Sample records for nasa pilot john

  1. M2-F3 with test pilot John A. Manke

    NASA Image and Video Library

    1972-12-20

    NASA research pilot John A. Manke is seen here in front of the M2-F3 Lifting Body. Manke was hired by NASA on May 25, 1962, as a flight research engineer. He was later assigned to the pilot's office and flew various support aircraft including the F-104, F5D, F-111 and C-47. After leaving the Marine Corps in 1960, Manke worked for Honeywell Corporation as a test engineer for two years before coming to NASA. He was project pilot on the X-24B and also flew the HL-10, M2-F3, and X-24A lifting bodies. John made the first supersonic flight of a lifting body and the first landing of a lifting body on a hard surface runway. Manke served as Director of the Flight Operations and Support Directorate at the Dryden Flight Research Center prior to its integration with Ames Research Center in October 1981. After this date John was named to head the joint Ames-Dryden Directorate of Flight Operations. He also served as site manager of the NASA Ames-Dryden Flight Research Facility. John is a member of the Society of Experimental Test Pilots. He retired on April 27, 1984.

  2. NASA Remembers Astronaut John Young, Moonwalker and First Shuttle Commander

    NASA Image and Video Library

    2018-01-06

    Astronaut John Young, who walked on the Moon during Apollo 16 and commanded the first space shuttle mission, has passed away at the age of 87. After earning an engineering degree from Georgia Tech and flying planes for the Navy, Young began his impressive career at NASA in 1962, when he was selected from among hundreds of young pilots to join NASA's second astronaut class, known as the "New Nine." Young first flew in space on the first manned Gemini flight, Gemini 3 in March 1965. He later commanded the Gemini 10 mission in July 1966, served as command module pilot on Apollo 10 in 1969, and landed on the Moon as commander of Apollo 16 in April 1972. He went on to command the first Space Shuttle flight in 1981, and also commanded the STS-9 shuttle mission in 1983. He is the only person to go into space as part of the Gemini, Apollo and space shuttle programs and was the first to fly into space six times -- or seven times, when counting his liftoff from the Moon during Apollo 16.

  3. HL-10 on lakebed with pilot John Manke

    NASA Technical Reports Server (NTRS)

    1969-01-01

    John Manke is shown here on the lakebed next to the HL-10, one of four different lifting-body vehicles he flew, including the X-24B, which he flew 16 times. His total of 42 lifting-body flights was second only to the 51 flights Milt Thompson achieved, including one in the remotely piloted Hyper III. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship

  4. Remembering NASA Astronaut John Young, 1930-2018

    NASA Image and Video Library

    2018-01-06

    Astronaut John Young, who walked on the Moon during Apollo 16 and commanded the first space shuttle mission, has passed away at the age of 87. This video tribute, which includes music and portions of Young’s own words from previous interviews and events, recounts some of the highlights of his storied career at NASA.

  5. John Glenn Receives Presidential Medal of Freedom

    NASA Image and Video Library

    2012-05-29

    President Barack Obama presents former United States Marine Corps pilot, astronaut, and United States Senator John Glenn with a Medal of Freedom, Tuesday, May 29, 2012, during a ceremony at the White House in Washington. Photo Credit: (NASA/Bill Ingalls)

  6. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING. NASA John F. Kennedy Space Center, Florida. File Number 79K06740, NASA, November 1975. SPACE & WEIGHT ALLOCATION, ORBITER PATH IN TRANSFER AISLE. Sheet 6 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. John Glenn Receives Presidential Medal of Freedom

    NASA Image and Video Library

    2012-05-29

    President Barack Obama congratulates former United States Marine Corps pilot, astronaut, and United States Senator John Glenn after presenting him with a Medal of Freedom, Tuesday, May 29, 2012, during a ceremony at the White House in Washington. Photo Credit: (NASA/Bill Ingalls)

  8. Research pilot John Griffith leaning out of the hatch on the X-1 #2

    NASA Technical Reports Server (NTRS)

    1950-01-01

    In this photo, NACA research pilot John Griffith is leaning out the hatch of the X-1 #2. Surrounding him (left to right) are Dick Payne, Eddie Edwards, and maintenance chief Clyde Bailey. John Griffith became a research pilot at the National Advisory Committee for Aeronautics's Muroc Flight Test Unit in August of 1949, shortly before the NACA unit became the High-Speed Flight Research Station (now, NASA's Dryden Flight Research Center at Edwards, California). He flew the early experimental airplanes-the X-1, X-4, and D-558-1 and -2-flying the X-1 nine times, the X-4 three times, the D-558-1 fifteen times, and the D-558-2 nine times. He reached his top speed in the X-1 on 26 May 1950 when he achieved a speed of Mach 1.20. He was the first NACA pilot to fly the X-4. He left the NACA in 1950 to fly for Chance Vought in the F7U Cutlass. He then flew for United Airlines and for Westinghouse, where he became the Chief Engineering Test Pilot. He went on to work for the Federal Aviation Administration, assisting in the development of a supersonic transport before funding for that project ended. He then returned to United Airlines and worked as a flight instructor. John grew up in Homewood, Illinois, and attended Thornton Township Junior College in Harvey, Illinois, where he graduated as valedictorian in pre-engineering. He entered the Army Air Corps in November 1941, serving in the South Pacific during the Second World War that started soon after he joined. In 1942 and 1943 he flew 189 missions in the P-40 in New Guinea and was awarded two Distinguished Flying Crosses and four air medals. In October 1946, he left the service and studied aeronautical engineering at Purdue University, graduating with honors. He then joined the NACA at the Lewis Flight Propulsion Laboratory in Cleveland, Ohio (today's Glenn Research Center), where he participated in ramjet testing and icing research until moving to Muroc. Following his distinguished career, he retired to Penn Valley

  9. F-18 chase craft with NASA test pilots Schneider and Fulton

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ed Schneider, (left), is the project pilot for the F-18 High Angle of Attack program at NASA's Dryden Flight Research Center, Edwards, California. He has been a NASA research pilot at Dryden since 1983. In addition to his assignment with the F-18 High Angle of Attack program, Schneider is a project pilot for the F-15B aeronautical research aircraft, the NASA NB-52B launch aircraft, and the SR-71 'Blackbird' aircraft. He is a Fellow and was the 1994 President of the Society of Experimental Test Pilots. In 1996 he was awarded the NASA Exceptional Service Medal. Schneider is seen here with Fitzhugh L. Fulton Jr., (right), who was a civilian research pilot at Dryden. from August 1, 1966, until July 3, 1986, following 23 years of service as a pilot in the U.S. Air Force. Fulton was the project pilot on all early tests of the 747 Shuttle Carrier Aircraft (SCA) used to air launch the Space Shuttle prototype Enterprise in the Approach and Landing Tests (ALT) at Dryden in l977. For his work in the ALT program, Fulton received NASA's Exceptional Service Medal. He also received the Exceptional Service Medal again in 1983 for flying the 747 SCA during the European tour of the Space Shuttle Enterprise. During his career at Dryden, Fulton was project pilot on NASA's NB-52B launch aircraft used to air launch a variety of piloted and unpiloted research aircraft, including the X-15s and lifting bodies. He flew the XB-70 prototype supersonic bomber on both NASA-USAF tests and NASA research flights during the late 1960s, attaining speeds exceeding Mach 3. He was also a project pilot on the YF-12A and YF-12C research program from April 14, 1969, until September 25, 1978. The F/A-18 Hornet seen behind them is used primarily as a safety chase and support aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. As support aircraft, the F-18's are used for safety chase, pilot proficiency and aerial photography. As a safety chase aircraft, F-18's, flown by research pilots

  10. Astronaut John Glenn, Jr. - Insertion - Mercury Spacecraft - Cape

    NASA Image and Video Library

    1962-02-20

    S62-00371 (20 Feb. 1962) --- Mercury astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) spaceflight, enters the Mercury "Friendship 7" spacecraft during the MA-6 prelaunch preparations at Cape Canaveral, Florida. Glenn became the first American to orbit Earth. Photo credit: NASA

  11. Astronaut John W. Young during water egress training

    NASA Image and Video Library

    1966-06-18

    S66-39691 (18 June 1966) --- Astronaut John W. Young, prime crew command pilot for the Gemini-10 spaceflight, sits in Static Article 5 during water egress training activity onboard the NASA Motor Vessel Retriever. The SA-5 will be placed in the water and he and astronaut Michael Collins will then practice egress and water survival techniques. At right is Gordon Harvey, Spacecraft Operations Branch, Flight Crew Support Division. Photo credit: NASA

  12. Closeup View - Astronaut John Glenn - Insertion - Mercury Capsule - Cape

    NASA Image and Video Library

    1962-02-20

    S62-01004 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury Atlas 6 (MA-6) mission, participates in Mercury egress training during MA-6 preflight preparations. Glenn made the free world's first manned Earth-orbital flight on Feb. 20, 1962. Photo credit: NASA

  13. Studying - Astronaut John H. Glenn, Jr. - Mercury-Atlas (MA)-6 - Cape

    NASA Image and Video Library

    1961-01-01

    S61-04546 (1961) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) "Friendship 7" mission, takes part in spacecraft systems briefing during preflight activity at Cape Canaveral, Florida. Photo credit: NASA

  14. Astronaut John Glenn looks over checklist during MA-6 preflight activity

    NASA Image and Video Library

    1962-02-20

    S62-01000 (20 Feb. 1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 "Friendship 7" mission, looks over a checklist during MA-6 preflight activity. He is wearing his Mercury spacesuit. Photo credit: NASA

  15. Astronaut John Glenn - Egress Training Activity - Langley AFB, VA

    NASA Image and Video Library

    1960-12-12

    B60-00285 (1960) --- Astronaut John H. Glenn Jr., pilot of the Mercury Atlas 6 spaceflight, emerges from an egress trainer during training activity at the Langley Research Center. He is attempting to transfer onto a life raft from the mock-up of the Mercury capsule. Photo credit: NASA

  16. NASA's Single-Pilot Operations Technical Interchange Meeting: Proceedings and Findings

    NASA Technical Reports Server (NTRS)

    Comerford, Doreen; Brandt, Summer L.; Lachter, Joel B.; Wu, Shu-Chieh; Mogford, Richard H.; Battiste, Vernol; Johnson, Walter W.

    2013-01-01

    Researchers at the National Aeronautics and Space Administration (NASA) Ames Research Center and Langley Research Center are jointly investigating issues associated with potential concepts, or configurations, in which a single pilot might operate under conditions that are currently reserved for a minimum of two pilots. As part of early efforts, NASA Ames Research Center hosted a technical interchange meeting in order to gain insight from members of the aviation community regarding single-pilot operations (SPO). The meeting was held on April 10-12, 2012 at NASA Ames Research Center. Professionals in the aviation domain were invited because their areas of expertise were deemed to be directly related to an exploration of SPO. NASA, in selecting prospective participants, attempted to represent various relevant sectors within the aviation domain. Approximately 70 people representing government, academia, and industry attended. A primary focus of this gathering was to consider how tasks and responsibilities might be re-allocated to allow for SPO.

  17. Former Dryden pilot and NASA astronaut Neil Armstrong

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8

  18. Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. LCC TRANSVERSE SECTIONS AA & BB. Sheet 29-45 - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  19. Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39, CRAWLER TRANSPORTER. NASA, John F. Kennedy Space Center, Florida. Drawing 75M05760, KSC-Launch Support Equipment Engineering Division, January 1967. GENERAL ARRANGEMENT. Sheet 1 of 4 - Cape Canaveral Air Force Station, Launch Complex 39, Crawler Transporters, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. FAA/NASA UAS Traffic Management Pilot Program (UPP)

    NASA Technical Reports Server (NTRS)

    Johnson, Ronald D.; Kopardekar, Parimal H.; Rios, Joseph L.

    2018-01-01

    NASA Ames is leading ATM R&D organization. NASA started working on UTM in 2012, it's come a long way primarily due to close relationship with FAA and industry. We have a research transition team between FAA and NASA for UTM. We have a few other RTTs as well. UTM is a great example of collaborative innovation, and now it's reaching very exciting stage of UTM Pilot Project (UPP). NASA is supporting FAA and industry to make the UPP most productive and successful.

  1. Astronaut John Glenn running as part of physical training program

    NASA Image and Video Library

    1962-02-20

    S64-14883 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, participates in a strict physical training program, as he exemplifies by frequent running. Here he pauses during an exercise period on the beach near Cape Canaveral, Florida. Photo credit: NASA

  2. Astronaut John Young Remembrance, Wreath Laying Ceremony

    NASA Image and Video Library

    2018-01-11

    NASA is remembering the accomplishments and legacy of astronaut John Young, who died Jan. 5 at the age of 87. The U.S. Navy fighter pilot joined the space program in 1962 and went on to fly six missions spanning three generations of NASA spacecraft. NASA, the Astronaut Memorial Foundation and the Kennedy Space Center Visitor Complex hosted a wreath laying ceremony at the Heroes and Legends exhibit at Kennedy’s Visitor Complex Jan. 11 in honor of Young. Young flew aboard Gemini 3 in 1965 and commanded Gemini 10 the following year. In May 1969, he served as command module pilot on Apollo 10 and returned to the Moon as commander of Apollo 16. In April 1981, he commanded the ultimate test flight: STS-1, the first flight of the space shuttle. He was joined aboard shuttle Columbia by pilot Bob Crippen. Young flew his final mission, STS-9, in 1983, but he continued to work in NASA’s astronaut office until his retirement in 2004. Kennedy’s Firing Room 1 was named the Young-Crippen Firing Room in April 2006, the 25th anniversary of Columbia’s maiden voyage.

  3. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA, John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA, John F. Kennedy Space Center, Florida. Drawing 79K05424, Seelye Stevenson Value & Knecht, March, 1975. SITE WORK, GENERAL AREA PLAN. Sheet 8 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  4. Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. VOLUME 29, LAUNCH CONTROL CENTER (LCC) TITLE AND LOCATION SHEET. Sheet 29-01 - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  5. GEMINI-TITAN (GT)-10 (RECOVERY) - ASTRONAUT JOHN W. YOUNG - MISC. - ATLANTIC

    NASA Image and Video Library

    1966-07-21

    S66-42772 (21 July 1966) --- A U.S. Navy frogman assist the Gemini-10 crew following splashdown at 4:07 p.m. (EST), July 21, 1966, about four miles from the recovery ship, USS Guadalcanal. Astronaut John W. Young (climbing from spacecraft), command pilot, and Michael Collins (in spacecraft), pilot, were later hoisted from the water by a recovery helicopter and flown to the Guadalcanal. Photo credit: NASA

  6. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘E’, ROOF PLAN, ARCHITECTURAL. Sheet 22 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  7. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. ALL PLATFORMS-ARCHITECTURAL, GENERAL ARRANGEMENT, EAST-WEST ELEVATIONS. Sheet 12 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  8. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘D’, ROOF PLAN, ARCHITECTURAL. Sheet 36 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  9. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘C’, ROOF PLAN, ARCHITECTURAL. Sheet 14 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  10. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘B’, ROOF PLAN, ARCHITECTURAL. Sheet 28 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  11. Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA, John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October, 1963. LCC FLOOR 3, LEVEL 38’-0”, AREA “P”. Sheet 29-39 - Cape Canaveral Air Force Station, Launch Complex 39, Launch Control Center, LCC Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  12. Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. LAUNCH COMPLEX 39. NASA John F. Kennedy Space Center, Florida. File Number 203-100, Urbahn-Roberts-Seelye-Moran, October 1963. VERTICAL ASSEMBLY BUILDING, LOW BAY, SECTIONS J-J, K-K, & L-L. Sheet 33-32 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  13. Connecting NASA Airborne Scientists, Engineers, and Pilots to K-12 Classrooms

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.

    2015-12-01

    The NASA Airborne Science Program (ASP) conducts Earth system science research missions with NASA aircraft all over the world. During ASP missions, NASA scientists, engineers and pilots are deployed to remote parts of the world such as Greenland, Antarctica, Chile, and Guam. These ASP mission personnel often have a strong desire to share the excitement of their mission with local classrooms near their deployment locations as well as classrooms back home in the United States. Here we discuss ongoing efforts to connect NASA scientists, engineers and pilots in the field directly with K-12 classrooms through both in-person interactions and remotely via live web-based chats.

  14. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘D’, 2ND FLOOR PLAN, ARCHITECTURAL. Sheet 38 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  15. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘D’, MAIN FLOOR PLAN, ARCHITECTURAL. Sheet 39 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  16. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘E’, MAIN FLOOR PLAN, ARCHITECTURAL. Sheet 23 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  17. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘D’, 3RD FLOOR PLAN, ARCHITECTURAL. Sheet 37 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  18. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘B’, MAIN FLOOR PLAN, ARCHITECTURAL. Sheet 30 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  19. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘C’, 2ND FLOOR PLAN, ARCHITECTURAL. Sheet 15 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  20. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘C’, MAIN FLOOR PLAN, ARCHITECTURAL. Sheet 16 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  1. Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. VEHICLE ASSEMBLY BUILDING MODIFICATIONS. NASA John F. Kennedy Space Center, Florida. File Number 79K05424, Seelye Stevenson Value & Knecht, March 1975. HIGH BAY 3, EXTENSIBLE WORK PLATFORM ‘B’, 2ND FLOOR PLAN, ARCHITECTURAL. Sheet 29 of 207 - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  2. Astronaut John Glenn is suited up at Cape Canaveral during MA-6 activities

    NASA Image and Video Library

    1962-02-01

    S64-14843 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 Earth-orbital space mission, is suited up at Cape Canaveral, Florida, during MA-6 preflight activities. Assisting Glenn is suit technician Al Rochford. Photo credit: NASA

  3. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183513 (3 Nov. 2010) --- STS-135 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Pictured from the left are NASA astronauts Chris Ferguson, commander; Rex Walheim, mission specialist; Doug Hurley, pilot; and Sandy Magnus, mission specialist. John Ray (right) assisted the crew members. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  4. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183514 (3 Nov. 2010) --- STS-135 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Pictured from the left are NASA astronauts Chris Ferguson, commander; Rex Walheim, mission specialist; Doug Hurley, pilot; and Sandy Magnus, mission specialist. John Ray (right) assisted the crew members. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  5. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183512 (3 Nov. 2010) --- STS-135 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Pictured from the left are NASA astronauts Chris Ferguson, commander; Rex Walheim, mission specialist; Doug Hurley, pilot; and Sandy Magnus, mission specialist. John Ray (right) assisted the crew members. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  6. Astronaut John Glenn poses for press photographers at Cape Canaveral

    NASA Image and Video Library

    1962-02-01

    S64-14869 (February 1962) --- Astronaut John H. Glenn Jr., wearing a Mercury pressure suit, was the pilot of the Mercury-Atlas 6 (MA-6) mission. Glenn made America's first manned Earth-orbital spaceflight on Feb. 20, 1962. This photograph was taken at Cape Canaveral, Florida, during MA-6 preflight training activities. Photo credit: NASA

  7. View of Astronaut John Glenn in his Mercury pressure suit

    NASA Image and Video Library

    1964-10-27

    S64-36910 (February 1962) --- Astronaut John H. Glenn Jr., wearing a Mercury pressure suit, was the pilot of the Mercury-Atlas 6 (MA-6) mission. Glenn made America's first manned Earth-orbiting spaceflight on Feb. 20, 1962. This photograph was taken at Cape Canaveral, Florida, during MA-6 preflight training activities. Photo credit: NASA

  8. Astronaut John Young hoisted aboard helicopter during water egress training

    NASA Image and Video Library

    1966-06-18

    S66-39713 (18 June 1966) --- Astronaut John W. Young, Gemini-10 command pilot, is hoisted up to a U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. A team of Manned Spaceflight Center (MSC) swimmers assists in the exercise. The Static Article 5 spacecraft can be seen in the water. Photo credit: NASA

  9. Louisiana Governor John Bel Edwards Tours NASA Michoud Assembly Facility

    NASA Image and Video Library

    2017-11-01

    This B-roll video shows Louisiana Gov. John Bel Edwards when visited NASA’s Michoud Assembly Facility in New Orleans on Nov. 1, 2017. He spoke about the state’s partnerships with NASA and the 20 companies and government agencies located at the facility. He toured Michoud with Todd May, the director of NASA’s Marshall Space Flight Center, which manages Michoud. NASA is building its new deep space rocket, the Space Launch System (SLS), and the Orion spacecraft at Michoud. New Orleans Mayor Mitch Landrieu and Michoud Director Keith Hefner, along with members of the Louisiana Economic Development accompanied the Edwards and May on the tour. They saw the Vertical Assemby Center where large structures of the SLS core stage are welded.

  10. GEMINI-TITAN (GT)-10 (RECOVERY)- ASTRONAUT JOHN W. YOUNG - MISC. - ATLANTIC

    NASA Image and Video Library

    1966-07-21

    S66-42787 (21 July 1966) --- Twelve-year -old Billy Doyle of Virginia Beach, VA., shakes hands with astronaut Michael Collins, Gemini-10 pilot, aboard the recovery ship USS Guadalcanal. At right is John W. Young, command pilot of the Gemini-10 spaceflight. Billy represented 41 youngsters permitted aboard the Guadalcanal to witness the recovery with their Naval fathers or close relatives, marking the first time dependents have been permitted aboard a ship during a Gemini recovery operation. Photo credit: NASA

  11. Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard; Ryan, Harry

    2007-01-01

    This viewgraph presentation gives a general overview of the design and analysis division of NASA John C. Stennis Space Center. This division develops and maintains propulsion test systems and facilities for engineering competencies.

  12. Model-Based Systems Engineering Pilot Program at NASA Langley

    NASA Technical Reports Server (NTRS)

    Vipavetz, Kevin G.; Murphy, Douglas G.; Infeld, Samatha I.

    2012-01-01

    NASA Langley Research Center conducted a pilot program to evaluate the benefits of using a Model-Based Systems Engineering (MBSE) approach during the early phase of the Materials International Space Station Experiment-X (MISSE-X) project. The goal of the pilot was to leverage MBSE tools and methods, including the Systems Modeling Language (SysML), to understand the net gain of utilizing this approach on a moderate size flight project. The System Requirements Review (SRR) success criteria were used to guide the work products desired from the pilot. This paper discusses the pilot project implementation, provides SysML model examples, identifies lessons learned, and describes plans for further use on MBSE on MISSE-X.

  13. Retired NASA research pilot and former astronaut Gordon Fullerton was greeted by scores of NASA Dryden staff who bid him farewell after his final NASA flight.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  14. Status of NASA/Army rotorcraft research and development piloted flight simulation

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.; Gossett, Terrence D.

    1988-01-01

    The status of the major NASA/Army capabilities in piloted rotorcraft flight simulation is reviewed. The requirements for research and development piloted simulation are addressed as well as the capabilities and technologies that are currently available or are being developed by NASA and the Army at Ames. The application of revolutionary advances (in visual scene, electronic cockpits, motion, and modelling of interactive mission environments and/or vehicle systems) to the NASA/Army facilities are also addressed. Particular attention is devoted to the major advances made in integrating these individual capabilities into fully integrated simulation environment that were or are being applied to new rotorcraft mission requirements. The specific simulators discussed are the Vertical Motion Simulator and the Crew Station Research and Development Facility.

  15. ASTRONAUT GLENN, JOHN H., JR. - INSERTION PRACTICE - MERCURY-ATLAS (MA)-6 - FRIENDSHIP "7" - CAPE

    NASA Image and Video Library

    1962-02-05

    S62-00993 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) mission, practices insertion into the Mercury "Friendship 7" spacecraft during MA-6 preflight training activity at Cape Canaveral, Florida. He is wearing the full pressure suit and helmet. Photo credit: NASA

  16. NASA Desert RATS 2011 Education Pilot Project and Classroom Activities

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; McGlone, M.; Allen, J.; Tobola, K.; Graff, P.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of hardware and operations carried out annually in the high desert of Arizona, as an analog to future exploration activities beyond low Earth orbit [1]. For the past several years, these tests have occurred in the San Francisco Volcanic Field, north of Flagstaff. For the 2011 Desert RATS season, the Exploration Systems Mission Directorate (ESMD) at NASA headquarters provided support to develop an education pilot project that would include student activities to parallel the Desert RATS mission planning and exploration activities in the classroom, and educator training sessions. The development of the pilot project was a joint effort between the NASA Johnson Space Center (JSC) Astromaterials Research and Exploration Science (ARES) Directorate and the Aerospace Education Services Project (AESP), managed at Penn State University.

  17. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08735 (9 April 1998) --- Five members of the STS-95 crew participate in a food tasting session at NASA's Johnson Space Center. From the left are Pedro Duque, a mission specialist representing the European Space Agency (ESA); Scott E. Parazynski, mission specialist; Steven W. Lindsey, pilot; Stephen K. Robinson, mission specialist; and payload specialist Chiaki Mukai of Japan's National Space Development Agency (NASDA). At the session but not pictured are U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., commander. The photo was taken by Joe McNally, National Geographic, for NASA.

  18. Identity Federation and Its Importance for NASA's Future: The SharePoint Extranet Pilot

    NASA Technical Reports Server (NTRS)

    Baturin, Rebecca R.

    2013-01-01

    My project at Kennedy Space Center (KSC) during the spring 2013 Project Management and Systems Engineering Internship was to functionalJy test and deploy the SharePoint Extranet system and ensure successful completion of the project's various lifecycle milestones as described by NASA Procedural Requirement (NPR) 7 120.7. I worked alongside NASA Project Managers, Systems Integration Engineers, and Information Technology (IT) Professionals to pilot this collaboration capability between NASA and its External Partners. The use of identity federation allows NASA to leverage externally-issued credentials of other federal agencies and private aerospace and defense companies, versus the traditional process of granting and maintaining full NASA identities for these individuals. This is the first system of its kind at NASA and it will serve as a pilot for the Federal Government. Recognizing the novelty of this service, NASA's initial approach for deployment included a pilot period where nearby employees of Patrick Air Force Base would assist in testing and deployment. By utilizing a credential registration process, Air Force users mapped their Air Force-issued Common Access Cards (CAC) to a NASA identity for access to the External SharePoint. Once the Air Force stands up an Active Directory Federation Services (ADFS) instance within their Data Center and establishes a direct trust with NASA, true identity federation can be established. The next partner NASA is targeting for collaboration is Lockheed Martin (LMCO), since they collaborate frequently for the ORION Program. Through the use of Exostar as an identity hub, LMCO employees will be able to access NASA data on a need to know basis, with NASA ultimately managing access. In a time when every dollar and resource is being scrutinized, this capability is an exciting new way for NASA to continue its collaboration efforts in a cost and resource effective manner.

  19. ASTRONAUT GLENN, JOHN H., JR. - INSERTION PRACTICE - MERCURY-ATLAS (MA)-6 - FRIENDSHIP "7" - CAPE

    NASA Image and Video Library

    1962-02-05

    S62-00994 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, practices insertion into the Mercury "Friendship 7? spacecraft, with help of a McDonnell Aircraft Corporation technician, during MA-6 preflight training activity at Cape Canaveral, Florida. He is wearing the full pressure suit. Photo credit: NASA

  20. X-15 test pilots - in a lighter mood

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 pilots clown around in front of the #2 aircraft.From left to right: USAF Capt. Joseph Engle, USAF Maj. Robert Rushworth, NASA test pilot John 'Jack' McKay, USAF Maj. William 'Pete' Knight, NASA test pilot Milton Thompson, and NASA test pilot William Dana. First flown in 1959 from the NASA High Speed Flight Station (later renamed the Dryden Flight Research Center), the rocket powered X-15 was developed to provide data on aerodynamics, structures, flight controls and the physiological aspects of high speed, high altitude flight. Three were built by North American Aviation for NASA and the U.S. Air Force. They made a total of 199 flights during a highly successful research program lasting almost ten years, following which its speed and altitude records for winged aircraft remained unbroken until the Space Shuttle first returned from earth orbit in 1981. The X-15's main rocket engine provided thrust for the first 80 to 120 seconds of a 10 to 11 minute flight; the aircraft then glided to a 200 mph landing. The X-15 reached altitudes of 354,200 feet (67.08 miles) and a speed of 4,520 mph (Mach 6.7).

  1. Tom Mace and Walter Klein(far right) brief John Danilovich, US Ambassador to Costa Rica, and NASA Administrator Sean O'Keefe onboard NASA's DC-8

    NASA Image and Video Library

    2004-03-03

    Dr. Tom Mace, NASA DFRC Director of Airborne Sciences, and Walter Klein(far right), NASA DFRC Airborne Science Mission Manager, brief John Danilovich, US Ambassador to Costa Rica, and NASA Administrator Sean O'Keefe onboard NASA's DC-8 during a stop-off on the AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  2. T-38 A- AIRCRAFT (NASA 924)

    NASA Image and Video Library

    1983-12-07

    S82-28952 (1 April 1982) --- Crew members from STS-2 and STS-4 meet with the recently returned STS-3 astronauts for a debriefing session at the Johnson Space Center. Taking notes at bottom left foreground is astronaut John W. Young, STS-1 commander and chief of the Astronaut Office at JSC. Clockwise around the table, beginning with Young, are George W. S. Abbey, JSC Director of Flight Operations; and astronauts Joe E. Engle, STS-2 commander; Henry W. Hartsfield Jr., STS-4 pilot; C. Gordon Fullerton, STS-3 pilot; Jack R. Lousma, STS-3 commander; Thomas K. (Ken) Mattingly, STS-4 commander; and Richard H. Truly, STS-2 pilot. Photo credit: NASA

  3. NASA Dryden research pilot Gordon Fullerton flies his final mission in NASA F/A-18B #852 in formation with NASA F/A-18A #850 on Dec. 21, 2007.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of sp

  4. John B. McKay after X-15 flight #3-27-44

    NASA Image and Video Library

    1964-03-13

    John B. McKay was one of the first pilots assigned to the X-15 flight research program at NASA's Flight Research Center, Edwards, Calif. As a civilian research pilot and aeronautical engineer, he made 30 flights in X-15s from October 28, 1960, until September 8, 1966. His peak altitude was 295,600 feet, and his highest speed was 3863 mph (Mach 5.64). McKay was with the NACA and NASA from February 8,1951 until October 5, 1971 and specialized in high-speed flight research programs. He began as an NACA intern, but assumed pilot status on July 11, 1952. In addition to the X-l5, he flew such experimental aircraft as the D-558-1, D-558-2, X-lB, and the X-lE. He has also served as a research pilot on flight programs involving the F-100, F-102, F-104, and the F-107. Born on December 8, 1922, in Portsmouth, Va., McKay graduated from Virginia Polytechnic Institute in 195O with a Bachelor of Science degree in Aeronautical Engineering. During World War II he served as a Navy pilot in the Pacific Theater, earning the Air Medal and Two Clusters, and a Presidential Unit Citation. McKay wrote several technical papers, and was a member of the American Institute of Aeronautics and Astronautics, as well as the Society of Experimental Test Pilots. He passed away on April 27, 1975.

  5. John C. Mather, the Big Bang, and the COBE

    Science.gov Websites

    Additional Information * Videos John C. Mather Courtesy of NASA "Dr. John C. Mather of NASA's Goddard excerpt from NASA Scientist Shares Nobel Prize for Physics 2Edited excerpt from John Mather: The Path to a Spacecraft Courtesy of Lawrence Berkeley National Laboratory Additional Web Pages: Dr. John C Mather, NASA

  6. Results From the John Glenn Biomedical Engineering Consortium. A Success Story for NASA and Northeast Ohio

    NASA Technical Reports Server (NTRS)

    Nall, Marsha M.; Barna, Gerald J.

    2009-01-01

    The John Glenn Biomedical Engineering Consortium was established by NASA in 2002 to formulate and implement an integrated, interdisciplinary research program to address risks faced by astronauts during long-duration space missions. The consortium is comprised of a preeminent team of Northeast Ohio institutions that include Case Western Reserve University, the Cleveland Clinic, University Hospitals Case Medical Center, The National Center for Space Exploration Research, and the NASA Glenn Research Center. The John Glenn Biomedical Engineering Consortium research is focused on fluid physics and sensor technology that addresses the critical risks to crew health, safety, and performance. Effectively utilizing the unique skills, capabilities and facilities of the consortium members is also of prime importance. Research efforts were initiated with a general call for proposals to the consortium members. The top proposals were selected for funding through a rigorous, peer review process. The review included participation from NASA's Johnson Space Center, which has programmatic responsibility for NASA's Human Research Program. The projects range in scope from delivery of prototype hardware to applied research that enables future development of advanced technology devices. All of the projects selected for funding have been completed and the results are summarized. Because of the success of the consortium, the member institutions have extended the original agreement to continue this highly effective research collaboration through 2011.

  7. Bringing the Future Within Reach: Celebrating 75 Years of the NASA John H. Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Arrighi, Robert S.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center in Cleveland, Ohio, has been making the future for 75 years. The center's work with aircraft engines, high-energy fuels, communications technology, electric propulsion, energy conversion and storage, and materials and structures has been, and continues to be, crucial to both the Agency and the region. Glenn has partnered with industry, universities, and other agencies to continually advance technologies that are propelling the nation's aerospace community into the future. Nonetheless these continued accomplishments would not be possible without the legacy of our first three decades of research, which led to over one hundred R&D 100 Awards, three Robert J. Collier Trophies, and an Emmy. Glenn, which is located in Cleveland, Ohio, is 1 of 10 NASA field centers, and 1 of only 3 that stem from an earlier research organization-the National Advisory Committee for Aeronautics (NACA). Glenn began operation in 1942 as the NACA Aircraft Engine Research Laboratory (AERL). In 1947 the NACA renamed the lab the Flight Propulsion Laboratory to reflect the expansion of the research. In September 1948, following the death of the NACA's Director of Aeronautics, George Lewis, the NACA rededicated the lab as the Lewis Flight Propulsion Laboratory. On 1 October 1958, the lab was incorporated into the new NASA space agency and was renamed the NASA Lewis Research Center. Following John Glenn's return to space on the space shuttle, on 1 March 1999 the center name was changed once again, becoming the NASA John H. Glenn Research Center.

  8. Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard

    2007-01-01

    A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.

  9. Flight researh at NASA Ames Research Center: A test pilot's perspective

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1987-01-01

    In 1976 NASA elected to assign responsibility for each of the various flight regimes to individual research centers. The NASA Ames Research Center at Moffett Field, California was designated lead center for vertical and short takeoff and landing, V/STOL research. The three most recent flight research airplanes being flown at the center are discussed from the test pilot's perspective: the Quiet Short Haul Research Aircraft; the XV-15 Tilt Rotor Research Aircraft; and the Rotor Systems Research Aircraft.

  10. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08731 (9 April 1998) --- Four members of the STS-95 crew participate in a food tasting session at the Johnson Space Center (JSC). From the left are Steven W. Lindsey, pilot; Stephen K. Robinson, mission specialist; with payload specialists Chiaki Mukai of Japan's National Space Development Agency (NASDA) and U.S. Sen. John H. Glenn Jr. They will be joined by three other astronauts when Discovery lifts off in late October of this year for a scheduled nine-day mission. The photo was taken by Joe McNally, National Geographic, for NASA.

  11. HL-10 pilots assist with pilot entry into lifting body

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Not every moment of a test pilot's day is serious business. In a moment of levity, NASA pilots Bill Dana (left) and John A. Manke try to drag Air Force test pilot Peter Hoag away from the HL-10 lifting body while Air Force Major Jerauld R. Gentry helps from the cockpit. These four men were the principal pilots for the HL-10 program. This was not the only prank involving the HL-10 and its pilots. Once 'Captain Midnight' (Gentry) and the 'Midnight skulkers' sneaked into the NASA hangar and put 'U.S. Air Force' on the aircraft using stick-on letters. Later, while Gentry was making a lifting-body flight, his 1954 Ford was 'borrowed' from the parking lot, painted with yellow-green zinc-chromate primer, and decorated with large stick-on flowers about one foot in diameter. After Gentry returned from the flight, he was surprised to see what had happened to his car. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting

  12. Celebrating John Glenn’s Legacy

    NASA Image and Video Library

    2012-03-02

    Sen. John Glenn, left, shakes hands with former Astronaut Steve Lindsey as NASA Administrator Charles Bolden smiles at an event celebrating John Glenn's legacy and 50 years of americans in orbit held at the Cleveland State University Wolstein Center on Friday, March 3, 2012 in Cleveland, Ohio. In 1998 Lindsey flew onboard the space shuttle Discovery along with then 77 year-old Sen. John Glenn for the STS-95 mission. Glenn became the first American to orbit Earth in 1962. Photo Credit: (NASA/Bill Ingalls)

  13. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08736 (9 April 1998) --- The STS-95 crew members sample space food as part of their training agenda for the scheduled late October/early November mission aboard the Space Shuttle Discovery. From the left are Pedro Duque, mission specialist representing the European Space Agency (ESA); Scott E. Parazynski, mission specialist; Steven W. Lindsey, pilot; Stephen K. Robinson, mission specialist; Chiaki Mukai, payload specialist representing Japan's National Space Development Agency (NASDA); U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., commander. The photo was taken by Joe McNally, National Geographic, for NASA.

