA/Goddard/Ocean Color NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
NASA Physical Oceanography Program Scientist Eric Lindstrom boards the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Lindstrom will depart on Knorr Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
NASA Physical Oceanography Program Scientist Eric Lindstrom inspects a sensor-laden buoy prior to it being loaded onboard the Woods Hole Oceanographic Institution's vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Mission to Planet Earth. The living ocean: Observing ocean color from space
NASA Technical Reports Server (NTRS)
1994-01-01
Measurements of ocean color are part of NASA's Mission to Planet Earth, which will assess how the global environment is changing. Using the unique perspective available from space, NASA will observe, monitor, and study large-scale environmental processes, focusing on quantifying climate change. NASA will distribute the results of these studies to researchers worldwide to furnish a basis for informed decisions on environmental protection and economic policy. This information packet includes discussion on the reasons for measuring ocean color, the carbon cycle and ocean color, priorities for global climate research, and SeWiFS (sea-viewing wide field-of-view sensor) global ocean color measurements.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
NASA Physical Oceanography Program Scientist Eric Lindstrom poses for a photograph next to the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Lindstrom will depart on Knorr Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
2017-12-08
This February 8, 2016 composite image reveals the complex distribution of phytoplankton in one of Earth's eastern boundary upwelling systems — the California Current. Recent work suggests that our warming climate my be increasing the intensity of upwelling in such regions with possible repercussions for the species that comprise those ecosystems. NASA's OceanColor Web is supported by the Ocean Biology Processing Group (OBPG) at NASA's Goddard Space Flight Center. Our responsibilities include the collection, processing, calibration, validation, archive and distribution of ocean-related products from a large number of operational, satellite-based remote-sensing missions providing ocean color, sea surface temperature and sea surface salinity data to the international research community since 1996. Credit: NASA/Goddard/Suomin-NPP/VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Satellite Sea-surface Salinity Retrieval Dependencies
NASA Astrophysics Data System (ADS)
Bayler, E. J.; Ren, L.
2016-02-01
Comparing satellite sea-surface salinity (SSS) measurements and in situ observations reveals large-scale differences. What causes these differences? In this study, five boxes, sampling various oceanic regimes of the global ocean, provide insights on the relative performance of satellite SSS retrievals with respect to the influences of SST, precipitation and wind speed. The regions sampled are: the Inter-tropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), NASA's Salinity Processes of the Upper-ocean Regional Study (SPURS) area, the North Pacific subarctic region, and the southern Indian Ocean. This study examines satellite SSS data from NASA's Aquarius Mission and ESA's Soil Moisture - Ocean Salinity (SMOS) mission, specifically: Aquarius official Aquarius Data Processing System (ADPS) Level-2 data, experimental Aquarius Combined Active-Passive (CAP) Level-2 SSS data developed by NASA's Jet Propulsion Laboratory (JPL), and SMOS Level-2 data.
A Sky View of Earth From Suomi NPP
2015-04-22
This composite image of southern Africa and the surrounding oceans was captured by six orbits of the NASA/NOAA Suomi National Polar-orbiting Partnership spacecraft on April 9, 2015, by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. Tropical Cyclone Joalane can be seen over the Indian Ocean. Winds, tides and density differences constantly stir the oceans while phytoplankton continually grow and die. Orbiting radiometers such as VIIRS allows scientists to track this variability over time and contribute to better understanding of ocean processes that are beneficial to human survival on Earth. The image was created by the Ocean Biology Processing Group at NASA's Goddard Space Flight Center in Greenbelt, Maryland.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Woods Hole Oceanographic Institution Senior Scientist Ray Schmitt, left, and NASA Physical Oceanography Program Scientist Eric Lindstrom pose for a photograph in front of the Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-05
A sensor-laden buoy is lifted onboard the Woods Hole Oceanographic Institution's research vessel Knorr on wednesday, Sept. 5, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
NASA oceanic processes program: Status report, fiscal year 1980
NASA Technical Reports Server (NTRS)
1980-01-01
Goals, philosophy, and objectives of NASA's Oceanic Processes Program are presented as well as detailed information on flight projects, sensor developments, future prospects, individual investigator tasks, and recent publications. A special feature is a group of brief descriptions prepared by leaders in the oceanographic community of how remote sensing might impact various areas of oceanography during the coming decade.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
A full suite of instruments are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The various instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Autonomous wave gliders are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The autonomous gliders will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
University of Washington Graduate Student Jesse Anderson settles into her cabin onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Anderson will work with the Argo Floats instruments in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
CTD instruments used to measure Conductivity, Temperature, and Depth, are seen onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The CTDs will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Autonomous wave gliders, right, are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The autonomous gliders will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
A sensor-laden buoy is seen prior to being loaded onboard the Woods Hole Oceanographic Institution's vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Ken Decoteau, left, and Chip Beniot, both of the Woods Hole Oceanographic Institution, move scientific instruments to the research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Chip Beniot, left, and Ken Decoteau, both of the Woods Hole Oceanographic Institution, move scientific instruments to the research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The instruments will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Woods Hole Oceanographic Institution Scientist Dave Fratantoni works on the EcoMapper AUVs (autonomous underwater vehicles) onboard the Institute's research vessel Knorr, Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The EcoMappers will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Two EcoMapper AUVs (autonomous underwater vehicles) are seen onboard the the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The EcoMappers will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
The top bow deck of the Woods Hole Oceanographic Institution's research vessel Knorr is seen on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Woods Hole Oceanographic Institution workers load scientific instruments onboard the Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
The Woods Hole Oceanographic Institution's research vessel Knorr is seen docked on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Scientific instruments are loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
The Bridge of the Woods Hole Oceanographic Institution's research vessel Knorr is seen on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Food and supplies are loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
NASA Oceanic Processes Program, Fiscal Year 1981
NASA Technical Reports Server (NTRS)
1982-01-01
Summaries are included for Nimbus 7, Seasat, TIROS-N, Altimetry, Color Radiometry, in situ data collection systems, Synthetic Aperture Radar (SAR)/Open Ocean, SAR/Sea Ice, Scatterometry, National Oceanic Satellite System, Free Flying Imaging Radar Experiment, TIROS-N/Scatterometer and/or ocean color scanner, and Ocean Topography Experiment. Summaries of individual research projects sponsored by the Ocean Processes Program are given. Twelve investigations for which contracting services are provided by NOAA are included.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
University of Washington Graduate Student Jesse Anderson tries to find her cabin onboard the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Anderson will work with the Argo Floats instruments in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Woods Hole Oceanographic Institution Senior Engineer Steve Faluotico works on the SPURS buoy prior to it being loaded onto the Institute's research vessel Knorr, Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The SPURS buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-05
An worker prepares to attached a crane hook onto a sensor-laden buoy so that it may be loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr on wednesday, Sept. 5, 2012, in Woods Hole, Mass. The buoy will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Sean Whelan, a Marine Technician for the Woods Hole Oceanographic Institution, prepares CTD instruments used to measure Conductivity, Temperature, and Depth, onboard the Institute's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. The CTDs will be deployed in the Atlantic Ocean as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) which is set to sail on Sept. 6. The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Crates containing scientific instruments are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
The bow of the Woods Hole Oceanographic Institution's research vessel Knorr is seen from the bridge on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Scientific instruments are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Two NOAA Pacific Marine Environmental Laboratory (PMEL) buoys are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
An engineer is raised by crane to work on the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
A Rosette water sampler system that will be used during the Salinity Processes in the Upper Ocean Regional Study (SPURS) is seen onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart for the NASA-sponsored expedition on Sept. 6 and will head into the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Scientific instruments, buoys, and shipping crates are seen on the stern of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
International maritime signal flags are seen on the bridge of the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
A sculpture resembling the Roman god Neptune is seen dockside of the Woods Hole Oceanographic Institution research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
NASA Oceanic Processes Program
NASA Technical Reports Server (NTRS)
1986-01-01
This, the Sixth Annual Report for NASA's Oceanic Processes Program, provides an overview of recent accomplishments, present activities, and future plans. Although the report was prepared for Fiscal Year 1985 (October 1, 1984 to September 30, 1985), the period covered by the Introduction extends into June 1986. Sections following the Introduction provide summaries of current flight projects and definition studies, brief descriptions of individual research activities, and a bibliography of refereed journal articles appearing within the past two years.
NASA Technical Reports Server (NTRS)
Acker, James G.; Zalles, Daniel; Krumhansl, Ruth
2012-01-01
Data-enhanced Investigations for Climate Change Education (DICCE), a NASA climate change education project, employs the NASA Giovanni data system to enable teachers to create climate-related classroom projects using selected satellite and assimilated model data. The easy-to-use DICCE Giovanni portal (DICCE-G) provides data parameters relevant to oceanic, terrestrial, and atmospheric processes. Participants will explore land-ocean linkages using the available data in the DICCE-G portal, in particular focusing on temperature, ocean biology, and precipitation variability related to El Ni?o and La Ni?a events. The demonstration includes the enhanced information for educators developed for the DICCE-G portal. The prototype DICCE Learning Environment (DICCE-LE) for classroom project development will also be demonstrated.
VIIRS On-Orbit Calibration for Ocean Color Data Processing
NASA Technical Reports Server (NTRS)
Eplee, Robert E., Jr.; Turpie, Kevin R.; Fireman, Gwyn F.; Meister, Gerhard; Stone, Thomas C.; Patt, Frederick S.; Franz, Bryan; Bailey, Sean W.; Robinson, Wayne D.; McClain, Charles R.
2012-01-01
The NASA VIIRS Ocean Science Team (VOST) has the task of evaluating Suomi NPP VIIRS ocean color data for the continuity of the NASA ocean color climate data records. The generation of science quality ocean color data products requires an instrument calibration that is stable over time. Since the VIIRS NIR Degradation Anomaly directly impacts the bands used for atmospheric correction of the ocean color data (Bands M6 and M7), the VOST has adapted the VIIRS on-orbit calibration approach to meet the ocean science requirements. The solar diffuser calibration time series and the solar diffuser stability monitor time series have been used to derive changes in the instrument response and diffuser reflectance over time for bands M1-M11.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
Buoys used to support scientific instruments at sea are seen in the foreground prior to being loaded onboard the Woods Hole Oceanographic Institution's research vessel Knorr, seen in the background, on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Implementation of an Analytical Raman Scattering Correction for Satellite Ocean-Color Processing
NASA Technical Reports Server (NTRS)
McKinna, Lachlan I. W.; Werdell, P. Jeremy; Proctor, Christopher W.
2016-01-01
Raman scattering of photons by seawater molecules is an inelastic scattering process. This effect can contribute significantly to the water-leaving radiance signal observed by space-borne ocean-color spectroradiometers. If not accounted for during ocean-color processing, Raman scattering can cause biases in derived inherent optical properties (IOPs). Here we describe a Raman scattering correction (RSC) algorithm that has been integrated within NASA's standard ocean-color processing software. We tested the RSC with NASA's Generalized Inherent Optical Properties algorithm (GIOP). A comparison between derived IOPs and in situ data revealed that the magnitude of the derived backscattering coefficient and the phytoplankton absorption coefficient were reduced when the RSC was applied, whilst the absorption coefficient of colored dissolved and detrital matter remained unchanged. Importantly, our results show that the RSC did not degrade the retrieval skill of the GIOP. In addition, a timeseries study of oligotrophic waters near Bermuda showed that the RSC did not introduce unwanted temporal trends or artifacts into derived IOPs.
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
University of Washington Applied Physics Laboratory Senior Oceanographer Andrey Shcherbina, left, and University of Washington Applied Physics Laboratory Senior Principal Oceanographer Jason Gobat work one of their instruments onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
Salinity Processes in the Upper Ocean Regional Study (SPURS)
2012-09-04
University of Washington Applied Physics Laboratory Senior Oceanographer Andrey Shcherbina, left, and University of Washington Applied Physics Laboratory Senior Principal Oceanographer Jason Gobat carry one of their instruments onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Exports Science Definition Team
2016-04-01
Ocean ecosystems play a critical role in the Earth's carbon cycle and its quantification on global scales remains one of the greatest challenges in global ocean biogeochemistry. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) science plan is to develop a predictive understanding of the export and fate of global ocean primary production and its implications for the Earth's carbon cycle in present and future climates. NASA's satellite ocean-color data record has revolutionized our understanding of global marine systems. EXPORTS is designed to advance the utility of NASA ocean color assets to predict how changes in ocean primary production will impact the global carbon cycle. EXPORTS will create a predictive understanding of both the export of organic carbon from the euphotic zone and its fate in the underlying "twilight zone" (depths of 500 m or more) where variable fractions of exported organic carbon are respired back to CO2. Ultimately, it is the sequestration of deep organic carbon transport that defines the impact of ocean biota on atmospheric CO2 levels and hence climate. EXPORTS will generate a new, detailed understanding of ocean carbon transport processes and pathways linking upper ocean phytoplankton processes to the export and fate of organic matter in the underlying twilight zone using a combination of field campaigns, remote sensing and numerical modeling. The overarching objective for EXPORTS is to ensure the success of future satellite missions by establishing mechanistic relationships between remotely sensed signals and carbon cycle processes. Through a process-oriented approach, EXPORTS will foster new insights on ocean carbon cycling that will maximize its societal relevance and be a key component in the U.S. investment to understand Earth as an integrated system.
An overview of the NSCAT/N-ROSS program
NASA Technical Reports Server (NTRS)
Martin, B. D.; Freilich, Michael H.; Li, F. K.; Callahan, Phillip S.
1986-01-01
The NASA Scatterometer (NSCAT) to fly on the U.S. Navy Remote Ocean Sensing System (N-ROSS) mission is presented. The overall N-ROSS mission, the NSCAT flight instrument and groundbased data processing/distribution system, and NASA-supported science and verification activities are described. The N-ROSS system is designed to provide measurements of near-surface wind, ocean topography, wave height, sea-surface temperature, and atmospheric water content over the global oceans. The NSCAT is an improved version of the Seasat scatterometer. It will measure near surface vector winds.
2014-09-23
View from a Chase Plane; HS3 Science Flight 8 Wraps Up The chase plane accompanying NASA's Global Hawk No. 872 captured this picture on Sept. 19 after the Global Hawk completed science flight #8 where it gathered data from a weakening Tropical Storm Edouard over the North Atlantic Ocean. Credit: NASA -- The Hurricane and Severe Storm Sentinel (HS3) is a five-year mission specifically targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. HS3 is motivated by hypotheses related to the relative roles of the large-scale environment and storm-scale internal processes. Read more: espo.nasa.gov/missions/hs3/mission-gallery NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ocean color - Availability of the global data set
NASA Technical Reports Server (NTRS)
Feldman, Gene; Kuring, Norman; Ng, Carolyn; Esaias, Wayne; Mcclain, Chuck; Elrod, Jane; Maynard, Nancy; Endres, Dan
1989-01-01
The use of satellite observations of ocean color to provide reliable estimates of marine phytoplankton biomass on synoptic scales is examined. An overview is given of the Coastal Zone Color Scanner data processing system. The archiving and distribution of ocean color data are discussed, and NASA-sponsored archive sites are listed.
NOAA-NASA Coastal Zone Color Scanner reanalysis effort.
Gregg, Watson W; Conkright, Margarita E; O'Reilly, John E; Patt, Frederick S; Wang, Menghua H; Yoder, James A; Casey, Nancy W
2002-03-20
Satellite observations of global ocean chlorophyll span more than two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the National Oceanic and Atmospheric Administration and National Aeronautics and Space Administration (NOAA-NASA) CZCS reanalysis (NCR) effort. NCR consisted of (1) algorithm improvement (AI), where CZCS processing algorithms were improved with modernized atmospheric correction and bio-optical algorithms and (2) blending where in situ data were incorporated into the CZCS AI to minimize residual errors. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.
Quality and Consistency of the NASA Ocean Color Data Record
NASA Technical Reports Server (NTRS)
Franz, Bryan A.
2012-01-01
The NASA Ocean Biology Processing Group (OBPG) recently reprocessed the multimission ocean color time-series from SeaWiFS, MODIS-Aqua, and MODIS-Terra using common algorithms and improved instrument calibration knowledge. Here we present an analysis of the quality and consistency of the resulting ocean color retrievals, including spectral water-leaving reflectance, chlorophyll a concentration, and diffuse attenuation. Statistical analysis of satellite retrievals relative to in situ measurements will be presented for each sensor, as well as an assessment of consistency in the global time-series for the overlapping periods of the missions. Results will show that the satellite retrievals are in good agreement with in situ measurements, and that the sensor ocean color data records are highly consistent over the common mission lifespan for the global deep oceans, but with degraded agreement in higher productivity, higher complexity coastal regions.
Understanding and Improving Ocean Mixing Parameterizations for modeling Climate Change
NASA Astrophysics Data System (ADS)
Howard, A. M.; Fells, J.; Clarke, J.; Cheng, Y.; Canuto, V.; Dubovikov, M. S.
2017-12-01
Climate is vital. Earth is only habitable due to the atmosphere&oceans' distribution of energy. Our Greenhouse Gas emissions shift overall the balance between absorbed and emitted radiation causing Global Warming. How much of these emissions are stored in the ocean vs. entering the atmosphere to cause warming and how the extra heat is distributed depends on atmosphere&ocean dynamics, which we must understand to know risks of both progressive Climate Change and Climate Variability which affect us all in many ways including extreme weather, floods, droughts, sea-level rise and ecosystem disruption. Citizens must be informed to make decisions such as "business as usual" vs. mitigating emissions to avert catastrophe. Simulations of Climate Change provide needed knowledge but in turn need reliable parameterizations of key physical processes, including ocean mixing, which greatly impacts transport&storage of heat and dissolved CO2. The turbulence group at NASA-GISS seeks to use physical theory to improve parameterizations of ocean mixing, including smallscale convective, shear driven, double diffusive, internal wave and tidal driven vertical mixing, as well as mixing by submesoscale eddies, and lateral mixing along isopycnals by mesoscale eddies. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. We write our own programs in MATLAB and FORTRAN to visualize and process output of ocean simulations including producing statistics to help judge impacts of different parameterizations on fidelity in reproducing realistic temperatures&salinities, diffusivities and turbulent power. The results can help upgrade the parameterizations. Students are introduced to complex system modeling and gain deeper appreciation of climate science and programming skills, while furthering climate science. We are incorporating climate projects into the Medgar Evers college curriculum. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, an urban minority serving institution in central Brooklyn. Supported by NSF Award AGS-1359293 And NASA Award NNX17AC81G.
Suomi NPP VIIRS Ocean Color Data Product Early Mission Assessment
NASA Technical Reports Server (NTRS)
Turpie, Kevin R.; Robinson, Wayne D.; Franz, Bryan A.; Eplee, Robert E., Jr.; Meister, Gerhard; Fireman, Gwyn F.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.
2013-01-01
Following the launch of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polarorbiting Partnership (NPP) spacecraft, the NASA NPP VIIRS Ocean Science Team (VOST) began an evaluation of ocean color data products to determine whether they could continue the existing NASA ocean color climate data record (CDR). The VOST developed an independent evaluation product based on NASA algorithms with a reprocessing capability. Here we present a preliminary assessment of both the operational ocean color data products and the NASA evaluation data products regarding their applicability to NASA science objectives.
2017-12-08
Expert pilots, the flight crew routinely takes the team down to just a few hundred feet off the surface of the ocean for careful measurements of the lower atmosphere and upper parts of the ocean. The altimeter here reads 330 feet above the ocean surface. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Atmospheric correction for hyperspectral ocean color sensors
NASA Astrophysics Data System (ADS)
Ibrahim, A.; Ahmad, Z.; Franz, B. A.; Knobelspiesse, K. D.
2017-12-01
NASA's heritage Atmospheric Correction (AC) algorithm for multi-spectral ocean color sensors is inadequate for the new generation of spaceborne hyperspectral sensors, such as NASA's first hyperspectral Ocean Color Instrument (OCI) onboard the anticipated Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission. The AC process must estimate and remove the atmospheric path radiance contribution due to the Rayleigh scattering by air molecules and by aerosols from the measured top-of-atmosphere (TOA) radiance. Further, it must also compensate for the absorption by atmospheric gases and correct for reflection and refraction of the air-sea interface. We present and evaluate an improved AC for hyperspectral sensors beyond the heritage approach by utilizing the additional spectral information of the hyperspectral sensor. The study encompasses a theoretical radiative transfer sensitivity analysis as well as a practical application of the Hyperspectral Imager for the Coastal Ocean (HICO) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensors.
2011-02-26
CAPE CANAVERAL, Fla. -- The sun dawns over the Atlantic Ocean and Liberty Star, one of NASA's solid rocket booster retrieval ships, stationed in the Atlantic Ocean, to recover the right spent booster after it splashed down following space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-04-01
VANDENBERG AIR FORCE BASE, Calif. -- Technicians begin to unpack and unveil the Aquarius/SAC-D spacecraft in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. The container protected the spacecraft on its journey from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-01
VANDENBERG AIR FORCE BASE, Calif. -- Technicians unpack and unveil the Aquarius/SAC-D spacecraft in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. The container protected the spacecraft on its journey from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-01
VANDENBERG AIR FORCE BASE, Calif. -- Technicians prepare to unpack and unveil the Aquarius/SAC-D spacecraft in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. The container protected the spacecraft on its journey from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-01
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is unpacked and unveiled in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. The container protected the spacecraft on its journey from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-01
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is unpacked and unveiled in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. The container protected the spacecraft on its journey from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
The NOAA-NASA CZCS Reanalysis Effort
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Conkright, Margarita E.; OReilly, John E.; Patt, Frederick S.; Wang, Meng-Hua; Yoder, James; Casey-McCabe, Nancy; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Satellite observations of global ocean chlorophyll span over two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the NOAA-NASA CZCS Reanalysis (NCR) Effort. NCR consisted of 1) algorithm improvement (AI), where CZCS processing algorithms were improved using modernized atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the CZCS AI to minimize residual errors. The results indicated major improvement over the previously available CZCS archive. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.
2014-05-12
CAPE CANAVERAL, Fla. – The components of NASA's International Space Station-RapidScat scatterometer instrument await processing inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
A Time Series of Sea Surface Nitrate and Nitrate based New Production in the Global Oceans
NASA Astrophysics Data System (ADS)
Goes, J. I.; Fargion, G. S.; Gomes, H. R.; Franz, B. A.
2014-12-01
With support from NASA's MEaSUREs program, we are developing algorithms for two innovative satellite-based Earth Science Data Records (ESDRs), one Sea Surface Nitrate (SSN) and the other, Nitrate based new Production (NnP). Newly developed algorithms will be applied to mature ESDRs of Chlorophyll a and SST available from NASA, to generate maps of SSN and NnP. Our proposed ESDRs offer the potential of greatly improving our understanding of the role of the oceans in global carbon cycling, earth system processes and climate change, especially for regions and seasons which are inaccessible to traditional shipboard studies. They also provide an innovative means for validating and improving coupled ecosystem models that currently rely on global maps of nitrate generated from multi-year data sets. To aid in our algorithm development efforts and to ensure that our ESDRs are truly global in nature, we are currently in the process of assembling a large database of nutrients from oceanographic institutions all over the world. Once our products are developed and our algorithms are fine-tuned, large-scale data production will be undertaken in collaboration with NASA's Ocean Biology Processing Group (OPBG), who will make the data publicly available first as evaluation products and then as mature ESDRs.
NASA's Newest SeaWinds Instrument Breezes Into Operation
NASA Technical Reports Server (NTRS)
2003-01-01
One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.
From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.' 'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other international satellites will enable detailed studies of ocean circulation, air-sea interaction and climate variation simply not possible until now.'The released image, obtained from data collected January 28-29, depicts Earth's continents in green, polar glacial ice-covered regions in blue-red and sea ice in gray. Color and intensity changes over ice and land are related to ice melting, variations in land surface roughness and vegetation cover. Ocean surface wind speeds, measured during a 12-hour period on January 28, are shown by colors, with blues corresponding to low wind speeds and reds to wind speeds up to 15 meters per second (30 knots). Black arrows denote wind direction. White gaps over the oceans represent unmeasured areas between SeaWinds swaths (the instrument measures winds over about 90 percent of the oceans each day).SeaWinds transmits high-frequency microwave pulses to Earth's land masses, ice cover and ocean surface and measures the strength of the radar pulses that bounce back to the instrument. It takes millions of radar measurements covering about 93 percent of Earth's surface every day, operating under all weather conditions, day and night. Over the oceans, SeaWinds senses ripples caused by the winds, from which scientists can compute wind speed and direction. These ocean surface winds drive Earth's oceans and control the exchange of heat, moisture and gases between the atmosphere and the sea.Launched December 14, 2002, from Japan, the instrument was first activated on January 10 and transitioned to its normal science mode on January 28. A four-day dedicated checkout period was completed on January 31. A six-month calibration/validation phase will begin in April, with regular science operations scheduled to begin this October.SeaWinds on Midori 2 is managed for NASA's Office of Earth Science, Washington, D.C., by JPL, which developed the instrument and performs instrument operations and science data processing, archiving and distribution. NASA also provides U.S. ground system support. The National Space Development Agency of Japan, or NASDA, provided the Midori 2 spacecraft, H-IIA launch vehicle, mission operations and the Japanese ground network. The National Oceanic and Atmospheric Administration provides near-real-time data processing and distribution for SeaWinds operational data users. The California Institute of Technology in Pasadena manages JPL for NASA.2013-09-30
Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard Space...of Arctic bathymetry aids scientists and map makers, Eos Trans., 81(9), 89, 93, 96. Weingartner, T. J., S. Danielson, Y. Sasaki, V. Pavlov , and M
Spin-Up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM
NASA Technical Reports Server (NTRS)
Aleinov, Igor; Kiang, Nancy Y.; Romanou, Anastasia
2015-01-01
Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model from the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean to the prognostic LAI and to the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames-Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose.
NASA SNPP SIPS - Following in the Path of EOS
NASA Technical Reports Server (NTRS)
Behnke, Jeanne; Hall, Alfreda; Ho, Evelyn
2016-01-01
NASA's Earth Science Data Information System (ESDIS) Project has been operating NASA's Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. At launch, the SDS focused primarily on the evaluation of Sensor Data Records (SDRs) and Environmental Data Records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program, as to their suitability for Earth system science. During the summer of 2014, NASA transitioned to the production of standard Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean, Atmosphere, Ozone, and Sounder were established to produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products developed by the SNPP Science Teams and to provide the products to NASA's Distributed Active Archive Centers (DAACs) for archive and distribution to the user community. The processing, archiving and distribution of data from NASA's Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments will continue. With the implementation of the JPSS Block 2 architecture and the launch of JPSS-1, the SDS will receive SNPP data in near real-time via the JPSS Stored Mission Data Hub (JSH), as well as JPSS-1 and future JPSS-2 data. The SNPP SIPS will ingest EOS compatible Level 0 data from the EOS Data Operations System (EDOS) element for their data processing, enabling the continuous EOS-SNPP-JPSS Satellite Data Record.
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the OSTM/Jason-2 satellite shipping container is being moved inside the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the OSTM/Jason-2 satellite shipping container has been moved inside the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the truck carrying the OSTM/Jason-2 satellite arrives at the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the OSTM/Jason-2 satellite shipping container is being moved inside the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the truck carrying the OSTM/Jason-2 satellite arrives at the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2011-02-24
CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Freedom Star, one of NASA's solid rocket booster retrieval ships, has sailed to a position in the Atlantic Ocean to recover the left spent booster after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-24
CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Liberty Star, one of NASA's solid rocket booster retrieval ships, set sail to be in position in the Atlantic Ocean to recover the right spent booster that splashed down after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-24
CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Freedom Star, one of NASA's solid rocket booster retrieval ships, set sail to be in position in the Atlantic ocean to recover the spent boosters after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-24
CAPE CANAVERAL, Fla. -- An expanse of ocean is seen on the horizon as Freedom Star, one of NASA's solid rocket booster retrieval ships, set sail to be in position in the Atlantic Ocean to recover the right spent booster that splashed down after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
NASA Astrophysics Data System (ADS)
Considine, D. B.; Pawson, S.; Koster, R. D.; Kovach, R. M.; Vernieres, G.; Schubert, S. D.
2016-12-01
NASA has developed and maintains, within the Goddard Modeling and Assimilation Office (GMAO), a seasonal-to-interannual prediction activity in support of the National ESPC, based on the GEOS-5 Atmosphere-Ocean General Circulation Model (AOGCM). This system generates atmospheric, land, and ocean/ice analyses that are used to produce global forecasts. Each month, a 17-member ensemble of forecasts is made, from which various oceanic indices (e.g., El Niño, East Indian Dipole, Atlantic SST anomalies), are computed. Additionally, monthly and seasonal anomalies are computed for several variables from the atmosphere (e.g., 2-meter temperatures, precipitation, geopotential heights), land (drought indices), ocean (subsurface temperature anomalies), and sea ice. These forecasts are provided to the National Multi Model Ensemble (NMME) and the Study of Environmental Arctic Change (SEARCH) sea ice outlook. The quasi-operational nature of this system, with constant generation of products that are shared with the broader community, allows for continual assessment of the impacts of NASA observations on seasonal forecasts - a current example is the altimetry data from the JASON series of satellites. The GMAO's seasonal prediction system is currently being upgraded. Alongside typical enhancements, such as increased spatial resolution and use of more recent model versions with improved representation of physical processes, these developments are designed to enhance the use of NASA observations. One example is the use of aerosol information from NASA's EOS instruments (MODIS). A major motivation is also to include NASA's novel data types, such as soil-moisture from SMAP and other sources of oceanic information (such as salinity). This approach enables NASA to continue contributing to national seasonal forecasting efforts, while simultaneously introducing its novel observing capabilities into the seasonal system in a manner that can demonstrate their systematic impacts on the quality of the products.
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane moves the Aquarius/SAC-D spacecraft to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
FLIPPER: Validation for Remote Ocean Imaging
NASA Technical Reports Server (NTRS)
2006-01-01
one of the determining factors in the planet s ability to support life is the same factor that makes the Blue Planet blue: water. Therefore, NASA researchers have a focused interest in understanding Earth s oceans and their ability to continue sustaining life. A critical objective in this study is to understand the global processes that control the changes of carbon and associated living elements in the oceans. Since oceans are so large, one of the most widely used methods of this research is remote sensing, using satellites to observe changes in the ocean color that may be indicative of changes occurring at the surface. Major changes in carbon are due to photosynthesis conducted by phytoplankton, showing, among other things, which areas are sustaining life. Although valuable for large-scale pictures of an ocean, remote sensing really only provides a surface, and therefore incomplete, depiction of that ocean s sustainability. True and complete testing of the water requires local testing in conjunction with the satellite images in order to generate the necessary algorithm parameters to calculate ocean health. For this reason, NASA has spearheaded research to provide onsite validation for its satellite imagery surveys.
2008-10-15
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, Phil Moore (left) and Ron Burrill place a new NASA insignia on the side of NASA Railroad locomotive 3. The Railroad Operation and Maintenance Team at Kennedy completed the refurbishment of locomotive 3 in October. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
2008-10-15
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, Phil Moore places a new NASA insignia on the side of NASA Railroad locomotive 3. The Railroad Operation and Maintenance Team at Kennedy completed the refurbishment of locomotive 3 in October. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
2008-10-15
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, Ron Burrill (left) and Phil Moore place a new NASA insignia on the side of NASA Railroad locomotive 3. The Railroad Operation and Maintenance Team at Kennedy completed the refurbishment of locomotive 3 in October. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
NASA Technical Reports Server (NTRS)
2001-01-01
With the help of Small Business Innovation Research (SBIR) funding from NASA's Goddard Space Flight Center, of Greenbelt, Maryland, Clearwater Instrumentation, of Watertown, Massachusetts, created the ClearSat-Autonomous Drifting Ocean Station (ADOS). The multi-sensor array ocean drifting station was developed to support observations of Earth by NASA satellites. It is a low-cost device for gathering an assortment of data necessary to the integration of present and future satellite measurements of biological and physical processes. Clearwater Instrumentation developed its ADOS technology based on Goddard's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) project, but on a scale that is practical for commercial use. ADOS is used for the in situ measuring of ocean surface layer properties such as ocean color, surface thermal structure, and surface winds. Thus far, multiple ADOS units have been sold to The Scripps Institution of Oceanography, where they are being applied in the field of academic science research. Fisheries can also benefit, because ADOS can locate prime cultivation conditions for this fast-growing industry.
TOPEX/POSEIDON - Mapping the ocean surface
NASA Technical Reports Server (NTRS)
Yamarone, C. A.; Rosell, S.; Farless, D. L.
1986-01-01
Global efforts are under way to model the earth as a complete planet so that weather patterns may be predicted on time scales of months and years. A major limitation in developing models of global weather is the inability to model the circulation of the oceans including the geostrophic surface currents. NASA will soon be initiating a satellite program to correct this deficiency by directly measuring these currents using the science of radar altimetry. Measurement of the ocean topography with broad, frequent coverage of all ocean basins for a long period of time will allow the derivation of the spatial and temporal behavior of surface ocean currents. The TOPEX/POSEIDON mission is a cooperative effort between NASA and the French Centre National d'Etudes Spatiales. This paper describes the goals of this research mission, the data type to be acquired, the satellite and sensors to be used to acquire the data, and the methods by which the data are to be processed and utilized.
2008-10-15
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, NASA Railroad locomotive 3 has been repainted. The Railroad Operation and Maintenance Team at Kennedy completed the refurbishment of locomotive 3 in October. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
2008-10-15
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, NASA Railroad locomotive 3 has been repainted. The Railroad Operation and Maintenance Team at Kennedy completed the refurbishment of locomotive 3 in October. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
2008-10-15
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, NASA Railroad locomotive 3 has been repainted. The Railroad Operation and Maintenance Team at Kennedy completed the refurbishment of locomotive 3 in October. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
2008-10-15
CAPE CANAVERAL, Fla. – A closeup of the cab on NASA Railroad locomotive 3 which was recently refurbished by the Railroad Operation and Maintenance Team at NASA's Kennedy Space Center in Florida. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
Improving an Atlantic Fisheries DSS using Sea Surface Salinity Data from NASA's Aquarius Mission
NASA Technical Reports Server (NTRS)
Guest, DeNeice
2007-01-01
This report assesses the capacity of incorporating NASA#s Aquarius SSS (sea surface salinity) data into the SMAST (School of Marine Science and Technology) DSS for Fisheries Science. This data will enhance the SMAST DSS by providing SSS over a large area. Aquarius is a focused satellite mission designed to measure global SSS. SSS mapping is limited because conventional in situ SSS sampling is too sparse to give a large-scale view of the salinity variability. Aquarius will resolve missing physical processes that link the water cycle, the climate, and the ocean. The SMAST Fisheries program provides a DSS for fisheries science. It collects fisheries and environmental data, integrates them into a suite of data assimilation ocean models, and provides hindcasts, nowcasts, and forecasts for fisheries research, fisheries management, and the fishery industry. Currently, SMAST is using SSS data from the National Oceanic and Atmospheric Administration#s National Data Buoy Center. The SMAST DSS would be enhanced with SSS data from the Aquarius mission.
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the shipping container is removed from the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- A closeup of the OSTM/Jason-2 spacecraft after removal of the shipping container in the Astrotech processing facility at Vandenberg Air Force Base. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, a technician oversees the attaching of the OSTM/Jason-2 spacecraft to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the truck carrying the OSTM/Jason-2 satellite is ready to transport the cargo to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Another view of the OSTM/Jason-2 spacecraft after removal of the shipping container in the Astrotech processing facility at Vandenberg Air Force Base. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, technicians examine the attachment of the OSTM/Jason-2 spacecraft to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – The aircraft carrying the OSTM/Jason-2 spacecraft taxis past the Astrotech processing facility at Vandenberg Air Force Base in California. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Stephen Greenberg, JPL
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is lifted from its stand to be moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, technicians check the OSTM/Jason-2 spacecraft before it is moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is revealed after removal of the shipping container. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- In front of the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 satellite shipping container is on the ground, ready to be moved inside. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the shipping container is removed from the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is lifted to a vertical position on the tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is lifted to a near-45-degree angle on the tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft has been lifted to a vertical position on the tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, an overhead crane is moved over the OSTM/Jason-2 spacecraft to lift off the shipping container. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- In front of the Astrotech processing facility at Vandenberg Air Force Base, a forklift has removed the OSTM/Jason-2 satellite shipping container off the flatbed truck. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, an overhead crane is attached to the OSTM/Jason-2 spacecraft shipping container to remove it. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, a technician (right) checks the OSTM/Jason-2 spacecraft before it is moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- In front of the Astrotech processing facility at Vandenberg Air Force Base, a forklift begins to lift the OSTM/Jason-2 satellite shipping container off the flatbed truck. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration, called NOAA-N Prime, is moved into a NASA payload processing facility to be prepared for a Feb. 4 launch. NOAA-N Prime, built by Lockheed Martin, is similar to NOAA-N launched on May 20, 2005.
The NASA Decadal Survey Aerosol, Cloud, Ecosystems Mission
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Bontempi, Paula; Maring, Hal
2011-01-01
In 2007, the National Academy of Sciences delivered a Decadal Survey (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond) for NASA, NOAA, and USGS, which is a prioritization of future satellite Earth observations. The recommendations included 15 missions (13 for NASA, two for NOAA), which were prioritized into three groups or tiers. One of the second tier missions is the Aerosol, Cloud, (ocean) Ecosystems (ACE) mission, which focuses on climate forcing, cloud and aerosol properties and interactions, and ocean ecology, carbon cycle science, and fluxes. The baseline instruments recommended for ACE are a cloud radar, an aerosol/cloud lidar, an aerosol/cloud polarimeter, and an ocean radiometer. The instrumental heritage for these measurements are derived from the Cloudsat, CALIPSO, Glory, SeaWiFS and Aqua (MODIS) missions. In 2008, NASA HQ, lead by Hal Maring and Paula Bontempi, organized an interdisciplinary science working group to help formulate the ACE mission by refining the science objectives and approaches, identifying measurement (satellite and field) and mission (e.g., orbit, data processing) requirements, technology requirements, and mission costs. Originally, the disciplines included the cloud, aerosol, and ocean biogeochemistry communities. Subsequently, an ocean-aerosol interaction science working group was formed to ensure the mission addresses the broadest range of science questions possible given the baseline measurements, The ACE mission is a unique opportunity for ocean scientists to work closely with the aerosol and cloud communities. The science working groups are collaborating on science objectives and are defining joint field studies and modeling activities. The presentation will outline the present status of the ACE mission, the science questions each discipline has defined, the measurement requirements identified to date, the current ACE schedule, and future opportunities for broader community participation.
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is being prepared for its move to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- Technicians prepare the Aquarius/SAC-D spacecraft for its move to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- A technician guides the Aquarius/SAC-D spacecraft toward the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is secured to the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- Technicians await the arrival of the Aquarius/SAC-D spacecraft to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- An overhead crane lifts the Aquarius/SAC-D spacecraft from its stand by an overhead to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- With the aid of an overhead crane, technicians guide the Aquarius/SAC-D spacecraft from its stand to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- A technician secures the Aquarius/SAC-D spacecraft to the Rotation and Test Fixture in cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- Technicians monitor the lifting of the Aquarius/SAC-D spacecraft from its stand by an overhead crane to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2
NASA Astrophysics Data System (ADS)
Bulusu, S.
2017-12-01
Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.
Arctic Research NASA's Cryospheric Sciences Program
NASA Technical Reports Server (NTRS)
Waleed, Abdalati; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
Much of NASA's Arctic Research is run through its Cryospheric Sciences Program. Arctic research efforts to date have focused primarily on investigations of the mass balance of the largest Arctic land-ice masses and the mechanisms that control it, interactions among sea ice, polar oceans, and the polar atmosphere, atmospheric processes in the polar regions, energy exchanges in the Arctic. All of these efforts have been focused on characterizing, understanding, and predicting, changes in the Arctic. NASA's unique vantage from space provides an important perspective for the study of these large scale processes, while detailed process information is obtained through targeted in situ field and airborne campaigns and models. An overview of NASA investigations in the Arctic will be presented demonstrating how the synthesis of space-based technology, and these complementary components have advanced our understanding of physical processes in the Arctic.
2008-10-15
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the NASA Railroad Maintenance Crew poses alongside NASA Railroad locomotive 3. From left are Rick Koury, Will Eriksen, Mike Stephens, Chris Bryant, Gary Steele, Jesse Crews and Mike Fitch. The team at Kennedy completed the refurbishment of locomotive 3 in October. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
2008-10-15
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the NASA Railroad and Transportation Management Team poses alongside NASA Railroad locomotive 3. From left are John Muzzy, with EG&G, Sandeep Wilkhu, with NASA, and Tony Adrade and Chuck Sturgill, with EG&G. The Railroad Operation and Maintenance Team at Kennedy completed the refurbishment of locomotive 3 in October. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
NASA Technical Reports Server (NTRS)
Werdel, P. Jeremy
2012-01-01
Calibrating ocean color satellite instruments and validating their data products requires temporal and spatial abundances of high quality in situ oceanographic data. The Consortium for Ocean Leadership Ocean Observing Initiative (OOl) is currently implementing a distributed array of in-water sensors that could provide a significant contribution to future ocean color activities. This workshop will scope the optimal way to use and possibly supplement the planned OOl infrastructure to maximize its utility and relevance for calibration and validation activities that support existing and planned NASA ocean color missions. Here, I present the current state of the art of NASA validation of ocean color data products, with attention to autonomous time-series (e.g., the AERONET -OC network of above-water radiometers), and outline NASA needs for data quality assurance metrics and adherence to community-vetted data collection protocols
Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere
NASA Technical Reports Server (NTRS)
Nagler, R. G.; Mccandless, S. W., Jr.
1978-01-01
The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options.
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, are pulling the parachute from the left spent booster out of the Atlantic Ocean. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, recover the left spent booster nose cap from the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
Science opportunities using the NASA scatterometer on N-ROSS
NASA Technical Reports Server (NTRS)
Freilich, M. H.
1985-01-01
The National Aeronautics and Space Administration scatterometer (NSCAT) is to be flown as part of the Navy Remote Ocean Sensing System (N-ROSS) scheduled for launch in 1989. The NSCAT will provide frequent accurate and high-resolution measurements of vector winds over the global oceans. NSCAT data will be applicable to a wide range of studies in oceanography, meteorology, and instrument science. The N-ROSS mission, is outlined, are described. The capabilities of the NSCAT flight instrument and an associated NASA research ground data-processing and distribution system, and representative oceanographic meteorological, and instrument science studies that may benefit from NSCAT data are surveyed.
2008-11-07
VANDENBERG AIR FORCE BASE, Calif. – In the NASA payload processing facility at Vandenberg Air Force Base in California, the NOAA-N Prime satellite is bagged before moving it. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA/Robert Hargreaves Jr., VAFB
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is viewed from another angle after being lifted to a vertical position on the tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – After being offloaded from the cargo plane, the shipping container holding the OSTM/Jason-2 satellite is moved away from the plane. The satellite will be taken to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – Workers prepare to move the shipping container holding the OSTM/Jason-2 satellite onto a flatbed truck at Vandenberg Air Force Base. The satellite will be transported to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- Workers move the shipping container holding the OSTM/Jason-2 satellite on a flatbed truck at Vandenberg Air Force Base. The satellite will be transported to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, workers attach an overhead crane to the OSTM/Jason-2 spacecraft. The spacecraft will be moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- Workers prepare to move the shipping container holding the OSTM/Jason-2 satellite onto a flatbed truck at Vandenberg Air Force Base. The satellite will be transported to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, workers remove the straps holding the OSTM/Jason-2 satellite shipping container on the flatbed truck. The container will be moved inside the Astrotech processing facility at right. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – Workers adjust the shipping container holding the OSTM/Jason-2 satellite after its placement on the flatbed truck at Vandenberg Air Force Base. The satellite will be transported to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – Workers check the shipping container holding the OSTM/Jason-2 satellite after its placement on the flatbed truck at Vandenberg Air Force Base. The satellite will be transported to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, an overhead crane is being attached to the OSTM/Jason-2 spacecraft. The spacecraft will be moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – Ground support equipment associated with the OSTM/Jason-2 satellite is placed on a flatbed truck at Vandenberg Air Force Base. The equipment will accompany the satellite to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, technicians attach an overhead crane to the OSTM/Jason-2 spacecraft. The spacecraft will be moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – After arrival of the cargo plane, the shipping container holding the OSTM/Jason-2 satellite is offloaded at Vandenberg Air Force Base. The satellite will be taken to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL
NASA Technical Reports Server (NTRS)
Meister, Gerhard; Franz, Bryan A.
2011-01-01
The Moderate-Resolution Imaging Spectroradiometer (MODIS) on NASA s Earth Observing System (EOS) satellite Terra provides global coverage of top-of-atmosphere (TOA) radiances that have been successfully used for terrestrial and atmospheric research. The MODIS Terra ocean color products, however, have been compromised by an inadequate radiometric calibration at the short wavelengths. The Ocean Biology Processing Group (OBPG) at NASA has derived radiometric corrections using ocean color products from the SeaWiFS sensor as truth fields. In the R2010.0 reprocessing, these corrections have been applied to the whole mission life span of 10 years. This paper presents the corrections to the radiometric gains and to the instrument polarization sensitivity, demonstrates the improvement to the Terra ocean color products, and discusses issues that need further investigation. Although the global averages of MODIS Terra ocean color products are now in excellent agreement with those of SeaWiFS and MODIS Aqua, and image quality has been significantly improved, the large corrections applied to the radiometric calibration and polarization sensitivity require additional caution when using the data.
NASA Ocean Altimeter Pathfinder Project. Report 2; Data Set Validation
NASA Technical Reports Server (NTRS)
Koblinsky, C. J.; Ray, Richard D.; Beckley, Brian D.; Bremmer, Anita; Tsaoussi, Lucia S.; Wang, Yan-Ming
1999-01-01
The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how existing satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-series data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. Details are currently presented in two technical reports: Report# 1: Data Processing Handbook Report #2: Data Set Validation This report describes the validation of the data sets against a global network of high quality tide gauge measurements and provides an estimate of the error budget. The first report describes the processing schemes used to produce the geodetic consistent data set comprised of SEASAT, GEOSAT, ERS-1, TOPEX/ POSEIDON, and ERS-2 satellite observations.
Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin
NASA Technical Reports Server (NTRS)
Hall, Callie; Zanoni, Vicki; Estep, Leland; Terrie, Gregory; D'Sa, Eurico; Pagnutti, Mary
2004-01-01
The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting.
Global Hawk Aircraft Lands at NASA Wallops for Hurricane Mission
2017-12-08
The first of two NASA Global Hawk unmanned aerial vehicles supporting the Hurricane and Severe Storm Sentinel (HS3) mission landed at 7:39 a.m. today, Aug. 14, 2013, at NASA's Wallops Flight Facility, Wallops Island, Va. During August and September, NASA will fly the two Global Hawks over the Atlantic Ocean to study tropical storms and the processes that underlie hurricane formation and intensification. The aircraft are equipped with instruments to survey the overall environment of the storms and peer into the inner core of hurricanes to study their structure and processes. For more information, visit: www.nasa.gov/HS3. Photo Credit: NASA Wallops Keith Koehler NASA Wallops Flight Facility NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Understanding our Changing Planet: NASA's Earth Science Enterprise
NASA Technical Reports Server (NTRS)
Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)
1999-01-01
NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.
The Lifecycle of NASA's Earth Science Enterprise Data Resources
NASA Technical Reports Server (NTRS)
McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert
2004-01-01
A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.
2012-11-12
This image, acquired by NASA Terra spacecraft, is of the volcanic Ogasawara Islands. The islands were listed as a UNESCO World Heritage site, in recognition of an outstanding example of ongoing evolutionary processes in oceanic island ecosystems.
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- Technicians monitor the Aquarius/SAC-D spacecraft as it is being moved by an overhead crane from its stand to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
2011-04-02
VANDENBERG AIR FORCE BASE, Calif. -- Technicians monitor the Aquarius/SAC-D spacecraft as it is being moved by an overhead crane from its stand to cell 3 at the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. There, the spacecraft will undergo inspection of its solar arrays and tests will be conducted on its propulsion subsystem. Further testing of the satellites various other systems will follow. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: NASA/Randy Beaudoin, VAFB
NASA Astrophysics Data System (ADS)
Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.
2014-12-01
The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of experts from a wide range of disciplines, to refine our science objectives and outline detailed research strategies needed to attain these objectives. The deliverable will be a comprehensive report to NASA outlining the major scientific questions, and developing the initial study design and implementation concept.
2009-03-16
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is on a rotation stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett
2008-11-07
VANDENBERG AIR FORCE BASE, Calif. – In the NASA payload processing facility at Vandenberg Air Force Base in California, workers prepare to place a protective cover around the NOAA-N Prime satellite before moving it. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA/Robert Hargreaves Jr., VAFB
2008-11-07
VANDENBERG AIR FORCE BASE, Calif. – In the NASA payload processing facility at Vandenberg Air Force Base in California, workers place a protective cover around the NOAA-N Prime satellite before moving it. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA/Robert Hargreaves Jr., VAFB
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Xu, Y.; An, L.
2013-12-01
Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.
NASA Technical Reports Server (NTRS)
Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.;
2013-01-01
Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).
NASA Aquarius Maps Ocean Salinity Structure
2012-06-12
NASA Aquarius instrument on the Aquarius/SAC-D observatory gives an unprecedented look at a key factor involved in the formation of an oceanic wave feature in the tropical Pacific and Atlantic Oceans that influences global climate patterns.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.
2014-12-01
Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.
Monitoring Ocean CO2 Fluxes from Space: GOSAT and OCO-2
NASA Technical Reports Server (NTRS)
Crisp, David
2012-01-01
The ocean is a major component of the global carbon cycle, emitting over 330 billion tons of carbon dioxide (CO2) into the atmosphere each year, or about 10 times that emitted fossil fuel combustion and all other human activities [1, 2]. The ocean reabsorbs a comparable amount of CO2 each year, along with 25% of the CO2 emitted by these human activities. The nature and geographic distribution of the processes controlling these ocean CO2 fluxes are still poorly constrained by observations. A better understanding of these processes is essential to predict how this important CO2 sink may evolve as the climate changes.While in situ measurements of ocean CO2 fluxes can be very precise, the sampling density is far too sparse to quantify ocean CO2 sources and sinks over much of the globe. One way to improve the spatial resolution, coverage, and sampling frequency is to make observations of the column averaged CO2 dry air mole fraction, XCO2, from space [4, 5, 6]. Such measurements could provide global coverage at high resolution (< 100 km) on monthly time scales. High precision (< 1 part per million, ppm) is essential to resolve the small, near-surface CO2 variations associated with ocean fluxes and to better constrain the CO2 transport over the ocean. The Japanese Greenhouse gases Observing Satellite (GOSAT) and the NASA Orbiting Carbon Observatory (OCO) were first two space based sensors designed specifically for this task. GOSAT was successfully launched on January 23, 2009, and has been returning measurements of XCO2 since April 2009. The OCO mission was lost in February 2009, when its launch vehicle malfunctioned and failed to reach orbit. In early 2010, NASA authorized a re-flight of OCO, called OCO-2, which is currently under development.
2008-10-15
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the NASA Railroad Maintenance Crew pose on the side of NASA Railroad locomotive 3. From left are Mike Stephens, Mike Fitch, Jesse Crews, Chris Bryant, Rick Koury, Gary Steele and Will Eriksen. The team at Kennedy completed the refurbishment of locomotive 3 in October. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
Satellite-Respondent Buoys Identify Ocean Debris
NASA Technical Reports Server (NTRS)
2009-01-01
NASA operates a series of Earth-observing satellites, which help scientists learn more about our home planet. Through partnerships with universities and other government agencies, like the National Oceanic and Atmospheric Administration (NOAA), the Space Agency helps scientists around the world capture precise movements of the Earth s crust to learn more about the underground processes related to earthquakes and volcanic eruptions, create accurate assessments of wind resources for future energy use, and preserve endangered species by generating much-needed data about their environments. This work, done primarily from space with satellites using a variety of complex instruments to take readings of the surface below, generates leagues of valuable data that aid scientists on the ground - or in some cases on the water. As much of the Earth is covered in water liquid, frozen, saltwater, or fresh much of NASA s remote sensing work focuses on the oceans and their health. This valuable, mammoth (yet fragile) resource provides insight into the overall health of our planet, as water, in addition to being abundant, is a key ingredient to all known life on Earth. As part of its ocean-observing work, NASA partnered with NOAA and private industry to develop remote sensing technologies for protecting the seas of the North Pacific from a nefarious and pervasive problem: derelict fishing gear.