  14. Pilot Crippen prepares meal on middeck

    NASA Image and Video Library

    1981-04-14

    STS001-07-502 (12-14 April 1981) --- A smiling Robert L. Crippen, STS-1 pilot, is about to prepare a meal aboard the space shuttle Columbia in Earth orbit. Prepared meals, which need only water added, and beverages, can be seen attached to trays, which are mounted on locker doors in Columbia's middeck area. Astronaut John W. Young, commander, took this photograph with a 35mm camera. Photo credit: NASA

  15. A water-cannon salute from two Air Force fire trucks heralds NASA research pilot Gordon Fullerton's final mission as his NASA F/A-18 taxis beneath the spray.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  16. Overview of Propellant Delivery Systems at the NASA John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Haselmaier, L. Haynes; Field, Robert E.; Ryan, Harry M.; Dickey, Jonathan C.

    2006-01-01

    A wide range of rocket propulsion test work occurs at he NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2. E-3 and E-4) test facilities. One of the greatest challenges associated with operating a test facility is maintaining the health of the primary propellant system and test-critical support systems. The challenge emerges due to the fact that the operating conditions of the various system components are extreme (e.g., low temperatures, high pressures) and due to the fact that many of the components and systems are unique. The purpose of this paper is to briefly describe the experience and modeling techniques that are used to operate the unique test facilities at NASA SSC that continue to support successful propulsion testing.

  17. Celebrating John Glenn’s Legacy

    NASA Image and Video Library

    2012-03-02

    Former NASA Astronaut Steve Lindsey gives remarks at an event celebrating John Glenn's legacy and 50 years of americans in orbit held at the Cleveland State University Wolstein Center on Friday, March 3, 2012 in Cleveland, Ohio. In 1998 Lindsey flew onboard the space shuttle Discovery along with then 77 year-old Sen. John Glenn for the STS-95 mission. Glenn became the first American to orbit Earth in 1962. Photo Credit: (NASA/Bill Ingalls)

  18. Former NASA Astronaut, U.S. Senator John Glenn laid to rest in Arlington Cemetery

    NASA Image and Video Library

    2017-04-05

    On April 6, former astronaut and U.S. Senator John Glenn was interred at Arlington National Cemetery in Virginia. Glenn, who passed away Dec. 8, 2016 at the age of 95, served four terms as a U.S. senator from Ohio, and was one of NASA's original seven Mercury astronauts. His flight on Friendship 7 on Feb. 20, 1962, made him the first American to orbit Earth. The riveting flight united our nation, launched America to the forefront of the space race and secured for him a unique place in the annals of history.

  19. Left to right, astronauts John H. Casper, mission commander, and Curtis L. Brown, Jr., pilot, get

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-77 TRAINING VIEW --- Left to right, astronauts John H. Casper, mission commander, and Curtis L. Brown, Jr., pilot, get help with the final touches of suit donning during emergency bailout training for STS-77 crew members in the Johnson Space Centers (JSC) Weightless Environment Training Facility (WET-F). Casper and Brown will join four other astronauts for nine days aboard the Space Shuttle Endeavour next month.

  20. HL-10 on lakebed with Jerauld R. Gentry, Peter Hoag, John A. Manke, and Bill Dana

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The four principal HL-10 pilots are seen here with the lifting body aircraft. They are, left to right; Air Force Major Jerauld R. Gentry, Air Force test pilot Peter Hoag, and NASA pilots John A. Manke and Bill Dana. All are wearing the pressure suits needed for flying above 50,000 feet. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3

  1. NASA X-57 Simulator Prepares Pilots, Engineers for Flight of Electric X-Plane

    NASA Image and Video Library

    2016-11-29

    NASA Administrator Charlie Bolden, a former pilot and astronaut who flew on four shuttle missions, appeared natural at the controls of the X-57 simulator cockpit, and flew a pair of simulations where he landed on the Edwards Air Force Base runway.

  2. Comparison of NASA-TLX scale, Modified Cooper-Harper scale and mean inter-beat interval as measures of pilot mental workload during simulated flight tasks.

    PubMed

    Mansikka, Heikki; Virtanen, Kai; Harris, Don

    2018-04-30

    The sensitivity of NASA-TLX scale, modified Cooper-Harper (MCH) scale and the mean inter-beat interval (IBI) of successive heart beats, as measures of pilot mental workload (MWL), were evaluated in a flight training device (FTD). Operational F/A-18C pilots flew instrument approaches with varying task loads. Pilots' performance, subjective MWL ratings and IBI were measured. Based on the pilots' performance, three performance categories were formed; high-, medium- and low-performance. Values of the subjective rating scales and IBI were compared between categories. It was found that all measures were able to differentiate most task conditions and there was a strong, positive correlation between NASA-TLX and MCH scale. An explicit link between IBI, NASA-TLX, MCH and performance was demonstrated. While NASA-TLX, MCH and IBI have all been previously used to measure MWL, this study is the first one to investigate their association in a modern FTD, using a realistic flying mission and operational pilots.

  3. NASA Pilot and Researcher Prepare for a Solar Cell Calibration Flight

    NASA Image and Video Library

    1964-04-21

    Pilot Earle Boyer and researcher Henry Brandhorst prepare for a solar cell calibration flight in a Martin B-57B Canberra at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis was in the early stages of decades-long energy conversion and space power research effort. Brandhorst, a member of the Chemistry and Energy Conversion Division, led a team of Lewis researchers in a quest to develop new power sources to sustain spacecraft in orbit. Solar cells proved to be an important source of energy, but researchers discovered that their behavior varied at different atmospheric levels. Their standardization and calibration were critical. Brandhorst initiated a standardized way to calibrate solar cells in the early 1960s using the B-57B aircraft. The pilots would take the aircraft up into the troposphere and open the solar cell to the sunlight. The aircraft would steadily descend while instruments recorded how much energy was being captured by the solar cell. From this data, Brandhorst could determine the estimated power for a particular solar cell at any altitude. Pilot Earle Boyer joined NASA Lewis in October 1962. He had flown Convair F-102 Delta Dagger fighters in the Air Force and served briefly in the National Guard before joining the Langley Research Center. Boyer was only at Langley a few months before he transferred to Cleveland. He flew the B-57B, a Convair F-106 Delta Dart, Gulfstream G-1 with an experimental turboprop, Learjet and many other aircraft over the next 32 years at Lewis.

  4. LEAVING PAD - ASTRONAUT JOHN W. YOUNG - TRAINING

    NASA Image and Video Library

    1965-03-19

    S65-20636 (1965) --- Astronauts John W. Young (left), pilot, and Virgil I. Grissom, command pilot, for the Gemini-Titan 3 flight, are shown leaving the launch pad after simulations in the Gemini-3 spacecraft.

  5. NASA Explorer Institutes: Exploring the Possibilities for Collaboration with the Informal Education Community. Report of the NASA Explorer Institutes--Focus Groups and Pilot Workshops, September 2004-March 2005; Planning and Evaluation Meeting, March 14-17, 2005

    ERIC Educational Resources Information Center

    Gallaway, Debbie; Freeman, Jason; Walker, Gretchen; Davis, Hilarie

    2005-01-01

    This report contains summary information and conclusions from the pilot workshops, focus groups, and the NEI (NASA Explorer Institutes) Planning and Evaluation Conference which united representatives of the workshops, focus groups, and NASA education. The culmination of these NEI pilot initiatives resulted in the identification of strategies that…

  6. Former Dryden pilot and NASA astronaut Neil Armstrong being inducted into the Aerospace Walk of Hono

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8

  7. STS-29 Pilot Blaha with SE83-9 "Chix in Space" incubator on OV-103's middeck

    NASA Image and Video Library

    1989-03-16

    STS029-01-001 (16 Marach 1989) --- Astronaut John E. Blaha, STS-29 pilot, checks an incubator on the mid deck of Earth-orbiting Discovery during Flight Day 4 activity. The incubator is part of a student involvement program experiment titled, "Chicken Embryo Development in Space." The student experimenter is John C. Vellinger. The experiment's sponsor is Kentucky Fried Chicken. This photographic frame was among NASA's third STS-29 photo release. Monday, March 20, 1989. Crewmembers were Astronauts Michael L. Coats, John E. Blaha, James F. Buchli, Robert C. Springer and James P. Bagian.

  8. Twenty-first Century Space Science in The Urban High School Setting: The NASA/John Dewey High School Educational Outreach Partnership

    NASA Astrophysics Data System (ADS)

    Fried, B.; Levy, M.; Reyes, C.; Austin, S.

    2003-05-01

    A unique and innovative partnership has recently developed between NASA and John Dewey High School, infusing Space Science into the curriculum. This partnership builds on an existing relationship with MUSPIN/NASA and their regional center at the City University of New York based at Medgar Evers College. As an outgrowth of the success and popularity of our Remote Sensing Research Program, sponsored by the New York State Committee for the Advancement of Technology Education (NYSCATE), and the National Science Foundation and stimulated by MUSPIN-based faculty development workshops, our science department has branched out in a new direction - the establishment of a Space Science Academy. John Dewey High School, located in Brooklyn, New York, is an innovative inner city public school with students of a diverse multi-ethnic population and a variety of economic backgrounds. Students were recruited from this broad spectrum, which covers the range of learning styles and academic achievement. This collaboration includes students of high, average, and below average academic levels, emphasizing participation of students with learning disabilities. In this classroom without walls, students apply the strategies and methodologies of problem-based learning in solving complicated tasks. The cooperative learning approach simulates the NASA method of problem solving, as students work in teams, share research and results. Students learn to recognize the complexity of certain tasks as they apply Earth Science, Mathematics, Physics, Technology and Engineering to design solutions. Their path very much follows the NASA model as they design and build various devices. Our Space Science curriculum presently consists of a one-year sequence of elective classes taken in conjunction with Regents-level science classes. This sequence consists of Remote Sensing, Planetology, Mission to Mars (NASA sponsored research program), and Microbiology, where future projects will be astronomy related. This

  9. NASA Team Collaboration Pilot: Enabling NASA's Virtual Teams

    NASA Technical Reports Server (NTRS)

    Prahst, Steve

    2003-01-01

    Most NASA projects and work activities are accomplished by teams of people. These teams are often geographically distributed - across NASA centers and NASA external partners, both domestic and international. NASA "virtual" teams are stressed by the challenge of getting team work done - across geographic boundaries and time zones. To get distributed work done, teams rely on established methods - travel, telephones, Video Teleconferencing (NASA VITS), and email. Time is our most critical resource - and team members are hindered by the overhead of travel and the difficulties of coordinating work across their virtual teams. Modern, Internet based team collaboration tools offer the potential to dramatically improve the ability of virtual teams to get distributed work done.

  10. Overview of NASA's Carbon Monitoring System Flux-Pilot Project

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Gunson, Michael R.; Jucks, Kenneth

    2011-01-01

    NASA's space-based observations of physical, chemical and biological parameters in the Earth System along with state-of-the-art modeling capabilities provide unique capabilities for analyses of the carbon cycle. The Carbon Monitoring System is developing an exploratory framework for detecting carbon in the environment and its changes, with a view towards contributing to national and international monitoring activities. The Flux-Pilot Project aims to provide a unified view of land-atmosphere and ocean-atmosphere carbon exchange, using observation-constrained models. Central to the project is the application of NASA's satellite observations (especially MODIS), the ACOS retrievals of the JAXA-GOSAT observations, and the "MERRA" meteorological reanalysis produced with GEOS-S. With a primary objective of estimating uncertainty in computed fluxes, two land- and two ocean-systems are run for 2009-2010 and compared with existing flux estimates. An transport model is used to evaluate simulated CO2 concentrations with in-situ and space-based observations, in order to assess the realism of the fluxes and how uncertainties in fluxes propagate into atmospheric concentrations that can be more readily evaluated. Finally, the atmospheric partial CO2 columns observed from space are inverted to give new estimates of surface fluxes, which are evaluated using the bottom-up estimates and independent datasets. The focus of this presentation will be on the science goals and current achievements of the pilot project, with emphasis on how policy-relevant questions help focus the scientific direction. Examples include the issue of what spatio-temporal resolution of fluxes can be detected from polar-orbiting satellites and whether it is possible to use space-based observations to separate contributions to atmospheric concentrations of (say) fossil-fuel and biological activity

  11. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Sen. John Glenn, right, talks during a NASA Future Forum panel discussion at The Ohio State University as NASA Associate Administrator for Science Mission Directorate John Grunsfeld, left, and Ohio State University Graduate Research Associate Vijay Gadepally look on, Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  12. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    The Ohio State University Vice President for Research Dr. Caroline Whitacre, standing right, moderates the first panel discussion during NASA's Future Forum with NASA Associate Administrator for Science Mission Directorate John Grunsfeld, left, Ohio State University Graduate Research Associate Vijay Gadepally, Sen. John Glenn, NASA Administrator Charles Bolden, and NASA 2009 Astronaut Candidate and Flight Surgeon Serena Auñón, seated right, at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  13. Group 13 1990 ASCAN Ochoa talks to NASA staff pilot during T-38A training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Astronaut candidate (ASCAN) Ellen Ochoa reviews T-38A flight procedures with a NASA staff pilot while standing on an Ellington Field runway. Later, Ochoa, along with classmates from the Group 13 1990 Astronaut class, took a T-38A familiarization flight. Ellington Field is located near JSC.

  14. Obituary: John Louis Africano III, 1951-2006

    NASA Astrophysics Data System (ADS)

    Barker, Edwin, S.

    2007-12-01

    Technical Conference whose attendance expanded dramatically during his tenure. John moved to the NASA Johnson Space Center, Houston, Texas, in 1998 to work full time on orbital debris projects including the 3.0 meter Liquid Mirror Telescope and the CCD Debris Telescope in Cloudcroft, New Mexico. In 2000 he moved back to Colorado Springs, Colorado, to be closer to his family. From there he continued to support both the NASA Orbital Debris Program Office (ODPO) and AMOS. John was very instrumental in establishing cooperative programs between the ODPO and AMOS, which will benefit both organizations for many years to come. John left an indelible mark on his programs and all those who knew and loved him. The impact of his untimely departure will reverberate for many years. As John's wife Linda put it, "John is now visiting the stars and galaxies he adored from afar." John is survived by his wife, Linda Ann Africano; two sons, James Keith and Brian Michael; a daughter, Monica Lynn Africano; a sister, Diana Smith; and four grandchildren. The author acknowledges valuable input from Brian Africano (University of Colorado at Colorado Springs), Eugene Stansbery (NASA), Mark Mulrooney (NASA contractor), Tom Kelecy (Boeing LTS, Inc.), Paul Sydney (Boeing LTS, Inc.), Kira Abercromby (NASA contractor), and Patrick Seitzer (University of Michigan).

  15. U-2 with fictitious NASA markings to support CIA cover story for pilot Gary Powers, shot down over S

    NASA Technical Reports Server (NTRS)

    1960-01-01

    After Francis Gary Powers was shot down over the Soviet Union during a CIA spy flight on 1 May 1960, NASA issued a press release with a cover story about a U-2 conducting weather research that may have strayed off course after the pilot 'reported difficulties with his oxygen equipment.' To bolster the cover-up, a U-2 was quickly painted in NASA markings, with a fictitious NASA serial number, and put on display for the news media at the NASA Flight Research Center at Edwards Air Force Base on 6 May 1960. The next day, Soviet Premier Nikita Kruschev exposed the cover-up by revealing that the pilot had been captured, and espionage equipment had been recovered from the wreckage. 7 May 1956 - NACA Director Dr. Hugh L. Dryden issues a press release stating that U-2 aircraft are conducting weather research for NACA with Air Force support from Watertown, Nevada. 22 May 1956 - A second press release is issued with cover story for U-2 aircraft operating overseas. 1 May 1960 - Francis Gary Powers is shot down near Sverdlovsk. 6 May 1960 - U-2 with fictitious NASA serial number and NASA markings is shown to news media to bolster cover story of NASA weather research flights with U-2. 7 May 1960 - Soviet Premier Kruschev announces capture and confession of Powers. 1960 - Dr. Hugh L. Dryden tells senate committee that some 200 U-2 flights carrying NASA weather instrumentation have taken place since 1956. 2 April 1971 - NASA receives two U-2C aircraft for high-altitude research.

  16. An Evaluation of Selected NASA Scientific and Technical Information Products: Results of a Pilot Study.

    ERIC Educational Resources Information Center

    Pinelli, Thomas E.; Glassman, Myron

    A pilot study was conducted to evaluate selected NASA (National Aeronautics and Space Administration) scientific and technical information (STI) products. The study, which utilized survey research in the form of a self-administered mail questionnaire, had a two-fold purpose--to gather baseline data on the use and perceived usefulness of selected…

  17. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut John W. Young, command module pilot, inside the Command Module Simulator in bldg 5 during an Apollo Simulation. Astronauts Thomas P. Stafford, commander and Eugene A. Cernan, lunar module pilot are out of the view.

  18. Celebrating John Glenn’s Legacy

    NASA Image and Video Library

    2012-03-02

    Wife of former astronaut and Senator John Glenn, Annie Glenn, listens intently to Cleveland State University Master of Music Major James Binion Jr. as he sings a musical tribute during an event celebrating John Glenn's legacy and 50 years of americans in orbit held at the university's Wolstein Center on Friday, March 3, 2012 in Cleveland, Ohio. Glenn became the first American to orbit Earth in 1962. Photo Credit: (NASA/Bill Ingalls)

  19. Endeavour sitting atop NASA's Shuttle Carrier Aircraft (SCA)

    NASA Image and Video Library

    2012-09-19

    Space Shuttle Endeavour is ferried by NASA's Shuttle Carrier Aircraft (SCA) over the Johnson Space Center in Houston, Texas on September 19, 2012. NASA pilots Jeff Moultrie and Bill Rieke are at the controls of the Shuttle Carrier Aircraft. Photo taken by NASA photographer Sheri Locke in the backseat of a NASA T-38 chase plane with NASA pilot Thomas E. Parent at the controls. Photo Credit: NASA/ Sheri Locke

  20. Crippen, pilot for STS-1, during a training session

    NASA Image and Video Library

    1978-03-22

    S79-25014 (13 Dec. 1978) --- Astronaut Robert L. Crippen, pilot of the first space shuttle orbital flight test (STS-1), eases into a water immersion facility (WIF) during a training session in the Johnson Space Center?s training and test facility (Bldg. 260). The WIF affords one of two ways to simulate the feeling of weightlessness experienced during space extravehicular activity (EVA), the other being inside aircraft flying a parabolic curve. Crippen will be joined by astronaut John W. Young, commander for the STS-1 flight. Photo credit: NASA

  1. Jeff Greulich, DynCorp life support technician, adjusts a prototype helmet on a NASA Dryden pilot. F

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Jeff Greulich, DynCorp life support technician, adjusts a prototype helmet on pilot Craig Bomben at NASA Dryden Flight Research Center, Edwards, Calif. Built by Gentex Corp., Carbondale, Pa., the helmet was evaluated by five NASA pilots during the summer and fall of 2002. The objective was to obtain data on helmet fit, comfort and functionality. The inner helmet of the modular system is fitted to the individual crewmember. The outer helmet features a fully integrated spectral mounted helmet display and a binocular helmet mounted display. The helmet will be adaptable to all flying platforms. The Dryden evaluation was overseen by the Center's Life Support office. Assessments have taken place during normal proficiency flights and some air-to-air combat maneuvering. Evaluation platforms included the F-18, B-52 and C-12. The prototype helmet is being developed by the Naval Air Science and Technology Office and the Aircrew Systems Program Office, Patuxent River, Md.

  2. Analysis of general aviation single-pilot IFR incident data obtained from the NASA aviation safety reporting system

    NASA Technical Reports Server (NTRS)

    Bergeron, H. P.

    1980-01-01

    Data obtained from the NASA Aviation Safety Reporting System (ASRS) data base were used to determine problems in general aviation single pilot IFR operations. The data examined consisted of incident reports involving flight safety in the National Aviation System. Only those incidents involving general aviation fixed wing aircraft flying under IFR in instrument meteorological conditions were analyzed. The data were cataloged into one of five major problem areas: (1) controller judgement and response problems; (2) pilot judgement and response problems; (3) air traffic control intrafacility and interfacility conflicts; (4) ATC and pilot communications problems; and (5) IFR-VFR conflicts. The significance of the related problems, and the various underlying elements associated with each are discussed. Previous ASRS reports covering several areas of analysis are reviewed.

  3. Celebrating John Glenn’s Legacy

    NASA Image and Video Library

    2012-03-02

    Cleveland State University Master of Music Major James Binion Jr. sings a musical tribute during an event celebrating John Glenn's legacy and 50 years of americans in orbit held at the university's Wolstein Center on Friday, March 3, 2012 in Cleveland, Ohio. In 1998 Lindsey flew onboard the space shuttle Discovery along with then 77 year-old Sen. John Glenn for the STS-95 mission. Glenn became the first American to orbit Earth in 1962. Photo Credit: (NASA/Bill Ingalls)

  4. Astronaut John Glenn - Crew Quarters - Prelaunch - Cape

    NASA Image and Video Library

    1962-02-20

    S62-00377 (20 Feb. 1962) --- Astronaut John H. Glenn Jr., walking out of building with Dr. William K. Douglas (to Glenn's left), and Joe W. Schmitt, NASA's suit technician (in front of Dr. Douglas). This Mercury Atlas 6 (MA-6) ?Friendship 7? flight marks America's first manned Earth-orbiting spaceflight. Photo credit: NASA

  5. Research pilots at NASA Dryden tested a prototype helmet during the summer and fall of 2002. The obj

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Research pilots from the NASA Dryden Flight Research Center, Edwards, Calif., tested a prototype two-part helmet. Built by Gentex Corp., Carbondale, Pa., the helmet was evaluated by five NASA pilots during the summer and fall of 2002. The objective was to obtain data on helmet fit, comfort and functionality. The inner helmet of the modular system is fitted to the individual crewmember. The outer helmet features a fully integrated spectral mounted helmet display and a binocular helmet mounted display. The helmet will be adaptable to all flying platforms. The Dryden evaluation was overseen by the Center's Life Support office. Assessments have taken place during normal proficiency flights and some air-to-air combat maneuvering. Evaluation platforms included the F-18, B-52 and C-12. The prototype helmet is being developed by the Naval Air Science and Technology Office and the Aircrew Systems Program Office, Patuxent River, Md.

  6. Astronaut John H. Glenn

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Astronaut John H. Glenn, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The MA-6 mission, boosted by the Mercury-Atlas vehicle, was the first manned orbital launch by the United States, and carried Astronaut Glenn aboard the Friendship 7 spacecraft to orbit the Earth.

  7. Astronaut John Young in Command Module Simulator during Apollo Simulation

    NASA Image and Video Library

    1968-01-15

    S68-15979 (15 Jan. 1968) --- Astronaut John W. Young, command module pilot, inside the Command Module Simulator in Building 5 during an Apollo Simulation. Out of view are astronaut Thomas P. Stafford (on the left), commander; and astronaut Eugene A. Cernan (on the right), lunar module pilot.

  8. Astronaut John Young during final suiting operations for Apollo 10 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, jokes with Donald K. Slayton (standing left), Director of Flight Crew Operations, Manned Spacecraft Center, during Apollo 10 suiting up operations. On couch in background is Astronaut Eugene A. Cernan, lunar module pilot.

  9. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    Students listen intently while Astronaut John Mace Grunsfeld speaks at NASA's Earth Day event. The event took place at Union Station in Washington, DC on April 22, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  10. John Glenn Prepares for a Test in the Multi-Axis Space Test Inertia Facility

    NASA Image and Video Library

    1960-02-21

    Mercury astronaut John Glenn prepares for a test in the Multi-Axis Space Test Inertia Facility (MASTIF) inside the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The MASTIF was a three-axis test rig with a pilot’s chair mounted in the center. The device was designed to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig was then spun on three axes from 2 to 50 rotations per minute. Small nitrogen gas thrusters were used by the astronauts to bring the MASTIF under control. In February and March 1960, the seven Project Mercury astronauts traveled to Cleveland to train on the MASTIF. Warren North and a team of air force physicians were on hand to monitor their health. After being briefed by Lewis pilot Joe Algranti and researcher James Useller, the rider would climb into the rig and be secured in the chair, as seen in this photograph. A Lewis engineer would then slowly set the MASTIF in motion. It was the astronaut’s job to bring it under control. Each individual was required to accumulate 4.5 to 5 hours of MASTIF time. Glenn became the first American to orbit the earth on February 20, 1962 in the Friendship 7 Mercury capsule. In March 1999, the Lewis Research Center was renamed the John H. Glenn Research Center at Lewis Field.

  11. Obituary: John J. Hillman, 1938-2006

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy

    2007-12-01

    John J. Hillman, a dedicated NASA civil servant, spectroscopist, astrophysicist, planetary scientist, and mentor, died on February 12, 2006 of ocular melanoma at his home in Columbia, Maryland. His professional and personal interests were wide-reaching and varied, and he devoted his career to the advancement of our understanding of the beauty and wonder in the world around us. His love of nature, art, and science made him a true Renaissance man. John was born in Fort Jay, New York, on November 22, 1938, and was raised in Washington, D.C. He received his B.S., M.S., and Ph.D. degrees in Physics from American University in 1967, 1970, and 1975, respectively. He began working at NASA's Goddard Space Flight Center, then in its infancy, in 1969, juggling a full-time position as a Research Physicist, the completion of his M.S. and Ph.D. degrees, and a young family. His background in molecular spectroscopy enabled him to apply his skills to numerous disciplines within NASA: infrared and radio astronomy; electronic, vibrational, and rotational structure of interstellar molecules; solar and stellar atmospheres; and planetary atmospheres. He published more than 70 journal papers in these disciplines. He was a frequent contributor to the Ohio State University International Symposium on Molecular Spectroscopy, and possessed a rare ability to bridge the gap between laboratory and remote sensing spectroscopy, bringing scientists from different disciplines together to understand our Universe. The last fifteen years of John's career were devoted to the development of acousto-optic tunable filter (AOTF) cameras. He championed this technology as a low-cost, low-power alternative to traditional imaging cameras for in situ or remotely sensed planetary exploration. It was within this context that I got to know John, and eventually worked closely with him on the demonstration and application of this technology for planetary science using ground-based telescopes in New Mexico, California

  12. NASA Social for the Launch of Orion

    NASA Image and Video Library

    2014-12-03

    At NASA's Kennedy Space Center in Florida, NASA leaders spoke to social media participants as the Orion spacecraft and its Delta IV Heavy rocket were being prepared for launch. Speakers included, from the left, NASA Associate Administrator Human Exploration and Operations Bill Gerstenmaier, Associate Administrator for the agency's Science Mission Directorate John Grunsfeld, Associate Administrator for the Space Technology Directorate Michael Gazaria, NASA Chief Scientist Ellen Stofan, and Chief Technologist David Miller. Moderator for the panel session was John Yembrick, with the microphone on the far right, who is NASA's social media lead at the agency's Headquarters in Washington.

  13. ASTRONAUT CRIPPEN, ROBERT L. - PILOT - STS-1 - TRAINING - JSC

    NASA Image and Video Library

    1978-03-22

    S79-25007 (13 Dec. 1978) --- Astronaut Robert L. Crippen, pilot for the first space shuttle orbital flight test (STS-1), is assisted by technicians prior to entering a water immersion facility (WIF) during a training session. The zero-gravity familiarization took place in the Johnson Space Center?s training and test center (Building 260). The WIF afford one of two ways to simulate the feeling of weightlessness experienced during space extravehicular activity (EVA), the other being inside aircraft flying a parabolic curve. Crippen will be joined by astronaut John W. Young for the STS-1 flight. Photo credit: NASA

  14. Open Collaboration: A Problem Solving Strategy That Is Redefining NASA's Innovative Spirit

    NASA Technical Reports Server (NTRS)

    Rando, Cynthia M.; Fogarty, Jennifer A.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2011-01-01

    In 2010, NASA?s Space Life Sciences Directorate announced the successful results from pilot experiments with open innovation methodologies. Specifically, utilization of internet based external crowd sourcing platforms to solve challenging problems in human health and performance related to the future of spaceflight. The follow-up to this success was an internal crowd sourcing pilot program entitled NASA@work, which was supported by the InnoCentive@work software platform. The objective of the NASA@work pilot was to connect the collective knowledge of individuals from all areas within the NASA organization via a private web based environment. The platform provided a venue for NASA Challenge Owners, those looking for solutions or new ideas, to pose challenges to internal solvers, those within NASA with the skill and desire to create solutions. The pilot was launched in 57 days, a record for InnoCentive and NASA, and ran for three months with a total of 20 challenges posted Agency wide. The NASA@work pilot attracted over 6000 participants throughout NASA with a total of 183 contributing solvers for the 20 challenges posted. At the time of the pilot?s closure, solvers provided viable solutions and ideas for 17 of the 20 posted challenges. The solver community provided feedback on the pilot describing it as a barrier breaking activity, conveying that there was a satisfaction associated with helping co-workers, that it was "fun" to think about problems outside normal work boundaries, and it was nice to learn what challenges others were facing across the agency. The results and the feedback from the solver community have demonstrated the power and utility of an internal collaboration tool, such as NASA@work.

  15. The NASA John C. Stennis Environmental Geographic Information System

    NASA Technical Reports Server (NTRS)

    Cohan, Tyrus; Grant, Kerry

    2002-01-01

    In addition to the Environmental Geographic Information System (EGIS) presentation, we will present two live demonstrations of a portion of the work being performed in support of environmental operations onsite and NASA-wide. These live demonstrations will showcase the NASA EGIS database through working versions of two software packages available from Environmental Systems Research Institute, Inc. (ESRI, Inc.): ArcIMS 3.0 and either ArcView 3.2a or ArcGIS 8.0.2. Using a standard web browser, the ArcIMS demo will allow users to access a project file containing several data layers found in the EGIS database. ArcIMS is configured so that a single computer can be used as the data server and as the user interface, which allows for maximum Internet security because the computer being used will not actually be connected to the World Wide Web. Further, being independent of the Internet, the demo will run at an increased speed. This demo will include several data layers that are specific to Stennis Space Center. The EGIS database demo is a representative portion of the entire EGIS project sent to NASA Headquarters last year. This demo contains data files that are readily available at various government agency Web sites for download. Although these files contain roads, rails, and other infrastructure details, they are generalized and at a small enough scale that they provide only a general idea of each NASA center's surroundings rather than specific details of the area.

  16. Location of John Klein Drill Site

    NASA Image and Video Library

    2013-03-12

    This false-color map shows the area within Gale Crater on Mars, where NASA Curiosity rover landed on Aug. 5, 2012 PDT Aug. 6, 2012 EDT and the location where Curiosity collected its first drilled sample at the John Klein rock.

  17. Analysis of general aviation single-pilot IFR incident data obtained from the NASA Aviation Safety Reporting System

    NASA Technical Reports Server (NTRS)

    Bergeron, H. P.

    1983-01-01

    An analysis of incident data obtained from the NASA Aviation Safety Reporting System (ASRS) has been made to determine the problem areas in general aviation single-pilot IFR (SPIFR) operations. The Aviation Safety Reporting System data base is a compilation of voluntary reports of incidents from any person who has observed or been involved in an occurrence which was believed to have posed a threat to flight safety. This paper examines only those reported incidents specifically related to general aviation single-pilot IFR operations. The frequency of occurrence of factors related to the incidents was the criterion used to define significant problem areas and, hence, to suggest where research is needed. The data was cataloged into one of five major problem areas: (1) controller judgment and response problems, (2) pilot judgment and response problems, (3) air traffic control (ATC) intrafacility and interfacility conflicts, (4) ATC and pilot communication problems, and (5) IFR-VFR conflicts. In addition, several points common to all or most of the problems were observed and reported. These included human error, communications, procedures and rules, and work load.

  18. STS-35 crew and NASA management inspect OV-102 after landing at EAFB, Calif

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 NASA JSC Flight Crew Operations Directorate (FCOD) Director Donald R. Puddy (center) joins the STS-35 crewmembers in a post landing walk-around inspection of Columbia, Orbiter Vehicle (OV) 102, at Edwards Air Force Base (EAFB), California. Crewmembers, wearing launch and entry suits (LESs), include (left to right) Commander Vance D. Brand, Mission Specialist (MS) John M. Lounge, Payload Specialist Ronald A. Parise, Pilot Guy S. Gardner, and MS Jeffrey A. Hoffman. NASA Associate Administrator for Space Flight Dr. William B. Lenoir is at far left in the background. OV-102 landed on concrete runway 22 at EAFB at 9:54:09 pm (Pacific Standard Time (PST)). OV-102's nose cone and nose landing gear (NLG) door are visible at the left corner of the frame.

  19. ASTRONAUT GLENN, JOHN - MERCURY SPACE SUIT

    NASA Image and Video Library

    1962-02-20

    S62-00965 (20 Feb. 1962) --- Astronaut John H. Glenn Jr., finishes suiting up, and prepares for the launch of his Mercury-Atlas 6 (MA-6) spacecraft. The MA-6 ?Friendship 7? mission marks America's first manned Earth-orbiting spaceflight. Photo credit: NASA

  20. An evaluation of selected NASA scientific and technical information products: Results of a pilot study

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Myron

    1989-01-01

    A pilot study was conducted to evaluate selected NASA scientific and technical information (STI) products. The study, which utilized survey research in the form of a self-administered mail questionnaire, had a two-fold purpose -- to gather baseline data regarding the use and perceived usefulness of selected NASA STI products and to develop/validate questions that could be used in a future study concerned with the role of the U.S. government technical report in aeronautics. The sample frame consisted of 25,000 members of the American Institute of Aeronautics and Astronautics in the U.S. with academic, government or industrial affiliation. Simple random sampling was used to select 2000 individuals to participate in the study. Three hundred fifty-three usable questionnaires (17 percent response rate) were received by the established cutoff date. The findings indicate that: (1) NASA STI is used and is generally perceived as being important; (2) the use rate for NASA-authored conference/meeting papers, journal articles, and technical reports is fairly uniform; (3) a considerable number of respondents are unfamiliar with STAR (Scientific and Technical Aerospace Reports), IAA (International Aerospace Abstracts), SCAN (Selected Current Aerospace Notices), and the RECON on-line retrieval system; (4) a considerable number of respondents who are familiar with these media do not use them; and (5) the perceived quality of NASA-authored journal articles and technical reports is very good.

  1. Astronaut John Glenn tests balance mechanism performance

    NASA Image and Video Library

    1962-02-01

    S64-14849 (1962) --- Astronaut John H. Glenn Jr.'s balance mechanism (semi-circular-canals) is tested by running cool water into his ear and measuring effect on eye motions (nystagmus). Photo credit: NASA

  2. Astronaut John Glenn - Blood Draw - Training - Cape

    NASA Image and Video Library

    1961-07-05

    S61-02579 (1961) --- Astronaut nurse Delores B. O'Hara, R.N., in the Aeromedical Laboratory at Cape Canaveral, Florida, takes a blood sample from Mercury astronaut John H. Glenn Jr. Photo credit: NASA

  3. Mr. John Danilovich, US Ambassador to Costa Rica, and NASA Administrator Sean O'Keefe at the AirSAR 2004 Mesoamerica hangar naming ceremony

    NASA Image and Video Library

    2004-03-03

    Mr. John Danilovich, US Ambassador to Costa Rica, and NASA Administrator Sean O'Keefe at the AirSAR 2004 Mesoamerica hangar naming ceremony. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  4. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld talks during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  5. NASA Exploration Forum: Human Path to Mars

    NASA Image and Video Library

    2014-04-29

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks during an Exploration Forum showcasing NASA's human exploration path to Mars in the James E. Webb Auditorium at NASA Headquarters on Tuesday, April 29, 2014. Photo Credit: (NASA/Joel Kowsky)

  6. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Sen. John Glenn delivers the closing remarks for NASA's Future Forum at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  7. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    NASA Administrator Charles Bolden, right, talks as Sen. John Glenn, and Ohio State University Graduate Research Associate Vijay Gadepally, left, listen during a NASA Future Forum panel discussion at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  8. The 2014 tanana inventory pilot: A USFS-NASA partnership to leverage advanced remote sensing technologies for forest inventory

    Treesearch

    Hans-Erik Andersen; Chad Babcock; Robert Pattison; Bruce Cook; Doug Morton; Andrew Finley

    2015-01-01

    Interior Alaska (approx. 112 million forested acres in size) is the last remaining forested area within the United States where the Forest Inventory and Analysis (FIA) program is not currently implemented. A joint NASA-FIA inventory pilot project was carried out in 2014 to increase familiarity with interior Alaska logistics and evaluate the utility of state-of-the-art...

  9. Open Collaboration: A Problem Solving Strategy That is Redefining NASA's Innovative Spirit

    NASA Technical Reports Server (NTRS)

    Rando, Cynthia M.; Fogarty, Jennifer A.; Richard, E. E.; Davis, Jeffrey R.

    2011-01-01

    In 2010, NASA's Space Life Sciences Directorate announced the successful results from pilot experiments with open innovation methodologies. Specifically, utilization of internet based external crowdsourcing platforms to solve challenging problems in human health and performance related to the future of spaceflight. The follow-up to this success was an internal crowdsourcing pilot program entitled NASA@work, which was supported by the InnoCentive@work software platform. The objective of the NASA@work pilot was to connect the collective knowledge of individuals from all areas within the NASA organization via a private web based environment. The platform provided a venue for NASA Challenge Owners, those looking for solutions or new ideas, to pose challenges to internal solvers, those within NASA with the skill and desire to create solutions. The pilot was launched in 57 days, a record for InnoCentive and NASA, and ran for three months with a total of 20 challenges posted Agency wide. The NASA@work pilot attracted over 6,000 participants throughout NASA with a total of 183 contributing solvers for the 20 challenges posted. At the time of the pilot's closure, solvers provided viable solutions and ideas for 17 of the 20 posted challenges. The solver community provided feedback on the pilot describing it as a barrier breaking activity, conveying that there was a satisfaction associated with helping co-workers, that it was fun to think about problems outside normal work boundaries, and it was nice to learn what challenges others were facing across the agency. The results and the feedback from the solver community have demonstrated the power and utility of an internal collaboration tool, such as NASA@work.

  10. John H Glenn Jr. Receives Presidential Medal of Freedom

    NASA Image and Video Library

    2012-05-29

    President Barack Obama presents former United States Marine Corps pilot, astronaut and United States Senator John Glenn with a Medal of Freedom, Tuesday, May 29, 2012, during a ceremony at the White House in Washington.

  11. More than 200 Dryden staff formed two long lines on the Dryden ramp to greet retired research pilot Gordon Fullerton after his final flight in a NASA F/A-18.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  12. 50th anniversary of the inauguration of John F. Kennedy

    NASA Image and Video Library

    2011-01-20

    NASA Administrator Charles Bolden. 3rd from left, introduces Edward Moore Kennedy III, 4th from left, to NASA Astronaut Leland Melvin, left, and former NASA Astronaut Scott Altman, 2nd from left, as Edward's mother Kiki Kennedy, wife of Edward M Kennedy Jr. and NASA Deputy Administrator Lori Garver, right, look on at an event recognizing the 50th anniversary of the inauguration of John F. Kennedy as president of the United States, Thursday, Jan. 20, 2001 at the U.S. Capitol rotunda. Photo Credit: (NASA/Bill Ingalls)

  13. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld is seen in a video monitor during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  14. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks NASA Associate Administrator for the Science Mission Directorate John Grunsfeld a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  15. A happy "thumbs up" from the crew of the Space Shuttle Endeavour and NASA Dryden Flight Research Center officials heralded the successful completion of mission STS-100

    NASA Image and Video Library

    2001-05-01

    A happy "thumbs up" from the crew of the Space Shuttle Endeavour and NASA Dryden Flight Research Center officials heralded the successful completion of mission STS-100. Standing by the shuttle's rocket nozzles from left to right: Scott E. Prazynski, mission specialist (U.S.); Yuri V. Lonchakov, mission specialist (Russia); Kent V. Rominger, commander (U.S.); Wally Sawyer, NASA Dryden Flight Research Center deputy director; Kevin Petersen, NASA Dryden Flight Research Center director; Umberto Guidoni, mission specialist (European Space Agency); John L. Phillips, mission specialist (U.S.); Jeffrey S. Ashby, pilot (U.S.); and Chris A. Hadfield, mission specialist (Canadian Space Agency). The mission landed at Edwards Air Force Base, California, on May 1, 2001.

  16. NASA Earth Day 2014

    NASA Image and Video Library

    2014-04-22

    NASA Astronaut John Mace Grunsfeld takes a quick selfie with astronauts at the International Space Station at the NASA sponsored Earth Day event April 22, 2014 at Union Station in Washington, DC. NASA announced the "Global Selfie" event as part of its "Earth Right Now" campaign, celebrating the launch of five Earth-observing missions in 2014. All selfies posted to social media with the hashtag "GlobalSelfie" will be included in a mosaic image of Earth. Photo Credit: (NASA/Aubrey Gemignani)

  17. Evaluation of the NASA Quality Surveillance System Pilot in Meeting Requirements for Contractor Surveillance Under Performance Based Contracting

    NASA Technical Reports Server (NTRS)

    Schmahl, Karen E.

    2002-01-01

    The use of performance-based contracting at Kennedy Space Center has necessitated a shift from intrusive oversight of contractor activities to an insight surveillance role. This paper describes the results of a pilot implementation of the NASA Quality Surveillance System (NQSS) in the Space Shuttle Main Engines Processing Facility. The NQSS is a system to sample contractor activities using documented procedures, specifications, drawings and observations of work in progress to answer the question "Is the contractor doing what they said they would do?" The concepts of the NQSS are shown to be effective in providing assurance of contractor quality. Many of the concepts proven in the pilot are being considered for incorporation into an overall KSC Quality Surveillance System.

  18. Evaluation Of The NASA Quality Surveillance System Pilot In Meeting Requirements For Contractor Surveillance Under Performance Based Contracting

    NASA Technical Reports Server (NTRS)

    Schmahl, Karen E.

    2001-01-01

    The use of performance-based contracting at Kennedy Space Center has necessitated a shift from intrusive oversight of contractor activities to an insight surveillance role. This paper describes the results of a pilot implementation of the NASA Quality Surveillance System (NQSS) in the Space Shuttle Main Engines Processing Facility. The NQSS is a system to sample contractor activities using documented procedures, specifications, drawings and observations of work in progress to answer the question "Is the contractor doing what they said they would do?" The concepts of the NQSS are shown to be effective in providing assurance of contractor quality. Many of the concepts proven in the pilot are being considered for incorporation into an overall KSC Quality Surveillance System.

  19. Astronaut John Young ingresses Apollo spacecraft command module in training

    NASA Image and Video Library

    1968-07-05

    S68-40875 (5 July 1968) --- Astronaut John W. Young, Apollo 7 backup command module pilot, ingresses Apollo Spacecraft 101 Command Module during simulated altitude runs at the Kennedy Space Center's Pad 34.

  20. HL-10 after landing with pilot Bill Dana

    NASA Technical Reports Server (NTRS)

    1960-01-01

    in January 1966. Its first flight was on December 22 of the same year. The pilot was Bruce Peterson, before he was injured in the M2-F2 accident. The HL-10 was flown 37 times and it set several program records. On Feb. 18, 1970, Air Force test pilot Major Peter Hoag flew it to 1,228 m.p.h. (Mach 1.86), fastest speed of any of the lifting bodies. Nine days later, NASA pilot Bill Dana flew the HL-10 to 90,303 feet, the highest altitude reached by any of the lifting body vehicles. The HL-10 was also the first lifting body to fly supersonically -- on May 9, 1969, with NASA pilot John Manke at the controls. The HL-10 featured a flat bottom and rounded top -- much like an airfoil -- and it had a delta planform. In its final configuration, three vertical fins, two of them canted outwards from the body and a tall center fin, gave the craft directional control. A flush canopy blended into the smooth rounded nose. It was about 21 feet long, with a span of 13.6 feet. Its glide-flight weight was 6,473 pounds and its maximum gross weight was over 10,000 pounds. Flights with the HL-10 contributed substantially to the decision to design the space shuttles without air-breathing engines that would have been used for landings. Its final flight was on July 17, 1970. The HL-10 is now on public display at Dryden.

  1. Senate FY 2011 NASA Budget Overview

    NASA Image and Video Library

    2010-04-22

    John Frost, Council Member, NASA Aerospace Safety Advisory Panel, testifies at a Senate Subcommittee on Commerce, Justice, Science, and Related Agencies of the Appropriations Committee hearing concerning the FY 2011 NASA Budget, Thursday, April 22, 2010 at the Dirksen Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  2. Louisiana Governor John Bel Edwards Visits NASA’s Rocket Factory

    NASA Image and Video Library

    2017-11-01

    Louisiana Gov. John Bel Edwards visited NASA’s Michoud Assembly Facility in New Orleans and spoke about the state’s partnerships with NASA and the 20 companies and government agencies located at the facility. NASA is building its new deep space rocket, the Space Launch System, and the Orion spacecraft at Michoud.

  3. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    Dr. John Mather, NASA Goddard Space Flight Center scientist and Nobel Laureate, center, presents Gen. John R. “Jack” Dailey, director of the Smithsonian National Air and Space Museum, left, with a a replica of Mather’s Nobel Prize medal that flew in space aboard STS-132, as astronaut Piers Sellers looks on, during a ceremony at the museum, Tuesday, July 27, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)

  4. ASTRONAUT YOUNG, JOHN W. - ZERO-GRAVITY (ZERO-G) - KC-135

    NASA Image and Video Library

    1978-12-15

    S79-30347 (31 March 1979) --- Taking advantage of a brief period of zero-gravity afforded aboard a KC-135 flying a parabolic curve, the flight crew of the first space shuttle orbital flight test (STS-1) goes through a spacesuit donning exercise. Astronaut John W. Young has just entered the hard-material torso of the shuttle spacesuit by approaching it from below. He is assisted by astronaut Robert L. Crippen. The torso is held in place by a special stand here, simulating the function provided by the airlock wall aboard the actual shuttle craft. The life support system is mated to the torso on Earth and remains so during the flight, requiring this type of donning and doffing exercise. Note Crippen?s suit is the type to be used for intravehicular activity in the shirt sleeve environment to be afforded aboard shuttle. The suit worn by Young is for extravehicular activity (EVA). Young will be STS-1 commander and Crippen, pilot. They will man the space shuttle orbiter 102 Columbia. Photo credit: NASA

  5. Unmanned Aircraft: A Pilot's Perspective

    NASA Technical Reports Server (NTRS)

    Pestana, Mark E.

    2010-01-01

    This slide presentation reviews some of the challenges of "piloting" a unmanned aircraft. The topic include the pilot-vehicle interact design, the concept of pilot/operator, and role of NASA's Ikhana UAS in the western states fire mission.

  6. F-18 HARV research pilot Dana Purifoy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dana D. Purifoy is an aerospace research pilot at NASA's Dryden Flight Research Center, Edwards, California. He joined NASA in August 1994. Purifoy is a former Air Force test pilot who served as a project pilot in the joint NASA/Air Force X-29 Forward Swept Wing research program conducted at Dryden from 1984 to 1991. His most recent assignment in the Air Force was flying U-2 aircraft as a test pilot at Air Force Plant 42, Palmdale, CA. In addition to flying the X-29 at Dryden as an Air Force pilot, Purifoy also served as project pilot and joint test force director with the AFTI F-16 (Advanced Fighter Technology Integration/F-16) program, also located at Dryden. Before his assignments as project pilot on the X-29 and AFTI/F-16 aircraft, Purifoy was chief of the Academics Systems Branch at the Air Force Test Pilot School at Edwards. Prior to becoming a test pilot, he flew F-111 and F-16 aircraft in Great Britain and Germany. He has accumulated 3800 hours of flying time in his career. The final flight for the F-18 High Alpha Research Vehicle (HARV) took place at NASA Dryden on May 29, 1996. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.

  7. APOLLO 16 ASTRONAUTS JOHN YOUNG AND CHARLES DUKE EXAMINE FAR ULTRAVIOLET CAMERA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 16 Lunar Module Pilot Charles M. Duke, Jr., left and Mission Commander John W. Young examine Far Ultraviolet Camera they will take to the Moon in March. They will measure the universe's ultraviolet spectrum. They will be launched to the Moon no earlier than March 17, 1972, with Command Module Pilot Thomas K. Mattingly, II.

  8. NACA/NASA test pilot Stanley P. Butchart

    NASA Technical Reports Server (NTRS)

    1954-01-01

    Stanley P. Butchart joined the National Advisory Committee for Aeronautics' High-Speed Flight Research Station on May 10, 1951. Stan was the fourth research pilot hired at the Station affording him the opportunity to fly the early research aircraft. Stan began a flying career while attending Junior College. He received primary and secondary civilian pilot training, enlisting in the U.S. Navy in July 1942. Stan took his Navy air training at Corpus Christi, Texas. Upon completion of training he was assigned to a torpedo-bomber Air Group, VT-51, flying Grumman-General Motors TBM Avenger, a torpedo-bomber, from the carrier San Jacinto in the South Pacific. When World War II ended, Stan was released from active duty as a Navy Lieutenant, with a Distinguished Flying Cross and a Presidential Unit Citation among his service medals. Butchart elected to stay in the Naval Reserve group and flew for an additional 5 years while he attended the University of Washington. By 1950, Stan had earned bachelor degrees in aeronautical engineering and mechanical engineering. After graduation he went to work for Boeing Aircraft as a junior design engineer and was assigned to the B-47 body group. In May 1951, he arrived at the NACA facility to start a career as a research pilot. Stan flew the Douglas D-558-I #3 (12 flights, first on October 19, 1951), the Douglas D-558-II #3 (2 pilot check-out flights, first on June 26, 1953), Northrop X-4 (4 flights, first on May 27, 1952), Bell X-5 (13 flights, first in early December 1952). Other aircraft flown on research projects were the Boeing KC-135 Stratotanker, Convair CV-990, Boeing B-52-003, Boeing B-747, North American F-100A, Convair F-102, Piper PA-30 Twin Comanche, General Dynamics F-111, Boeing B-720, Convair CV-880, and the Boeing B-47 Stratojet, his favorite. he also flew many other aircraft. Stan did nearly all of the big airplane work at the Center. The biggest work load was flying the Boeing B-29 Stratofortress (Navy designation: P2B

  9. Way Station to Space: A History of the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Herring, Mack R.

    1997-01-01

    A history of the NASA John C. Stennis Space Center is presented. A study of the Apollo era is provided. This new addition to the NASA history series is also an allegory of the Center's relationship to the local communities in Mississippi and Louisiana, its sister Centers, and to NASA Headquarters.

  10. NASA, John F. Kennedy Space Center environmental impact statement

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The probable total impact of the John F. Kennedy Space Center (KSC) operations on the environment is discussed in terms of launch operations emissions and environmental quality. A schedule of planned launches through 1973 is included with a description of the systems for eliminating harmful emissions during launch operations. The effects of KSC on wild life and environmental quality are discussed along with the irreversible and irretrievable commitments of natural resources.

  11. NASA Columbus Future Forum

    NASA Image and Video Library

    2012-02-20

    Ohio State University Graduate Research Associate Vijay Gadepally, left, listens as Sen. John Glenn talks during a NASA Future Forum panel discussion at The Ohio State University on Monday, Feb. 20, 2012, in Columbus, Ohio. Monday marked the 50th anniversary of Glenn's historic flight as the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  12. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    John Grunsfeld (far left), Associate Administrator for the Science Mission Directorate at NASA Headquarters, Dr. Francisco Javier Mendieta Jimenez, Director General of the Mexican Space Agency, NASA Administrator Charles Bolden, Leland Melvin, NASA Associate Administrator for Education and Al Condes (far right), Deputy Associate Administrator for International and Interagency Relations pose for a photo, Monday, March 18, 2013 at NASA Headquarters in Washington. A Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program was signed between the two agencies. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  13. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks with news media members at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex following a ceremony remembering astronaut Sen. John Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  14. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  15. Negotiations Between ABMA Officials and NASA Officials

    NASA Technical Reports Server (NTRS)

    1959-01-01

    In this picture, negotiations are under way between officials of the Army Ballistic Missile Agency (ABMA) and the National Aeronautics and Space Administration (NASA) on August 11, 1959. Seated at the table with his back to the camera, is Dr. T. Keith Glernan, NASA Administrator. At the head of the table is Major General John Barclay, Commander of ABMA and at the right side of the table are Colonel John G. Zierdt of ABMA and Dr. von Braun.

  16. Astronaut John Glenn running as part of physical training program

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, participates in a strict physical training program, as he exemplifies by frequent running. Here he pauses during an exercise period on the beach near Cape Canaveral, Florida.

  17. Remotely Piloted Aircraft for Research

    NASA Technical Reports Server (NTRS)

    Rezek, T. W.

    1985-01-01

    NASA Technical Memorandum presents overview of remotely-piloted research vehicle (RPRV) activities. Controlled from ground, vehicles allow new concepts tried without subjecting pilots to danger. Critical role of pilot in flight testing with RPRV's demonstrated repeatedly, and many system anomalies uncovered with no risk to human life.

  18. Jeff Greulich, DynCorp life support technician, adjusts a prototype helmet on a NASA Dryden pilot. Five pilots evaluated the helmet for fit, comfort and functionality during the summer and fall of 2002.

    NASA Image and Video Library

    2002-08-07

    Jeff Greulich, DynCorp life support technician, adjusts a prototype helmet on pilot Craig Bomben at NASA Dryden Flight Research Center, Edwards, Calif. Built by Gentex Corp., Carbondale, Pa., the helmet was evaluated by five NASA pilots during the summer and fall of 2002. The objective was to obtain data on helmet fit, comfort and functionality. The inner helmet of the modular system is fitted to the individual crewmember. The outer helmet features a fully integrated spectral mounted helmet display and a binocular helmet mounted display. The helmet will be adaptable to all flying platforms. The Dryden evaluation was overseen by the Center's Life Support office. Assessments have taken place during normal proficiency flights and some air-to-air combat maneuvering. Evaluation platforms included the F-18, B-52 and C-12. The prototype helmet is being developed by the Naval Air Science and Technology Office and the Aircrew Systems Program Office, Patuxent River, Md.

  19. Press Site Auditorium dedicated to John Holliman

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel S. Goldin hands Mrs. Dianne Holliman a plaque honoring her late husband, John Holliman, a CNN national correspondent. Standing behind Goldin is Center Director Roy Bridges. At right is Tom Johnson, news group chairman of CNN. A ceremony dedicated the KSC Press Site auditorium as the John Holliman Auditorium to honor the correspondent for his enthusiastic, dedicated coverage of America's space program. The auditorium was built in 1980 and has been the focal point for new coverage of Space Shuttle launches. The ceremony followed the 94th launch of a Space Shuttle, on mission STS-96, earlier this morning.

  20. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183523 (3 Nov. 2010) --- NASA astronauts Rex Walheim (left), STS-135 mission specialist; and Doug Hurley, pilot, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  1. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183524 (3 Nov. 2010) --- NASA astronauts Rex Walheim (left), STS-135 mission specialist; and Doug Hurley, pilot, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  2. STS-335 crew training, EVA TPS Overview with instructor John Ray

    NASA Image and Video Library

    2010-11-03

    JSC2010-E-183519 (3 Nov. 2010) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration

  3. NASA as a Convener: Government, Academic and Industry Collaborations Through the NASA Human Health and Performance Center

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2011-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 60 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed below. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations are in development: Space Act Agreement between NASA and GE for collaborative projects, NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011), NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011), NASA and the San Diego Zoo

  4. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    John Logsdon, professor emeritus of Political Science and International Affairs, Elliott School of International Affairs, George Washington University, talks during the NASA Future Forum panel titled "Shifting Roles for Public, Private, and International Players in Space" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  5. Astronaut John Glenn practices insertion into Mercury spacecraft

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 mission, practices insertion into the Mercury 'Friendship 7' spacecraft during MA-6 preflight training activity at Cape Canveral, Florida. He is wearing the full pressure suit and helmet (00993); Glenn practices insertion into Mercury capsule with help of a McDonnell Aircraft Corporation technician (00994).

  6. Astronaut John Young during final suiting operations for Apollo 10 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A technician attaches hose from test stand to spacesuit of Astronaut John W. Young, Apollo 10 command module pilot, during final suiting operations for the Apollo 10 lunar orbit mission. Another technician makes adjustment behind Young.

  7. PA-30 Twin Comanche - NASA 808 in flight

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Dryden Flight Research Center's Piper PA-30 Twin Commanche, which helped validate the RPRV concept, descends to a remotely controlled landing on Rogers Dry Lake, unassisted by the onboard pilot. A Piper PA-30 Twin Commanche, known as NASA 808, was used at the NASA Dryden Flight Research Center as a rugged workhorse in a variety of research projects associated with both general aviation and military projects. In the early 1970s, the PA-30, serial number 301498, was used to test a flight technique used to fly Remotely Piloted Research Vehicles (RPRV's). The technique was first tested with the cockpit windows of the light aircraft blacked out while the pilot flew the aircraft utilizing a television monitor which gave him a 'pilot's eye' view ahead of the aircraft. Later pilots flew the aircraft from a ground cockpit, a procedure used with all RPRV's. TV and two-way telemetry allow the pilot to be in constant control of the aircraft. The apparatus mounted over the cockpit is a special fish eye lens camera, used to obtain images that are transmitted to the ground based cockpit. This project paved the way for sophisticated, highly successful research programs involving high risk spin, stall, and flight control conditions, such as the HiMAT and the subscale F-15 remotely piloted vehicles. Over the years, NASA 808 has also been used for spin and stall research related to general aviation aircraft and also research to alleviate wake vortices behind large jetliners.

  8. PA-30 Twin Comanche - NASA 808 in flight

    NASA Image and Video Library

    1971-10-08

    Dryden Flight Research Center's Piper PA-30 Twin Commanche, which helped validate the RPRV concept, descends to a remotely controlled landing on Rogers Dry Lake, unassisted by the onboard pilot. A Piper PA-30 Twin Commanche, known as NASA 808, was used at the NASA Dryden Flight Research Center as a rugged workhorse in a variety of research projects associated with both general aviation and military projects. In the early 1970s, the PA-30, serial number 301498, was used to test a flight technique used to fly Remotely Piloted Research Vehicles (RPRV's). The technique was first tested with the cockpit windows of the light aircraft blacked out while the pilot flew the aircraft utilizing a television monitor which gave him a "pilot's eye" view ahead of the aircraft. Later pilots flew the aircraft from a ground cockpit, a procedure used with all RPRV's. TV and two-way telemetry allow the pilot to be in constant control of the aircraft. The apparatus mounted over the cockpit is a special fish eye lens camera, used to obtain images that are transmitted to the ground based cockpit. This project paved the way for sophisticated, highly successful research programs involving high risk spin, stall, and flight control conditions, such as the HiMAT and the subscale F-15 remotely piloted vehicles. Over the years, NASA 808 has also been used for spin and stall research related to general aviation aircraft and also research to alleviate wake vortices behind large jetliners.

  9. Single-Pilot Workload Management

    NASA Technical Reports Server (NTRS)

    Rogers, Jason; Williams, Kevin; Hackworth, Carla; Burian, Barbara; Pruchnicki, Shawn; Christopher, Bonny; Drechsler, Gena; Silverman, Evan; Runnels, Barry; Mead, Andy

    2013-01-01

    Integrated glass cockpit systems place a heavy cognitive load on pilots (Burian Dismukes, 2007). Researchers from the NASA Ames Flight Cognition Lab and the FAA Flight Deck Human Factors Lab examined task and workload management by single pilots. This poster describes pilot performance regarding programming a reroute while at cruise and meeting a waypoint crossing restriction on the initial descent.

  10. Curiosity Rover Self Portrait at John Klein Drilling Site

    NASA Image and Video Library

    2013-02-07

    The rover is positioned at a patch of flat outcrop called John Klein, which was selected as the site for the first rock-drilling activities by NASA Curiosity. This self-portrait was acquired to document the drilling site.

  11. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06940 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) is assisted by Carlous Gillis in suiting up for a training exercise at the Johnson Space Center's systems integration facility. Glenn is scheduled to join a second payload specialist and five NASA astronauts for a mission aboard the Space Shuttle Disovery later this year. This day's training was scheduled for the STS-95 crewmembers to rehearse launch readiness procedures. The photo was taken by Joe McNally, National Geographic, for NASA.

  12. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former astronauts Bob Cabana, director of NASA's Kennedy Space Center in Florida, from left, Jon McBride, Al Worden and Winston Scott pose outside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex following a ceremony remembering astronaut Sen. John Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  13. NASA researchers in gold control room during an F-15 HiDEC flight, John Orme and Gerard Schkolnik

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA researchers Gerard Schkolnik (left) and John Orme monitor equipment in the control room at the Dryden Flight Research Center, Edwards, California, during a flight of an F-15 Highly Integrated Digital Electronic Control (HIDEC) research aircraft. The system was developed on the F-15 to investigate and demonstrate methods of obtaining optimum aircraft performance. The major elements of HIDEC were a Digital Electronic Flight Control System (DEFCS), a Digital Electronic Engine Control (DEEC), an on-board general purpose computer, and an integrated architecture to allow all components to 'talk to each other.' Unlike standard F-15s, which have a mechanical and analog electronic flight control system, the HIDEC F-15 also had a dual-channel, fail-safe digital flight control system programmed in Pascal. It was linked to the Military Standard 1553B and a H009 data bus which tied all the other electronic systems together.

  14. First NASA Aviation Safety Program Weather Accident Prevention Project Annual Review

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2000-01-01

    The goal of this Annual Review was to present NASA plans and accomplishments that will impact the national aviation safety goal. NASA's WxAP Project focuses on developing the following products: (1) Aviation Weather Information (AWIN) technologies (displays, sensors, pilot decision tools, communication links, etc.); (2) Electronic Pilot Reporting (E-PIREPS) technologies; (3) Enhanced weather products with associated hazard metrics; (4) Forward looking turbulence sensor technologies (radar, lidar, etc.); (5) Turbulence mitigation control system designs; Attendees included personnel from various NASA Centers, FAA, National Weather Service, DoD, airlines, aircraft and pilot associations, industry, aircraft manufacturers and academia. Attendees participated in discussion sessions aimed at collecting aviation user community feedback on NASA plans and R&D activities. This CD is a compilation of most of the presentations presented at this Review.

  15. John Young-NASA’s Longest Serving Astronaut

    NASA Image and Video Library

    2018-01-06

    This music video takes a look back at the NASA career of astronaut John Young, who died Friday night following complications from pneumonia at the age of 87. Young is the only agency astronaut to go into space as part of the Gemini, Apollo and space shuttle programs, and the first to fly into space six times.

  16. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    Leland Melvin (right), NASA Associate Administrator for Education, along with the head of the Mexican Space Agency, Dr. Francisco Javier Mendieta Jimenez shake hands after signing a Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program as NASA Administrator Charles Bolden looks on, Monday, March 18, 2013 at NASA Headquarters in Washington. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  17. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    NASA Administrator Charles Bolden (center) presents Dr. Francisco Javier Mendieta Jimenez, Director General of the Mexican Space Agency, a NASA montage in honor of the Reimbursable Space Act Agreement (RSAA) signed between the two agencies, Monday, March 18, 2013 at NASA Headquarters in Washington. Leland Melvin (right), NASA Associate Administrator for Education looks on. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  18. Mexican Space Agency and NASA Agreement

    NASA Image and Video Library

    2013-03-18

    Leland Melvin (right), NASA Associate Administrator for Education, along with the head of the Mexican Space Agency, Dr. Francisco Javier Mendieta Jimenez pose for a photo after signing a Reimbursable Space Act Agreement (RSAA) for a NASA International Internship Program as NASA Administrator Charles Bolden looks on, Monday, March 18, 2013 at NASA Headquarters in Washington. The International Internship Program is a pilot program developed at NASA which will provide and avenue for non-US students to come to NASA for an internship. US students will be paired with a foreign student to work on a NASA research project under the guidance of a mentor. This is the first NASA-Mexico agreement signed. Photo Credit: (NASA/Carla Cioffi)

  19. John Glenn and rest of STS-95 crew exit Crew Transport Vehicle

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Following touchdown at 12:04 p.m. EST at the Shuttle Landing Facility, the mission STS-95 crew leave the Crew Transport Vehicle. Payload Specialist John H. Glenn Jr. (center), a senator from Ohio, shakes hands with NASA Administrator Daniel S. Goldin. At left is Center Director Roy Bridges. Other crew members shown are Pilot Steven W. Lindsey (far left) and, behind Glenn, Mission Specialists Scott E. Parazynski and Stephen K. Robinson, and Payload Specialist Chiaki Mukai, Ph.D., M.D., with the National Space Development Agency of Japan. Not seen are Mission Commander Curtis L. Brown Jr. and Mission Specialist Pedro Duque of Spain, with the European Space Agency (ESA). The STS-95 crew completed a successful mission, landing at the Shuttle Landing Facility at 12:04 p.m. EST, after 9 days in space, traveling 3.6 million miles. The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  20. Bolden Glenn Lecture Series

    NASA Image and Video Library

    2012-06-27

    Former United States Marine Corps pilot, astronaut, and United States Sen. John Glenn speaks to those in attendance as he introduces NASA Administrator Charles Bolden as the speaker for the 2012 John H. Glenn Lecture in Space History, Wednesday evening, June 27, 2012, at the National Air and Space Museum in Washington. Bolden talked about his career as a Marine aviator, a Space Shuttle pilot and commander, and his leadership of America's space agency. Photo Credit: (NASA/Paul E. Alers)

  1. Computer simulation of a pilot in V/STOL aircraft control loops

    NASA Technical Reports Server (NTRS)

    Vogt, William G.; Mickle, Marlin H.; Zipf, Mark E.; Kucuk, Senol

    1989-01-01

    The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable.

  2. NASA/USRA University Advanced Design Program Fifth Annual Summer Conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. Close cooperation between the NASA centers and the universities, the careful selection of design topics, and the enthusiasm of the students has resulted in a very successful program than now includes forty universities and eight NASA centers. The study topics cover a broad range of potential space and aeronautics projects.

  3. APOLLO 13 CREW JOHN SWIGERT, JAMES LOVELL, AND FRED HAISE

    NASA Technical Reports Server (NTRS)

    1970-01-01

    John L. Swigert, Jr., left, the Apollo 13 backup crewman being considered as command module pilot in place of Thomas K. Mattingly II because of the latter's exposure to measles, has been training with the prime crew -- James A. Lovell, Jr., center and Fred W. Haise, Jr.

  4. APOLLO 16 COMMANDER JOHN YOUNG ENTERS ALTITUDE CHAMBER FOR TESTS

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 16 commander John W. Young prepares to enter the lunar module in an altitude chamber in the Manned Spacecraft Operations Building at the spaceport prior to an altitude run. During the altitude run, in which Apollo 16 lunar module pilot Charles M. Duke also participated, the chamber was pumped down to simulate pressure at an altitude in excess of 200,000 feet. Young, Duke and command module pilot Thomas K. Mattingly II, are training at the Kennedy Space Center for the Apollo 16 mission. Launch is scheduled from Pad 39A, March 17, 1972.

  5. 48 CFR 1823.7001 - NASA solicitation provisions and contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true NASA solicitation..., RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Safety and Health 1823.7001 NASA..., astronauts and pilots, the NASA workforce (including contractor employees working on NASA contracts), or high...

  6. 48 CFR 1823.7001 - NASA solicitation provisions and contract clauses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false NASA solicitation..., RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Safety and Health 1823.7001 NASA..., astronauts and pilots, the NASA workforce (including contractor employees working on NASA contracts), or high...

  7. 48 CFR 1823.7001 - NASA solicitation provisions and contract clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false NASA solicitation..., RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Safety and Health 1823.7001 NASA..., astronauts and pilots, the NASA workforce (including contractor employees working on NASA contracts), or high...

  8. 48 CFR 1823.7001 - NASA solicitation provisions and contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false NASA solicitation..., RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Safety and Health 1823.7001 NASA..., astronauts and pilots, the NASA workforce (including contractor employees working on NASA contracts), or high...

  9. 48 CFR 1823.7001 - NASA solicitation provisions and contract clauses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false NASA solicitation..., RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Safety and Health 1823.7001 NASA..., astronauts and pilots, the NASA workforce (including contractor employees working on NASA contracts), or high...

  10. Supercooled Liquid Water Content Instrument Analysis and Winter 2014 Data with Comparisons to the NASA Icing Remote Sensing System and Pilot Reports

    NASA Technical Reports Server (NTRS)

    King, Michael C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) has developed a system for remotely detecting the hazardous conditions leading to aircraft icing in flight, the NASA Icing Remote Sensing System (NIRSS). Newly developed, weather balloon-borne instruments have been used to obtain in-situ measurements of supercooled liquid water during March 2014 to validate the algorithms used in the NIRSS. A mathematical model and a processing method were developed to analyze the data obtained from the weather balloon soundings. The data from soundings obtained in March 2014 were analyzed and compared to the output from the NIRSS and pilot reports.

  11. NASA chief technologist visits Stennis

    NASA Image and Video Library

    2010-08-26

    NASA Chief Technologist Bobby Braun visited John C. Stennis Space Center on Aug. 26. While at Stennis, he spoke to employees and the media about innovation and technology in NASA's future and the important role Stennis will play in space exploration programs. Braun also toured facilities and received briefings on work under way at the nation's premier rocket engine test facility.

  12. Summary of NASA Langley's pilot scan behavior research

    NASA Technical Reports Server (NTRS)

    Spady, A. A., Jr.; Harris, R. L., Sr.

    1983-01-01

    The present investigation is concerned with the information acquired in a series of basic studies designed to obtain an understanding of the pilot's scanning behavior. In the studies, use was made of an oculometer system which operates by shining a beam of collimated infrared light at the subject's eyes. A number of oculometer software modifications have been made to make the oculometer user-friendly and versatile. Scanning is found to be a subconscious conditioned activity. The conditioned activity of scanning is different for each pilot. There are also slight variations between test runs for the same conditions for the same pilot. This indicates that scanning is situation dependent. Attention is given to the rate of information transfer, the possibility that scanning can be disrupted, the visual approach look-point, and workload sensitive measures.

  13. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08737 (9 April 1998) --- The mission commander, along with two payload specialists in training for NASA's STS-95 mission scheduled for later this year aboard Discovery, samples space foods at the Johnson Space Center (JSC). With payload specialists Chiaki Mukai and U.S. Sen. John H. Glenn Jr. (D.-Ohio) is Curtis L. Brown Jr. (right), mission commander. The photo was taken by Joe McNally, National Geographic, for NASA.

  14. Astronaut John Young photographed collecting lunar samples

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, is photographed collecting lunar samples near North Ray crater during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This picture was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Young is using the lunar surface rake and a set of tongs. The Lunar Roving Vehicle is parked in the field of large boulders in the background.