Ocean Color Measurements from Landsat-8 OLI using SeaDAS
NASA Technical Reports Server (NTRS)
Franz, Bryan Alden; Bailey, Sean W.; Kuring, Norman; Werdell, P. Jeremy
2014-01-01
The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a.
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; McClain, Charles R.; Busalacchi, Antonio J. (Technical Monitor)
2001-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRAI) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members and divers in skiffs from Liberty Star, one of NASA's solid rocket booster retrieval ships, are prepared to retrieve the parachute lines from the right spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, use skiffs to approach the right spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's final launch. Divers are already in the water. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-24
CAPE CANAVERAL, Fla. -- A worker on Freedom Star, one of NASA's solid rocket booster retrieval ships, manipulates a crane to recover the left solid rocket booster from the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a crane to pull the left spent booster nose cap out of the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-24
CAPE CANAVERAL, Fla. -- Chief Mate Jamie Harris is steering Freedom Star, one of NASA's solid rocket booster retrieval ships in the direction of the left spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a skiff to approach the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- A crew member from Freedom Star, one of NASA's solid rocket booster retrieval ships, throws a tow line into the Atlantic Ocean in order to capture the left spent booster nose cap after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, prepare to recover the left spent booster nose cap from the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, inspect the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-24
CAPE CANAVERAL, Fla. -- Chief Mate Jamie Harris is steering Freedom Star, one of NASA's solid rocket booster retrieval ships in the direction of the left spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-26
CAPE CANAVERAL, Fla. -- A crane on Freedom Star, one of NASA's solid rocket booster retrieval ships, heaves a spent booster nose cap from the from out of the Atlantic Ocean and onto the deck after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- A crew member on Liberty Star, one of NASA's solid rocket booster retrieval ships, uses a crane to haul the right booster nose cap out of the Atlantic Ocean that splashed down after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members on Liberty Star, one of NASA's solid rocket booster retrieval ships, use a crane to haul the parachute from the right spent booster onto the ship after it splashed down in the Atlantic Ocean after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members in a skiff from Liberty Star, one of NASA's solid rocket booster retrieval ships, attach a tow rope to the parachute lines from the right spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a skiff to approach the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-26
CAPE CANAVERAL, Fla. -- The massive parachute from the left spent booster is rolled up on the deck of Freedom Star, one of NASA's solid rocket booster retrieval ships, after recovery from the Atlantic Ocean and will be returned to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-24
CAPE CANAVERAL, Fla. -- Captain Bren Wade is steering Liberty Star, one of NASA's solid rocket booster retrieval ships in the direction of the right spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, work on the parachute from the right spent booster nose cap that splashed down in the Atlantic Ocean after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-25
CAPE CANAVERAL, Fla. -- A crew member on Liberty Star, one of NASA's solid rocket booster retrieval ships, uses a crane to haul the right booster nose cap out of the Atlantic Ocean that splashed down after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members on Freedom Star, one of NASA's solid rocket booster retrieval ships, use a crane to pull the left spent booster nose cap out of the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Dusk descends on the Freedom Star, one of NASA's solid rocket booster retrieval ships stationed in the Atlantic Ocean, to recover the right spent booster after it splashed down following space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-25
CAPE CANAVERAL, Fla. -- A crane on Freedom Star, one of NASA's solid rocket booster retrieval ships, heaves the left spent booster nose cap from the Atlantic Ocean and onto the deck after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- A crane on Freedom Star, one of NASA's solid rocket booster retrieval ships, heaves the left spent booster nose cap from the Atlantic Ocean and onto the deck after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, use a crane to pull the left spent booster nose cap out of the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, approach and inspect the left spent booster bobbing in the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-24
CAPE CANAVERAL, Fla. -- The nose cap and the top of a spent booster can be seen bobbing in the Atlantic Ocean, waiting to be recovered by the crew members of Freedom Star, one of NASA's solid rocket booster retrieval ships. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-24
CAPE CANAVERAL, Fla. -- Part of a spent booster is seen in the background bobbing in the Atlantic Ocean as deck hands on Freedom Star, one of NASA's solid rocket booster retrieval vessel prepare to recover it after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- A nose cap from the right spent booster can be seen bobbing in the Atlantic Ocean, waiting to be recovered by the crew members of Liberty Star, one of NASA's solid rocket booster retrieval ships. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-24
CAPE CANAVERAL, Fla. -- After splashing down, the nose cap of the left spent booster bobs in the Atlantic Ocean as Freedom Star, one of NASA's solid rocket booster retrieval ships makes its way closer for recovery following space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2014-05-12
CAPE CANAVERAL, Fla. – NASA's International Space Station-RapidScat scatterometer instrument arrives at the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – Part of NASA's International Space Station-RapidScat scatterometer instrument is moved into Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – NASA's International Space Station-RapidScat scatterometer instrument is revealed inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – NASA's International Space Station-RapidScat scatterometer instrument is revealed inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-09-30
Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard...was extremely good. The ADCPs and lower level temperature and salinity sensors all returned complete records. All 3 moorings also carried upper... Pavlov , and M. Kulakov (1999), The Siberian Coastal Current: a wind- and buoyancy-forced Arctic coastal current, J. Geophys. Res., 104(C12), 29697
NASA Ocean Data Shows ‘Climate Dance’ of Plankton
2014-09-29
The greens and blues of the ocean color from NASA satellite data have provided new insights into how climate and ecosystem processes affect the growth cycles of phytoplankton—microscopic aquatic plants important for fish populations and Earth’s carbon cycle. At the bottom of the ocean’s food chain, phytoplankton account for roughly half of the net photosynthesis on Earth. Their photosynthesis consumes carbon dioxide and plays a key role in transferring carbon from the atmosphere to the ocean. Unlike the plant ecosystems on land, the amount of phytoplankton in the ocean is always followed closely by the abundance of organisms that eat phytoplankton, creating a perpetual dance between predators and prey. This new analysis shows how tiny imbalances in this predator-prey relationship, caused by environmental variability, give rise to massive phytoplankton blooms, having huge impacts on ocean productivity, fisheries and carbon cycling. The study was released Thursday, Sept. 25, in the journal Nature Climate Change. “The continuous year-in and year-out measurements provided by NASA’s ocean color satellites have dramatically changed our understanding of phytoplankton dynamics on the Earth,” said Mike Behrenfeld, author of the study and phytoplankton ecologist at Oregon State University, Corvallis, Oregon. “What we now see is a closely linked system of phytoplankton cell division and consumption lying at the heart of the plant’s annual cycle.” Behrenfeld calls this close predator-prey relationship the “Dance of the Plankton.” This view is different from previous perspectives that have simply focused on environmental resources used by phytoplankton to grow, such as nutrients and light. The new view is important because it reveals that tiny imbalances can greatly impact Earth’s ecology. Read more: 1.usa.gov/ZkVMHG Credit: NASA's Goddard Space Flight Center, Norman Kuring; USGS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Enabling the Continuous EOS-SNPP Satellite Data Record thru EOSDIS Services
NASA Astrophysics Data System (ADS)
Hall, A.; Behnke, J.; Ho, E. L.
2015-12-01
Following Suomi National Polar-Orbiting Partnership (SNPP) launch of October 2011, the role of the NASA Science Data Segment (SDS) focused primarily on evaluation of the sensor data records (SDRs) and environmental data records (EDRs) produced by the Joint Polar Satellite System (JPSS), a National Oceanic and Atmosphere Administration (NOAA) Program as to their suitability for Earth system science. The evaluation has been completed for Visible Infrared Imager Radiometer Suite (VIIRS), Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), and Ozone Mapper/Profiler Suite (OMPS) Nadir instruments. Since launch, the SDS has also been processing, archiving and distributing data from the Clouds and the Earth's Radiant Energy System (CERES) and Ozone Mapper/Profiler Suite (OMPS) Limb instruments and this work is planned to continue through the life of the mission. As NASA transitions to the production of standard, Earth Observing System (EOS)-like science products for all instruments aboard Suomi NPP, the Suomi NPP Science Team (ST) will need data processing and production facilities to produce the new science products they develop. The five Science Investigator-led Processing Systems (SIPS): Land, Ocean. Atmosphere, Ozone, and Sounder will produce the NASA SNPP standard Level 1, Level 2, and global Level 3 products and provide the products to the NASA's Distributed Active Archive Centers (DAACs) for distribution to the user community. The SIPS will ingest EOS compatible Level 0 data from EOS Data Operations System (EDOS) for their data processing. A key feature is the use of Earth Observing System Data and Information System (EOSDIS) services for the continuous EOS-SNPP satellite data record. This allows users to use the same tools and interfaces on SNPP as they would on the entire NASA Earth Science data collection in EOSDIS.
NASA's future Earth observation plans
NASA Astrophysics Data System (ADS)
Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.
2004-11-01
NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for geostationary orbit to facilitate continuous measurements of weather-related phenomena, improve "nowcasting" of extreme weather events, and measure important atmospheric gases. NASA is currently developing with its partners the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and the next-generation geostationary system, GOES-R. Future missions will migrate today's capabilities in low Earth orbit to higher orbits such as L1 and L2 to enable more continuous monitoring of changes in the Earth system with a smaller number of satellites.
2008-11-11
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime satellite is displayed in the payload processing facility at Vandenberg Air Force Base in California. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration, called NOAA-N Prime, is offloaded from the trailer at Vandenberg Air Force Base, Calif. The spacecraft will be moved into a NASA payload processing facility and prepared for a Feb. 4 launch. NOAA-N Prime, built by Lockheed Martin, is similar to NOAA-N launched on May 20, 2005.
2009-03-19
CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is rotated on a stand toward a vertical position after blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann
2009-03-16
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians at right and left examine the GOES-O satellite as it rotates on the stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett
2009-03-19
CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is rotated on a stand for blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann
2009-03-16
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., a technician checks the GOES-O satellite as it begins rotating on the stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett
2009-03-19
CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is rotated on a stand for blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann
2009-03-19
CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is rotated on a stand for blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann
2009-03-16
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians examine the progress of the GOES-O satellite as it rotates on the stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett
2009-03-19
CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite has been rotated on its stand to a vertical position after blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann
2009-03-16
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., ., a technician checks the GOES-O satellite as it rotates on the stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett
2009-03-19
CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is rotated on a stand for blanket inspection. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Jim Grossmann
2009-03-16
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians complete the rotation of the GOES-O satellite on the stand. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett
The SeaDAS Processing and Analysis System: SeaWiFS, MODIS, and Beyond
NASA Astrophysics Data System (ADS)
MacDonald, M. D.; Ruebens, M.; Wang, L.; Franz, B. A.
2005-12-01
The SeaWiFS Data Analysis System (SeaDAS) is a comprehensive software package for the processing, display, and analysis of ocean data from a variety of satellite sensors. Continuous development and user support by programmers and scientists for more than a decade has helped to make SeaDAS the most widely used software package in the world for ocean color applications, with a growing base of users from the land and sea surface temperature community. Full processing support for past (CZCS, OCTS, MOS) and present (SeaWiFS, MODIS) sensors, and anticipated support for future missions such as NPP/VIIRS, enables end users to reproduce the standard ocean archive product suite distributed by NASA's Ocean Biology Processing Group (OBPG), as well as a variety of evaluation and intermediate ocean, land, and atmospheric products. Availability of the processing algorithm source codes and a software build environment also provide users with the tools to implement custom algorithms. Recent SeaDAS enhancements include synchronization of MODIS processing with the latest code and calibration updates from the MODIS Calibration Support Team (MCST), support for all levels of MODIS processing including Direct Broadcast, a port to the Macintosh OS X operating system, release of the display/analysis-only SeaDAS-Lite, and an extremely active web-based user support forum.
SIMBIOS Project 1999 Annual Report
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Fargion, Giulietta S.
1999-01-01
The purpose of this technical memorandum is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.
SIMBIOS Project 1998 Annual Report
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Fargion, Giulietta, S.
1999-01-01
The purpose of this series of technical reports is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Ocean Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant to substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issues by an operational project.
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, make their way back to the vessel after inspecting the left spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-24
CAPE CANAVERAL, Fla. -- Rubber bumpers are stowed on the deck of Freedom Star, one of NASA's solid rocket booster retrieval ships. The ship has set sail to be in position in the Atlantic Ocean to recover the spent boosters after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-24
CAPE CANAVERAL, Fla. -- The right spent booster from shuttle Discovery's final launch is seen bobbing in the Atlantic Ocean. Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, will recover the parachute and tow the booster back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-24
CAPE CANAVERAL, Fla. -- A flotation device is secured to the railing of Freedom Star, one of NASA's solid rocket booster retrieval ships. The ship has set sail to be in position in the Atlantic Ocean to recover the spent boosters after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members from Liberty Star, one of NASA's solid rocket booster retrieval ships, have recovered and secured the right spent booster nose cap to a pallet on the ship's deck that was recovered from the Atlantic Ocean after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-24
CAPE CANAVERAL, Fla. -- A flotation device is secured to the railing of Liberty Star, one of NASA's solid rocket booster retrieval ships. The ship has set sail to be in position in the Atlantic Ocean to recover the right spent booster that splashed down after space shuttle Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2014-05-12
CAPE CANAVERAL, Fla. – NASA's International Space Station-RapidScat scatterometer instrument waits to be removed from the truck that delivered it to the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – A truck carrying NASA's International Space Station-RapidScat scatterometer instrument arrives outside the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – The components of NASA's International Space Station-RapidScat scatterometer instrument rest side by side after removal of their shipping cover inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – A component of NASA's International Space Station-RapidScat scatterometer instrument is moved via forklift into the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – Part of NASA's International Space Station-RapidScat scatterometer instrument is revealed after removal of its shipping container inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – The components of NASA's International Space Station-RapidScat scatterometer instrument are moved into a laboratory inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – Part of NASA's International Space Station-RapidScat scatterometer instrument is visible inside its protective enclosure as it arrives at the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – A component of NASA's International Space Station-RapidScat scatterometer instrument is moved via forklift into the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – A component of NASA's International Space Station-RapidScat scatterometer instrument is removed from a truck at the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – A component of NASA's International Space Station-RapidScat scatterometer instrument is removed from the truck that delivered it to the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
2014-05-12
CAPE CANAVERAL, Fla. – The components of NASA's International Space Station-RapidScat scatterometer instrument arrive at the Space Station Processing Facility at Kennedy Space Center in Florida. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis
Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography
NASA Technical Reports Server (NTRS)
Guest, DeNeice C.
2010-01-01
This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.
2008-11-05
VANDENBERG AIR FORCE BASE, Calif. – Inside the payload processing facility at Vandenberg Air Force Base in California, the shipping container for NOAA-N Prime is lifted. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. NOAA-N Prime is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA
2008-11-11
VANDENBERG AIR FORCE BASE, Calif. – Another view of the NOAA-N Prime satellite in the payload processing facility at Vandenberg Air Force Base in California. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA
2008-11-05
VANDENBERG AIR FORCE BASE, Calif. – Inside the payload processing facility at Vandenberg Air Force Base in California, NOAA-N Prime, the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration, is revealed after removal of the shipping container. NOAA-N Prime is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA
2008-11-12
VANDENBERG AIR FORCE BASE, Calif. – Another view of the NOAA-N Prime satellite in the payload processing facility at Vandenberg Air Force Base in California. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA/Joe Davila, VAFB
2008-11-11
VANDENBERG AIR FORCE BASE, Calif. – Another view of the NOAA-N Prime satellite in the payload processing facility at Vandenberg Air Force Base in California. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA
2008-11-11
VANDENBERG AIR FORCE BASE, Calif. – Another view of the NOAA-N Prime satellite in the payload processing facility at Vandenberg Air Force Base in California. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA
2008-11-05
VANDENBERG AIR FORCE BASE, Calif. – Inside the payload processing facility at Vandenberg Air Force Base in California, workers get ready to remove the shipping container from NOAA-N Prime, the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. NOAA-N Prime is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA
2017-12-08
Most NAAMES flights depart close to dawn, with the goal of getting out to its observation coordinates in time for maximum sun on the surface of the ocean. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Oceanic Processes Program
NASA Technical Reports Server (NTRS)
1988-01-01
An overview of the recent accomplishments, present activities, and future plans is provided. Sections following the introduction provides summaries of current flight projects and definition studies, brief descriptions of individual research activities, and a bibliography of referred Journal Articles appearing within the last three years.
Assessing ocean vertical mixing schemes for the study of climate change
NASA Astrophysics Data System (ADS)
Howard, A. M.; Lindo, F.; Fells, J.; Tulsee, V.; Cheng, Y.; Canuto, V.
2014-12-01
Climate change is a burning issue of our time. It is critical to know the consequences of choosing "business as usual" vs. mitigating our emissions for impacts e.g. ecosystem disruption, sea-level rise, floods and droughts. To make predictions we must model realistically each component of the climate system. The ocean must be modeled carefully as it plays a critical role, including transporting heat and storing heat and dissolved carbon dioxide. Modeling the ocean realistically in turn requires physically based parameterizations of key processes in it that cannot be explicitly represented in a global climate model. One such process is vertical mixing. The turbulence group at NASA-GISS has developed a comprehensive new vertical mixing scheme (GISSVM) based on turbulence theory, including surface convection and wind shear, interior waves and double-diffusion, and bottom tides. The GISSVM is tested in stand-alone ocean simulations before being used in coupled climate models. It is also being upgraded to more faithfully represent the physical processes. To help assess mixing schemes, students use data from NASA-GISS to create visualizations and calculate statistics including mean bias and rms differences and correlations of fields. These are created and programmed with MATLAB. Results with the commonly used KPP mixing scheme and the present GISSVM and candidate improved variants of GISSVM will be compared between stand-alone ocean models and coupled models and observations. This project introduces students to modeling of a complex system, an important theme in contemporary science and helps them gain a better appreciation of climate science and a new perspective on it. They also gain familiarity with MATLAB, a widely used tool, and develop skills in writing and understanding programs. Moreover they contribute to the advancement of science by providing information that will help guide the improvement of the GISSVM and hence of ocean and climate models and ultimately our understanding and prediction of climate. The PI is both a member of the turbulence group at NASA-GISS and an associate professor at Medgar Evers College of CUNY, a minority serving institution in an urban setting in central Brooklyn. This Project is supported by NSF award AGS-1359293 REU site: CUNY/GISS Center for Global Climate Research.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Menemenlis, D.; Nakayama, Y.
2016-12-01
Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a steady state. The ice shelf melt rate depends on the thermal forcing from warm, saline, subsurface ocean water of Atlantic origin (AW), and on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due to enhanced advection of AW. Here, we employ the Massachusetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry inverted from gravity data by NASA Operation IceBridge and NASA Ocean Melting Greenland missions, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and reconstructed seasonal subglacial discharge from the Regional Atmospheric Climate Model (RACMO2). We compare the results in winter (small runoff but not negligible) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.
Krasnopolsky, Vladimir; Nadiga, Sudhir; Mehra, Avichal; Bayler, Eric; Behringer, David
2016-01-01
A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived "ocean color" (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA's operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed--signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN's generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series.
Nadiga, Sudhir; Mehra, Avichal; Bayler, Eric; Behringer, David
2016-01-01
A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA's operational Visible Imaging Infrared Radiometer Suite (VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for 2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with different weights is constructed and compared with a single NN. The impact of the NN training period on the NN's generalization ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean color observation fields and time series. PMID:26819586
VIIRS Product Evaluation at the Ocean PEATE
NASA Technical Reports Server (NTRS)
Patt, Frederick S.; Feldman, Gene C.
2010-01-01
The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) mission will support the continuation of climate records generated from NASA missions. The NASA Science Data Segment (SDS) relies upon discipline-specific centers of expertise to evaluate the NPP data products for suitability as climate data records, The Ocean Product Evaluation and Analysis Tool Element (PEATE) will build upon Well established NASA capabilities within the Ocean Color program in order to evaluate the NPP Visible and Infrared Imager/Radiometer Suite (VIIRS) Ocean Color and Chlorophyll data products. The specific evaluation methods will support not only the evaluation of product quality but also the sources of differences with existing data records.
Vexcel Spells Excellence for Earth and Space
NASA Technical Reports Server (NTRS)
2002-01-01
With assistance from Stennis Space Center, Vexcel was able to strengthen the properties of its Apex Ground Station(TM), an affordable, end-to-end system that comes complete with a tracking antenna that permits coverage within an approximate 2,000-kilometer radius of its location, a high speed direct-to-disk data acquisition system that can download information from virtually any satellite, and data processing software for virtually all synthetic aperture radar and optical satellite sensors. Vexcel is using an Apex system linked to the Terra satellite to help scientists and NASA personnel measure land and ocean surface temperatures, detect fires, monitor ocean color and currents, produce global vegetation maps and data, and assess cloud characteristics and aerosol concentrations. In addition, Vexcel is providing NASA with close-range photogrammetry software for the International Space Station. The technology, commercially available as FotoG(TM), was developed with SBIR funding and support from NASA's Jet Propulsion Laboratory. Commercially, FotoG is used for demanding projects taken on by engineering firms, nuclear power plants, oil refineries, and process facilities. A version of Vexcel's close-range photo measurement system was also used to create virtual 3-D backdrops for a high-tech science fiction film.
Commercial Use of Space: a New Economic Strength for America
NASA Technical Reports Server (NTRS)
1989-01-01
Space commerce is composed of diverse activities which fall into four broad areas: satellite communications, earth and ocean observations, materials research and processing, and space transportation and industrial services. Space has become an industrial laboratory for materials research and processing. NASA's role in the commercial use of space is discussed through its commercial development program.
2008-10-15
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the NASA Railroad Maintenance Crew and Railroad and Transportation Management Team pose alongside NASA Railroad locomotive 3. From left, in front are Rick Koury, Chris Bryant and Tony Andrade. Behind, from left, are Will Eriksen, Mike Stephens, Kurt Bush, Gary Steele, John Muzzy, Mike Fitch, Chuck Sturgill and Jesse Crews. The maintenance team completed the refurbishment of locomotive 3 in October. The 15-month process, including a new paint scheme, dealt with extensive corrosion to the locomotive because of Kennedy's proximity to the Atlantic Ocean. Locomotives 1 and 2 also will be refurbished eventually. The NASA Railroad locomotives are SW-1500 switch engines built by Electro Motive Diesel (EMD). Photo credit: NASA/Amanda Diller
NASA Technical Reports Server (NTRS)
Hall, Callie; Arnone, Robert
2006-01-01
The NASA Applied Sciences Program seeks to transfer NASA data, models, and knowledge into the hands of end-users by forming links with partner agencies and associated decision support tools (DSTs). Through the NASA REASoN (Research, Education and Applications Solutions Network) Cooperative Agreement, the Oceanography Division of the Naval Research Laboratory (NRLSSC) is developing new products through the integration of data from NASA Earth-Sun System assets with coastal ocean forecast models and other available data to enhance coastal management in the Gulf of Mexico. The recipient federal agency for this research effort is the National Oceanic and Atmospheric Administration (NOAA). The contents of this report detail the effort to further the goals of the NASA Applied Sciences Program by demonstrating the use of NASA satellite products combined with data-assimilating ocean models to provide near real-time information to maritime users and coastal managers of the Gulf of Mexico. This effort provides new and improved capabilities for monitoring, assessing, and predicting the coastal environment. Coastal managers can exploit these capabilities through enhanced DSTs at federal, state and local agencies. The project addresses three major issues facing coastal managers: 1) Harmful Algal Blooms (HABs); 2) hypoxia; and 3) freshwater fluxes to the coastal ocean. A suite of ocean products capable of describing Ocean Weather is assembled on a daily basis as the foundation for this semi-operational multiyear effort. This continuous realtime capability brings decision makers a new ability to monitor both normal and anomalous coastal ocean conditions with a steady flow of satellite and ocean model conditions. Furthermore, as the baseline data sets are used more extensively and the customer list increased, customer feedback is obtained and additional customized products are developed and provided to decision makers. Continual customer feedback and response with new improved products are required between the researcher and customer. This document details the methods by which these coastal ocean products are produced including the data flow, distribution, and verification. Product applications and the degree to which these products are used successfully within NOAA and coordinated with the Mississippi Department of Marine Resources (MDMR) is benchmarked.
2011-04-28
VANDENBERG AIR FORCE BASE, Calif. -- In Space Systems International's Payload Processing Facility at Vandenberg Air Force Base in California, a technician measures the clearance between the solar panel and a dual-thruster module after the array was installed to the Aquarius/SAC-D spacecraft. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB
2012-01-18
VANDENBERG AIR FORCE BASE, Calif. -- Processing and integration of the three stages comprising an Orbital Sciences Corp. Pegasus rocket are complete in processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The rocket is being prepared to launch NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on the Orbital Sciences' L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch, targeted for no earlier than March 14. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
2012-01-18
VANDENBERG AIR FORCE BASE, Calif. -- Processing and integration of a three-stage Orbital Sciences Corp. Pegasus rocket are complete in processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The rocket is being prepared to launch NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on the Orbital Sciences' L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch, targeted for no earlier than March 14. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
2009-10-15
CAPE CANAVERAL, Fla. – At the Receipt Inspection Shop on Cape Canaveral Air Force Station in Florida, an ATK Space Systems' 60-inch graphite epoxy motor, or GEM, slated for launch of the GOES-P spacecraft rests on a work stand awaiting further processing. The United Launch Alliance Delta IV is the launch vehicle for GOES-P, the latest Geostationary Operational Environmental Satellite developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. Launch is targeted for March 4, 2010, from Launch Complex 37. For information on GOES-P, visit http://nasascience.nasa.gov/missions/goes-n-o-p. Photo credit: NASA/Dimitri Gerondidakis
2011-03-21
VANDENBERG AIR FORCE BASE, Calif. -- Workers attach cables from an overhead crane to the United Launch Alliance Delta II second stage motor for mating to the first stage at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California. Following final tests, the Aquarius/SAC-D spacecraft will be integrated to the Delta II launch vehicle in preparation for the targeted June liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB
2015-04-08
The cloud cover over the Southern Ocean occasionally parts as it did on January 1, 2015 just west of the Drake Passage where the VIIRS instrument on the Suomi NPP satellite glimpsed the above collection of ocean-color delineated eddies which have diameters ranging from a couple of kilometers to a couple of hundred kilometers. Recent studies indicate that eddy activity has been increasing in the Southern Ocean with possible implications for climate change. Credit: NASA's OceanColor/Suomi NPP/VIIRS NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2008-11-06
VANDENBERG AIR FORCE BASE, Calif. – Inside the payload processing facility at Vandenberg Air Force Base in California, the NOAA-N Prime satellite has been rotated to a vertical position. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. NOAA-N Prime is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA
2008-11-06
VANDENBERG AIR FORCE BASE, Calif. – Inside the payload processing facility at Vandenberg Air Force Base in California, the NOAA-N Prime satellite is rotated toward a vertical position. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. NOAA-N Prime is built by Lockheed Martin and similar to NOAA-N launched on May 20, 2005. Launch of NOAA-N Prime is scheduled for Feb. 4. Photo credit: NASA
Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A.