  15. 50th anniversary of the inauguration of John F. Kennedy

    NASA Image and Video Library

    2011-01-20

    Caroline Kennedy, center, is recognized by U.S. Vice President Joe Biden, left, Senate Majority Leader Harry Reid (D-NV), second from left, former U.S. Labor Secretary Elaine Chao, and U.S. Senator John Kerry (D-MA), right, at an event recognizing the 50th anniversary of the inauguration of John F. Kennedy as President of the United States, Thursday, Jan. 20, 2011 in the rotunda at the U.S. Capitol. Photo Credit: (NASA/Bill Ingalls)

  16. STS-103 Pilot Scott Kelly and MS John Grunsfeld try on oxygen masks

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the bunker at Launch Pad 39B, STS-103 Pilot Scott J. Kelly (left) and Mission Specialist John M. Grunsfeld (Ph.D.) (right) try on oxygen masks during Terminal Countdown Demonstration Test (TCDT) activities. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. Other crew members taking part are Commander Curtis L. Brown Jr. and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), and Jean-Frangois Clervoy of France and Claude Nicollier of Switzerland, who are with the European Space Agency. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  17. Astronaut John Glenn leaving crew quarters prior to launch

    NASA Image and Video Library

    1962-02-20

    S62-00222 (20 Feb. 1962) --- View of astronaut John H. Glenn Jr. and equipment specialist Joe Schmitt leaving crew quarters prior to Mercury-Atlas 6 (MA-6) mission. Glenn is in his pressure suit and is carrying the portable ventilation unit. Photo credit: NASA

  18. YF-12A #935 with test pilot Donald L. Mallick

    NASA Technical Reports Server (NTRS)

    1972-01-01

    NASA test pilot Don Mallick, in full pressure suit, stands in front of the YF-12A (60-6935). Don is ready for a flight across the Western United States. Donald L. Mallick joined the National Advisory Committee for Aeronautics' Langley Aeronautical Laboratory at Hampton, Virginia, as a research pilot, in June 1957. He transferred to the National Aeronautics and Space Administration's Flight Research Center, Edwards, California, in February 1963. Mallick attended Pennsylvania State University, University Park, Pennsylvania, for the period 1948-1949, studying Mechanical Engineering before entering the U.S. Navy for pilot training. Don served during the Korean War period, 1950-1954, flying F2H-2 Banshee jets from the carriers, USS F.D. Roosevelt and the USS Wasp. Later in 1954 he returned to school at the University of Florida, Gainesville, Florida, graduating with Honors in June 1957 and earning his degree in aeronautical engineering. Don joined the Naval Reserves and served in almost all categories of Reserve operations before retiring in 1970 as a Lieutenant Commander. As a research pilot at NACA-NASA Langley Don flew quantitative stability-&-control and handling-qualities tests on modified helicopters. On the Vertol VZ-2 Vertical Short Take-off and Landing research aircraft, he performed qualitative evaluation flights. Other aircraft flown for flight tests were: F2H-1 Banshee, F-86D, F9F-2 and F8U-3, F11F-1 Tigercat, and F-100C. Don also flew support and photo flights. In his capacity as research pilot at the NASA Flight Research Center Don was assigned to NASA's Lockheed Jetstar General Purpose Airborne Simulator (GPAS). He flew all of the tests, with the majority being as project pilot. Mallick made a flight in the lightweight M2-F1 lifting body on January 30, 1964. In 1964, Don was assigned to and completed the USAF Test pilot school, Class 64A. Later in 1964, he flew as the co-project pilot on the Lunar Landing Research Vehicle (LLRV) making over seventy

  19. Pilot in Rendezvous Docking Simulator

    NASA Image and Video Library

    1962-12-19

    Unidentified Pilot eyeballs his way to a docking by peering through the portal in his capsule. Photo published in Spaceflight Revolution, NASA Langley Research Center From Sputnik to Apollo. By James R. Hansen. NASA SP-4308, 1995, p. 372.

  20. Astronaut John Young hoisted aboard helicopter during water egress training

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Astronauts John W. Young, Gemini 10 command pilot, is hoisted up to a U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. A team of Manned Spaceflight Center (MSC) swimmers assists in the exercise. The Static Article 5 spacecraft can be seen in the water.

  1. Apollo 11 and John Glenn Astronauts Congressional Gold Medal

    NASA Image and Video Library

    2009-07-20

    Apollo 11 Astronauts, from left, Michael Collins, Neil Armstrong, Buzz Aldrin and NASA Administrator Charles Bolden attend the U.S House of Representatives Committee on Science and Technology tribute to the Apollo 11 Astronauts at the Cannon House Office Building on Capitol Hill, Tuesday, July 21, 2009 in Washington. The Committee presented the three Apollo 11 astronauts with a framed copy of House Resolution 607 honoring their achievement, and announced passage of legislation awarding them and John Glenn the Congressional Gold Medal. Photo Credit: (NASA/Bill Ingalls)

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  3. NASA visit

    NASA Image and Video Library

    2012-07-30

    NASA Associate Administrator for Education Leland Melvin speaks with 7-year-old Ben at the beginning of a presentation to Mississippi 4-H students at John C. Stennis Space Center on July 30, 2012. Melvin predicted Ben could be a future astronaut, urging students to discover and prepare to make their dreams into reality as well.

  4. Press Site Auditorium dedicated to John Holliman

    NASA Technical Reports Server (NTRS)

    1999-01-01

    From left, Center Director Roy Bridges and NASA Administrator Daniel S. Goldin applaud as Jay Holliman, with the help of his mother, Mrs. Dianne Holliman, unveils a plaque honoring his father, the late John Holliman. At right is Tom Johnson, news group chairman of CNN. The occasion was the dedication of the KSC Press Site auditorium as the John Holliman Auditorium to honor the CNN national correspondent for his enthusiastic, dedicated coverage of America's space program. The auditorium was built in 1980 and has been the focal point for new coverage of Space Shuttle launches. The ceremony followed the 94th launch of a Space Shuttle, on mission STS-96, earlier this morning.

  5. Astronaut John Glenn with artist who painted 'Friendship 7' on capsule

    NASA Technical Reports Server (NTRS)

    1962-01-01

    Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 'Friendship 7' mission, is suited up and seated beside his capsule during preflight activity at Cape Canaveral. Glenn is shown with artist Cecilia Bibby who painted the name 'Friendship 7' on his Mercury spacecraft.

  6. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS-132 astronaut Piers Sellers, at podium, acknowleges museum director Ret. Gen. John R. "Jack" Dailey, seated left, and NASA astrophycisist Dr. John Mather, center, during a presentation, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  7. NASA Dryden test pilot Michael J. Adams

    NASA Image and Video Library

    1967-03-22

    Air Force test pilot Maj. Michael J. Adams stands beside X-15 ship number one. Adams was selected for the X-15 program in 1966 and made his first flight on Oct. 6, 1966. On Nov. 15, 1967, Adams made his seventh and final X-15 flight. The X-15 launched from the B-52, but during the ascent an electrical problem affected the X-15's control system. The aircraft crashed northwest of Cuddeback Lake, California, causing the death of Adams. He was posthumously awarded Air Force astronaut wings because his final flight exceeded 50 miles in altitude. Adams was the only pilot lost in the 199-flight X-15 program.

  8. NASA Test Flights Examine Effect of Atmospheric Turbulence on Sonic Booms

    NASA Image and Video Library

    2016-07-20

    NASA pilot Nils Larson, and flight test engineer and pilot Wayne Ringelberg, head for a mission debrief after flying a NASA F/A-18 at Mach 1.38 to create sonic booms as part of the SonicBAT flight series at NASA’s Armstrong Flight Research Center in California, to study sonic boom signatures with and without the element of atmospheric turbulence.

  9. 75 FR 8570 - Atlantic Ocean off John F. Kennedy Space Center, FL; Restricted Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... off John F. Kennedy Space Center, FL; Restricted Area AGENCY: United States Army Corps of Engineers... the Atlantic Ocean off the coast of the John F. Kennedy Space Center (KSC), Florida. The KSC is the main launch facility for the National Aeronautics and Space Administration (NASA) and they need to have...

  10. Dryden Test Pilots 1990 - Smolka, Fullerton, Schneider, Dana, Ishmael, Smith, and McMurtry

    NASA Technical Reports Server (NTRS)

    1990-01-01

    It was a windy afternoon on Rogers Dry Lake as the research pilots of the National Aeronautics and Space Administration's Ames-Dryden Flight Research Facility gathered for a photo shoot. It was a special day too, the 30th anniversary of the first F-104 flight by research pilot Bill Dana. To celebrate, a fly over of Building 4800, in formation, was made with Bill in a Lockheed F-104 (826), Gordon Fullerton in a Northrop T-38, and Jim Smolka in a McDonnell Douglas F/A-18 (841) on March 23, 1990. The F-18 (841), standing on the NASA ramp is a backdrop for the photo of (Left to Right) James W. (Smoke) Smolka, C. Gordon Fullerton, Edward T. (Ed) Schneider, William H. (Bill) Dana, Stephen D. (Steve) Ishmael, Rogers E. Smith, and Thomas C. (Tom) McMurtry. Smolka joined NASA Ames-Dryden Flight Research Facility in September 1985. He has been the project pilot on the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) research and F-15 Aeronautical Research Aircraft programs. He has also flown as a pilot on the NASA B-52 launch aircraft, as a co-project pilot on the F-16XL Supersonic Laminar Flow Control aircraft and the F-18 High Angle-of-Attack Research Vehicle (HARV) aircraft. Other aircraft he has flown in research programs are the F-16, F-111, F-104 and the T-38 as support. Fullerton, joined NASA's Ames-Dryden Flight Research Facility in November 1986. He was project pilot on the NASA/Convair 990 aircraft to test space shuttle landing gear components, project pilot on the F-18 Systems Research Aircraft, and project pilot on the B-52 launch aircraft, where he was involved in six air launches of the commercially developed Pegasus space launch vehicle. Other assignments include a variety of flight research and support activities in multi-engine and high performance aircraft such as, F-15, F-111, F-14, X-29, MD-11 and DC-8. Schneider arrived at the NASA Ames-Dryden Flight Research Facility on July 5, 1982, as a Navy Liaison Officer, becoming a NASA research

  11. NASA, NOAA administrators nominated

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    President Ronald Reagan recently said he intended to nominate James Montgomery Beggs as NASA Administrator and John V. Byrne as NOAA Administrator. These two positions are key scientific posts that have been vacant since the start of the Reagan administration on January 20. The President also said he intends to nominate Hans Mark as NASA Deputy Administrator. At press time, Reagan had not designated his nominee for the director of the Office of Science and Technology Policy.

  12. Astronaut John Glenn leaving crew quarters prior to launch

    NASA Image and Video Library

    1961-02-20

    S62-00330 (1962) --- Astronaut John H. Glenn Jr. (left), Dr. William Douglas, astronauts flight surgeon, and equipment specialist Joe Schmitt leave crew quarters prior to Mercury-Atlas 6 (MA-6) mission. Glenn is in his pressure suit and is carrying the portable ventilation unit. Photo credit: NASA

  13. Senator John Glenn training in Single Systems Trainer

    NASA Image and Video Library

    1998-03-30

    S98-08642 (30 March 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) is briefed on the usage of the single systems trainer at the Johnson Space Center (JSC). Glenn is in training for payload specialist duties for a scheduled late October flight aboard the Space Shuttle Discovery. Photo by Joe McNally, National Geographic, for NASA

  14. Bolden Glenn Lecture Series

    NASA Image and Video Library

    2012-06-27

    NASA Administrator Charles Bolden, left, stands with former United States Marine Corps pilot, astronaut, and United States Senator John Glenn and Gen. John R. Dailey, director of the National Air and Space Museum, in the Fly Marines exhibit at the museum, Wednesday evening, June 27, 2012, in Washington. Bolden spoke later at the 2012 John H. Glenn Lecture in Space History. Photo Credit: (NASA/Paul E. Alers)

  15. Bolden Glenn Lecture Series

    NASA Image and Video Library

    2012-06-27

    NASA Administrator Charles Bolden, left, along with former United States Marine Corps pilot, astronaut, and United States Sen. John Glenn and Gen. John R. Dailey, director of the National Air and Space Museum, right, look around the Fly Marines exhibit at the museum, Wednesday evening, June 27, 2012, in Washington. Bolden spoke later at the 2012 John H. Glenn Lecture in Space History. Photo Credit: (NASA/Paul E. Alers)

  16. PRESS CONFERENCE - GEMINI-TITAN (GT)-11 - MSC

    NASA Image and Video Library

    1966-08-01

    S66-39895 (1 Aug. 1966) --- Panel members of the Gemini-10 news conference held in the Building 1 auditorium were (from left) Dr. Robert C. Seamans Jr., NASA Deputy Administrator; astronaut John W. Young, Gemini-10 command pilot; astronaut Michael Collins, Gemini-10 pilot; and Dr. Robert R. Gilruth, MSC Director. Photo credit: NASA

  17. NASA Langley WINN System Operational Assessment

    NASA Technical Reports Server (NTRS)

    Jonsson, Jon

    2003-01-01

    An operational assessment of the NASA Langley Weather Information Network (WINN) System is presented. The objectives of this program include: 1) Determine if near real-time weather information presented on the flight deck improves pilot situational awareness of weather; and 2) Identify pilot interface issues related to the use of WINN system during test flights. This paper is in viewgraph form.

  18. Louisiana Governor John Bel Edwards Visits NASA’s Rocket Factory

    NASA Image and Video Library

    2017-11-01

    NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.

  19. John C. Stennis Space Center overview

    NASA Astrophysics Data System (ADS)

    1994-05-01

    An overview of research being conducted at the John C. Stennis Space Center is given. The Space Center is not only a NASA Space Flight Center, but also houses facilities for 22 other governmental agencies. The programs described are Stennis' High Heat Flux Facility, the Component Test Facility (used to test propulsion rockets and for the development of the National Aerospace Plane), oceanographic and remote sensing research, and contributions to the development of Space Station Freedom.

  20. 75 FR 34643 - Atlantic Ocean Off John F. Kennedy Space Center, FL; Restricted Area

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Off John F. Kennedy Space Center, FL; Restricted Area AGENCY: U.S. Army Corps of Engineers, DoD... establishing a new restricted area in the Atlantic Ocean off the coast of the John F. Kennedy Space Center (KSC), Florida. The KSC is the main launch facility for the National Aeronautics and Space Administration (NASA...

  1. Astronaut John Young displays drawing of Snoopy

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, displays drawing of Snoopy in this color reproduction taken from the fourth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was about half-way to the moon, or approximately 112,000 nautical miles from the earth. Snoopy will be the code name of the Lunar Module (LM) during Apollo 10 operations when the LM and CM are separated.

  2. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    NASA Astrophycist Dr. John Mather, at podium, speaks Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington as museum director Gen. John R. "Jack" Dailey, U.S. Marine Corps ret. and STS-132 astronaut Piers Sellers look on. Sellers returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  3. STS-81 Crew at SLF with NASA Administrator Dan Goldin

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-81 flight crew is welcomed to KSC by NASA Administrator Daniel Goldin (far right) and Johnson Space Center Director George Abbey (second from right) as they arrive at the space center for the final countdown preparations for the fifth Shuttle-Mir docking mission. They are (from left): Mission Commander Michael A. Baker; Pilot Brent W. Jett, Jr.; and Mission Specialists Peter J. K. 'Jeff' Wisoff; John M. Grunsfeld, Marsha S. Ivins, and J.M. 'Jerry' Linenger. The 10-day mission will feature the transfer of Linenger to Mir to replace astronaut John Blaha, who has been on the orbital laboratory since Sept. 19, 1996 after arrival there during the STS-79 mission. During STS- 81, Shuttle and Mir crews will conduct risk mitigation, human life science, microgravity and materials processing experiments that will provide data for the design, development and operation of the International Space Station. The primary payload is the SPACEHAB-DM double module will provide space for more than 2,000 pounds of hardware, food and water that will be transferred into the Russian space station during five days of docking operations. The SPACEHAB will also be used to return experiment samples from the Mir to Earth for analysis and for microgravity experiments during the mission.

  4. NASA Remembers Gemini, Apollo Astronaut Dick Gordon

    NASA Image and Video Library

    2017-11-07

    Astronaut Dick Gordon, command module pilot on Apollo 12, the second lunar landing mission, died on Monday, November 6 at the age of 88. A native of Seattle, Washington and 1951 graduate of the University of Washington, Gordon became an astronaut in 1963 after a career as a naval aviator. He spent more than 316 hours in space on two missions. He was the pilot for the three-day Gemini 11 mission in 1966 and performed two spacewalks. At the time of the flight, Gemini 11 set the world altitude record of 850 miles. Gordon made a second flight in 1969 as command pilot on Apollo 12 with spacecraft commander, Pete Conrad and lunar module pilot, Alan Bean. Throughout the 31-hour lunar surface stay by Conrad and Bean, Gordon remained in orbit around the moon on the command module, "Yankee Clipper." In November 2005, NASA honored Gordon with an Ambassador of Exploration award. NASA presented these prestigious awards to the astronauts who took part in the nation's Mercury, Gemini and Apollo space programs from 1961 to 1972.

  5. The Pilot Staffing Conundrum: A Delphi Study

    DTIC Science & Technology

    2009-06-01

    Project, AFIT/ GMO /LAL/98J-2. School of Logistics and Acquisition Management, Air Force Institute of Technology (AU), Wright Patterson AFB, OH, June...Kafer, John H. Relationship of Airline Pilot Demand and Air Force Pilot Retention. Graduate Research Project, AFIT/ GMO /LAL/98J-11. School of Logistics

  6. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06947 (28 April 1998)--- Three crewmembers for the STS-95 mission take notes during a class room session in preparation for the scheduled October 1998 flight. From the left are U.S. Sen. John H. Glenn Jr.(D.-Ohio), Pedro Duque and Stephen K. Robinson. Duque represents the European Space Agency (ESA). Photo Credit: Joe McNally, National Geographic, for NASA.

  7. PA-30 Twin Comanche - NASA 808 in hangar

    NASA Image and Video Library

    1980-05-05

    Technicians check instrumentation and systems on NASA 808, a PA-30 aircraft, prior to a research flight. The aircraft was used as the testbed in development of control systems for remotely piloted vehicles that were "flown" from the ground. The concept led to highly successful programs such as the HiMAT and the subscale F-15 remotely piloted vehicles. Over the years, NASA 808 has also been used for spin and stall research related to general aviation aircraft and also research to alleviate wake vortices behind large jetliners. This 1980 photograph taken inside a hangar shows technicians measuring moment of inertia.

  8. Astronaut John Glenn inspects decal for side of his Mercury capsule

    NASA Image and Video Library

    1962-02-02

    S64-14854 (20 Feb. 1962) --- Astronaut John H. Glenn Jr. and technicians inspect a decal ready for application to the side of his Mercury spacecraft prior to launch on Feb. 20, 1962. The decal reads "Friendship 7". Photo credit: NASA

  9. Analysis of pilot control strategy

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Hanson, G. D.; Jewell, W. F.; Clement, W. F.

    1983-01-01

    Methods for nonintrusive identification of pilot control strategy and task execution dynamics are presented along with examples based on flight data. The specific analysis technique is Nonintrusive Parameter Identification Procedure (NIPIP), which is described in a companion user's guide (NASA CR-170398). Quantification of pilot control strategy and task execution dynamics is discussed in general terms followed by a more detailed description of how NIPIP can be applied. The examples are based on flight data obtained from the NASA F-8 digital fly by wire airplane. These examples involve various piloting tasks and control axes as well as a demonstration of how the dynamics of the aircraft itself are identified using NIPIP. Application of NIPIP to the AFTI/F-16 flight test program is discussed. Recommendations are made for flight test applications in general and refinement of NIPIP to include interactive computer graphics.

  10. Stennis hosts NASA Night at Zephyr Field

    NASA Image and Video Library

    2010-08-20

    Stennis employee Chris Smith helps a young child 'launch' a balloon rocket. Employees from NASA's John C. Stennis Space Center traveled to New Orleans on Aug. 20 to host NASA Night at Zephyr Field. Stennis personnel provided a variety of activities and materials for persons attending a game between the New Orleans Zephyrs and the Las Vegas 51s.

  11. Research pilots at NASA Dryden tested a prototype helmet during the summer and fall of 2002. The objective was to obtain data on fit, comfort and functionality.

    NASA Image and Video Library

    2002-08-07

    Research pilots from the NASA Dryden Flight Research Center, Edwards, Calif., tested a prototype two-part helmet. Built by Gentex Corp., Carbondale, Pa., the helmet was evaluated by five NASA pilots during the summer and fall of 2002. The objective was to obtain data on helmet fit, comfort and functionality. The inner helmet of the modular system is fitted to the individual crewmember. The outer helmet features a fully integrated spectral mounted helmet display and a binocular helmet mounted display. The helmet will be adaptable to all flying platforms. The Dryden evaluation was overseen by the Center's Life Support office. Assessments have taken place during normal proficiency flights and some air-to-air combat maneuvering. Evaluation platforms included the F-18, B-52 and C-12. The prototype helmet is being developed by the Naval Air Science and Technology Office and the Aircrew Systems Program Office, Patuxent River, Md.

  12. MD-11 PCA - Research flight team egress

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This McDonnell Douglas MD-11 has parked on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. Coming down the steps from the aircraft are Gordon Fullerton (in front), followed by Bill Burcham, Propulsion Controlled Aircraft (PCA) project engineer at Dryden; NASA Dryden controls engineer John Burken; John Feather of McDonnell Douglas; and Drew Pappas, McDonnell Douglas' project manager for PCA.

  13. NASA Accountability Report

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA is piloting fiscal year (FY) 1997 Accountability Reports, which streamline and upgrade reporting to Congress and the public. The document presents statements by the NASA administrator, and the Chief Financial Officer, followed by an overview of NASA's organizational structure and the planning and budgeting process. The performance of NASA in four strategic enterprises is reviewed: (1) Space Science, (2) Mission to Planet Earth, (3) Human Exploration and Development of Space, and (4) Aeronautics and Space Transportation Technology. Those areas which support the strategic enterprises are also reviewed in a section called Crosscutting Processes. For each of the four enterprises, there is discussion about the long term goals, the short term objectives and the accomplishments during FY 1997. The Crosscutting Processes section reviews issues and accomplishments relating to human resources, procurement, information technology, physical resources, financial management, small and disadvantaged businesses, and policy and plans. Following the discussion about the individual areas is Management's Discussion and Analysis, about NASA's financial statements. This is followed by a report by an independent commercial auditor and the financial statements.

  14. ICAO RPAS Symposium: NASA RPAS Operational and Research Activities

    NASA Technical Reports Server (NTRS)

    Johnson, Chuck

    2017-01-01

    NASA RPAS Operational and Research Activities presentation discusses the UAS flight operations. UAS vehicles are discussed along with the missions they supported. This is a high level overview of UAS operations at NASA being presented to the RPAS (Remotely Piloted Aircraft Systems) Symposium.

  15. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06936 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), is assisted by suit experts Jean Alexander and Carlous Gillis prior to a training session at the Johnson Space Center (JSC). The STS-95 crew members are getting prepared for a scheduled Oct. 29 launch aboard the Space Shuttle Discovery. The photo was taken by Joe McNally, National Geographic, for NASA.

  16. Senator John Glenn training in Single Systems Trainer

    NASA Image and Video Library

    1998-03-30

    S98-08640 (6 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) temporarily occupies the commander's station in a space shuttle instruction facility called the single systems trainer. The senator is training as a payload specialist for the STS-95 mission, scheduled for launch aboard the Space Shuttle Discovery later this year. The photo was taken by Joe Mcnally, National Geographic, for NASA.

  17. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Students and faculty from Mapletown Jr/Sr High School and Margaret Bell Middle School listen as John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Photo Credit: (NASA/Joel Kowsky)

  18. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute in Boulder, Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  19. Pilot Bill Brockett (left) and Chilean Air Force Captain Saez with school children in the cockpit of NASA Dryden's DC-8 flying laboratory

    NASA Image and Video Library

    2004-03-10

    Pilot Bill Brockett (left) and Chilean Air Force Captain Saez with school children in the cockpit of NASA Dryden's DC-8 flying laboratory. Brockett explained NASA's AirSAR 2004 mission in Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  20. 50th anniversary of the inauguration of John F. Kennedy

    NASA Image and Video Library

    2011-01-20

    Caroline Kennedy speaks at an event recognizing the 50th anniversary of the inauguration of John F. Kennedy as President of the United States and where the website jfk50.org was unveiled, Thursday, Jan. 20, 2011 at the Russell Senate Office Building in Washington. Photo Credit: (NASA/Bill Ingalls)

  1. Stennis hosts NASA Night at Zephyr Field

    NASA Image and Video Library

    2010-08-20

    NASA's John C. Stennis Space Center Director Patrick Scheuermann throws the first pitch of the game Aug. 20 at New Orleans Zephyr Field. Stennis employees traveled to New Orleans to host NASA Night at Zephyr Field. Stennis personnel provided a variety of activities and materials for persons attending a game between the New Orleans Zephyrs and the Las Vegas 51s.

  2. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, answers a question from the audience during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  3. An Investigation of Sensory Information, Levels of Automation, and Piloting Experience on Unmanned Aircraft Pilot Performance

    DTIC Science & Technology

    2012-03-01

    Development.of. NASA - TLX .(Task.Load.Index):.Results.of.empiri- cal.and.theoretical.research ..In.P .A ..Hancock.&.N .. Meshkati.(Eds .),.Human...8 Automated Manual Level of Automation Hi gh Z oo m M an ip ul at io n Pilot Non-pilot Figure 4. Number of participants with high levels of zoom

  4. NASA Science4Girls: Engaging Girls in STEM at Their Local Library

    NASA Astrophysics Data System (ADS)

    Meinke, B.; Smith, D.; Bleacher, L.; Hauck, K.; Soeffing, C.; NASA SMD EPO Community

    2014-07-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. The initiative has expanded from the successful 2012 Astro4Girls pilot to engage girls in all four NASA science discipline areas, which broadens the impact of the pilot by enabling audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.

  5. Astronaut John Grunsfeld uses camera to record ASTRO-2 payload

    NASA Image and Video Library

    1995-03-17

    STS067-377-008 (2-18 March 1995) --- Astronaut John M. Grunsfeld, mission specialist, uses a handheld Hasselblad camera to record the Astro-2 payload. Orbiting Earth at 190 nautical miles, Grunsfeld joined four other NASA astronauts and two scientists for almost 17 days conducting research in support of the Astro-2 mission.

  6. Piloted Evaluation of Modernized Limited Authority Control Laws in the NASA-Ames Vertical Motion Simulator (VMS)

    NASA Technical Reports Server (NTRS)

    Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.

    2003-01-01

    The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall

  7. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06949 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), talks with crew trainer Sharon Jones prior to simulating procedures for egressing from a troubled space shuttle. This training mockup is called the full fuselage trainer (FFT). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. Photo Credit: Joe McNally, National Geographic, for NASA

  8. Timber Management of NASA's John C. Stennis Space Station

    NASA Technical Reports Server (NTRS)

    Carr, Hugh; Johnson, Gary; Smoot, James; Cohan, Tyrus; O'Connor, Tina

    2001-01-01

    John C. Stennis Space Center occupies over 48560 hectares or just over 120000 acres in southwestern Mississippi and southeastern Louisiana near border of the two states. This area includes the Stennis Fee Area, which is the Center itself and the Acoustic Buffer Zone (ABZ) surrounding the Center. The ABZ is owned by several government, public and private entities and managed accordingly. The Fee Area and ABZ include wetlands, pine woodlands and areas of mixed floral species. The included maps detail the delineation of land in and around the Stennis Space Center. Areas owned by the federal government are divided into three stands to facilitate timber management. The stands are classified by species, density and average size to determine several timber in management issues including the schedule for controlled burns, economic viability of stands, and the creation of low impact recreational areas such as scenic trails or bike paths.

  9. Astronaut John Young collecting samples at North Ray crater during EVA

    NASA Image and Video Library

    1972-04-23

    AS16-117-18826 (23 April 1972) --- Astronaut John W. Young collects samples at the North Ray Crater geological site during the mission's third and final Apollo 16 extravehicular activity (EVA). He has a rake in his hand, and the gnomon is near his foot. Note how soiled Young's Extravehicular Mobility Unit (EMU) is. While astronauts Young, commander; and Charles M. Duke Jr., lunar module pilot; descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  10. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    NASA Image and Video Library

    1962-02-20

    S64-14861 (1962) --- Department of Defense (DOD) recovery personnel and spacecraft technicians from NASA and McDonnell Aircraft Corp., inspect astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean. Photo credit: NASA

  11. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  12. Motion Cueing Algorithm Development: Piloted Performance Testing of the Cueing Algorithms

    NASA Technical Reports Server (NTRS)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.; Kelly, Lon C.

    2005-01-01

    The relative effectiveness in simulating aircraft maneuvers with both current and newly developed motion cueing algorithms was assessed with an eleven-subject piloted performance evaluation conducted on the NASA Langley Visual Motion Simulator (VMS). In addition to the current NASA adaptive algorithm, two new cueing algorithms were evaluated: the optimal algorithm and the nonlinear algorithm. The test maneuvers included a straight-in approach with a rotating wind vector, an offset approach with severe turbulence and an on/off lateral gust that occurs as the aircraft approaches the runway threshold, and a takeoff both with and without engine failure after liftoff. The maneuvers were executed with each cueing algorithm with added visual display delay conditions ranging from zero to 200 msec. Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. Piloted performance parameters for the approach maneuvers, the vertical velocity upon touchdown and the runway touchdown position, were also analyzed but did not show any noticeable difference among the cueing algorithms. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach were less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  13. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    A memorial wreath stands at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex before a ceremony remembering astronaut Sen. John Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  14. Research pilot Mark Pestana

    NASA Image and Video Library

    2001-04-16

    Mark Pestana is a research pilot and project manager at the NASA Dryden Flight Research Center, Edwards, Calif. He is a pilot for the Beech B200 King Air, the T-34C and the Predator B. He flies the F-18 Hornet as a co-pilot and flight test engineer. Pestana has accumulated more than 4,000 hours of military and civilian flight experience. He was also a flight engineer on the NASA DC-8 flying laboratory. Pestana was the project manager and pilot for the Hi–rate Wireless Airborne Network Demonstration flown on the NASA B200 research aircraft. He flew B200 research missions for the X-38 Space Integrated Inertial Navigation Global Positioning System experiment. Pestana also participated in several deployments of the DC-8, including Earth science expeditions ranging from hurricane research over the Caribbean Sea to ozone studies over the North Pole, atmospheric chemistry over the South Pacific, rain forest health in Central America, Rocky Mountain ice pack assessment, and volcanic and tectonic activity around the Pacific Rim. He came to Dryden as a DC-8 mission manager in June 1998 from NASA Johnson Space Center, Houston, where he served as the Earth and Space Science discipline manager for the International Space Station Program at Johnson. Pestana also served as a flight crew operations engineer in the Astronaut Office, developing the controls, displays, tools, crew accommodations and procedures for on-orbit assembly, test, and checkout of the International Space Station. He led the analysis and technical negotiations for modification of the Russian Soyuz spacecraft as an emergency crew return vehicle for space station crews. He joined the U.S. Air Force Reserve in 1991 and held various positions as a research and development engineer, intelligence analyst, and Delta II launch vehicle systems engineer. He retired from the U.S. Air Force Reserve with the rank of colonel in 2005. Prior to 1990, Pestana was on active duty with the U.S. Air Force as the director of mi

  15. John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The John F. Kennedy Space Center, America's spaceport, is located along Florida's eastern shore on Cape Canaveral. Established as NASA's Launch Operations Center on July 1, 1962, the center has been the site of launching all U.S. human space flight missions, from the early days of Project Mercury to the space shuttle and the next generation of vehicles. In addition, the center is home to NASA's Launch Services Program, which coordinates all expendable vehicle launches carrying a NASA payload.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 32.6 by 51.2 kilometers (20.2 by 32.2 miles) Location: 28.6 degrees North latitude, 80.6 degrees West longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49

  16. The Urban Heat Island Pilot Project (UHIPP)

    NASA Technical Reports Server (NTRS)

    Luvall, Jeff; Morris, Lynn; Stewart, Fran; Thretheway, Ray; Gartland, Lisa; Russell, Camille; Reddish, Merrill; Arnold, James E. (Technical Monitor)

    2001-01-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively "cool" the metropolitan landscape. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three U.S. cities. As part of the pilot, NASA is using remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. To pursue these efforts, more information is needed about specific characteristics of several different cities. NASA used the Advanced Thermal and Land Applications Sensor (ATLAS) to obtain high spatial resolution (10 m pixel resolution) over each of the three pilot cities (Baton Rouge, Sacramento, and Salt Lake City). The goal of the UHIPP is to use the results from the NASA/LBNL analysis, combined with knowledge gained through working with various organizations within each pilot city to identify the most effective means of implementing strategies designed to mitigate the urban heat island, These "lessons learned" will be made available and used by cities across the U.S. to assist policy makers and others within various communities to analyze their own urban heat islands and determine which, if any, measures can be taken to help save energy and money, and to prevent pollution. The object of this session is for representatives from each of the pilot cities to present their results of the study and share the experience of working with these data in managing their urban landscape.

  17. Gemini 3 prime crew egress throught command pilot's hatch during training

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Both members of the Gemini-Titan 3 prime crew egress through the left, or command pilot's hatch, into the Gulf of Mexico during specialized training in egress from the Gemini spacecraft. Astronaut Virgil I. Grissom, the command pilot, has already climbed into a raft, as Astronaut John W. Young, the pilot, egresses from the spacecraft.

  18. E-21539

    NASA Image and Video Library

    1970-06-18

    The four principal HL-10 pilots are seen here with the lifting body aircraft. They are, left to right; Air Force Major Jerauld R. Gentry, Air Force test pilot Peter Hoag, and NASA pilots John A. Manke and Bill Dana. All are wearing the pressure suits needed for flying above 50,000 feet.

  19. NASA team hosts STEM-Ulate actvities

    NASA Image and Video Library

    2010-07-13

    Young visitors to NASA's John C. Stennis Space Center prepare to launch 'stomp rockets' during STEM-Ulate to Innovate activities at the facility July 13. The NASA Foundations of Influence, Relationships, Success and Teamwork (FIRST) Team sponsored STEM-Ulate to Innovate for more than 100 children ages 9-11. Children from area Boys & Girls Clubs participated in hands-on activities, presentations and demonstrations by professional engineers, all designed to promote the relevance of science, technology, engineering and mathematics (STEM).

  20. NASA Microgravity Science Competition for High-school-aged Student Teams

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Stocker, Dennis; Hodanbosi, Carol; Baumann, Eric

    2002-01-01

    NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA and student teams which are mentored by NASA centers. This participation by NASA in public forums serves to bring the excitement of aerospace science to students and educators. A new competition for highschool-aged student teams involving projects in microgravity has completed two pilot years and will have national eligibility for teams during the 2002-2003 school year. A team participating in the Dropping In a Microgravity Environment will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a microgravity drop tower facility. A team of NASA scientists and engineers will select the top proposals and those teams will then design and build their experiment apparatus. When the experiment apparatus are completed, team representatives will visit NASA Glenn in Cleveland, Ohio for operation of their facility and participate in workshops and center tours. Presented in this paper will be a description of DIME, an overview of the planning and execution of such a program, results from the first two pilot years, and a status of the first national competition.

  1. Astronauts Carpenter and Glenn relax following breakfast during MA-6 activity

    NASA Image and Video Library

    1962-02-01

    S64-10801 (1962) --- Astronauts M. Scott Carpenter (far left) and John H. Glenn Jr. relax following breakfast during Mercury Atlas 6 (MA-6) preflight activity. Glenn is the MA-6 pilot. Carpenter is the MA-6 backup pilot. Photo credit: NASA

  2. Update on Piloted and Un-Piloted Aircraft at NASA Dryden

    NASA Technical Reports Server (NTRS)

    DelFrate, John H.

    2007-01-01

    This viewgraph presentation reviews the NASA Dryden Flight Research Center's (DFRC) environment for testing of experimental aircraft. Included are a satellite view of the Dryden locale, and a summary of the capabilities at DFRC. It reviews the capabilites of High Altitude Platform (HAP) testing; Gulfstream III (1.)Unmanned Aerial Vehicle (UAV) synthetic aperture radar (SAR) (2) Precision Trajectory Capability Global Hawk (ACTD); ER-2; Ikhana (Predator B);

  3. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, left, Dr. Jeffrey Moore, senior scientist at NASA Ames Researh Center, center, and Dr. David H. Grinspoon, senior scientist at the Plentary Science Institute, left, are seen during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  4. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    Former space shuttle astronaut Jon McBride speaks at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  5. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    News media members and visitors gather at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex during a ceremony remembering astronaut Sen. John Glenn who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  6. The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.

  7. Astronaut John Young drives Lunar Roving Vehicle to final parking place

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, drives the Lunar Roving Vehicle (LRV) to its final parking place near the end of the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. Astronaut Charles M. Duke Jr., lunar module pilot, took this photograph looking southward. The flank of Stone Mountain can be seen on the horizon at left.

  8. The NASA teleconferencing system: An evaluation

    NASA Technical Reports Server (NTRS)

    Connors, M. M.; Lindsey, G.; Miller, R. H.

    1976-01-01

    The communication requirements of the Apollo project led to the development of a teleconferencing network which linked together, in an audio-fax mode, the several NASA centers and supporting contractors of the Apollo project. The usefulness of this communication linkage for the Apollo project suggested that the system might be extended to include all NASA centers, enabling them to conduct their in-house business more efficiently than by traveling to other centers. A pilot project was run in which seventeen NASA center and subcenters, some with multiple facilities, were connected into the NASA teleconferencing network. During that year, costs were charted and, at the end of the year, an evaluation was made to determine how the system had been used and with what results. The year-end evaluation of the use of NASA teleconferencing system is summarized.