1998-01-01
A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.
Calibration Improvements in the Detector-to-Detector Differences for the MODIS Ocean Color Bands
NASA Technical Reports Server (NTRS)
Li, Yonghong; Angal, Amit; Wu, Aisheng; Geng, Xu; Link, Daniel; Xiong, Xiaoxiong
2016-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS), a major instrument within NASAs Earth Observation System missions, has operated for over 16 and 14 years onboard the Terra and Aqua satellites, respectively. Its reflective solar bands (RSB) covering a spectral range from 0.4 to 2.1 micrometers are primarily calibrated using the on-board solar diffuser(SD), with its on-orbit degradation monitored using the Solar Diffuser Stability Monitor. RSB calibrations are supplemented by near-monthly lunar measurements acquired from the instruments space-view port. Nine bands (bands 8-16) in the visible to near infrared spectral range from 0.412 to 0.866 micrometers are primarily used for ocean color observations.During a recent reprocessing of ocean color products, performed by the NASA Ocean Biology Processing Group, detector-to-detector differences of up to 1.5% were observed in bands 13-16 of Terra MODIS. This paper provides an overview of the current approach to characterize the MODIS detector-to-detector differences. An alternative methodology was developed to mitigate the observed impacts for bands 13-16. The results indicated an improvement in the detector residuals and in turn are expected to improve the MODIS ocean color products. This paper also discusses the limitations,subsequent enhancements, and the improvements planned for future MODIS calibration collections.
2011-02-26
CAPE CANAVERAL, Fla. -- The left spent booster from space shuttle Discovery's final launch is seen bobbing in the Atlantic Ocean as air is pumped into it to lift it out of the water so it can float horizontally for towing back to Port Canaveral, Florida by Freedom Star, one of NASA's solid rocket booster retrieval ships. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members of Liberty Star, one of NASA's solid rocket booster retrieval ships, hold on tightly to handle grips as the swells of the Atlantic Ocean cause the vessel to pitch and roll while heading toward the recovery area where the right spent booster splashed down after Discovery's final launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members in a skiff from Freedom Star, one of NASA's solid rocket booster retrieval ships, look back at the vessel toward the left spent booster nose cap, which was recovered from the Atlantic Ocean and now secured on the deck for delivery back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
NASA Technical Reports Server (NTRS)
Jackson, F. C.
1984-01-01
The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.
Assessment of NOAA Processed OceanSat-2 Scatterometer Ocean Surface Vector Wind Products
NASA Astrophysics Data System (ADS)
Chang, P.; Jelenak, Z.; Soisuvarn, S.
2011-12-01
The Indian Space Research Organization (ISRO) launched the Oceansat-2 satellite on 23 September 2009. Oceansat-2 carries a radar scatterometer instrument (OSCAT) capable of measuring ocean surface vector winds (OSVW) and an ocean color monitor (OCM), which will retrieve sea spectral reflectance. Oceansat-2 is ISRO's second in a series of satellites dedicated to ocean research. It will provide continuity to the services and applications of the Oceansat-1 OCM data along with additional data from a Ku-band pencil beam scatterometer. Oceansat-2 is a three-axis, body stabilized spacecraft placed into a near circular sun-synchronous orbit, at an altitude of 720 kilometers (km), with an equatorial crossing time of around 1200 hours. ISRO, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) share the common goal of optimizing the quality and maximizing the utility of the Oceansat-2 data for the benefit of future global and regional scientific and operational applications. NOAA, NASA and EUMETSAT have been collaboratively working with ISRO on the assessment and analysis of OSCAT data to help facilitate continuation of QuikSCAT's decade-long Ku-band scatterometer data record. NOAA's interests are focused on the utilization of OSCAT data to support operational weather forecasting and warning in the marine environment. OSCAT has the potential to significantly mitigate the loss of NASA's QuikSCAT, which has negatively impacted NOAA's marine forecasting and warning services. Since March 2011 NOAA has been receiving near real time OSCAT measurements via EumetSat. NOAA has developed its own OSCAT wind processor. This processor produces ocean surface vector winds with resolution of 25km. Performance of NOAA OSCAT product will and its availability to larger user community will be presented and discussed.
NASA satellite to study earth's oceans from space. [Seasat-A satellite
NASA Technical Reports Server (NTRS)
1978-01-01
The feasibility of using microwave instruments to scan the world's oceans from space in order to obtain scientific data for oceanographers, meteorologists, and commercial users of the seas will be demonstrated during the mission of the Seasat A satellite which will be launched into an 800 kilometer high near circular orbit by an Agena Atlas-Agena launch vehicle. The satellite configuration, its payload, and data collection and processing capabilities are described as well as the launch vehicle system.
On the development of earth observation satellite systems
NASA Technical Reports Server (NTRS)
1977-01-01
Subsequent to the launching of the first LANDSAT by NASA, Japan has recognized the importance of data from earth observation satellites, has conducted studies, and is preparing to develop an independent system. The first ocean observation satellite will be launched in 1983, the second in 1985. The first land observation satellite is scheduled to be launched in 1987 and by 1990 Japan intends to have both land and ocean observation systems in regular operation. The association reception and data processing systems are being developed.
2014-05-02
NASA Administrator Charles Bolden, left, and Centre National d'Études Spatiales (CNES) President Jean-Yves Le Gall sign an agreement to move from feasibility studies to implementation of the Surface Water and Ocean Topography (SWOT) mission, Friday, May 2, 2014 at NASA Headquarters in Washington. The SWOT mission will use wide swath altimetry technology to produce high-resolution elevation measurements of the surface of lakes, reservoirs, and wetlands and of the ocean surface. Photo Credit: (NASA/Bill Ingalls)
First Jason-1 and OSTM/Jason-2 Tandem Global View
NASA Technical Reports Server (NTRS)
2009-01-01
This is the first global map of ocean surface topography produced with data from the new interleaved tandem mission of the Jason-1 and Ocean Surface Topography Mission (OSTM)/Jason-2 satellites. In January 2009, Jason-1 was maneuvered into orbit on the opposite side of Earth from its successor, OSTM/Jason-2 satellite. It takes 10 days for the satellites to cover the globe and return to any one place over the ocean. So, in this new tandem configuration, Jason-1 flies over the same region of the ocean that OSTM/Jason-2 flew over five days earlier. Its ground tracks fall mid-way between those of Jason-2, which are about 315 kilometers (195 miles) apart at the equator. Working together, the two spacecraft measure the surface topography of the ocean twice as often as would be possible with one satellite, and over a 10-day period, they return twice the amount of detailed measurements. Combining data from the two satellites makes it possible to map smaller, more rapidly changing features than one satellite could alone. This image shows sea-level anomaly data from the first 14 days of the interleaved orbit of Jason-1 and OSTM/Jason-2, the period beginning on Feb. 20, 2009. An anomaly is a departure from a value averaged over a long period of time. Red and yellow are regions where sea levels are higher than normal. Purple and dark blue show where sea levels are lower. A higher-than-normal sea surface is usually a sign of warm waters below, while lower sea levels indicate cooler than normal temperatures. The small-sized patches of highs and lows are ocean eddies, the storms of ocean weather that carry most of the energy of ocean circulation. These are not well observed with only one satellite. Jason-1 is a joint mission of NASA and the French space agency, CNES. The U.S. portion of the Jason-1 mission is managed by JPL for NASA's Science Mission Directorate, Washington, D.C. OSTM/Jason 2 is an international endeavor with responsibility for satellite development and launch shared between NASA and CNES. The U.S. National Oceanic and Atmospheric Administration (NOAA) is responsible for satellite operations, and JPL is managing the mission for NASA. Data processing is being carried out by CNES, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and NOAA.NASA Ocean Altimeter Pathfinder Project. Report 1; Data Processing Handbook
NASA Technical Reports Server (NTRS)
Koblinsky, C. J.; Beckley, Brian D.; Ray, Richard D.; Wang, Yan-Ming; Tsaoussi, Lucia; Brenner, Anita; Williamson, Ron
1998-01-01
The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-sedes data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. This report describes the processing schemes used to produce a consistent data set and two of the products derived f rom these data. Other reports have been produced that: a) describe the validation of these data sets against tide gauge measurements and b) evaluate the statistical properties of the data that are relevant to climate change. The use of satellite altimetry for earth observations was proposed in the early 1960s. The first successful space based radar altimeter experiment was flown on SkyLab in 1974. The first successful satellite radar altimeter was flown aboard the Geos-3 spacecraft between 1975 and 1978. While a useful data set was collected from this mission for geophysical studies, the noise in the radar measured and incomplete global coverage precluded ft from inclusion in the Ocean Altimeter Pathfinder program. This program initiated its analysis with the Seasat mission, which was the first satellite radar altimeter flown for oceanography.
Hurricane Gonzalo in the Atlantic Ocean
2017-12-08
On Oct. 16 at 17:45 UTC NASA's Terra satellite captured this image of Hurricane Gonzalo in the Atlantic Ocean. Image Credit: NASA Goddard MODIS Rapid Response Team-- NASA and NOAA satellites have been providing continuous coverage of Hurricane Gonzalo as it moves toward Bermuda. NASA's Terra satellite saw thunderstorms wrapped tightly around the center with large bands of thunderstorms wrapping into it. NOAA's GOES-East satellite provided and "eye-opening" view of Gonzalo, still a Category 4 hurricane on Oct. 16. A hurricane warning is in effect for Bermuda and that means that hurricane conditions are expected within the warning area, meaning the entire island. Read more: www.nasa.gov/content/goddard/gonzalo-atlantic-ocean/index... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Improved Global Ocean Color Using Polymer Algorithm
NASA Astrophysics Data System (ADS)
Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques
2010-12-01
A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.
2014-05-02
NASA Administrator Charles Bolden, left, and Centre National d'Études Spatiales (CNES) President Jean-Yves Le Gall talk after signing an agreement to move from feasibility studies to implementation of the Surface Water and Ocean Topography (SWOT) mission, Friday, May 2, 2014 at NASA Headquarters in Washington. The SWOT mission will use wide swath altimetry technology to produce high-resolution elevation measurements of the surface of lakes, reservoirs, and wetlands and of the ocean surface. Photo Credit: (NASA/Bill Ingalls)
Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar
NASA Astrophysics Data System (ADS)
Hair, Johnathan; Hostetler, Chris; Hu, Yongxiang; Behrenfeld, Michael; Butler, Carolyn; Harper, David; Hare, Rich; Berkoff, Timothy; Cook, Antony; Collins, James; Stockley, Nicole; Twardowski, Michael; Cetinić, Ivona; Ferrare, Richard; Mack, Terry
2016-06-01
First of its kind combined atmospheric and ocean profile data were collected by the recently upgraded NASA Langley Research Center's (LaRC) High Spectral Resolution Lidar (HSRL-1) during the 17 July - 7 August 2014 Ship-Aircraft Bio-Optical Research Experiment (SABOR). This mission sampled over a region that covered the Gulf of Maine, open-ocean near Bermuda, and coastal waters from Virginia to Rhode Island. The HSRL-1 and the Research Scanning Polarimeter from NASA Goddard Institute for Space Studies collected data onboard the NASA LaRC King Air aircraft and flight operations were closely coordinated with the Research Vessel Endeavor that made in situ ocean optical measurements. The lidar measurements provided profiles of atmospheric backscatter and particulate depolarization at 532nm, 1064nm, and extinction (532nm) from approximately 9km altitude. In addition, for the first time HSRL seawater backscatter, depolarization, and diffuse attenuation data at 532nm were collected and compared to both the ship measurements and the Moderate Resolution Imaging Spectrometer (NASA MODIS-Aqua) satellite ocean retrievals.
2017-12-08
Only a stone’s throw away, the R/V Atlantis is dwarfed by the immensity of the sea in every direction. Travelling with NAAMES, one is immediately reminded that Earth is much more of a water planet than a land planet, with oceans defining the vast majority of the surface. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
These walkways are leisurely and calm here, but out on the open ocean, they’re likely to be washed with sea spray and the occasional rogue wave. Atlantis is 83.2 meters end to end. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Hundreds of miles off shore, the R/V Atlantis looks up while the crew of the C130 looks down. With teams on both vehicles studying interactions between the ocean and atmosphere, scientists hope to gain a better understanding of their complex chemical, biological and physical relationships. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
JPSS-1 Data and the EOSDIS System: It's seamless
NASA Astrophysics Data System (ADS)
Hall, A.; Behnke, J.; Ho, E.
2017-12-01
The continuity of climate and environmental data is the key to the NASA Earth science program to develop a scientific understanding of Earth's system and its response to changes. NASA has made a long-term investment in processing, archiving and distributing Earth science data through the Earth Observing System (EOS) Data and Information System (EOSDIS). The use of the EOSDIS infrastructure and services provides seamless integration of Suomi National Polar-Orbiting Partnership (SNPP) and future Joint Polar Satellite System (JPSS-1) products as it does for the entire NASA Earth Science data collection. This continuity of measurements from all the missions is supported by the use of common data structures and standards in the generation of products and the subsequent services, tools and access to those products. Similar to EOS missions, 5 Science Investigator-led Processing Systems (SIPS) were established for SNPP: Land, Ocean, Atmosphere, Ozone, and Sounder along with NASA's Clouds and the Earth's Radiant Energy System and Ozone Mapper/Profiler Suite Limb systems now produce the NASA SNPP standard Level 1, Level 2, and Level 3 products developed by the NASA science teams.
Contents of the NASA ocean data system archive, version 11-90
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)
1990-01-01
The National Aeronautics and Space Administration (NASA) Ocean Data System (NODS) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and surface pigment concentration. NODS will become the Data Archive and Distribution Service of the JPL Distributed Active Archive Center for the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
2015-10-26
Damaging heavy rains fell on South Carolina in the southeastern United States at the beginning of October 2015. Much of that water had, by mid October, flowed into the Atlantic Ocean bringing with it heavy loads of sediment, nutrients, and dissolved organic material. The above VIIRS image shows the runoff as it interacts with ocean currents on October 15, 2015. Credit: NASA/Goddard/SuomiNPP/VIIRS via NASA's OceanColor
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft enters the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2017-12-08
Damaging heavy rains fell on South Carolina in the southeastern United States at the beginning of October 2015. Much of that water had, by mid October, flowed into the Atlantic Ocean bringing with it heavy loads of sediment, nutrients, and dissolved organic material. The above VIIRS image shows the runoff as it interacts with ocean currents on October 15, 2015. Credit: NASA/Goddard/SuomiNPP/VIIRS via NASA's OceanColor NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Stamnes, S.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Burton, S. P.; Liu, X.; Hu, Y.; Stamnes, K. H.; Chowdhary, J.; Brian, C.
2017-12-01
The SABOR (Ship-Aircraft Bio-Optical Research) campaign was conducted during the summer of 2014, in the Atlantic Ocean, over the Chesapeake Bay and the eastern coastal region of the United States. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft. We present results from the new "MAPP" algorithm for RSP that is based on optimal estimation and that can retrieve simultaneous aerosol microphysical properties (including effective radius, single-scattering albedo, and real refractive index) and ocean color products using accurate radiative transfer and Mie calculations. The algorithm was applied to data collected during SABOR to retrieve aerosol microphysics and ocean products for all Aerosols-Above-Ocean (AAO) scenes. The RSP MAPP products are compared against collocated aerosol extinction and backscatter profiles collected by the NASA LaRC airborne High Spectral Resolution Lidar (HSRL-1), including lidar depth profiles of the ocean diffuse attenuation coefficient and the hemispherical backscatter coefficient.
Results of scatterometer systems analysis for NASA/MSC Earth Observation Sensor Evaluation Program.
NASA Technical Reports Server (NTRS)
Krishen, K.; Vlahos, N.; Brandt, O.; Graybeal, G.
1971-01-01
Radar scatterometers have applications in the NASA/MSC Earth Observation Aircraft Program. Over a period of several years, several missions have been flown over both land and ocean. In this paper a system evaluation of the NASA/MSC 13.3-GHz Scatterometer System is presented. The effects of phase error between the Scatterometer channels, antenna pattern deviations, aircraft attitude deviations, environmental changes, and other related factors such as processing errors, system repeatability, and propeller modulation, were established. Furthermore, the reduction in system errors and calibration improvement was investigated by taking into account these parameter deviations. Typical scatterometer data samples are presented.
2011-02-26
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, waits for crew members near the left spent booster bobbing in the Atlantic Ocean to attach a hose between it and the vessel that will facilitate debris and water clearing and the pumping in of air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Captain Michael Nicholas mans the helm of Freedom Star, one of NASA's solid rocket booster retrieval ships, while John Fischbeck, Manager of Vessel Operations and Senior SRB Retrieval Supervisor, and Walt Adams, SRB Retrieval and Dive Supervisor, assist. The ship's crew members are recovering the left spent booster bobbing in the Atlantic Ocean from space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, approach the left spent booster bobbing in the Atlantic Ocean to attach a hose that will facilitate debris and water clearing and the pumping in of air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-24
CAPE CANAVERAL, Fla. -- Chief Mate Jamie Harris works at the chart table on the bridge at night under a red light so as not to compromise night vision on Freedom Star, one of NASA's solid rocket booster retrieval ships plotting a course in the direction of the left spent booster that splashed down into the Atlantic Ocean after space shuttle Discovery's STS-133 launch. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
Flagging optically shallow pixels for improved analysis of ocean color data
NASA Astrophysics Data System (ADS)
McKinna, L. I. W.; Werdell, J.; Knowles, D., Jr.
2016-02-01
Ocean color remote-sensing is routinely used to derive marine geophysical parameters from sensor-observed water-leaving radiances. However, in clear geometrically shallow regions, traditional ocean color algorithms can be confounded by light reflected from the seafloor. Such regions are typically referred to as "optically shallow". When performing spatiotemporal analyses of ocean color datasets, optically shallow features such as coral reefs can lead to unexpected regional biases. Benthic contamination of the water-leaving radiance is dependent on bathymetry, water clarity and seafloor albedo. Thus, a prototype ocean color processing flag called OPTSHAL has been developed that takes all three variables into account. In the method described here, the optical depth of the water column at 547 nm, ζ(547), is predicted from known bathymetry and estimated inherent optical properties. If ζ(547) is less then the pre-defined threshold, a pixel is flagged as optically shallow. Radiative transfer modeling was used to identify the appropriate threshold value of ζ(547) for a generic benthic sand albedo. OPTSHAL has been evaluated within the NASA Ocean Biology Processing Group's L2GEN code. Using MODIS Aqua imagery, OPTSHAL was tested in two regions: (i) the Pedro Bank south-west of Jamaica, and (ii) the Great Barrier Reef, Australia. It is anticipated that OPTSHAL will benefit end-users when quality controlling derived ocean color products. Further, OPTSHAL may prove useful as a mechanism for switching between optically deep and shallow algorithms during ocean color processing.
NASA Technical Reports Server (NTRS)
2002-01-01
The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly accounting for tidally induced ocean mixing may have important implications for long-term climate modeling', Egbert said. In the past, most geophysical theories held that the only significant tidal energy sink was bottom friction in shallow seas. Egbert and Ray find that this sink is indeed dominant, but it is not the whole story. There had always been suggestive evidence that tidal energy is also dissipated in the open ocean to create internal waves, but published estimates of this effect varied widely and had met with no general consensus before TOPEX/Poseidon. TOPEX/Poseidon mission, a joint U.S.-French mission, is managed by the Jet Propulsion Laboratory for NASA's Office of Earth Science, Washington, DC. The satellite was launched in August 1992, and it continues to produce sea level measurements of the highest quality. For supporting images: http://svs.gsfc.nasa.gov/search/Instrumentsdatasets/TOPEX-POSEIDON.html Image by Richard Ray, NASA GSFC
NASA Technical Reports Server (NTRS)
Guest, DeNeice
2007-01-01
The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the Disaster Management and Public Health National Applications.
NASA Astrophysics Data System (ADS)
Hair, J. W.; Hostetler, C. A.; Hu, Y.; Behrenfeld, M. J.; Butler, C. F.; Harper, D. B.; Hare, R. J.; Berkoff, T.; Cook, A. L.; Collins, J. E., Jr.; Stockley, N.; Twardowski, M.; Cetinic, I.; Ferrare, R. A.; Mack, T. L.
2016-02-01
First of its kind combined atmospheric and ocean profile data were collected by the recently upgraded NASA Langley Research Center's (LaRC) High Spectral Resolution Lidar (HSRL-1) during the 17 July - 7 August 2014 Ship-Aircraft Bio-Optical Research Experiment (SABOR). This mission sampled over a region that covered the Gulf of Maine, open-ocean near Bermuda, and coastal waters from Virginia to Rhode Island. The HSRL-1 and the Research Scanning Polarimeter from NASA Goddard Institute for Space Studies collected data onboard the NASA LaRC King Air aircraft and flight operations were closely coordinated with the Research Vessel Endeavor that made in situ ocean optical and biological measurements. The lidar measurements provided profiles of atmospheric backscatter and particulate depolarization at 532nm, 1064nm, and extinction (532nm) from approximately 9km altitude. In addition, for the first time HSRL subsurface ocean backscatter, depolarization, and diffuse attenuation data at 532nm were collected and compared to both the ship measurements and the Moderate Resolution Imaging Spectrometer (NASA MODIS-Aqua) satellite ocean retrievals. This presentation will include an overview of the instrument and measurement methodology, show examples from the campaign, and provide preliminary comparisons with the in situ optics and satellite retrievals.
TOPEX/Poseidon - An international satellite oceanography mission
NASA Technical Reports Server (NTRS)
Townsend, W. F.; Fellous, J.-L.
1986-01-01
The TOPEX/Poseidon mission, a joint NASA-CNES effort, strives to provide highly accurate global ocean topography measurements over a three year period utilizing highly advanced satellite radar altimetry techniques. Scheduled for launch in late 1991, the TOPEX/Poseidon satellite, together with ESA's first European remote sensing satellite and NASA's scatterometer, promises to provide a fundamental breakthrough in the present knowledge of how the oceans work as a global system. As part of the World Ocean Circulation Experiment, TOPEX/Poseidon measurements will aid in the determination of the three-dimensional current structure of the global oceans.
Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003
NASA Technical Reports Server (NTRS)
Hasler, Fritz
2003-01-01
The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS 'Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of OUT planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center.
Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003
NASA Technical Reports Server (NTRS)
Hasler, Fritz
2003-01-01
The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center
Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003
NASA Technical Reports Server (NTRS)
Hasler, Fritz
2003-01-01
The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS , SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center
2012-01-18
VANDENBERG AIR FORCE BASE, Calif. -- Preparations for the second flight simulation of an Orbital Sciences Corp. Pegasus rocket are under way in processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The rocket is being prepared to launch NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on the Orbital Sciences' L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch, targeted for no earlier than March 14. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
Variation of Marine Geoid Due to Ocean Circulation and Sea Level Change
NASA Astrophysics Data System (ADS)
Chu, P. C.
2017-12-01
Sea level (S) change and ocean circulation largely affect the gravity field and in turns the marine geoid (N). Difference between the two, D = S - N, is the dynamic ocean topography (DOT), whose gradient represents the large-scale surface geostrophic circulations. Thus, temporal variability of marine geoid (δN) is caused by the sea level change (δS) and the DOT variation (δD), δN = δS - δD. Here, δS is identified from temporally varying satellite altimeter measures; δD is calculated from the change of DOT. For large-scale processes with conservation of potential vorticity, the geostrophic flows take minimum energy state. Based on that, a new elliptic equation is derived in this study to determine D. Here, H is the water depth; and (X, Y) are forcing functions calculated from the in-situ density. The well-posed elliptic equation is integrated numerically on 1o grids for the world oceans with the boundary values taken from the mean DOT (1993-2006) field at the NASA/JPL website: https://grace.jpl.nasa.gov/data/get-data/dynamic-ocean-typography/, the forcing function F calculated from the three-dimensional temperature and salinity of the NOAA National Centers for Environmental Information (NCEI) World Ocean Atlas 2013 version 2, and sea-floor topography (H) from the NOAA ETOPO5. The numerical solution compares reasonably well (relative root mean square difference of 0.09) with the NASA/JPL satellite observation of the difference between the time-averaged sea surface height and the geoid. In-situ ocean measurements of temperature, salinity, and velocity have also rapidly advanced such that the global ocean is now continuously monitored by near 4,000 free-drifting profiling floats (called Argo) from the surface to 2000 m depth with all data being relayed and made publicly available within hours after collection (http://www.argo.ucsd.edu/). This provides a huge database of temperature and salinity and in turns the forcing function F for the governing elliptic equation of DOT. Along with satellite altimetry data, the marine geoid (N) can be updated in a short time period. Further application of this elliptic equation method on the high-precision altimetry measurements of SSH such as the Surface Water and Ocean Topography (SWOT) is also presented.
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Michael Freilich, NASA Earth Science Division Director, NASA Headquarters, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
NASA Technical Reports Server (NTRS)
Acker, James G.; Shen, Suhung; Leptoukh, Gregory G.; Lee, Zhongping
2012-01-01
Oceanographic time-series stations provide vital data for the monitoring of oceanic processes, particularly those associated with trends over time and interannual variability. There are likely numerous locations where the establishment of a time-series station would be desirable, but for reasons of funding or logistics, such establishment may not be feasible. An alternative to an operational time-series station is monitoring of sites via remote sensing. In this study, the NASA Giovanni data system is employed to simulate the establishment of two time-series stations near the outflow region of California s Eel River, which carries a high sediment load. Previous time-series analysis of this location (Acker et al. 2009) indicated that remotely-sensed chl a exhibits a statistically significant increasing trend during summer (low flow) months, but no apparent trend during winter (high flow) months. Examination of several newly-available ocean data parameters in Giovanni, including 8-day resolution data, demonstrates the differences in ocean parameter trends at the two locations compared to regionally-averaged time-series. The hypothesis that the increased summer chl a values are related to increasing SST is evaluated, and the signature of the Eel River plume is defined with ocean optical parameters.
TOPEX/Poseidon precision orbit determination production and expert system
NASA Technical Reports Server (NTRS)
Putney, Barbara; Zelensky, Nikita; Klosko, Steven
1993-01-01
TOPEX/Poseidon (T/P) is a joint mission between NASA and the Centre National d'Etudes Spatiales (CNES), the French Space Agency. The TOPEX/Poseidon Precision Orbit Determination Production System (PODPS) was developed at Goddard Space Flight Center (NASA/GSFC) to produce the absolute orbital reference required to support the fundamental ocean science goals of this satellite altimeter mission within NASA. The orbital trajectory for T/P is required to have a RMS accuracy of 13 centimeters in its radial component. This requirement is based on the effective use of the satellite altimetry for the isolation of absolute long-wavelength ocean topography important for monitoring global changes in the ocean circulation system. This orbit modeling requirement is at an unprecedented accuracy level for this type of satellite. In order to routinely produce and evaluate these orbits, GSFC has developed a production and supporting expert system. The PODPS is a menu driven system allowing routine importation and processing of tracking data for orbit determination, and an evaluation of the quality of the orbit so produced through a progressive series of tests. Phase 1 of the expert system grades the orbit and displays test results. Later phases undergoing implementation, will prescribe corrective actions when unsatisfactory results are seen. This paper describes the design and implementation of this orbit determination production system and the basis for its orbit accuracy assessment within the expert system.
2009-12-14
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, dense fog moving ashore from the Atlantic Ocean engulfs the Vehicle Assembly Building on an atypical December afternoon. It is the second time in one day that fog has obscured the top of the 525-foot-tall processing facility, known as the VAB. Space Shuttle Endeavour currently is in the VAB's High Bay 1 where it is being attached to its external fuel tank and solid rocket boosters in preparation for its targeted launch in early February 2010. Photo credit: NASA/Jack Pfaller
NASA Astrophysics Data System (ADS)
Davis, C. O.; Nahorniak, J.; Tufillaro, N.; Kappus, M.
2013-12-01
The Hyperspectral Imager for the Coastal Ocean (HICO) is the first spaceborne imaging spectrometer designed to sample the coastal ocean. HICO images selected coastal regions at 92 m spatial resolution with full spectral coverage (88 channels covering 400 to 900 nm) and a high signal-to-noise ratio to resolve the complexity of the coastal ocean. Under sponsorship of the Office of Naval Research, HICO was built by the Naval Research Laboratory, which continues to operate the sensor. HICO has been operating on the International Space Station since October 2009 and has collected over 8000 scenes for more than 50 users. As Project Scientist I have been the link to the international ocean optics community primarily through our OSU HICO website (http://hico.oregonstate.edu). HICO operations are now under NASA support and HICO data is now also be available through the NASA Ocean Color Website (http://oceancolor.gsfc.nasa.gov ). Here we give a brief overview of HICO data and operations and discuss the unique challenges and opportunities that come from operating on the International Space Station.
2004-03-26
CAPE CANAVERAL, Fla. -- This aerial photo shows the expanse of the Launch Complex 39 Area, bordered on the east by the Atlantic Ocean and cloud-filled sky. At center right, towering above the surrounding sites, is the Vehicle Assembly Building. To the left, or north, is the Orbiter Processing Facility’s Bay 3. On the western side are OPF Bays 1 and 2. South, near the roadway, is the Operations Support Building. The two-lane crawlerway stretches from the VAB toward the coast, site of Launch Pad 39A, closest, and Launch Pad 39B, far left. Between the VAB and the ocean sprawl the Banana Creek and the Banana River. The turn basin, at right, allows delivery of external tanks that are offloaded close to and transported to the VAB. At the western end of the Turn Basin sits the press mound, home of the NASA KSC News Center. Photo credit: NASA
NASA Technical Reports Server (NTRS)
VanHeukelem, Laurie; Thomas, Crystal S.; Gilbert, Patricia M.; Fargion, Giulietta S. (Editor); McClain, Charles R. (Editor)
2002-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project. This particular document focus on the variability in chlorophyll pigment measurements resulting from differences in methodologies and laboratories conducting the pigment analysis.
2011-02-26
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, and its crew are preparing to recover the left spent booster from the Atlantic Ocean. The round objects on deck are large pumping machines that will be attached to the booster by a hose that will blow out debris and water and then pump in air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
Analysis of aircraft microwave measurements of the ocean surface
NASA Technical Reports Server (NTRS)
Willand, J. H.; Fowler, M. G.; Reifenstein, E. C., III; Chang, D. T.
1973-01-01
A data system was developed to process, from calibrated brightness temperature to computation of estimated parameters, the microwave measurements obtained by the NASA CV-990 aircraft during the 1972 Meteorological Expedition. A primary objective of the study was the implementation of an integrated software system at the computing facility of NASA/GSFC, and its application to the 1972 data. A single test case involving measurements away from and over a heavy rain cell was chosen to examine the effect of clouds upon the ability to infer ocean surface parameters. The results indicate substantial agreement with those of the theoretical study; namely, that the values obtained for the surface properties are consistent with available ground-truth information, and are reproducible except within the heaviest portions of the rain cell, at which nonlinear (or saturation) effects become apparent. Finally, it is seen that uncorrected instrumental effects introduce systematic errors which may limit the accuracy of the method.
2009-03-03
CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the latest Geostationary Operational Environmental Satellite, or GOES, is lowered onto the floor. Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. Photo credit: NASA/Kim Shiflett
2009-03-03
CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, is lifted from the transporter and moved into the Astrotech payload processing facility in Titusville, Fla. Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. Photo credit: NASA/Kim Shiflett
Science opportunities from the Topex/Poseidon mission
NASA Technical Reports Server (NTRS)
Stewart, R.; Fu, L. L.; Lefebvre, M.
1986-01-01
The U.S. National Aeronautics and Space Administration (NASA) and the French Centre National d'Etudes Spatiales (CNES) propose to conduct a Topex/Poseidon Mission for studying the global ocean circulation from space. The mission will use the techniques of satellite altimetry to make precise and accurate measurements of sea level for several years. The measurements will then be used by Principal Investigators (selected by NASA and CNES) and by the wider oceanographic community working closely with large international programs for observing the Earth, on studies leading to an improved understanding of global ocean dynamics and the interaction of the ocean with other processes influencing life on Earth. The major elements of the mission include a satellite carrrying an altimetric system for measuring the height of the satellite above the sea surface; a precision orbit determination system for referring the altimetric measurements to geodetic coordinates; a data analysis and distribution system for processing the satellite data, verifying their accuracy, and making them available to the scientific community; and a principal investigator program for scientific studies based on the satellite observations. This document describes the satellite, its sensors, its orbit, the data analysis system, and plans for verifying and distributing the data. It then discusses the expected accuracy of the satellite's measurements and their usefulness to oceanographic, geophysical, and other scientific studies. Finally, it outlines the relationship of the Topex/Poseidon mission to other large programs, including the World Climate Research Program, the U.S. Navy's Remote Ocean Sensing System satellite program and the European Space Agency's ERS-1 satellite program.
NASA Technical Reports Server (NTRS)
Turpie, Kevin R.; Eplee, Robert E., Jr.; Franz, Bryan A.; Del Castillo, Carlos
2014-01-01
Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research.
Atmospheric Science Data Center
2014-08-01
... launched into sun-synchronous polar orbit aboard Terra, NASA's first Earth Observing System (EOS) spacecraft, on December 18, 1999. ... Atlantic Ocean Gulf of Mexico Indian Ocean Pacific Ocean ...
A Unique Perspective from Space on our Planet: Science, Technologies and Applications
NASA Technical Reports Server (NTRS)
Habib, Shaid
2006-01-01
The study of Planet earth is a very complex problem. It has many non-linear and chaotic systems operating in parallel and have interdependencies. In reality, these systems/phenomena s are not well understood or mathematically modeled because of our lack of knowledge of such intricate processes. However, in order to further the subject of Earth as an integrated system, space provides excellent vantage points to look at these processes in multidimensional framework. For example, we can make strives to understand the global water cycle, carbon cycle, atmospheric chemistry, biomass changes, oceans and solid Earth variations by making multitude of global measurements such as soil moisture, precipitation, tropospheric and stratospheric gases, aerosols, tropospheric winds, ocean salinity, ocean color, vegetation cover, crustal dynamics and many more. Such suites of measurements derive the coupled models so we may predict the changes due to natural and anthropogenic forcing. NASA along with other international space agencies have made tremendous investments in recent years in developing and flying remote sensing space borne sensors to enable these measurements. These science measurements and products are further used to address pressing issues such as coastal zone erosion, air quality, severe weather, water availability and quality, public health, fires, earthquakes, land slides and others for societal benefits. This presentation provides a comprehensive overview of NASA s science investigations, related technologies and satellites/sensors and applications.
Then Why Do They Call Earth the Blue Planet?
NASA Technical Reports Server (NTRS)
2005-01-01
While the most common photographs of Earth taken from space show the planet covered in blue water, NASA has managed to produce detailed color images, using satellite imagery, that show the remarkable variation of colors that actually make up the oceanic surface. An ocean s color is determined by the interaction of surface waters with sunlight, and surface waters can contain any number of different particles and dissolved substances, which could then change the color. Then Why Do They Call Earth the Blue Planet? The particles are mostly phytoplankton, the microscopic, single-celled ocean plants that are the primary food source for much marine life. Remote detection of phytoplankton provides information about the uptake and cycling of carbon by the ocean through photosynthesis, as well as the overall health of the water. Inorganic particles and substances dissolved in the water also affect its color, particularly in coastal regions. Satellite images can be used to calculate the concentrations of these materials in surface waters, as well as the levels of biological activity. The satellites allow a global view that is not available from ship or shore. NASA s orbiting satellites offer a unique vantage point for studying the oceans. By resolving the biological, chemical, and physical conditions in surface waters, they have allowed the oceanographic community to make huge leaps in its understanding of oceanographic processes on regional and global fronts. The study of ocean color, in particular, has been integral in helping researchers understand the natural and human-induced changes in the global environment and establishing the role of the oceans in the biochemical cycles of elements that influence the climate and the distribution of life on Earth.
Aquarius SAC-D Post-Launch Briefing
2011-06-10
From left, George Diller, NASA Public Affairs Officer; Charles Gay, Deputy Associate Administrator, NASA Science Mission Directorate; Hector Timerman, Foreign Minister of Argentina, Buenos Aires; Michael Freilich, NASA Earth Science Division Director, NASA Headquarters; and Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, are seen at the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Seated from left, George Diller, NASA Public Affairs Officer; Charles Gay, Deputy Associate Administrator, NASA Science Mission Directorate; Hector Timerman, Foreign Minister of Argentina, Buenos Aires; Michael Freilich, NASA Earth Science Division Director, NASA Headquarters; and Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, are seen at the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
2014-06-18
CAPE CANAVERAL, Fla. – Personnel from NASA's Jet Propulsion Laboratory JPL in California secure the protective cover around NASA's International Space Station-RapidScat during testing of its rotating radar antenna and its flight computer and airborne support equipment, at left, in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left are RapidScat project manager John Wirth and JPL flight technician Kieran McKay. Built at JPL, the radar scatterometer is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. ISS-RapidScat will be delivered to the station on the SpaceX-4 commercial cargo resupply flight targeted for August 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Daniel Casper
Oceans Beyond Earth on This Week @NASA – April 14, 2017
2017-04-14
Two long-running NASA missions are providing new details about ocean bearing moons of Jupiter and Saturn – further heightening scientific interest in these and other “ocean worlds” in our solar system and beyond. The details – discussed during an April 13 NASA science briefing – include the announcement by the Cassini mission that a key ingredient for life has been found in the ocean on Saturn's moon Enceladus. Meanwhile, researchers using the Hubble Space Telescope observed a probable plume erupting from the surface of Jupiter's moon Europa, at the same location where Hubble saw evidence of a plume in 2014. Researchers say this could be circumstantial evidence of water erupting from the moon’s interior. Hubble's monitoring of plume activity on Europa and Cassini's long-term investigation of Enceladus are laying the groundwork for NASA's Europa Clipper mission, which is being planned for launch in the 2020s. Also, Expedition 50 Returns Home Safely, Next Space Station Crew at Launch Site, Student Launch Event, Groundbreaking for New Lab, and Yuri’s Night, First Space Shuttle Mission Celebrated!
2012-01-22
VANDENBERG AIR FORCE BASE, Calif. -- Stage 2 is separated from stage 3 of an Orbital Sciences Corp. Pegasus rocket in processing facility 1555 at Vandenberg Air Force Base (VAFB) in California to reinstall some RF cabling. The stages were remated after the installation was complete. The rocket is being prepared to launch NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) into space. After the rocket and spacecraft are processed at Vandenberg, they will be flown on the Orbital Sciences' L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch, targeted for no earlier than March 14. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
A Student-Friendly Graphical User Interface to Extract Data from Remote Sensing Level-2 Products.
NASA Astrophysics Data System (ADS)
Bernardello, R.
2016-02-01
Remote sensing era has provided an unprecedented amount of publicly available data. The United States National Aeronautics and Space Administration Goddard Space Flight Center (NASA-GSFC) has achieved remarkable results in the distribution of these data to the scientific community through the OceanColor web page (http://oceancolor.gsfc.nasa.gov/). However, the access to these data, is not straightforward and needs a certain investment of time in learning the use of existing software. Satellite sensors acquire raw data that are processed through several steps towards a format usable by the scientific community. These products are distributed in Hierarchical Data Format (HDF) which often represents the first obstacle for students, teachers and scientists not used to deal with extensive matrices. We present here SATellite data PROcessing (SATPRO) a newly developed Graphical User Interface (GUI) designed in MATLAB environment to provide an easy, immediate yet reliable way to select and extract Level-2 data from NASA SeaWIFS and MODIS-Aqua databases for oceanic surface temperature and chlorophyll. Since no previous experience with MATLAB is required, SATPRO allows the user to explore the available dataset without investing any software-learning time. SATPRO is an ideal tool to introduce undergraduate students to the use of remote sensing data in oceanography and can also be useful for research projects at the graduate level.
NASA Astrophysics Data System (ADS)
Sen, Amit
2014-10-01
Launched 10 June 2011, the NASA's Aquarius instrument onboard the Argentine built and managed Satélite de Aplicaciones Científicas (SAC-D) has been tirelessly observing the open oceans, confirming and adding new knowledge to the not so vast measured records of our Earth's global oceans. This paper reviews the data collected over the last 3 years, it's findings, challenges and future work that is at hand for the sleepless oceanographers, hydrologists and climate scientists. Although routine data is being collected, a snapshot is presented from almost 3-years of flawless operations showing new discoveries and possibilities of lot more in the future. Repetitive calibration and validation of measurements from Aquarius continue together with comparison of the data to the existing array of Argo temperature/salinity profiling floats, measurements from the recent Salinity Processes in the Upper Ocean Regional Study (SPURS) in-situ experiment and research, and to the data collected from the European Soil Moisture Ocean Salinity (SMOS) mission. This all aids in the optimization of computer model functions to improve the basic understanding of the water cycle over the oceans and its ties to climate. The Aquarius mission operations team also has been tweaking and optimizing algorithms, reprocessing data as needed, and producing salinity movies that has never been seen before. A brief overview of the accomplishments, technical findings to date will be covered in this paper.
NASA Technical Reports Server (NTRS)
Werdell, P. Jeremy; Proctor, Christopher W.; Boss, Emmanuel; Leeuw, Thomas; Ouhssain, Mustapha
2013-01-01
Developing and validating data records from operational ocean color satellite instruments requires substantial volumes of high quality in situ data. In the absence of broad, institutionally supported field programs, organizations such as the NASA Ocean Biology Processing Group seek opportunistic datasets for use in their operational satellite calibration and validation activities. The publicly available, global biogeochemical dataset collected as part of the two and a half year Tara Oceans expedition provides one such opportunity. We showed how the inline measurements of hyperspectral absorption and attenuation coefficients collected onboard the R/V Tara can be used to evaluate near-surface estimates of chlorophyll-a, spectral particulate backscattering coefficients, particulate organic carbon, and particle size classes derived from the NASA Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODISA). The predominant strength of such flow-through measurements is their sampling rate-the 375 days of measurements resulted in 165 viable MODISA-to-in situ match-ups, compared to 13 from discrete water sampling. While the need to apply bio-optical models to estimate biogeochemical quantities of interest from spectroscopy remains a weakness, we demonstrated how discrete samples can be used in combination with flow-through measurements to create data records of sufficient quality to conduct first order evaluations of satellite-derived data products. Given an emerging agency desire to rapidly evaluate new satellite missions, our results have significant implications on how calibration and validation teams for these missions will be constructed.
Update of NASA's ocean colour activities
NASA Technical Reports Server (NTRS)
Yoder, J. A.
1987-01-01
The NIMBUS-7 Coastal Zone Color Scanner (CZCS) status and processing are reviewed, and future American ocean color instruments are introduced. The CZCS is probably dead, but an attempt to restart it is planned. A wide field instrument for LANDSAT-6 and 7 (WIFS) and a wiskbroom imaging spectrometer (MODIS-T) for Columbus Polar Platforms are outlined. The WIFS and MODIS-T specifications are similar: 64 bands in the range 400 to 1030 nm, with 15 to 30 nm bandwidth; 1 km resolution from 850 km altitude; 64 km footprint along track; 1500 km scan across track; and 10 yr continuous operation life.
1991-04-08
Art By: Don Davis Artist's concept of a catastrophic asteroid impact with the Earth Super-impacts (shown here) on the early Earth 3.5 billion years ago, may have wiped out life completely more than once. Medium impacts would have vaporized upper ocean layers destroying origin-of-life process. Some life may have survived at med-ocean ridges under thousands of feet of water. Revised history for the origin-of -life on Earth has been devoloped from new findings about the frequency and sizes of colossal impacts on our planet. The work was done by Bern Oberbeck and Dr. Kevin Azhnle. of NASA's Ames Research Center.
2014-12-01
SAN DIEGO, Calif. – NASA and U.S. Navy personnel are on the deck of the USS Anchorage as the ship departs Naval Base San Diego and heads out to sea in the Pacific Ocean. NASA and the U.S. Navy are making preparations ahead of Orion's flight test for recovery of the crew module, forward bay cover and parachutes on its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts. The first unpiloted flight test of Orion is scheduled to launch this week atop a United Launch Alliance Delta IV Heavy rocket. During its two-orbit, 4.5-hour flight, Orion will venture 3,600 miles in altitude and travel nearly 60,000 miles before returning to Earth for a splashdown in the Pacific Ocean. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2004-03-27
The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket drop away from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Moments later the Pegasus booster ignited to accelerate the X-43A to its intended speed of Mach 7.
2004-03-27
The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Minutes later the X-43A separated from the Pegasus booster and accelerated to its intended speed of Mach 7.
2004-11-16
The third X-43A hypersonic research aircraft and its modified Pegasus booster rocket drop away from NASA's B-52B launch aircraft over the Pacific Ocean on November 16, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, California. Moments later the Pegasus booster ignited to accelerate the X-43A to its intended speed of Mach 10.
NASA Science Data Processing for SNPP
NASA Astrophysics Data System (ADS)
Hall, A.; Behnke, J.; Lowe, D. R.; Ho, E. L.
2014-12-01
NASA's ESDIS Project has been operating the Suomi National Polar-Orbiting Partnership (SNPP) Science Data Segment (SDS) since the launch in October 2011. The science data processing system includes a Science Data Depository and Distribution Element (SD3E) and five Product Evaluation and Analysis Tool Elements (PEATEs): Land, Ocean, Atmosphere, Ozone, and Sounder. The SDS has been responsible for assessing Environmental Data Records (EDRs) for climate quality, providing and demonstrating algorithm improvements/enhancements and supporting the calibration/validation activities as well as instrument calibration and sensor table uploads for mission planning. The SNPP also flies two NASA instruments: OMPS Limb and CERES. The SNPP SDS has been responsible for producing, archiving and distributing the standard products for those instruments in close association with their NASA science teams. The PEATEs leveraged existing science data processing techniques developed under the EOSDIS Program. This enabled he PEATEs to do an excellent job in supporting Science Team analysis for SNPP. The SDS acquires data from three sources: NESDIS IDPS (Raw Data Records (RDRs)), GRAVITE (Retained Intermediate Products (RIPs)), and the NOAA/CLASS (higher level products). The SD3E component aggregates the RDRs, and distributes them to each of the PEATEs for further analysis and processing. It provides a ~32 day rolling storage of data, available for pickup by the PEATEs. The current system used by NASA will be presented along with plans for streamlining the system in support of continuing the NASA's EOS measurements.
Metadata improvements driving new tools and services at a NASA data center
NASA Astrophysics Data System (ADS)
Moroni, D. F.; Hausman, J.; Foti, G.; Armstrong, E. M.
2011-12-01
The NASA Physical Oceanography DAAC (PO.DAAC) is responsible for distributing and maintaining satellite derived oceanographic data from a number of NASA and non-NASA missions for the physical disciplines of ocean winds, sea surface temperature, ocean topography and gravity. Currently its holdings consist of over 600 datasets with a data archive in excess of 200 Terrabytes. The PO.DAAC has recently embarked on a metadata quality and completeness project to migrate, update and improve metadata records for over 300 public datasets. An interactive database management tool has been developed to allow data scientists to enter, update and maintain metadata records. This tool communicates directly with PO.DAAC's Data Management and Archiving System (DMAS), which serves as the new archival and distribution backbone as well as a permanent repository of dataset and granule-level metadata. Although we will briefly discuss the tool, more important ramifications are the ability to now expose, propagate and leverage the metadata in a number of ways. First, the metadata are exposed directly through a faceted and free text search interface directly from drupal-based PO.DAAC web pages allowing for quick browsing and data discovery especially by "drilling" through the various facet levels that organize datasets by time/space resolution, processing level, sensor, measurement type etc. Furthermore, the metadata can now be exposed through web services to produce metadata records in a number of different formats such as FGDC and ISO 19115, or potentially propagated to visualization and subsetting tools, and other discovery interfaces. The fundamental concept is that the metadata forms the essential bridge between the user, and the tool or discovery mechanism for a broad range of ocean earth science data records.
TERRA/MODIS Data Products and Data Management at the GES-DAAC
NASA Astrophysics Data System (ADS)
Sharma, A. K.; Ahmad, S.; Eaton, P.; Koziana, J.; Leptoukh, G.; Ouzounov, D.; Savtchenko, A.; Serafino, G.; Sikder, M.; Zhou, B.
2001-05-01
Since February 2000, the Earth Sciences Distributed Active Archive Center (GES-DAAC) at the NASA/Goddard Space Flight Center has been successfully ingesting, processing, archiving, and distributing the Moderate Resolution Imaging Spectroradiometer (MODIS) data. MODIS is the key instrument aboard the Terra satellite, viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 channels in the visible and infrared spectral bands (0.4 to 14.4 microns). Higher resolution (250m, 500m, and 1km pixel) data are improving our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere and will play a vital role in the future development of validated, global, interactive Earth-system models. MODIS calibrated and uncalibrated radiances, and geolocation products were released to the public in April 2000, and a suite of oceans products and an entire suite of atmospheric products were released by early January 2001. The suite of ocean products is grouped into three categories Ocean Color, SST and Primary Productivity. The suite of atmospheric products includes Aerosol, Total Precipitable Water, Cloud Optical and Physical properties, Atmospheric Profiles and Cloud Mask. The MODIS Data Support Team (MDST) at the GES-DAAC has been providing support for enabling basic scientific research and assistance in accessing the scientific data and information to the Earth Science User Community. Support is also provided for data formats (HDF-EOS), information on visualization tools, documentation for data products, information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/MODIS/index.html The task to process archive and distribute enormous volumes of MODIS data to users (more than 0.5 TB a day) has led to the development of an unique world wide web based GES DAAC Search and Order system http://acdisx.gsfc.nasa.gov/data/, data handling software and tools, as well as a FTP site that contains sample of browse images and MODIS data products. This paper is intended to inform the user community about the data system and services available at the GES-DAAC in support of these information-rich data products. MDST provides support to MODIS data users to access and process data and information for research, applications and educational purposes. This paper will present an overview of the MODIS data products released to public including the suite of atmosphere and oceans data products that can be ordered from the GES-DAAC. Different mechanisms for search and ordering the data, determining data product sizes, data distribution policy, User Assistance System (UAS), and data subscription services will be described.
Corrections to MODIS Terra Calibration and Polarization Trending Derived from Ocean Color Products
NASA Technical Reports Server (NTRS)
Meister, Gerhard; Eplee, Robert E.; Franz, Bryan A.
2014-01-01
Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the SeaWiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only).
The Pacific Exploratory Mission-West Phase B: February-March, 1994
NASA Astrophysics Data System (ADS)
Hoell, J. M.; Davis, D. D.; Liu, S. C.; Newell, R. E.; Akimoto, H.; McNeal, R. J.; Bendura, R. J.
1997-12-01
The NASA Pacific Exploratory Mission in the Western Pacific Ocean (PEM-West) is a major component of the East Asia/North Pacific Regional Study (APARE), a project within the International Global Atmospheric Chemistry (IGAC) Program. The broad objectives of the PEM-West/APARE initiative are to study chemical processes and long-range transport of atmospheric trace species over the north-west Pacific Ocean and to estimate the magnitude of the human impact on these species over this region. The first phase of PEM-West (PEM-West A) was conducted in September-October 1991, a period characterized by minimum outflow from the Asian continent. The second phase of this mission, PEM-West B, was conducted during February-March 1994, a period characterized by enhanced outflow from the Asian continent. Both field campaigns of PEM-West included intensive airborne measurements of trace gases and aerosols from the NASA DC-8 aircraft coordinated with measurements at surface sites. This paper reports the experimental design for PEM-West B and provides a brief summary of the salient results of the PEM-West B campaign with particular emphases on the difference/similarities between phases A and B. Results from the two campaigns clearly quantify, from a trace gas perspective, the seasonal differences in the continental outflow that were qualitatively anticipated based upon meteorological considerations, and show the impact of major meteorological features within the region on the quality of tropospheric air over the North Pacific Ocean regions. The PEM-West database provides a "baseline" tool by which future assessments of a continuing impact of Asian emissions on remote Pacific regions can be judged. [These data are currently available through the Global Troposhperic Experiment Data Archive at NASA's Langley Research Center (http://www-gte.larc.nasa.gov) and the Langley Distributed Archive Center (http://eosdis.larc.nasa.gov)].