  9. Astronauts Grissom and Young prepare to preform flight simulations

    NASA Image and Video Library

    1965-03-19

    S65-21864 (19 March 1965) --- Astronauts Virgil I. Grissom (left), command pilot; and John W. Young, pilot, prepare to run Gemini-Titan 3 simulations in the Gemini mission simulator at Cape Kennedy, Florida. The NASA GT-3 flight was scheduled for March 23, 1965.

  10. NASA ER-2 Flies over Southern California Wildfires

    NASA Image and Video Library

    2017-12-11

    NASA pilot Tim Williams flies the ER-2 high altitude airborne science platform carrying Jet Propulsion Laboratory’s AVIRIS spectral instrument over the Southern California wildfires on December 7, 2017.

  11. A Piloted Simulation Investigating Handling Qualities and Performance Requirements of a Single-Pilot Helicopter in Air Combat Employing a Helmet-Driven Turreted Gun.

    DTIC Science & Technology

    1987-09-01

    Jeffrey N. Williams September 1987 Thesis Advisor Donald M. Layton Approved for public release; distribution is unlimited. 7 14 44 r uaKjjW...I . - TBLE 9 PARTICIPATING EVALUATION PILOTS CW 2 John Burt, US. Army MAI Eric L Mitchell, U.S. Army ACM Instructor Pilot, Utah ANG Test Pilot...M. Layton , Code 67Ln I Department of Aeronautics Naval Postgraduate School Monterey, CA 93943 5. Dr. J. Victor Lebacqz 6 Chief, Flight Dynamics and

  12. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    A portrait of Sen. John Glenn and a memorial wreath stand at the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex before a ceremony remembering the iconic astronaut who passed away Dec. 8, 2016 at age 95. Glenn, one of the first seven astronauts NASA chose to fly the first missions of the Space Age, gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  13. HL-10 on lakebed with pilot Bill Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA research pilot Bill Dana stands in front of the HL-10 Lifting Body following his first glide flight on April 25, 1969. Dana later retired Chief Engineer at NASA's Dryden Flight Research Center, which was called only the NASA Flight Research Center in 1969. Prior to his lifting body assignment, Dana flew the famed X-15 research airplane. He flew the rocket-powered aircraft 16 times, reaching a top speed of 3,897 miles per hour and a peak altitude of 310,000 feet (almost 59 miles high). The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest

  14. Paresev in flight with pilot Milt Thompson

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This movie clip runs 37 seconds in length and begins with a shot from the chase plane of NASA Dryden test pilot Milt Thompson at the controls of the Paresev, then the onboard view from the pilot's seat and finally bringing the Paresev in for a landing on the dry lakebed at Edwards AFB. The Paresev (Paraglider Rescue Vehicle) was an indirect outgrowth of kite-parachute studies by NACA Langley engineer Francis M. Rogallo. In early 1960's the 'Rogallo wing' seemed an excellent means of returning a spacecraft to Earth. The delta wing design was patented by Mr. Rogallo. In May 1961, Robert R. Gilruth, director of the NASA Space Task Group, requested studies of an inflatable Rogallo-type 'Parawing' for spacecraft. Several companies responded; North American Aviation, Downey, California, produced the most acceptable concept and development was contracted to that company. In November 1961 NASA Headquarters launched a paraglider development program, with Langley doing wind tunnel studies and the NASA Flight Research Center supporting the North American test program. The North American concept was a capsule-type vehicle with a stowed 'parawing' that could be deployed and controlled from within for a landing more like an airplane instead of a 'splash down' in the ocean. The logistics became enormous and the price exorbitant, plus NASA pilots and engineers felt some baseline experience like building a vehicle and flying a Parawing should be accomplished first. The Paresev (Paraglider Research Vehicle) was used to gain in-flight experience with four different membranes (wings), and was not used to develop the more complicated inflatable deployment system. The Paresev was designed by Charles Richard, of the Flight Research Center Vehicle and System Dynamics Branch, with the rest of the team being: engineers, Richard Klein, Gary Layton, John Orahood, and Joe Wilson; from the Maintenance and Manufacturing Branch: Frank Fedor, LeRoy Barto; Victor Horton as Project Manager, with

  15. Evaluation of NASA's Carbon Monitoring System (CMS) Flux Pilot: Terrestrial CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Polhamus, A.; Bowman, K. W.; Collatz, G. J.; Potter, C. S.; Lee, M.; Liu, J.; Jung, M.; Reichstein, M.

    2011-12-01

    NASA's Carbon Monitoring System (CMS) flux pilot project combines NASA's Earth System models in land, ocean and atmosphere to track surface CO2 fluxes. The system is constrained by atmospheric measurements of XCO2 from the Japanese GOSAT satellite, giving a "big picture" view of total CO2 in Earth's atmosphere. Combining two land models (CASA-Ames and CASA-GFED), two ocean models (ECCO2 and NOBM) and two atmospheric chemistry and inversion models (GEOS-5 and GEOS-Chem), the system brings together the stand-alone component models of the Earth System, all of which are run diagnostically constrained by a multitude of other remotely sensed data. Here, we evaluate the biospheric land surface CO2 fluxes (i.e., net ecosystem exchange, NEE) as estimated from the atmospheric flux inversion. We compare against the prior bottom-up estimates (e.g., the CASA models) as well. Our evaluation dataset is the independently derived global wall-to-wall MPI-BGC product, which uses a machine learning algorithm and model tree ensemble to "scale-up" a network of in situ CO2 flux measurements from 253 globally-distributed sites in the FLUXNET network. The measurements are based on the eddy covariance method, which uses observations of co-varying fluxes of CO2 (and water and energy) from instruments on towers extending above ecosystem canopies; the towers integrate fluxes over large spatial areas (~1 km2). We present global maps of CO2 fluxes and differences between products, summaries of fluxes by TRANSCOM region, country, latitude, and biome type, and assess the time series, including timing of minimum and maximum fluxes. This evaluation shows both where the CMS is performing well, and where improvements should be directed in further work.

  16. Reduced Crew Operations Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Brandt, Summer L.; Lachter, Joel

    2017-01-01

    In 2012, NASA began exploring the feasibility of single pilot reduced crew operations (SPORCO) in the context of scheduled passenger air carrier operations (i.e., Parts 121 and 135). This research was spurred by two trends in aviation research: the trend toward reducing costs and a shortage of pilots. A series of simulations were conducted to develop tools and a concept of operations to support RCO. This slide deck is a summary of the NASA Ames RCO research prepared for an R T team at Airbus. Airbus is considering moving forward with reducing crew during the cruise phase of flight with long-haul flights and is interested in the work we have completed.

  17. Pilot Preference, Compliance, and Performance With an Airborne Conflict Management Toolset

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik

    2005-01-01

    A human-in-the-loop experiment was conducted at the NASA Ames and Langley Research Centers, investigating the En Route Free Maneuvering component of a future air traffic management concept termed Distributed Air/Ground Traffic Management (DAG-TM). NASA Langley test subject pilots used the Autonomous Operations Planner (AOP) airborne toolset to detect and resolve traffic conflicts, interacting with subject pilots and air traffic controllers at NASA Ames. Experimental results are presented, focusing on conflict resolution maneuver choices, AOP resolution guidance acceptability, and performance metrics. Based on these results, suggestions are made to further improve the AOP interface and functionality.

  18. Design and implementation of a pilot orientation program for new NASA engineering employees

    NASA Technical Reports Server (NTRS)

    Graham, Ronald E.; Furnas, Randall B.; Babula, Maria

    1993-01-01

    This paper describes the design and field testing of an orientation program for new employees of NASA Lewis Research Center's Engineering Directorate. A group of new employees designed the program using a series of TQM analysis techniques. The program objectives were: provide consistent treatment for new employees; assist management and clerical staff with their responsibility for orientation; introduce the employee to as many facets of the organization as possible; allow the employee to feel like a member of the organization as early as possible; maximize the use of existing services; and use up-to-date information. The major aspects of the program included: training of management and clerical staff; lab tours and briefings describing the organization; shepherding, using senior employees as shepherds; a handbook of information about the center and the directorate; a package of information about northeast Ohio; and social activities involving the new employees and shepherds. The program was tested on a pilot group of six new employees over a four month period and was considered to be highly successful by both the employees and management. Aspects of the program have subsequently been adopted for center-wide use.

  19. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06948 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) receives assistance from crew trainer Sharon Jones and an unidentified staffer in the systems integration facility as he checks his training version of the Shuttle launch and entry garment. Suit expert Carlous Gillis looks on at right. Moments later, the STS-95 payload specialist participated in a rehearsal of an emergency egress from the Space Shuttle. The photo was made by Joe McNally, National Geographic, for NASA.

  20. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08732 (9 April 1998) --- Holding a 35mm camera, U.S. Sen. John H. Glenn Jr. (D.-Ohio) gets a refresher course in photography from a JSC crew trainer (out of frame, right). The STS-95 payload specialist carried a 35mm camera on his historic MA-6 flight over 36 years ago. The photo was taken by Joe McNally, National Geographic, for NASA.

  1. Measurement of human pilot dynamic characteristics in flight simulation

    NASA Technical Reports Server (NTRS)

    Reedy, James T.

    1987-01-01

    Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.

  2. F-8 SCW on ramp with test pilot Tom McMurtry

    NASA Image and Video Library

    1972-12-20

    A Vought F-8A Crusader was selected by NASA as the testbed aircraft (designated TF-8A) to install an experimental Supercritical Wing (SCW) in place of the conventional wing. The unique design of the Supercritical Wing reduces the effect of shock waves on the upper surface near Mach 1, which in turn reduces drag. In this photograph the TF-8A Crusader with Supercritical Wing is shown on the ramp with project pilot Tom McMurtry standing beside it. McMurtry received NASA's Exceptional Service Medal for his work on the F-8 SCW aircraft. He also flew the AD-1, F-15 Digital Electronic Engine Control, the KC-130 winglets, the F-8 Digital Fly-By-Wire and other flight research aircraft including the remotely piloted 720 Controlled Impact Demonstration and sub-scale F-15 research projects. In addition, McMurtry was the 747 co-pilot for the Shuttle Approach and Landing Tests and made the last glide flight in the X-24B. McMurtry was Dryden’s Director for Flight Operations from 1986 to 1998, when he became Associate Director for Operations at NASA Dryden. In 1982, McMurtry received the Iven C. Kincheloe Award from the Society of Experimental Test Pilots for his contributions as project pilot on the AD-1 Oblique Wing program. In 1998 he was named as one of the honorees at the Lancaster, Calif., ninth Aerospace Walk of Honor ceremonies. In 1999 he was awarded the NASA Distinguished Service Medal. He retired in 1999 after a distinguished career as pilot and manager at Dryden that began in 1967.

  3. F-8 DFBW simulating STS contro l system - Pilot-induced oscillation (PIO) on landing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    the space shuttles. A DFBW flight control system also is used on the space shuttles. NASA 802 was the testbed for the sidestick-controller used in the F-16 fighter, the second U.S. high performance aircraft with a DFBW system. In addition to pioneering the space shuttle's fly-by-wire flight-control system, NASA 802 was the testbed that explored Pilot Induced Oscillations (PIO) and validated methods to suppress them. PIOs occur when a pilot over-controls an aircraft and a sustained oscillation results. On the last of five free flights of the prototype Space Shuttle Enterprise during approach and landing tests in l977, a PIO developed as the vehicle settled onto the runway. The problem was duplicated with the F-8 DFBW and a series of PIO suppression filters was developed and tested on the aircraft for the shuttle program office. DFBW research carried out with NASA 802 at Dryden is now considered one of the most significant and successful aeronautical programs in NASA history. In this clip we see NASA research pilot John Manke at the controls of Dryden's F-8 Digital Fly-By-Wire aircraft as it enters a severe pilot induced oscillation or PIO just after completion of a touch-and-go landing while testing for a signal-delay-related problem that occurred during an approach to landing on the shuttle prototype Enterprise.

  4. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA have undertaken the systematic validation of a ground-based piloted simulator for the UH-60A helicopter. The results of previous handling quality and task performance flight tests for this helicopter have been used as a data base for evaluating the fidelity of the present simulation, which is being conducted at the NASA Ames Research Center's Vertical Motion Simulator. Such nap-of-the-earth piloting tasks as pop-up, hover turn, dash/quick stop, sidestep, dolphin, and slalom, have been investigated. It is noted that pilot simulator performance is significantly and quantifiable degraded by comparison with flight test results for the same tasks.

  5. Nasa Langley Research Center seventy-fifth anniversary publications, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The following are presented: The National Advisory Committee for Aeronautics Charter; Exploring NASA's Roots, the History of NASA Langley Research Center; NASA Langley's National Historic Landmarks; The Mustang Story: Recollections of the XP-51; Testing the First Supersonic Aircraft: Memoirs of NACA Pilot Bob Champine; NASA Langley's Contributions to Spaceflight; The Rendezvous that was Almost Missed: Lunar Orbit Rendezvous and the Apollo Program; NASA Langley's Contributions to the Apollo Program; Scout Launch Vehicle Program; NASA Langley's Contributions to the Space Shuttle; 69 Months in Space: A History of the First LDEF; NACA TR No. 460: The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel; NACA TR No. 755: Requirements for Satisfactory Flying Qualities of Airplanes; 'Happy Birthday Langley' NASA Magazine Summer 1992 Issue.

  6. Proceedings of the 6th Annual Summer Conference: NASA/USRA University Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. The study topics cover a broad range of potential space and aeronautics projects that could be undertaken during a 20 to 30 year period beginning with the deployment of the Space Station Freedom scheduled for the mid-1990s. Both manned and unmanned endeavors are embraced, and the systems approach to the design problem is emphasized.

  7. Astronaut John Young leaps from lunar surface to salute flag

    NASA Image and Video Library

    1971-04-20

    AS16-113-18339 (21 April 1972) --- Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the United States flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) "Orion" is on the left. The Lunar Roving Vehicle (LRV) is parked beside the LM. The object behind Young (in the shade of the LM) is the Far Ultraviolet Camera/Spectrograph (FUC/S). Stone Mountain dominates the background in this lunar scene. While astronauts Young and Duke descended in the LM to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  8. Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/Unity

    NASA Image and Video Library

    2005-04-17

    ISS011-E-05161 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, uses the ISS wet/dry vacuum cleaner assembly to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).

  9. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08733 (9 April 1998) --- Looking through the view finder on a camera, U.S. Sen. John H. Glenn Jr. (D.-Ohio) gets a refresher course in photography from a JSC crew trainer (out of frame, right). The STS-95 payload specialist carried a 35mm camera on his historic MA-6 flight over 36 years ago. The photo was taken by Joe McNally, National Geographic, for NASA.

  10. STS-29 Pilot Blaha displays photograph of crewmembers' wives on flight deck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Sitting in forward flight deck pilots seat and wearing t-shirt and shorts, STS-29 Pilot John E. Blaha displays group portrait of crewmembers' wives. The signed photograph was found by crewmembers upon thier ingressing Discovery, Orbiter Vehicle (OV) 103, on launch day. Surrounding Blaha are pilots station controls, forward windows W4, W5, W6, checklists, tethered pencils, and pilots seat back with orange parachute harness. Communications kit assembly freefloats below his left forearm.

  11. Food Lab - Technician - MSC

    NASA Image and Video Library

    1970-04-14

    S70-34847 (11 April 1970) --- Astronaut John L. Swigert Jr., command module pilot for NASA?s third lunar landing mission, appears to be relaxing in the suiting room at Kennedy Space Center prior to launch. Other members of the Apollo 13 crew include astronauts James A. Lovell Jr., commander, and Fred W. Haise Jr., lunar module pilot. Swigert replaced astronaut Thomas K. Mattingly II when it was discovered that Mattingly had been exposed to the measles.

  12. NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.

    NASA Image and Video Library

    2017-11-01

    NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.

  13. NASA Data Acquisitions System (NDAS) Software Architecture

    NASA Technical Reports Server (NTRS)

    Davis, Dawn; Duncan, Michael; Franzl, Richard; Holladay, Wendy; Marshall, Peggi; Morris, Jon; Turowski, Mark

    2012-01-01

    The NDAS Software Project is for the development of common low speed data acquisition system software to support NASA's rocket propulsion testing facilities at John C. Stennis Space Center (SSC), White Sands Test Facility (WSTF), Plum Brook Station (PBS), and Marshall Space Flight Center (MSFC).

  14. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2014-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center "UAS Integration in the NAS" project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the civilian ATC and military ATC perspectives, of particular interest are how mixed operations (manned / UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS Integration in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  15. UAS in the NAS: Survey Responses by ATC, Manned Aircraft Pilots, and UAS Pilots

    NASA Technical Reports Server (NTRS)

    Comstock, James R., Jr.; McAdaragh, Raymon; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2013-01-01

    NASA currently is working with industry and the Federal Aviation Administration (FAA) to establish future requirements for Unmanned Aircraft Systems (UAS) flying in the National Airspace System (NAS). To work these issues NASA has established a multi-center UAS Integration in the NAS project. In order to establish Ground Control Station requirements for UAS, the perspective of each of the major players in NAS operations was desired. Three on-line surveys were administered that focused on Air Traffic Controllers (ATC), pilots of manned aircraft, and pilots of UAS. Follow-up telephone interviews were conducted with some survey respondents. The survey questions addressed UAS control, navigation, and communications from the perspective of small and large unmanned aircraft. Questions also addressed issues of UAS equipage, especially with regard to sense and avoid capabilities. From the ATC and military ATC perspective, of particular interest is how mixed-operations (manned/UAS) have worked in the past and the role of aircraft equipage. Knowledge gained from this information is expected to assist the NASA UAS in the NAS project in directing research foci thus assisting the FAA in the development of rules, regulations, and policies related to UAS in the NAS.

  16. What's on Your Radar Screen? Distance-Rate-Time Problems from NASA

    ERIC Educational Resources Information Center

    Condon, Gregory W.; Landesman, Miriam F.; Calasanz-Kaiser, Agnes

    2006-01-01

    This article features NASA's FlyBy Math, a series of six standards-based distance-rate-time investigations in air traffic control. Sixth-grade students--acting as pilots, air traffic controllers, and NASA scientists--conduct an experiment and then use multiple mathematical representations to analyze and solve a problem involving two planes flying…

  17. STS-79 John Blaha address news media

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Mission Specialist John E. Blaha addresses news media gathered for the flight crew's late night arrival at the KSC Shuttle Landing Facility. A veteran space traveler who served as either commander or pilot on his four previous Shuttle flights, Blaha is taking a mission specialist's slot on STS-79 because he will be transferring to the Russian Space Station Mir for an extended stay. American astronaut Shannon Lucid will take his place aboard the Space Shuttle Atlantis for the return trip home. Final preparations are under way for launch of Atlantis on Mission STS-79, with liftoff scheduled to occur during an approximately seven-minute window opening at 4:54 a.m. EDT, Sept.16.

  18. Astronaut John Young replaces tools in Lunar Roving Vehicle during EVA

    NASA Image and Video Library

    1972-04-22

    AS16-110-17960 (22 April 1972) --- Astronaut John W. Young, commander, replaces tools in the Apollo Lunar Hand Tool (ALHT) carrier at the aft end of the Lunar Roving Vehicle (LRV) during the second Apollo 16 extravehicular activity (EVA) on the high side of Stone Mountain at the Descartes landing site. Astronaut Charles M. Duke Jr., lunar module pilot, took this photograph near the conclusion of Station 4 activities. Smoky Mountain, with the large Ravine Crater on its flank, is in the left background. This view is looking northeast. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  19. STS-36 Commander Creighton and Pilot Casper on flight deck during JSC training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In their forward flight deck stations, STS-36 Commander John O. Creighton and Pilot John H. Casper discuss procedures prior to participating in JSC Fixed Based (FB) Shuttle Mission Simulator (SMS) exercises in the Shuttle Simulation and Training Facility Bldg 5. Creighton (left) sits in front of the commanders station controls and Casper (right) in front of the pilots station controls. Checklists are posted in various positions on the forward control panels as the crewmembers prepare for the FB-SMS simulation and their Department of Defense (DOD) flight aboard Atlantis, Orbiter Vehicle (OV) 104.

  20. Astronaut John Young reaches for tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, reaches for tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. This view is looking south from the base of Stone Mountain.

  1. Welfare effects of reduced milk production associated with Johne's disease on Johne's-positive versus Johne's-negative dairy operations.

    PubMed

    Losinger, Willard C

    2006-08-01

    An examination of the economic impacts of reduced milk production associated with Johne's disease on Johne's-positive and Johne's-negative dairy operations indicated that, if Johne's disease had not existed in US dairy cows in 1996, then the economic surplus of Johne's-negative operations would have been $600 million+/-$530 million lower, while the economic surplus of Johne's-positive operations would have been higher by $28 million+/-$79 million, which was not significantly different from zero. The data available for projecting changes in surplus were not sufficiently precise to allow an exact statement on whether Johne's-positive operations would have been better or worse off economically, in terms of the value received for producing more milk if they had not been affected by Johne's disease. The changes in producer surplus, based upon eliminating specific epidemiological risk factors for Johne's disease, were disaggregated between Johne's-positive dairy operations exposed to the risk factor and all other US dairy operations. Eliminating the risk factor of having any cows not born on the operation would have had a significant positive effect on the economic surplus of Johne's-positive operations that had any cows not born on the operation.

  2. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06944 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) prepares to rehearse launch readiness procedures on the middeck of a crew trainer at the Johnson Space Center (JSC). Sharon Jones, involved in crew training, briefs the STS-95 payload specialist. When he lifts off aboard the Space Shuttle Discovery in October of this year and later lands in Florida, Sen. Glenn will be seated in a temporary middeck chair like the one used in this training exercise. The photo was taken by Joe McNally, National Geographic, for NASA.

  3. X-15 test pilots - Engle, Rushworth, McKay, Knight, Thompson, and Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 flight crew, left to right; Air Force Captain Joseph H. Engle, Air Force Major Robert A. Rushworth, NASA pilot John B. 'Jack' McKay, Air Force pilot William J. 'Pete' Knight, NASA pilot Milton O. Thompson, and NASA pilot Bill Dana. of their 125 X-15 flights, 8 were above the 50 miles that constituted the Air Force's definition of the beginning of space (Engle 3, Dana 2, Rushworth, Knight, and McKay one each). NASA used the international definition of space as beginning at 62 miles above the earth. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large

  4. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. CHAMBER “R” ELEVATION. Sheet 4 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  5. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. WORK PLATFORM DETAIL. Sheet 6 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  6. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, November, 1968. CHAMBER “L” ELEVATION. Sheet 3 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  7. Astronaut John Young replaces tools in Lunar Roving Vehicle during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, replaces tools in the Apollo lunar hand tool carrier at the aft end of the Lunar Roving Vehicle during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Smoky Mountain, with the large Ravine crater on its flank, is in the left background. This view is looking northeast.

  8. Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2010-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 90 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed in this article. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations have been developed: (1) Space Act Agreement between NASA and GE for collaborative projects (2) NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011) (3) NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011) (4

  9. The systematic evolution of a NASA software technology, Appendix C

    NASA Technical Reports Server (NTRS)

    Deregt, M. P.; Dulfer, J. E.

    1972-01-01

    A long range program is described whose ultimate purpose is to make possible the production of software in NASA within predictable schedule and budget constraints and with major characteristics such as size, run-time, and correctness predictable within reasonable tolerances. As part of the program a pilot NASA computer center will be chosen to apply software development and management techniques systematically and determine a set which is effective. The techniques will be developed by a Technology Group, which will guide the pilot project and be responsible for its success. The application of the technology will involve a sequence of NASA programming tasks graduated from simpler ones at first to complex systems in late phases of the project. The evaluation of the technology will be made by monitoring the operation of the software at the users' installations. In this way a coherent discipline for software design, production maintenance, and management will be evolved.

  10. Astrobiology in an Urban New York City High School: John Dewey High School's Space Science Academy

    NASA Astrophysics Data System (ADS)

    Fried, B.; Dash, H. B.

    2010-04-01

    John Dewey High School's participation in NASA's MESDT and DLN projects and other partnerships provide opportunities for our diverse population, focusing particular attention to under-represented and under-served groups in the field of Space Science.

  11. Obituary: John W. Firor (1927-2007)

    NASA Astrophysics Data System (ADS)

    Gilman, Peter A.

    2009-12-01

    : "The Changing Atmosphere: A Global Challenge" (1990), and, with his wife Judith Jacobsen "The Crowded Greenhouse: Population, Climate Change and Creating a Sustainable World" (2002). After ASP, he continued his focus on environmental issues as a member of the Environmental and Societal Impacts group at NCAR. John retired from NCAR in 2005. John had many active pursuits beyond his professional work. He was an accomplished pilot, with licenses for flying single and multiengine aircraft, sailplanes, and balloons. He piloted a sailplane in at least one meteorological field program. He also was an avid river rafter. John faced the disease that took his life as he did all events in his life, with grace and dignity. He endured the loss of two spouses to cancer, Merle Jenkins Firor in 1979, and Judith Jacobsen in 2004. John is survived by his four children with his first wife, Daniel Firor of Seattle, Washington; Kay Firor of Cove, Oregon; James Firor of Hotchkiss, Colorado, and Susan Firor of Moscow, Idaho; a sister; a brother; and three grandchildren. His children and his many friends in Boulder and elsewhere gave him loving support during his days battling Alzheimer's. John used to define a 'southern gentleman' as a man dressed in white linen suit on a hot dusty summer day in a small Georgia town who could cross the street without breaking a sweat. John and his intellect and his management ability were like that; he could deal gracefully and successfully with almost anything that came his way. A man of great accomplishment, he rarely showed an ego to match. In the darkest days following the JEC Report, he almost single-handedly invented a new NCAR scientific appointment system. He chose the first cadre of 'senior scientists' to populate the top rank. There were about eighteen members in this group, but there was one name conspicuously absent - his own. This 'error' was quietly corrected by the UCAR Board.

  12. NASA Leads Demo for Drone Traffic Management Tech

    NASA Image and Video Library

    2017-06-30

    During the latest NASA-led demonstrations of technologies that could be part of an automated traffic management system for drones, pilots sent their vehicles beyond visual line-of-sight in simulated infrastructure inspections, search and rescue support, and package delivery.

  13. Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. ALTITUDE CHAMBERS “L” & “R” STRUCTURES. NASA, John F. Kennedy Space Center, Florida. Drawing 68-K-L-11213, NASA KSC, March, 1971. DOOR LATCH MECHANISM & DOOR LATCHING RATCHET. Sheet 14 - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  14. Pilot James Barrilleaux with ER-2 aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1998-01-01

    James Barrilleaux is the assistant chief pilot for ER-2s in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, California. The ER-2s--civilian variants of the military U-2S reconnaissance aircraft--are part of NASA's Airborne Science program. The ER-2s can carry airborne scientific payloads of up to 2,600 pounds to altitudes of about 70,000 feet to investigate such matters as earth resources, celestial phenomena, atmospheric chemistry and dynamics, and oceanic processes. Barrilleaux has held his current position since February 1998. Barrilleaux joined NASA in 1986 as a U-2/ER-2 pilot with NASA's Airborne Science program at Ames Research Center, Moffett Field, California. He flew both the U-2C (until 1989) and the ER-2 on a wide variety of missions both domestic and international. Barrilleaux flew high-altitude operations over Antarctica in which scientific instruments aboard the ER-2 defined the cause of ozone depletion over the continent, known as the ozone hole. He has also flown the ER-2 over the North Pole. Barrilleaux served for 20 years in the U.S. Air Force before he joined NASA. He completed pilot training at Reese Air Force Base, Lubbock, Texas, in 1966. He flew 120 combat missions as a F-4 fighter pilot over Laos and North Vietnam in 1970 and 1971. He joined the U-2 program in 1974, becoming the commander of an overseas U-2 operation in 1982. In 1983, he became commander of the squadron responsible for training all U-2 pilots and SR-71 crews located at Beale Air Force Base, Marysville, California. He retired from the Air Force as a lieutenant colonel in 1986. On active duty, he flew the U-2, F-4 Phantom, the T-38, T-37, and the T-33. His decorations included two Distinguished Flying Crosses, 12 Air Medals, two Meritorious Service Medals, and other Air Force and South Vietnamese awards. Barrilleaux earned a bachelor of science degree in chemical engineering from Texas A&M University, College Station, in 1964 and a master of science

  15. The Orbiter 101 "Enterprise" separates from the NASA 747 carrier aircraft

    NASA Image and Video Library

    1977-10-12

    S77-28931 (12 Oct. 1977) --- The Orbiter 101 "Enterprise" separates from the NASA 747 carrier aircraft to begin its first "tailcone-off" unpowered flight over desert and mountains of Southern California. A T-38 chase plane follows in right background. This was the fourth in a series of five piloted free flights. Photo credit: NASA

  16. Inflight evaluation of pilot workload measures for rotorcraft research

    NASA Technical Reports Server (NTRS)

    Shively, Robert J.; Bortolussi, Michael R.; Battiste, Vernol; Hart, Sandra G.; Pepitone, David D.; Matsumoto, Joy Hamerman

    1987-01-01

    The effectiveness of heart-rate monitoring and the NASA TLX workload rating scale (Hart et al., 1985) in measuring helicopter-pilot workloads is investigated experimentally. Four NASA test pilots flew two 2-h missions each in an SH-3G helicopter, following scenarios with takeoff, hover, cross-country, and landing tasks; pilot performance on the tasks undertaken near the landing area was measured by laser tracking. The results are presented in graphs and discussed in detail, and it is found that the TLX ratings clearly distinguish the flight segments and are well correlated with the performance data. The mean heart rate (measured as interbeat interval) is correlated (r = -0.69) with the TLX workload, but only the standard deviation of the interbeat interval is able to distinguish between flight segments; the correlation between standard deviation and TLX ratings is negative but not significant.

  17. Stennis hosts NASA Night in Oxford

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A young visitor to the Powerhouse Community Arts and Cultural Center in Oxford, Miss., enjoys a balloon rocket transportation activity during a NASA Night in the Neighborhood on March 29. NASA's John C. Stennis Space Center near Bay St. Louis visited the center with a variety of space-related displays and educational activities. Events targeted for children included moon phasers and build-your-own rocket transportation exercises, as well as an astronaut ice cream tasting station. Visitors also were able to take photos in the astronaut suit display. Displays focused on the 40th anniversaries of the Apollo 11 and Apollo 13 lunar missions, the International Space Station, and various aspects of Stennis work. The event was sponsored by the NASA Office of External Affairs and Education at Stennis.

  18. Expedition 11 Science Officer and Flight Engineer John Phillips in Node 1/ Unity

    NASA Image and Video Library

    2005-04-17

    ISS011-E-05163 (17 April 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, poses for a photo with the ISS wet/dry vacuum cleaner assembly he used to catch floating debris from the top of a food can in the Unity node of the International Space Station (ISS).

  19. John H Glenn Jr. Wreath Laying Ceremony

    NASA Image and Video Library

    2016-12-09

    An Atlas rocket and Mercury capsule like the ones that carried Sen. John Glenn into Earth orbit in February 1962 stand in the Rocket Garden at the Kennedy Space Center Visitor Complex adjacent to the Heroes and Legends exhibit hall where Glenn was remembered during a ceremony Dec. 9, 2016. Glenn, one of the Mercury Seven astronauts NASA chose to fly the first missions of the Space Age, passed away on Dec. 8, 2016, at age 95. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  20. F-8 DFBW with test pilot Gary E. Krier

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Former research pilot Gary E. Krier is the Director of Flight Operations of the NASA Dryden Flight Research Center, Edwards, Calif. He was the acting Deputy Director effective June 30, 2001 to September 9, 2001. Until that time he was the Chief Engineer and also the Director of the Systems Management Office at Dryden. He had held the position of Chief Engineer since August 1, 1999, and he was appointed Systems Management Office Director in October 1999. Before August 1999, he had been the Director of the Airborne Science Directorate since August 1998. Prior to assuming this position, Krier headed the Aerospace Projects Directorate from March 1997 to August 1998. He had previously been in charge of the Intercenter Aircraft Operations Directorate at Dryden from 1995 to 1997. From 1992 to 1994, he served as Manager, Operations and Facilities, for the New Launch System at NASA Headquarters, where he developed operational procedures and facilities for the next generation of Expendable Launch Vehicles and participated in policy making for the program. From 1987 to 1992, he held two different management positions at NASA Headquarters relating to Space Shuttle operations. Among other positions he held before that time were Director of the Commercial Development Division, Office of Commercial Programs, at NASA Headquarters (1984-1987); Director of the Aircraft Management Office at NASA Headquarters (1983-1984); and attorney in the Office of the Chief Counsel at Ames Research Center (1982-1983). Earlier in his career, Krier was an aerospace research pilot and engineer at Dryden after first going to work for NASA in 1967. He was the first pilot to fly the F-8 Digital Fly-by-Wire aircraft and the Integrated Propulsion Control System F-111 with digital fuel and inlet control. He was also co-project pilot with Thomas C. McMurtry on the F-8 Supercritical Wing project. In addition, he flew the YF-17 research aircraft and has flown more than 30 types of aircraft ranging from light

  1. Pilot James Barrilleaux with ER-2 aircraft on ramp

    NASA Image and Video Library

    1998-03-18

    James Barrilleaux is the assistant chief pilot for ER-2s in the Flight Crew Branch of NASA's Dryden Flight Research Center, Edwards, California. The ER-2s--civilian variants of the military U-2S reconnaissance aircraft--are part of NASA's Airborne Science program. The ER-2s can carry airborne scientific payloads of up to 2,600 pounds to altitudes of about 70,000 feet to investigate such matters as earth resources, celestial phenomena, atmospheric chemistry and dynamics, and oceanic processes. Barrilleaux has held his current position since February 1998. Barrilleaux joined NASA in 1986 as a U-2/ER-2 pilot with NASA's Airborne Science program at Ames Research Center, Moffett Field, California. He flew both the U-2C (until 1989) and the ER-2 on a wide variety of missions both domestic and international. Barrilleaux flew high-altitude operations over Antarctica in which scientific instruments aboard the ER-2 defined the cause of ozone depletion over the continent, known as the ozone hole. He has also flown the ER-2 over the North Pole. Barrilleaux served for 20 years in the U.S. Air Force before he joined NASA. He completed pilot training at Reese Air Force Base, Lubbock, Texas, in 1966. He flew 120 combat missions as a F-4 fighter pilot over Laos and North Vietnam in 1970 and 1971. He joined the U-2 program in 1974, becoming the commander of an overseas U-2 operation in 1982. In 1983, he became commander of the squadron responsible for training all U-2 pilots and SR-71 crews located at Beale Air Force Base, Marysville, California. He retired from the Air Force as a lieutenant colonel in 1986. On active duty, he flew the U-2, F-4 Phantom, the T-38, T-37, and the T-33. His decorations included two Distinguished Flying Crosses, 12 Air Medals, two Meritorious Service Medals, and other Air Force and South Vietnamese awards. Barrilleaux earned a bachelor of science degree in chemical engineering from Texas A&M University, College Station, in 1964 and a master of science

  2. Astronaut John Young leaps from lunar surface to salute flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.

  3. Enhancing the Impact of NASA Astrophysics Education and Public Outreach: Community Collaborations

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Lawton, B. L.; Bartolone, L.; Schultz, G. R.; Blair, W. P.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum is one of four scientist-educator teams that support NASA's Science Mission Directorate and its nationwide education and public outreach community in increasing the coherence, efficiency, and effectiveness of their education and public outreach efforts. NASA Astrophysics education and outreach teams collaborate with each other through the Astrophysics Forum to place individual programs in context, connect with broader education and public outreach activities, learn and share successful strategies and techniques, and develop new partnerships. This poster highlights examples of collaborative efforts designed to engage youth and adults across the full spectrum of learning environments, from public outreach venues, to centers of informal learning, to K-12 and higher education classrooms. These include coordinated efforts to support major outreach events such as the USA Science and Engineering Festival; pilot "Astro4Girls" activities in public libraries to engage girls and their families in science during Women’s History Month; and a pilot "NASA's Multiwavelength Universe" online professional development course for middle and high school educators. Resources to assist scientists and Astro101 instructors in incorporating NASA Astrophysics discoveries into their education and public outreach efforts are also discussed.