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – The sun sets over the Pacific Ocean as seen from Vandenberg Air Force Base in California where NASA's Soil Moisture Active Passive mission, or SMAP, satellite is being prepared for liftoff from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
Pegasus XL CYGNSS Prelaunch News Conference
2016-12-10
In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: Christine Bonniksen, CYGNSS program executive in the Earth Science Division of the Science Mission Directorate at NASA Headquarters in Washington, D.C.; and Tim Dunn, NASA launch director at Kennedy. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
2008-06-09
CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station, the second stage for the GOES-O Delta IV rocket is suspended vertically. It will be moved into a work cell for processing. GOES – O is one of a series of Geostationary Operational Environmental Satellites. The multimission GOES series N-P will be a vital contributor to weather, solar, and space operations and science. NASA and the National Oceanic and Atmospheric Administration, or NOAA, are actively engaged in a cooperative program to expand the existing GOES system with the launch of the GOES N-P satellites. Photo credit: NASA/Kim Shiflett
2008-06-09
CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station, the second stage for the GOES-O Delta IV rocket is rotated vertically. Once upright, the second stage will be moved into a work cell for processing. GOES – O is one of a series of Geostationary Operational Environmental Satellites. The multimission GOES series N-P will be a vital contributor to weather, solar, and space operations and science. NASA and the National Oceanic and Atmospheric Administration, or NOAA, are actively engaged in a cooperative program to expand the existing GOES system with the launch of the GOES N-P satellites. Photo credit: NASA/Kim Shiflett
The Life Cycles of Intense Cyclonic and Anticyclonic Circulation Systems Observed over Oceans
NASA Technical Reports Server (NTRS)
Smith, Phillip J.
1996-01-01
This report presents a summary of research accomplished over the past four years under the sponsorship of NASA grant #NAG8-915. Building on previously funded NASA grants, this part of the project focused on the following specific goals relative to cyclone/anticyclone systems: the jet streak link between block formation and upstream cyclone activity; the role of northward warm air advection in block formation; the importance of cooperative participation of several forcing mechanisms during explosive cyclone development; and the significance of the vertical distribution of forcing processes during cyclone/anticyclone development.
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, Dana Allender, NASA Launch Operations manager, left, and Aly Mendoza-Hill, NASA Mission manager, monitor the progress of preparations to launch eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Global Carbon Cycle Modeling in GISS ModelE2 GCM
NASA Astrophysics Data System (ADS)
Aleinov, I. D.; Kiang, N. Y.; Romanou, A.; Romanski, J.
2014-12-01
Consistent and accurate modeling of the Global Carbon Cycle remains one of the main challenges for the Earth System Models. NASA Goddard Institute for Space Studies (GISS) ModelE2 General Circulation Model (GCM) was recently equipped with a complete Global Carbon Cycle algorithm, consisting of three integrated components: Ent Terrestrial Biosphere Model (Ent TBM), Ocean Biogeochemistry Module and atmospheric CO2 tracer. Ent TBM provides CO2 fluxes from the land surface to the atmosphere. Its biophysics utilizes the well-known photosynthesis functions of Farqhuar, von Caemmerer, and Berry and Farqhuar and von Caemmerer, and stomatal conductance of Ball and Berry. Its phenology is based on temperature, drought, and radiation fluxes, and growth is controlled via allocation of carbon from labile carbohydrate reserve storage to different plant components. Soil biogeochemistry is based on the Carnegie-Ames-Stanford (CASA) model of Potter et al. Ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. Atmospheric CO2 is advected with a quadratic upstream algorithm implemented in atmospheric part of ModelE2. Here we present the results for pre-industrial equilibrium and modern transient simulations and provide comparison to available observations. We also discuss the process of validation and tuning of particular algorithms used in the model.
2014-08-03
SAN DIEGO, Calif. – The Orion boilerplate test vehicle floats in the Pacific Ocean off the coast of San Diego during a portion of Underway Recovery Test 2. Nearby, U.S. Navy personnel in a rigid hull inflatable boat practice with tether lines on the test vehicle. Positioned further out in the ocean are three other rigid hull inflatable boats. NASA, Lockheed Martin and the U.S. Navy are conducting the test to prepare for recovery of the Orion crew module on its return from a deep space mission. The underway recovery test will allow the team to demonstrate and evaluate the recovery processes, procedures, new hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery test. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch in 2014 atop a Delta IV rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Kim Shiflett
NASA's Terra Satellite Sees Shadows of Solar Eclipse
2015-03-20
During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA's Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse's shadow over the clouds in the Arctic Ocean. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMott, P. J.; Hill, T. C.J.
Despite the significance of the marginal ice zones of the Arctic Ocean, basic parameters such as sea surface temperature (SST) and a range of sea-ice characteristics are still insufficiently understood in these areas, and especially so during the summer melt period. The field campaigns summarized here, identified collectively as the “Marginal Ice Zone Ocean and Ice Observations and Processes Experiment” (MIZOPEX), were funded by U.S. National Aeronautic and Space Administration (NASA) with the intent of helping to address these information gaps through a targeted, intensive observation field campaign that tested and exploited unique capabilities of multiple classes of unmanned aerialmore » systems (UASs). MIZOPEX was conceived and carried out in response to NASA’s request for research efforts that would address a key area of science while also helping to advance the application of UASs in a manner useful to NASA for assessing the relative merits of different UASs. To further exercise the potential of unmanned systems and to expand the science value of the effort, the field campaign added further challenges such as air deployment of miniaturized buoys and coordinating missions involving multiple aircraft. Specific research areas that MIZOPEX data were designed to address include relationships between ocean skin temperatures and subsurface temperatures and how these evolve over time in an Arctic environment during summer; variability in sea-ice conditions such as thickness, age, and albedo within the marginal ice zone (MIZ); interactions of SST, salinity, and ice conditions during the melt cycle; and validation of satellite-derived SST and ice concentration fields provided by satellite imagery and models.« less
Earth Observation Services (Image Processing Software)
NASA Technical Reports Server (NTRS)
1992-01-01
San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.
Ocean color imagery: Coastal zone color scanner
NASA Technical Reports Server (NTRS)
Hovis, W. A.
1975-01-01
Investigations into the feasibility of sensing ocean color from high altitude for determination of chlorophyll and sediment distributions were carried out using sensors on NASA aircraft, coordinated with surface measurements carried out by oceanographic vessels. Spectrometer measurements in 1971 and 1972 led to development of an imaging sensor now flying on a NASA U-2 and the Coastal Zone Color Scanner to fly on Nimbus G in 1978. Results of the U-2 effort show the imaging sensor to be of great value in sensing pollutants in the ocean.
Decision Support Tool Evaluation Report for General NOAA Oil Modeling Environment(GNOME) Version 2.0
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hall, Callie; Zanoni, Vicki; Blonski, Slawomir; D'Sa, Eurico; Estep, Lee; Holland, Donald; Moore, Roxzana F.; Pagnutti, Mary; Terrie, Gregory
2004-01-01
NASA's Earth Science Applications Directorate evaluated the potential of NASA remote sensing data and modeling products to enhance the General NOAA Oil Modeling Environment (GNOME) decision support tool. NOAA's Office of Response and Restoration (OR&R) Hazardous Materials (HAZMAT) Response Division is interested in enhancing GNOME with near-realtime (NRT) NASA remote sensing products on oceanic winds and ocean circulation. The NASA SeaWinds sea surface wind and Jason-1 sea surface height NRT products have potential, as do sea surface temperature and reflectance products from the Moderate Resolution Imaging Spectroradiometer and sea surface reflectance products from Landsat and the Advanced Spaceborne Thermal Emission and Reflectance Radiometer. HAZMAT is also interested in the Advanced Circulation model and the Ocean General Circulation Model. Certain issues must be considered, including lack of data continuity, marginal data redundancy, and data formatting problems. Spatial resolution is an issue for near-shore GNOME applications. Additional work will be needed to incorporate NASA inputs into GNOME, including verification and validation of data products, algorithms, models, and NRT data.
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is offloaded from a U.S. Air Force C-17 transport at Vandenberg Air Force Base in California. The aircraft traveled from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is offloaded from a U.S. Air Force C-17 transport at Vandenberg Air Force Base in California. The aircraft traveled from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is offloaded from a U.S. Air Force C-17 transport at Vandenberg Air Force Base in California. The aircraft traveled from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft arrives at Vandenberg Air Force Base in California from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft arrives at Vandenberg Air Force Base in California from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
Design of components for the NASA OCEAN project
NASA Technical Reports Server (NTRS)
Wright, Jenna (Editor); Clift, James; Dumais, Bryan; Gardner, Shannon; Hernandez, Juan Carlos; Nolan, Laura; Park, Mia; Peoples, Don; Phillips, Elizabeth; Tillman, Mark
1993-01-01
The goal of the Fall 1993 semester of the EGM 4000 class was to design, fabricate, and test components for the 'Ocean CELSS Experimental Analog NASA' Project (OCEAN Project) and to aid in the future development of NASA's Controlled Ecological Life Support System (CELSS). The OCEAN project's specific aims are to place a human, Mr. Dennis Chamberland from NASA's Life Science Division of Research, into an underwater habitat off the shore of Key Largo, FL for three months. During his stay, he will monitor the hydroponic growth of food crops and evaluate the conditions necessary to have a successful harvest of edible food. The specific designs chosen to contribute to the OCEAN project by the EGM 4000 class are in the areas of hydroponic habitat monitoring, human health monitoring, and production of blue/green algae. The hydroponic monitoring system focused on monitoring the environment of the plants. This included the continuous sensing of the atmospheric and hydroponic nutrient solution temperatures. Methods for monitoring the continuous flow of the hydroponic nutrient solution across the plants and the continuous supply of power for these sensing devices were also incorporated into the design system. The human health monitoring system concentrated on continuously monitoring various concerns of the occupant in the underwater living habitat of the OCEAN project. These concerns included monitoring the enclosed environment for dangerous levels of carbon monoxide and smoke, high temperatures from fire, and the ceasing of the continuous airflow into the habitat. The blue/green algae project emphasized both the production and harvest of a future source of food. This project did not interact with any part of the OCEAN project. Rather, it was used to show the possibility of growing this kind of algae as a supplemental food source inside a controlled ecological life support system.
Delta II JPSS-1 Spacecraft Arrival
2017-09-01
The Joint Polar Satellite System-1, or JPSS-1, arrives at the Astrotech Processing Facility at Vandenberg Air Force Base in California. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
Unraveling the Reaction Chemistry of Icy Ocean World Surfaces
NASA Astrophysics Data System (ADS)
Hudson, R.; Loeffler, M. J.; Gerakines, P.
2017-12-01
The diverse endogenic chemistry of ocean worlds can be divided among interior, surface, and above-surface process, with contributions from exogenic agents such as solar, cosmic, and magnetospheric radiation. Bombardment from micrometeorites to comets also can influence chemistry by both delivering new materials and altering pre-existing ones, and providing energy to drive reactions. Geological processes further complicate the chemistry by transporting materials from one environment to another. In this presentation the focus will be on some of the thermally driven and radiation-induced changes expected from icy materials, primarily covalent and ionic compounds. Low-temperature conversions of a few relatively simple molecules into ions possessing distinct infrared (IR) features will be covered, with an emphasis on such features as might be identified through either orbiting spacecraft or landers. The low-temperature degradation of a few bioorganic molecules, such as DNA nucleobases and some common amino acids, will be used as examples of the more complex, and potentially misleading, chemistry expected for icy moons of the outer solar system. This work was supported by NASA's Emerging Worlds and Outer Planets Research programs, as well as the NASA Astrobiology Institute's Goddard Center for Astrobiology.
Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment
NASA Technical Reports Server (NTRS)
King, Michael D.
2000-01-01
The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.
2017-12-08
This image shows ocean surface currents around the world during the period from June 2005 through Decmeber 2007. Go here to view a video of this data: www.flickr.com/photos/gsfc/7009056027/ NASA/Goddard Space Flight Center Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Charles Gay, Deputy Associate Administrator, NASA Science Mission Directorate, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Suomi NPP Satellite Views of Tropical Cyclone Mahasen in the Northern Indian Ocean
2017-12-08
The first tropical cyclone in the Northern Indian Ocean this season has been getting better organized as seen in NASA satellite imagery. Tropical Cyclone Mahasen is projected to track north through the Bay of Bengal and make landfall later this week. On May 13, NASA-NOAA's Suomi NPP satellite captured various night-time and day-time imagery that showed Mesospheric Gravity Waves, lightning, and heavy rainfall in false-colored imagery. For more information and updates on Cyclone Mahasen, visit NASA's Hurricane page at www.nasa.gov/hurricane. Image Credit: UWM-CIMSS/William Straka III/NASA/NOAA Text Credit: NASA Goddard/Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; McClain, Charles R.
2002-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project. The SIMBIOS Science Team Principal Investigators' (PIs) original contributions to this report are in chapters four and above. The purpose of these contributions is to describe the current research status of the SIMBIOS-NRA-96 funded research. The contributions are published as submitted, with the exception of minor edits to correct obvious grammatical or clerical errors.
Regional vicarious gain adjustment for coastal VIIRS products
NASA Astrophysics Data System (ADS)
Bowers, Jennifer; Arnone, Robert; Ladner, Sherwin; Fargion, Giulietta S.; Lawson, Adam; Martinolich, Paul; Vandermeulen, Ryan
2014-05-01
As part of the Joint Polar Satellite System (JPSS) Ocean Cal/Val Team, Naval Research Lab - Stennis Space Center (NRL-SSC) has been working to facilitate calibration and validation of the Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products. By relaxing the constraints of the NASA Ocean Biology Processing Group (OBPG) methodology for vicarious calibration of ocean color satellites and utilizing the Aerosol Robotic Network Ocean Color (AERONET-OC) system to provide in situ data, we investigated differences between remotely sensed water leaving radiance and the expected in situ response in coastal areas and compare the results to traditional Marine Optical Buoy (MOBY) calibration/validation activities. An evaluation of the Suomi National Polar-Orbiting Partnership (SNPP)-VIIRS ocean color products was performed in coastal waters using the time series data obtained from the Northern Gulf of Mexico AERONET-OC site, WaveCIS. The coastal site provides different water types with varying complexity of CDOM, sedimentary, and chlorophyll components. Time series data sets were used to develop a vicarious gain adjustment (VGA) at this site, which provides a regional top of the atmospheric (TOA) spectral offset to compare the standard MOBY spectral calibration gain in open ocean waters.
Investigation of microwave backscatter from the air-sea interface
NASA Technical Reports Server (NTRS)
Mcintosh, Robert E.; Carswell, James R.
1995-01-01
Monitoring the ocean surface winds and mean ocean surface level is essential for improving our knowledge of the climate. Two instruments that may provide us with this information are satellite-based scatterometers and altimeters. However, these instruments measure the backscatter characteristics of the ocean surface from which other physical parameters, such as the wind speed or ocean surface height, are derived. To improve the algorithms or models that relate the electromagnetic backscatter to the desired physical parameters, the University of Massachusetts (UMass) Microwave Remote Sensing Laboratory (MIRSL) designed and fabricated three airborne scatterometers: a C-band scatterometer (CSCAT), Ku-band scatterometer (KUSCAT) and C/Ku-band scatterometer (EMBR). One or more of these instruments participated in the Electromagnetic Bias experiment (EM Bias), Shelf Edge Exchange Processes experiment (SEEP), Surface Wave Dynamics Experiment (SWADE), Southern Ocean Wave Experiment (SOWEX), Hurricane Tina research flights, Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE), and Ladir In-space Technology Experiment (LITE). This document describes the three scatterometers, summarizes our measurement campaigns and major contributions to the scientific and engineering communities, lists the publications that resulted, and presents the degrees earned under the support of this NASA grant.
Pegasus XL CYGNSS Prelaunch News Conference
2016-12-10
In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: George Diller of NASA Communications; Christine Bonniksen, CYGNSS program executive in the Earth Science Division of the Science Mission Directorate at NASA Headquarters in Washington, D.C.; Tim Dunn, NASA launch director at Kennedy; Bryan Baldwin, Pegasus launch vehicle program manager for Orbital ATK, Dulles, Virginia; and John Scherrer, CYGNSS project manager for the Southwest Research Institute in San Antonio, Texas. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Orion Underway Recovery Test 5 (URT-5)
2016-10-26
The USS San Diego departs Naval Base San Diego in California on its way out to sea in the Pacific Ocean for the Orion Underway Recovery Test 5. NASA's Ground Systems Development and Operations Program and the U.S. Navy will practice recovery techniques using the well deck of the ship and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-11-01
The USS San Diego approaches Naval Base San Diego in California after completion of Underway Recovery Test 5 in the Pacific Ocean. NASA's Ground Systems Development and Operations Program and the U.S. Navy conducted a series of tests using the ship's well deck and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing allowed the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-11-01
The USS San Diego approaches the coast of San Diego, California after completion of Underway Recovery Test 5 in the Pacific Ocean. NASA's Ground Systems Development and Operations Program and the U.S. Navy conducted a series of tests, called Underway Recovery Test 5, using the ship's well deck and a test version of the Orion crew module to prepare for recovery of Orion on its return from deep space missions. The testing allowed the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Arabian Sea Fronts and Barrier Layers
2015-09-30
enable accurate prediction of the coupled ocean-atmosphere system that governs the climate of the Northern Indian Ocean. RELATED PROJECTS NASA ...relationship with the Indian Ocean monsoons and regional climate in general. OBJECTIVES The primary objective of this project is to
NASA Astrophysics Data System (ADS)
Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.
2016-02-01
Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes and productivity within coastal ecosystems.
NASA Astrophysics Data System (ADS)
Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.
2017-12-01
Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Hector Timerman, Foreign Minister of Argentina, Buenos Aires, left, Michael Freilich, NASA Earth Science Division Director, NASA Headquarters, Washington, center, and Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, laugh at the start of the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
2014-05-14
Tomorrow is the start of the Eastern Pacific Ocean hurricane season but the eastern Pacific is currently quiet. The Atlantic Ocean hurricane season begins on June 1. NASA/NOAA's GOES Project combined imagery from NOAA's GOES-13 and GOES-15 satellites to provide this animation of weather in the Atlantic and Eastern Pacific over the last 10 days. Credit: NASA/NOAA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Ocean Data from MODIS at the NASA Goddard DAAC
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory G.; Wharton, Stephen (Technical Monitor)
2000-01-01
Terra satellite carrying the Moderate Resolution Imaging Spectroradiometer (MODIS) was successfully launched on December 18, 1999. Some of the 36 different wavelengths that MODIS samples have never before been measured from space. New ocean data products, which have not been derived on a global scale before, are made available for research to the scientific community. For example, MODIS uses a new split window in the four-micron region for the better measurement of Sea Surface Temperature (SST), and provides the unprecedented ability (683 nm band) to measure chlorophyll fluorescence. At full ocean production, more than a thousand different ocean products in three major categories (ocean color, sea surface temperature, and ocean primary production) are archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) at the rate of approx. 230GB/day. The challenge is to distribute such large volumes of data to the ocean community. It is achieved through a combination of public and restricted EOS Data Gateways, the GES DAAC Search and Order WWW interface, and an FTP site that contains samples of MODIS data. A new Search and Order WWW interface at http://acdisx.gsfc.nasa.gov/data/ developed at the GES DAAC is based on a hierarchical organization of data, will always return non-zero results. It has a very convenient geographical representation of five-minute data granule coverage for each day MODIS Data Support Team (MDST) continues the tradition of quality support at the GES DAAC for the ocean color data from the Coastal Zone Color Scanner (CZCS) and the Sea Viewing Wide Field-of-View Sensor (SeaWiFS) by providing expert assistance to users in accessing data products, information on visualization tools, documentation for data products and formats (Hierarchical Data Format-Earth Observing System (HDF-EOS)), information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN DOCS/MODIS/index.html
NASA Simulation Shows Ocean Turbulence in the North Atlantic
2018-02-21
This image shows a simulated snapshot of ocean turbulence in the North Atlantic Ocean in March 2012, from a groundbreaking super-high-resolution global ocean simulation (approximately 1.2 miles, or 2 kilometers, horizontal resolution) developed at JPL (http://wwwcvs.mitgcm.org/viewvc/MITgcm/MITgcm_contrib/llc_hires/llc_4320/). The colors represent the magnitude of surface relative vorticity, a measure of the spin of fluid parcels. The image emphasizes fast-rotating, small-scale (defined here as 6.2 to 31-mile, or 10 to 50 kilometer, range) turbulence, especially during the winter. High levels of relative vorticity caused by small-scale turbulence are believed to strongly transport heat and carbon vertically in the ocean. The image appears in a study (Su et al. 2018), entitled "Ocean submesoscales as a key component of the global heat budget," published recently in Nature Communications. The study suggests that upper-ocean small-scale turbulence transports heat upward in the ocean at a level five times larger than larger-scale heat transport by ocean eddies, significantly affecting the exchange of heat between the ocean interior and atmosphere. Such interactions have a crucial impact on the Earth's climate. A movie is available at https://photojournal.jpl.nasa.gov/catalog/PIA22256
Orion Underway Recovery Test 5 (URT-5)
2016-10-29
NASA, contractor and U.S. Navy personnel are on the deck of the USS San Diego as the sun sets on the fourth day of Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy practiced retrieving and securing a test version of the Orion crew module in the well deck of the ship using tethers and a winch system to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
NASA earth science and applications division: The program and plans for FY 1988-1989-1990
NASA Technical Reports Server (NTRS)
1988-01-01
Described here are the Division's research goals, priorities and emphases for the next several years and an outline of longer term plans. Included are highlights of recent accomplishments, current activities in FY 1988, research emphases in FY 1989, and longer term future plans. Data and information systems, the Geodynamics Program, the Land Processes Program, the Oceanic Processes Program, the Atmospheric Dynamics and Radiation Program, the Atmospheric Chemistry Program, and space flight programs are among the topic covered.
Earth Observation Services Weather Imaging
NASA Technical Reports Server (NTRS)
1992-01-01
Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.
2012-01-28
VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, workers rewrap NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) in a protective shroud. The spacecraft arrived at VAFB Jan. 27 after a cross-country trip which began from Orbital Sciences' manufacturing plant in Dulles, Va., on Jan. 24. Next, NuSTAR will be transferred from the airlock into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After checkout and other processing activities are complete, the spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. The rocket and spacecraft then will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March. The high-energy X-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
2012-01-28
VANDENBERG AIR FORCE BASE, Calif. -- In the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California, workers lift NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) from its shipping container. The spacecraft arrived at VAFB Jan. 27 after a cross-country trip which began from Orbital Sciences' manufacturing plant in Dulles, Va., on Jan. 24. Next, NuSTAR will be transferred from the airlock into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After checkout and other processing activities are complete, the spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. The rocket and spacecraft then will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March. The high-energy X-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
Ocean-atmosphere science from the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission
NASA Astrophysics Data System (ADS)
Werdell, J.
2016-12-01
The new NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is a strategic climate continuity activity that will not only extend key heritage ocean color, cloud, and aerosol data records, but also enable new insight into oceanographic and atmospheric responses to Earth's changing climate. The primary PACE instrument will be a spectroradiometer that spans the ultraviolet to shortwave infrared region at 5 nm resolution with a ground sample distance of 1 km at nadir. This payload will likely be complemented by a multi-angle polarimeter with a similar spectral range. Scheduled for launch in 2022, this PACE instrument pair will revolutionize studies of global biogeochemistry and carbon cycles in the ocean-atmosphere system. Here, I present a PACE mission overview, with focus on instrument characteristics, core and advanced data products, and overarching science objectives.
NASA Technical Reports Server (NTRS)
2003-01-01
This sequence of three images in northern Colorado was taken by NASA's Airborne Synthetic Aperture Radar (AirSar) for the joint NASA-National Oceanic and Atmospheric Administration Cold Land Processes Experiment. The images were produced from data acquired on February 19, 21 and 23, 2002 (top to bottom), and demonstrate the effects of snow on the radar backscatter at different frequencies. The images are centered at 40 degrees north latitude and 106 degrees west longitude, 12 kilometers (7.5 miles) west of the town of Fraser. The colors red, green and blue indicate the relative total power of the radar backscatter at P-, L-, and C-bands, respectively.
The top image was acquired before snowfall; the middle image was acquired the morning after the snow. When the snow melted, the most prominent changes were visible and can be seen in the bottom image. In this image, melting snow allows less of the radar signal to backscatter and some features appear darker.The Cold Land Processes Experiment is a multi-year experiment to study how snow processes work and how snow-covered areas affect weather and climate. Fraser, Colo., is one of three study areas in northern Colorado and southern Wyoming providing ideal natural laboratories for snow research. AirSar flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. Built, operated and managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., AirSar is part of NASA's Earth Science Enterprise program. JPL is a division of the California Institute of Technology in Pasadena.Exploring and Analyzing Climate Variations Online by Using NASA MERRA-2 Data at GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Kempler, Steven J.
2016-01-01
NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) (http:giovanni.sci.gsfc.nasa.govgiovanni) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, preprocessing, and learning data. Example data include climate reanalysis data from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning in 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS), which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM), which provides data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.
2009-03-18
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians apply the NOAA decal to the fairing that will encapsulate the GOES-O satellite during launch. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES satellites continuously provide observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Davis, Curtiss O.; Kappus, Mary E.; Bowles, Jeffrey H.; Evans, Cynthia A.; Stefanov, William L.
2014-01-01
The Hyperspectral Imager for the Coastal Ocean (HICO) was built to measure in-water properties of complex coastal regions. HICO enables synoptic coverage; 100-meter spatial resolution for sampling the variability and spatial irregularity of coastal waters; and high spectral resolution to untangle the signals from chlorophyll, colored dissolved organic matter, suspended sediments and varying bottom types. HICO was built by the Naval Research Laboratory, installed on the International Space Station (ISS) in September 2009, and operated for ONR for the first three years. In 2013, NASA assumed sponsorship of operations in order to leverage HICO's ability to address their Earth monitoring mission. This has opened up access of HICO data to the broad research community. Over 8000 images are now available on NASA's Ocean Color Website (http://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=hi). Oregon State University's HICO website (http://hico.coas.oregonstate.edu) remains the portal for researchers to request new collections and access their requested data. We will present updates on HICO's calibration and improvements in geolocation and show examples of the use of HICO data to address issues in the coastal ocean and Great Lakes.