  4. Test pilots 1952 - Walker, Butchart, and Jones

    NASA Technical Reports Server (NTRS)

    1952-01-01

    This photo shows test pilots, (Left-Right) Joseph A. Walker, Stanley P. Butchart and Walter P. Jones, standing in front of the Douglas D-558-II Skystreak, in 1952. These three test pilots at the National Advisory Committee for Aeronautics' High-Speed Flight Research Station probably were discussing their flights in the aircraft. Joe flew research flights on the D-558-I #3 (14 flights, first on June 29, 1951) investigating buffeting, tail loads, and longitudinal stability. He flew the D-558-II #2 (3 flights, first on April 29, 1955) and recorded data on lateral stability and control. He also made pilot check-out flights in the D-558-II #3 (2 flights, first on May 7, 1954). For fifteen years Walker served as a pilot at the Edwards flight research facility (today known as the National Aeronautics and Space Administration's Dryden Flight Research Center) on research flights as well as chase missions for other pilots on NASA and Air Force research programs. On June 8, 1966, he was flying chase in NASA's F-104N for the Air Force's experimental bomber, North American XB-70A, when he was fatally injured in a mid-air collision between the planes. Stan flew the D-558-I #3 (12 flights, first on October 19, 1951) to determine the dynamic longitudinal stability characteristics and investigations of the lateral stability and control. He made one flight in the D-558-II #3 on June 26, 1953, as a pilot check-out flight. Butchart retired from the NASA Dryden Flight Research Center at Edwards, California, on February 27, 1976, after a 25-year career in research aviation. Stan served as a research pilot, chief pilot, and director of flight operations. Walter P. Jones was a research pilot for NACA from the fall of 1950 to July 1952. He had been in the U.S. Air Force as a pilot before joining the Station. Jones flew the D-558-I #3 (5 flights, first on February 13, 1951) to study buffeting, tail loads and longitudinal stability. Jones made research flights on the D-558-II #3 ( 7 flights

  5. NASA's Astronomy Education Program: Reaching Diverse Audiences

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise Anne; Hertz, Paul; Meinke, Bonnie

    2015-08-01

    An overview will be given of the rich programs developed by NASA to inject the science from it's Astrophysics missions into STEM activities targeted to diverse audiences. For example, Astro4Girls was started as a pilot program during IYA2009. This program partners NASA astrophysics education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families, and has been executed across the country. School curricula and NASA websites have been translated in Spanish; Braille books have been developed for the visually impaired; programs have been developed for the hearing impaired. Special effort has been made to reach underrepresented minorities. Audiences include students, teachers, and the general public through formal and informal education settings, social media and other outlets. NASA Astrophysics education providers include teams embedded in its space flight missions; professionals selected though peer reviewed programs; as well as the Science Mission Directorate Astrophysics Education forum. Representative examples will be presented to demonstrate the reach of NASA education programs, as well as an evaluation of the effectiveness of these programs.

  6. Astronaut John Young leaps from lunar surface as he salutes U.S. flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. flag during the first Apollo 16 extravehicular activity (EVA-1) on the Moon, as seen in this reproduction taken from a color transmission made by the color TV camera mounted on the Lunar Roving Vehicle. Astronaut Charles M. Duke Jr., lunar module pilot, is standing in the background.

  7. NASA Oceanic Processes Program, fiscal year 1983

    NASA Technical Reports Server (NTRS)

    Nelson, R. M. (Editor); Pieri, D. C. (Editor)

    1984-01-01

    Accomplishments, activities, and plans are highlighted for studies of ocean circulation, air sea interaction, ocean productivity, and sea ice. Flight projects discussed include TOPEX, the ocean color imager, the advanced RF tracking system, the NASA scatterometer, and the pilot ocean data system. Over 200 papers generated by the program are listed.

  8. Paresev 1-A and tow plane with crew and pilot

    NASA Technical Reports Server (NTRS)

    1962-01-01

    With the the Paresev 1-A and the 450-hp Stearman sport Biplane as a backdrop the Pilot and crew pose for this picture in 1962. Starting at left: On the motorcycle is Walter Whiteside, in the Paresev 1-A is test pilot Milton Thompson, Frank Fedor, Richard Klein, Victor Horton, Tom Kelly, Jr., Fred Harris, owner of the Stearman, John Orahood, and Gary Layton.

  9. John H Glenn Jr.

    NASA Image and Video Library

    2012-02-17

    Mercury astronaut John Glenn speaks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975.

  10. Pilot Peter Hoag and HL-10

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Air Force Major Peter Hoag stands in front of the HL-10 Lifting Body. Maj. Hoag joined the HL-10 program in 1969 and made his first glide flight on June 6, 1969. He made a total of 8 flights in the HL-10. They included the fastest lifting-body flight, which reached Mach 1.861 on Feb. 18, 1970. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2

  11. High-school Student Teams in a National NASA Microgravity Science Competition

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hodanbosi, Carol; Stocker, Dennis

    2003-01-01

    The Dropping In a Microgravity Environment or DIME competition for high-school-aged student teams has completed the first year for nationwide eligibility after two regional pilot years. With the expanded geographic participation and increased complexity of experiments, new lessons were learned by the DIME staff. A team participating in DIME will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a NASA microgravity drop tower. A team of NASA scientists and engineers will select the top proposals and then the selected teams will design and build their experiment apparatus. When completed, team representatives will visit NASA Glenn in Cleveland, Ohio to operate their experiment in the 2.2 Second Drop Tower and participate in workshops and center tours. NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA (e.g. NASA Student Involvement Program) and student teams mentored by NASA centers (e.g. For Inspiration and Recognition of Science and Technology Robotics Competition). This participation by NASA in these public forums serves to bring the excitement of aerospace science to students and educators.Researchers from academic institutions, NASA, and industry utilize the 2.2 Second Drop Tower at NASA Glenn Research Center in Cleveland, Ohio for microgravity research. The researcher may be able to complete the suite of experiments in the drop tower but many experiments are precursor experiments for spaceflight experiments. The short turnaround time for an experiment's operations (45 minutes) and ready access to experiment carriers makes the facility amenable for use in a student program. The pilot year for DIME was conducted during the 2000-2001 school year with invitations sent out to Ohio- based schools and organizations. A second pilot year was conducted during the 2001-2002 school year for teams in the six-state region

  12. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06939 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio) prepares to rehearse launch readiness procedures on the middeck of a crew trainer at the Johnson Space Center (JSC). Sharon Jones, involved in crew training, goes over a check list. When the STS-95 payload specialist lifts off aboard the Space Shuttle Discovery in October of this year and later lands in Florida, he will be seated in a temporary middeck chair like the one used in this training exercise. The photo was taken by Joe McNally, National Geographic, for NASA.

  13. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06946 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). This training mockup is called The full fuselage trainer (FFT). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crew members for procedures to follow in egressing a troubled shuttle on the ground. Photo Credit: Joe McNally, National Geographic, for NASA

  14. HL-10 on lakebed with pilot Major Jerauld R. Gentry

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Pilot Major Jerauld R. Gentry stands in front of the HL-10 Lifting Body. Gentry was the Air Force project pilot for the HL-10 while it was making the early glide and powered flights in 1968 following its modification. He made a total of nine flights in the vehicle. For his work on the HL-10, Gentry was awarded the Harmon International Trophy for his outstanding contribution to the science of flying. He later became the Air Force pilot for the X-24A. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and

  15. A summary of major NASA launches, 1 October 1958 - 31 December 1979

    NASA Technical Reports Server (NTRS)

    Jarrett, F.

    1980-01-01

    Major NASA launches conducted under the direction of the John F. Kennedy Space Center (or its precursors) are listed within broad categories. Individual launches are summarized in chronological order under each category. The mission name, launch date/time, launch vehicle, NASA code, and site/pad are identified as well as the degree of success of the mission.

  16. Pilot Biofeedback Training in the Cognitive Awareness Training Study (CATS)

    NASA Technical Reports Server (NTRS)

    Uenking, M.

    2000-01-01

    One of the ongoing problems that pilots face today is a diminished state of awareness such as boredom, sleepiness, or fatigue during cruise conditions that could result in various pilot errors. This study utilized a cognitive training exercise to sharpen the pilot's awareness during simulated flight thereby providing them with a means to overcome these diminished states of awareness. This study utilizes psychophysiological methods in an attempt to assess a pilot's state of awareness more directly. In turn, the pilots will be able to train themselves to recognize these states of awareness and be more mentally sharp during mundane tasks such as those experienced in cruise conditions. The use of these measurement tools may be beneficial for researchers working within the NASA Aviation Safety Program. This paper will provide the reader with some background information concerning the motivation for the study, a brief description of the experimental setup and design matrix, the dependent and independent variables that were employed, and some preliminary findings based on some of the subjective and objective data that was collected. These preliminary findings are of part of an ongoing study being conducted at the NASA Langley Research Center in Hampton, Virginia.

  17. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  18. Astronauts Young and Collins during water egress training

    NASA Image and Video Library

    1966-06-18

    S66-39699 (18 June 1966) --- Astronauts John W. Young (in water, nose of spacecraft), Gemini-10 command pilot, and Michael Collins (sitting on spacecraft), pilot, use Static Article 6 spacecraft during water egress training in the Gulf of Mexico. A team of Manned Spacecraft Center (MSC) swimmers assisted in the training exercise. Photo credit: NASA

  19. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Department of Defense Recovery personnel and spacecraft technicians from NASA adn McDonnell Aircraft Corp., inspect Astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean.

  20. NASA's Carbon Monitoring System Flux-Pilot Project: A Multi-Component Analysis System for Carbon-Cycle Research and Monitoring

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Gunson, M.; Potter, C.; Jucks, K.

    2012-01-01

    The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The

  1. Senate subcommittee examines NASA's identity crisis

    NASA Astrophysics Data System (ADS)

    Leath, Audrey T.

    With the Cold War fading into history, economic competitiveness becoming the watchwords of the decade, and the space race against the Russians turning into probable cooperation, NASA is struggling to redefine its role. On November 16, the Senate Commerce Subcommittee on Science, Technology and Space invited NASA Administrator Daniel Goldin, Martin Marietta CEO Norman Augustine, and Robert Frosch of Harvard University's John F. Kennedy School of Government to offer their thoughts on NASA's plans, priorities, and budgetary difficulties. Augustine, who chaired the Committee on the Future of the U.S. Space Program in 1990, posed two questions: What does America want its space program to be, and can the country afford to pay for the program it wants? He stated bluntly that if the answers were incompatible, “we are unlikely to have a satisfactory program.”

  2. John H Glenn Jr. Wreath Laying Ceremony - Inside Hereos and Lege

    NASA Image and Video Library

    2016-12-09

    A plaque inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows the name of astronaut Sen. John Glenn. Glenn, who passed away Dec. 8, 2016 at age 95, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  3. UAS Related Activities at NASA's Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.

    2009-01-01

    NASA s Dryden Flight Research Center is completing its refurbishment and initial flights of one the pre-production Global Hawk aircraft it received from the U.S. Air Force. NASA Dryden has an agreement with the Global Hawk s manufacturer, Northrop Grumman, to partner in the refurbishment and flight operations of the vehicles. The National Oceanic and Atmospheric Administration (NOAA) has also partnered on the project and is assisting NASA with project management and pilot responsibilities for the aircraft. NASA and NOAA will be using the Global Hawks to conduct earth science research. The earth science community is increasing utilizing UAS of all sizes and capabilities to collect important data on a variety of issues including important global climate change issues. To pursue the data collection needs of the science community there is a growing demand for international collaboration with respect to operating UAS in global airspace. Operations of NASA s Ikhana aircraft continued this past year. The Ikhana is a modified Predator B UAS. A UAS dedicated to research at NASA Dryden is the X-48B blended wing body research aircraft. Flight tests with the 500- pound, remotely piloted test vehicle are now in a block 4 phase involving parameter identification and maneuvers to research the limits of the engine in stall situations. NASA s participation in the blended wing body research effort is focused on fundamental, advanced flight dynamics and structural design concepts within the Subsonic Fixed Wing project, part of the Fundamental Aeronautics program managed through NASA s Aeronautics Research Mission Directorate. Potential benefits of the aircraft include increased volume for carrying capacity, efficient aerodynamics for reduced fuel burn and possibly significant reductions in noise due to propulsion integration options. NASA Dryden continues to support the UAS industry by facilitating access to three specially designated test areas on Edwards Air Force Base for the

  4. The NASA Aviation Safety Reporting System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This is the fourteenth in a series of reports based on safety-related incidents submitted to the NASA Aviation Safety Reporting System by pilots, controllers, and, occasionally, other participants in the National Aviation System (refs. 1-13). ASRS operates under a memorandum of agreement between the National Aviation and Space Administration and the Federal Aviation Administration. The report contains, first, a special study prepared by the ASRS Office Staff, of pilot- and controller-submitted reports related to the perceived operation of the ATC system since the 1981 walkout of the controllers' labor organization. Next is a research paper analyzing incidents occurring while single-pilot crews were conducting IFR flights. A third section presents a selection of Alert Bulletins issued by ASRS, with the responses they have elicited from FAA and others concerned. Finally, the report contains a list of publications produced by ASRS with instructions for obtaining them.

  5. GEMINI-TITAN (GT)-7 - PRELAUNCH ACTIVITY - COMMAND PILOT (LEAVES SUITING TRAILER) - CAPE

    NASA Image and Video Library

    1965-12-04

    S65-59932 (4 Dec. 1965) --- Prime crew for the Gemini-7 spaceflight astronauts James A. Lovell Jr. (front), pilot, and Frank Borman, command pilot, leave the suiting trailer at Launch Complex 16 during prelaunch countdown at Cape Kennedy, Florida. Photo credit: NASA

  6. Study to determine the IFR operational profile and problems to the general aviation pilot

    NASA Technical Reports Server (NTRS)

    Weislogel, S.

    1983-01-01

    A study of the general aviation single pilot operating under instrument flight rules (GA SPIFR) has been conducted for NASA Langley Research Center. The objectives of the study were to (1) develop a GA SPIFR operational profile, (2) identify problems experienced by the GA SPIFR pilot, and (3) identify research tasks which have the potential for eliminating or reducing the severity of the problems. To obtain the information necessary to accomplish these objectives, a mail questionnaire survey of instrument rated pilots was conducted. Complete questionnaire data is reported in NASA CR-165805, "Statistical Summary: Study to Determine the IFR Operational Profile and Problems of the General Aviation Single Pilot'-Based upon the results of the GA SPIFR survey, this final report presents the general aviation IFR single pilot operational profile, illustrates selected data analysis, examples, identifies the problems which he is experiencing, and recommends further research.

  7. Human in the Loop Simulation Measures of Pilot Response Delay in a Self-Separation Concept of Operations

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Wilson, Sara R.; Sturdy, James; Murdoch, Jennifer L.; Wing, David J.

    2010-01-01

    A human-in-the-loop (HITL) simulation experiment was conducted by the National Aeronautics and Space Administration (NASA) to assess airline transport pilots performance and reported acceptance of the use of procedures relying on airborne separation assistance and trajectory management tools. This study was part of a larger effort involving two NASA centers that includes multiple HITL experiments planned over the next few years to evaluate the use of automated separation assurance (SA) tools by both air traffic controllers and pilots. This paper presents results of measured pilot response delay that subject pilots incurred when interacting with cockpit tools for SA and discusses possible implications for future concept and procedures design.

  8. Pilot Fullerton reviews FDF and TAGS printout on forward flight deck

    NASA Image and Video Library

    1982-03-30

    STS003-23-180 (22-30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (ASSY) mini-headset (HDST), reviews flight data file (FDF) checklist and text and graphics system (TAGS) printout (ticker tape) while in pilots ejection seat (S2). Pilot station control panels F4, F7, F8, O3, window shade, and portable oxygen system (POS) assy appear in view. Photo credit: NASA

  9. NASA DC-8 Pilots Craig Bomben and Bill Brockett explain the DC-8 cockpit to Chilean students onboard the DC-8 aircraft in Punta Arenas, Chile

    NASA Image and Video Library

    2004-03-17

    NASA DC-8 Pilots Craig Bomben and Bill Brockett explain the DC-8 cockpit to Chilean students onboard the DC-8 aircraft at Carlos Ibanez del Campo International Airport in Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR will collect imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is decreasing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  10. 2002 Research Reports: NASA/ASEE Summer Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Kotnour, Tim (Editor); Black, Cassandra (Editor)

    2002-01-01

    This document is a collection of technical reports on research conducted by the participants in the 2002 NASA/ASEE Faculty Fellowship Program at the John F. Kennedy Space Center (KSC). This was the 18th year that a NASA/ASEE program has been conducted at KSC. The 2002 program was administered by the University of Central Florida (UCF) in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) and the Education Division, NASA Headquarters, Washington, D.C. The KSC Program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 2002. The KSC Faculty Fellows spent ten weeks working with NASA scientists and engineers on research of mutual interest to the university faculty member and the NASA colleague. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many research areas of current interest to NASA/KSC. The NASA/ASEE program is intended to be a two-year program to allow in-depth research by the university faculty member.

  11. Mass Mapping Abell 2261 with Kinematic Weak Lensing: A Pilot Study for NASAs WFIRST mission

    NASA Astrophysics Data System (ADS)

    Eifler, Tim

    2015-02-01

    We propose to investigate a new method to extract cosmological information from weak gravitational lensing in the context of the mission design and requirements of NASAs Wide-Field Infrared Survey Telescope (WFIRST). In a recent paper (Huff, Krause, Eifler, George, Schlegel 2013) we describe a new method for reducing the shape noise in weak lensing measurements by an order of magnitude. Our method relies on spectroscopic measurements of disk galaxy rotation and makes use of the well-established Tully-Fisher (TF) relation in order to control for the intrinsic orientations of galaxy disks. Whereas shape noise is one of the major limitations for current weak lensing experiments it ceases to be an important source of statistical error in our new proposed technique. Specifically, we propose a pilot study that maps the projected mass distribution in the massive cluster Abell 2261 (z=0.225) to infer whether this promising technique faces systematics that prohibit its application to WFIRST. In addition to the cosmological weak lensing prospects, these measurements will also allow us to test kinematic lensing in the context of cluster mass reconstruction with a drastically improved signal-to-noise (S/N) per galaxy.

  12. 62ma6-55

    NASA Image and Video Library

    2012-02-02

    62-MA6-55 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury Atlas 6 (MA-6) spaceflight, poses for a photo with the Mercury "Friendship 7" spacecraft during preflight activities. Photo credit: NASA

  13. China watches as NASA falters

    NASA Astrophysics Data System (ADS)

    Williamson, Mark

    2010-04-01

    US President Barack Obama slammed the brakes on NASA in February with a 2011 budget proposal to Congress that will, if approved, cancel plans to return to the Moon by 2020 that had been announced by Obama's predecessor George W Bush in 2004. Known as the Constellation programme, it included the Ares I and Ares V launch vehicles for low Earth orbit (LEO) and planetary missions, and the Orion capsule that would have carried astronauts to the Moon and beyond. Although the impact of the proposal is still unclear, it could be as important for NASA as John F Kennedy's famous speech to Congress on 25 May 1961, in which he announced plans to send astronauts to the Moon by the end of the decade.

  14. Bolden Glenn Lecture Series

    NASA Image and Video Library

    2012-06-27

    NASA Administrator Charles Bolden talks about his career as a marine aviator, as Space Shuttle pilot and commander, and his leadership of America's space agency during a speech, Wednesday evening, June 27, 2012, in Washington. Bolden spoke was the guest speaker at the 2012 John H. Glenn Lecture in Space History. Photo Credit: (NASA/Paul E. Alers)

  15. Pilot Joe Walker in Lunar Landing Research Vehicle (LLRV) on ramp

    NASA Technical Reports Server (NTRS)

    1964-01-01

    In this 1964 NASA Flight Research Center photograph, NASA Pilot Joe Walker is setting in the pilot's platform of the the Lunar Landing Research Vehicle (LLRV) number 1. This photograph provides a good view of the pilot setting in front of the primary instrumentation panel. When Apollo planning was underway in 1960, NASA was looking for a simulator to profile the descent to the moon's surface. Three concepts surfaced: an electronic simulator, a tethered device, and the ambitious Dryden contribution, a free-flying vehicle. All three became serious projects, but eventually the NASA Flight Research Center's (FRC) Landing Research Vehicle (LLRV) became the most significant one. Hubert M. Drake is credited with originating the idea, while Donald Bellman and Gene Matranga were senior engineers on the project, with Bellman, the project manager. Simultaneously, and independently, Bell Aerosystems Company, Buffalo, N.Y., a company with experience in vertical takeoff and landing (VTOL) aircraft, had conceived a similar free-flying simulator and proposed their concept to NASA headquarters. NASA Headquarters put FRC and Bell together to collaborate. The challenge was; to allow a pilot to make a vertical landing on earth in a simulated moon environment, one sixth of the earth's gravity and with totally transparent aerodynamic forces in a 'free flight' vehicle with no tether forces acting on it. Built of tubular aluminum like a giant four-legged bedstead, the vehicle was to simulate a lunar landing profile from around 1500 feet to the moon's surface. To do this, the LLRV had a General Electric CF-700-2V turbofan engine mounted vertically in gimbals, with 4200 pounds of thrust. The engine, using JP-4 fuel, got the vehicle up to the test altitude and was then throttled back to support five-sixths of the vehicle's weight, simulating the reduced gravity of the moon. Two hydrogen-peroxide lift rockets with thrust that could be varied from 100 to 500 pounds handled the LLRV's rate of

  16. Pilot Ed Lewis with T-34C aircraft on ramp

    NASA Image and Video Library

    1998-03-04

    NASA pilot Ed Lewis with the T-34C aircraft on the Dryden Flight Research Center Ramp. The aircraft was previously used at the Lewis Research Center in propulsion experiments involving turboprop engines, and was used as a chase aircraft at Dryden for smaller and slower research projects. Chase aircraft accompany research flights for photography and video purposes, and also as support for safety and research. At Dryden, the T-34 is used mainly for smaller remotely piloted vehicles which fly slower than NASA's F-18's, used for larger scale projects. This aircraft was returned to the U.S. Navy in May of 2002.

  17. View of Mission Control Center during Apollo 13 splashdown

    NASA Image and Video Library

    1970-04-17

    S70-35148 (17 April 1970) --- Staff members from NASA Headquarters (NASA HQ), Manned Spacecraft Center (MSC), and Dr. Thomas Paine (center of frame) applaud the successful splashdown of the Apollo 13 mission while Dr. George Low smokes a cigar (right), in the MSC Mission Control Center (MCC), located in Building 30. Apollo 13 crewmembers, astronauts James A. Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot, splashed down at 12:07:44 p.m. (CST), April 17, 1970, in the south Pacific Ocean.

  18. HL-10 after first flight with pilot Bruce Peterson

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The HL-10 after its first flight, shown with pilot Bruce Peterson. Although the lifting-body aircraft was predicted to have good flying qualities, this first flight showed major control and stability problems. The cause was airflow separation from the vehicle's fins. Changes to the fins' leading-edge shape fixed the problem. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with

  19. The NASA master directory: Quick reference guide

    NASA Technical Reports Server (NTRS)

    Satin, Karen (Editor); Kanga, Carol (Editor)

    1989-01-01

    This is a quick reference guide to the NASA Master Directory (MD), which is a free, online, multidisciplinary directory of space and Earth science data sets (NASA and non-NASA data) that are of potential interest to the NASA-sponsored research community. The MD contains high-level descriptions of data sets, other data systems and archives, and campaigns and projects. It provides mechanisms for searching for data sets by important criteria such as geophysical parameters, time, and spatial coverage, and provides information on ordering the data. It also provides automatic connections to a number of data systems such as the NASA Climate Data System, the Planetary Data System, the NASA Ocean Data System, the Pilot Land Data System, and others. The MD includes general information about many data systems, data centers, and coordinated data analysis projects, It represents the first major step in the Catalog Interoperability project, whose objective is to enable researchers to quickly and efficiently identify, obtain information about, and get access to space and Earth science data. The guide describes how to access, use, and exit the MD and lists its features.

  20. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06937 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crewmembers for procedures to follow in egressing a troubled shuttle on the ground. The full fuselage trainer (FFT) is at left, with the crew compartment trainer (CCT) at right. Photo Credit: Joe McNally, National Geographic, for NASA

  1. John Glenn during preflight training for STS-95

    NASA Image and Video Library

    1998-04-14

    S98-06938 (28 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), uses a device called a Sky genie to simulate rappelling from a troubled Space Shuttle during training at the Johnson Space Center (JSC). Glenn has been named as a payload specialist for STS-95, scheduled for launch later this year. This exercise, in the systems integration facility at JSC, trains the crewmembers for procedures to follow in egressing a troubled shuttle on the ground. The full fuselage trainer (FFT) is at left, with the crew compartment trainer (CCT) at right. Photo Credit: Joe McNally, National Geographic, for NASA

  2. Evaluation of Electronic Formats of the NASA Task Load Index

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.

    2011-01-01

    Paper questionnaires are being replaced by electronic questionnaires. The primary objective of this research was to determine whether electronic formats of paper questionnaires change subjects ratings and, if so, how the ratings changed. Results indicated that there were no statistically significant differences in self-assessment of workload when using the electronic replica or the paper format of the NASA-TLX scale. Variations of the electronic formats were tested to enforce structure to the TLX scale. Respondents had more consistent ratings with these alternative formats of the NASA-TLX. Non-pilots, in general, had lower workload ratings than pilots. The time to input the rating was the fastest for the electronic facsimile and random title formats. Also subjects preferred the electronic formats and thought these formats were easier to use. Therefore, moving questionnaires from paper to electronic media could change respondents' answers.

  3. NASA Aviation Safety Program Weather Accident Prevention/weather Information Communications (WINCOMM)

    NASA Technical Reports Server (NTRS)

    Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)

    2002-01-01

    Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.

  4. NASA Dryden's two T-38A mission support aircraft fly in tight formation while conducting a pitot-static airspeed calibration check near Edwards Air Force Base

    NASA Image and Video Library

    2007-09-26

    NASA Dryden Flight Research Center's two T-38A Talon mission support aircraft flew together for the first time on Sept. 26, 2007 while conducting pitot-static airspeed calibration checks during routine pilot proficiency flights. The two aircraft, flown by NASA research pilots Kelly Latimer and Frank Batteas, joined up with a NASA Dryden F/A-18 flown by NASA research pilot Dick Ewers to fly the airspeed calibrations at several speeds and altitudes that would be flown by the Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP during its initial flight test phase. The T-38s, along with F/A-18s, serve in a safety chase role during those test missions, providing critical instrument and visual monitoring for the flight test series.

  5. CREW TRAINING - APOLLO XVI (EGRESS) - GULF

    NASA Image and Video Library

    1972-02-25

    S72-30166 (5 May 1972) --- The Apollo 16 prime crew relax aboard the NASA Motor Vessel Retriever during water egress training activity in the Gulf of Mexico. They are, left to right, astronauts Thomas K. Mattingly II, command module pilot; John W. Young, commander; and Charles M. Duke Jr., lunar module pilot. The Command Module trainer was used in the training exercise.

  6. PRESS CONFERENCE - GEMINI-TITAN (GT)-10 - MSC

    NASA Image and Video Library

    1966-08-01

    S66-39897 (1 Aug. 1966) --- Astronaut John W. Young, Gemini-10 command pilot, uses a chalk drawing on a blackboard to illustrate how astronaut Michael Collins, Gemini-10 pilot, looked when he inspected the Agena Target Docking Vehicle during his extravehicular activity. Young was discussing the mission before a gathering of news media representatives in the Building 1 auditorium. Photo credit: NASA

  7. Apollo 14 prime crew aboard NASA Motor Vessel Retriever during training

    NASA Image and Video Library

    1970-10-24

    S70-51699 (24 Oct. 1970) --- The prime crew of the Apollo 14 lunar landing mission relaxes aboard the NASA motor vessel retriever, prior to participating in water egress training in the Gulf of Mexico. Left to right are astronauts Alan B. Shepard Jr., commander; Stuart A. Roosa, command module pilot; and Edgar D. Mitchell, lunar module pilot. They are standing by a Command Module (CM) trainer which was used in the exercises.

  8. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  9. HL-10 on lakebed with pilot Bill Dana

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This photo shows the HL-10 on Rogers Dry Lakebed with pilot Bill Dana in the foreground. Bill joined the HL-10 program in 1969 after flying the M2-F1 and the X-15, among other aircraft. His first glide flight was on April 25, 1969. Some months later, on September 3, 1969, he reached an altitude of 77,960 feet. This was one of a series of HL-10 flights to collect stability and control data at higher speeds and altitudes and at different angles of attack. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new

  10. Astronaut John Young displays drawing of Charlie Brown

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, displays drawing of Charlie Brown in this color reproduction taken from the fourth telecast made by the color television camera aboard the Apollo 10 spacecraft. When this picture was made the Apollo 10 spacecraft was about half-way to the moon, or approximately 112,000 nautical miles from the earth. Charlie Brown will be the code name of the Command Module (CM) during Apollo 10 operations when the Lunar Module and CM are separated (34075); Young displays drawing of Snoopy in this reproduction taken from a television transmission. Snoopy will be the code name of the Lunar Module (LM) during Apollo 10 operations when the LM and CM are separated (34076).

  11. Astronaut John Young in shadow of Lunar Module behind ultraviolet camera

    NASA Image and Video Library

    1972-04-22

    AS16-114-18439 (22 April 1972) --- Astronaut Charles M. Duke Jr., lunar module pilot, stands in the shadow of the Lunar Module (LM) behind the ultraviolet (UV) camera which is in operation. This photograph was taken by astronaut John W. Young, commander, during the mission's second extravehicular activity (EVA). The UV camera's gold surface is designed to maintain the correct temperature. The astronauts set the prescribed angles of azimuth and elevation (here 14 degrees for photography of the large Magellanic Cloud) and pointed the camera. Over 180 photographs and spectra in far-ultraviolet light were obtained showing clouds of hydrogen and other gases and several thousand stars. The United States flag and Lunar Roving Vehicle (LRV) are in the left background. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  12. Control research in the NASA high-alpha technology program

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Nguyen, Luat T.; Gera, Joseph

    1990-01-01

    NASA is conducting a focused technology program, known as the High-Angle-of-Attack Technology Program, to accelerate the development of flight-validated technology applicable to the design of fighters with superior stall and post-stall characteristics and agility. A carefully integrated effort is underway combining wind tunnel testing, analytical predictions, piloted simulation, and full-scale flight research. A modified F-18 aircraft has been extensively instrumented for use as the NASA High-Angle-of-Attack Research Vehicle used for flight verification of new methods and concepts. This program stresses the importance of providing improved aircraft control capabilities both by powered control (such as thrust-vectoring) and by innovative aerodynamic control concepts. The program is accomplishing extensive coordinated ground and flight testing to assess and improve available experimental and analytical methods and to develop new concepts for enhanced aerodynamics and for effective control, guidance, and cockpit displays essential for effective pilot utilization of the increased agility provided.

  13. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08744 (28 April 1998) --- Four members of the STS-95 crew are briefed on video cameras by crew trainer Donald Carico during a training session in the systems integration facility at the Johnson Space Center (JSC). From the left are U.S. Sen. John H. Glenn Jr. (D.-Ohio), payload specialist; astronaut Scott E. Parazynski, mission specialist; Chiaki Mukai, payload specialist representing Japan's National Space Development Agency (NASDA); Carico and astronaut Pedro Duque, mission specialist representing the European Space Agency (ESA). The photo was taken by Joe McNally, National Geographic, for NASA.

  14. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08740 (9 April 1998) --- Five members of the STS-95 crew review supplies that may accompany them on the scheduled October launch of the Space Shuttle Discovery. From the left are Stephen K. Robinson, mission specialist; U.S. Sen. John H. Glenn Jr. (D.-Ohio), payload specialist; Pedro Duque, mission specialist representing the European Space Agency (ESA); Scott E. Parazynski, mission specialist; and Chiaki Mukai, payload specialist representing Japan's National Space Development Agency (NASDA). The photo was taken by Joe McNally, National Geographic, for NASA.

  15. John Twysden and John Palmer: 17th-century Northamptonshire astronomers

    NASA Astrophysics Data System (ADS)

    Frost, M. A.

    2008-01-01

    John Twysden (1607-1688) and John Palmer (1612-1679) were two astronomers in the circle of Samuel Foster (circa 1600-1652), the subject of a recent paper in this journal. John Twysden qualified in law and medicine and led a peripatetic life around England and Europe. John Palmer was Rector of Ecton, Northamptonshire and later Archdeacon of Northampton. The two astronomers catalogued observations made from Northamptonshire from the 1640s to the 1670s. In their later years Twysden and Palmer published works on a variety of topics, often astronomical. Palmer engaged in correspondence with Henry Oldenburg, the first secretary of the Royal Society, on topics in astronomy and mathematics.

  16. STS-134 crew during EVA TPS Overview training in the TPS/PABF

    NASA Image and Video Library

    2009-12-15

    JSC2009-E-284897 (15 Dec. 2009) --- STS-134 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center. Pictured from the right are NASA astronauts Andrew Feustel, Greg Chamitoff, Michael Fincke, all mission specialists; along with NASA astronaut Gregory H. Johnson, pilot; and European Space Agency astronaut Roberto Vittori, mission specialist. John Ray (left) assisted the crew members.

  17. STS pilot user development program

    NASA Technical Reports Server (NTRS)

    Mcdowell, J. R.

    1977-01-01

    Full exploitation of the STS capabilities will be not only dependent on the extensive use of the STS for known space applications and research, but also on new, innovative ideas of use originating with both current and new users. In recognition of this, NASA has been engaged in a User Development Program for the STS. The program began with four small studies. Each study addressed a separate sector of potential new users to identify techniques and methodologies for user development. The collective results established that a user development function was not only feasible, but necessary for NASA to realize the full potential of the STS. This final report begins with a description of the overall pilot program plan, which involved five specific tasks defined in the contract Statement of Work. Each task is then discussed separately; but two subjects, the development of principal investigators and space processing users, are discussed separately for improved continuity of thought. These discussions are followed by a summary of the primary results and conclusions of the Pilot User Development Program. Specific recommendations of the study are given.

  18. The Plain Dealer High School Newspaper Workshop Program. John F. Kennedy and West Technical High Schools, 1994-1995.

    ERIC Educational Resources Information Center

    Cleveland Public Schools, OH.

    The Plain Dealer High School Newspaper Workshop was a pilot program created to introduce minority high school students (although not limited to minority students) to career opportunities in the newspaper business. Forty-four students from the Cleveland Public Schools' John F. Kennedy and West Technical High School participated in the 9-week…

  19. Assessment of Operational Progress of NASA Langley Developed Windshield and Microphone for Infrasound

    DTIC Science & Technology

    2013-04-01

    Assessment of Operational Progress of NASA Langley Developed Windshield and Microphone for Infrasound by W.C. Kirkpatrick Alberts, II...Windshield and Microphone for Infrasound W.C. Kirkpatrick Alberts, II, Stephen M. Tenney, and John M. Noble Sensors and Electron Devices Directorate...2013 4. TITLE AND SUBTITLE Assessment of Operational Progress of NASA Langley Developed Windshield and Microphone for Infrasound 5a. CONTRACT

  20. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  1. NASA Computational Case Study: The Flight of Friendship 7

    NASA Technical Reports Server (NTRS)

    Simpson, David G.

    2012-01-01

    In this case study, we learn how to compute the position of an Earth-orbiting spacecraft as a function of time. As an exercise, we compute the position of John Glenn's Mercury spacecraft Friendship 7 as it orbited the Earth during the third flight of NASA's Mercury program.

  2. PILOT: An intelligent distributed operations support system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Arthur N.

    1993-01-01

    The Real-Time Data System (RTDS) project is exploring the application of advanced technologies to the real-time flight operations environment of the Mission Control Centers at NASA's Johnson Space Center. The system, based on a network of engineering workstations, provides services such as delivery of real time telemetry data to flight control applications. To automate the operation of this complex distributed environment, a facility called PILOT (Process Integrity Level and Operation Tracker) is being developed. PILOT comprises a set of distributed agents cooperating with a rule-based expert system; together they monitor process operation and data flows throughout the RTDS network. The goal of PILOT is to provide unattended management and automated operation under user control.

  3. Analytical techniques of pilot scanning behavior and their application

    NASA Technical Reports Server (NTRS)

    Harris, R. L., Sr.; Glover, B. J.; Spady, A. A., Jr.

    1986-01-01

    The state of the art of oculometric data analysis techniques and their applications in certain research areas such as pilot workload, information transfer provided by various display formats, crew role in automated systems, and pilot training are documented. These analytical techniques produce the following data: real-time viewing of the pilot's scanning behavior, average dwell times, dwell percentages, instrument transition paths, dwell histograms, and entropy rate measures. These types of data are discussed, and overviews of the experimental setup, data analysis techniques, and software are presented. A glossary of terms frequently used in pilot scanning behavior and a bibliography of reports on related research sponsored by NASA Langley Research Center are also presented.

  4. MERCURY-ATLAS (MA)-6 - ASTRONAUT GLENN - LT. O'HARA, DELORES (DEE)

    NASA Image and Video Library

    1962-03-09

    S62-00469 (1962) --- Astronaut John H. Glenn Jr., pilot of the Mercury-Atlas 6 (MA-6) Earth-orbital space mission, confers with astronaut nurse Dolores B. O'Hara, R.N., during MA-6 prelaunch preparations. Photo credit: NASA

  5. A Pilot Model for the NASA Simplified Aid for EVA Rescue (SAFER) (Single-Axis Pitch Task)

    NASA Astrophysics Data System (ADS)

    Handley, Patrick Mark

    This thesis defines, tests, and validates a descriptive pilot model for a single-axis pitch control task of the Simplified Aid for EVA Rescue (SAFER). SAFER is a small propulsive jetpack used by astronauts for self-rescue. Pilot model research supports development of improved self-rescue strategies and technologies through insights into pilot behavior.This thesis defines a multi-loop pilot model. The innermost loop controls the hand controller, the middle loop controls pitch rate, and the outer loop controls pitch angle. A human-in-the-loop simulation was conducted to gather data from a human pilot. Quantitative and qualitative metrics both indicate that the model is an acceptable fit to the human data. Fuel consumption was nearly identical; time to task completion matched very well. There is some evidence that the model responds faster to initial pitch rates than the human, artificially decreasing the model's time to task completion. This pilot model is descriptive, not predictive, of the human pilot. Insights are made into pilot behavior from this research. Symmetry implies that the human responds to positive and negative initial conditions with the same strategy. The human pilot appears indifferent to pitch angles within 0.5 deg, coasts at a constant pitch rate 1.09 deg/s, and has a reaction delay of 0.1 s.

  6. Telescience Testbed Pilot Program

    NASA Technical Reports Server (NTRS)

    Gallagher, Maria L. (Editor); Leiner, Barry M. (Editor)

    1988-01-01

    The Telescience Testbed Pilot Program (TTPP) is intended to develop initial recommendations for requirements and design approaches for the information system of the Space Station era. Multiple scientific experiments are being performed, each exploring advanced technologies and technical approaches and each emulating some aspect of Space Station era science. The aggregate results of the program will serve to guide the development of future NASA information systems.

  7. Astronaut John Young at LRV prior to deployment of ALSEP during first EVA

    NASA Image and Video Library

    1972-04-21

    AS16-116-18578 (21 April 1972) --- Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, works at the Lunar Roving Vehicle (LRV) just prior to deployment of the Apollo Lunar Surface Experiments Package (ALSEP) during the first extravehicular activity (EVA) on April 21, 1972. Note the Ultraviolet (UV) Camera/Spectrometer to the right of the Lunar Module (LM) ladder. Also, note the pile of protective/thermal foil under the U.S. flag on the LM which the astronauts pulled away to get to the Modular Equipment Storage Assembly (MESA) bay. While astronauts Young and Charles M. Duke Jr., lunar module pilot; descended in the Apollo 16 LM "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  8. Research pilot and former astronaut C. Gordon Fullerton in an F/A-18

    NASA Image and Video Library

    2002-05-14

    Former NASA astronaut C. Gordon Fullerton, seated in the cockpit of an F/A-18, is a research pilot at NASA's Dryden Flight Research Center, Edwards, Calif. Since transferring to Dryden in 1986, his assignments have included a variety of flight research and support activities piloting NASA's B-52 launch aircraft, the 747 Shuttle Carrier Aircraft (SCA), and other multi-engine and high performance aircraft. He flew a series of development air launches of the X-38 prototype Crew Return Vehicle and in the launches for the X-43A Hyper-X project. Fullerton also flies Dryden's DC-8 Airborne Science aircraft in support a variety of atmospheric physics, ground mapping and meteorology studies. Fullerton also was project pilot on the Propulsion Controlled Aircraft program, during which he successfully landed both a modified F-15 and an MD-11 transport with all control surfaces neutralized, using only engine thrust modulation for control. Fullerton also evaluated the flying qualities of the Russian Tu-144 supersonic transport during two flights in 1998, one of only two non-Russian pilots to fly that aircraft. With more than 15,000 hours of flying time, Fullerton has piloted 135 different types of aircraft in his career. As an astronaut, Fullerton served on the support crews for the Apollo 14, 15, 16, and 17 lunar missions. In 1977, Fullerton was on one of the two flight crews that piloted the Space Shuttle prototype Enterprise during the Approach and Landing Test Program at Dryden. Fullerton was the pilot on the STS-3 Space Shuttle orbital flight test mission in 1982, and commanded the STS-51F Spacelab 2 mission in 1985. He has logged 382 hours in space flight. In July 1988, he completed a 30-year career with the U.S. Air Force and retired as a colonel.

  9. Scaled Composites' Doug Shane examines the screen of his ground control station during tests in New Mexico. Shane used this configuration as the ground control station to remotely pilot the Proteus aircraft during a NASA sponsored series of tests.

    NASA Image and Video Library

    2002-03-13

    Scaled Composites' Doug Shane examines the screen of his ground control station during tests in New Mexico. Shane used this configuration as the ground control station to remotely pilot the Proteus aircraft during a NASA sponsored series of tests.

  10. Task Allocation for Single Pilot Operations: A Role for the Ground

    NASA Technical Reports Server (NTRS)

    Johnson, Walter; Lachter, Joel; Feary, Mike; Comerford, Doreen; Battiste, Vernol; Mogford, Richard

    2012-01-01

    Researchers at NASA Ames Research Center and NASA Langley Research Center are jointly investigating issues associated with potential configurations for an environment in which a single pilot, or reduced crew, might operate. The research summarized in this document represents several of the efforts being put forth at NASA Ames Research Center. Specifically, researchers at NASA Ames Research Center coordinated and hosted a technical interchange meeting in order to gain insight from members of the aviation community. A description of this meeting and the findings are presented first. Thereafter, plans for ensuing research are presented.

  11. Computer simulation of a single pilot flying a modern high-performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    Presented is a computer simulation of a human response pilot model able to execute operational flight maneuvers and vehicle stabilization of a modern high-performance helicopter. Low-order, single-variable, human response mechanisms, integrated to form a multivariable pilot structure, provide a comprehensive operational control over the vehicle. Evaluations of the integrated pilot were performed by direct insertion into a nonlinear, total-force simulation environment provided by NASA Lewis. Comparisons between the integrated pilot structure and single-variable pilot mechanisms are presented. Static and dynamically alterable configurations of the pilot structure are introduced to simulate pilot activities during vehicle maneuvers. These configurations, in conjunction with higher level, decision-making processes, are considered for use where guidance and navigational procedures, operational mode transfers, and resource sharing are required.

  12. Food Lab - Technician - MSC

    NASA Image and Video Library

    1970-04-09

    S70-34848 (11 April 1970) --- Astronaut James A. Lovell Jr., commander for NASA's Apollo 13 mission, undergoes space suit checks a few hours before launch. Other members of the crew are astronauts Fred W. Haise Jr., lunar module pilot, and John L. Swigert Jr., command module pilot. Swigert replaced astronaut Thomas K. Mattingly II when it was learned he had been exposed to measles.

  13. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  14. John H Glenn Jr. Wreath Laying Ceremony - Inside Heroes and Lege

    NASA Image and Video Library

    2016-12-09

    A life-size photo inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows astronaut Sen. John Glenn, center, with fellow Mercury Seven astronauts Gordon Cooper, left, and Gus Grissom. Glenn, who passed away Dec. 8, 2016 at age 95. Glenn, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  15. John Lewis | NREL

    Science.gov Websites

    Lewis John Lewis John Lewis Researcher IV-Chemical Engineering John.Lewis@nrel.gov | 303-275-3021 Education Ph.D. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1996 M.S. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1993 B.S. Chemical Engineering, Texas A&M

  16. Single-pilot workload management in entry-level jets.

    DOT National Transportation Integrated Search

    2013-09-01

    Researchers from the NASA Ames Flight Cognition Lab and the FAAs Flight Deck Human Factors Research Laboratory at the Civil Aerospace Medical Institute (CAMI) examined task and workload management by single pilots in Very Light Jets (VLJs), also c...

  17. Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight Controls on a Full Scale Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Larson, David; Johnson, Marcus

    2014-01-01

    Flight research has shown the effectiveness of adaptive flight controls for improving aircraft safety and performance in the presence of uncertainties. The National Aeronautics and Space Administration's (NASA)'s Integrated Resilient Aircraft Control (IRAC) project designed and conducted a series of flight experiments to study the impact of variations in adaptive controller design complexity on performance and handling qualities. A novel complexity metric was devised to compare the degrees of simplicity achieved in three variations of a model reference adaptive controller (MRAC) for NASA's F-18 (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) Full-Scale Advanced Systems Testbed (Gen-2A) aircraft. The complexity measures of these controllers are also compared to that of an earlier MRAC design for NASA's Intelligent Flight Control System (IFCS) project and flown on a highly modified F-15 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). Pilot comments during the IRAC research flights pointed to the importance of workload on handling qualities ratings for failure and damage scenarios. Modifications to existing pilot aggressiveness and duty cycle metrics are presented and applied to the IRAC controllers. Finally, while adaptive controllers may alleviate the effects of failures or damage on an aircraft's handling qualities, they also have the potential to introduce annoying changes to the flight dynamics or to the operation of aircraft systems. A nuisance rating scale is presented for the categorization of nuisance side-effects of adaptive controllers.

  18. Foale works with the Pilot experiment during Expedition 8

    NASA Image and Video Library

    2003-10-31

    ISS008-E-05181 (31 October 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, works with the Russian biomedical “Pilot” experiment (MBI-15) in the Zvezda Service Module on the International Space Station (ISS). The experiment, which looks at psychological and physiological changes in crew performance during long-duration spaceflight, requires a worktable, ankle restraint system and two control handles for testing piloting skill.

  19. SR-71 Pilot Rogers E. Smith

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research pilot Rogers E. Smith is shown here in front of the SR-71 Blackbird he flew for NASA. Rogers was one of the two original NASA research pilots assigned to the SR-71 high speed research program at NASA's Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center, Edwards, California. Smith has been a NASA research pilot at Dryden since 1982. Data from the SR-71 program will be used to aid designers of future supersonic aircraft and propulsion systems. The SR-71 is capable of flying more than 2200 mph (Mach 3+) and at altitudes of over 80,000 feet. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data

  20. Astronaut John Young looks over a boulder at Station no. 13 during EVA

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, looks over a large boulder at Station No. 13 during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This was the site of the permanently shadowed soil sample which was taken from a hole extending under overhanging rock. Astronaut Charles M. Duke Jr., lunar module pilot, took this photograph. Concerning Young's reaching under the big rock, Duke remarked: 'You do that in west Texas and you get a rattlesnake!'

  1. The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The C-17 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training.

  2. Proceedings of the Twelfth NASA Propagation Experimenters Meeting (NAPEX 12)

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1988-01-01

    The NASA Propagation Experimenters Meeting was convened on June 9 and 10, 1988. Pilot Field Experiments propagation studies, mobile communication systems, signal fading, communication satellites rain gauge network measurements, atmospheric attenuation studies, optical communication through the atmosphere, and digital beacon receivers were among the topics discussed.

  3. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Bassler, Julie A.; Ballard, Benjamin; Chavers, Greg; Eng, Doug S.; Hammond, Monica S.; Hill, Larry A.; Harris, Danny W.; Hollaway, Todd A.; Kubota, Sanae; hide

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA's robotic lunar lander flight projects. Additional mission studies have been conducted to support other objectives of the lunar science and exploration community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects.

  4. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08745 (May 1998) --- Four members of the STS-95 crew are briefed on flight hardware during a training session in the shuttle crew compartment trainer (CCT) at the Johnson Space Center (JSC). Donald C. Carico, an instructor, holds a loc-line bracket. Crewmembers, from the left, are Scott E. Parazynski and Pedro Duque, both mission specialists; Chiaki Mukai and U.S. Sen. John H. Glenn Jr., both payload specialists. Duque represents the European Space Agency (ESA) and Mukai, Japan's National Space Development Agency (NASDA). The photo was taken by Joe McNally, National Geographic, for NASA.

  5. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08729 (9 April 1998) --- Four members of the STS-95 crew participate in a food tasting session at the Johnson Space Center (JSC). From the left are Stephen K. Robinson, mission specialist; payload specialist Chiaki Mukai of Japan's National Space Development Agency (NASDA); U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., mission commander. They will be joined by three other astronauts when Discovery lifts off in late October of this year for a scheduled nine-day mission. The photo was taken by Joe McNally, National Geographic, for NASA.

  6. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08730 (9 April 1998) --- Four members of the STS-95 crew participate in a food tasting session at the Johnson Space Center (JSC). From the left are Stephen K. Robinson, mission specialist; payload specialist Chiaki Mukai of Japan's National Space Development Agency (NASDA); U.S. Sen. John H. Glenn Jr., payload specialist; and Curtis L. Brown Jr., mission commander. They will be joined by three other astronauts when Discovery lifts off in late October of this year for a scheduled nine-day mission. The photo was taken by Joe McNally, National Geographic, for NASA.

  7. Pilots Rate Augmented Generalized Predictive Control for Reconfiguration

    NASA Technical Reports Server (NTRS)

    Soloway, Don; Haley, Pam

    2004-01-01

    The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.

  8. Official Portrait - STS-26 Discovery - Orbiter Vehicle (OV)-103, crew

    NASA Image and Video Library

    1987-08-24

    S87-40673 (September 1987) --- Astronauts Frederick H. (Rick) Hauck (right front), mission commander, and Richard O. Covey (left front), pilot, are flanked by NASA's STS-26 mission specialists (l.-r.) David C. Hilmers, George D. (Pinky) Nelson and John M. (Mike) Lounge.

  9. Quantifying the Observability of CO2 Flux Uncertainty in Atmospheric CO2 Records Using Products from Nasa's Carbon Monitoring Flux Pilot Project

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Pawson, Steven; Collatz, Jim; Watson, Gregg; Menemenlis, Dimitris; Brix, Holger; Rousseaux, Cecile; Bowman, Kevin; Bowman, Kevin; Liu, Junjie; hide

    2014-01-01

    NASAs Carbon Monitoring System (CMS) Flux Pilot Project (FPP) was designed to better understand contemporary carbon fluxes by bringing together state-of-the art models with remote sensing datasets. Here we report on simulations using NASAs Goddard Earth Observing System Model, version 5 (GEOS-5) which was used to evaluate the consistency of two different sets of observationally constrained land and ocean fluxes with atmospheric CO2 records. Despite the strong data constraint, the average difference in annual terrestrial biosphere flux between the two land (NASA Ames CASA and CASA-GFED) models is 1.7 Pg C for 2009-2010. Ocean models (NOBM and ECCO2-Darwin) differ by 35 in their global estimates of carbon flux with particularly strong disagreement in high latitudes. Based upon combinations of terrestrial and ocean fluxes, GEOS-5 reasonably simulated the seasonal cycle observed at northern hemisphere surface sites and by the Greenhouse gases Observing SATellite (GOSAT) while the model struggled to simulate the seasonal cycle at southern hemisphere surface locations. Though GEOS-5 was able to reasonably reproduce the patterns of XCO2 observed by GOSAT, it struggled to reproduce these aspects of AIRS observations. Despite large differences between land and ocean flux estimates, resulting differences in atmospheric mixing ratio were small, typically less than 5 ppmv at the surface and 3 ppmv in the XCO2 column. A statistical analysis based on the variability of observations shows that flux differences of these magnitudes are difficult to distinguish from natural variability, regardless of measurement platform.

  10. Key Metrics and Goals for NASA's Advanced Air Transportation Technologies Program

    NASA Technical Reports Server (NTRS)

    Kaplan, Bruce; Lee, David

    1998-01-01

    NASA's Advanced Air Transportation Technologies (AATT) program is developing a set of decision support tools to aid air traffic service providers, pilots, and airline operations centers in improving operations of the National Airspace System (NAS). NASA needs a set of unifying metrics to tie these efforts together, which it can use to track the progress of the AATT program and communicate program objectives and status within NASA and to stakeholders in the NAS. This report documents the results of our efforts and the four unifying metrics we recommend for the AATT program. They are: airport peak capacity, on-route sector capacity, block time and fuel, and free flight-enabling.

  11. AD-1 with research pilot Richard E. Gray

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Standing in front of the AD-1 Oblique Wing research aircraft is research pilot Richard E. Gray. Richard E. Gray joined National Aeronautics and Space Administration's Johnson Space Center, Houston, Texas, in November 1978, as an aerospace research pilot. In November 1981, Dick joined the NASA's Ames-Dryden Flight Research Facility, Edwards, California, as a research pilot. Dick was a former Co-op at the NASA Flight Research Center (a previous name of the Ames-Dryden Flight Research Facility), serving as an Operations Engineer. At Ames-Dryden, Dick was a pilot for the F-14 Aileron Rudder Interconnect Program, AD-1 Oblique Wing Research Aircraft, F-8 Digital Fly-By-Wire and Pilot Induced Oscillations investigations. He also flew the F-104, T-37, and the F-15. On November 8, 1982, Gray was fatally injured in a T-37 jet aircraft while making a pilot proficiency flight. Dick graduated with a Bachelors degree in Aeronautical Engineering from San Jose State University in 1969. He joined the U.S. Navy in July 1969, becoming a Naval Aviator in January 1971, when he was assigned to F-4 Phantoms at Naval Air Station (NAS) Miramar, California. In 1972, he flew 48 combat missions in Vietnam in F-4s with VF-111 aboard the USS Coral Sea. After making a second cruise in 1973, Dick was assigned to Air Test and Evaluation Squadron Four (VX-4) at NAS Point Mugu, California, as a project pilot on various operational test and evaluation programs. In November 1978, Dick retired from the Navy and joined NASA's Johnson Space Center. At JSC Gray served as chief project pilot on the WB-57F high-altitude research projects and as the prime television chase pilot in a T-38 for the landing portion of the Space Shuttle orbital flight tests. Dick had over 3,000 hours in more than 30 types of aircraft, an airline transport rating, and 252 carrier arrested landings. He was a member of the Society of Experimental Test Pilots serving on the Board of Directors as Southwest Section Technical Adviser in

  12. John H Glenn Jr. Wreath Laying Ceremony - Inside Heroes and Lege

    NASA Image and Video Library

    2016-12-09

    A plaque inside the Heroes and Legends exhibit hall at the Kennedy Space Center Visitor Complex shows astronaut Sen. John Glenn, along with his mission insignias for Friendship 7 and STS-95, the two flights he made into space. Glenn, who passed away Dec. 8, 2016 at age 95, was the last surviving member of NASA's original astronaut class. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.

  13. The Pilot Land Data System: Report of the Program Planning Workshops

    NASA Technical Reports Server (NTRS)

    1984-01-01

    An advisory report to be used by NASA in developing a program plan for a Pilot Land Data System (PLDS) was developed. The purpose of the PLDS is to improve the ability of NASA and NASA sponsored researchers to conduct land-related research. The goal of the planning workshops was to provide and coordinate planning and concept development between the land related science and computer science disciplines, to discuss the architecture of the PLDs, requirements for information science technology, and system evaluation. The findings and recommendations of the Working Group are presented. The pilot program establishes a limited scale distributed information system to explore scientific, technical, and management approaches to satisfying the needs of the land science community. The PLDS paves the way for a land data system to improve data access, processing, transfer, and analysis, which land sciences information synthesis occurs on a scale not previously permitted because of limits to data assembly and access.

  14. General Aviation Pilot Advisory and Training System (GAPATS)

    NASA Technical Reports Server (NTRS)

    Painter, John; Ward, Donald T.; Kelly, Wallace; Crump, John W.; Phillips, Ron; Trang, Jeff; Lee, Kris; Branham, Paul A.; Krishnamurthy, Karthik; Alcorn, William P., Jr.; hide

    1997-01-01

    The goal of this project is to achieve a validated General Aviation Pilot Advisor and Training System (GAPATS) engineering prototype, implemented according to commercial software standards and Federal Aviation Administration (FAA) issues of certification. Phase 2 builds on progress during Phase 1, which exceeded proposed objectives. The basic technology has been transferred from previous NASA research (1989 to 1994). We anticipate a commercially licensable prototype, validated by pilots in a flight simulator and in a light twin-engine research aircraft for FAA certification, by January 1998.

  15. View of clouds over Indian Ocean taken by Astronaut John Glenn during MA-6

    NASA Image and Video Library

    1962-02-20

    S62-06021 (20 Feb. 1962) --- A view of clouds over the Indian Ocean as photographed by astronaut John H. Glenn Jr. aboard the "Friendship 7" spacecraft during his Mercury Atlas 6 (MA-6) spaceflight on Feb. 20, 1962. The cloud panorama illustrates the visibility of different cloud types and weather patterns. Shadows produced by the rising sun aid in the determination of relative cloud heights. Photo credit: NASA

  16. Pilot Jerrie Cobb Trains in the Multi-Axis Space Test Inertia Facility

    NASA Image and Video Library

    1960-04-21

    Jerrie Cobb prepares to operate the Multi-Axis Space Test Inertia Facility (MASTIF) inside the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The MASTIF was a three-axis rig with a pilot’s chair mounted in the center to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig was then spun on three axes from 2 to 50 rotations per minute. The pilots were tested on each of the three axis individually, then all three simultaneously. The two controllers in Cobb’s hands activated the small nitrogen gas thrusters that were used to bring the MASTIF under control. A makeshift spacecraft control panel was set up in front of the trainee’s face. Cobb was one of several female pilots who underwent the skill and endurance testing that paralleled that of the Project Mercury astronauts. In 1961 Jerrie Cobb was the first female to pass all three phases of the Mercury Astronaut Program. NASA rules, however, stipulated that only military test pilots could become astronauts and there were no female military test pilots. The seven Mercury astronauts had taken their turns on the MASTIF in February and March 1960.

  17. ASTRONAUT GROUP - PORTRAIT

    NASA Image and Video Library

    1962-10-01

    S62-06759 (1962) --- This is the second group of pilot astronauts chosen by the National Aeronautics and Space Administration (NASA). These astronaut pilots are (kneeling left to right) Charles Conrad, Jr., Frank Borman, Neil A. Armstrong, and John W. Young; (standing in the back row - left to right) Elliot M. See, Jr., James A. McDivitt, James A. Lovell, Jr., Edward H. White II, and Thomas P. Stafford.

  18. Commemorating John Dyson

    NASA Astrophysics Data System (ADS)

    Pittard, Julian M.

    2015-03-01

    John Dyson was born on the 7th January 1941 in Meltham Mills, West Yorkshire, England, and later grew up in Harrogate and Leeds. The proudest moment of John's early life was meeting Freddie Trueman, who became one of the greatest fast bowlers of English cricket. John used a state scholarship to study at Kings College London, after hearing a radio lecture by D. M. McKay. He received a first class BSc Special Honours Degree in Physics in 1962, and began a Ph.D. at the University of Manchester Department of Astronomy after being attracted to astronomy by an article of Zdenek Kopal in the semi-popular journal New Scientist. John soon started work with Franz Kahn, and studied the possibility that the broad emission lines seen from the Orion Nebula were due to flows driven by the photoevaporation of neutral globules embedded in a HII region. John's thesis was entitled ``The Age and Dynamics of the Orion Nebula`` and he passed his oral examination on 28th February 1966.

  19. Astronaut John Young looks over a boulder at Station no. 13 during EVA

    NASA Image and Video Library

    1972-04-23

    AS16-106-17413 (23 April 1972) --- Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, looks over a large boulder at Station No.13 during the third Apollo 16 extravehicular activity (EVA) at the Descartes landing site. This was the site of the permanently shadowed soil sample which was taken from a hole extending under overhanging rock. Astronaut Charles M. Duke Jr., lunar module pilot, took this photograph. Concerning Young's reaching under the big rock, Duke remarked: "You do that in west Texas and you get a rattlesnake!"

  20. Improving Organizational Productivity in NASA. Volume 2

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Recognizing that NASA has traditionally been in the forefront of technological change, the NASA Administrator challenged the Agency in 1982 to also become a leader in developing and applying advanced technology and management practices to increase productivity. One of the activities undertaken by the Agency to support this ambitious productivity goal was participation in a 2-year experimental action research project devoted to learning more about improving and assessing the performance of professional organizations. Participating with a dozen private sector organizations, NASA explored the usefulness of a productivity improvement process that addressed all aspects of organizational performance. This experience has given NASA valuable insight into the enhancement of professional productivity. More importantly, it has provided the Agency with a specific management approach that managers and supervisors can effectively use to emphasize and implement continuous improvement. This report documents the experiences of the five different NASA installations participating in the project, describes the improvement process that was applied and refined, and offers recommendations for expanded application of that process. Of particular interest is the conclusion that measuring white collar productivity may be possible, and at a minimum, the measurement process itself is beneficial to management. Volume I of the report provides a project overview, significant findings, and recommendations. Volume II presents individual case studies of the NASA pilot projects that were part of the action research effort.

  1. Pilot Edwards reads a rendezvous timeline

    NASA Image and Video Library

    1998-03-03

    STS089-385-004 (22-31 Jan. 1998) --- Astronaut Joe F. Edwards Jr., STS-89 pilot, highlights important data on a checklist while temporarily occupying the commander's station on the port side of the space shuttle Endeavour's flight deck. Edwards, making his first spaceflight, is an alumnus of the 1995 class of astronaut candidates (ASCAN). Photo credit: NASA

  2. Formalizing New Navigation Requirements for NASA's Space Shuttle

    NASA Technical Reports Server (NTRS)

    DiVito, Ben L.

    1996-01-01

    We describe a recent NASA-sponsored pilot project intended to gauge the effectiveness of using formal methods in Space Shuttle software requirements analysis. Several Change Requests (CRs) were selected as promising targets to demonstrate the utility of formal methods in this demanding application domain. A CR to add new navigation capabilities to the Shuttle, based on Global Positioning System (GPS) technology, is the focus of this industrial usage report. Portions of the GPS CR were modeled using the language of SRI's Prototype Verification System (PVS). During a limited analysis conducted on the formal specifications, numerous requirements issues were discovered. We present a summary of these encouraging results and conclusions we have drawn from the pilot project.

  3. Single-pilot workload management in entry-level jets : appendices.

    DOT National Transportation Integrated Search

    2013-09-01

    Researchers from the NASA Ames Flight Cognition Lab and the FAAs Flight Deck Human Factors Research Laboratory at the Civil Aerospace Medical Institute (CAMI) examined task and workload management by single pilots in Very Light Jets (VLJs), also c...

  4. X-15 test pilots - Thompson, Dana, and McKay

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA pilots Milton O. Thompson, William H. 'Bill' Dana, and John B. 'Jack' McKay are seen here in front of the #2 X-15 (56-6671) rocket-powered research aircraft. Among them, the three NASA research pilots made 59 flights in the X-15 (14 for Thompson, 16 for Dana, and 29 for McKay). The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52 aircraft at 45,000 ft and a speed of about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the

  5. NASA Science Served Family Style

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Mitchell, S.; Drobnes, E.

    2010-01-01

    Family oriented innovative programs extend the reach of many traditional out-of-school venues to involve the entire family in learning in comfortable and fun environments. Research shows that parental involvement is key to increasing student achievement outcomes, and family-oriented programs have a direct impact on student performance. Because families have the greatest influence on children's attitudes towards education and career choices, we have developed a Family Science program that provides families a venue where they can explore the importance of science and technology in our daily lives by engaging in learning activities that change their perception and understanding of science. NASA Family Science Night strives to change the way that students and their families participate in science, within the program and beyond. After three years of pilot implementation and assessment, our evaluation data shows that Family Science Night participants have positive change in their attitudes and involvement in science.  Even after a single session, families are more likely to engage in external science-related activities and are increasingly excited about science in their everyday lives.  As we enter our dissemination phase, NASA Family Science Night will be compiling and releasing initial evaluation results, and providing facilitator training and online support resources. Support for NASA Family Science Nights is provided in part through NASA ROSES grant NNH06ZDA001N.

  6. NASA Administrator Dan Goldin greets 100-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Among the VIPs attending the launch of STS-99 is Captain Ralph Charles (left), standing next to NASA Administrator Dan Goldin. Charles hopes to have his wish fulfilled of watching a Shuttle launch in person. The 100-year-old aviator has experienced nearly a century of flight history, from the Wright Brothers to the Space Program. He took flying lessons from one of the first fliers trained by Orville Wright, first repaired then built airplanes, went barnstorming, operated a charter service in the Caribbean, and worked as a test pilot for the Curtiss Wright Airplane Co. Charles is the oldest licensed pilot in the United States, and is still flying.

  7. A Piloted Evaluation of Damage Accommodating Flight Control Using a Remotely Piloted Vehicle

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Cox, David E.; Murri, Daniel G.; Riddick, Stephen E.

    2011-01-01

    Toward the goal of reducing the fatal accident rate of large transport airplanes due to loss of control, the NASA Aviation Safety Program has conducted research into flight control technologies that can provide resilient control of airplanes under adverse flight conditions, including damage and failure. As part of the safety program s Integrated Resilient Aircraft Control Project, the NASA Airborne Subscale Transport Aircraft Research system was designed to address the challenges associated with the safe and efficient subscale flight testing of research control laws under adverse flight conditions. This paper presents the results of a series of pilot evaluations of several flight control algorithms used during an offset-to-landing task conducted at altitude. The purpose of this investigation was to assess the ability of various flight control technologies to prevent loss of control as stability and control characteristics were degraded. During the course of 8 research flights, data were recorded while one task was repeatedly executed by a single evaluation pilot. Two generic failures, which degraded stability and control characteristics, were simulated inflight for each of the 9 different flight control laws that were tested. The flight control laws included three different adaptive control methodologies, several linear multivariable designs, a linear robust design, a linear stability augmentation system, and a direct open-loop control mode. Based on pilot Cooper-Harper Ratings obtained for this test, the adaptive flight control laws provided the greatest overall benefit for the stability and control degradation scenarios that were considered. Also, all controllers tested provided a significant improvement in handling qualities over the direct open-loop control mode.

  8. NASA Science Leaders: Webb Telescope Complex and Unprecedented

    NASA Image and Video Library

    2018-06-27

    Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate, and John Mather, senior project scientist, comment on an independent review board’s findings on the agency’s James Webb Space Telescope. Webb is now targeting March 2021 as a new launch date, after the board assessed delays in integration and testing. NASA and the board unanimously agree that Webb can still achieve mission success.

  9. NASA Dryden's T-38 Talon trainer jet in flight over the main base complex at Edwards Air Force Base

    NASA Image and Video Library

    2006-05-05

    NASA Dryden's T-38 Talon trainer jet in flight over the main base complex at Edwards Air Force Base. Formerly at NASA's Langley Research Center, this Northrop T-38 Talon is now used for mission support and pilot proficiency at the Dryden Flight Research Center.

  10. NASA personnel in a control room during the successful second flight of the X-43A aircraft

    NASA Image and Video Library

    2004-03-27

    NASA personnel in a control room during the successful second flight of the X-43A aircraft. front row, left to right: Randy Voland, LaRC Propulsion; Craig Christy, Boeing Systems; Dave Reubush, NASA Hyper-X Deputy Program Manager; and Vince Rausch, NASA Hyper-X Program Manager. back row, left to right: Bill Talley, DCI/consultant; Pat Stoliker, DFRC Director (Acting) of Research Engineering; John Martin, LaRC G&C; and Dave Bose, AMA/Controls.

  11. Pilot Fullerton in ejection escape suit (EES) on aft flight deck

    NASA Image and Video Library

    1982-03-30

    STS003-31-290 (30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (ASSY) mini-headset (HDST) and ejection escape suit (EES), holds flexible hose attached to his EES vent hose fitting and second hose for commander's EES while behind pilots ejection seat (S2) seat back on the aft flight deck. Forward flight deck control panels are visible in the background. Photo credit: NASA

  12. Workshop on Sustainable Infrastructure with NASA Science Mission Directorate and NASA's Office of Infrastructure Representatives

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Brown, Molly

    2009-01-01

    NASA conducted a workshop in July 2009 to bring together their experts in the climate science and climate impacts domains with their institutional stewards. The workshop serves as a pilot for how a federal agency can start to: a) understand current and future climate change risks, b) develop a list of vulnerable institutional capabilities and assets, and c) develop next steps so flexible adaptation strategies can be developed and implemented. 63 attendees (26 scientists and over 30 institutional stewards) participated in the workshop, which extended across all or part of three days.

  13. SR-71 Pilot Stephen (Steve) D. Ishmael

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA research pilot Stephen D. Ishmael is pictured here in front of an SR-71 Blackbird on the ramp at the Dryden Flight Research Center, Edwards, California. Ishmael was one of two NASA research pilots assigned to the SR-71 high speed research program in the early 1990s at NASA's Dryden Flight Research Facility (redesignated the Dryden Flight Research Center in 1994), Edwards, California. Ishmael became a NASA research pilot in 1977. Data from the SR-71 program will be used to aid designers of future supersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and

  14. Research pilot Fred Haise

    NASA Image and Video Library

    1966-04-07

    Fred W. Haise Jr. was a research pilot and an astronaut for the National Aeronautics and Space Administration from 1959 to 1979. He began flying at the Lewis Research Center in Cleveland, Ohio (today the Glenn Research Center), in 1959. He became a research pilot at the NASA Flight Research Center (FRC), Edwards, Calif., in 1963, serving NASA in that position for three years until being selected to be an astronaut in 1966 His best-known assignment at the FRC (later redesignated the Dryden Flight Research Center) was as a lifting body pilot. Shortly after flying the M2-F1 on a car tow to about 25 feet on April 22, 1966, he was assigned as an astronaut to the Johnson Space Center in Houston, Texas. While at the FRC he had also flown a variety of other research and support aircraft, including the variable-stability T-33A to simulate the M2-F2 heavyweight lifting body, some light aircraft including the Piper PA-30 to evaluate their handling qualities, the Apache helicopter, the Aero Commander, the Cessna 310, the Douglas F5D, the Lockheed F-104 and T-33, the Cessna T-37, and the Douglas C-47. After becoming an astronaut, Haise served as a backup crewmember for the Apollo 8, 11, and 16 missions. He flew on the aborted Apollo 13 lunar mission in 1970, spending 142 hours and 54 minutes in space before returning safely to Earth. In 1977, he was the commander of three free flights of the Space Shuttle prototype Enterprise when it flew its Approach and Landing Tests at Edwards Air Force Base, Calif. Meanwhile, from April 1973 to January 1976, Haise served as the Technical Assistant to the Manager of the Space Shuttle Orbiter Project. In 1979, he left NASA to become the Vice President for Space Programs with the Grumman Aerospace Corporation. He then served as President of Grumman Technical Services, an operating division of Northrop Grumman Corporation, from January 1992 until his retirement. Haise was born in Biloxi, Miss., on November 14, 1933. He underwent flight traini

  15. Evaluating Fatigue in Operational Settings: The NASA Ames Fatigue Countermeasures Program

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin; Miller, Donna; Webbon, Lissa; Oyung, Ray

    1996-01-01

    In response to a 1980 Congressional request, NASA Ames initiated a program to examine fatigue in flight operations. The Program objectives are to examine fatigue, sleep loss, and circadian disruption in flight operations, determine the effects of these factors on flight crew performance, and the development of fatigue countermeasures. The NASA Ames Fatigue Countermeasures Program conducts controlled laboratory experiments, full-mission flight simulations, and field studies. A range of subjective, behavioral, performance, physiological, and environmental measures are used depending on study objectives. The Program has developed substantial expertise in gathering data during actual flight operations and in other work settings. This has required the development of ambulatory and other measures that can be carried throughout the world and used at 41,000 feet in aircraft cockpits. The NASA Ames Fatigue Countermeasures Program has examined fatigue in shorthaul, longhaul, overnight cargo, and helicopter operations. A recent study of planned cockpit rest periods demonstrated the effectiveness of a brief inflight nap to improve pilot performance and alertness. This study involved inflight reaction time/vigilance performance testing and EEG/EOG measures of physiological alertness. The NASA Ames Fatigue Countermeasures Program has applied scientific findings to the development of education and training materials on fatigue countermeasures, input to federal regulatory activities on pilot flight, duty, and rest requirements, and support of National Transportation Safety Board accident investigations. Current activities are examining fatigue in nonaugmented longhaul flights, regional/commuter flight operations, corporate/business aviation, and psychophysiological variables related to performance.

  16. Developing Systems Engineering Skills Through NASA Summer Intern Project

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  17. Flight Test Assessments of Pilot Workload, System Usability, and Situation Awareness of TASAR

    NASA Technical Reports Server (NTRS)

    Burke, Kelly A.; Haynes, Mark A.

    2016-01-01

    Traffic Aware Strategic Aircrew Requests (TASAR) is an onboard automation concept intended to identify trajectory optimizations, in terms of fuel and time saving objectives, clear of known traffic, weather, and airspace restrictions prior to the aircrew initiating a route-change request to Air Traffic Control (ATC). The software implementation of the TASAR concept is the Traffic Aware Planner (TAP). TASAR analysis and development is being executed by the NASA Langley Research Center's Crew Systems and Aviation Operations Branch (CSAOB) under the sponsorship of the Airspace Technology Demonstration (ATD) Project of the NASA Airspace Operations and Safety Program (AOSP). The TASAR Flight Trial-2 (FT-2) was conducted in June, 2015 out of the Newport News/Williamsburg International Airport. This flight trial was conducted using a Piaggio Avanti flight test aircraft and consisted of 12 Evaluation Flights with airline commercial pilots participating as the Evaluation Pilots, three destination airports in Atlanta and Jacksonville Air Route Traffic Control Centers, and one pair of flight plans associated with each destination airport. The primary goal of FT-2 was to reduce risk for upcoming operational trials with NASA partner airlines, Alaska Airlines and Virgin America. To accomplish this primary goal, six independent objectives were conducted during FT-2, however, this paper will report only the findings of Objective 5; the assessment of system usability, pilot perceived workload, and the degree of pilot acceptability of the TAP Human Machine Interface (HMI) during flight operations, via the administration of several subjective measures.

  18. NASA/ASEE Faculty Fellowship Program: 2003 Research Reports

    NASA Technical Reports Server (NTRS)

    Kotnour, Tim (Editor); LopezdeCastillo, Eduardo (Editor)

    2003-01-01

    This document is a collection of technical reports on research conducted by the participants in the 2003 NASA/ASEE Faculty Fellowship Program at the John F. Kennedy Space Center (KSC). This was the nineteenth year that a NASA/ASEE program has been conducted at KSC. The 2003 program was administered by the University of Central Florida (UCF) in cooperation with KSC. The program was operated under the auspices of the American Society for Engineering Education (ASEE) and the Education Division, NASA Headquarters, Washington, D.C. The KSC program was one of nine such Aeronautics and Space Research Programs funded by NASA Headquarters in 2003. The basic common objectives of the NASA/ASEE Faculty Fellowship Program are: A) To further the professional knowledge of qualified engineering and science faculty members; B) To stimulate an exchange of ideas between teaching participants and employees of NASA; C) To enrich and refresh the research and teaching activities of participants institutions; D) To contribute to the research objectives of the NASA center. The KSC Faculty Fellows spent ten weeks (May 19 through July 25, 2003) working with NASA scientists and engineers on research of mutual interest to the university faculty member and the NASA colleague. The editors of this document were responsible for selecting appropriately qualified faculty to address some of the many research areas of current interest to NASA/KSC. A separate document reports on the administrative aspects of the 2003 program. The NASA/ASEE program is intended to be a two-year program to allow in-depth research by the university faculty member. In many cases a faculty member has developed a close working relationship with a particular NASA group that had provided funding beyond the two-year limit.

  19. MD-11 PCA - Research flight team photo

    NASA Technical Reports Server (NTRS)

    1995-01-01

    On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.

  20. ECN-2409

    NASA Image and Video Library

    1970-06-17

    Not every moment of a test pilot's day is serious business. In a moment of levity, NASA pilots Bill Dana (left) and John A. Manke try to drag Air Force test pilot Peter Hoag away from the HL-10 lifting body while Air Force Major Jerauld R. Gentry helps from the cockpit. These four men were the principal pilots for the HL-10 program. This was not the only prank involving the HL-10 and its pilots. Once "Captain Midnight" (Gentry) and the "Midnight Skulkers" sneaked into the NASA hangar and put "U.S. Air Force" on the aircraft using stick-on letters. Later, while Gentry was making a lifting-body flight, his 1954 Ford was "borrowed" from the parking lot, painted with yellow-green zinc-chromate primer, and decorated with large stick-on flowers about one foot in diameter. After Gentry returned from the flight, he was surprised to see what had happened to his car.

  1. ASTRONAUT THOMAS P. STAFFORD - TRAINING (WATER EGRESS) (GEMINI-TITAN [GT]-6 PILOT)(HEAD SHOT) - GULF

    NASA Image and Video Library

    1965-08-23

    S65-43971 (23 Aug. 1965) --- Astronaut Thomas P. Stafford, Gemini-6 prime crew pilot, is pictured onboard the NASA Motor Vessel Retriever in the Gulf of Mexico during water egress training. Astronaut Walter M. Schirra Jr. (out of frame), prime crew command pilot, also took part in the training.

  2. LAUNCH - APOLLO XIII - LUNAR LANDING MISSION - KSC

    NASA Image and Video Library

    1970-04-11

    S70-34855 (11 April 1970) --- The Apollo 13 (Spacecraft 109/Lunar Module 7/Saturn 508) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), at 2:13 p.m. (EST), April 11, 1970. The crew of the National Aeronautics and Space Administration's (NASA) third lunar landing mission are astronauts James A., Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot.

  3. LAUNCH - APOLLO 13 - LUNAR LANDING MISSION - KSC

    NASA Image and Video Library

    1970-04-11

    S70-34852 (11 April 1970) --- The Apollo 13 (Spacecraft 109/Lunar Module 7/Saturn 508) space vehicle is launched from Pad A Launch Complex 39, Kennedy Space Center (KSC), at 2:13 p.m. (EST), April 11, 1970. The crew of the National Aeronautics and Space Administration's (NASA) third lunar landing mission are astronauts James A. Lovell Jr., commander; John L. Swigert Jr., command module pilot; and Fred W. Haise Jr., lunar module pilot.

  4. Piloted Flight Simulator Developed for Icing Effects Training

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.

    2005-01-01

    In an effort to expand pilot training methods to avoid icing-related accidents, the NASA Glenn Research Center and Bihrle Applied Research Inc. have developed the Ice Contamination Effects Flight Training Device (ICEFTD). ICEFTD simulates the flight characteristics of the NASA Twin Otter Icing Research Aircraft in a no-ice baseline and in two ice configurations simulating ice-protection-system failures. Key features of the training device are the force feedback in the yoke, the instrument panel and out-the-window graphics, the instructor s workstation, and the portability of the unit.

  5. The pilot climate data system

    NASA Technical Reports Server (NTRS)

    Reph, M. G.; Treinish, L. A.; Smith, P. H.

    1984-01-01

    The Pilot Climate Data System (PCDS) is an interactive scientific information management system for locating, obtaining, manipulating, and displaying climate-research data. The PCDS was developed to manage a large collection of data of interest to the National Aeronautics and Space Administration's (NASA) research community and currently provides such support for approximately twenty data sets. In order to provide the PCDS capabilities, NASA's Goddard Space Flight Center (NASA/GSFC) has integrated the capabilities of several general-purpose software packages with specialized software for reading and reformatting the supported data sets. These capabilities were integrated in a manner which allows the PCDS to be easily expanded, either to provide support for additional data sets or to provide additional functional capabilities. This also allows the PCDS to take advantage of new technology as it becomes available, since parts of the system can be replaced with more powerful components without significantly affecting the user interface.

  6. NASA Life Support Branch staff photo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Hugh L. Dryden Flight Research Center's Life Support staff is a very important group of people. They are responsible for the emergency escape systems in all the aircraft. Their other role is to maintain the pilot's personal survival flight equipment such as flight pressure suits, helmets, etc.. If instruction is needed for new equipment the staff are ready to give support. Left to right: Rick Borsch (Chief), Steve Spandorf, Ray Kinney, Ed Ortiz (seated front), Nick Kiriokos, Kelly Snapp and Bob McElwain.

  7. John F. Kennedy, Jr., speaks to the media at KSC's HBO premiere 'From the Earth to the Moon.'

    NASA Technical Reports Server (NTRS)

    1998-01-01

    John F. Kennedy, Jr., editor-in-chief of George Magazine, speaks with members of the national media at the Home Box Office (HBO) and Imagine Entertainment premiere of the 12-part miniseries 'From the Earth to the Moon' at Kennedy Space Center (KSC). The series was filmed in part on location at KSC and dramatizes the human aspects of NASA's efforts to launch Americans to the Moon. The miniseries highlights NASA's Apollo program and the events leading up to and including the six successful missions to the Moon. A special 500-seat theater was constructed next to the Apollo/Saturn V Center for the KSC premiere showing. Speakers at the event included KSC Director Roy Bridges (at right); Jeff Bewkes, chairman and CEO for HBO; and John F. Kennedy, Jr. Also attending the event, which featured the episode entitled '1968,' were Buzz Aldrin, Apollo 11 astronaut, and Al Worden, Apollo 15 astronaut. The original miniseries event, created for HBO by actor Tom Hanks and Imagine Entertainment, will premiere on HBO beginning April 5, 1998.

  8. John F. Kennedy, Jr., speaks to invited guests at KSC's HBO premiere 'From the Earth to the Moon.'

    NASA Technical Reports Server (NTRS)

    1998-01-01

    John F. Kennedy, Jr., editor-in-chief of George Magazine, greets invited guests at the Home Box Office (HBO) and Imagine Entertainment premiere of the 12-part miniseries 'From the Earth to the Moon' at Kennedy Space Center (KSC). The series was filmed in part on location at KSC and dramatizes the human aspects of NASA's efforts to launch Americans to the Moon. The miniseries highlights NASA's Apollo program and the events leading up to and including the six successful missions to the Moon. A special 500- seat theater was constructed next to the Apollo/Saturn V Center for the KSC premiere showing. Speakers at the event included KSC Director Roy Bridges (at right); Jeff Bewkes, chairman and CEO for HBO; and John F. Kennedy, Jr. Also attending the event, which featured the episode entitled '1968,' were Buzz Aldrin, Apollo 11 astronaut, and Al Worden, Apollo 15 astronaut. The original miniseries event, created for HBO by actor Tom Hanks and Imagine Entertainment, will premiere on HBO beginning April 5, 1998.

  9. Nomination Hearing for Bridenstine to be NASA Administrator on This Week @NASA – November 3, 2017

    NASA Image and Video Library

    2017-11-03

    On Nov. 1, Rep. Jim Bridenstine, the president’s nominee to be the next administrator of NASA, appeared before the Senate Committee on Commerce, Science, and Transportation. Bridenstine, a pilot in the U.S. Navy Reserve and former executive director of the Tulsa Air and Space Museum and Planetarium, was elected to the U.S. Congress in 2012 to represent Oklahoma’s First Congressional District. If confirmed, he would become NASA’s 13th Administrator. Also, Orion Launch Pad Emergency Exit Tests, Jack Fischer in Washington, and Next Mars Rover Will Have 23 “Eyes”!

  10. Advanced Transport Delay Compensation Algorithms: Results of Delay Measurement and Piloted Performance Tests

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.

    2007-01-01

    This report summarizes the results of delay measurement and piloted performance tests that were conducted to assess the effectiveness of the adaptive compensator and the state space compensator for alleviating the phase distortion of transport delay in the visual system in the VMS at the NASA Langley Research Center. Piloted simulation tests were conducted to assess the effectiveness of two novel compensators in comparison to the McFarland predictor and the baseline system with no compensation. Thirteen pilots with heterogeneous flight experience executed straight-in and offset approaches, at various delay configurations, on a flight simulator where different predictors were applied to compensate for transport delay. The glideslope and touchdown errors, power spectral density of the pilot control inputs, NASA Task Load Index, and Cooper-Harper rating of the handling qualities were employed for the analyses. The overall analyses show that the adaptive predictor results in slightly poorer compensation for short added delay (up to 48 ms) and better compensation for long added delay (up to 192 ms) than the McFarland compensator. The analyses also show that the state space predictor is fairly superior for short delay and significantly superior for long delay than the McFarland compensator.

  11. The uncertain trajectory of a pilot-wave

    NASA Astrophysics Data System (ADS)

    Nachbin, Andre

    2015-11-01

    Yves Couder (Paris 7) and coworkers reported on walking droplets on the surface of a vibrating bath. John Bush (MIT) and coworkers also produced laboratory experiments which were compared to theoretical predictions. Both groups discussed the pilot-wave properties previously thought to be peculiar to the microscopic, quantum realm. Of particular interest is the wavelike statistics for pilot-wave dynamics in a confined domain. We present a one dimensional water wave model for a droplet bouncing in a confined domain. The mathematical model makes use of conformal mapping which allows for the presence of submerged barriers. The computational simulations produce tunneling events. Work supported by CNPq grant 454027/2008-7 and by FAPERJ Cientistas do Nosso Estado grant 102917/2011.

  12. Computer simulation of multiple pilots flying a modern high performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    A computer simulation of a human response pilot mechanism within the flight control loop of a high-performance modern helicopter is presented. A human response mechanism, implemented by a low order, linear transfer function, is used in a decoupled single variable configuration that exploits the dominant vehicle characteristics by associating cockpit controls and instrumentation with specific vehicle dynamics. Low order helicopter models obtained from evaluations of the time and frequency domain responses of a nonlinear simulation model, provided by NASA Lewis Research Center, are presented and considered in the discussion of the pilot development. Pilot responses and reactions to test maneuvers are presented and discussed. Higher level implementation, using the pilot mechanisms, are discussed and considered for their use in a comprehensive control structure.

  13. Presidential Medal of Freedom

    NASA Image and Video Library

    2012-05-29

    President Barack Obama talks to attendees during the Presidential Medal of Freedom ceremony, held on Tuesday, May 29, 2012, at the White House in Washington. One of the awardees was former United States Marine Corps pilot, astronaut, and United States Senator John Glenn. Photo Credit: (NASA/Bill Ingalls)

  14. Commercial crew astronauts on This Week @NASA – July 10, 2015

    NASA Image and Video Library

    2015-07-10

    NASA has selected four astronauts to work closely with two U.S. commercial companies that will return human spaceflight launches to Florida’s Space Coast. NASA named veteran astronauts and experienced test pilots Robert Behnken, Eric Boe, Douglas Hurley and Sunita Williams to work closely with Boeing and SpaceX. NASA contracted with Boeing and SpaceX to develop crew transportation systems and provide crew transportation services to and from the International Space Station. The agency will select the commercial crew astronauts from this group of four for the first test, which is scheduled for 2017. Also, NASA’s newest astronauts, New Horizons still on track, Benefits for Humanity, Cargo ship arrives at space station, Training continues for next ISS crew and more!

  15. Pilot Fullerton uses hairbrush on middeck

    NASA Image and Video Library

    1982-03-30

    STS003-22-119 (30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, wearing communications kit assembly (ASSY) mini-headset (HDST), uses hygiene kit hair brush on aft middeck. He makes light of his lack of hair during a freshening up session. He makes a token effort with a hair brush. Side hatch and panel ML31C appear behind him. Photo credit: NASA

  16. Automated Test for NASA CFS

    NASA Technical Reports Server (NTRS)

    McComas, David C.; Strege, Susanne L.; Carpenter, Paul B. Hartman, Randy

    2015-01-01

    The core Flight System (cFS) is a flight software (FSW) product line developed by the Flight Software Systems Branch (FSSB) at NASA's Goddard Space Flight Center (GSFC). The cFS uses compile-time configuration parameters to implement variable requirements to enable portability across embedded computing platforms and to implement different end-user functional needs. The verification and validation of these requirements is proving to be a significant challenge. This paper describes the challenges facing the cFS and the results of a pilot effort to apply EXB Solution's testing approach to the cFS applications.

  17. A NASA helicopter arrives at KSC for painting

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The pilot of the NASA helicopter secures the rotary blade before the helicopter's transfer to Ransom Road at KSC. It is one of four UH-1H helicopters that will have its blades painted, changing the black to a pattern of white and yellow stripes. The pattern provides better visibility in smoke and fire conditions. When the rotors are turning, the stripes create a yellow and white circle that is more easily seen by a second helicopter from above. The helicopters, primarily used for security and medical evacuation for NASA, will be used to deliver water via buckets during brush fires. The change was made to comply with U.S. Fish and Wildlife and Department of Forestry regulations for helicopter-assisted fire control.

  18. 48 CFR 1819.7208 - Award Fee Pilot Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS NASA Mentor-Protégé Program 1819.7208 Award Fee Pilot Program. (a) Mentors will be eligible to earn a separate award fee associated with the provision... the end of the Mentor-Protégé agreement period. (b) The overall developmental assistance performance...

  19. Control Requirements to Support Manual Piloting Capability

    NASA Technical Reports Server (NTRS)

    Merancy, Nujoud; Chevray, Kay; Gonzalez, Rodolfo; Madsen, Jennifer; Spehar, Pete

    2013-01-01

    The manual piloting requirements specified under the NASA Constellation Program involved Cooper-Harper ratings, which are a qualitative and subjective evaluation from experienced pilots. This type of verification entails a significant investment of resources to assess a completed design and is not one that can easily or meaningfully be applied upfront in the design phase. The evolution of the Multi-Purpose Crew Vehicle Program to include an independently developed propulsion system from an international partner makes application of Cooper-Harper based design requirements inadequate. To mitigate this issue, a novel solution was developed to reformulate the necessary piloting capability into quantifiable requirements. A trio of requirements was designed which specify control authority, precision, and impulse residuals enabling propulsion design within specified guidance and control boundaries. These requirements have been evaluated against both the existing Orion design and the proposed ESA design and have been found to achieve the desired specificity. The requirement set is capable of being applied to the development of other spacecraft in support of manual piloting.

  20. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (center) talks to 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. In the background, between them, are Jonathan's mother, Penny; his grandfather, John Janocka; and his sister, Jaimie. At left is Mrs. Goldin. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  1. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (center) presents a bag of special gifts to 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. In the background, between them, are Jonathan's mother, Penny; his grandfather, John Janocka; and his sister, Jaimie.. At left is Mrs. Goldin. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  2. NASA Administrator Dan Goldin greets 10-year-old VIP.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Administrator Dan Goldin (center) greets 10-year-old Jonathan Pierce (right), who is garbed in a protective cooling suit designed by NASA. In the background, between them, are Jonathan's mother, Penny; his grandfather, John Janocka; and his sister, Jaimie.. At left is Mrs. Goldin. Jonathan suffers from erythropoietic protoporphyria, a rare condition that makes his body unable to withstand ultraviolet rays. The suit allows him to be outside during the day, which would otherwise be impossible. Jonathan's trip was funded by the Make-A-Wish Foundation and included a visit to Disney World. He and his family were among a dozen VIPs at KSC to view the launch of STS-99.

  3. Flight simulation software at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Norlin, Ken A.

    1995-01-01

    The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.

  4. Astronaut Fred Haise - Suiting Room - Prelaunch - KSC

    NASA Image and Video Library

    1970-04-11

    S70-34851 (11 April 1970) --- A space suit technician talks with astronaut Fred W. Haise Jr., lunar module pilot for NASA's Apollo 13 mission, during suiting up procedures at Kennedy Space Center (KSC). Other members of the crew are astronauts James A. Lovell Jr., commander, and John L. Swigert Jr., command module pilot. Swigert replaced astronaut Thomas K. Mattingly II as a member of the crew when it was learned he had been exposed to measles.

  5. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  6. Technology transfer in New York City - The NASA/NYC Applications Project.

    NASA Technical Reports Server (NTRS)

    Karen, A.; Orrick, D.; Anuskiewicz, T.

    1973-01-01

    New York City faces many varied and complex problems ranging from truck hijacking to graffiti. In answer to a request from NYC officials NASA is sponsoring the efforts of a project aimed at applying aerospace-derived solutions to a series of city technical problems. An immediate result has been a pilot experiment to improve security in the City's schools. Other problem areas for NASA review have been selected from the Fire, Police and Air Resources Departments. The Project offers a significant example of a viable approach to the crucial process of bridging the communications gap between urban officials and technologists.

  7. Pilot Fullerton dons ejection escape suit (EES) on middeck

    NASA Image and Video Library

    1982-03-30

    STS003-23-165 (22-30 March 1982) --- Astronaut Gordon Fullerton, STS-3 pilot, dons ejection escape suit (EES) (high altitude pressure garment) life preserver unit (LPU) on forward port side of middeck above potable water tank. Fullerton also adjusts lapbelt fitting and helmet holddown strap. Photo credit: NASA

  8. Sen. John C. Stennis celebrates a successful Space Shuttle Main Engine test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Sen. John C. Stennis dances a jig on top of the Test Control Center at Stennis Space Center following the successful test of a Space Shuttle Main Engine in 1978. A staunch supporter of the National Aeronautics and Space Administration (NASA), the senior senator from DeKalb, Miss., supported the establishment of the space center in Hancock County and spoke personally with local residents who would relocate their homes to accommodate Mississippi's entry into the space age. Stennis Space Center was named for Sen. Stennis by Executive Order of President Ronald Reagan on May 20, 1988.

  9. Two NASA Dryden F/A-18s flown by Gordon Fullerton and Nils Larson fly in tight formation Dec. 21, 2007 during Fullerton's final flight before his retirement.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  10. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  11. Spearhead echo and downburst near the approach end of a John F. Kennedy Airport runway, New York City

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1976-01-01

    Radar echoes of a storm at John F. Kennedy International Airport are examined. Results regarding the phenomena presented suggest the existence of downburst cells. These cells are characterized by spearhead echoes. About 2% of the echoes in the New York area were spearhead echoes. The detection and identification of downburst cells, their potential hazard to approaching and landing aircraft, and communication of this information to the pilots of those aircraft are discussed.

  12. Foreword: Sir John Pendry FRS Sir John Pendry FRS

    NASA Astrophysics Data System (ADS)

    Inglesfield, John; Echenique, Pedro

    2008-07-01

    John Pendry John Inglesfield and Pedro Echenique write: John Pendry's 65th birthday is on 4 July 2008, and this issue of the Journal of Physics: Condensed Matter is dedicated to him, with articles by friends, colleagues, and former students. By any standards, John Pendry is a great scientist, who has made—and continues to make—an enormous contribution to physics; the wide range of his interests is reflected in the scope of these articles. Not many scientists can establish a completely new and unexpected area of research, but this has been John's achievement in the last few years in the field of metamaterials, materials whose electromagnetic properties depend on their structure rather than the materials of which the structure is built. In this way, structures with effectively negative electrical permittivity and negative magnetic permeability can be constructed, demonstrating negative refraction; through metamaterials scientists now have access to properties not found in nature, and never previously explored experimentally. Never a week goes by without a potential new application of metamaterials, whether it is perfect lensing, or the cloak of invisibility. This has certainly led to tremendous visibility for John himself, with guest lectures all over the world, and radio and television appearances. John Pendry's first paper was published exactly 40 years ago, 'Analytic properties of pseudopotentials' [1], and since then he has published 310 articles at the latest count. But this first paper already reflected something of the way John works. His PhD project, with Volker Heine at the Cavendish Laboratory, was to interpret the scattering of low energy electrons from surfaces, the technique of LEED which was to become the method of choice for determining surface structure. Although the energy of the electrons in LEED is relatively low—say 50 eV—it is much higher than the energy of the conduction electrons, for which pseudopotentials had been devised, and John

  13. ASTRONAUT THOMAS P. STAFFORD - TRAINING (WATER EGRESS) (GT-6 PILOT)

    NASA Image and Video Library

    1965-08-23

    S65-43954 (23 Aug. 1965) --- Astronaut Thomas P. Stafford, Gemini-6 prime crew pilot, climbs out of a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. A NASA swimmer in the water nearby assists in the exercise.

  14. PILOT STUDY FOR ESTABLISHMENT OF A NETWORK OF COASTAL REFERENCE SITES

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and the National Aeronautics and Space Administration (NASA) have joined in partnership for a pilot study for the establishment of a network of reference sites, the Coastal Int...

  15. Heads-Up Display with Virtual Precision Approach Path Indicator as Implemented in a Real-Time Piloted Lifting-Body Simulation

    NASA Technical Reports Server (NTRS)

    Neuhaus, Jason R.

    2018-01-01

    This document describes the heads-up display (HUD) used in a piloted lifting-body entry, approach and landing simulation developed for the simulator facilities of the Simulation Development and Analysis Branch (SDAB) at NASA Langley Research Center. The HUD symbology originated with the piloted simulation evaluations of the HL-20 lifting body concept conducted in 1989 at NASA Langley. The original symbology was roughly based on Shuttle HUD symbology, as interpreted by Langley researchers. This document focuses on the addition of the precision approach path indicator (PAPI) lights to the HUD overlay.

  16. NASA News Conference on Mercury's Polar Regions

    NASA Image and Video Library

    2017-12-08

    Tune in to NASA's News Conference today, November 29, 2012, at 2 p.m. EST for new findings about Mercury's polar regions. www.nasa.gov/multimedia/nasatv/index.html Due to its nearly vertical spin axis, Mercury's north pole is never fully sunlit. If it were, it might look something like this image, which is an orthographic projection of a global mosaic. The dark area towards the center of the image contains the north pole. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NASA's International Lunar Network Anchor Nodes and Robotic Lunar Lander Project Update

    NASA Technical Reports Server (NTRS)

    Morse, Brian J.; Reed, Cheryl L. B.; Kirby, Karen W.; Cohen, Barbara A.; Bassler, Julie A.; Harris, Danny W.; Chavers, D. Gregory

    2010-01-01

    In early 2008, NASA established the Lunar Quest Program, a new lunar science research program within NASA s Science Mission Directorate. The program included the establishment of the anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This paper describes the current status of the ILN Anchor Nodes mission development and the lander risk-reduction design and test activities implemented jointly by NASA s Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory. The lunar lander concepts developed by this team are applicable to multiple science missions, and this paper will describe a mission combining the functionality of an ILN node with an investigation of lunar polar volatiles.

  18. St. John's Wort (image)

    MedlinePlus

    The herb St. John's Wort is believed to be helpful in relieving mild to moderate depression, but should only be taken under a physician's supervision. St. John's Wort may clash with other medications or ...

  19. Pilot Overmyer completes hygiene activities / demostrates IVA foot restraint

    NASA Image and Video Library

    1982-11-16

    STS005-06-230 (11-16 Nov. 1982) --- On middeck, astronaut Robert F. Overmyer, STS-5 pilot, drying his face with a towel from forward single tray personal item stowage locker, completes personal hygiene activities (shaving) and demonstrates use of intravehicular activity (IVA) foot restraint on floor. Photo credit: NASA

  20. NASA's Observes Effects of Summer Melt on Greenland Ice Sheet

    NASA Image and Video Library

    2017-12-08

    NASA's IceBridge, an airborne survey of polar ice, flew over the Helheim/Kangerdlugssuaq region of Greenland on Sept. 11, 2016. This photograph from the flight captures Greenland's Steenstrup Glacier, with the midmorning sun glinting off of the Denmark Strait in the background. IceBridge completed the final flight of the summer campaign to observe the impact of the summer melt season on the ice sheet on Sept. 16. The IceBridge flights, which began on Aug. 27, are mostly repeats of lines that the team flew in early May, so that scientists can observe changes in ice elevation between the spring and late summer. For this short, end-of-summer campaign, the IceBridge scientists flew aboard an HU-25A Guardian aircraft from NASA's Langley Research Center in Hampton, Virginia. Credit: NASA/John Sonntag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    DOT National Transportation Integrated Search

    1997-04-01

    This report describes the concept of a propulsion controlled aircraft (PCA), : discusses pilot controls, displays, and procedures; and presents the results of a : PCA piloted simulation test and evaluation of the B747-400 airplane conducted at : NASA...

  2. (GEMINI-TITAN [GT]-6 PREFLIGHT ACTIVITY) (PILOT INSIDE SPACECRAFT) - ASTRONAUT THOMAS P. STAFFORD - MISC. - CAPE

    NASA Image and Video Library

    1965-12-15

    S65-59961 (15 Dec. 1965) --- Astronaut Thomas P. Stafford, pilot, is pictured in the Gemini-6 spacecraft in the White Room atop Pad 19 prior to the closing of the hatches during the Gemini-6 prelaunch countdown. In the background (partially out of view) is astronaut Walter M. Schirra Jr., command pilot. Photo credit: NASA or National Aeronautics and Space Administration

  3. The NASA Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.

    2015-12-01

    Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder

  4. Closeup of research pilot Neil Armstrong operating the Iron Cross Attitude Simulator reaction contro

    NASA Technical Reports Server (NTRS)

    1956-01-01

    Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8

  5. Portraits - STS-1

    NASA Image and Video Library

    1979-05-07

    S79-31775 (29 April 1979) --- These two astronauts are the prime crewmen for the first flight in the Space Transportation System (STS-1) program. Astronauts John W. Young, left, commander, and Robert L. Crippen, pilot, will man the space shuttle orbiter 102 Columbia for the first orbital flight test. Photo credit: NASA

  6. Terrain Portrayal for Synthetic Vision Systems Head-Down Displays Evaluation Results: Compilation of Pilot Transcripts

    NASA Technical Reports Server (NTRS)

    Hughes, Monica F.; Glaab, Louis J.

    2007-01-01

    The Terrain Portrayal for Head-Down Displays (TP-HDD) simulation experiment addressed multiple objectives involving twelve display concepts (two baseline concepts without terrain and ten synthetic vision system (SVS) variations), four evaluation maneuvers (two en route and one approach maneuver, plus a rare-event scenario), and three pilot group classifications. The TP-HDD SVS simulation was conducted in the NASA Langley Research Center's (LaRC's) General Aviation WorkStation (GAWS) facility. The results from this simulation establish the relationship between terrain portrayal fidelity and pilot situation awareness, workload, stress, and performance and are published in the NASA TP entitled Terrain Portrayal for Synthetic Vision Systems Head-Down Displays Evaluation Results. This is a collection of pilot comments during each run of the TP-HDD simulation experiment. These comments are not the full transcripts, but a condensed version where only the salient remarks that applied to the scenario, the maneuver, or the actual research itself were compiled.

  7. GEMINI-TITAN (GT)-11 - EARTH - SKY - DOCKING - OUTER SPACE

    NASA Image and Video Library

    1966-07-18

    S66-46144 (18 July 1966) --- The Gemini-10 spacecraft is successfully docked with the Agena Target Docking Vehicle 5005. The Agena display panel is clearly visible. After docking with the Agena, astronauts John W. Young, command pilot, and Michael Collins, pilot, fired the 16,000-pound thrust engine of Agena-10's primary propulsion system to boost the combined vehicles into an orbit with an apogee of 413 nautical miles to set a new altitude record for manned spaceflight. Photo credit: NASA

  8. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  9. Users guide: The LaRC human-operator-simulator-based pilot model

    NASA Technical Reports Server (NTRS)

    Bogart, E. H.; Waller, M. C.

    1985-01-01

    A Human Operator Simulator (HOS) based pilot model has been developed for use at NASA LaRC for analysis of flight management problems. The model is currently configured to simulate piloted flight of an advanced transport airplane. The generic HOS operator and machine model was originally developed under U.S. Navy sponsorship by Analytics, Inc. and through a contract with LaRC was configured to represent a pilot flying a transport airplane. A version of the HOS program runs in batch mode on LaRC's (60-bit-word) central computer system. This document provides a guide for using the program and describes in some detail the assortment of files used during its operation.

  10. Jasper Johns' Painted Words.

    ERIC Educational Resources Information Center

    Levinger, Esther

    1989-01-01

    States that the painted words in Jasper Johns' art act in two different capacities: concealed words partake in the artist's interrogation of visual perception; and visible painted words question classical representation. Argues that words are Johns' means of critiquing modernism. (RS)

  11. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report include the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  12. The NASA Goddard Space Flight Center Virtual Science Fair

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeff; Walden, Harvey; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This report describes the development of the NASA Goddard Space Flight Center Virtual Science Fair, including its history and outgrowth from the traditional regional science fairs supported by NASA. The results of the 1999 Virtual Science Fair pilot program, the mechanics of running the 2000 Virtual Science Fair and its results, and comments and suggestions for future Virtual Science Fairs are provided. The appendices to the report contain supporting documentation, including the original proposal for this project, the judging criteria, the user's guide and the judge's guide to the Virtual Science Fair Web site, the Fair publicity brochure and the Fair award designs, judges' and students' responses to survey questions about the Virtual Science Fair, and lists of student entries to both the 1999 and 2000 Fairs.

  13. Various views of STS-95 Senator John Glenn during training

    NASA Image and Video Library

    1998-06-18

    S98-08741 (May 1998) --- Three crew members in training for the STS-95 mission check out a training version of a blood centrifuge that will accompany them aboard the Space Shuttle Discovery later this year. In the foreground (from the left), are astronauts Scott E. Parazynski and Pedro Duque, both mission specialists, and U.S. Sen. John H. Glenn Jr., payload specialist. Duque, representing the European Space Agency (ESA), has his right hand on the centrifuge. Sen. Glenn holds a vial of blood that would be placed inside the centrifuge. Among those in the background is astronaut Stephen K. Robinson (left side of frame), STS-95 mission specialist. The photo was taken by Joe McNally, National Geographic, for NASA.

  14. Senator John Glenn during water survival training at the NBL

    NASA Image and Video Library

    1998-04-06

    S98-04610 (6 April 1998) --- U.S. Sen. John H. Glenn Jr. (D.-Ohio), attired in a training version of the Space Shuttle partial pressure launch and entry suit, surveys the scene of a bailout training exercise. The giant pool in the Neutral Buoyancy Laboratory (NBL)at the Sonny Carter Training Facility allows the STS-95 crewmembers the opportunity to simulate ejection from an aircraft over water. A number of SCUBA-equipped divers assist in the training exercises. The nearby structure contains a simulated version of the escape pole which is located in the middeck on each of four NASA Space Shuttle vehicles. Parachute drops, raft deployment, water bailing, flare signaling and other survival techniques are also covered in the session.

  15. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.

  16. NASA TLA workload analysis support. Volume 3: FFD autopilot scenario validation data

    NASA Technical Reports Server (NTRS)

    Sundstrom, J. L.

    1980-01-01

    The data used to validate a seven time line analysis of forward flight deck autopilot mode for the pilot and copilot for NASA B737 terminal configured vehicle are presented. Demand workloads are given in two forms: workload histograms and workload summaries (bar graphs). A report showing task length and task interaction is also presented.

  17. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS-132 astronaut Piers Sellers, left, and Dr. John Mather are seen with a replica of Mather's Nobel Prize, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned the replica that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe. Photo Credit: (NASA/Paul E. Alers)

  18. KSC-06pd0686

    NASA Image and Video Library

    2006-04-18

    CINCINNATI, OHIO - NASA Administrator Michael Griffin presented the NASA Ambassadors of Exploration award to Neil Armstrong (left). At right is former awardee John Glenn. Armstrong received the award that includes a moon rock to recognize the sacrifices and dedication of the astronauts and others who were part of the Mercury, Gemini and Apollo programs. A former naval aviator, NASA test pilot and Apollo 11 commander, Armstrong was the first human to ever land a spacecraft on the moon and the first to step on the lunar surface. Armstrong's award will be displayed at the Cincinnati Museum Center at Union Terminal. Photo credit: NASA/Bill Ingalls

  19. Ohio Senator John Glenn tours the Design Engineering lab at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the Engineering Development Laboratory at Kennedy Space Center. Standing with Senator Glenn is Design Engineer David Kruhm of NASA Advanced Development and Shuttle Upgrades. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  20. Environmental monitoring and research at the John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Hall, C. R.; Hinkle, C. R.; Knott, W. M.; Summerfield, B. R.

    1992-01-01

    The Biomedical Operations and Research Office at the NASA John F. Kennedy Space Center has been supporting environmental monitoring and research since the mid-1970s. Program elements include monitoring of baseline conditions to document natural variability in the ecosystem, assessments of operations and construction of new facilities, and ecological research focusing on wildlife habitat associations. Information management is centered around development of a computerized geographic information system that incorporates remote sensing and digital image processing technologies along with traditional relational data base management capabilities. The proactive program is one in which the initiative is to anticipate potential environmental concerns before they occur and, by utilizing in-house expertise, develop impact minimization or mitigation strategies to reduce environmental risk.