JPSS-1 Algorithm Updates and upgrades
NASA Astrophysics Data System (ADS)
Weinrich, J. A.
2017-12-01
The National Oceanic and Atmospheric Administration (NOAA) is acquiring the next-generation weather and environmental satellite system, named the Joint Polar Satellite System (JPSS). The Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched on 28 October, 2011, and is a pathfinder for JPSS and provides continuity for the NASA Earth Observation System and the NOAA Polar-orbiting Operational Environmental Satellite (POES) system. JPSS-1 is scheduled to launch in 2017. NASA is developing the Common Ground System which will process JPSS data and has the flexibility to process data from other satellites. This presentation will review the JPSS readiness from a Calibration/Validation perspective. Examples of JPSS Readiness will be presented including algorithm and table updates. The outcomes will show the Cal/Val planning as we going into Launch in 2017.
2011-02-28
CAPE CANAVERAL, Fla. -- At the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, one of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is moved to a tracked dolly for processing. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann
Lindstrom Receives 2013 Ocean Sciences Award: Citation
NASA Astrophysics Data System (ADS)
Gordon, Arnold L.; Lagerloef, Gary S. E.
2014-09-01
Eric J. Lindstrom's record over the last 3 decades exemplifies both leadership and service to the ocean science community. Advancement of ocean science not only depends on innovative research but is enabled by support of government agencies. As NASA program scientist for physical oceanography for the last 15 years, Eric combined his proven scientific knowledge and skilled leadership abilities with understanding the inner workings of our government bureaucracy, for the betterment of all. He is a four-time NASA headquarters medalist for his achievements in developing a unified physical oceanography program that is well integrated with those of other federal agencies.
The Ocean Surface Topography Mission (OSTM)
NASA Astrophysics Data System (ADS)
Neeck, Steven P.; Vaze, Parag V.
2008-10-01
The Ocean Surface Topography Mission (OSTM), also known as Jason-2, will extend into the next decade the continuous climate data record of sea surface height measurements begun in 1992 by the joint NASA/Centre National d'Etudes Spatiales (CNES) TOPEX/Poseidon mission and continued by the NASA/CNES Jason-1 mission in 2001. This multi-decadal record has already helped scientists study the issue of global sea level rise and better understand how ocean circulation and climate change are related. With OSTM, high-precision ocean altimetry has come of age. The mission will serve as a bridge to transition the collection of these measurements to the world's weather and climate forecasting agencies. The agencies will use them for short- and seasonal-to-long-range weather and climate forecasting. OSTM is designed to last at least three years. It will be placed in the same orbit (1,336 kilometers) as Jason-1 and will move along the same ground track at an inclination of 66 degrees to the equator. It will repeat its ground track every 10 days, covering 95 percent of the world's ice-free oceans. A tandem mission between Jason-1 and OSTM will be conducted to further improve tide models in coastal and shallow seas, and to better understand the dynamics of ocean currents and eddies. OSTM is an international and interagency mission developed and operated as a four-party collaboration among NASA, the National Oceanic and Atmospheric Administration (NOAA), CNES, and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). CNES is providing the spacecraft, NASA and CNES are jointly providing the payload instruments and NASA is providing the launch vehicle. After completing the onorbit commissioning of the spacecraft, CNES will hand over operation and control of the spacecraft to NOAA. NOAA and EUMETSAT will generate the near-real-time products and distribute them to users. OSTM was launched from Vandenberg Air Force Base, California on June 20, 2008. Launch and Early Orbit Operations (LEOP) and the on-orbit Assessment Phase have been completed. Preliminary science data show excellent performance.
MPL-Net Measurements of Aerosol and Cloud Vertical Distributions at Co-Located AERONET Sites
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Starr, David OC. (Technical Monitor)
2002-01-01
In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our processing routines, which calculate the aerosol layer top height and extinction profile, and our MPL calibration value. A variety of other data products are available or under development. We present an overview of the MPL-Net project and discuss data products useful to the AERONET community. Results from several sites and field experiments will be presented.
2014-12-01
SAN DIEGO, Calif. – An H60-S Seahawk helicopter lands on the deck of the USS Anchorage in the Pacific Ocean off the coast of California. NASA and the U.S. Navy are heading out to sea ahead of Orion's flight test to prepare for recovery of the crew module, forward bay cover and parachutes on its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts. The first unpiloted flight test of Orion is scheduled to launch this week atop a United Launch Alliance Delta IV Heavy rocket. During its two-orbit, 4.5-hour flight, Orion will venture 3,600 miles in altitude and travel nearly 60,000 miles before returning to Earth for a splashdown in the Pacific Ocean. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Development of moored oceanographic spectroradiometer
NASA Technical Reports Server (NTRS)
Booth, Charles R.; Mitchell, B. Greg; Holm-Hansen, O.
1987-01-01
Biospherical Instruments has successfully completed a NASA sponsored SBIR (Small Business Innovational Research Program) project to develop spectroradiometers capable of being deployed in the ocean for long periods of time. The completion of this project adds a valuable tool for the calibration of future spaceborne ocean color sensors and enables oceanographers to extend remote sensing optical techniques beyond the intermittent coverage of spaceborne sensors. Highlights of the project include two moorings totalling 8 months generating extensive sets of optical, biological, and physical data sets in the ocean off La Jolla, California, and a 70 day operational deployment of the resulting commercial product by the ONR and NASA sponsored BIOWATT program. Based on experience gained in these moorings, Biospherical Instruments has developed a new line of spectroradiometers designed to support the oceanographic remote sensing missions of NASA, the Navy, and various oceanographers.
2008-06-09
CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station, the second stage for the GOES-O Delta IV rocket rests in the rotation stand. The second stage will be rotated to vertical and moved into a work cell for processing. GOES – O is one of a series of Geostationary Operational Environmental Satellites. The multimission GOES series N-P will be a vital contributor to weather, solar, and space operations and science. NASA and the National Oceanic and Atmospheric Administration, or NOAA, are actively engaged in a cooperative program to expand the existing GOES system with the launch of the GOES N-P satellites. Photo credit: NASA/Kim Shiflett
2008-06-09
CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station, the second stage for the GOES-O Delta IV rocket is lifted from its horizontal position on the rotation stand. Once vertical, the second stage will be moved into a work cell for processing. GOES – O is one of a series of Geostationary Operational Environmental Satellites. The multimission GOES series N-P will be a vital contributor to weather, solar, and space operations and science. NASA and the National Oceanic and Atmospheric Administration, or NOAA, are actively engaged in a cooperative program to expand the existing GOES system with the launch of the GOES N-P satellites. Photo credit: NASA/Kim Shiflett
2008-06-09
CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station, workers on a crane check the attachments of the sling suspending the second stage for the GOES-O Delta IV rocket. The second stage will be moved into a work cell for processing. GOES – O is one of a series of Geostationary Operational Environmental Satellites. The multimission GOES series N-P will be a vital contributor to weather, solar, and space operations and science. NASA and the National Oceanic and Atmospheric Administration, or NOAA, are actively engaged in a cooperative program to expand the existing GOES system with the launch of the GOES N-P satellites. Photo credit: NASA/Kim Shiflett
SLS Booster Engine Service Platforms Delivery
2017-07-31
A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines makes its way along the NASA Causeway to the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be delivered to the Vehicle Assembly Building, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.
The 1984 ASEE-NASA summer faculty fellowship program (aeronautics and research)
NASA Technical Reports Server (NTRS)
Dah-Nien, F.; Hodge, J. R.; Emad, F. P.
1984-01-01
The 1984 NASA-ASEE Faculty Fellowship Program (SFFP) is reported. The report includes: (1) a list of participants; (2) abstracts of research projects; (3) seminar schedule; (4) evaluation questionnaire; and (5) agenda of visitation by faculty programs committee. Topics discussed include: effects of multiple scattering on laser beam propagation; information management; computer techniques; guidelines for writing user documentation; 30 graphics software; high energy electron and antiproton cosmic rays; high resolution Fourier transform infrared spectrum; average monthly annual zonal and global albedos; laser backscattering from ocean surface; image processing systems; geomorphological mapping; low redshift quasars; application of artificial intelligence to command management systems.
2011-02-27
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-27
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, tows the left spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-27
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-26
CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-27
CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Discovery's final launch, to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-27
CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, reaches Port Canaveral, Florida with the left spent booster from space shuttle Discovery's final launch, in tow. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-25
CAPE CANAVERAL, Fla. -- Crew members from Freedom Star, one of NASA's solid rocket booster retrieval ships, have attached a line, held up by flotation devices, between the left spent booster parachute and the ship. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
NASA/GSFC Research Activities for the Global Ocean Carbon Cycle: A Prospectus for the 21st Century
NASA Technical Reports Server (NTRS)
Gregg, W. W.; Behrenfield, M. J.; Hoge, F. E.; Esaias, W. E.; Huang, N. E.; Long, S. R.; McClain, C. R.
2000-01-01
There are increasing concerns that anthropogenic inputs of carbon dioxide into the Earth system have the potential for climate change. In response to these concerns, the GSFC Laboratory for Hydrospheric Processes has formed the Ocean Carbon Science Team (OCST) to contribute to greater understanding of the global ocean carbon cycle. The overall goals of the OCST are to: 1) detect changes in biological components of the ocean carbon cycle through remote sensing of biooptical properties, 2) refine understanding of ocean carbon uptake and sequestration through application of basic research results, new satellite algorithms, and improved model parameterizations, 3) develop and implement new sensors providing critical missing environmental information related to the oceanic carbon cycle and the flux of CO2 across the air-sea interface. The specific objectives of the OCST are to: 1) establish a 20-year time series of ocean color, 2) develop new remote sensing technologies, 3) validate ocean remote sensing observations, 4) conduct ocean carbon cycle scientific investigations directly related to remote sensing data, emphasizing physiological, empirical and coupled physical/biological models, satellite algorithm development and improvement, and analysis of satellite data sets. These research and mission objectives are intended to improve our understanding of global ocean carbon cycling and contribute to national goals by maximizing the use of remote sensing data.
NASA Astrophysics Data System (ADS)
Cai, C.; Rignot, E. J.; Menemenlis, D.
2015-12-01
Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae Isstrom, Greenland. This work was performed under a contract with NASA Cryosphere Program at UC Irvine and Caltech's Jet Propulsion Laboratory.
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- Workers at Vandenberg Air Force Base in California prepare to offload the Aquarius/SAC-D spacecraft from a U.S. Air Force C-17 transport plane. The aircraft traveled from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- Workers at Vandenberg Air Force Base in California snap photos of the U.S. Air Force C-17 transport plane carrying the Aquarius/SAC-D spacecraft. The aircraft traveled from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
2011-03-30
VANDENBERG AIR FORCE BASE, Calif. -- Workers at Vandenberg Air Force Base in California prepare to offload the Aquarius/SAC-D spacecraft from a U.S. Air Force C-17 transport plane. The aircraft traveled from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit. Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing
Oceanography in the formal and informal classroom
NASA Technical Reports Server (NTRS)
Richardson, A.; Jasnow, M.; Srinivasan, M.; Rosmorduc, V.; Blanc, F.
2002-01-01
The TOPEX/Poseidon and Jason-1 ocean altimeter missions offer the educator in the middle school or informal education venue a unique opportunity for reinforcing ocean science studies. An educational poster from NASA's Jet Propulsion Laboratory and France's Centre National d'Etudes Spatiales provide teachers and students a tool to examine topics such as the dynamics of ocean circulation, ocean research, and the oceans' role in climate.
2012-01-27
VANDENBERG AIR FORCE BASE, Calif. -- Workers position the environmentally controlled shipping container enclosing NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) in the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The spacecraft arrived at 7:52 a.m. PST after a cross-country trip from Orbital Sciences' manufacturing plant in Dulles, Va., which began Jan. 24. The spacecraft will be offloaded into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After NuSTAR is removed from its shipping container, checkout and other processing activity will begin. The spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. After processing is completed, the rocket and spacecraft will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
2012-01-27
VANDENBERG AIR FORCE BASE, Calif. -- Workers roll the environmentally controlled shipping container enclosing NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) through the door of the airlock of processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The spacecraft arrived at 7:52 a.m. PST after a cross-country trip from Orbital Sciences' manufacturing plant in Dulles, Va., which began Jan. 24. The spacecraft will be offloaded into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After NuSTAR is removed from its shipping container, checkout and other processing activity will begin. The spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. After processing is completed, the rocket and spacecraft will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
2012-01-27
VANDENBERG AIR FORCE BASE, Calif. -- NASA's Nuclear Spectroscopic Telescope Array (NuSTAR), enclosed in an environmentally controlled shipping container, is delivered by tractor-trailer to processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The spacecraft arrived at 7:52 a.m. PST after a cross-country trip from Orbital Sciences' manufacturing plant in Dulles, Va., which began Jan. 24. The spacecraft will be offloaded into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After NuSTAR is removed from its shipping container, checkout and other processing activity will begin. The spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. After processing is completed, the rocket and spacecraft will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
2012-01-27
VANDENBERG AIR FORCE BASE, Calif. -- NASA's Nuclear Spectroscopic Telescope Array (NuSTAR), enclosed in an environmentally controlled shipping container, approaches processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The spacecraft arrived at 7:52 a.m. PST after a cross-country trip from Orbital Sciences' manufacturing plant in Dulles, Va., which began Jan. 24. The spacecraft will be offloaded into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After NuSTAR is removed from its shipping container, checkout and other processing activity will begin. The spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. After processing is completed, the rocket and spacecraft will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
2012-01-27
VANDENBERG AIR FORCE BASE, Calif. -- NASA's Nuclear Spectroscopic Telescope Array (NuSTAR), enclosed in an environmentally controlled shipping container, arrives at processing facility 1555 at Vandenberg Air Force Base (VAFB) in California. The spacecraft arrived at 7:52 a.m. PST after a cross-country trip from Orbital Sciences' manufacturing plant in Dulles, Va., which began Jan. 24. The spacecraft will be offloaded into the processing hangar, joining the Pegasus XL rocket that is set to carry it to space. After NuSTAR is removed from its shipping container, checkout and other processing activity will begin. The spacecraft will be integrated with the Pegasus in mid-February and encapsulation in the vehicle fairing will follow. After processing is completed, the rocket and spacecraft will be flown on Orbital's L-1011 carrier aircraft to the Ronald Reagan Ballistic Missile Defense Test Site at the Pacific Ocean's Kwajalein Atoll for launch in March. The high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB
Rain Hampers Tsunami Relief Efforts
NASA Technical Reports Server (NTRS)
2005-01-01
The cleanup and relief efforts from the recent tsunamis continue in coastal communities that were ravaged by the waves all across the Indian Ocean. Heavy rains have further complicated the matter and added to the misery in parts of eastern Sri Lanka. Between December 28, 2004, and January 5, 2005, up to 10 to 15 inches of rain may have fallen along the southeast coast of the island, and as much as 20 inches (red areas) fell just offshore. This rainfall map was created by the TRMM-based, near-real time Multi-satellite Precipitation Analysis (MPA) at the NASA Goddard Space Flight Center, which monitors rainfall over the global tropics. The map shows that many other regions around the Indian Ocean were also affected by the rains, including Malaysia and parts of Sumatra. The heaviest rains fell on December 31 and January 4. The rains were likely the result of a combination of the northeast monsoon interacting with the topography and an active phase of what is known as the Madden-Julian Oscillation (MJO) (or 30-60 day oscillation). The MJO is a large-scale disturbance that propagates eastward from the Indian Ocean into the West Pacific Ocean, bringing extended periods of unsettled weather with it. Individual convective complexes within the MJO can last on the order of a day. TRMM is a joint mission between NASA and the Japanese space agency JAXA. NASA image produced by Hal Pierce (SSAI/NASA GSFC) and caption by Steve Lang (SSAI/NASA GSFC).
2002-10-15
KENNEDY SPACE CENTER, FLA. -- Sonar mapping equipment lies on the deck of the Liberty Star, one of NASA's solid rocket booster retrieval ships. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
Solar eclipse over the South Pacific Ocean
2017-12-08
During a total solar eclipse, the MODIS instrument on NASA's Aqua satellite recorded this image of the shadow of the moon over the South Pacific Ocean on March 8, 2016, at 10:05 pm EST. This total solar eclipse was the last one before an August 21, 2017, total solar eclipse that will be visible in much of the United States. Credit: NASA/Goddard/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Achieving Global Ocean Color Climate Data Records
NASA Technical Reports Server (NTRS)
Franz, Bryan
2010-01-01
Ocean color, or the spectral distribution of visible light upwelling from beneath the ocean surface, carries information on the composition and concentration of biological constituents within the water column. The CZCS mission in 1978 demonstrated that quantitative ocean color measurements could be. made from spaceborne sensors, given sufficient corrections for atmospheric effects and a rigorous calibration and validation program. The launch of SeaWiFS in 1997 represents the beginning of NASA's ongoing efforts to develop a continuous ocean color data record with sufficient coverage and fidelity for global change research. Achievements in establishing and maintaining the consistency of the time-series through multiple missions and varying instrument designs will be highlighted in this talk, including measurements from NASA'S MODIS instruments currently flying on the Terra and Aqua platforms, as well as the MERIS sensor flown by ESA and the OCM-2 sensor recently launched by ISRO.
Jiang, Xuexia; Jiao, Nianzhi
2016-09-01
Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis.
Investigating the Effects of Variable Water Type for VIIRS Calibration
NASA Astrophysics Data System (ADS)
Bowers, J.; Ladner, S.; Martinolich, P.; Arnone, R.; Lawson, A.; Crout, R. L.; Vandermeulen, R. A.
2016-02-01
The Naval Research Laboratory - Stennis Space Center (NRL-SSC) currently provides calibration and validation support for the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite ocean color products. NRL-SSC utilizes the NASA Ocean Biology Processing Group (OBPG) methodology for on-orbit vicarious calibration with in situ data collected in blue ocean water by the Marine Optical Buoy (MOBY). An acceptable calibration consists of 20-40 satellite to in situ matchups that establish the radiance correlation at specific points within the operating range of the VIIRS instrument. While the current method improves the VIIRS performance, the MOBY data alone does not represent the full range of radiance values seen in the coastal oceans. However, by utilizing data from the AERONET-OC coastal sites we expand our calibration matchups to cover a more realistic range of continuous values particularly in the green and red spectral regions of the sensor. Improved calibration will provide more accurate data to support daily operations and enable construction of valid climatology for future reference.
NASA Reveals New Discoveries on Oceans Beyond Earth During Science Briefing
2017-04-13
During a NASA science briefing on April 13, representatives from the agency discussed new results about ocean worlds in our solar system based on data gathered by NASA’s Cassini spacecraft and the Hubble Space Telescope. The two veteran missions are providing tantalizing new details about icy, ocean-bearing moons of Jupiter and Saturn, further enhancing the scientific interest of these and other "ocean worlds" in our solar system and beyond. New research from Cassini indicates that hydrogen gas, which could potentially provide a chemical energy source for life, is pouring into the ocean of Saturn's icy moon Enceladus from hydrothermal vents in the seafloor. The Cassini spacecraft detected the hydrogen in the plume of gas and icy material spraying from Enceladus during its deepest dive through the plume on Oct. 28, 2015.This means that ocean microbes -- if any exist there -- could use the hydrogen to produce energy NASA’s Hubble Space Telescope saw a probable plume of material erupting from the moon’s surface on 2016, at the same location where Hubble saw evidence of a plume in 2014. These images bolster evidence that the Europa plumes could be a real phenomenon, flaring up intermittently in the same region on the moon's surface. Both Cassini and Hubble investigations are laying the groundwork for NASA's Europa Clipper mission, which is being planned for launch in the 2020s.
The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications
NASA Astrophysics Data System (ADS)
Rose, Randy; Gleason, Scott; Ruf, Chris
2014-10-01
Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing problems while opening new applications of Earth remote sensing. Key information about the ocean and global climate is hidden from existing space borne observatories because of the frequency band in which they operate. Using GNSS-based bi-static scatterometry performed by a constellation of microsatellites offers remote sensing of ocean wave, wind, and ice data with unprecedented temporal resolution and spatial coverage across the full dynamic range of ocean wind speeds in all precipitating conditions. The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a space borne mission being developed to study tropical cyclone inner core processes. CYGNSS consists of 8 GPS bi-static radar receivers to be deployed on separate micro-satellites in October 2016. CYGNSS will provide data to address what are thought to be the principle deficiencies with current tropical cyclone intensity forecasts: inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the tropical cyclone life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. It is anticipated that numerous additional Earth science applications can also benefit from the cost effective high spatial and temporal sampling capabilities of GNSS remote sensing. These applications include monitoring of rough and dangerous sea states, global observations of sea ice cover and extent, meso-scale ocean circulation studies, and near surface soil moisture observations. This presentation provides a primer for GNSS based scatterometry, an overview of NASA's CYGNSS mission and its expected performance, as well as a summary of possible other GNSS based remote sensing applications.
A Triple Tropical Tempest Train: Karina, Lowell, Mariest
2014-08-22
NASA and NOAA satellites are studying the triple tropical tempests that are now romping through the Eastern Pacific Ocean. NOAA's GOES-West satellite captured Tropical Storm Karina, Tropical Storm Lowell and newly formed Tropical Storm Marie on August 22. NOAA's GOES-West satellite captured all three storms in an infrared image at 0900 UTC (5 a.m. EDT), and Tropical Lowell clearly dwarfs Karina to its west, and Marie to the east. The infrared image was created at NASA/NOAA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Maryland. For more information about Lowell, visit: www.nasa.gov/content/goddard/12e-eastern-pacific-ocean/ For more information about Karina, visit: www.nasa.gov/content/goddard/karina-eastern-pacific/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Airborne Spectral Measurements of Ocean Directional Reflectance
NASA Technical Reports Server (NTRS)
Gatebe, Charles K.; King, Michael D.; Lyapustin, Alexei; Arnold, G. Thomas; Redemann, Jens
2004-01-01
During summer of 2001 NASA's Cloud Absorption Radiometer (CAR) obtained measurement of ocean angular distribution of reflected radiation or BRDF (bidirectional reflectance distribution function) aboard the University of Washington Convair CV-580 research aircraft under cloud-free conditions. The measurements took place aver the Atlantic Ocean off the eastern seaboard of the U.S. in the vicinity of the Chesapeake Light Tower and at nearby National Oceanic and Atmospheric Administration (NOAA) Buoy Stations. The measurements were in support of CLAMS, Chesapeake Lighthouse and Aircraft Measurements for Satellites, field campaign that was primarily designed to validate and improve NASA's Earth Observing System (EOS) satellite data products being derived from three sensors: MODIS (MODerate Resolution Imaging Spectro-Radiometer), MISR (Multi-angle Imaging Spectro-Radiometer) and CERES (Clouds and Earth s Radiant Energy System). Because of the high resolution of the CAR measurements and its high sensitivity to detect weak ocean signals against a noisy background, results of radiance field above the ocean are seen in unprecedented detail. The study also attempts to validate the widely used Cox-Munk model for predicting reflectance from a rough ocean surface.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept, a cutaway view of Jupiter's moon Callisto, is based on recent data from NASA's Galileo spacecraft which indicates a salty ocean may lie beneath Callisto's icy crust.
These findings come as a surprise, since scientists previously believed that Callisto was relatively inactive. If Callisto has an ocean, that would make it more like another Jovian moon, Europa, which has yielded numerous hints of a subsurface ocean. Despite the tantalizing suggestion that there is an ocean layer on Callisto, the possibility that there is life in the ocean remains remote.Callisto's cratered surface lies at the top of an ice layer, (depicted here as a whitish band), which is estimated to be about 200 kilometers (124 miles) thick. Immediately beneath the ice, the thinner blue band represents the possible ocean, whose depth must exceed 10 kilometers (6 miles), according to scientists studying data from Galileo's magnetometer. The mottled interior is composed of rock and ice.Galileo's magnetometer, which studies magnetic fields around Jupiter and its moons, revealed that Callisto's magnetic field is variable. This may be caused by varying electrical currents flowing near Callisto's surface, in response to changes in the background magnetic field as Jupiter rotates. By studying the data, scientists have determined that the most likely place for the currents to flow would be a layer of melted ice with a high salt content.These findings were based on information gathered during Galileo's flybys of Callisto in November 1996, and June and September of 1997. JPL manages the Galileo mission for NASA's Office of Space Science, Washington, DC. This artist's concept and other images and data received from Galileo are posted on the World Wide Web on the Galileo mission home page at http://galileo.jpl.nasa.gov . Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo2011-03-01
VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit arrives to the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB
2011-03-01
VANDENBERG AIR FORCE BASE, Calif. -- The first stage of the Delta II rocket that will carry NASA's Aquarius satellite into low Earth orbit arrives to the launch pad at Vandenberg Air Force Base's Space Launch Complex-2 (SLC-2) in California. While the Delta II rocket is stacked on SLC-2, teams for NASA's Glory spacecraft and Orbital Sciences Taurus XL rocket are in launch preparation mode at Vandenberg's nearby Space Launch Complex 576-E. Scheduled to launch in June, Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: NASA/VAFB
2014-12-03
SAN DIEGO, Calif. – On the third day of preparations for recovery of Orion after its splashdown in the Pacific Ocean, U.S. Navy Divers prepare to embark from the well deck of the USS Anchorage in a rigid hull Zodiac boat about 600 miles off the coast of Baja, California. NASA, Lockheed Martin and U.S. Navy personnel are preparing for recovery of the crew module, forward bay cover and parachutes on its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts. The first unpiloted flight test of Orion is scheduled to launch Dec. 4 atop a United Launch Alliance Delta IV Heavy rocket. During its two-orbit, 4.5-hour flight, Orion will venture 3,600 miles in altitude and travel nearly 60,000 miles before returning to Earth for a splashdown in the Pacific Ocean. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-12-03
SAN DIEGO, Calif. – On the third day of preparations for recovery of Orion after its splashdown in the Pacific Ocean, U.S. Navy Divers prepare to embark from the well deck of the USS Anchorage in two rigid hull Zodiac boats about 600 miles off the coast of Baja, California. NASA, Lockheed Martin and U.S. Navy personnel are preparing for recovery of the crew module, forward bay cover and parachutes on its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts. The first unpiloted flight test of Orion is scheduled to launch Dec. 4 atop a United Launch Alliance Delta IV Heavy rocket. During its two-orbit, 4.5-hour flight, Orion will venture 3,600 miles in altitude and travel nearly 60,000 miles before returning to Earth for a splashdown in the Pacific Ocean. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-12-03
SAN DIEGO, Calif. – On the third day of preparations for recovery of Orion after its splashdown in the Pacific Ocean, U.S. Navy Divers prepare to embark from the well deck of the USS Anchorage in a rigid hull Zodiac boat about 600 miles off the coast of Baja, California. NASA, Lockheed Martin and U.S. Navy personnel are preparing for recovery of the crew module, forward bay cover and parachutes on its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts. The first unpiloted flight test of Orion is scheduled to launch Dec. 4 atop a United Launch Alliance Delta IV Heavy rocket. During its two-orbit, 4.5-hour flight, Orion will venture 3,600 miles in altitude and travel nearly 60,000 miles before returning to Earth for a splashdown in the Pacific Ocean. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-12-03
SAN DIEGO, Calif. – On the third day of preparations for recovery of Orion, U.S. Navy divers in two rigid hull inflatable boats and two Zodiac boats practice recovery procedures nearby the USS Anchorage in the Pacific Ocean about 600 miles off the coast of Baja, California. NASA, Lockheed Martin and U.S. Navy personnel are preparing for recovery of the Orion crew module, forward bay cover and parachutes after its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts. The first unpiloted flight test of Orion is scheduled to launch Dec. 4 atop a United Launch Alliance Delta IV Heavy rocket. During its two-orbit, 4.5-hour flight, Orion will venture 3,600 miles in altitude and travel nearly 60,000 miles before returning to Earth for a splashdown in the Pacific Ocean. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
2014-12-01
SAN DIEGO, Calif. – Helicopter Sea Combat Squadron 8 personnel review procedures on the deck of the USS Anchorage as the ship departs Naval Base San Diego in California for the open waters of the Pacific Ocean. NASA and the U.S. Navy are making preparations ahead of Orion's flight test for recovery of the crew module, forward bay cover and parachutes on its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts. The first unpiloted flight test of Orion is scheduled to launch this week atop a United Launch Alliance Delta IV Heavy rocket. During its two-orbit, 4.5-hour flight, Orion will venture 3,600 miles in altitude and travel nearly 60,000 miles before returning to Earth for a splashdown in the Pacific Ocean. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
JPL Genesis and Rapid Intensification Processes (GRIP) Portal
NASA Technical Reports Server (NTRS)
Knosp, Brian W.; Li, P. Peggy; Vu, Quoc A.; Turk, Francis J.; Shen, Tsae-Pyng J.; Hristova-Veleva, Svetla M.; Licata, Stephen J.; Poulsen, William L.
2012-01-01
Satellite observations can play a very important role in airborne field campaigns, since they provide a comprehensive description of the environment that is essential for the experiment design, flight planning, and post-experiment scientific data analysis. In the past, it has been difficult to fully utilize data from multiple NASA satellites due to the large data volume, the complexity of accessing NASA s data in near-real-time (NRT), as well as the lack of software tools to interact with multi-sensor information. The JPL GRIP Portal is a Web portal that serves a comprehensive set of NRT observation data sets from NASA and NOAA satellites describing the atmospheric and oceanic environments related to the genesis and intensification of the tropical storms in the North Atlantic Ocean. Together with the model forecast data from four major global atmospheric models, this portal provides a useful tool for the scientists and forecasters in planning and monitoring the NASA GRIP field campaign during the 2010 Atlantic Ocean hurricane season. This portal uses the Google Earth plug-in to visualize various types of data sets, such as 2D maps, wind vectors, streamlines, 3D data sets presented at series of vertical cross-sections or pointwise vertical profiles, and hurricane best tracks and forecast tracks. Additionally, it allows users to overlap multiple data sets, change the opacity of each image layer, generate animations on the fly with selected data sets, and compare the observation data with the model forecast using two independent calendars. The portal also provides the capability to identify the geographic location of any point of interest. In addition to supporting the airborne mission planning, the NRT data and portal will serve as a very rich source of information during the post-field campaign analysis stage of the airborne experiment. By including a diverse set of satellite observations and model forecasts, it provides a good spatial and temporal context for the high-resolution, but limited in space and time, airborne observations.
Exploring and Analyzing Climate Variations Online by Using MERRA-2 data at GES DISC
NASA Astrophysics Data System (ADS)
Shen, S.; Ostrenga, D.; Vollmer, B.; Kempler, S.
2016-12-01
NASA Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure) (http://giovanni.sci.gsfc.nasa.gov/giovanni/) is a web-based data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). Current data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. The system enables basic statistical analysis and comparisons of multiple variables. This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional remote sensing and model data sets from a number of NASA data centers. Recently, long term global assimilated atmospheric, land, and ocean data have been integrated into the system that enables quick exploration and analysis of climate data without downloading, and preprocessing the data. Example data include climate reanalysis from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) which provides data beginning 1980 to present; land data from NASA Global Land Data Assimilation System (GLDAS) which assimilates data from 1948 to 2012; as well as ocean biological data from NASA Ocean Biogeochemical Model (NOBM) which assimilates data from 1998 to 2012. This presentation, using surface air temperature, precipitation, ozone, and aerosol, etc. from MERRA-2, demonstrates climate variation analysis with Giovanni at selected regions.
Delta II JPSS-1 Spacecraft Arrival
2017-09-01
Technicians at Vandenberg Air Force Base in California inspect the shipping container for the Joint Polar Satellite System-1, or JPSS-1, as it arrives at the Astrotech Processing Facility. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
Delta II JPSS-1 Spacecraft Shipment to VAFB to Ball Aerospace Fa
2017-08-31
The Joint Polar Satellite System-1, or JPSS-1, arrives at the Astrotech Processing Facility at Vandenberg Air Force Base in California. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
Signal Processing Methods Monitor Cranial Pressure
NASA Technical Reports Server (NTRS)
2010-01-01
Dr. Norden Huang, of Goddard Space Flight Center, invented a set of algorithms (called the Hilbert-Huang Transform, or HHT) for analyzing nonlinear and nonstationary signals that developed into a user-friendly signal processing technology for analyzing time-varying processes. At an auction managed by Ocean Tomo Federal Services LLC, licenses of 10 U.S. patents and 1 domestic patent application related to HHT were sold to DynaDx Corporation, of Mountain View, California. DynaDx is now using the licensed NASA technology for medical diagnosis and prediction of brain blood flow-related problems, such as stroke, dementia, and traumatic brain injury.
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.
2000-01-01
The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.
Consistency of two global MODIS aerosol products over ocean on Terra and Aqua CERES SSF datasets
NASA Astrophysics Data System (ADS)
Ignatov, Alexander; Minnis, Patrick; Wielicki, Bruce; Loeb, Norman G.; Remer, Lorraine A.; Kaufman, Yoram J.; Miller, Walter F.; Sun-Mack, Sunny; Laszlo, Istvan; Geier, Erika B.
2004-12-01
MODIS aerosol retrievals over ocean from Terra and Aqua platforms are available from the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint (SSF) datasets generated at NASA Langley Research Center (LaRC). Two aerosol products are reported side by side. The primary M product is generated by subsetting and remapping the multi-spectral (0.44 - 2.1 μm) MOD04 aerosols onto CERES footprints. MOD04 processing uses cloud screening and aerosol algorithms developed by the MODIS science team. The secondary (AVHRR-like) A product is generated in only two MODIS bands: 1 and 6 on Terra, and ` and 7 on Aqua. The A processing uses NASA/LaRC cloud-screening and NOAA/NESDIS single channel aerosol algorthm. The M and A products have been documented elsewhere and preliminarily compared using two weeks of global Terra CERES SSF (Edition 1A) data in December 2000 and June 2001. In this study, the M and A aerosol optical depths (AOD) in MODIS band 1 and (0.64 μm), τ1M and τ1A, are further checked for cross-platform consistency using 9 days of global Terra CERES SSF (Edition 2A) and Aqua CERES SSF (Edition 1A) data from 13 - 21 October 2002.
Extratropical Cyclone in the Southern Ocean
2001-11-07
These images acquired on October 11, 2001 by NASA Terra satellite portray an occluded extratropical cyclone situated in the Southern Ocean, about 650 kilometers south of the Eyre Peninsula, South Australia.
Phytoplankton bloom in the North Atlantic Ocean
2017-12-08
On July 23, 2013 the deep blue waters of the central North Atlantic Ocean provided a background for a spectacular bloom of phytoplankton. The Moderate Resolution Imaging Spectroradiometer (MODIS) captured this true-color image of the event at 16:25 UTC (12:25 p.m. EDT) that same day. Phytoplankton are tiny single-celled photosynthetic organisms that live suspended in a watery environment. They are primary producers in the ocean, forming the base of the marine food chain, and, like terrestrial plants, take up carbon dioxide, make carbohydrates from energy from light, and release oxygen. Phytoplankton live in the ocean year round, but are usually not visible. When light, nutrients and water temperature are just right, however, a colony can explode into growth, creating huge blooms that stain the ocean for miles. While each organism lives only a short time, the high reproductive means that a bloom can last for days or weeks. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Analyzers Measure Greenhouse Gases, Airborne Pollutants
NASA Technical Reports Server (NTRS)
2012-01-01
In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen. It might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth. NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets. Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical. The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth. Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA s Ames Research Center. This metabolic process breaks down sugars for energy to fuel cellular functions. "We think this chemical process did not exist when life first formed on Earth," he says, "because it is based on oxygen being available, and there was little oxygen available on the early Earth." It is possible that there are anaerobic regions beneath the sea floor in which life forms like those early non-Krebs Cycle microbes may yet exist. To detect and potentially collect samples of life emerging from hydrothermal vents, Flynn and his colleagues created Medusa, a multi-sensor instrument designed for long-term observation of diked vents on the ocean floor. When the vents erupt, Medusa assesses indicators of life within the expelled water. If the results are positive, the observatory collects samples and detaches from the ocean floor, making the long journey to the surface for retrieval by scientists. One of the indicators Medusa measures is the ratio of carbon isotopes in the water, namely carbon-12 and carbon-13. Living organisms preferentially take up carbon-12, Flynn says, so examining the ratio of these isotopes can help to determine the source of carbon in an environment as either biological or non-biological. "On Mars, there is evidence of localized methane in the atmosphere, and that methane could come from biological sources or from geochemical ones," Flynn says. "Determining the background planetary carbon isotope ratios and then evaluating the specific carbon ratios in this methane would help to determine how it was formed." A long-duration observatory similar to Medusa could one day provide essential evidence for or against the presence of life on the Red Planet or beneath the ice-crusted oceans of Europa.
Orbit determination support of the Ocean Topography Experiment (TOPEX)/Poseidon operational orbit
NASA Technical Reports Server (NTRS)
Schanzle, A. F.; Rovnak, J. E.; Bolvin, D. T.; Doll, C. E.
1993-01-01
The Ocean Topography Experiment (TOPEX/Poseidon) mission is designed to determine the topography of the Earth's sea surface over a 3-year period, beginning shortly after launch in July 1992. TOPEX/Poseidon is a joint venture between the United States National Aeronautics and Space Administration (NASA) and the French Centre Nationale d'Etudes Spatiales. The Jet Propulsion Laboratory is NASA's TOPEX/Poseidon project center. The Tracking and Data Relay Satellite System (TDRSS) will nominally be used to support the day-to-day orbit determination aspects of the mission. Due to its extensive experience with TDRSS tracking data, the NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) will receive and process TDRSS observational data. To fulfill the scientific goals of the mission, it is necessary to achieve and maintain a very precise orbit. The most stringent accuracy requirements are associated with planning and evaluating orbit maneuvers, which will place the spacecraft in its mission orbit and maintain the required ground track. To determine if the FDF can meet the TOPEX/Poseidon maneuver accuracy requirements, covariance analysis was undertaken with the Orbit Determination Error Analysis System (ODEAS). The covariance analysis addressed many aspects of TOPEX/Poseidon orbit determination, including arc length, force models, and other processing options. The most recent analysis has focused on determining the size of the geopotential field necessary to meet the maneuver support requirements. Analysis was undertaken with the full 50 x 50 Goddard Earth Model (GEM) T3 field as well as smaller representations of this model.
Global trends in ocean phytoplankton: a new assessment using revised ocean colour data.
Gregg, Watson W; Rousseaux, Cécile S; Franz, Bryan A
2017-01-01
A recent revision of the NASA global ocean colour record shows changes in global ocean chlorophyll trends. This new 18-year time series now includes three global satellite sensors, the Sea-viewing Wide Field of view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS). The major changes are radiometric drift correction, a new algorithm for chlorophyll, and a new sensor VIIRS. The new satellite data record shows no significant trend in global annual median chlorophyll from 1998 to 2015, in contrast to a statistically significant negative trend from 1998 to 2012 in the previous version. When revised satellite data are assimilated into a global ocean biogeochemical model, no trend is observed in global annual median chlorophyll. This is consistent with previous findings for the 1998-2012 time period using the previous processing version and only two sensors (SeaWiFS and MODIS). Detecting trends in ocean chlorophyll with satellites is sensitive to data processing options and radiometric drift correction. The assimilation of these data, however, reduces sensitivity to algorithms and radiometry, as well as the addition of a new sensor. This suggests the assimilation model has skill in detecting trends in global ocean colour. Using the assimilation model, spatial distributions of significant trends for the 18-year record (1998-2015) show recent decadal changes. Most notable are the North and Equatorial Indian Oceans basins, which exhibit a striking decline in chlorophyll. It is exemplified by declines in diatoms and chlorophytes, which in the model are large and intermediate size phytoplankton. This decline is partially compensated by significant increases in cyanobacteria, which represent very small phytoplankton. This suggests the beginning of a shift in phytoplankton composition in these tropical and subtropical Indian basins.
DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft
1962-02-20
S64-14861 (1962) --- Department of Defense (DOD) recovery personnel and spacecraft technicians from NASA and McDonnell Aircraft Corp., inspect astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean. Photo credit: NASA
2002-10-15
KENNEDY SPACE CENTER, FLA. -- A diver helps lower sonar mapping equipment into the water alongside the Liberty Star, one of NASA's solid rocket booster retrieval ships. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
2002-10-15
KENNEDY SPACE CENTER, FLA. -- A diver helps lower sonar mapping equipment into the water alongside the Liberty Star, one of NASA's solid rocket booster retrieval ships. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
2002-10-15
KENNEDY SPACE CENTER, FLA. -- Workers on the deck of the Liberty Star, one of NASA's solid rocket booster retrieval ships, help guide sonar mapping equipment toward the side of the ship. The equipment will be attached to the ship's hull for an eight-day expedition surveying deep-water coral reefs on the Oculina Banks off eastern Florida. NASA joins the National Oceanic and Atmospheric Administration (NOAA) and other ocean scientists for the sophisticated mapping system that will provide the first high-resolution, three-dimensional map of the Oculina Banks. The survey results are expected to guide another expedition in Spring 2003, using NASA's ship, when the reef fish spawn. Also used will be NASA's underwater robot and an acoustic hydrophone system for listening to fish and vessel noise. Dive sites will be chosen based on the new charts.
2017-12-08
On July 20, the U.S. Coast Guard Cutter Healy steamed south in the Arctic Ocean toward the edge of the sea ice. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
On July 19, 2011, Zachary Brown of Stanford University sipped freshwater from a melt pond on sea ice in the Arctic ocean. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Dust storms and their impact on ocean and human health: dust in Earth's atmosphere
Griffin, Dale W.; Kellog, Christina A.
2004-01-01
Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.
A ground-based memory state tracker for satellite on-board computer memory
NASA Technical Reports Server (NTRS)
Quan, Alan; Angelino, Robert; Hill, Michael; Schwuttke, Ursula; Hervias, Felipe
1993-01-01
The TOPEX/POSEIDON satellite, currently in Earth orbit, will use radar altimetry to measure sea surface height over 90 percent of the world's ice-free oceans. In combination with a precise determination of the spacecraft orbit, the altimetry data will provide maps of ocean topography, which will be used to calculate the speed and direction of ocean currents worldwide. NASA's Jet Propulsion Laboratory (JPL) has primary responsibility for mission operations for TOPEX/POSEIDON. Software applications have been developed to automate mission operations tasks. This paper describes one of these applications, the Memory State Tracker, which allows the ground analyst to examine and track the contents of satellite on-board computer memory quickly and efficiently, in a human-readable format, without having to receive the data directly from the spacecraft. This process is accomplished by maintaining a groundbased mirror-image of spacecraft On-board Computer memory.
Future U.S. ocean color missions-OCI, MODIS and HIRIS
NASA Astrophysics Data System (ADS)
Davis, C. O.
The Coastal Zone Color Scanner (CZCS) launched by the National Aeronautics and Space Administration (NASA) on the Nimbus-7 Satellite in 1978 has provided exceptionally valuable data for studies of the productivity of the ocean, fisheries, the detection of oceanic fronts and currents, and the optical properties of the ocean. NASA has been working with the scientific community, the National Oceanographic and Atmospheric Administration (NOAA), France's Centre National d'Etudes Spatiales (CNES), and industry to develop an Ocean Color Imager (OCI), a follow-on instrument which would provide the near real-time and global data necessary to fill these needs in the 1990's. The Earth Observing Satellite Company (EOSAT) is considering flying an ocean and land wide-field color instrument which would meet these needs on Landsat 6 or 7 planned for launch in 1989 and 1991, respectively. It would provide eight ocean color channels for improved atmospheric correction and in-water algorithms, global coverage and near real-time data for operational uses. In the mid 1990's NASA is planning to fly a Moderate Resolution Imaging Spectrometer (MODIS) and a High Resolution Imaging Spectrometer (HIRIS) as part of the Earth Observing System (Eos) on the Polar Platform of the Space Station. These instruments are array spectrometers which would provide full spectral resolution in the visible and infrared. This opens the possibility of separating different groups of phytoplankton, suspended sediments and other substances in the water. Also, HIRIS would have across track pointing ability which will allow high resolution rapid sampling of dynamic coastal areas and estuaries.
USS Anchorage Leaves Port for Launch of Orion
2014-12-01
NASA and U.S. Navy personnel are on the deck of the USS Anchorage as the ship departs Naval Base San Diego and heads out to sea in the Pacific Ocean. NASA and the U.S. Navy are making preparations ahead of Orion's flight test for recovery of the crew module, forward bay cover and parachutes on its return from space and splashdown in the Pacific Ocean. The Ground Systems Development and Operations Program is leading the recovery efforts.
Pegasus XL CYGNSS Prelaunch News Conference
2016-12-10
In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The model depicts the deployment module from which the eight micro-satellites will be deployed. In the background is Tim Dunn, NASA launch director at Kennedy. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Pegasus XL CYGNSS Prelaunch News Conference
2016-12-10
In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the agency’s Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. From left are: Tim Dunn, NASA launch director at Kennedy; and Bryan Baldwin, Pegasus launch vehicle program manager for Orbital ATK, Dulles, Virginia. The eight CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data will help scientists probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
2011-02-24
CAPE CANAVERAL, Fla. -- A crane and a skiff await Liberty Star, one of NASA's solid rocket booster retrieval ships, to reach the splash-down area where the right spent booster from Discovery's final launch has landed. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
2011-02-26
CAPE CANAVERAL, Fla. -- The left spent booster nose cap from space shuttle Discovery's final launch is secured to a pallet on Freedom Star, one of NASA's solid rocket booster retrieval ships and will be returned to Port Canaveral in Florida. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky
2011-02-26
CAPE CANAVERAL, Fla. -- A crew member on Liberty Star, one of NASA's solid rocket booster retrieval ships, monitors the progress as the massive parachute from the right spent booster from space shuttle Discovery's final launch is hauled on board. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux
SIMBIOS Project; 2003 Annual Report
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Fargion, Giulietta S.
2003-01-01
The purpose of this technical report is to provide current documentation of the the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project. The SIMBIOS Science Team Principal Investigators (PIs) original contributions to this report are in chapters four and above. The purpose of these contributions is to describe the current research status of the SIMBIOS-NRA-99 funded research. The contributions are published as submitted, with the exception of minor edits to correct obvious grammatical or clerical errors.
Atmospheric Science Data Center
2013-04-19
article title: Indian Ocean Clouds View Larger ... Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's polar-orbiting Terra spacecraft. The area covered by the image is 247.5 ... during the last decade. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission ...
SWIM: A Semi-Analytical Ocean Color Inversion Algorithm for Optically Shallow Waters
NASA Technical Reports Server (NTRS)
McKinna, Lachlan I. W.; Werdell, P. Jeremy; Fearns, Peter R. C. S.; Weeks, Scarla J.; Reichstetter, Martina; Franz, Bryan A.; Shea, Donald M.; Feldman, Gene C.
2014-01-01
Ocean color remote sensing provides synoptic-scale, near-daily observations of marine inherent optical properties (IOPs). Whilst contemporary ocean color algorithms are known to perform well in deep oceanic waters, they have difficulty operating in optically clear, shallow marine environments where light reflected from the seafloor contributes to the water-leaving radiance. The effect of benthic reflectance in optically shallow waters is known to adversely affect algorithms developed for optically deep waters [1, 2]. Whilst adapted versions of optically deep ocean color algorithms have been applied to optically shallow regions with reasonable success [3], there is presently no approach that directly corrects for bottom reflectance using existing knowledge of bathymetry and benthic albedo.To address the issue of optically shallow waters, we have developed a semi-analytical ocean color inversion algorithm: the Shallow Water Inversion Model (SWIM). SWIM uses existing bathymetry and a derived benthic albedo map to correct for bottom reflectance using the semi-analytical model of Lee et al [4]. The algorithm was incorporated into the NASA Ocean Biology Processing Groups L2GEN program and tested in optically shallow waters of the Great Barrier Reef, Australia. In-lieu of readily available in situ matchup data, we present a comparison between SWIM and two contemporary ocean color algorithms, the Generalized Inherent Optical Property Algorithm (GIOP) and the Quasi-Analytical Algorithm (QAA).
Atmospheric Correction for Satellite Ocean Color Radiometry
NASA Technical Reports Server (NTRS)
Mobley, Curtis D.; Werdell, Jeremy; Franz, Bryan; Ahmad, Ziauddin; Bailey, Sean
2016-01-01
This tutorial is an introduction to atmospheric correction in general and also documentation of the atmospheric correction algorithms currently implemented by the NASA Ocean Biology Processing Group (OBPG) for processing ocean color data from satellite-borne sensors such as MODIS and VIIRS. The intended audience is graduate students or others who are encountering this topic for the first time. The tutorial is in two parts. Part I discusses the generic atmospheric correction problem. The magnitude and nature of the problem are first illustrated with numerical results generated by a coupled ocean-atmosphere radiative transfer model. That code allow the various contributions (Rayleigh and aerosol path radiance, surface reflectance, water-leaving radiance, etc.) to the topof- the-atmosphere (TOA) radiance to be separated out. Particular attention is then paid to the definition, calculation, and interpretation of the so-called "exact normalized water-leaving radiance" and its equivalent reflectance. Part I ends with chapters on the calculation of direct and diffuse atmospheric transmittances, and on how vicarious calibration is performed. Part II then describes one by one the particular algorithms currently used by the OBPG to effect the various steps of the atmospheric correction process, viz. the corrections for absorption and scattering by gases and aerosols, Sun and sky reflectance by the sea surface and whitecaps, and finally corrections for sensor out-of-band response and polarization effects. One goal of the tutorial-guided by teaching needs- is to distill the results of dozens of papers published over several decades of research in atmospheric correction for ocean color remote sensing.
2017-12-08
Sunrise in Woods Hole, Massachusetts, presents an idyllic setting for a world class science expedition to begin. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Orion Underway Recovery Test 5 (URT-5)
2016-10-29
A test version of the Orion crew module floats outside the well deck of the USS San Diego on the fourth day of Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy are practicing retrieving and securing the crew module in the well deck of the ship using tethers and a winch system to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-31
U.S. Navy divers and other personnel in a small Zodiac boat secure a tether line to an attach point on a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the USS San Diego's well deck, the test module, various watercraft and equipment to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-27
U.S. Navy divers and other personnel in a rigid hull Zodiac boat have attached tether lines to a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the USS San Diego, various watercraft and equipment to practice for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-28
U.S. Navy divers and other personnel in a Zodiac boat secure a harness around a test version of the Orion crew module during Underway Recovery Test 5 in the Pacific Ocean off the coast of California. Tether lines will be attached to the test module to help guide it back to the well deck of the USS San Diego. NASA's Ground Systems Development and Operations Program and the U.S. Navy are practicing recovery techniques to prepare for recovery of Orion on its return from deep space missions. The testing will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
Orion Underway Recovery Test 5 (URT-5)
2016-10-28
Several rigid hull and inflatable Zodiac boats are in the water near a test version of the Orion crew module during the third day of Underway Recovery Test 5 in the Pacific Ocean off the coast of California. NASA's Ground Systems Development and Operations Program and the U.S. Navy are conducting a series of tests using the USS San Diego, various watercraft and equipment to prepare for recovery of Orion on its return from deep space missions. The test will allow the team to demonstrate and evaluate recovery processes, procedures, hardware and personnel in open waters. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and NASA's Journey to Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch on NASA's Space Launch System in late 2018. For more information, visit http://www.nasa.gov/orion.
2017-12-08
A researcher prepares lab facilities onboard the R/V Atlantis. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Deputy Project Scientist Rich Moore considers weather and technical details for the next day’s flight. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
A NAAMES researcher evaluates data coming in somewhere above the North Atlantic. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
The anchor for the R/V Atlantis, retracted for travel. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
The C130 makes a low altitude turn over its designated research coordinates in the North Atlantic. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Workbenches surround a number of laboratories onboard the Atlantis. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Patrick has been a crew member for long durations voyages on the Atlantis for more than ten years. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2017-12-08
Atlantis crew load supplies and sundries for the upcoming 2016 NAAMES research cruise. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is positioned for movement into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from the transporter at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft arrives at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – Workers move the NOAA-N Prime spacecraft into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB