Sample records for nasa planetary astronomy

  1. NASA thesaurus: Astronomy vocabulary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A terminology of descriptors used by the NASA Scientific and Technical information effort to index documents in the area of astronomy is presented. The terms are listed in hierarchical format derived from the 1988 edition of the NASA Thesaurus Volume 1 -- Hierarchical Listing. Over 1600 terms are included. In addition to astronomy, space sciences covered include astrophysics, cosmology, lunar flight and exploration, meteors and meteorites, celestial mechanics, planetary flight and exploration, and planetary science.

  2. To See the Unseen: A History of Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  3. Planetary Astronomy

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1998-01-01

    This 1-year project was an augmentation grant to my NASA Planetary Astronomy grant. With the awarded funding, we accomplished the following tasks: (1) Conducted two NVK imaging runs in conjunction with the ILAW (International Lunar Atmosphere Week) Observing Campaigns in 1995 and 1997. In the first run, we obtained repeated imaging sequences of lunar Na D-line emission to better quantify the temporal variations detected in earlier runs. In the second run we obtained extremely high resolution (R=960.000) Na line profiles using the 4m AAT in Australia. These data are being analyzed under our new 3-year Planetary Astronomy grant. (2) Reduced, analyzed, and published our March 1995 spectroscopic dataset to detect (or set stringent upper limits on) Rb. Cs, Mg. Al. Fe, Ba, Ba. OH, and several other species. These results were reported in a talk at the LPSC and in two papers: (1) A Spectroscopic Survey of Metallic Abundances in the Lunar Atmosphere. and (2) A Search for Magnesium in the Lunar Atmosphere. Both reprints are attached. Wrote up an extensive, invited Reviews of Geophysics review article on advances in the study of the lunar atmosphere. This 70-page article, which is expected to appear in print in 1999, is also attached.

  4. Reports of planetary astronomy, 1989

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This is a compilation of abstracts of reports from Principal Investigators funded through NASA's Planetary Astronomy Office. It provides a summarization of work conducted in this program in 1989. Each report contains a brief statement on the strategy of investigation and lists significant accomplishments within the area of the author's funded grant or contract, plans for future work, and publications.

  5. Reports of planetary astronomy, 1985

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This is a compilation of abstracts of reports from Principal Investigators funded through NASA's Planetary Astronomy Program, Office of Space Science and Applications. The purpose is to provide a document which succinctly summarizes work conducted in this program for 1985. Each report contains a brief statement on the strategy of investigation and lists significant accomplishments within the area of the author's funded grant or contract, plans for future work, and publications.

  6. Reports of planetary astronomy, 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compilation of abstracts of reports from Principal Investigators funded through NASA's Planetary Astronomy Program, Office of Space Science and Applications, is presented. The purpose is to provide a document which succinctly summarizes work conducted in this program for 1986. Each report contains a brief statement on the strategy of investigation and lists significant accomplishments within the area of the author's funded grant or contract, plans for future work, and publications.

  7. The Airborne Astronomy Ambassadors (AAA) Program and NASA Astrophysics Connections

    NASA Astrophysics Data System (ADS)

    Backman, Dana Edward; Clark, Coral; Harman, Pamela

    2018-01-01

    The NASA Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content delivery, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong’s B703 science research aircraft facility in Palmdale, California, including interactions with NASA astrophysics & planetary science Subject Matter Experts (SMEs) during science flights on SOFIA, and (3) continuing post-flight opportunities for teacher & student connections with SMEs.

  8. Reports of planetary astronomy, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collection is presented of summaries designed to provide information about scientific research projects conducted in the Planetary Astronomy Program in 1990 and 1991, and to facilitate communication and coordination among concerned scientists and interested persons in universities, government, and industry. Highlights of recent accomplishments in planetary astronomy are included.

  9. Discourse following award of Kepler Gold Medal. [Kepler Laws, planetary astronomy and physics, and Jupiter studies

    NASA Technical Reports Server (NTRS)

    Kuiper, G. P.

    1973-01-01

    Kuiper briefly reviews Kepler's contributions to the field of planetary astronomy and physics, along with references to his own background in the study of stars, planets, and the solar system. He mentions his participation in NASA programs related to planetary astronomy. He concludes his remarks with thanks for being honored by the award of the Kepler Gold Medal.

  10. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  11. NASA SOFIA Captures Images of the Planetary Nebula M2-9

    NASA Image and Video Library

    2012-03-29

    Researchers using NASA Stratospheric Observatory for Infrared Astronomy SOFIA have captured infrared images of the last exhalations of a dying sun-like star. This image is of the planetary Nebula M2-9.

  12. NASA's Celebration of the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2010-01-01

    NASA celebrated the International Year of Astronomy (IYA) 2009 by developing a rich and vibrant educational and public outreach program that increased the exposure of the public and students to NASA discoveries reaching audiences far and wide. We kicked off the event at the American Astronomical Society meeting in January 2009, with a sneak preview of the multiwavelength image of M101, taken by the three NASA Great Observatories, Hubble Space Telescope, Chandra X-Ray Observatory, and Spitzer Space Telescope. There was a steady stream of visitors at the NASA booth at the Opening Ceremony in Paris. Since then NASA programs have touched the hearts and souls of the young and old both in the U.S. and internationally. NASA IYA programs in the form of teacher workshops, student contests, exhibits in libraries, museums, planetaria and non traditional venues such as airports and music festivals, podcasts and vodcasts have reached a wide audience. The NASA IYA Student Ambassadors engaged undergraduate and graduate students throughout the U.S. in outreach programs they created to spread NASA astronomy to their local communities. The year 2009 saw the launch of several space astronomy, heliophysics and planetary science missions. NASA developed IYA programs associated which each launch, to capitalize on the associated interest generated in the public. Some examples of the impact of these programs and building on their success beyond 2009 will be discussed in this talk. All NASA programs can be accessed via the website http://astronomy2009.nasa.gov/.

  13. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke

    1991-01-01

    The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.

  14. From Data to Knowledge in Earth Science, Planetary Science, and Astronomy

    NASA Technical Reports Server (NTRS)

    Dobinson, Elaine R.; Jacob, Joseph C.; Yunck, Thomas P.

    2004-01-01

    This paper examines three NASA science data archive systems from the Earth, planetary, and astronomy domains, and discusses the various efforts underway to provide their science communities with not only better access to their holdings, but also with the services they need to interpret the data and understand their physical meaning. The paper identifies problems common to all three domains and suggests ways that common standards, technologies, and even implementations be leveraged to benefit each other.

  15. Scientific Tools and Techniques: An Innovative Introduction to Planetary Science / Astronomy for 9th Grade Students

    NASA Astrophysics Data System (ADS)

    Albin, Edward F.

    2014-11-01

    Fernbank Science Center in Atlanta, GA (USA) offers instruction in planetary science and astronomy to gifted 9th grade students within a program called "Scientific Tools and Techniques" (STT). Although STT provides a semester long overview of all sciences, the planetary science / astronomy section is innovative since students have access to instruction in the Center's Zeiss planetarium and observatory, which includes a 0.9 m cassegrain telescope. The curriculum includes charting the positions of planets in planetarium the sky; telescopic observations of the Moon and planets; hands-on access to meteorites and tektites; and an introduction to planetary spectroscopy utilizing LPI furnished ALTA reflectance spectrometers. In addition, students have the opportunity to watch several full dome planetary themed planetarium presentations, including "Back to the Moon for Good" and "Ring World: Cassini at Saturn." An overview of NASA's planetary exploration efforts is also considered, with special emphasis on the new Orion / Space Launch System for human exploration of the solar system. A primary goal of our STT program is to not only engage but encourage students to pursue careers in the field of science, with the hope of inspiring future scientists / leaders in the field of planetary science.

  16. Reports of planetary astronomy - 1991

    NASA Technical Reports Server (NTRS)

    Rahe, Jurgen (Editor)

    1993-01-01

    This publication provides information about currently funded scientific research projects conducted in the Planetary Astronomy Program during 1991, and consists of two main sections. The first section gives a summary of research objectives, past accomplishments, and projected future investigations, as submitted by each principal investigator. In the second section, recent scientifically significant accomplishments within the Program are highlighted.

  17. Federal Funding and Planetary Astronomy, 1950-75: A Case Study.

    ERIC Educational Resources Information Center

    Tatarewicz, Joseph N.

    1986-01-01

    Discusses the role and resources of planetary astronomy in planetary exploration. Identifies the categories of support made available by the National Aeronautics and Space Administration and reviews the impacts of these findings on planetary researches. Analyzes the publishing habits of American astronomers. (ML)

  18. Nasa's Planetary Geologic Mapping Program: Overview

    NASA Astrophysics Data System (ADS)

    Williams, D. A.

    2016-06-01

    NASA's Planetary Science Division supports the geologic mapping of planetary surfaces through a distinct organizational structure and a series of research and analysis (R&A) funding programs. Cartography and geologic mapping issues for NASA's planetary science programs are overseen by the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), which is an assessment group for cartography similar to the Mars Exploration Program Assessment Group (MEPAG) for Mars exploration. MAPSIT's Steering Committee includes specialists in geological mapping, who make up the Geologic Mapping Subcommittee (GEMS). I am the GEMS Chair, and with a group of 3-4 community mappers we advise the U.S. Geological Survey Planetary Geologic Mapping Coordinator (Dr. James Skinner) and develop policy and procedures to aid the planetary geologic mapping community. GEMS meets twice a year, at the Annual Lunar and Planetary Science Conference in March, and at the Annual Planetary Mappers' Meeting in June (attendance is required by all NASA-funded geologic mappers). Funding programs under NASA's current R&A structure to propose geological mapping projects include Mars Data Analysis (Mars), Lunar Data Analysis (Moon), Discovery Data Analysis (Mercury, Vesta, Ceres), Cassini Data Analysis (Saturn moons), Solar System Workings (Venus or Jupiter moons), and the Planetary Data Archiving, Restoration, and Tools (PDART) program. Current NASA policy requires all funded geologic mapping projects to be done digitally using Geographic Information Systems (GIS) software. In this presentation we will discuss details on how geologic mapping is done consistent with current NASA policy and USGS guidelines.

  19. NASA Airborne Astronomy Ambassadors (AAA)

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Harman, P. K.; Clark, C.

    2016-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) is a three-part professional development (PD) program for high school physics and astronomy teachers. The AAA experience consists of: (1) blended-learning professional development composed of webinars, asynchronous content learning, and a series of hands-on workshops (2) a STEM immersion experience at NASA Armstrong Flight Research Center's B703 science research aircraft facility in Palmdale, California, and (3) ongoing participation in the AAA community of practice (CoP) connecting participants with astrophysics and planetary science Subject Matter Experts (SMEs). The SETI Institute (SI) is partnering with school districts in Santa Clara and Los Angeles Counties during the AAA program's "incubation" period, calendar years 2016 through 2018. AAAs will be selected by the school districts based on criteria developed during spring 2016 focus group meetings led by the program's external evaluator, WestEd.. Teachers with 3+ years teaching experience who are assigned to teach at least 2 sections in any combination of the high school courses Physics (non-AP), Physics of the Universe (California integrated model), Astronomy, or Earth & Space Sciences are eligible. Partner districts will select at least 48 eligible applicants with SI oversight. WestEd will randomly assign selected AAAs to group A or group B. Group A will complete PD in January - June of 2017 and then participate in SOFIA science flights during fall 2017 (SOFIA Cycle 5). Group B will act as a control during the 2017-18 school year. Group B will then complete PD in January - June of 2018 and participate in SOFIA science flights in fall 2018 (Cycle 6). Under the current plan, opportunities for additional districts to seek AAA partnerships with SI will be offered in 2018 or 2019. A nominal two-week AAA curriculum component will be developed by SI for classroom delivery that will be aligned with selected California Draft Science Framework Disciplinary Core Ideas

  20. NASA Announces 2009 Astronomy and Astrophysics Fellows

    NASA Astrophysics Data System (ADS)

    2009-02-01

    WASHINGTON -- NASA has selected fellows in three areas of astronomy and astrophysics for its Einstein, Hubble, and Sagan Fellowships. The recipients of this year's post-doctoral fellowships will conduct independent research at institutions around the country. "The new fellows are among the best and brightest young astronomers in the world," said Jon Morse, director of the Astrophysics Division in NASA's Science Mission Directorate in Washington. "They already have contributed significantly to studies of how the universe works, the origin of our cosmos and whether we are alone in the cosmos. The fellowships will serve as a springboard for scientific leadership in the years to come, and as an inspiration for the next generation of students and early career researchers." Each fellowship provides support to the awardees for three years. The fellows may pursue their research at any host university or research center of their choosing in the United States. The new fellows will begin their programs in the fall of 2009. "I cannot tell you how much I am looking forward to spending the next few years conducting research in the U.S., thanks to the fellowships," said Karin Oberg, a graduate student in Leiden, The Netherlands. Oberg will study the evolution of water and ices during star formation when she starts her fellowship at the Smithsonian Astrophysical Observatory in Cambridge, Mass. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Cassiopeia A Comes Alive Across Time and Space A diverse group of 32 young scientists will work on a wide variety of projects, such as understanding supernova hydrodynamics, radio transients, neutron stars, galaxy clusters and the intercluster medium, supermassive black holes, their mergers and the associated gravitational waves, dark energy, dark matter and the reionization process. Other research topics include

  1. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  2. NASA planetary data: applying planetary satellite remote sensing data in the classroom

    NASA Technical Reports Server (NTRS)

    Liggett, P.; Dobinson, E.; Sword, B.; Hughes, D.; Martin, M.; Martin, D.

    2002-01-01

    NASA supports several data archiving and distribution mechanisms that provide a means whereby scientists can participate in education and outreach through the use of technology for data and information dissemination. The Planetary Data System (PDS) is sponsored by NASA's Office of Space Science. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. In addition, the NASA Regional Planetary Image Facility (RPIF), an international system of planetary image libraries, maintains photographic and digital data as well as mission documentation and cartographic data.

  3. NASA's small planetary mission plan released

    NASA Astrophysics Data System (ADS)

    Jones, Richard M.

    A ten-page report just submitted to Congress outlines a new strategy for NASA planetary programs emphasizing small missions. If implemented, this plan would represent a shift away from large “flagship” missions that have characterized many programs of NASA's Solar System Exploration Division.There are a number of reasons for this shift in strategy. The current NASA appropriations bill requires “a plan to stimulate and develop small planetary or other space science projects, emphasizing those which could be accomplished by the academic or research communities.” Budgetary realities make it more difficult to fly large missions. There is also concern about a “significant gap” in data from planetary missions between 1998 and 2004.

  4. Life in the Universe - Astronomy and Planetary Science Research Experience for Undergraduates at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Chiar, J.; Phillips, C. B.; Rudolph, A.; Bonaccorsi, R.; Tarter, J.; Harp, G.; Caldwell, D. A.; DeVore, E. K.

    2016-12-01

    The SETI Institute hosts an Astrobiology Research Experience for Undergraduates (REU) program. Beginning in 2013, we partnered with the Physics and Astronomy Dept. at Cal Poly Pomona, a Hispanic-serving university, to recruit underserved students. Over 11 years, we have served 155 students. We focus on Astrobiology since the Institute's mission is to explore, understand and explain the origin, nature and prevalence of life in the universe. Our REU students work with mentors at the Institute - a non-profit organization located in California's Silicon Valley-and at the nearby NASA Ames Research Center. Projects span research on survival of microbes under extreme conditions, planetary geology, astronomy, the Search for Extraterrestrial Intelligence (SETI), extrasolar planets and more. The REU program begins with an introductory lectures by Institute scientists covering the diverse astrobiology subfields. A week-long field trip to the SETI Institute's Allen Telescope Array (Hat Creek Radio Astronomy Observatory in Northern California) and field experiences at hydrothermal systems at nearby Lassen Volcanic National Park immerses students in radio astronomy and SETI, and extremophile environments that are research sites for astrobiologists. Field trips expose students to diverse environments and allow them to investigate planetary analogs as our scientists do. Students also participate in local trips to the California Academy of Sciences and other nearby locations of scientific interest, and attend the weekly scientific colloquium hosted by the SETI Institute at Microsoft, other seminars and lectures at SETI Institute and NASA Ames. The students meet and present at a weekly journal club where they hone their presentation skills, as well as share their research progress. At the end of the summer, the REU interns present their research projects at a session of the Institute's colloquium. As a final project, students prepare a 2-page formal abstract and 15-minute

  5. Astronomy Village: Innovative Uses of Planetary Astronomy Images and Data

    NASA Astrophysics Data System (ADS)

    Croft, S. K.; Pompea, S. M.

    2008-06-01

    Teaching and learning science is best done by hands-on experience with real scientific data and real scientific problems. Getting such experiences into public and home-schooling classrooms is a challenge. Here we describe two award-winning multimedia products that embody one successful solution to the problem: Astronomy Village: Investigating the Universe, and Astronomy Village: Investigating the Solar System. Each Village provides a virtual environment for inquiry-based scientific exploration of ten planetary and astronomical problems such as ``Mission to Pluto'' and ``Search for a Supernova.'' Both Villages are standards-based and classroom tested. Investigating the Solar System is designed for middle and early high school students, while Investigating the Universe is at the high school and introductory college level. The objective of both Villages is to engage students in scientific inquiry by having them acquire, explore, and analyze real scientific data and images drawn from real scientific problems.

  6. The NASA planetary biology internship experience

    NASA Technical Reports Server (NTRS)

    Hinkle, G.; Margulis, L.

    1991-01-01

    By providing students from around the world with the opportunity to work with established scientists in the fields of biogeochemistry, remote sensing, and origins of life, among others, the NASA Planetary Biology Internship (PBI) Program has successfully launched many scientific careers. Each year approximately ten interns participate in research related to planetary biology at NASA Centers, NASA-sponsored research in university laboratories, and private institutions. The PBI program also sponsors three students every year in both the Microbiology and Marine Ecology summer courses at the Marine Biological Laboratory. Other information about the PBI Program is presented including application procedure.

  7. The Role of NASA's Planetary Data System in the Planetary Spatial Data Infrastructure Initiative

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Gaddis, L. R.

    2017-12-01

    An effort underway in NASA's planetary science community is the Mapping and Planetary Spatial Infrastructure Team (MAPSIT, http://www.lpi.usra.edu/mapsit/). MAPSIT is a community assessment group organized to address a lack of strategic spatial data planning for space science and exploration. Working with MAPSIT, a new initiative of NASA and USGS is the development of a Planetary Spatial Data Infrastructure (PSDI) that builds on extensive knowledge on storing, accessing, and working with terrestrial spatial data. PSDI is a knowledge and technology framework that enables the efficient discovery, access, and exploitation of planetary spatial data to facilitate data analysis, knowledge synthesis, and decision-making. NASA's Planetary Data System (PDS) archives >1.2 petabytes of digital data resulting from decades of planetary exploration and research. The PDS charter focuses on the efficient collection, archiving, and accessibility of these data. The PDS emphasis on data preservation and archiving is complementary to that of the PSDI initiative because the latter utilizes and extends available data to address user needs in the areas of emerging technologies, rapid development of tailored delivery systems, and development of online collaborative research environments. The PDS plays an essential PSDI role because it provides expertise to help NASA missions and other data providers to organize and document their planetary data, to collect and maintain the archives with complete, well-documented and peer-reviewed planetary data, to make planetary data accessible by providing online data delivery tools and search services, and ultimately to ensure the long-term preservation and usability of planetary data. The current PDS4 information model extends and expands PDS metadata and relationships between and among elements of the collections. The PDS supports data delivery through several node services, including the Planetary Image Atlas (https://pds-imaging.jpl.nasa

  8. Void Points, Rosettes, and a Brief History of Planetary Astronomy

    NASA Astrophysics Data System (ADS)

    Kosso, Peter

    2013-12-01

    Almost all models of planetary orbits, from Aristotle through Newton, include void points, empty points in space that have an essential role in defining the orbit. By highlighting the role of these void points, as well as the rosette pattern of the orbit that often results, I bring out different features in the history of planetary astronomy and place a different emphasis on its revolutionary changes, different from those rendered in terms of epicycles or the location of the earth.

  9. Quickly creating interactive astronomy illustrations

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary Photojournal are just a few of the many available.1-3 At the same time, computer video projectors and SMART Boards are becoming ever more commonplace in classrooms. Taken together, it has never been easier to bring astronomy directly into classrooms to actively engage students to improve student understanding and motivate student learning.

  10. NASA's Lunar and Planetary Mapping and Modeling Program

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B. H.; Kim, R. M.; Bui, B.; Malhotra, S.; Chang, G.; Sadaqathullah, S.; Arevalo, E.; Vu, Q. A.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Program produces a suite of online visualization and analysis tools. Originally designed for mission planning and science, these portals offer great benefits for education and public outreach (EPO), providing access to data from a wide range of instruments aboard a variety of past and current missions. As a component of NASA's Science EPO Infrastructure, they are available as resources for NASA STEM EPO programs, and to the greater EPO community. As new missions are planned to a variety of planetary bodies, these tools are facilitating the public's understanding of the missions and engaging the public in the process of identifying and selecting where these missions will land. There are currently three web portals in the program: the Lunar Mapping and Modeling Portal or LMMP (http://lmmp.nasa.gov), Vesta Trek (http://vestatrek.jpl.nasa.gov), and Mars Trek (http://marstrek.jpl.nasa.gov). Portals for additional planetary bodies are planned. As web-based toolsets, the portals do not require users to purchase or install any software beyond current web browsers. The portals provide analysis tools for measurement and study of planetary terrain. They allow data to be layered and adjusted to optimize visualization. Visualizations are easily stored and shared. The portals provide 3D visualization and give users the ability to mark terrain for generation of STL files that can be directed to 3D printers. Such 3D prints are valuable tools in museums, public exhibits, and classrooms - especially for the visually impaired. Along with the web portals, the program supports additional clients, web services, and APIs that facilitate dissemination of planetary data to a range of external applications and venues. NASA challenges and hackathons are also providing members of the software development community opportunities to participate in tool development and leverage data from the portals.

  11. The Value of Participating Scientists on NASA Planetary Missions

    NASA Astrophysics Data System (ADS)

    Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.

    2016-10-01

    NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.

  12. NASA's Planetary Aeolian Laboratory: Status and Update

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Smith, J. K.

    2017-05-01

    This presentation provides a status update on the operational capabilities and funding plans by NASA for the Planetary Aeolian Laboratory located at NASA Ames Research Center, including details for those proposing future wind tunnel experiments.

  13. Technology for NASA's Planetary Science Vision 2050.

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Amato, D.; Freeman, A.; Falker, J.; Turtle, Elizabeth; Green, J.; Mackwell, S.; Daou, D.

    2017-01-01

    NASAs Planetary Science Division (PSD) initiated and sponsored a very successful community Workshop held from Feb. 27 to Mar. 1, 2017 at NASA Headquarters. The purpose of the Workshop was to develop a vision of planetary science research and exploration for the next three decades until 2050. This abstract summarizes some of the salient technology needs discussed during the three-day workshop and at a technology panel on the final day. It is not meant to be a final report on technology to achieve the science vision for 2050.

  14. Investments by NASA to build planetary protection capability

    NASA Astrophysics Data System (ADS)

    Buxbaum, Karen; Conley, Catharine; Lin, Ying; Hayati, Samad

    NASA continues to invest in capabilities that will enable or enhance planetary protection planning and implementation for future missions. These investments are critical to the Mars Exploration Program and will be increasingly important as missions are planned for exploration of the outer planets and their icy moons. Since the last COSPAR Congress, there has been an opportunity to respond to the advice of NRC-PREVCOM and the analysis of the MEPAG Special Regions Science Analysis Group. This stimulated research into such things as expanded bioburden reduction options, modern molecular assays and genetic inventory capability, and approaches to understand or avoid recontamination of spacecraft parts and samples. Within NASA, a portfolio of PP research efforts has been supported through the NASA Office of Planetary Protection, the Mars Technology Program, and the Mars Program Office. The investment strategy focuses on technology investments designed to enable future missions and reduce their costs. In this presentation we will provide an update on research and development supported by NASA to enhance planetary protection capability. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  15. CAPP Panel Discussion: The Future of Astronomy & Astrophysics at NASA

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.

    2006-12-01

    The president's proposed budget for FY2007 for NASA sets out significant reductions in the growth for space science funding, as well as reductions to previously planned Explorer and Flagship missions. With this proposed budget and recent changes in NASA's Advisory structure, this is a good time to assess the state of astronomy and astrophysics at NASA. The AAS Committee on Astronomy & Public Policy has assembled a distinguished panel to discuss the FY2007 budget and what it implies for the future. Panel Members: Dr. Jack Schmitt, Chair of NAC (confirmed). Dr. Anneila Sargent, Cal Tech, chair of NRC Board of Physics and Astronomy (confirmed). Dr. Neil deGrasse Tyson, American Museum of Natural History, member of NAC. Dr. Garth Illingworth, University of California at Santa Cruz, Chair of AAAC (confirmed) Dr. Len Fisk, University of Michigan, Chair of SSB and ex-officio member of NAC (confirmed).

  16. NASA Regional Planetary Image Facility

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond E.

    2001-01-01

    The Regional Planetary Image Facility (RPIF) provided access to data from NASA planetary missions and expert assistance about the data sets and how to order subsets of the collections. This ensures that the benefit/cost of acquiring the data is maximized by widespread dissemination and use of the observations and resultant collections. The RPIF provided education and outreach functions that ranged from providing data and information to teachers, involving small groups of highly motivated students in its activities, to public lectures and tours. These activities maximized dissemination of results and data to the educational and public communities.

  17. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one

  18. NASA's future plans for space astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael S.

    1992-01-01

    NASA's plans in the field of space astronomy and astrophysics through the first decade of the next century are reviewed with reference to specific missions and mission concepts. The missions discussed include the Space Infrared Telescope Facility, the Stratospheric Observatory for Infrared Astronomy, the Submillimeter Intermediate Mission, the Astrometric Interferometry Mission, the Greater Observatories program, and Mission from Planet Earth. Plans to develop optics and sensors technology to enable these missions are also discussed.

  19. NASA SMD E/PO Community Addresses the needs of the Higher Ed Community: Introducing Slide sets for the Introductory Earth and Space Science Instructor

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Meinke, B. K.; Brain, D.; Schneider, N. M.; Schultz, G. R.; Smith, D. A.; Grier, J.; Shipp, S. S.

    2014-12-01

    The NASA Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) community and Forums work together to bring the cutting-edge discoveries of NASA Astrophysics and Planetary Science missions to the introductory astronomy college classroom. These mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present two new opportunities for college instructors to bring the latest NASA discoveries in Space Science into their classrooms. The NASA Science Mission Directorate (SMD) Astrophysics Education and Public Outreach Forum is coordinating the development of a pilot series of slide sets to help Astronomy 101 instructors incorporate new discoveries in their classrooms. The "Astro 101 slide sets" are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses. We intend for these slide sets to help Astronomy 101 instructors include new developments (discoveries not yet in their textbooks) into the broader context of the course. In a similar effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division of Planetary Sciences (DPS) has developed the Discovery slide sets, which are 3-slide presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides which cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and sets are available in Farsi and Spanish. The NASA SMD Planetary Science Forum has recently partnered with the DPS to continue producing the

  20. NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  1. NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, Brian; Law, Emily

    2016-10-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap some of the enhancements to these products during the past year and preview work currently being undertaken.New data products added to the Lunar Mapping and Modeling Portal (LMMP) include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. New tools being developed include traverse planning and surface potential analysis. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions. Looking ahead, LMMP is working with the NASA Astromaterials Office to integrate with their Lunar Apollo Sample database to help better visualize the geographic contexts of retrieved samples. All of this will be done within the framework of a new user interface which, among other improvements, will provide significantly enhanced 3D visualizations and navigation.Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites, and is being enhanced with data products and analysis tools specifically requested by the proposing teams for the various sites. NASA Headquarters is giving high priority to Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars.The portals also

  2. A Brief Subject Index for N.A.S.A.'s Special Publications Relating to Astronomy.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1981-01-01

    Presents NASA astronomy publications by subject: Earth; Moon; Mercury and Venus; Mars; Jupiter and Saturn; Planets (general); Comets, Meteors, and Asteroids; Sun; Astronomy from Various NASA Missions; Miscellaneous Astrophysics; Telescopes and Instrumentation; and Extra-Terrestrial Life. Includes listing of NASA Technical Conference Proceedings…

  3. NASA Stratospheric Observatory For Infrared Astronomy (SOFIA) Airborne Astronomy Ambassador Program Evaluation Results To Date

    NASA Astrophysics Data System (ADS)

    Harman, Pamela K.; Backman, Dana E.; Clark, Coral

    2015-08-01

    SOFIA is an airborne observatory, capable of making observations that are impossible for even the largest and highest ground-based telescopes, and inspires instrumention development.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of a modified Boeing 747SP aircraft carrying a diameter of 2.5 meters (100 inches) reflecting telescope. The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program Office and Outreach Office is located at NASA Ames Research center. SOFIA is one of the programs in NASA's Science Mission Directorate, Astrophysics Division.SOFIA will be used to study many different kinds of astronomical objects and phenomena, including star birth and death, formation of new solar systems, identification of complex molecules in space, planets, comets and asteroids in our solar system, nebulae and dust in galaxies, and ecosystems of galaxies.Airborne Astronomy Ambassador Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to the elevation of public scientific and technical literacy.SOFIA’s Airborne Astronomy Ambassadors (AAA) effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; in three cohorts, Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Cycle 3 cohort of 28 educators will be completing their flight experience this fall. Evaluation has confirmed the program’s positive impact on the teacher participants, on their students, and in their communities. Teachers have incorporated content knowledge and specific components of their experience into their curricula, and have given hundreds of presentations and

  4. 77 FR 71641 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-104)] NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...

  5. 75 FR 2892 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-001)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  6. 75 FR 12310 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-026)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee...

  7. 75 FR 50783 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-088)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  8. 76 FR 75914 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-117)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  9. 75 FR 36445 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-069)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  10. 76 FR 64387 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-098] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  11. 76 FR 62456 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-089] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  12. 78 FR 64024 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-122)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  13. 77 FR 4837 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-007)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  14. 76 FR 10626 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-019)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  15. 78 FR 15378 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-022)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  16. 78 FR 56246 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-113] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  17. 77 FR 53919 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-071] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  18. 75 FR 80851 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-169)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  19. 77 FR 22807 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-029] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  20. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    NASA Astrophysics Data System (ADS)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  1. Lunar and Planetary Science XXXV: Education Programs Demonstrations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.

  2. NASA Planetary Rover Program

    NASA Technical Reports Server (NTRS)

    Lavery, David; Bedard, Roger J., Jr.

    1991-01-01

    The NASA Planetary Rover Project was initiated in 1989. The emphasis of the work to date has been on development of autonomous navigation technology within the context of a high mobility wheeled vehicle at the JPL and an innovative legged locomotion concept at Carnegie Mellon University. The status and accomplishments of these two efforts are discussed. First, however, background information is given on the three rover types required for the Space Exploration Initiative (SEI) whose objective is a manned mission to Mars.

  3. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  4. Space based astronomy: Teacher's guide with activities

    NASA Technical Reports Server (NTRS)

    Rosenberg, Carla B. (Editor); Weiler, Edward; Morrow, Cherilyn; Bacon, Pamela M.; Thorne, Muriel; Blanchard, Paul A.; Howard, Sethane; Pengra, Patricia R.; Brown, Deborah A.; Winrich, Ralph

    1994-01-01

    This curriculum guide uses hands-on activities to help students and teachers understand the significance of space-based astronomy - astronomical observations made from outer space. The guide contains few of the traditional activities found in many astronomy guides such as constellation studies, lunar phases, and planetary orbits. Instead, it tells the story of why it is important to observe celestial objects from outer space and how to study the entire electromagnetic spectrum. The guide begins with a survey of astronomy related NASA spacecraft. This is followed by a collection of activities in four units: (1) the atmospheric filter; (2) the electromagnetic spectrum; (3) collecting electromagnetic radiation; and (4) down to Earth. A curriculum index identifies the curriculum areas each activity addresses. The guide concludes with a glossary, reference list, a NASA Resources list, and an evaluation card. It is designed for students in grades 5 through 8.

  5. NASA's Airborne Astronomy Program - Lessons For SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, Edwin F.

    2007-07-01

    Airborne astronomy was pioneered and has evolved at NASA Ames Research Center near San Francisco, California, since 1965. Nowhere else in the world has a similar program been implemented. Its many unique features deserve description, especially for the benefit of planning the operation of SOFIA, the Stratospheric Observatory for Infrared Astronomy, and in particular since NASA Headquarters’ recent decision to base SOFIA operations at Dryden Flight Research Center at Edwards, California instead of at Ames. The history of Ames’ airborne astronomy program is briefly summarized. Discussed in more detail are the operations and organization of the 21-year Kuiper Airborne Observatory (KAO) program, which provide important lessons for SOFIA. The KAO program is our best prototype for planning effective SOFIA operations. Principal features of the KAO program which should be retained on SOFIA are: unique science, innovative new science instruments and technologies, training of young scientists, an effective education and public outreach program, flexibility, continuous improvement, and efficient operations with a lean, well integrated team. KAO program features which should be improved upon with SOFIA are: (1) a management structure that is dedicated primarily to safely maximizing scientific productivity for the resources available, headed by a scientist who is the observatory director, and (2) stimuli to assure prompt distribution and accessibility of data to the scientific community. These and other recommendations were recorded by the SOFIA Science Working Group in 1995, when the KAO was decommissioned to start work on SOFIA. Further operational and organizational factors contributing to the success of the KAO program are described. Their incorporation into SOFIA operations will help assure the success of this new airborne observatory. SOFIA is supported by NASA in the U.S. and DLR (the German Aerospace Center) in Germany.

  6. NASA IYA Programs

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2009-05-01

    NASA's Science Mission Directorate (SMD) launched a variety of programs to celebrate the International Year of Astronomy (IYA) 2009. A few examples will be presented to demonstrate how the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics has been given an IYA2009 flavor and made available to students, educators and the public worldwide. NASA participated in the official kickoff of US IYA activities by giving a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions that are now traveling to 40 public libraries around the country. NASA IYA Student Ambassadors represented the USA at the international Opening Ceremony in Paris, and have made strides in connecting with local communities throughout the USA. NASA's Object of the Month activities have generated great interest in the public through IYA Discovery Guides. Images from NASA's Great Observatories are included in the From Earth to the Universe (FETTU) exhibition, which was inaugurated both in the US and internationally. The Hubble Space Telescope Project had a tremendous response to its 100 Days of Astronomy "You Decide” competition. NASA's IYA programs have started a journey into the world of astronomy by the uninitiated and cultivated the continuation of a quest by those already enraptured by the wonders of the sky.

  7. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  8. Astronomy4Kids: Utilizing online video forums to teach basic planetary concepts to children (pre-K to 2nd-grade)

    NASA Astrophysics Data System (ADS)

    Pearson, Richard L.

    2016-10-01

    We have developed Astronomy4Kids to help cultivate the next generation of scientists by using technology to reach every interested child in both formal and informal learning environments. This online video series fills the void of effective STEM education tools for children under the age of 8. Our first collection of videos discuss many planetary topics, including the following: planet and moon formation theories, solar and lunar eclipses, and the seasonal effect of the Earth's tilt. As education and outreach become a larger focus of groups such as AAS and NASA, it is imperative to include programs such as Astronomy4Kids to extend these initiatives to younger age groups.Traditionally, this age group has been viewed as too young to be introduced to physics and astronomy concepts. However, child development research is consistently demonstrating the amazing plasticity of a young child's mind: the younger one is introduced to a complex concept, the easier it is to grasp later on. Following the philosophies of Fred Rogers, we present children with a real, relatable, instructor allowing them to focus on the concepts being presented.The format of Astronomy4Kids includes short instruction video clips that usually include a hands-on activity that is easily reproduced at home or in the classroom. This permits flexibility in how the video series is utilized. Within formal classroom or after-school situations, teachers and instructors can lead the discussion and activity with help from the video and supplemental materials (e.g. worksheets, concept outlines, etc.). Informal environments permit the viewer to complete the tasks on their own or simply enjoy the presentation. The video series can be found on YouTube (under "Astronomy 4 Kids") or Facebook (at www.facebook.com/astronomy4kids); we have also expanded to Instagram (www.instragram.com/astronomy4kids) and Pinterest (www.pinterest.com/astronomy4kids).

  9. NASA Thesaurus Data File

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Aeronautics and Space Database (NA&SD) and NASA Technical Reports Server (NTRS). The scope of this controlled vocabulary includes not only aerospace engineering, but all supporting areas of engineering and physics, the natural space sciences (astronomy, astrophysics, planetary science), Earth sciences, and the biological sciences. The NASA Thesaurus Data File contains all valid terms and hierarchical relationships, USE references, and related terms in machine-readable form. The Data File is available in the following formats: RDF/SKOS, RDF/OWL, ZThes-1.0, and CSV/TXT.

  10. Airborne Astronomy Symposium on the Galactic Ecosystem: From Gas to Stars to Dust, volume 73

    NASA Technical Reports Server (NTRS)

    Haas, Michael R. (Editor); Davidson, Jacqueline A. (Editor); Erickson, Edwin F. (Editor)

    1995-01-01

    This symposium was organized to review the science related to NASA's Airborne Astronomy Program on the occasion of the twentieth anniversary of the Kuiper Airborne Observatory (KAO). The theme selected, 'The Galactic Ecosystem: From Gas to Stars to Dust,' was considered to capture the underlying commonality of much of the research discussed. The 8 sessions were as follows: The Interstellar Medium; The Life Cycle of the ISM in Other Galaxies; Star and Planetary System Formation; Our Planetary System: The Solar System; The Enrichment of the Interstellar Medium; The Galactic Center: A Unique Region of the Galactic Ecosystem; Instrumentation for Airborne Astronomy; KAO History and Education; and Missions and the Future of Infrared Astronomy.

  11. Recommended Priorities for NASA's Gamma Ray Astronomy Program 1999-2013

    NASA Technical Reports Server (NTRS)

    Carol, Ladd

    1999-01-01

    The Gamma-Ray Astronomy Program Working Group (GRAPWG) recommends priorities for the NASA Gamma-Ray Astronomy Program. The highest priority science topic is nuclear astrophysics and sites of gamma ray line emission. Other high priority topics are gamma ray bursts, hard x-ray emission from accreting black holes and neutron stars, the Advanced Compton Telescope (ACT), the High-resolution Spectroscopic Imager (HSI), and the Energetic X-ray Imaging Survey Telescope (EXIST). The recommendations include special consideration for technology development, TeV astronomy, the ultra-long duration balloon (ULDB) program, the International Space Station, optical telescope support, and data analysis and theory.

  12. NASA's future plans for space astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Kaplan, Mike

    1992-01-01

    A summary is presented of plans for the future NASA astrophysics missions called SIRTF (Space Infrared Telescope Facility), SOFIA (Stratospheric Observatory for Infrared Astronomy), SMIM (Submillimeter Intermdiate Mission), and AIM (Astrometric Interferometry Mission), the Greater Observatories, and MFPE (Mission From Planet Earth). Technology needs for these missions are briefly described.

  13. NASA's future plans for lunar astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Stachnik, Robert V.; Kaplan, Michael S.

    1994-01-01

    An expanding scientific interest in astronomical observations from the Moon has led the National Aeronautics and Space Administration (NASA) to develop a two-part strategy for lunar-astrophysics planning. The strategy emphasizes a systematic review process involving both the external scientific community and internal NASA engineering teams, coupled with the rigorous exclusion of projects inappropriate to lunar emplacement. Five major candidate lunar-astronomy projects are described, together with a modest derivative of one of them that could be implemented early in the establishment of a lunar base.

  14. NASA's Great Observatories Celebrate International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    2009-11-01

    A never-before-seen view of the turbulent heart of our Milky Way galaxy is being unveiled by NASA on Nov. 10. This event will commemorate the 400 years since Galileo first turned his telescope to the heavens in 1609. In celebration of this International Year of Astronomy, NASA is releasing images of the galactic center region as seen by its Great Observatories to more than 150 planetariums, museums, nature centers, libraries, and schools across the country. The sites will unveil a giant, 6-foot-by-3-foot print of the bustling hub of our galaxy that combines a near-infrared view from the Hubble Space Telescope, an infrared view from the Spitzer Space Telescope, and an X-ray view from the Chandra X-ray Observatory into one multiwavelength picture. Experts from all three observatories carefully assembled the final image from large mosaic photo surveys taken by each telescope. This composite image provides one of the most detailed views ever of our galaxy's mysterious core. Participating institutions also will display a matched trio of Hubble, Spitzer, and Chandra images of the Milky Way's center on a second large panel measuring 3 feet by 4 feet. Each image shows the telescope's different wavelength view of the galactic center region, illustrating not only the unique science each observatory conducts, but also how far astronomy has come since Galileo. The composite image features the spectacle of stellar evolution: from vibrant regions of star birth, to young hot stars, to old cool stars, to seething remnants of stellar death called black holes. This activity occurs against a fiery backdrop in the crowded, hostile environment of the galaxy's core, the center of which is dominated by a supermassive black hole nearly four million times more massive than our Sun. Permeating the region is a diffuse blue haze of X-ray light from gas that has been heated to millions of degrees by outflows from the supermassive black hole as well as by winds from massive stars and by stellar

  15. NASA's planetary protection program as an astrobiology teaching module

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2005-09-01

    We are currently developing a teaching module on the NASA's Planetary Protection Program for UW-Parkside SENCER courses. SENCER stands for Science Education for New Civic Engagements and Responsibility. It is a national initiative of the National Science Foundation (NSF), now in its fifth year, to improve science education by teaching basic sciences through the complex public issues of the 21st century. The Planetary Protection Program is one such complex public issue. Teaching astrobiology and the NASA's goals via the Planetary Protection module within the SENCER courses seems to be a good formula to reach large number of students in an interesting and innovative way. We shall describe the module that we are developing. It will be launched on our web site titled "Astrobiology at Parkside" (http://oldweb.uwp.edu/academic/chemistry/kolb/organic_chemistry/, or go to Google and then to Vera Kolb Home Page), and thus will be available for teaching to all interested parties.

  16. CSWA Workplace Climate Survey: Gender and Racial Harassment in Planetary Science and Astronomy

    NASA Astrophysics Data System (ADS)

    Richey, Christina; Erica Rodgers, Kathryn Clancy, Katharine Lee

    2018-01-01

    Women generally, and women of color specifically, have reported hostile workplace experiences in astronomy and related fields for some time. However, little is known of the extent to which individuals in these disciplines experience inappropriate remarks, harassment, and assault. We conducted an internet-based survey of the workplace experiences of 474 astronomers and planetary scientists between 2011 and 2015. In this sample, in nearly every significant finding, women of color experienced the highest rates of negative workplace experiences, including harassment and assault. Further, women of color reported feeling unsafe in the workplace as a result of their gender or sex 40% of the time, and as a result of their race 28% of the time. Finally, 18% of women of color, and 12% of white women, skipped professional events because they did not feel safe attending, identifying a significant loss of career opportunities due to a hostile climate. Our results suggest that the astronomy and planetary science community needs to address the experiences of women of color and white women as they move forward in their efforts to create an inclusive workplace for all scientists.

  17. "Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators

    NASA Astrophysics Data System (ADS)

    Brain, David; Schneider, N.; Molaverdikhani, K.; Afsharahmadi, F.

    2012-10-01

    We present two new features of an ongoing effort to bring recent newsworthy advances in planetary science to undergraduate lecture halls. The effort, called 'Discoveries in Planetary Sciences', summarizes selected recently announced discoveries that are 'too new for textbooks' in the form of 3-slide PowerPoint presentations. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts at a level appropriate for students of 'Astronomy 101', and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/ for download by undergraduate instructors or any interested party. Several new slide sets have just been released, and we summarize the topics covered. The slide sets are also being translated into languages other than English (including Spanish and Farsi), and we will provide an overview of the translation strategy and process. Finally, we will present web statistics on how many people are using the slide sets, as well as individual feedback from educators.

  18. NASA International Year of Astronomy 2009 Programs: Impacts and Future Plans (Invited)

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Smith, D.; Stockman, S. A.

    2009-12-01

    The opportunity offered by the International Year of Astronomy (IYA) 2009 to increase the exposure of the public and students to NASA discoveries in astronomy resulted in several innovative programs which have reached audiences far and wide. Some examples of the impact of these programs and building on the success of these programs beyond 2009 will be discussed in this talk. The spectacular success of the traveling exhibit of NASA images to public libraries around the country prompted NASA to extend it to include more libraries. As a part of the IYA Cornerstone project From Earth To The Universe, NASA images were displayed at non-traditional sites such as airports, parks, and music festivals, exposing them to an audience which would otherwise have been unaware of them. The NASA IYA Student Ambassadors engaged undergraduate and graduate students throughout the U.S. in outreach programs they created to spread NASA astronomy to their local communities. NASA’s Afterschool Universe provided IYA training to community-based organizations, while pre-launch teacher workshops associated with the Kepler and WISE missions were designed to engage educators in the science of these missions. IYA activities have been associated with several missions launched this year. These include the Hubble Servicing Mission 4, Kepler, Herschel/Planck, LCROSS. NASA’sIYA website and Go Observe! feature remain popular. The associated IYA Discovery Guides and Observing with NASA MicroObservatory activities have guided the public and students to perform their own observations of the night sky and to interpret them. NASA intends to work with its Science Education and Public Outreach Forums (SEPOF) to develop a strategy to take forward the best of its IYA2009 plans forward so as to build on the momentum generated by IYA2009 and continue to keep the public and students engaged in the scientific exploration of the universe.

  19. 78 FR 39341 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-070] NASA Advisory Council; Science..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This [[Page 39342

  20. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    NASA Astrophysics Data System (ADS)

    Budney, C. J.; Lowes, L. L.; Sohus, A.; Wheeler, T.; Wessen, A.; Scalice, D.

    2010-12-01

    Sponsored by NASA’s Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor’s recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design

  1. NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flies over NASA DFRC after a ferry flight from Waco, Texas

    NASA Image and Video Library

    2007-05-31

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flies over NASA's Dryden Flight Research Center after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  2. Planetary radio astronomy: Earth, giant planets, and beyond

    NASA Astrophysics Data System (ADS)

    Rucker, H. O.; Panchenko, M.; Weber, C.

    2014-11-01

    The magnetospheric phenomenon of non-thermal radio emission is known since the serendipitous discovery of Jupiter as radio planet in 1955, opening the new field of "Planetary Radio Astronomy". Continuous ground-based observations and, in particular, space-borne measurements have meanwhile produced a comprehensive picture of a fascinating research area. Space missions as the Voyagers to the Giant Planets, specifically Voyager 2 further to Uranus and Neptune, Galileo orbiting Jupiter, and now Cassini in orbit around Saturn since July 2004, provide a huge amount of radio data, well embedded in other experiments monitoring space plasmas and magnetic fields. The present paper as a condensation of a presentation at the Kleinheubacher Tagung 2013 in honour of the 100th anniversary of Prof. Karl Rawer, provides an introduction into the generation mechanism of non-thermal planetary radio waves and highlights some new features of planetary radio emission detected in the recent past. As one of the most sophisticated spacecraft, Cassini, now in space for more than 16 years and still in excellent health, enabled for the first time a seasonal overview of the magnetospheric variations and their implications for the generation of radio emission. Presently most puzzling is the seasonally variable rotational modulation of Saturn kilometric radio emission (SKR) as seen by Cassini, compared with early Voyager observations. The cyclotron maser instability is the fundamental mechanism under which generation and sufficient amplification of non-thermal radio emission is most likely. Considering these physical processes, further theoretical investigations have been started to investigate the conditions and possibilities of non-thermal radio emission from exoplanets, from potential radio planets in extrasolar systems.

  3. 78 FR 21421 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-048] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Protection Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the...

  4. 76 FR 69292 - NASA Advisory Council Science Committee Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-113] NASA Advisory Council Science..., Public Law 92-463, as amended, the National Aeronautics and Space Administration (NASA) announces that the meeting of the Planetary Science Subcommittee of the NASA Advisory Council originally scheduled...

  5. 77 FR 20851 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... the Solar System --Current Status of NASA's Planetary Protection Program It is imperative that the... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-026)] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the...

  6. 76 FR 31641 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-050] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  7. 76 FR 58303 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-081)] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  8. 78 FR 77719 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-156] NASA Advisory Council; Science...-463, as amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Planetary Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  9. Proposed NASA budget cuts planetary science

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    President Barack Obama's fiscal year (FY) 2013 budget request for NASA would sharply cut planetary science while maintaining other science and exploration priorities. The total proposed FY 2013 budget for NASA is $17.7 billion, a slight decrease (0.33%) from the previous year (see Table 1). This includes $4.9 billion for the Science directorate, a decrease of about 3.2% from the previous year, and about $3.9 billion for the Human Exploration directorate, a n increase of about $200 million over FY 2012. The latter would include about $2.8 million for development of a new heavy-lift rocket system, known as the Space Launch System (SLS), to take humans beyond low-Earth orbit, along with the Orion crew vehicle.

  10. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Law, E.

    2017-12-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX mission as a primary driver.

  11. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Day, Brian

    2017-01-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX (Martian Moons eXploration) mission as a primary driver.

  12. NASA's Initiative to Develop Education through Astronomy (IDEA)

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-04-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitrnent by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) — a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  13. NASA's initiative to develop education through astronomy (IDEA)

    NASA Technical Reports Server (NTRS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-01-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitment by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) - a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  14. Hazard detection and avoidance sensor for NASA's planetary landers

    NASA Technical Reports Server (NTRS)

    Lau, Brian; Chao, Tien-Hsin

    1992-01-01

    An optical terrain analysis based sensor system specifically designed for landing hazard detection as required for NASA's autonomous planetary landers is introduced. This optical hazard detection and avoidance (HDA) sensor utilizes an optoelectronic wedge-and-ting (WRD) filter for Fourier transformed feature extraction and an electronic neural network processor for pattern classification. A fully implemented optical HDA sensor would assure safe landing of the planetary landers. Computer simulation results of a successful feasibility study is reported. Future research for hardware system implementation is also provided.

  15. 76 FR 7235 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [11-013] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... Science Subcommittee of the NASA Advisory Council (NAC). This Subcommittee reports to the Science...

  16. Space astronomy and astrophysics program by NASA

    NASA Astrophysics Data System (ADS)

    Hertz, Paul L.

    2014-07-01

    The National Aeronautics and Space Administration recently released the NASA Strategic Plan 20141, and the NASA Science Mission Directorate released the NASA 2014 Science Plan3. These strategic documents establish NASA's astrophysics strategic objectives to be (i) to discover how the universe works, (ii) to explore how it began and evolved, and (iii) to search for life on planets around other stars. The multidisciplinary nature of astrophysics makes it imperative to strive for a balanced science and technology portfolio, both in terms of science goals addressed and in missions to address these goals. NASA uses the prioritized recommendations and decision rules of the National Research Council's 2010 decadal survey in astronomy and astrophysics2 to set the priorities for its investments. The NASA Astrophysics Division has laid out its strategy for advancing the priorities of the decadal survey in its Astrophysics 2012 Implementation Plan4. With substantial input from the astrophysics community, the NASA Advisory Council's Astrophysics Subcommittee has developed an astrophysics visionary roadmap, Enduring Quests, Daring Visions5, to examine possible longer-term futures. The successful development of the James Webb Space Telescope leading to a 2018 launch is an Agency priority. One important goal of the Astrophysics Division is to begin a strategic mission, subject to the availability of funds, which follows from the 2010 decadal survey and is launched after the James Webb Space Telescope. NASA is studying a Wide Field Infrared Survey Telescope as its next large astrophysics mission. NASA is also planning to partner with other space agencies on their missions as well as increase the cadence of smaller Principal Investigator led, competitively selected Astrophysics Explorers missions.

  17. Using Recent Planetary Science Data to Develop Advanced Undergraduate Physics and Astronomy Activities

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Lindell, Rebecca

    2016-10-01

    Teaching science by having students manipulate real data is a popular trend in astronomy and planetary science education. However, many existing activities simply couple this data with traditional "cookbook" style verification labs. As with most topics within science, this instructional technique does not enhance the average students' understanding of the phenomena being studied. Here we present a methodology for developing "science by doing" activities that incorporate the latest discoveries in planetary science with up-to-date constructivist pedagogy to teach advanced concepts in Physics and Astronomy. In our methodology, students are first guided to understand, analyze, and plot real raw scientific data; develop and test physical and computational models to understand and interpret the data; finally use their models to make predictions about the topic being studied and test it with real data.To date, two activities have been developed according to this methodology: Understanding Asteroids through their Light Curves (hereafter "Asteroid Activity"), and Understanding Exoplanetary Systems through Simple Harmonic Motion (hereafter "Exoplanet Activity"). The Asteroid Activity allows students to explore light curves available on the Asteroid Light Curve Database (ALCDB) to discover general properties of asteroids, including their internal structure, strength, and mechanism of asteroid moon formation. The Exoplanet Activity allows students to investigate the masses and semi-major axes of exoplanets in a system by comparing the radial velocity motion of their host star to that of a coupled simple harmonic oscillator. Students then explore how noncircular orbits lead to deviations from simple harmonic motion. These activities will be field tested during the Fall 2016 semester in an advanced undergraduate mechanics and astronomy courses at a large Midwestern STEM-focused university. We will present the development methodologies for these activities, description of the

  18. The movable digital planetary from the Cruzeiro do Sul University as a distributing agent of astronomy

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon

    2012-10-01

    The Movable Digital Planetary from the Cruzeiro do Sul University has been working in order to publicize and to popularize Astronomy, in particular among students and teachers of Primary (EF) and Medium (EM) Education in municipal and state schools of the City of São Paulo, but also for the general public at large. The aim of this paper is to show and publicize the activities already undertaken by this planetary. In 2010, several presentations were recorded, such as: for the School Cruzeiro do Sul, in São Miguel Paulista, serving 161 children in the EF; Eighth Symposium on Education, Cruzeiro do Sul University, 75 students; NGO Educational Project Capuano, Anália Franco, 30 adults: Fair Student Guide in Shopping Center Norte, 455 people; NGO Association for Charitable Paulista, Burgo Paulista, 70 children; Workshop of Advanced Computing and Informatics, Cruzeiro do Sul University, 37 students; Day of Social Responsibility, Social Work in Don Bosco, Itaquera, 133 people! . In 2011 the presentations took place during the XIII Regional Meeting of Astronomy Education at Cruzeiro do Sul University, serving 112 teachers; College Cruzeiro do Sul, São Miguel Paulista, 356 children of the EF; College Brasilia from São Paulo, Anália Franco, 102 children in the EF and for the Scout Group Caramuru, São Paulo, 104 children. The applied methodology in all presentations consisted of the exhibition of two videos about Astronomy with a subsequent discussion about the presented issues. Previous surveys have shown a great interest in the majority of participants in wanting to learn more about the subject, which clearly explains the importance of education in non-formal places for the teaching of Astronomy

  19. Jovian Planetary Waves

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Deming, D.

    1997-07-01

    We have found over two dozen discrete, linearly-propagating, periodic features in 5-{\\micron} images of Jovian cloud opacities (J. Harrington et al. 1996, Icarus 124, 32--44). Numerous spatially-sinusoidal temperature oscillations also appear in several passbands between 7 and 19 {\\microns} (D. Deming et al. 1997, Icarus 126, 301--312). Both types of Jovian planetary-scale features are zonally-oriented. They have always been detected when sought (1989, '91, '92, '93), and some individual features persist 100 Earth days or longer. These features are superficially consistent with Rossby waves, but they do not follow a simplistic dispersion relation based on cloud-top wind speeds. Planetary wavenumbers are never larger than 15, consistent with predictions based on the Rhines scale for Jupiter. There are many outstanding phenomenological questions: Where and how are the waves driven? How are waves at different atmospheric levels related? What are their true dispersion properties? How long do they last? We are continuing observations and will conduct a search of the Hubble Space Telescope archive for the \\sim 1{°ee} meridional cloud-belt deviations expected for Rossby waves. We are in the process of correlating wave detections of various types, times, and wavelengths with each other. Our goal is to constrain atmospheric stratification and vertical energy transport. Because Rossby waves propagate vertically, these features may probe conditions at the interface between the meteorological atmosphere and the planetary interior. Work supported by NASA Planetary Astronomy RTOP 196-41-54. Work performed while J. H. held a National Research Council - NASA Goddard Space Flight Center Research Associateship.

  20. SOFIA Technology: The NASA Airborne Astronomy Ambassador (AAA) Experience and Online Resources

    NASA Astrophysics Data System (ADS)

    Clark, C.; Harman, P. K.; Backman, D. E.

    2016-12-01

    SOFIA, an 80/20 partnership of NASA and the German Aerospace Center (DLR), consists of a modified Boeing 747SP carrying a reflecting telescope with an effective diameter of 2.5 meters. SOFIA is the largest airborne observatory in the world, capable of observations impossible for even the largest and highest ground-based telescopes. The SOFIA Program Office is at NASA ARC, Moffett Field, CA; the aircraft is based in Palmdale, CA. During its planned 20-year lifetime, SOFIA will foster development of new scientific instrumentation and inspire the education of young scientists and engineers. Astrophysicists are awarded time on SOFIA to study many kinds of astronomical objects and phenomena. Among the most interesting are: Star birth, evolution, and death Formation of new planetary systems Chemistry of complex molecules in space Planet and exoplanet atmospheres Galactic gas & dust "ecosystems" Environments around supermassive black holes SOFIA currently has eight instruments, five US-made and three German. The instruments — cameras, spectrometers, and a photometer,— operate at near-, mid- and far-infrared wavelengths, each spectral range being best suited to studying particular celestial phenomena. NASA's Airborne Astronomy Ambassadors' (AAAs) experience includes a STEM immersion component. AAAs are onboard during two overnight SOFIA flights that provide insight into the acquisition of scientific data as well as the interfaces between the telescope, instrument, & aircraft. AAAs monitor system performance and view observation targets from their dedicated workstation during flights. Future opportunities for school district partnerships leading to selection of future AAA cohorts will be offered in 2018-19. AAAs may access public archive data via the SOFIA Data Cycle System (DCS) https://dcs.sofia.usra.edu/. Additional SOFIA science and other resources are available at: www.sofia.usra.edu, including lessons that use photovoltaic circuits, and other technology for the

  1. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    NASA Astrophysics Data System (ADS)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  2. 78 FR 64253 - NASA Advisory Council; Science Committee; Planetary Protection Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... community and other persons, scientific and technical information relevant to program planning. DATES....m., Local Time. ADDRESSES: This meeting will take place at the NASA Goddard Space Flight Center... Flight Center and must state that they are attending the NASA Advisory Council's Planetary Protection...

  3. Radio astronomy

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.; Manchester, R. N.

    1980-01-01

    The activities of the Deep Space Network in support of radio and radar astronomy operations during July and August 1980 are reported. A brief update on the OSS-sponsored planetary radio astronomy experiment is provided. Also included are two updates, one each from Spain and Australia on current host country activities.

  4. What can Space Resources do for Astronomy and Planetary Science?

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2016-11-01

    The rapid cost growth of flagship space missions has created a crisis for astronomy and planetary science. We have hit the funding wall. For the past 3 decades scientists have not had to think much about how space technology would change within their planning horizon. However, this time around enormous improvements in space infrastructure capabilities and, especially, costs are likely on the 20-year gestation periods for large space telescopes. Commercial space will lower launch and spacecraft costs substantially, enable cost-effective on-orbit servicing, cheap lunar landers and interplanetary cubesats by the early 2020s. A doubling of flagship launch rates is not implausible. On a longer timescale it will enable large structures to be assembled and constructed in space. These developments will change how we plan and design missions.

  5. NASA's Space Lidar Measurements of Earth and Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Abshire, James B.

    2010-01-01

    A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

  6. 76 FR 16841 - NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-025)] NASA Advisory Council; Science Committee; Planetary Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration... [[Page 16842

  7. Reviews in Modern Astronomy: Vol. 17: The Sun and Planetary Systems - Paradigms for the Universe

    NASA Astrophysics Data System (ADS)

    Schielicke, Reinhard E.

    2004-09-01

    Volume 17 continues the Reviews of Modern Astronomy with fourteen invited reviews and Highlight Contributions which were presented during the International Scientific Conference of the Society on "The Sun and Planetary Systems", held at Freiburg, Germany, September 15 to 20, 2003. The Karl Schwarzschild medal 2003 was awarded to Professor Erika Boehm-Vitense, Seattle, USA. Her lecture with the title "What Hyades F Stars tell us about Heating Mechanisms in Stellar Transition Layers and Coronae" opened the meeting. The talk presented by the Ludwig Biermann-Prize winner 2003, Dr Luis R. Bellot Rubio, Freiburg i. Br., Germany, dealt with the topic "The Structure of Sunspots as Inferred from Spectropolarimetric Measurements". Other contributions to the meeting published in this volume discuss, among other subjects, solar physics, formation of planets and interferometric imaging in astronomy.

  8. NASA Center for Astronomy Education: Building a Community of Practice

    NASA Astrophysics Data System (ADS)

    Brissenden, Gina; Prather, E.; Slater, T. F.; Greene, W. M.; Thaller, M.

    2006-12-01

    The NASA Center for Astronomy Education (CAE) is devoted to the professional development of introductory college astronomy instructors teaching at community colleges. The primary goal is building a "community of practice." Evaluation results suggest this community of practice model is effective at improving instructional practices, particularly in settings where instructors feel isolated from their peers. For community college faculty this isolation can be quite real. Many are the only astronomer, if not the only scientist, at their institution. In addition, they may be adjunct instructors who have no office, no institutional email address, nor appear in the campus directory. CAE works to prevent this sense of isolation by building both actual and virtual communities for these instructors, as well as provide actual and virtual professional development opportunities. CAE’s major effort is providing multi-tiered "Teaching Excellence Workshops" offered at national and regional venues. Ongoing support is offered through the CAE website. Instructors can learn about, and register for, upcoming workshops. They can engage in discussions about educational issues and share best practices with peers using the moderated discussion group AstroLrner@CAE. CAE also provides an updated article "This Month’s Teaching Strategy” which is a reflection on teaching strategies discussed in the workshops. Instructors can also find their peers through the online map of US community colleges offering introductory astronomy courses. Lastly, CAE Regional Teaching Exchanges facilitate local, and sustained, community building. CAE is supported by the NASA/JPL Navigator Public Engagement Program and the Spitzer Space Telescope Education and Public Outreach Program.

  9. NASA's Planetary Geology and Geophysics Undergraduate Research Program (PGGURP): The Value of Undergraduate Geoscience Internships

    NASA Astrophysics Data System (ADS)

    Gregg, T. K.

    2008-12-01

    NASA's Planetary Geology and Geophysics Program began funding PGGURP in 1978, in an effort to help planetary scientists deal with what was then seen as a flood of Viking Orbiter data. Each subsequent year, PGGURP has paired 8 - 15 undergraduates with NASA-funded Principal Investigators (PIs) around the country for approximately 8 weeks during the summer. Unlike other internship programs, the students are not housed together, but are paired, one-on-one, with a PI at his or her home institution. PGGURP interns have worked at sites ranging from the Jet Propulsion Laboratory to the University of Alaska, Fairbanks. Through NASA's Planetary Geology and Geophysics Program, the interns' travel and lodging costs are covered, as are a cost-of-living stipend. Approximately 30% of the undergraduate PGGURP participants continue on to graduate school in the planetary sciences. We consider this to be an enormous success, because the participants are among the best and brightest undergraduates in the country with a wide range of declared majors (e.g., physics, chemistry, biology, as well as geology). Furthermore, those students that do continue tend to excel, and point to the internship as a turning point in their scientific careers. The NASA PIs who serve as mentors agree that this is a valuable experience for them, too, and many of them have been hosting interns annually for well over a decade. The PI obtains enthusiastic and intelligent undergraduate, free of charge, for a summer, while having the opportunity to work closely with today's students who are the future of planetary science. The Lunar and Planetary Institute (LPI) in Houston, TX, also sponsors a summer undergraduate internship. Approximately 12 students are selected to live together in apartments located near the Lunar and Planetary Institute and the Johnson Space Center. Similar to PGGURP, the LPI interns are carefully selected to work one-on-one for ~10 weeks during the summer with one of the LPI staff scientists

  10. New Antennas and Methods for the Low Frequency Stellar and Planetary Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Rucker, H. O.; Lecacheux, A.; Zarka, Ph.; Koliadin, V. L.; Zakharenko, V. V.; Stanislavsky, A. A.; Melnik, V. N.; Litvinenko, G. V.; Gridin, A. A.; Bubnov, I. N.; Kalinichenko, N. N.; Reznik, A. P.; Sidorchuk, M. A.; Stepkin, S. V.; Mukha, D. V.; Nikolajenko, V. S.; Karlsson, R.; Thide, B.

    According to the special Program of the National Academy of Sciences of Ukraine, creation of the new giant Ukrainian radio telescope (GURT) was started a few years ago on the UTR-2 radio telescope observatory. The main goal is to reach maximum band at the lowest frequencies (10-70 MHz), effective area (step-by-step up to 100,000 sq.m), and high interference immunity for resolving many astrophysical tasks when the sensitivity is less limited by the confusion effects. These tasks include stellar radio astronomy (the Sun, solar wind, flare stars, pulsars, transients) and planetary one (Jupiter, planetary lightnings, Earth ionosphere, the Moon, exoplanets). This array should be complementary to the LOFAR, E-LOFAR systems. The first stages of the GURT (6 x 25 cross dipole active elements) and broad-band digital registration of the impulsive and sporadic events were tested in comparison with the existing largest decameter array UTR-2.

  11. The NASA Space Place: A Plethora of Games, Projects, and Fun Facts for Celebrating Astronomy

    NASA Astrophysics Data System (ADS)

    Leon, N. J.; Fisher, D. K.

    2008-12-01

    The Space Place is a unique NASA education and public outreach program. It includes a NASA website (spaceplace.nasa.gov) in English and Spanish that targets elementary age children with appealing, content- rich STEM material on space science, Earth science, and technology. The site features science and/or technology content related to, so far, over 40 NASA missions. This overall program, as well as special efforts planned for IYA2009, strongly support many of the objectives of IYA. Some of these are: 1. Stimulate interest in astronomy and science, especially among young people and in audiences not normally reached. 2. Increase scientific awareness. 3. Support and improve formal and informal science education. 4. Provide a contemporary image of science and scientists. 5. Facilitate new astronomy education networks and strengthen existing ones. 6. Improve the gender-balanced representation of scientists at all levels and promote greater involvement of underrepresented groups. The Space Place program has cultivated a large network of community partners (Obj. 5), including museums, libraries, and planetariums, as well as a large network of avocational astronomy societies. We send the community partners monthly mailings of the latest NASA materials for their "NASA Space Place" display boards (Obj. 1, 2, 3, 5). The astronomy societies receive original articles with the latest "insider" news on NASA missions for publication in their newsletters or on their websites (Obj. 2, 5). Through these leveraged partnerships, we reach a large audience of children; parents; formal and informal educators; rural, minority, and otherwise underserved audiences (Obj. 1, 6); and avocational astronomers, many of whom work with children and the general public in the classroom or at special events (Obj. 2, 3). Supporting Obj. 4, are the "Space Place Live" cartoon "talk show" episodes, spaceplace.nasa.gov/en/kids/live. For IYA 2009, we will specifically prepare our partners to plan and carry

  12. Evolving directions in NASA's planetary rover requirements and technology

    NASA Astrophysics Data System (ADS)

    Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

    1993-10-01

    This paper reviews the evolution of NASA's planning for planetary rovers (i.e. robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that has been developed to achieve the desired capabilities. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. We first describe robotic vehicles, and their associated control systems, developed by NASA in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission. Suggested goals at that time for such an MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Subsequently, we present the current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions. This paper describes some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible.

  13. Evolving directions in NASA's planetary rover requirements and technology

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

    1993-01-01

    This paper reviews the evolution of NASA's planning for planetary rovers (i.e. robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that has been developed to achieve the desired capabilities. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. We first describe robotic vehicles, and their associated control systems, developed by NASA in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission. Suggested goals at that time for such an MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Subsequently, we present the current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions. This paper describes some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible.

  14. Double jeopardy in astronomy and planetary science: Women of color face greater risks of gendered and racial harassment

    NASA Astrophysics Data System (ADS)

    Clancy, Kathryn B. H.; Lee, Katharine M. N.; Rodgers, Erica M.; Richey, Christina

    2017-07-01

    Women generally, and women of color specifically, have reported hostile workplace experiences in astronomy and related fields for some time. However, little is known of the extent to which individuals in these disciplines experience inappropriate remarks, harassment, and assault. We hypothesized that the multiple marginality of women of color would mean that they would experience a higher frequency of inappropriate remarks, harassment, and assault in the astronomical and planetary science workplace. We conducted an internet-based survey of the workplace experiences of 474 astronomers and planetary scientists between 2011 and 2015 and found support for this hypothesis. In this sample, in nearly every significant finding, women of color experienced the highest rates of negative workplace experiences, including harassment and assault. Further, 40% of women of color reported feeling unsafe in the workplace as a result of their gender or sex, and 28% of women of color reported feeling unsafe as a result of their race. Finally, 18% of women of color, and 12% of white women, skipped professional events because they did not feel safe attending, identifying a significant loss of career opportunities due to a hostile climate. Our results suggest that the astronomy and planetary science community needs to address the experiences of women of color and white women as they move forward in their efforts to create an inclusive workplace for all scientists.

  15. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Law, E.; Day, B

    2017-01-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  16. Public Outreach with NASA Lunar and Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Law, E.; Day, B.

    2017-09-01

    NASA's Trek family of online portals is an exceptional collection of resources making it easy for students and the public to explore surfaces of planetary bodies using real data from real missions. Exotic landforms on other worlds and our plans to explore them provide inspiring context for science and technology lessons in classrooms, museums, and at home. These portals can be of great value to formal and informal educators, as well as to scientists working to share the excitement of the latest developments in planetary science, and can significantly enhance visibility and public engagement in missions of exploration.

  17. The Role of Planetary Dust and Regolith Mechanics in Technology Developments at NASA

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2011-01-01

    One of NASA's long term goals continues to be the exploration of other planets and orbital bodies in our solar system. Our sustained presence through the installation of stations or bases on these planetary surfaces will depend on developing properly designed habitation modules, mobility systems and supporting infrastructure. NASA Glenn Research Center is involved in several technology developments in support of this overarching goal. Two key developments are in the area of advanced filtration and excavation systems. The first addresses the issues posed by the accumulation of particulate matter over long duration missions and the intrusion of planetary dust into spacecraft and habitat pressurized cabins. The latter supports the operation and infrastructure of insitu resource utilization (ISRU) processes to derive consumables and construction materials from the planetary regolith. These two developments require a basic understanding of the lunar regolith at the micro (particle) to macro (bulk) level. Investigation of the relevant properties of the lunar regolith and characterization of the standard simulant materials used in. testing were important first steps in these developments. The fundamentals and operational concepts of these technologies as well as descriptions of new NASA facilities, including the Particulate Filtration Testing and the NASA Excavation and Traction Testing facilities, and their capabilities for testing and advancing these technologies will be presented. The test data also serves to validate and anchor computational simulation models.

  18. The NASA Planetary Data System Roadmap Study for 2017 - 2026

    NASA Astrophysics Data System (ADS)

    McNutt, R. L., Jr.; Gaddis, L. R.; Law, E.; Beyer, R. A.; Crombie, M. K.; Ebel, D. S. S.; Ghosh, A.; Grayzeck, E.; Morgan, T. H.; Paganelli, F.; Raugh, A.; Stein, T.; Tiscareno, M. S.; Weber, R. C.; Banks, M.; Powell, K.

    2017-12-01

    NASA's Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has evolved into an online collection of digital data managed and served by a federation of six science discipline nodes and two technical support nodes. Several ad hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions. The recent Planetary Data System Roadmap Study for 2017 to 2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes the history of the PDS, its functions and characteristics, and how it has evolved to its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex, evolving, archive system, the PDS must constantly respond to new pressures and opportunities. The report provides details on the challenges now facing the PDS, 19 detailed findings, suggested remediations, and a summary of what the future may hold for planetary data archiving. The findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and measurements of physical samples. Finally, the report discusses the current structure and governance of the PDS and its impact on how archive growth, technology, and new

  19. NASA Center for Astronomy Education: Building a Community of Practice

    NASA Astrophysics Data System (ADS)

    Brissenden, Gina; Prather, E. E.; Slater, T. F.; Greene, W. M.; Thaller, M.; Alvidrez, R.

    2007-12-01

    The NASA Center for Astronomy Education (CAE) is devoted to the professional development of introductory college astronomy instructors teaching at community colleges. The primary goal is building a "community of practice." Evaluation results suggest this community of practice model is effective at improving instructional practices, particularly in settings where instructors feel isolated from their peers. For community college faculty this isolation can be quite real. Many are the only astronomer, if not the only scientist, at their institution. In addition, they may be adjunct instructors who have no office, no institutional email address, nor appear in the campus directory. CAE works to prevent this sense of isolation by building both actual and virtual communities for these instructors, as well as provide actual and virtual professional development opportunities. CAE's major effort is providing multi-tiered "Teaching Excellence Workshops" offered at national and regional venues. Recently added to our workshop offerings is a Tier II, or advanced, workshop for instructors who have attended a previous Teaching Excellence Workshop. The focus of the Tier II workshops is on implementation issues. In addition, we are now also offering a workshop exclusively for post-docs, graduates, and undergraduate students. Ongoing support is offered through the CAE website. Instructors can learn about, and register for, upcoming workshops. They can engage in discussions about educational issues and share best practices with peers using the moderated discussion group Astrolrner@CAE. CAE also provides an updated article "This Month's Teaching Strategy” which is a reflection on teaching strategies discussed in the workshops. Instructors can also find their peers through the online map of US community colleges offering introductory astronomy courses. Lastly, CAE Regional Teaching Exchanges facilitate local, and sustained, community building. CAE is supported by the NASA/JPL Navigator

  20. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Asbury, M. L.; Proctor, A.

    2001-12-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed, and maintained at the University of Maryland, for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 91 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of the explosion, crater size, magnitude of the planetquake generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Planetary and Satellite Data Calculators: These tools allow the user to easily calculate physical data for all of the planets or satellites simultaneously, making comparison very easy. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by the National Science Foundation.

  1. NASA payload data book: Payload analysis for space shuttle applications, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Data describing the individual NASA payloads for the space shuttle are presented. The document represents a complete issue of the original payload data book. The subjects discussed are: (1) astronomy, (2) space physics, (3) planetary exploration, (4) earth observations (earth and ocean physics), (5) communications and navigation, (6) life sciences, (7) international rendezvous and docking, and (8) lunar exploration.

  2. Multiple Discipline science assessment. [considering astronomy, astrophysics, cosmology, gravitation and geophysics when planning planetary missions

    NASA Technical Reports Server (NTRS)

    Wells, W. C.

    1978-01-01

    Various science disciplines were examined to determine where and when it is appropriate to include their objectives in the planning of planetary missions. The disciplines considered are solar astronomy, stellar and galactic astronomy, solar physics, cosmology and gravitational physics, the geosciences and the applied sciences. For each discipline, science objectives are identified which could provide a multiple discipline opportunity utilizing either a single spacecraft or two spacecraft delivered by a single launch vehicle. Opportunities using a common engineering system are also considered. The most promising opportunities identified include observations of solar images and relativistic effects using the Mercury orbiter; collection of samples exposed to solar radiation using the Mars surface sample return; studies of interstellar neutral H and He, magnetic fields, cosmic rays, and solar physics during Pluto or Neptune flybys; using the Mars orbiter to obtain solar images from 0.2 AU synchronous or from 90 deg orbit; and the study of the structure and composition of the atmosphere using atmospheric probes and remotely piloted vehicles.

  3. Interoperability In The New Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Rios, C.; Barbarisi, I.; Docasal, R.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; Grotheer, E.; Besse, S.; Martinez, S.; Heather, D.; De Marchi, G.; Lim, T.; Fraga, D.; Barthelemy, M.

    2015-12-01

    As the world becomes increasingly interconnected, there is a greater need to provide interoperability with software and applications that are commonly being used globally. For this purpose, the development of the new Planetary Science Archive (PSA), by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is focused on building a modern science archive that takes into account internationally recognised standards in order to provide access to the archive through tools from third parties, for example by the NASA Planetary Data System (PDS), the VESPA project from the Virtual Observatory of Paris as well as other international institutions. The protocols and standards currently being supported by the new Planetary Science Archive at this time are the Planetary Data Access Protocol (PDAP), the EuroPlanet-Table Access Protocol (EPN-TAP) and Open Geospatial Consortium (OGC) standards. The architecture of the PSA consists of a Geoserver (an open-source map server), the goal of which is to support use cases such as the distribution of search results, sharing and processing data through a OGC Web Feature Service (WFS) and a Web Map Service (WMS). This server also allows the retrieval of requested information in several standard output formats like Keyhole Markup Language (KML), Geography Markup Language (GML), shapefile, JavaScript Object Notation (JSON) and Comma Separated Values (CSV), among others. The provision of these various output formats enables end-users to be able to transfer retrieved data into popular applications such as Google Mars and NASA World Wind.

  4. NASA's Great Observatories Celebrate the International Year of Astronomy

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version

    In 1609, Galileo improved the newly invented telescope, turned it toward the heavens, and revolutionized our view of the universe. In celebration of the 400th anniversary of this milestone, 2009 has been designated as the International Year of Astronomy.

    Today, NASA's Great Observatories are continuing Galileo's legacy with stunning images and breakthrough science from the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory.

    While Galileo observed the sky using visible light seen by the human eye, technology now allows us to observe in many wavelengths, including Spitzer's infrared view and Chandra's view in X-rays. Each wavelength region shows different aspects of celestial objects and often reveals new objects that could not otherwise be studied.

    This image of the spiral galaxy Messier 101 is a composite of views from Spitzer, Hubble, and Chandra. The red color shows Spitzer's view in infrared light. It highlights the heat emitted by dust lanes in the galaxy where stars can form. The yellow color is Hubble's view in visible light. Most of this light comes from stars, and they trace the same spiral structure as the dust lanes. The blue color shows Chandra's view in X-ray light. Sources of X-rays include million-degree gas, exploded stars, and material colliding around black holes.

    Such composite images allow astronomers to see how features seen in one wavelength match up with those seen in another wavelength. It's like seeing with a camera, night vision goggles, and X-ray vision all at once.

    In the four centuries since Galileo, astronomy has changed dramatically. Yet our curiosity and quest for knowledge remain the same. So, too, does our wonder at the splendor of the universe.

    The International Year of Astronomy Great Observatories Image Unveiling is supported by the NASA Science Mission Directorate

  5. Evolving directions in NASA's planetary rover requirements and technology

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Montemerlo, Mel; Whittaker, W.

    1993-01-01

    The evolution of NASA's planning for planetary rovers (that is robotic vehicles which may be deployed on planetary bodies for exploration, science analysis, and construction) and some of the technology that was developed to achieve the desired capabilities is reviewed. The program is comprised of a variety of vehicle sizes and types in order to accommodate a range of potential user needs. This includes vehicles whose weight spans a few kilograms to several thousand kilograms; whose locomotion is implemented using wheels, tracks, and legs; and whose payloads vary from microinstruments to large scale assemblies for construction. Robotic vehicles and their associated control systems, developed in the late 1980's as part of a proposed Mars Rover Sample Return (MRSR) mission, are described. Goals suggested at the time for such a MRSR mission included navigating for one to two years across hundreds of kilometers of Martian surface; traversing a diversity of rugged, unknown terrain; collecting and analyzing a variety of samples; and bringing back selected samples to the lander for return to Earth. Current plans (considerably more modest) which have evolved both from technological 'lessons learned' in the previous period, and modified aspirations of NASA missions are presented. Some of the demonstrated capabilities of the developed machines and the technologies which made these capabilities possible are described.

  6. The Stratospheric Observatory for Infrared Astronomy - A New Tool for Planetary Science

    NASA Astrophysics Data System (ADS)

    Ruzek, M. J.; Becklin, E.; Burgdorf, M. J.; Reach, W.

    2010-12-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German effort to fly a 2.5 meter telescope on a modified Boeing 747SP aircraft at stratospheric altitudes where the atmosphere is largely transparent at infrared wavelengths. Key goals of the observatory include understanding the formation of stars and planets; the origin and evolution of the interstellar medium; the star formation history of galaxies; and planetary science. SOFIA offers the convenient accessibility of a ground-based observatory coupled with performance advantages of a space-based telescope. SOFIA’s scientific instruments can be exchanged regularly for repairs, to accommodate changing scientific requirements, and to incorporate new technologies. SOFIA’s portability will enable specialized observations of transient and location-specific events such as stellar occultations of Trans-Neptunian Objects. Unlike many spaceborne observatories, SOFIA can observe bright planets and moons directly, and can observe objects closer to the sun than Earth, e.g. comets in their most active phase, and the planet Venus. SOFIA’s first generation instruments cover the spectral range of .3 to 240 microns and have been designed with planetary science in mind. The High-speed Imaging Photometer for Occultations (HIPO) is designed to measure occultations of stars by Kuiper Belt Objects, with SOFIA flying into the predicted shadows and timing the occultation ingress and egress to determine the size of the occulting body. HIPO will also enable transit observations of extrasolar planets. The Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) and the High-resolution Airborne Wideband Camera (HAWC) will enable mid-infrared and far-infrared (respectively) imaging with a wide range of filters for comets and giant planets, and colorimetric observations of small, unresolved bodies to measure the spectral energy distribution of their thermal emission. The German Receiver for Astronomy at

  7. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  8. Proceedings of the 2004 NASA/JPL Workshop on Physics for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Strayer, Donald M. (Editor); Banerdt, Bruce; Barmatz, M.; Chung, Sang; Chui, Talso; Hamell, R.; Israelsson, Ulf; Jerebets, Sergei; Le, Thanh; Litchen, Stephen

    2004-01-01

    The conference was held April 20-22, 2004, the NASA/JPL Workshop on Physics for Planetary Exploration focused on NASA's new concentration on sending crewed missions to the Moon by 2020 and then to Mars and beyond. However, our ground-based physics experiments are continuing to be funded, and it will be possible to compete for $80-90 million in new money from the NASA exploration programs. Papers presented at the workshop related how physics research can help NASA to prepare for and accomplish this grand scheme of exploration. From sensors for water on the Moon and Mars, to fundamental research on those bodies, and to aids for navigating precisely to landing sites on distant planets, diverse topics were addressed by the Workshop speakers.

  9. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    NASA Technical Reports Server (NTRS)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  10. Astronomy Graphics.

    ERIC Educational Resources Information Center

    Hubin, W. N.

    1982-01-01

    Various microcomputer-generated astronomy graphs are presented, including those of constellations and planetary motions. Graphs were produced on a computer-driver plotter and then reproduced for class use. Copies of the programs that produced the graphs are available from the author. (Author/JN)

  11. Observational Research on Star and Planetary System Formation

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.

    1998-01-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  12. Observational Research on Star and Planetary System Formation

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    1998-07-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  13. Working Papers: Astronomy and Astrophysics Panel Reports

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Beichman, Charles A.; Canizares, Claude; Cronin, James; Heeschen, David; Houck, James; Hunten, Donald; Mckee, Christopher F.; Noyes, Robert; Ostriker, Jeremiah P.

    1991-01-01

    The papers of the panels appointed by the Astronomy and Astrophysics survey Committee are compiled. These papers were advisory to the survey committee and represent the opinions of the members of each panel in the context of their individual charges. The following subject areas are covered: radio astronomy, infrared astronomy, optical/IR from ground, UV-optical from space, interferometry, high energy from space, particle astrophysics, theory and laboratory astrophysics, solar astronomy, planetary astronomy, computing and data processing, policy opportunities, benefits to the nation from astronomy and astrophysics, status of the profession, and science opportunities.

  14. The Astronomy Workshop: Scientific Notation and Solar System Visualizer

    NASA Astrophysics Data System (ADS)

    Deming, Grace; Hamilton, D.; Hayes-Gehrke, M.

    2008-09-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive World Wide Web tools that were developed under the direction of Doug Hamilton for use in undergraduate classes and by the general public. The philosophy of the site is to foster student interest in astronomy by exploiting their fascination with computers and the internet. We have expanded the "Scientific Notation” tool from simply converting decimal numbers into and out of scientific notation to adding, subtracting, multiplying, and dividing numbers expressed in scientific notation. Students practice these skills and when confident they may complete a quiz. In addition, there are suggestions on how instructors may use the site to encourage students to practice these basic skills. The Solar System Visualizer animates orbits of planets, moons, and rings to scale. Extrasolar planetary systems are also featured. This research was sponsored by NASA EPO grant NNG06GGF99G.

  15. The NASA Regional Planetary Image Facility (RPIF) Network: A Key Resource for Accessing and Using Planetary Spatial Data

    NASA Astrophysics Data System (ADS)

    Hagerty, J. J.

    2017-12-01

    The role of the NASA Regional Planetary Image Facility (RPIF) Network is evolving as new science-ready spatial data products continue to be created and as key historical planetary data sets are digitized. Specifically, the RPIF Network is poised to serve specialized knowledge and services in a user-friendly manner that removes most barriers to locating, accessing, and exploiting planetary spatial data, thus providing a critical data access role within a spatial data infrastructure. The goal of the Network is to provide support and training to a broad audience of planetary spatial data users. In an effort to meet the planetary science community's evolving needs, we are focusing on the following objectives: Maintain and improve the delivery of historical data accumulated over the past four decades so as not to lose critical, historical information. This is being achieved by systematically digitizing fragile materials, allowing increased access and preserving them at the same time. Help users locate, access, visualize, and exploit planetary science data. Many of the facilities have begun to establish Guest User Facilities that allow researchers to use and/or be trained on GIS equipment and other specialized tools like Socet Set/GXP photogrammetry workstations for generating digital elevation maps. Improve the connection between the Network nodes while also leveraging the unique resources of each node. To achieve this goal, each facility is developing and sharing searchable databases of their collections, including robust metadata in a standards compliant way. Communicate more effectively and regularly with the planetary science community in an effort to make potential users aware of resources and services provided by the Network, while also engaging community members in discussions about community needs. Provide a regional resource for the science community, colleges, universities, museums, media, and the public to access planetary data. Introduce new strategies for

  16. Community Plan for Far-Infrared/Submillimeter Space Astronomy

    NASA Technical Reports Server (NTRS)

    Ade, Peter; Akeson, Rachel; Ali, Shafinaz; Amato, Michael; Arendt, Richard; Baker, Charles; Benford, Dominic; Blain, Andrew; Bock, James; Borne, Kirk

    2004-01-01

    This paper represents the consensus view of the 124 participants in the Second Workshop on New Concepts for Far-Infrared/Submillimeter Space Astronomy.We recommend that NASA pursue the vision for far-IR astronomy outlined in the NAS Decadal Survey, which said: A rational coordinated program for space optical and infrared astronomy would build on the experience gained with NGST1 to construct [a JWST-scale filled-aperture far-IR telescope SAFIR, and then ultimately, in the decade 2010 to 2020, build on the SAFIR, TPF, and SIM experience to assemble a space-based, far-infrared interferometer. SAFIR will study star formation in the young universe, the buildup of elements heavier than hydrogen over cosmic history, the process of galaxy formation, and the early phases of star formation, which occur behind a veil of dust that precludes detection at mid IR and shorter wavelengths. The far-infrared interferometer will resolve distant galaxies to study protogalaxy interactions and mergers and the processes that led to enhanced star formation activity and the formation of Active Galactic Nuclei, and will resolve protostars and debris disks in our Galaxy to study how stars and planetary systems form.

  17. Current Status of a NASA High-Altitude Balloon-Based Observatory for Planetary Science

    NASA Technical Reports Server (NTRS)

    Varga, Denise M.; Dischner, Zach

    2015-01-01

    Recent studies have shown that progress can be made on over 20% of the key questions called out in the current Planetary Science Decadal Survey by a high-altitude balloon-borne observatory. Therefore, NASA has been assessing concepts for a gondola-based observatory that would achieve the greatest possible science return in a low-risk and cost-effective manner. This paper addresses results from the 2014 Balloon Observation Platform for Planetary Science (BOPPS) mission, namely successes in the design and performance of the Fine Pointing System. The paper also addresses technical challenges facing the new Gondola for High Altitude Planetary Science (GHAPS) reusable platform, including thermal control for the Optical Telescope Assembly, power generation and management, and weight-saving considerations that the team will be assessing in 2015 and beyond.

  18. Student Comprehension of Mathematics through Astronomy

    ERIC Educational Resources Information Center

    Search, Robert

    2016-01-01

    The purpose of this study is to examine how knowledge of astronomy can enhance college-level learning situations involving mathematics. The fundamental symbiosis between mathematics and astronomy was established early in the 17th century when Johannes Kepler deduced the 3 basic laws of planetary motion. This mutually harmonious relationship…

  19. Sustainable Astronomy

    NASA Astrophysics Data System (ADS)

    Blaha, C.; Goetz, J.; Johnson, T.

    2011-09-01

    Through our International Year of Astronomy outreach effort, we established a sustainable astronomy program and curriculum in the Northfield, Minnesota community. Carleton College offers monthly open houses at Goodsell Observatory and donated its recently "retire" observing equipment to local schools. While public evenings continue to be popular, the donated equipment was underutilized due to a lack of trained student observing assistants. With sponsorship from NASA's IYA Student Ambassador program, the sustainable astronomy project began in 2009 to generate greater interest in astronomy and train middle school and high school students as observing assistants. Carleton physics majors developed curricular materials and instituted regular outreach programs for grades 6-12. The Northfield High School Astronomy Club was created, and Carleton undergraduates taught high school students how to use telescopes and do CCD imaging. During the summer of 2009, Carleton students began the Young Astronomers Summer Experience (YASE) program for middle school students and offered a two-week, astronomy-rich observing and imaging experience at Goodsell Observatory. In concert with NASA's Summer of Innovation initiative, the YASE program was offered again in 2010 and engaged a new group of local middle school students in hands-on scientific experiments and observing opportunities. Members of the high school astronomy club now volunteer as observing assistants in the community and graduates of the YASE programs are eager to continue observing as members of a public service astronomy club when they enter the Northfield High School. These projects are training future scientists and will sustain the public's interest in astronomy long after the end of IYA 2009.

  20. NASA's Planetary Defense Coordination Office at NASA HQ

    NASA Astrophysics Data System (ADS)

    Daou, D.; Johnson, L.; Fast, K. E.; Landis, R.; Friedensen, V. P.; Kelley, M.

    2017-09-01

    NASA and its partners maintain a watch for near-Earth objects (NEOs), asteroids and comets that pass close to the Earth, as part of an ongoing effort to discover, catalog, and characterize these bodies. The PDCO is responsible for: • Ensuring the early detection of potentially hazardous objects (PHOs) - asteroids and comets whose orbit are predicted to bring them within 0.05 Astronomical Units of Earth; and of a size large enough to reach Earth's surface - that is, greater than perhaps 30 to 50 meters; • Tracking and characterizing PHOs and issuing warnings about potential impacts; • Providing timely and accurate communications about PHOs; and • Performing as a lead coordination node in U.S. Government planning for response to an actual impact threat. The PDCO collaborates with other U.S. Government agencies, other national and international agencies, and professional and amateur astronomers around the world. The PDCO also is responsible for facilitating communications between the science community and the public should any potentially hazardous NEO be discovered. In addition, the PDCO works closely with the United Nations Office of Outer Space Affairs, its Committee on the Peaceful Uses of Outer Space, and its Action Team on Near Earth Objects (also known as Action Team 14). The PDCO is a leading member of the International Asteroid Warning Network (IAWN) and the Space Missions Planning Advisory Group (SMPAG), multinational endeavors recommended by the United Nations for an international response to the NEO impact hazard and established and operated by the spacecapable nations. The PDCO also communicates with the scientific community through channels such as NASA's Small Bodies Assessment Group (SBAG). In this talk, we will provide an update to the office's various efforts and new opportunities for partnerships in the continuous international effort for Planetary Defense.

  1. NASA's Planetary Defense Coordination Office at NASA HQ

    NASA Astrophysics Data System (ADS)

    Daou, D.; Johnson, L.; Fast, K. E.; Landis, R.; Friedensen, V. P.; Kelley, M.

    2017-12-01

    NASA and its partners maintain a watch for near-Earth objects (NEOs), asteroids and comets that pass close to the Earth, as part of an ongoing effort to discover, catalog, and characterize these bodies. The PDCO is responsible for: Ensuring the early detection of potentially hazardous objects (PHOs) - asteroids and comets whose orbit are predicted to bring them within 0.05 Astronomical Units of Earth; and of a size large enough to reach Earth's surface - that is, greater than perhaps 30 to 50 meters; Tracking and characterizing PHOs and issuing warnings about potential impacts; Providing timely and accurate communications about PHOs; and Performing as a lead coordination node in U.S. Government planning for response to an actual impact threat. The PDCO collaborates with other U.S. Government agencies, other national and international agencies, and professional and amateur astronomers around the world. The PDCO also is responsible for facilitating communications between the science community and the public should any potentially hazardous NEO be discovered. In addition, the PDCO works closely with the United Nations Office of Outer Space Affairs, its Committee on the Peaceful Uses of Outer Space, and its Action Team on Near Earth Objects (also known as Action Team 14). The PDCO is a leading member of the International Asteroid Warning Network (IAWN) and the Space Missions Planning Advisory Group (SMPAG), multinational endeavors recommended by the United Nations for an international response to the NEO impact hazard and established and operated by the space-capable nations. The PDCO also communicates with the scientific community through channels such as NASA's Small Bodies Assessment Group (SBAG). In this talk, we will provide an update to the office's various efforts and new opportunities for partnerships in the continuous international effort for Planetary Defense.

  2. Full Text Searching and Customization in the NASA ADS Abstract Service

    NASA Technical Reports Server (NTRS)

    Eichhorn, G.; Accomazzi, A.; Grant, C. S.; Kurtz, M. J.; Henneken, E. A.; Thompson, D. M.; Murray, S. S.

    2004-01-01

    The NASA-ADS Abstract Service provides a sophisticated search capability for the literature in Astronomy, Planetary Sciences, Physics/Geophysics, and Space Instrumentation. The ADS is funded by NASA and access to the ADS services is free to anybody worldwide without restrictions. It allows the user to search the literature by author, title, and abstract text. The ADS database contains over 3.6 million references, with 965,000 in the Astronomy/Planetary Sciences database, and 1.6 million in the Physics/Geophysics database. 2/3 of the records have full abstracts, the rest are table of contents entries (titles and author lists only). The coverage for the Astronomy literature is better than 95% from 1975. Before that we cover all major journals and many smaller ones. Most of the journal literature is covered back to volume 1. We now get abstracts on a regular basis from most journals. Over the last year we have entered basically all conference proceedings tables of contents that are available at the Harvard Smithsonian Center for Astrophysics library. This has greatly increased the coverage of conference proceedings in the ADS. The ADS also covers the ArXiv Preprints. We download these preprints every night and index all the preprints. They can be searched either together with the other abstracts or separately. There are currently about 260,000 preprints in that database. In January 2004 we have introduced two new services, full text searching and a personal notification service called "myADS". As all other ADS services, these are free to use for anybody.

  3. Ultraviolet-Optical Space Astronomy Beyond HST Conference (Origins Conference and UV-Optical Working Group Support)

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Morse, Jon

    2001-01-01

    This grant supported three major activities, from 1997-2001. (1) Origins Conference. The funds from this grant were used, initially, to support a Conference on "Origins", held May 19-23, 1997 at Estes Park, CO and attended by a wide range of astronomers, planetary scientists, and astrobiologists. The scientific proceedings of this meeting were published in 1998 by the Astronomical Society of the Pacific: "Origins" (1998) "Proceedings of the International Origins Conference". (2) UV-Optical Space Astronomy. Conference Additional funds provided by the NASA Office of Space Science were used to support a meeting held August 5-7, 1998 at Boulder, CO and attended by ultraviolet and optical astronomers and instrumentalists interested in a UV-O successor to the Hubble Space Telescope. The scientific proceedings of this meeting were published in 1999: "Ultraviolet-Optical Space Astronomy Beyond the Hubble Space Telescope" (1999), NASA provided funds and commissioned the UVOWG (Ultraviolet-Optical Working Group), charged with recommending a set of fundamental scientific problems and new space missions in the UV/Optical wavelength bands. The working group was chaired by J. M. Shull, and included ten other astrophysicists. Their report was published as a "White Paper" (Nov. 1999) entitled "The Emergence of the Modern Universe: Tracing the Cosmic Web" available. The results of this report were used in the NASA Strategic Planning ("Roadmap") exercise and by the NRC Astronomy/Astrophysics Decade Committee.

  4. Ancillary Data Services of NASA's Planetary Data System

    NASA Technical Reports Server (NTRS)

    Acton, C.

    1994-01-01

    JPL's Navigation and Ancillary Information Facility (NAIF) has primary responsibility for design and implementation of the SPICE ancillary information system, supporting a wide range of space science mission design, observation planning and data analysis functions/activities. NAIF also serves as the geometry and ancillary data node of the Planetary Data System (PDS). As part of the PDS, NAIF archives SPICE and other ancillary data produced by flight projects. NAIF then distributes these data, and associated data access software and high-level tools, to researchers funded by NASA's Office of Space Science. Support for a broader user community is also offered to the extent resources permit. This paper describes the SPICE system and customer support offered by NAIF.

  5. Planetary Sciences Literature - Access and Discovery

    NASA Astrophysics Data System (ADS)

    Henneken, Edwin A.; ADS Team

    2017-10-01

    The NASA Astrophysics Data System (ADS) has been around for over 2 decades, helping professional astronomers and planetary scientists navigate, without charge, through the increasingly complex environment of scholarly publications. As boundaries between disciplines dissolve and expand, the ADS provides powerful tools to help researchers discover useful information efficiently. In its new form, code-named ADS Bumblebee (https://ui.adsabs.harvard.edu), it may very well answer questions you didn't know you had! While the classic ADS (http://ads.harvard.edu) focuses mostly on searching basic metadata (author, title and abstract), today's ADS is best described as a an "aggregator" of scholarly resources relevant to the needs of researchers in astronomy and planetary sciences, and providing a discovery environment on top of this. In addition to indexing content from a variety of publishers, data and software archives, the ADS enriches its records by text-mining and indexing the full-text articles (about 4.7 million in total, with 130,000 from planetary science journals), enriching its metadata through the extraction of citations and acknowledgments. Recent technology developments include a new Application Programming Interface (API), a new user interface featuring a variety of visualizations and bibliometric analysis, and integration with ORCID services to support paper claiming. The new ADS provides powerful tools to help you find review papers on a given subject, prolific authors working on a subject and who they are collaborating with (within and outside their group) and papers most read by by people who read recent papers on the topic of your interest. These are just a couple of examples of the capabilities of the new ADS. We currently index most journals covering the planetary sciences and we are striving to include those journals most frequently cited by planetary science publications. The ADS is operated by the Smithsonian Astrophysical Observatory under NASA

  6. 75 FR 43565 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-084)] NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a two-part meeting of the Ad-Hoc Task...

  7. 75 FR 33838 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-065)] NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Ad-Hoc Task Force on...

  8. 75 FR 15742 - NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-035)] NASA Advisory Council; Ad-Hoc Task Force on Planetary Defense; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration announces a meeting of the Ad-Hoc Task Force on...

  9. Learning radio astronomy by doing radio astronomy

    NASA Astrophysics Data System (ADS)

    Vaquerizo Gallego, J. A.

    2011-11-01

    PARTNeR (Proyecto Académico con el Radio Telescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is an educational program that allows high school and undergraduate students to control a 34 meter radio telescope and conduct radio astronomical observations via the internet. High-school teachers who join the project take a course to learn about the science of radio astronomy and how to use the antenna as an educational resource. Also, teachers are provided with learning activities they can do with their students and focused on the classroom implementation of the project within an interdisciplinary framework. PARTNeR provides students with firsthand experience in radio astronomy science. Thus, remote radio astronomical observations allow students to learn with a first rate scientific equipment the basics of radio astronomy research, aiming to arouse scientific careers and positive attitudes toward science. In this contribution we show the current observational programs and some recent results.

  10. The FOSTER Project: Teacher Enrichment Through Participation in NASA's Airborne Astronomy Program

    NASA Technical Reports Server (NTRS)

    Koch, David; Hull, G.; Gillespie, C., Jr.; DeVore, E.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    NASA's airborne astronomy program offers a unique opportunity for K-12 science teacher enrichment and for NASA to reach out and serve the educational community. Learning from a combination of summer workshops, curriculum supplement materials, training in Internet skills and ultimately flying on NASA's C-141 airborne observatory, the teachers are able to share the excitement of scientific discovery with their students and convey that excitement from first hand experience rather than just from reading about science in a textbook. This year the program has expanded to include teachers from the eleven western states served by NASA Ames Research Center's Educational Programs Office as well as teachers from communities from around the country where the scientist who fly on the observatory reside. Through teacher workshops and inservice presentations, the FOSTER (Flight Opportunities for Science Teacher EnRichment) teachers are sharing the resources and experiences with many hundreds of other teachers. Ultimately, the students are learning first hand about the excitement of science, the scientific method in practice, the team work involved, the relevance of science to their daily lives and the importance of a firm foundation in math and science in today's technologically oriented world.

  11. NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flares for landing at Edwards AFB after a ferry flight from Waco, Texas

    NASA Image and Video Library

    2007-05-31

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP flares for landing at Edwards AFB after a ferry flight from Waco, Texas. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  12. Special issue on enabling open and interoperable access to Planetary Science and Heliophysics databases and tools

    NASA Astrophysics Data System (ADS)

    2018-01-01

    The large amount of data generated by modern space missions calls for a change of organization of data distribution and access procedures. Although long term archives exist for telescopic and space-borne observations, high-level functions need to be developed on top of these repositories to make Planetary Science and Heliophysics data more accessible and to favor interoperability. Results of simulations and reference laboratory data also need to be integrated to support and interpret the observations. Interoperable software and interfaces have recently been developed in many scientific domains. The Virtual Observatory (VO) interoperable standards developed for Astronomy by the International Virtual Observatory Alliance (IVOA) can be adapted to Planetary Sciences, as demonstrated by the VESPA (Virtual European Solar and Planetary Access) team within the Europlanet-H2020-RI project. Other communities have developed their own standards: GIS (Geographic Information System) for Earth and planetary surfaces tools, SPASE (Space Physics Archive Search and Extract) for space plasma, PDS4 (NASA Planetary Data System, version 4) and IPDA (International Planetary Data Alliance) for planetary mission archives, etc, and an effort to make them interoperable altogether is starting, including automated workflows to process related data from different sources.

  13. NASA Blueshift: Mobilizing The Astronomy-Interested Public Through New Media

    NASA Astrophysics Data System (ADS)

    Mitchell, Sara E.; Gibb, M.; Masetti, M.; Nelson, T.; Reddy, F.; Winter, E.

    2010-01-01

    Public interest in astronomy content is moving from mere consumption to full interaction. With the introduction of services such as Twitter, Facebook, and YouTube, audiences are eager to engage directly with content - and its creators - in more personal ways. Wikipedia is estimated to represent 100 million hours of accumulated human thought, time spent on research, discussion, and collection of information and ideas. Sites are utilizing this "social surplus" and engaging audiences to spend their free time immersed in collaboration and communication. In 2007, the Astrophysics Science Division at NASA Goddard Space Flight Center began Blueshift, a podcasting effort to provide listeners with a "backstage pass" to what's happening within the division. After focus group reviews, this effort was re-launched as part of a larger new media effort to share how and why we do science. Each episode is a cornerstone for various means of engagement, including supporting content in blogs and Twitter. We seek to engage listeners as contributors and collaborators, sharing ideas and steering the focus of future content. As we seek to build upon the interest generated during the International Year of Astronomy, we are interested in experimenting with these new forms of interaction and assessing their impacts.

  14. Activity Based Astronomy for Primary Science Programs.

    ERIC Educational Resources Information Center

    Ginns, Ian

    Print materials in astronomy such as books, journals, charts, and posters are typically the sources of information for teachers and children about the moon, the sun, lunar and solar eclipses, planetary sizes, distances of planets from the sun, planetary atmospheres, and so on. This paper describes and analyzes a number of activities designed to…

  15. Quickly Creating Interactive Astronomy Illustrations

    ERIC Educational Resources Information Center

    Slater, Timothy F.

    2015-01-01

    An innate advantage for astronomy teachers is having numerous breathtaking images of the cosmos available to capture students' curiosity, imagination, and wonder. Internet-based astronomy image libraries are numerous and easy to navigate. The Astronomy Picture of the Day, the Hubble Space Telescope image archive, and the NASA Planetary…

  16. Orion Nebula and Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1998-01-01

    This report summarizes the research performed at Rice University related to NASA-Ames University consortium grant NCC2-5199 during the two year period 1996 September 1 through 1998 August 31. The research program, titled Orion Nebula and Planetary Nebulae, involved the analysis of Hubble Space Telescope (HST) imagery and spectroscopy of the Orion Nebula and of the planetary nebulae NGC 6818 and NGC 6210. In addition, we analyzed infrared spectra of the Orion Nebula taken with the Infrared Space Observatory (ISO) The primary collaborators at NASA-Ames were Drs. R. H. Rubin, A. G. C. M. Tielens, S. W. J. Colgan, and S. D. Lord (Tielens & Lord has since changed institutions). Other collaborators include Drs. P. G. Martin (CITA, Toronto), G. J. Ferland (U. KY), J. A. Baldwin (CTIO, Chile), J. J. Hester (ASU), D. K. Walter (SCSU), and P. Harrington (U. MD). In addition to the Principal Investigator, Professor Reginald J. Dufour of the Department of Space Physics & Astronomy, the research also involved two students, Mr. Matthew Browning and Mr. Brent Buckalew. Mr. Browning will be graduating from Rice in 1999 May with a B.A. degree in Physics and Mr. Buckalew continues as a graduate student in our department, having recently received a NASA GSRP research fellowship (sponsored by Ames). The collaboration was very productive, with two refereed papers already appearing in the literature, several others in preparation, numerous meeting presentations and two press releases. Some of our research accomplishments are highlighted below. Attached to the report are copies of the two major publications. Note that this research continues to date and related extensions of it recently has been awarded time with the HST for 1999-2000.

  17. The Future of NASA's Deep Space Network and Applications to Planetary Probe Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Preston, Robert A.; Vrotsos, Peter

    2010-01-01

    NASA's Deep Space Network (DSN) has been an invaluable tool in the world's exploration of space. It has served the space-faring community for more than 45 years. The DSN has provided a primary communication pathway for planetary probes, either through direct- to-Earth links or through intermediate radio relays. In addition, its radiometric systems are critical to probe navigation and delivery to target. Finally, the radio link can also be used for direct scientific measurement of the target body ('radio science'). This paper will examine the special challenges in supporting planetary probe missions, the future evolution of the DSN and related spacecraft technology, the advantages and disadvantages of radio relay spacecraft, and the use of the DSN radio links for navigation and scientific measurements.

  18. Istoriko-Astronomicheskie Issledovaniya. Vypusk XXXI %t Studies in the History of Astronomy. Issue 31

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection contains papers covering a wide scope of problems in the history of astronomy, both domestic and international astronomy. Its basic headlines are: astronomy and cosmology of the 20th century; researches and findings; history of observatories and astronomical organisations; amateur astronomy in Russia. Among the most interesting problems investigated in this issue: the history of the observed structure and stability of planetary rings explanation, the history of prediction of giant vortexes in galaxies; the newest history of planetary cartography; the Old Russian calendars; the Russian observations of the 1874 Venus transit; the history of the Pulkovo Observatory for the last 50 years; the autobiography of the distinguished Russian astronomer academician V. G. Fesenkov; Byelorussian folk astronomy; and many others.

  19. TC4 Observing Campaign: An Operational Test of NASA Planetary Defense Network

    NASA Astrophysics Data System (ADS)

    Reddy, V.; Kelley, M. S.; Landis, R. R.

    Impacts due to near-Earth objects ( 90% near-Earth asteroids, or NEAs, and 10% comets) are one of the natural hazards that can pose a great risk to life on Earth, but one that can potentially be mitigated, if the threat is detected with sufficient lead-time. While the probability of such an event is low, the outcome is so catastrophic that we are well justified in investing a modest effort to minimize this threat. Historically, asteroid impacts have altered the course of evolution on the Earth. In 2013 the Chelyabinsk meteor over Russia, which injured over 1600 people and caused $30M in damages, reinforced the importance of detecting and characterizing small NEAs that pose a greater threat than most large NEAs discovered so far. The NASA Planetary Defense Coordination Office (PDCO) was established to ensure the early detection, tracking and characterization of potentially hazardous objects (PHOs) and is the lead office for providing timely and accurate communications and coordination of U.S. Government planning for response to an actual impact threat. In an effort to test the operational readiness of all entities critical to planetary defense, the NASA PDCO is supporting a community-led exercise. The target of this exercise is 2012 TC4, a 20- meter diameter asteroid that is currently expected to pass by the Earth over Antarctica on Oct. 12, 2017 at a distance of only 2.3 Earth radii. The goal of the TC4 Observing Campaign is to recover, track, and characterize 2012 TC4 as a potential impactor in order to exercise the entire Planetary Defense system from observations, modeling, prediction, and communication. The paper will present an overview of the campaign and summarize early results from the exercise.

  20. IYA2009 NASA Programs: Midyear Status

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Smith, D. A.

    2010-08-01

    NASA's Science Mission Directorate's (SMD) celebration of the International Year of Astronomy (IYA) 2009 was kicked off in January 2009 with a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions. Since then some of the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics, which has been given an IYA2009 flavor, has been made available to students, educators and the public worldwide. Some examples of the progress of NASA's programs are presented. The Visions of the Universe traveling exhibit of NASA images to public libraries around the country has been a spectacular success and is being extended to include more libraries. NASA IYA Student Ambassadors met at summer workshop and presented their projects. NASA's Afterschool Universe has provided IYA training to community-based organizations, while pre-launch teacher workshops associated with the Kepler and WISE missions have been designed to engage educators in the science of these missions. IYA activities have been associated with several missions launched this year. These include the Hubble Servicing Mission 4, Kepler, Herschel/Planck, and LCROSS. The NASA IYA website continues to be popular, getting visitors spanning a wide spectrum. NASA's IYA programs have captured the imagination of the public and continue to keep it engaged in the scientific exploration of the universe.

  1. NASA's Great Observatories Celebrate the International Year of Astronomy With a National Unveiling of Spectacular Images

    NASA Astrophysics Data System (ADS)

    2009-02-01

    In 1609, Galileo first turned his telescope to the heavens and gave birth to modern astronomy. To commemorate four hundred years of exploring the universe, 2009 is designated the International Year of Astronomy. NASA's Great Observatories - the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory - are marking the occasion with the release of a suite of images at over 100 planetariums, museums, nature centers, and schools across the country in conjunction with Galileo's birthday on February 15. The selected sites will unveil a large 9-square-foot print of the spiral galaxy Messier 101 that combines the optical view of Hubble, the infrared view of Spitzer, and the X-ray view of Chandra into one multi-wavelength picture. "It's like using your eyes, night vision goggles, and X-ray vision all at the same time," says Dr. Hashima Hasan, lead scientist for the International Year of Astronomy at NASA Headquarters in Washington. Cas A animation Chandra X-ray Image of M101 Participating institutions also will display a matched trio of Hubble, Spitzer, and Chandra images of Messier 101. Each image shows a different wavelength view of the galaxy that illustrates not only the different science uncovered by each observatory, but also just how far astronomy has come since Galileo. Messier 101 is a face-on spiral galaxy about 22 million light-years away in the constellation Ursa Major. It is in many ways similar to, but larger than, our own Milky Way galaxy. Hubble's visible light view shows off the swirls of bright stars and glowing gas that give the galaxy its nickname the Pinwheel Galaxy. In contrast, Spitzer's infrared-light image sees into the spiral arms and reveals the glow of dust lanes where dense clouds can collapse to form new stars. Chandra's X-ray picture uncovers the high-energy features in the galaxy, such as remnants of exploded stars or matter zooming around black holes. The juxtaposition of observations from these three telescopes

  2. Planetary Photojournal Home Page Graphic

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image is an unannotated version of the Planetary Photojournal Home Page graphic. This digital collage contains a highly stylized rendition of our solar system and points beyond. As this graphic was intended to be used as a navigation aid in searching for data within the Photojournal, certain artistic embellishments have been added (color, location, etc.). Several data sets from various planetary and astronomy missions were combined to create this image.

  3. Detection of dust impacts by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    The Planetary Radio Astronomy (PRA) instrument detected large numbers of dust particles during the Voyager 2 encounter with Neptune. The signatures of these impacts are analyzed in some detail. The major conclusions are described. PRA detects impacts from all over the spacecraft body, not just the PRA antennas. The signatures of individual impacts last substantially longer than was expected from complementary Plasma Wave Subsystem (PWS) data acquired by another Voyager experiment. The signatures of individual impacts demonstrate very rapid fluctuations in signal strength, so fast that the data are limited by the speed of response of the instrument. The PRA detects events at a rate consistently lower than does the Plasma Wave subsystem. Even so, the impact rate is so great near the inbound crossing of the ring plane that no reliable estimate of impact rate can be made for this period. The data are consistent with the presence of electrons accelerated by ions within an expanding plasma cloud from the point of impact. An ancillary conclusion is that the anomalous appearance of data acquired at 900 kHz appears to be due to an error in processing the PRA data prior to their delivery rather than due to overload of the PRA instrument.

  4. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    NASA Astrophysics Data System (ADS)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  5. Spreading the passion for scientifically useful planetary observations

    NASA Astrophysics Data System (ADS)

    Kardasis, E.; Vourliotis, E.; Bellias, I.; Maravelias, G.; Vakalopoulos, E.; Papadeas, P.; Marouda, K.; Voutyras, O.

    2015-10-01

    Τhe "March 2015 - Planetary Observation Project (POP)" was a series of talks and hands-on workshops focused on planetary observation organized in March 2015 by the planetary section of the Hellenic Amateur Astronomy Association. Building on our previous experience (Voutyras et al. 2013), which also includes more than 500 attendants in our 2013-2014 series of lectures in Astronomy, we identified that there is a lack of more focused lectures/workshops on observing techniques. In particular, POP's structure included two talks and two workshops aiming to inspire and educate astronomy enthusiasts. The talks tried to stimulate the participants about the importance of ground-based observations by presenting the most current scientific news and puzzling problems that we are facing in the observation of planets. During the hands-on workshops the beauty of planetary observation was used to inspire participants. However, we trained participants on observing techniques and image processing to enable them to produce scientifically useful results. All POP's events were open to the public and free, meaning both out-of-charge and freely available material provided to the participants (through our website). The project offered attendants unique experiences that may have a significant impact with potential lifelong benefits. In this work we present an overview of the project structure that may work as a prototype for similar outreach programs.

  6. Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Grygar, J.

    2018-04-01

    Although infrared radiation was described by W. Herschel already in 1800, technical problems delayed its use in astronomy for 160 years. After the invention of a sensitive bolometer and semiconducting CCD arrays for very wide infrared window the progress in the field accelerated. Many high-altitude observatories started their work in the last three decades of XXth century and since 1983 space observatories became most important due to the fact that infrared radiation penetrates through opaque cold shells. Moreover, cosmological expansion of the Universe shifts the maximum of spectral energy of distant hot objects from ultraviolet to near infrared region. Infrared astronomy is also essential for improving our knowledge of the cold universe, particularly for studies about the birth of stars, planetary systems and galaxies.

  7. NASA deep space network operations planning and preparation

    NASA Technical Reports Server (NTRS)

    Jensen, W. N.

    1982-01-01

    The responsibilities and structural organization of the Operations Planning Group of NASA Deep Space Network (DSN) Operations are outlined. The Operations Planning group establishes an early interface with a user's planning organization to educate the user on DSN capabilities and limitations for deep space tracking support. A team of one or two individuals works through all phases of the spacecraft launch and also provides planning and preparation for specific events such as planetary encounters. Coordinating interface is also provided for nonflight projects such as radio astronomy and VLBI experiments. The group is divided into a Long Range Support Planning element and a Near Term Operations Coordination element.

  8. Astronomy research at the Aerospace Corporation. [research projects - NASA programs

    NASA Technical Reports Server (NTRS)

    Paulikas, G. A.

    1974-01-01

    This report reviews the astronomy research carried out at The Aerospace Corporation during 1974. The report describes the activities of the San Fernando Observatory, the research in millimeter wave radio astronomy as well as the space astronomy research.

  9. NASA Astrophysics Data System's New Data

    NASA Astrophysics Data System (ADS)

    Eichhorn, G.; Accomazzi, A.; Demleitner, M.; Grant, C. S.; Kurtz, M. J.; Murray, S. S.

    2000-05-01

    The NASA Astrophysics Data System has greatly increased its data holdings. The Physics database now contains almost 900,000 references and the Astronomy database almost 550,000 references. The Instrumentation database has almost 600,000 references. The scanned articles in the ADS Article Service are increasing in number continuously. Almost 1 million pages have been scanned so far. Recently the abstracts books from the Lunar and Planetary Science Conference have been scanned and put on-line. The Monthly Notices of the Royal Astronomical Society are currently being scanned back to Volume 1. This is the last major journal to be completely scanned and on-line. In cooperation with a conservation project of the Harvard libraries, microfilms of historical observatory literature are currently being scanned. This will provide access to an important part of the historical literature. The ADS can be accessed at: http://adswww.harvard.edu This project is funded by NASA under grant NCC5-189.

  10. Planetary Science Training for NASA's Astronauts: Preparing for Future Human Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Evans, C. A.; Graff, T. G.; Young, K. E.; Zeigler, R.

    2017-02-01

    Astronauts selected in 2017 and in future years will carry out in situ planetary science research during exploration of the solar system. Training to enable this goal is underway and is flexible to accommodate an evolving planetary science vision.

  11. Characterizing K2 Planetary Systems Orbiting Cool Dwarfs

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua; Vanderburg, Andrew; Charbonneau, David; Knutson, Heather; K2C2

    2017-01-01

    The NASA K2 mission is using the repurposed Kepler spacecraft to search for transiting planets in multiple fields along the ecliptic plane. K2 observes 10,000 - 30,000 stars in each field for roughly 80 days, which is too short to observe multiple transits of planets in the habitable zones of Sun-like stars, but long enough to detect potentially habitable planets orbiting low-mass dwarfs. Accordingly, M and K dwarfs are frequently nominated as K2 Guest Observer targets and K2 has already observed significantly more low-mass stars than the original Kepler mission. While the K2 data are therefore an enticing resource for studying the properties and frequency of planetary systems orbiting low-mass stars, many K2 cool dwarfs are not well-characterized. We are refining the properties of K2 planetary systems orbiting cool dwarfs by acquiring medium-resolution NIR spectra with SpeX on the IRTF and TripleSpec on the Palomar 200". In our initial sample of 144 potential cool dwarfs hosting candidate planetary systems detected by K2, we noted a high contamination rate from giants (16%) and reddened hotter dwarfs (31%). After employing empirically-based relations to determine the temperatures, radii, masses, luminosities, and metallicities of K2 planet candidate host stars, we found that our new cool dwarf radius estimates were 10-40% larger than the initial values, indicating that the radii of the associated planet candidates were also underestimated. Refining the stellar parameters allows us to identify astrophysical false positives and better constrain the radii and insolation flux environments of bona fide transiting planets. I will present our resulting catalog of system properties and highlight the most attractive K2 planets for radial velocity mass measurement and atmospheric characterization with Spitzer, HST, JWST, and the next generation of extremely large ground- and space-based telescopes. We gratefully acknowledge funding from the NASA Sagan Fellowship Program

  12. NASA's Planetary Science Summer School: Training Future Mission Leaders in a Concurrent Engineering Environment

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.

    2014-12-01

    NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni

  13. The IDL astronomy user's library

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.

    1992-01-01

    IDL (Interactive Data Language) is a commercial programming, plotting, and image display language, which is widely used in astronomy. The IDL Astronomy User's Library is a central repository of over 400 astronomy-related IDL procedures accessible via anonymous FTP. The author will overview the use of IDL within the astronomical community and discuss recent enhancements at the IDL astronomy library. These enhancements include a fairly complete I/O package for FITS images and tables, an image deconvolution package and an image mosaic package, and access to IDL Open Windows/Motif widgets interface. The IDL Astronomy Library is funded by NASA through the Astrophysics Software and Research Aids Program.

  14. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Asbury, M. L.

    1999-12-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed and maintained at the University of Maryland for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 63 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Scale of the Universe: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Scientific Notation: Students are interactively guided through conversions between scientific notation and regular numbers. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by NSF.

  15. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Asbury, M. L.

    2000-05-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed and maintained at the University of Maryland for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: ANIMATED ORBITS OF PLANETS AND MOONS: The orbits of the nine planets and 63 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. SOLAR SYSTEM COLLISIONS: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). SCALE OF THE UNIVERSE: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. SCIENTIFIC NOTATION: Students are interactively guided through conversions between scientific notation and regular numbers. ORBITAL SIMULATIONS: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. ASTRONOMY WORKSHOP BULLETIN BOARD: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by NSF.

  16. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Asbury, M. L.

    1999-09-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is an interactive online astronomy resource developed and maintained at the University of Maryland for use by students, educators and the general public. The Astronomy Workshop has been extensively tested and used successfully at many different levels, including High School and Junior High School science classes, University introductory astronomy courses, and University intermediate and advanced astronomy courses. Some topics currently covered in the Astronomy Workshop are: Animated Orbits of Planets and Moons: The orbits of the nine planets and 63 known planetary satellites are shown in animated, to-scale drawings. The orbiting bodies move at their correct relative speeds about their parent, which is rendered as an attractive, to-scale gif image. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country impacted (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Scale of the Universe: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Scientific Notation: Students are interactively guided through conversions between scientific notation and regular numbers. Orbital Simulations: These tools allow the student to investigate different aspects of the three-body problem of celestial mechanics. Astronomy Workshop Bulletin Board: Get innovative teaching ideas and read about in-class experiences with the Astronomy Workshop. Share your ideas with other educators by posting on the Bulletin Board. Funding for the Astronomy Workshop is provided by NSF.

  17. SAO/NASA ADS at SAO: Mirror Sites

    Science.gov Websites

    , Garching, Germany Astronomisches Rechen-Institut, Heidelberg, Germany Institute of Astronomy of the Russian Observatory, Chinese Academy of Science, Beijing, China Inter-University Centre for Astronomy and Astrophysics Intensive Astronomy, South Africa [ADS] ADS [CfA] CfA [NASA] NASA ads at cfa.harvard.edu

  18. Popular Astronomy in the World and in Armenia

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2014-10-01

    A review on the popular astronomy and astronomy outreach in the world and in Armenia is given. Various ways and methods of popularization of astronomy are described. The International Year of Astronomy (IYA-2009), amateur astronomy, publication of books and other materials, the database of astronomical books, AstroBook exhibition, science-popular articles, "Astghagitak" online science-popular astronomical journal, calendar of astronomical events, databases of Solar and Lunar eclipses 2001-2050, planetary triple conjunctions 2001-2050, and of periodic comets at ArAS webpage, ArAS School Lectures Program, public lectures, "Universe" club at "Mkhitar Sebastatsi" educational ensemble, the online database of Armenian astronomers, biographies of famous Armenian astronomers, astronomers' anniversaries, scientific journalism of Armenia, and "Mass media news" section at ArAS webpage are described and discussed.

  19. Planetary astronomy: Rings, satellites, and asteroids

    NASA Technical Reports Server (NTRS)

    Greenberg, Richard

    1988-01-01

    Studies of planetary rings focus on the dynamical processes that govern astronomically observable ring properties and structure. These investigations thus help reveal properties of the rings as well as probe the gravity fields of the planets. Satellite studies involve interpretation of orbital motion to extract information regarding the gravity fields of the outer planets and the physical properties of the satellites themselves. Asteroid lightcurve work is designed to investigate the large-scale shapes of the asteroids, as well as to reveal anomalous features such as major topography, possible satellites, or albedo variations. Work on the nature of viscous transport in planetary rings, emphasizing the role of individual particles' physical properties, has yielded a method for estimating both angular momentum and mass transport given an optical-thickness gradient. This result offers the prospect of ringlet instability, which may explain the square-profile ringlets in Saturn's C Ring. Thermal and reflected lightcurves of 532 Herculina have been interpreted to show that albedo variations cannot be the primary cause of variations. A lightcurve simulation has been developed to model complex asteroidal figures. Bamberga was observed during the December occultation as part of the joint LPL-Lowell program.

  20. Scout and Guides, Key Users of Astronomy & Planetary Sciences Outreach that Support Education

    NASA Astrophysics Data System (ADS)

    Brumfitt, A.; Thompson, L.

    Few people outside of the Scouting and Guide movement would appreciate that these world wide organisations have an active youth membership of over 40 million children and young adults. These two organisations rely on external specialist expert knowledge for the effective delivery of their education and award schemes. The high membership and established program delivery pathways make these organisations excellent vehicles for outreach programs. In particular Scouts and Guides are able to introduce astronomy and planetary sciences into their informal education programs at a timing that best suits the child and not one constrained by the schedule of formal education. It is the global voluntary nature of membership of these organisations that make them extremely effective learning vehicles. The members both youth and leader are highly motivated. These two organisations have a structured education program for youth members based on both individual pursuits or targets and group projects. The organisations has as part of their infra structure benchmarks for the measure of excellence in achievement and education at all levels. Scouts and Guides are a way of encompassing knowledge and lighting candles for life long learning. Scouts and guides address all year groups of formal education from primary through to tertiary levels, from cubs and brownies through various levels to Rovers and Rangers. Space is seen as relevant to Scouting and Guides, the Guide movement UK has recently adopted a "Go for it" challenge award for youth members to investigate space science. Similar awards exist in the Scouting movement in Europe, USA and Australia. The ready adoption of Space science fits well with scouting principles as Space is perceived as the "New Frontier of Discovery". In October 2007, Scouts and Guides from Europe will gather at Tidbinbilla deep space Tracking Station, Australia for the first Scout and Guide International Space Camp. The model used for this camp was based on a

  1. Planetary geosciences, 1988

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)

    1989-01-01

    Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.

  2. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  3. Virtual reality and planetary exploration

    NASA Astrophysics Data System (ADS)

    McGreevy, Michael W.

    Exploring planetary environments is central to NASA's missions and goals. A new computing technology called Virtual Reality has much to offer in support of planetary exploration. This technology augments and extends human presence within computer-generated and remote spatial environments. Historically, NASA has been a leader in many of the fundamental concepts and technologies that comprise Virtual Reality. Indeed, Ames Research Center has a central role in the development of this rapidly emerging approach to using computers. This ground breaking work has inspired researchers in academia, industry, and the military. Further, NASA's leadership in this technology has spun off new businesses, has caught the attention of the international business community, and has generated several years of positive international media coverage. In the future, Virtual Reality technology will enable greatly improved human-machine interactions for more productive planetary surface exploration. Perhaps more importantly, Virtual Reality technology will democratize the experience of planetary exploration and thereby broaden understanding of, and support for, this historic enterprise.

  4. Space Vision: Making Astronomy Accessible to Visually Impaired Students

    NASA Astrophysics Data System (ADS)

    Ries, J. G.; Baguio, M. R.; Jurgens, T. D.; Pruett, K. M.

    2004-05-01

    Astronomy, with good reason, is thought of as a visual science. Spectacular images of deep space objects or other worlds of our solar system inspire public interest in Astronomy. People encounter news about the universe during their daily life. Developing concepts about celestial objects presents an extra challenge of abstraction for people with visual impairments. The Texas Space Grant Consortium with educators at the Texas School for the Blind and Visually Impaired have developed a 2 day workshop to be held in April 2004 to help students with visual impairments understand these concepts. Hands-on activities and experiments will emphasize non-visual senses. For example, students will learn about: - Constellations as historical ways of finding one's way across the sky. - The size and structure of the Solar System by building a scale model on a running track. They will also: - Plan a planetary exploration mission. - Explore wave phenomenon using heat and sound waves. In preparation for the workshop we worked with teens involved in the countywide 4-H Teens Leading with Character (TLC) program to create the tactile materials necessary for the activities. The teens attended solar system education training so they would have the skills necessary to make the tactile displays to be used during the workshop. The results and evaluation of the workshop will be presented at the meeting. Touch the Universe: A NASA Braille Book of Astronomy inspired this workshop, and it is supported by HST Grant HST-ED-90255.01-A.

  5. NASA's Planetary Data System: Support for the Delivery of Derived Data Sets at the Atmospheres Node

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Beebe, Reta; Neakrase, Lynn; Huber, Lyle; Rees, Shannon; Hornung, Danae

    2015-11-01

    NASA’s Planetary Data System is charged with archiving electronic data products from NASA planetary missions that are sponsored by NASA’s Science Mission Directorate. This archive, currently organized by science disciplines, uses standards for describing and storing data that are designed to enable future scientists who are unfamiliar with the original experiments to analyze the data, and to do this using a variety of computer platforms, with no additional support. These standards address the data structure, description contents, and media design. The new requirement in the NASA ROSES-2015 Research Announcement to include a Data Management Plan will result in an increase in the number of derived data sets that are being delivered to the PDS. These data sets may come from the Planetary Data Archiving, Restoration and Tools (PDART) program, other Data Analysis Programs (DAPs) or be volunteered by individuals who are publishing the results of their analysis. In response to this increase, the PDS Atmospheres Node is developing a set of guidelines and user tools to make the process of archiving these derived data products more efficient. Here we provide a description of Atmospheres Node resources, including a letter of support for the proposal stage, a communication schedule for the planned archive effort, product label samples and templates in extensible markup language (XML), documentation templates, and validation tools necessary for producing a PDS4-compliant derived data bundle(s) efficiently and accurately.

  6. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Richey, Christina; Bernstein, Max; Rall, Jonathan

    2015-01-01

    Introduction: NASA's Planetary Science Division (PSD) solicits its Research and Analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD will be changing the structure of the program elements under which the majority of planetary science R&A is done. Major changes include the creation of five core research program elements aligned with PSD's strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submissionROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2014 submission changes: All PSD programs will use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.Additional Information: Additional details will be provided on the Cassini Data Analysis Program, the

  7. Astronomy Night at the White House on This Week @NASA – October 23, 2015

    NASA Image and Video Library

    2015-10-23

    The stars were out for the second-ever White House Astronomy Night on Oct. 19. Attendees included NASA Administrator Charlie Bolden, Deputy Administrator Dava Newman and Associate Administrator for Science, John Grunsfeld – as well as NASA’s commercial crew astronauts, who are training for future spaceflights from American soil on commercial spacecraft. President Obama hosted the event to give students an opportunity to stargaze and to promote Science, Technology, Engineering and Math or (STEM) education. Also, Social chat with Commercial Crew astronauts, Space station spacewalks previewed, SLS Critical Design Review completed, Heat shield testing completed and Exoplanet Week!

  8. Astronomy and Geology Vocabulary, I.e. "NASA Words" in Native American Languages

    NASA Astrophysics Data System (ADS)

    Angrum, A.; Alexander, C. J.; Martin, M.

    2014-12-01

    The US Rosetta Project has developed a program in Native American communities in which contemporary STEM vocabulary is taught alongside the same vocabulary in Navajo. NASA images and science are used and described in the native language, alongside both lay English, and scientific English. Additionally, science curriculum (geology/chemistry/botany/physics) elements drawn from the reservation environment, including geomorphology, geochemistry, soil physics, are included and discussed in the native language as much as possible — with their analogs in other planetary environments (such as Mars). The program began with a student defining 30 Navajo words to describe what he called 'NASA' words, such as: cell phone, astronaut, space suit, computer, and planets not visible to the naked eye. The use of NASA material and imagery have a positive impact on the accessibility of the overall STEM material but community involvement, and buy-in, is criti! cal to the success of the program. The US Rosetta Project modified its goals, and curriculum, to accommodate the programmatic desires of teachers in the district, and the capabilities of the medicine men that agreed to participate. In this presentation we will report on lessons learned, as well as metrics and successes associated with our most recent Summer Science Academy [2014].

  9. 3He Abundances in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  10. Planetary Nebula

    NASA Image and Video Library

    2017-12-08

    This planetary nebula's simple, graceful appearance is thought to be due to perspective: our view from Earth looking straight into what is actually a barrel-shaped cloud of gas shrugged off by a dying central star. Hot blue gas near the energizing central star gives way to progressively cooler green and yellow gas at greater distances with the coolest red gas along the outer boundary. Credit: NASA/Hubble Heritage Team ---- The Ring Nebula's distinctive shape makes it a popular illustration for astronomy books. But new observations by NASA's Hubble Space Telescope of the glowing gas shroud around an old, dying, sun-like star reveal a new twist. "The nebula is not like a bagel, but rather, it's like a jelly doughnut, because it's filled with material in the middle," said C. Robert O'Dell of Vanderbilt University in Nashville, Tenn. He leads a research team that used Hubble and several ground-based telescopes to obtain the best view yet of the iconic nebula. The images show a more complex structure than astronomers once thought and have allowed them to construct the most precise 3-D model of the nebula. "With Hubble's detail, we see a completely different shape than what's been thought about historically for this classic nebula," O'Dell said. "The new Hubble observations show the nebula in much clearer detail, and we see things are not as simple as we previously thought." The Ring Nebula is about 2,000 light-years from Earth and measures roughly 1 light-year across. Located in the constellation Lyra, the nebula is a popular target for amateur astronomers. Read more: 1.usa.gov/14VAOMk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Astronomy Activities for the Classroom.

    ERIC Educational Resources Information Center

    Cain, Peggy W.; Welch, Daniel W.

    Presented are middle school level, activity-oriented astronomy activities developed as a result of an earth science workshop for teachers. Topics include: (1) sun and moon position and measurement; (2) daily, yearly, and seasonal changes in the sun's position; (3) shapes and positions of planetary orbits; (4) eclipses; (5) properties of light; (6)…

  12. Planetary geology in the 1980s

    NASA Technical Reports Server (NTRS)

    Veverka, J.

    1984-01-01

    The geologic aspects of solar system studies are defined and the goals of planetary geology are discussed. Planetary geology is the study of the origin, evolution, and distribution of matter condensed in the form of planets, satellites, asteroids, and comets. It is a multidisciplinary effort involving investigators with backgrounds in geology, chemistry, physics, astronomy, geodesy, cartography, and other disciplines concerned with the solid planets. The report is primarily restricted to the kinds of experiments and observations made through unmanned missions.

  13. Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT)

    NASA Technical Reports Server (NTRS)

    Radebaugh, J.; Thomson, B. J.; Archinal, B.; Hagerty, J.; Gaddis, L.; Lawrence, S. J.; Sutton, S.

    2017-01-01

    Planetary spatial data, which include any remote sensing data or derived products with sufficient positional information such that they can be projected onto a planetary body, continue to rapidly increase in volume and complexity. These data are the hard-earned fruits of decades of planetary exploration, and are the end result of mission planning and execution. Maintaining these data using accessible formats and standards for all scientists has been necessary for the success of past, present, and future planetary missions. The Mapping and Planetary Spatial Infrastructure Team (MAPSIT) is a group of planetary community members tasked by NASA Headquarters to work with the planetary science community to identify and prioritize their planetary spatial data needs to help determine the best pathways for new data acquisition, usable product derivation, and tools/capability development that supports NASA's planetary science missions.

  14. The International Planetary Data Alliance (IPDA): Overview of the Activities

    NASA Astrophysics Data System (ADS)

    Sarkissian, A.; Gopala Krishna, B.; Crichton, D. J.; Beebe, R.; Yamamoto, Y.; Arviset, C.; Di Capria, M. T.; Mickaelian, A. M.; IPDA

    2016-06-01

    An overview of activities of the IPDA is presented in the frame of the recently growing number of successful space experiments dedicated to planetary observation, with a significantly growing number of people involved in such activity and with significantly growing numbers of web services willing to share data and services in our research domain, but also, in close by domains such as astronomy, heliophysics and atmospheric sciences for the Earth. An overview of a number of space agencies and organizations is given. In total, IPDA consists of 13 national organizations: NASA (USA), CNES (France), ESA (Europe), STFC (UK), JAXA (Japan), ASI (Italy), ISRO (India), DLR (Germany), RKA (Russia), RCSA (China), FMI (Finland), ArSA (Armenia) and United Arab Emirates. Some projects of 2015 in frame of the IPDA activities are described.

  15. NASA's "Eyes On The Solar System:" A Real-time, 3D-Interactive Tool to Teach the Wonder of Planetary Science

    NASA Astrophysics Data System (ADS)

    Hussey, K.

    2014-12-01

    NASA's Jet Propulsion Laboratory is using video game technology to immerse students, the general public and mission personnel in our solar system and beyond. "Eyes on the Solar System," a cross-platform, real-time, 3D-interactive application that can run on-line or as a stand-alone "video game," is of particular interest to educators looking for inviting tools to capture students interest in a format they like and understand. (eyes.nasa.gov). It gives users an extraordinary view of our solar system by virtually transporting them across space and time to make first-person observations of spacecraft, planetary bodies and NASA/ESA missions in action. Key scientific results illustrated with video presentations, supporting imagery and web links are imbedded contextually into the solar system. Educators who want an interactive, game-based approach to engage students in learning Planetary Science will see how "Eyes" can be effectively used to teach its principles to grades 3 through 14.The presentation will include a detailed demonstration of the software along with a description/demonstration of how this technology is being adapted for education. There will also be a preview of coming attractions. This work is being conducted by the Visualization Technology Applications and Development Group at NASA's Jet Propulsion Laboratory, the same team responsible for "Eyes on the Earth 3D," and "Eyes on Exoplanets," which can be viewed at eyes.nasa.gov/earth and eyes.nasa.gov/exoplanets.

  16. 2011 Astronomy Day at McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Preston, Sandra; Hemeway, M.; Wetzel, M.

    2012-01-01

    Our philosophy is that everyday is Astronomy Day because the McDonald Observatory's Frank N. Bash Visitors Center is open 362 days a year. So, how did we create a special celebration for the "Astronomy Day” declared by the Astronomical League? During September 26-29 we conducted 20 videoconferences and served 12,559 students with "Astronomy Day” programming. Connect2Texas provides bridging for a network of Texas-based museums and cultural, historical, and scientific organizations that offer educational content to schools throughout the state via videoconferencing. Connect2Texas connected McDonald Observatory to 334 schools; most of these schools were in Texas, but schools in a dozen other states also participated. While most schools had a "view-only" connection, at least 20 of the schools had interactive connections, whereby the students could ask questions of the presenter. Connect2Texas also collects evaluation information from the participating schools that we will use to produce a report for our funders and make modifications to future programs as need be. The videoconferences were offered free of charge. The theme for the 2011 Astronomy Day program was the Year of the Solar System, which aligns with NASA's theme for 2011 and 2012. By aligning with this NASA theme, we could leverage NASA artwork and materials to both advertise and enrich the learning experience. Videoconference materials also included pre- and post-videoconference assessment sheets, an inquiry based activity, and pre- and post-videoconference activities, all of which were made available online. One of the lessons learned from past Astronomy Day videoconferences is that the days the Astronomical League declares as "Astronomy Day” are not always good days for Texas schools to participate. So, we choose an Astronomy Day that meets the needs of Texas schools and our schedule - so any day can be Astronomy Day. 2011 Astronomy Day was made possible by The Meyer-Levy Charitable Trust.

  17. Tools for Engaging Scientists in Education and Public Outreach: Resources from NASA's Science Mission Directorate Forums

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Grier, J.; Meinke, B. K.; Gross, N. A.; Woroner, M.

    2014-12-01

    The NASA Science Education and Public Outreach (E/PO) Forums support the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums foster collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. We will present tools to engage and resources to support scientists' engagement in E/PO efforts. Scientists can get connected to educators and find support materials and links to resources to support their E/PO work through the online SMD E/PO community workspace (http://smdepo.org) The site includes resources for scientists interested in E/PO including one page guides about "How to Get Involved" and "How to Increase Your Impact," as well as the NASA SMD Scientist Speaker's Bureau to connect scientists to audiences across the country. Additionally, there is a set of online clearinghouses that provide ready-made lessons and activities for use by scientists and educators: NASA Wavelength (http://nasawavelength.org/) and EarthSpace (http://www.lpi.usra.edu/earthspace/). The NASA Forums create and partner with organizations to provide resources specifically for undergraduate science instructors including slide sets for Earth and Space Science classes on the current topics in astronomy and planetary science. The Forums also provide professional development opportunities at professional science conferences each year including AGU, LPSC, AAS, and DPS to support higher education faculty who are teaching undergraduate courses. These offerings include best practices in instruction, resources for teaching planetary science and astronomy topics, and other special topics such as working with diverse students and the use of social media in the classroom. We are continually soliciting ways that we can better support scientists' efforts in effectively engaging in E/PO. Please contact Sanlyn Buxner (buxner@psi.edu) or Jennifer Grier (jgrier@psi.edu) to

  18. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Results of planetary advanced studies and planning support provided by Science Applications, Inc. staff members to Earth and Planetary Exploration Division, OSSA/NASA, for the period 1 February 1981 to 30 April 1982 are summarized. The scope of analyses includes cost estimation, planetary missions performance, solar system exploration committee support, Mars program planning, Galilean satellite mission concepts, and advanced propulsion data base. The work covers 80 man-months of research. Study reports and related publications are included in a bibliography section.

  19. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  20. Mars Technology Program Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    The objectives of the NASA Planetary Protection program are to preserve biological and organic conditions of solar-system bodies for future scientific exploration and to protect the Earth from potential hazardous extraterrestrial contamination. As the exploration of solar system continues, NASA remains committed to the implementation of planetary protection policy and regulations. To fulfill this commitment, the Mars Technology Program (MTP) has invested in a portfolio of tasks for developing necessary technologies to meet planetary protection requirements for the next decade missions.

  1. Infrastructure for Planetary Sciences: Universal planetary database development project

    NASA Astrophysics Data System (ADS)

    Kasaba, Yasumasa; Capria, M. T.; Crichton, D.; Zender, J.; Beebe, R.

    The International Planetary Data Alliance (IPDA), formally formed under COSPAR (Formal start: from the COSPAR 2008 at Montreal), is a joint international effort to enable global access and exchange of high quality planetary science data, and to establish archive stan-dards that make it easier to share the data across international boundaries. In 2008-2009, thanks to the many players from several agencies and institutions, we got fruitful results in 6 projects: (1) Inter-operable Planetary Data Access Protocol (PDAP) implementations [led by J. Salgado@ESA], (2) Small bodies interoperability [led by I. Shinohara@JAXA N. Hirata@U. Aizu], (3) PDAP assessment [led by Y. Yamamoto@JAXA], (4) Architecture and standards definition [led by D. Crichton@NASA], (5) Information model and data dictionary [led by S. Hughes@NASA], and (6) Venus Express Interoperability [led by N. Chanover@NMSU]. 'IPDA 2009-2010' is important, especially because the NASA/PDS system reformation is now reviewed as it develops for application at the international level. IPDA is the gate for the establishment of the future infrastructure. We are running 8 projects: (1) IPDA Assessment of PDS4 Data Standards [led by S. Hughes (NASA/JPL)], (2) IPDA Archive Guide [led by M.T. Capria (IASF/INAF) and D. Heather (ESA/PSA)], (3) IPDA Standards Identification [led by E. Rye (NASA/PDS) and G. Krishna (ISRO)], (4) Ancillary Data Standards [led by C. Acton (NASA/JPL)], (5) IPDA Registries Definition [led by D. Crichton (NASA/JPL)], (6) PDAP Specification [led by J. Salgado (ESA/PSA) and Y. Yamamoto (JAXA)], (7) In-teroperability Assessment [R. Beebe (NMSU) and D. Heather (ESA/PSA)], and (8) PDAP Geographic Information System (GIS) extension [N. Hirata (Univ. Aizu) and T. Hare (USGS: thare@usgs.gov)]. This paper presents our achievements and plans summarized in the IPDA 5th Steering Com-mittee meeting at DLR in July 2010. We are now just the gate for the establishment of the Infrastructure.

  2. A "Thinking Journey" to the Planets Using Scientific Visualization Technologies: Implications to Astronomy Education.

    ERIC Educational Resources Information Center

    Yair, Yoav; Schur, Yaron; Mintz, Rachel

    2003-01-01

    Presents a novel approach to teaching astronomy and planetary sciences centered on visual images and simulations of planetary objects. Focuses on the study of the moon and the planet Mars by means of observations, interpretation, and comparison to planet Earth. (Contains 22 references.) (Author/YDS)

  3. An Update on the NASA Planetary Science Division Research and Analysis Program

    NASA Astrophysics Data System (ADS)

    Bernstein, Max; Richey, Christina; Rall, Jonathan

    2015-11-01

    Introduction: NASA’s Planetary Science Division (PSD) solicits its research and analysis (R&A) programs each year in Research Opportunities in Space and Earth Sciences (ROSES). Beginning with the 2014 ROSES solicitation, PSD changed the structure of the program elements under which the majority of planetary science R&A is done. Major changes included the creation of five core research program elements aligned with PSD’s strategic science questions, the introduction of several new R&A opportunities, new submission requirements, and a new timeline for proposal submission.ROSES and NSPIRES: ROSES contains the research announcements for all of SMD. Submission of ROSES proposals is done electronically via NSPIRES: http://nspires.nasaprs.com. We will present further details on the proposal submission process to help guide younger scientists. Statistical trends, including the average award size within the PSD programs, selections rates, and lessons learned, will be presented. Information on new programs will also be presented, if available.Review Process and Volunteering: The SARA website (http://sara.nasa.gov) contains information on all ROSES solicitations. There is an email address (SARA@nasa.gov) for inquiries and an area for volunteer reviewers to sign up. The peer review process is based on Scientific/Technical Merit, Relevance, and Level of Effort, and will be detailed within this presentation.ROSES 2015 submission changes: All PSD programs will continue to use a two-step proposal submission process. A Step-1 proposal is required and must be submitted electronically by the Step-1 due date. The Step-1 proposal should include a description of the science goals and objectives to be addressed by the proposal, a brief description of the methodology to be used to address the science goals and objectives, and the relevance of the proposed research to the call submitted to.

  4. NASA Planetary Astronomy Lunar Atmospheric Imaging Study

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1996-01-01

    Authors have conducted a program of research focused on studies of the lunar atmosphere. Also present preliminary results of an ongoing effort to determine the degree that metal abundances in the lunar atmosphere are stoichiometric, that is, reflective of the lunar surface composition. We make the first-ever mid-ultraviolet spectroscopic search for emission from the lunar atmosphere.

  5. NASA Planetary Science Summer School: Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Giron, Jennie M.; Sohus, A.

    2006-12-01

    NASA’s Planetary Science Summer School is a program designed to prepare the next generation of scientists and engineers to participate in future missions of solar system exploration. The opportunity is advertised to science and engineering post-doctoral and graduate students with a strong interest in careers in planetary exploration. Preference is given to U.S. citizens. The “school” consists of a one-week intensive team exercise learning the process of developing a robotic mission concept into reality through concurrent engineering, working with JPL’s Advanced Project Design Team (Team X). This program benefits the students by providing them with skills, knowledge and the experience of collaborating with a concept mission design. A longitudinal study was conducted to assess the impact of the program on the past participants of the program. Data collected included their current contact information, if they are currently part of the planetary exploration community, if participation in the program contributed to any career choices, if the program benefited their career paths, etc. Approximately 37% of 250 past participants responded to the online survey. Of these, 83% indicated that they are actively involved in planetary exploration or aerospace in general; 78% said they had been able to apply what they learned in the program to their current job or professional career; 100% said they would recommend this program to a colleague.

  6. Products from NASA's In-Space Propulsion Technology Program Applicable to Low-Cost Planetary Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Vento, Daniel; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle M.

    2011-01-01

    Since September 2001 NASA s In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Also under development are several technologies for low cost sample return missions. These include a low cost Hall effect thruster (HIVHAC) which will be completed in 2011, light weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA s future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.

  7. NASA SMD and DPS Resources for Higher Education Faculty

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Grier, Jennifer; Meinke, Bonnie; Schneider, Nick; Low, Rusty; Schultz, Greg; Manning, James; Fraknoi, Andrew; Gross, Nicholas

    2015-11-01

    The NASA Education and Public Outreach Forums have developed and provided resources for higher education for the past six years through a cooperative agreement with NASA’s Science Mission Directorate. Collaborations with science organizations, including AAS’s Division of Planetary Sciences, have resulted in more tools, professional training opportunities, and dissemination of resources for teaching in the undergraduate classroom. Resources have been developed through needs assessments of the community and with input from scientists and undergraduate instructors. All resources are freely available.NASA Wavelength (nasawavelength.org) is a collection of digital peer reviewed Earth and space science resources for formal and informal educators of all levels. All resources were developed through funding of the NASA Science Mission Directorate and have undergone a peer-review process through which educators and scientists ensure the content is accurate and useful in an educational setting. Within NASA Wavelength are specific lists of activities and resources for higher education faculty. Additionally, several resources have been developed for introductory college classrooms. The DPS Discovery slide sets are 3-slide presentations that can be incorporated into college lectures to keep classes apprised of the fast moving field of planetary science (http://dps.aas.org/education/dpsdisc). The “Astro 101 slide sets”, developed by the Astro Forum, are presentations 5-7 slides in length on a new development or discovery from a NASA Astrophysics mission relevant to topics in introductory astronomy courses of discoveries not yet in textbooks. Additional resources guides are available for Astro 101 courses and include cosmology and exoplanets. (https://www.astrosociety.org/education/resources-for-the-higher-education-audience/).Professional development opportunities are available to faculty to increase content knowledge and pedagogical tools. These include workshops at

  8. NASA Thesaurus. Volumes 1 and 2; Hierarchical Listing with Definitions; Rotated Term Display

    NASA Technical Reports Server (NTRS)

    2012-01-01

    The NASA Thesaurus contains the authorized subject terms by which the documents in the NASA STI Databases are indexed and retrieved. The scope of this controlled vocabulary includes not only aerospace engineering, but all supporting areas of engineering and physics, the natural space sciences (astronomy, astrophysics, planetary science), Earth sciences, and to some extent, the biological sciences. Volume 1 - Hierarchical Listing With Definitions contains over 18,400 subject terms, 4,300 definitions, and more than 4,500 USE cross references. The Hierarchical Listing presents full hierarchical structure for each term along with 'related term' lists, and can serve as an orthographic authority. Volume 2 - Rotated Term Display is a ready-reference tool which provides over 52,700 additional 'access points' to the thesaurus terminology. It contains the postable and nonpostable terms found in the Hierarchical Listing arranged in a KWIC (key-word-in-context) index. This CD-ROM version of the NASA Thesaurus is in PDF format and is updated to the current year of purchase.

  9. Restricted by Whom? A Historical Review of Strategies and Organization for Restricted Earth Return of Samples from NASA Planetary Missions

    NASA Technical Reports Server (NTRS)

    Pugel, Betsy

    2017-01-01

    This presentation is a review of the timeline for Apollo's approach to Planetary Protection, then known as Planetary Quarantine. Return of samples from Apollo 11, 12 and 14 represented NASA's first attempts into conducting what is now known as Restricted Earth Return, where return of samples is undertaken by the Agency with the utmost care for the impact that the samples may have on Earth's environment due to the potential presence of microbial or other life forms that originate from the parent body (in this case, Earth's Moon).

  10. Online Planetary Science Courses at Athabasca University

    NASA Astrophysics Data System (ADS)

    Connors, Martin; Munyikwa, Ken; Bredeson, Christy

    2016-01-01

    Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology and astronomy courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on process in the Solar System on bodies other than Earth. This process-oriented course uses W. F. Hartmann's "Moons and Planets" as its textbook. It primarily approaches the subject from an astronomy and physics perspective. Geology 415, Earth's Origin and Early Evolution, is based on the same textbook, but explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the solar system is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the solar system as well as the age of earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the solar system, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols about 15-30 students annually. The courses are delivered online via Moodle and student evaluation is conducted through assignments and invigilated examinations.

  11. Publishing in the Refereed International Journal of Astronomy & Earth Sciences Education JAESE

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-08-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education- JAESE was first published in 2014. JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, EBSCO, ProQuest, and NASA SAO/ADS and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute in the United States, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the

  12. DPS Discovery Slide Sets for the Introductory Astronomy Instructor

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Jackson, Brian; Buxner, Sanlyn; Horst, Sarah; Brain, David; Schneider, Nicholas M.

    2016-10-01

    The DPS actively supports the E/PO needs of the society's membership, including those at the front of the college classroom. The DPS Discovery Slide Sets are an opportunity for instructors to put the latest planetary science into their lectures and for scientists to get their exciting results to college students.In an effort to keep the astronomy classroom apprised of the fast moving field of planetary science, the Division for Planetary Sciences (DPS) has developed "DPS Discoveries", which are 3-slide presentations that can be incorporated into college lectures. The slide sets are targeted at the Introductory Astronomy undergraduate level. Each slide set consists of three slides which cover a description of the discovery, a discussion of the underlying science, and a presentation of the big picture implications of the discovery, with a fourth slide that includes links to associated press releases, images, and primary sources. Topics span all subdisciplines of planetary science, and 26 sets are available in Farsi and Spanish. We intend for these slide sets to help Astronomy 101 instructors include new developments (not yet in their textbooks) into the broader context of the course. If you need supplemental material for your classroom, please checkout the archived collection: http://dps.aas.org/education/dpsdiscMore slide sets are now in development and will be available soon! In the meantime, we seek input, feedback, and help from the DPS membership to add fresh slide sets to the series and to connect the college classroom to YOUR science. It's easy to get involved - we'll provide a content template, tips and tricks for a great slide set, and pedagogy reviews. Talk to a coauthor to find out how you can disseminate your science or get involved in E/PO with your contributions.

  13. Progress on VESPA, a community-driven Virtual Observatory in Planetary Science

    NASA Astrophysics Data System (ADS)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Rossi, A. P.; Capria, M. T.; Schmitt, B.; Genot, V. N.; André, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Maattanen, A. E.; Carry, B.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.; Fernique, P.

    2017-12-01

    The Europlanet H2020 program started on 1/9/2015 for 4 years. It includes an activity to adapt Virtual Observatory (VO) techniques to Planetary Science data called VESPA. The objective is to facilitate searches in big archives as well as sparse databases, to provide simple data access and on-line visualization, and to allow small data providers to make their data available in an interoperable environment with minimum effort. The VESPA system, based on a prototype developed in a previous program [1], has been hugely improved during the first two years of Europlanet H2020: the infrastructure has been upgraded to describe data in many fields more accurately; the main user search interface (http://vespa.obspm.fr) has been redesigned to provide more flexibility; alternative ways to access Planetary Science data services from VO tools have been implemented; VO tools are being improved to handle specificities of Solar System data, e.g. measurements in reflected light, coordinate systems, etc. Current steps include the development of a connection between the VO world and GIS tools, and integration of Heliophysics, planetary plasmas, and mineral spectroscopy data to support of the analysis of observations. Existing data services have been updated, and new ones have been designed. The global objective is already overstepped, with 34 services open and 20 more being finalized. A procedure to install data services has been documented, and hands-on sessions are organized twice a year at EGU and EPSC; this is intended to favour the installation of services by individual research teams, e.g. to distribute derived data related to a published study. In complement, regular discussions are held with big data providers, starting with space agencies (IPDA). Common projects with ESA and NASA's PDS have been engaged, with the goal to connect PDS4 and EPN-TAP. In parallel, a Solar System Interest Group has just been started in IVOA; the goal is here to adapt existing astronomy standards to

  14. The NASA Astrophysics Data System

    Science.gov Websites

    a digital library for researchers in astronomy and astrophysics. It also covers other subject areas related to astronomy and astrophysics. This data system is a NASA funded project and access to all ADS Eichhorn, Project Scientist for ADS, received the Physics, Astronomy and Mathematics Division Award from

  15. Gondola for High Altitude Planetary Science (GHAPS)

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica

    2017-01-01

    Description of the NASA Gondola for High Altitude Planetary Science (GHAPS) balloon project and its planetary science capabilities provided in a poster or fact sheet format as needed. The ability of GHAPS to provide a re-useable platform to collect planetary information is described.

  16. Christoph Rothmann's compendium of astronomy of 1589. (German Title: Christoph Rothmanns Handbuch der Astronomie von 1589)

    NASA Astrophysics Data System (ADS)

    Granada, Miguel A.; Hamel, Jürgen; von Mackensen, Ludolf

    Around 1560, landgrave William IV. founded on his Cassel castle the first permanent observatory of modern times in Europe, and started to occupy himself with systematic sky observations. From the beginning, the main interest was focussed on the fixed stars, since William had recognized that exact position determinations were a prerequisite for further progress in astronomy. The observatory personnel was enlarged, in 1579, by the mathematician, clock-maker and instrument-maker Jost Bürgi, and in 1584 by the practical astronomer Christoph Rothmann. Since that time, intense work was carried out by creating a catalogue of fixed stars, based on own observations, which was completed in 1589. The accuracy of its stellar positions had not been reached in the past, and even superseded that of the almost contemporary catalogue by Tycho Brahe. Research in theoretical astronomy and cosmology at the landgrave's court in Cassel was also revolutionary: the acceptance of the heliocentric world system, investigations on refraction, the dismissal of the concept of solid planetary spheres and even that of a world ether, the nature of cometary tails, etc. Christoph Rothmann's work, edited here for the first time on the basis of the original manuscript, had been drafted as a commentary or introduction to his catalogue of fixed stars. He describes the construction and use of astronomical instruments, he unfolds his concepts of the system of the world on a heliocentric basis without solid planetary spheres to which he was lead by his research on refraction, he discusses the relation between astronomy and theology, and describes his revolutionary work on the Cassel star catalogue. This work constitutes a compendium of theoretical and practical astronomy of the late 16th century whose major scientific importance lies in the fact that it achieves scientific excellence in its time both because of the multitude of topics and because of the high level of discussion.

  17. The Deep Space Network: An instrument for radio astronomy research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Levy, G. S.; Kuiper, T. B. H.; Walken, P. R.; Chandlee, R. C.

    1988-01-01

    The NASA Deep Space Network operates and maintains the Earth-based two-way communications link for unmanned spacecraft exploring the solar system. It is NASA's policy to also make the Network's facilities available for radio astronomy observations. The Network's microwave communication systems and facilities are being continually upgraded. This revised document, first published in 1982, describes the Network's current radio astronomy capabilities and future capabilities that will be made available by the ongoing Network upgrade. The Bibliography, which includes published papers and articles resulting from radio astronomy observations conducted with Network facilities, has been updated to include papers to May 1987.

  18. Astrology in Introductory Astronomy Courses for Nonscience Specialists

    ERIC Educational Resources Information Center

    Zeilik, Michael, II

    1973-01-01

    Discusses the use of a horoscope-casting laboratory exercise in the astronomy course. Indicates that students can fulfill three objectives: (1) summarize the planetary motions in the geometric universe, (2) be familiar with sidereal and solar time, and (3) be acquainted with the uses ephemerides. (CC)

  19. The NASA Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  20. New NASA Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  1. Multistage Planetary Power Transmissions

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.

    1986-01-01

    PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.

  2. Priority Planetary Science Missions Identified

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-03-01

    The U.S. National Research Council's (NRC) planetary science decadal survey report, released on 7 March, lays out a grand vision for priority planetary science missions for 2013-2022 within a tightly constrained fiscal environment. The cost-conscious report, issued by NRC's Committee on the Planetary Science Decadal Survey, identifies high-priority flagship missions, recommends a number of potential midsized missions, and indicates support for some smaller missions. The report states that the highest-priority flagship mission for the decade is the Mars Astrobiology Explorer-Cacher (MAX-C)—the first of three components of a NASA/European Space Agency Mars sample return campaign—provided that the mission scope can be reduced so that MAX-C costs no more than $2.5 billion. The currently estimated mission cost of $3.5 billion “would take up a disproportionate near-term share of the overall budget for NASA's Planetary Science Division,” the report notes.

  3. NASA Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    1999-01-01

    Managed for NASA by the California Institute of Technology, the Jet Propulsion Laboratory is the lead U.S. center for robotic exploration of the solar system. JPL spacecraft have visited all known planets except Pluto (a Pluto mission is currently under study). In addition to its work for NASA, JPL conducts tasks for a variety of other federal agencies. In addition, JPL manages the worldwide Deep Space Network, which communicates with spacecraft and conducts scientific investigations from its complexes in California's Mojave Desert near Goldstone; near Madrid, Spain; and near Canberra, Australia. JPL employs about 6000 people.

  4. Bringing Astronomy Activities and Science Content to Girls Locally and Nationally: A Girl Scout and NIRCam Collaboration

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Higgins, M. L.; McCarthy, D. W.; Lebofsky, N. R.

    2012-01-01

    In 2003, the University of Arizona's (UA) NIRCam E/PO team (NASA James Webb Space Telescope) and the Sahuaro Girl Scout Council began a long-term collaboration to bring astronomy activities and concepts to Girl Scout leaders, staff, and volunteers and, in turn, to their councils and girls, i.e., to train the trainers. Nationally, our goal is to reach leaders in all councils. To date, this program has reached nearly 200 adults from 39 councils nationwide (plus Guam and Korea), bringing together leaders, UA graduate students, and NIRCam scientists and educators to experience Arizona's dark skies. Locally, our goal is to provide Science, Technology, Engineering, and Math (STEM) education to girls of all ages throughout southern Arizona. To accomplish this in astronomy, we have additional ongoing collaborations with the Planetary Science Institute, the National Optical Astronomy Observatory, and, most recently with the Amphitheater School District. One of the programs that we have been recently emphasizing is Family Science and Astronomy Nights. These programs can be run at our local Girl Scout facility or can be incorporated into programs that we are running in local schools. Our near-term goal is to provide a series of interconnected activities that can be done in classrooms, in afterschool programs, as part of the Family Science and Astronomy Nights, or in summer astronomy camps. Our long-term goal is to empower girls ultimately to become leaders who are excited about the night sky and can take lead roles presenting activities and facilitating astronomy nights. Our poster will display a variety of the activities we have refined and developed through this progam: scale models of the Solar System and beyond, classifying Solar System objects, a portable human orrery, observing the night sky with and without telescopes, constellation transformations, and constellation sorting cards.NIRCam E/PO website: http://zeus.as.arizona.edu/ dmccarthy/GSUSA

  5. The Astronomy Encyclopedia

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    2002-11-01

    With more than 3,000 alphabetically arranged entries and 500 stunning color and black-and-white photographs, star maps, and diagrams, The Astronomy Encyclopedia covers everything that the general enthusiast--and the more serious researcher--would want to know about planets, stars, galaxies, and our universe. Here is concise, reliable information on the whole field of astronomy, ranging from adaptive optics and cold dark matter, to Islamic astronomy and the lens defect known as vignetting. It includes a host of major articles on the cornerstones of astronomical investigation, such as the Milky Way, the sun and the planets, optical and radio telescopes, stars, black holes, astrophysics, observatories, astronomical photography, space programs, the constellations, and famous astronomers. And there are concise entries on planetary features and satellites, asteroids, observational techniques, comets, satellite launchers, meteors, and subjects as diverse as life in the Universe and the structure of meteorites. Scores of tables list the brightest stars in the major constellations, annual meteor showers, major variable stars, dwarf stars, energy production processes in the Sun, and other relevant data. More than 100 astronomers from leading universities and observatories around the world, each an expert in their own particular field, wrote and reviewed the entries to ensure their authority. Readers can thus be assured that the Encyclopedia provides the most up-to-date and reliable information available. Under the general editorship of Patrick Moore, one of the world's best-known and most trusted voices on astronomy, The Astronomy Encyclopedia is an authoritative and strikingly attractive roadmap for exploring the last great frontier of the world in which we live.

  6. NASA takes stock

    NASA Technical Reports Server (NTRS)

    Frosch, R. A.

    1979-01-01

    The history of NASA activities and achievements in the past decade is reviewed with consideration given to the Apollo expeditions and the post-Apollo planetary exploration. Progress in spaceborne astronomy and in satellite communications is characterized as revolutionary. It is also noted that Landsat alone may eventually repay the United States for the cost of the entire space program. Special attention is given to the Shuttle program which will be the key to all operations in space for the next decade including the Galileo mission to Jupiter (1982) and the Space Telescope (1983). Future missions could include a Venus orbiter with imaging radar to finally penetrate the cloud cover of the planet and to map its surface; a rover or sample return expedition to Mars; a Saturn orbiter combined with a probe of its Titan satellite, and an examination of Halley's Comet. Finally the next decade should bring the data needed to make a 'go' or 'no go' decision on the concept of SPS that would beam solar energy into earth stations.

  7. One year on VESPA, a community-driven Virtual Observatory in Planetary Science

    NASA Astrophysics Data System (ADS)

    Erard, S.; Cecconi, B.; Le Sidaner, P.; Rossi, A. P.; Capria, M. T.; Schmitt, B.; Andre, N.; Vandaele, A. C.; Scherf, M.; Hueso, R.; Maattanen, A. E.; Thuillot, W.; Achilleos, N.; Marmo, C.; Santolik, O.; Benson, K.

    2016-12-01

    The Europlanet H2020 program started on 1/9/2015 for 4 years. It includes an activity to adapt Virtual Observatory (VO) techniques to Planetary Science data called VESPA. The objective is to facilitate searches in big archives as well as sparse databases, to provide simple data access and on-line visualization, and to allow small data providers to make their data available in an interoperable environment with minimum effort. The VESPA system, based on a prototype developed in a previous program [1], has been hugely improved during the first year of Europlanet H2020: the infrastructure has been upgraded to describe data in many fields more accurately; the main user search interface (http://vespa.obspm.fr) has been redesigned to provide more flexibility; alternative ways to access Planetary Science data services from VO tools are being implemented in addition to receiving data from the main interface; VO tools are being improved to handle specificities of Solar System data, e.g. measurements in reflected light, coordinate systems, etc. Existing data services have been updated, and new ones have been designed. The global objective (50 data services) is already overstepped, with 54 services open or being finalized. A procedure to install data services has been documented, and hands-on sessions are organized twice a year at EGU and EPSC; this is intended to favour the installation of services by individual research teams, e.g. to distribute derived data related to a published study. In complement, regular discussions are held with big data providers, starting with space agencies (IPDA). Common projects with ESA and NASA's PDS have been engaged, which should lead to a connection between PDS4 and EPN-TAP. In parallel, a Solar System Interest Group has been decided in IVOA; the goal is here to adapt existing astronomy standards to Planetary Science.Future steps will include the development of a connection between the VO world and GIS tools, and integration of Heliophysics

  8. 75 FR 22863 - Astronomy and Astrophysics Advisory Committee #13883; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee 13883; Notice of Meeting... Science Foundation announces the following meeting: Name: Astronomy and Astrophysics Advisory Committee... Administration (NASA) and the U.S. Department of Energy (DOE) on issues within the field of astronomy and...

  9. 76 FR 58049 - Astronomy and Astrophysics Advisory Committee #13883; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee 13883; Notice of Meeting... Science Foundation announces the following Astronomy and Astrophysics Advisory Committee ( 13883) meeting... Administration (NASA) and the U.S. Department of Energy (DOE) on issues within the field of astronomy and...

  10. 75 FR 1087 - Astronomy and Astrophysics Advisory Committee #13883; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee 13883; Notice of Meeting... Science Foundation announces the following Astronomy and Astrophysics Advisory Committee ( 13883) meeting... Administration (NASA) and the U.S. Department of Energy (DOE) on issues within the field of astronomy and [[Page...

  11. 77 FR 2095 - Astronomy and Astrophysics Advisory Committee #13883; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... NATIONAL SCIENCE FOUNDATION Astronomy and Astrophysics Advisory Committee 13883; Notice of Meeting... Science Foundation announces the following Astronomy and Astrophysics Advisory Committee ( 13883) meeting... Administration (NASA) and the U.S. Department of Energy (DOE) on issues within the field of astronomy and...

  12. Space-Based Astronomy: A Teacher's Guide with Activities.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This curriculum guide uses hands-on activities to help grade 5-8 students and teachers understand the significance of space-based astronomy--astronomical observations made from outside the Earth's atmosphere. The guide begins with a survey of astronomy-related spacecraft that the National Aeronautics and Space Administration (NASA) has sent into…

  13. Can The Periods of Some Extra-Solar Planetary Systems be Quantized?

    NASA Astrophysics Data System (ADS)

    El Fady Morcos, Abd

    A simple formula was derived before by Morcos (2013 ), to relate the quantum numbers of planetary systems and their periods. This formula is applicable perfectly for the solar system planets, and some extra-solar planets , of stars of approximately the same masses like the Sun. This formula has been used to estimate the periods of some extra-solar planet of known quantum numbers. The used quantum numbers were calculated previously by other authors. A comparison between the observed and estimated periods, from the given formula has been done. The differences between the observed and calculated periods for the extra-solar systems have been calculated and tabulated. It is found that there is an error of the range of 10% The same formula has been also used to find the quantum numbers, of some known periods, exo-planet. Keywords: Quantization; Periods; Extra-Planetary; Extra-Solar Planet REFERENCES [1] Agnese, A. G. and Festa, R. “Discretization on the Cosmic Scale Inspirred from the Old Quantum Mechanics,” 1998. http://arxiv.org/abs/astro-ph/9807186 [2] Agnese, A. G. and Festa, R. “Discretizing ups-Andro- medae Planetary System,” 1999. http://arxiv.org/abs/astro-ph/9910534. [3] Barnothy, J. M. “The Stability of the Solar Systemand of Small Stellar Systems,” Proceedings of the IAU Sympo-sium 62, Warsaw, 5-8 September 1973, pp. 23-31. [4] Morcos, A.B. , “Confrontation between Quantized Periods of Some Extra-Solar Planetary Systems and Observations”, International Journal of Astronomy and Astrophysics, 2013, 3, 28-32. [5] Nottale, L. “Fractal Space-Time and Microphysics, To-wards a Theory of Scale Relativity,” World Scientific, London, 1994. [6] Nottale , L., “Scale-Relativity and Quantization of Extra- Solar Planetary Systems,” Astronomy & Astrophysics, Vol. 315, 1996, pp. L9-L12 [7] Nottale, L., Schumacher, G. and Gay, J. “Scale-Relativity and Quantization of the Solar Systems,” Astronomy & Astrophysics letters, Vol. 322, 1997, pp. 1018-10 [8

  14. Reference Earth Orbital Research and Applications Investigations (Blue Book). Volume 2: Astronomy

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Representative astronomy objectives, experiments, facilities, and instruments for use in the space station are discussed. The specific program elements describe a coordinated multiwavelength, multisensor approach needed to locate, observe, and interpret radiation from extragalactic, galactic, solar, and planetary sources in the different parts of the spectrum with spectral, angular, and temporal resolution not achievable from earth sites. Items of astronomy equipment are identified for the experiments to be conducted.

  15. Solar Eclipses and the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.

    2009-05-01

    Solar eclipses capture the attention of millions of people in the countries from which they are visible and provide a major opportunity for public education, in addition to the scientific research and student training that they provide. The 2009 International Year of Astronomy began with an annular eclipse visible from Indonesia on 26 January, with partial phases visible also in other parts of southeast Asia. On 22 July, a major and unusually long total solar eclipse will begin at dawn in India and travel across China, with almost six minutes of totality visible near Shanghai and somewhat more visible from Japanese islands and from ships at sea in the Pacific. Partial phases will be visible from most of eastern Asia, from mid-Sumatra and Borneo northward to mid-Siberia. Eclipse activities include many scientific expeditions and much ecotourism to Shanghai, Hangzhou, and vicinity. My review article on "Eclipses as an Astrophysical Laboratory" will appear in Nature as part of their IYA coverage. Our planetarium presented teacher workshops and we made a film about solar research. Several new books about the corona or eclipses are appearing or have appeared. Many articles are appearing in astronomy magazines and other outlets. Eclipse interviews are appearing on the Planetary Society's podcast "365 Days of Astronomy" and on National Geographic Radio. Information about the eclipse and safe observation of the partial phases are available at http://www.eclipses.info, the Website of the International Astronomical Union's Working Group on Solar Eclipses and of its Program Group on Public Education at the Times of Eclipses of its Commission on Education and Development. The Williams College Expedition to the 2009 Eclipse in the mountains near Hangzhou, China, is supported in part by a grant from the Committee for Research and Exploration of the National Geographic Society. E/PO workshops were supported by NASA.

  16. NASA Dryden Status

    NASA Technical Reports Server (NTRS)

    Jacobson, Steve R.

    2009-01-01

    This slide presentation reviews several projects that NASA Dryden personnel are involved with: Integrated Resilient Aircraft Controls Project (IRAC), NASA G-III Research Aircraft, X-48B Blended Wing Body aircraft, Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Orion CEV Launch Abort Systems Tests.

  17. Saving the Phenomena in Medieval Astronomy

    NASA Astrophysics Data System (ADS)

    Seeskin, K.

    2011-06-01

    Aristotle's theory of motion is based on two principles: (1) all motion to either from the midpoint of the Earth, toward it, or around it, and (2) circular motion must proceed around an immovable point. On this view, the heavenly bodies are individual points of light carried around by a series of concentric spheres rotating at a constant pace around the midpoint of the Earth. But even in Aristotle's day, it was known that this theory had a great deal of difficulty accounting for planetary motion. Ptolemy's alternative was to introduce epicycles and eccentric orbits, thus denying Aristotle's view of natural motion. There was no doubt that Ptolemy's predictions were far better than Aristotle's. But for the medievals, Aristotle's theory made better intuitive sense. Moreover, Ptolemy's theory raised the question of how one sphere could pass through another. What to do? The solution of Moses Maimonides (1138-1204) was to say that it is not the job of the astronomer to tell us how things actually are but merely to propose a series of hypotheses that allow us to explain the relevant data. This view had obvious theological implications. If astronomy could explain planetary motion in an acceptable way, there was reason to believe that the order or structure of the heavens is what it is by necessity. This suggests that God did not exercise any degree of choice in making it that way. But if astronomy cannot explain planetary motion, the most reasonable explanation is that we are dealing with contingent phenomena rather than necessary ones. If there is contingency, there is reason to think God did exercise a degree of choice in making the heavens the way they are. A God who exercises choice is much closer to the God of Scripture. Although Galileo changed all of this, and paved the way for a vastly different view of astronomy, the answer to one set of questions raises a whole different set. In short, the heavenly motion still poses ultimate questions about God, existence, and

  18. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  19. Parallel Architectures for Planetary Exploration Requirements (PAPER)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet; Sen, Ranjan K.

    1989-01-01

    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified.

  20. Planetary Science Educational Materials for Out-of-School Time Educators

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Clark, Joelle G.

    2017-10-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices

  1. SAO/NASA ADS: ADS Home Page

    Science.gov Websites

    Browse Help Welcome to the Digital Library for Physics and Astronomy [ Harvard logo ] This site is hosted Astronomy and Physics, operated by the Smithsonian Astrophysical Observatory (SAO) under a NASA grant. The publications in Astronomy and Astrophysics, Physics, and the arXiv e-prints. Abstracts and full-text of major

  2. Istoriko-Astronomicheskie Issledovaniya %t Studies in the History of Astronomy

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.

    This collection of papers contains essays on a wide scope of problems in the history of astronomy, both domestic and worldwide. It includes the following basic subdivisions: Astronomy, cosmology and cosmogony of the 20th century; researches and findings; cosmology; philosophical problems; astronomy and society; publications and memoirs. Among the most interesting problems considered in the present issue: the life and achievements of the famous French astronomer C. Flammarion; theories of spiral structures of galaxies of the 1960s; a history of alternative trends in planetary cosmogony; Kant's philosophy and the anthropic principle; the development of star mapping in 16th century Europe; database preparation from the results of Russian space programs; the troublesome fates of Russian astronomers in memoirs and researches; and many others. The book is addressed to professional scientists, astronomy amateurs, teachers, and everybody interested in the history of science.

  3. Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex): NASA's Next Human-Rated Testing Facility

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.

    1999-01-01

    As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.

  4. Planetary System Physics

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    2002-01-01

    Contents include a summary of publications followed by their abstracts titeled: 1. On microlensing rates and optical depth toward the Galactic center. 2. Newly discovered brown dwarfs not seen in microlensing timescale frequency distribution? 3. Origin and evolution of the natural satellites. 4. Probing the structure of the galaxy with microlensing. 5. Tides, Encyclopedia of Astronomy and Astrophysics. 6. The Puzzle of the Titan-Hyperion 4:3 Orbital Resonance. 7. On the Validity of the Coagulation Equation and the Nature of Runaway Growth. 8. Making Hyperion. 9. The MESSENGER mission to Mercury: Scientific objectives and implementation. 10. A Survey of Numerical Solutions to the Coagulation. 11. Probability of detecting a planetary companion during a microlensing event. 12. Dynamics and origin of the 2:l orbital resonances of the GJ876 planets. 13. Planetary Interior Structure Revealed by Spin Dynamics. 14. A primordial origin of the Laplace relation among the Galilean Satellites. 15. A procedure for determining the nature of Mercury's core. 16. Secular evolution of hierarchical planetary systems. 17. Tidally induced volcanism. 18. Extrasolar planets and mean motion resonances. 19. Comparison of a ground-based microlensing search for planets with a search from space.

  5. Planetary Science Exploration Through 2050: Strategic Gaps in Commercial and International Partnerships

    NASA Astrophysics Data System (ADS)

    Ghosh, A.

    2017-02-01

    Planetary science will see greater participation from the commercial sector and international space agencies. It is critical to understand how these entities can partner with NASA through 2050 and help realize NASA's goals in planetary science.

  6. Accessible Universe: Making Astronomy Accessible to All in the Regular Elementary Classroom

    NASA Astrophysics Data System (ADS)

    Grady, C. A.; Farley, N.; Avery, F.; Zamboni, E.; Clark, B.; Geiger, N.; de Angelis, M.; Woodgate, B.

    2002-05-01

    Astronomy is one of the most publicly accessible of the sciences, with a steady stream of new discoveries, and wide public interest. The study of exo-planetary systems is a natural extension of studies of the Solar System at the elementary and middle-school level. Such space-related topics are some of the most popular science curriculum areas at the elementary level and can serve as a springboard to other sciences, mathematics, and technology for typical student learners. Not all students are typical: 10 percent of American students are identified as having disabilities which impact their education sufficiently that they receive special education services; various estimates suggest that an additional 10 percent may have milder impairments. Most frequently these students are placed in comprehensive (mixed-ability) classrooms. Budgetary limitations for most school systems have meant that for the bulk of these children, usually those with comparatively mild learning impairments affecting their ability to access text materials and in some cases to make effective use of visual materials, individualized accommodations in the science curriculum have not been readily available. Our team, consisting of an astronomer, regular education teachers, and special educators has been piloting a suite of curriculum materials, modified activities, including use of assistive technology, age- appropriate astronomy web resources, and instructional strategies which can more effectively teach astronomy to children with disabilities in the regular education grade 3-5 classroom. This study was supported by a grant HST-EO-8474 from the STScI and funded by NASA.

  7. The NASA airborne astronomy program - A perspective on its contributions to science, technology, and education

    NASA Technical Reports Server (NTRS)

    Larson, Harold P.

    1992-01-01

    The publication records from NASA's airborne observatories are examined to evaluate the contribution of the airborne astronomy program to technological development and scientific/educational progress. The breadth and continuity of program is detailed with reference to its publication history, discipline representation, literature citations, and to the ability of such a program to address nonrecurring and unexpected astronomical phenomena. Community involvement in the airborne-observation program is described in terms of the number of participants, institutional affiliation, and geographic distribution. The program utilizes instruments including heterodyne and grating spectrometers, high-speed photometers, and Fabry-Perot spectrometers with wide total spectral ranges, resolutions, and numbers of channels. The potential of the program for both astronomical training and further scientific, theoretical, and applied development is underscored.

  8. Planetary Science in Higher Education: Ideas and Experiences

    ERIC Educational Resources Information Center

    Kereszturi, Akos; Hyder, David

    2012-01-01

    The paper investigates how planetary science could be integrated into other courses, specifically geography and astronomy, at two universities in Hungary and the UK. We carried out both a classroom course and an online course over several years. The methods used and the experiences gained, including feedback from students and useful examples for…

  9. Astronomy Patch Day: An Interactive Astronomy Experience for Girl Scouts

    NASA Astrophysics Data System (ADS)

    Knierman, K. A.; McCarthy, D. W.; Schutz, K.

    2005-12-01

    To help encourage a new generation of women in science, we have created Astronomy Patch Day for the Sahuaro Girl Scout Council in Tucson, Arizona. This all-day event is an interactive experience for Girl Scouts ages 5-18 to learn about astronomical concepts and women in astronomy. Our first Astronomy Patch Day, held on March 19, 2005, in conjunction with the Sahuaro Council's annual Science, Math, and Related Technologies (SMART) program, was very successful, reaching about 150-200 girls and their leaders. Individual troops rotated every half hour among our six activity booths: Earth-Moon, Solar System, Stars, Galaxies, Universe, and Ask an Astronomer, which were staffed by trained Girl Scout Leaders as well as faculty, post-doctoral researchers, and graduate students from Steward Observatory. To earn a patch, younger girls (ages 5-12) had to complete activities at three booths and older girls had to complete all six activities. Positive feedback for this event was received from both the girls and leaders. We plan to hold Astronomy Patch Day annually, possibly with different and/or additional activities in future years. K. Knierman is supported by an Arizona/NASA Space Grant Fellowship. This outreach program is supported by NIRCam/JWST E/PO.

  10. Discovery and Classification in Astronomy

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2012-01-01

    Three decades after Martin Harwit's pioneering Cosmic Discovery (1981), and following on the recent IAU Symposium "Accelerating the Rate of Astronomical Discovery,” we have revisited the problem of discovery in astronomy, emphasizing new classes of objects. 82 such classes have been identified and analyzed, including 22 in the realm of the planets, 36 in the realm of the stars, and 24 in the realm of the galaxies. We find an extended structure of discovery, consisting of detection, interpretation and understanding, each with its own nuances and a microstructure including conceptual, technological and social roles. This is true with a remarkable degree of consistency over the last 400 years of telescopic astronomy, ranging from Galileo's discovery of satellites, planetary rings and star clusters, to the discovery of quasars and pulsars. Telescopes have served as "engines of discovery” in several ways, ranging from telescope size and sensitivity (planetary nebulae and spiral galaxies), to specialized detectors (TNOs) and the opening of the electromagnetic spectrum for astronomy (pulsars, pulsar planets, and most active galaxies). A few classes (radiation belts, the solar wind and cosmic rays), were initially discovered without the telescope. Classification also plays an important role in discovery. While it might seem that classification marks the end of discovery, or a post-discovery phase, in fact it often marks the beginning, even a pre-discovery phase. Nowhere is this more clearly seen than in the classification of stellar spectra, long before dwarfs, giants and supergiants were known, or their evolutionary sequence recognized. Classification may also be part of a post-discovery phase, as in the MK system of stellar classification, constructed after the discovery of stellar luminosity classes. Some classes are declared rather than discovered, as in the case of gas and ice giant planets, and, infamously, Pluto as a dwarf planet.

  11. Activities at the Lunar and Planetary Institute

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The activities of the Lunar and Planetary Institute for the period July to December 1984 are discussed. Functions of its departments and projects are summarized. These include: planetary image center; library information center; computer center; production services; scientific staff; visitors program; scientific projects; conferences; workshops; seminars; publications and communications; panels, teams, committees and working groups; NASA-AMES vertical gun range (AVGR); and lunar and planetary science council.

  12. Planetary protection requirements for orbiter and netlander elements of the CNES/NASA Mars sample return mission

    NASA Astrophysics Data System (ADS)

    Debus, A.

    In the framework of Mars exploration, particularly for missions dedicated to the search for life or for traces of ancient forms of life, NASA and CNES have decided to join their efforts in order to build a Mars sample return mission. Taking into account article IX of the OUTER SPACE TREATY (Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial, referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966, ratified in London / Washington January 27, 1967) and in order to comply with the COSPAR planetary protection recommendations, a common planetary protection program has to be established. Mars in-situ experimentations are limited by the size and the mass of the instruments necessary to perform exobiology investigations and, consequently, it appears that the best way to conduct such experiments is to bring back Mars samples to Earth. A sample return mission enables the use of a very large number of instruments and analysis protocols, giving exobiologists the best chance to find living entities or organic compounds related to life. Such a mission is complicated from a planetary protection point of view, it combines constraints for the protection of both the Mars environment as well as Earth, including the preservation of samples to ensure the validity of exobiological experiments.

  13. What types of astronomy images are most popular?

    NASA Astrophysics Data System (ADS)

    Allen, Alice; Bonnell, Jerry T.; Connelly, Paul; Haring, Ralf; Lowe, Stuart R.; Nemiroff, Robert J.

    2015-01-01

    Stunning imagery helps make astronomy one of the most popular sciences -- but what types of astronomy images are most popular? To help answer this question, public response to images posted to various public venues of the Astronomy Picture of the Day (APOD) are investigated. APOD portals queried included the main NASA website and the social media mirrors on Facebook, Google Plus, and Twitter. Popularity measures include polls, downloads, page views, likes, shares, and retweets; these measures are used to assess how image popularity varies in relation to various image attributes including topic and topicality.

  14. Holding or Breaking with Ptolemy's Generalization: Considerations about the Motion of the Planetary Apsidal Lines in Medieval Islamic Astronomy.

    PubMed

    Mozaffari, S Mohammad

    2017-03-01

    Argument In the Almagest, Ptolemy finds that the apogee of Mercury moves progressively at a speed equal to his value for the rate of precession, namely one degree per century, in the tropical reference system of the ecliptic coordinates. He generalizes this to the other planets, so that the motions of the apogees of all five planets are assumed to be equal, while the solar apsidal line is taken to be fixed. In medieval Islamic astronomy, one change in this general proposition took place because of the discovery of the motion of the solar apogee in the ninth century, which gave rise to lengthy discussions on the speed of its motion. Initially Bīrūnī and later Ibn al-Zarqālluh assigned a proper motion to it, although at different rates. Nevertheless, appealing to the Ptolemaic generalization and interpreting it as a methodological axiom, the dominant idea became to extend it in order to include the motion of the solar apogee as well. Another change occurred after correctly making a distinction between the motion of the apogees and the rate of precession. Some Western Islamic astronomers generalized Ibn al-Zarqālluh's proper motion of the solar apogee to the apogees of the planets. Analogously, Ibn al-Shāṭir maintained that the motion of the apogees is faster than precession. Nevertheless, the Ptolemaic generalization in the case of the equality of the motions of the apogees remained untouchable, despite the notable development of planetary astronomy, in both theoretical and observational aspects, in the late Islamic period.

  15. Integrating Astronomy with Elementary Non-Science Curricula

    NASA Astrophysics Data System (ADS)

    Bobrowsky, M.

    1996-05-01

    A workshop was developed for elementary school teachers to enhance students' understanding of astronomy during the formative years of elementary school by incorporating astronomy into various non-science curricula. Educational material was compiled for teachers and students and training was provided for the teachers in the form of a workshop where both information and hands-on activities were disseminated. In addition, we are producing a video tape from the workshop which will be available not only to those who attended the workshop but to other teachers as well. A useful ``multiplier effect" in this project came from our focus on a school that was hosting a group of teachers in training. After these teachers receive certification, they will end up working in all different schools, thereby reaching large numbers of students for many years. The non-scientific subjects that we will connect to astronomy include history, music, art, language arts, social studies, and mathematics, as well as incidental subjects such as health and public safety. Support for this work was provided by NASA through grant number ED90024.01-94A from the Space Telescope Science Institute which is operated by the Association of Universities for Research in Astronomy Inc. under NASA Contract NAS5-26555.

  16. Reports of planetary geology program, 1976 - 1977. [abstracts

    NASA Technical Reports Server (NTRS)

    Arvidson, R. (Compiler); Wahmann, R. (Compiler); Howard, J. H., III

    1977-01-01

    One hundred seventeen investigations undertaken in the NASA Planetary Geology Program in 1976-1977 are reported in abstract form. Topics discussed include solar system formation; planetary interiors; planetary evolution; asteroids, comets and moons; cratering; volcanic, eolian, fluvial and mass wasting processes; volatiles and the Martian regolith; mapping; and instrument development and techniques. An author index is provided.

  17. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.

    2018-01-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end

  18. NASA's Astronomy Education Program: Reaching Diverse Audiences

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise Anne; Hertz, Paul; Meinke, Bonnie

    2015-08-01

    An overview will be given of the rich programs developed by NASA to inject the science from it's Astrophysics missions into STEM activities targeted to diverse audiences. For example, Astro4Girls was started as a pilot program during IYA2009. This program partners NASA astrophysics education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families, and has been executed across the country. School curricula and NASA websites have been translated in Spanish; Braille books have been developed for the visually impaired; programs have been developed for the hearing impaired. Special effort has been made to reach underrepresented minorities. Audiences include students, teachers, and the general public through formal and informal education settings, social media and other outlets. NASA Astrophysics education providers include teams embedded in its space flight missions; professionals selected though peer reviewed programs; as well as the Science Mission Directorate Astrophysics Education forum. Representative examples will be presented to demonstrate the reach of NASA education programs, as well as an evaluation of the effectiveness of these programs.

  19. Resources from the NASA SMD Astrophysics Forum: Addressing the needs of the higher education community (Invited)

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Schultz, G. R.; Smith, D.; Bianchi, L.; Blair, W. P.; Fraknoi, A.

    2013-12-01

    Four NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums organize individual SMD-funded E/PO projects and their teams into a coordinated effort. The Forums assist scientists and educators with becoming involved in SMD E/PO and make SMD E/PO resources and expertise accessible to the science and education communities. The Astrophysics Forum and the Astrophysics E/PO community have focused efforts to support and engage the higher education community on enhancing awareness of the resources available to them. To ensure Astrophysics higher education efforts are grounded in audience needs, we held informal conversations with instructors of introductory astronomy courses, convened sessions with higher education faculty and E/PO professionals at conferences, and examined existing literature and findings of the SMD Higher Education Working Group. This work indicates that most Astronomy 101 instructors are not specialists in areas of astrophysics where rapid progress is being made, older textbooks are out of date, and ideas are challenging for students. Instructors are seeking resources and training that support them in effectively teaching the latest science and are in need both basic material and information on new results. In this session, we will discuss our efforts to address these expressed needs, namely through Resource Guides and Slide Sets, and how these are applicable to topics in Heliophysics and Planetary Science. We have collaborated with the Astrophysics E/PO community, researchers, and Astronomy 101 instructors to create two Resource Guides on the topics of cosmology and exoplanets. These fields are ripe with scientific developments that college instructors have told us they find challenging to stay current. Each guide includes a wide variety of sources of background information, links to animations/simulations, classroom activities, and references on teaching each topic. Feedback from Astronomy 101 instructors indicated that the

  20. H2 Imaging of Three Proto-Planetary and Young Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Volk, Kevin; Hrivnak, Bruce J.; Kwok, Sun

    2004-12-01

    High-resolution (0.15") 2.12 μm H2 and narrowband K images have been obtained of one cool proto-planetary nebula, IRAS 20028+3910, and two hot proto-planetary/young planetary nebulae, IRAS 19306+1407 and IRAS 22023+5249. The observations were made with an adaptive optics system and near-infrared imager on the Gemini North 8 m telescope. All three nebulae are seen to be extended, and in two and possibly all three of them H2 is found to be emitting from bipolar lobes. In IRAS 19306+1407, H2 emission is seen arising from a ring close to the star and from the edges of emerging bipolar lobes. In IRAS 20028+3910, one bright lobe and a very faint second lobe are seen in the H2 and K-band images, similar to the published visible images, but in the H2 and K-band images a faint filament appears to connect the two lobes. The central star is not seen in IRAS 20028+3910, indicating that the nebula is optically thick even at 2 μm, which is unusual. The images suggest that extended H2 emission is often the manifestation of fast-slow wind interactions in the bipolar lobes. The paper is based on observations obtained at the Gemini Observatory with the Adaptive Optics System Hokupa'a/QUIRC, developed and operated by the University of Hawaii Adaptive Optics Group, with support from the National Science Foundation. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), Comisión Nacional de Investigación Científica y Tecnológica (CONICYT; Chile), the Australian Research Council (Australia), Laboratório Nacional de Astrofísica (CNPq; Brazil), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Argentina).

  1. What's Up? Use the night sky to engage the public through amateur astronomy in IYA; What's Up monthly astronomy themed podcasts; Annual Saturn Observation Night worldwide celebration of Saturn Opposition

    NASA Astrophysics Data System (ADS)

    Houston Jones, Jane

    2008-09-01

    Abstract What's Up video podcasts: connecting "astronomy for everyone" monthly astronomical views with related NASA missions, science, images and handson education. Background: What's Up Podcasts are 2 minute video podcasts available through RSS feed, You tube, and NASA websites every month. They feature an astronomy related viewing target in the sky each month, targets visible to everyone, from city or country, just by looking up! No telescope is required to view these objects. Summary: Expand and broaden the scope of the existing "What's Up" public astronomy themed video podcasts. NASA builds partnerships and linkages between Science, Technology, Engineering and Mathematics formal and informal education providers. What's Up podcasts provides a link between astronomical views and events, or "what's up in the night sky this month" with current NASA missions, mission milestones and events, space telescope images or press releases. These podcasts, plus supporting star charts, hands-on activities, standards-based educational lessons and mission links will be used by museums, planetariums, astronomy clubs, civic and youth groups, as well as by classrooms and the general public. They can be translated to other languages, too. Providing the podcasts in high definition, through the NASA websites, You Tube, iTunes and other web video sharing sites reaches wide audiences of all ages. Third Saturn Observation Night - May 18, 2008 Centered on Saturn Opposition, when the Sun and Saturn are on opposite sides of the Earth, all IYA participants - in all countries around the world - will be encouraged to take their telescopes out and share the planet Saturn with their communities. NASA's International Saturn Observation Campaign network of astronomy enthusiasts has now conducted a Saturn Observation Night event for the past 2 years, and it succeeds by building an international community all sharing Saturn. This celebration has been successfully conducted in hundreds of locations

  2. The Next Generation of NASA Night Sky Network: A Searchable Nationwide Database of Astronomy Events

    NASA Astrophysics Data System (ADS)

    Ames, Z.; Berendsen, M.; White, V.

    2010-08-01

    With support from NASA, the Astronomical Society of the Pacific (ASP) first developed the Night Sky Network (NSN) in 2004. The NSN was created in response to research conducted by the Institute for Learning Innovation (ILI) to determine what type of support amateur astronomers could use to increase the efficiency and extent of their educational outreach programs. Since its creation, the NSN has grown to include an online searchable database of toolkit resources, Presentation Skills Videos covering topics such as working with kids and how to answer difficult questions, and a searchable nationwide calendar of astronomy events that supports club organization. The features of the NSN have allowed the ASP to create a template that amateur science organizations might use to create a similar support network for their members and the public.

  3. Planetary Protection Constraints For Planetary Exploration and Exobiology

    NASA Astrophysics Data System (ADS)

    Debus, A.; Bonneville, R.; Viso, M.

    According to the article IX of the OUTER SPACE TREATY (London / Washington January 27., 1967) and in the frame of extraterrestrial missions, it is required to preserve planets and Earth from contamination. For ethical, safety and scientific reasons, the space agencies have to comply with the Outer Space Treaty and to take into account the related planetary protection Cospar recommendations. Planetary protection takes also into account the protection of exobiological science, because the results of life detection experimentations could have impacts on planetary protection regulations. The validation of their results depends strongly of how the samples have been collected, stored and analyzed, and particularly of their biological and organic cleanliness. Any risk of contamination by organic materials, chemical coumpounds and by terrestrial microorganisms must be avoided. A large number of missions is presently scheduled, particularly on Mars, in order to search for life or traces of past life. In the frame of such missions, CNES is building a planetary protection organization in order handle and to take in charge all tasks linked to science and engineering concerned by planetary protection. Taking into account CNES past experience in planetary protection related to the Mars 96 mission, its planned participation in exobiological missions with NASA as well as its works and involvement in Cospar activities, this paper will present the main requirements in order to avoid celestial bodies biological contamination, focussing on Mars and including Earth, and to protect exobiological science.

  4. Enhancing Undergraduate Education with NASA Resources

    NASA Astrophysics Data System (ADS)

    Manning, James G.; Meinke, Bonnie; Schultz, Gregory; Smith, Denise Anne; Lawton, Brandon L.; Gurton, Suzanne; Astrophysics Community, NASA

    2015-08-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring cutting-edge discoveries of NASA missions to the introductory astronomy college classroom. Uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogical expertise, the Forum has coordinated the development of several resources that provide new opportunities for college and university instructors to bring the latest NASA discoveries in astrophysics into their classrooms.To address the needs of the higher education community, the Astrophysics Forum collaborated with the astrophysics E/PO community, researchers, and introductory astronomy instructors to place individual science discoveries and learning resources into context for higher education audiences. The resulting products include two “Resource Guides” on cosmology and exoplanets, each including a variety of accessible resources. The Astrophysics Forum also coordinates the development of the “Astro 101” slide set series. The sets are five- to seven-slide presentations on new discoveries from NASA astrophysics missions relevant to topics in introductory astronomy courses. These sets enable Astronomy 101 instructors to include new discoveries not yet in their textbooks in their courses, and may be found at: https://www.astrosociety.org/education/resources-for-the-higher-education-audience/.The Astrophysics Forum also coordinated the development of 12 monthly “Universe Discovery Guides,” each featuring a theme and a representative object well-placed for viewing, with an accompanying interpretive story, strategies for conveying the topics, and supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. These resources are adaptable for use by instructors and may be found at: http://nightsky.jpl.nasa

  5. RNA as an Astrophysical or Geophysical Document?? Correlated issues in nebular and planetary astronomy, geology and biology

    NASA Astrophysics Data System (ADS)

    Hill, L. C.

    1999-12-01

    The emergence of the largely silicate earth from a presumably cosmically normal, H-rich solar nebula 4.5 eons ago is an obviously important issue relevant to many disciplines of the physical sciences. The emergence of terrestrial life is an equally important issue for biological sciences. Recent discoveries of isotopically light carbon (i.e. putative chemical fossils) in 3.85+ Ga Issua, Greenland sediments have reopened the issue of whether terrestrial life may have emerged prior to the earliest known rocks so that one might use biological records to deduce early terrestrial environments. In addition, recent advances in molecular genetics have suggested that all known ancestral life forms passed through an early hydrogen-rich environment which is more consistent with the now rejected Urey hypothesis of a early jovian atmosphere than with contemporary geological and planetological paradigms. In this essay, then, we examine possible limitations of contemporary paradigms of planetary science since a prima facie case will be made that life could not emerge in those environments which those paradigms now allow. Of necessity, the discussion will also address some hidden conflicts embedded in various disciplinary methodologies (e.g. astronomy, biology, geology).

  6. Workshop on advanced technologies for planetary instruments

    NASA Technical Reports Server (NTRS)

    Appleby, J. (Editor)

    1993-01-01

    NASA's robotic solar system exploration program requires a new generation of science instruments. Design concepts are now judged against stringent mass, power, and size constraints--yet future instruments must be highly capable, reliable, and, in some applications, they must operate for many years. The most important single constraint, however, is cost: new instruments must be developed in a tightly controlled design-to-cost environment. Technical innovation is the key to success and will enable the sophisticated measurements needed for future scientific exploration. As a fundamental benefit, the incorporation of breakthrough technologies in planetary flight hardware will contribute to U.S. industrial competitiveness and will strengthen the U.S. technology base. The Workshop on Advanced Technologies for Planetary Instruments was conceived to address these challenges, to provide an open forum in which the NASA and DoD space communities could become better acquainted at the working level, and to assess future collaborative efforts. Over 300 space scientists and engineers participated in the two-and-a-half-day meeting held April 28-30, 1993, in Fairfax, Virginia. It was jointly sponsored by NASA's Solar System Exploration Division (SSED), within the Office of Space Science (OSS); NASA's Office of Advanced Concepts and Technology (OACT); DoD's Strategic Defense Initiative Organization (SDIO), now called the Ballistic Missile Defense Organization (BMDO); and the Lunar and Planetary Institute (LPI). The meeting included invited oral and contributed poster presentations, working group sessions in four sub-disciplines, and a wrap-up panel discussion. On the first day, the planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Most of the second day was set aside for the DoD community to inform their counterparts in planetary science about their interests and capabilities, and to describe the

  7. Origins of the Lunar and Planetary Laboratory, University of Arizona

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Hartmann, W. K.

    2014-01-01

    The roots of the Lunar and Planetary Laboratory (LPL) extend deep into the rich fabric of G. P. Kuiper's view of the Earth as a planet and planetary systems as expected companions to most stars, as well as the post-war emergent technology of infrared detectors suitable for astronomy. These concepts and events began with Kuiper's theoretical work at Yerkes Observatory on the origin of the Solar System, his discovery of two planetary satellites and observational work with his near-infrared spectrometer on the then-new McDonald 82-inch telescope in the mid- to late-1940s. A grant for the production of a photographic atlas of the Moon in the mid-1950s enabled him to assemble the best existing images of the Moon and acquire new photographs. This brought E. A. Whitaker and D. W. G. Arthur to Yerkes. Others who joined in the lunar work were geologist Carl S. Huzzen and grad student E. P. Moore, as well as undergrad summer students A. B. Binder and D. P. Cruikshank (both in 1958). The Atlas was published in 1959, and work began on an orthographic lunar atlas. Kuiper's view of planetary science as an interdisciplinary enterprise encompassing astronomy, geology, and atmospheric physics inspired his vision of a research institution and an academic curriculum tuned to the combination of all the scientific disciplines embraced in a comprehensive study of the planets. Arrangements were made with the University of Arizona (UA) to establish LPL in affiliation with the widely recognized Inst. of Atmospheric Physics. Kuiper moved to the UA in late 1960, taking the lunar experts, graduate student T. C. Owen (planetary atmospheres), and associate B. M. Middlehurst along. G. van Biesbroeck also joined the migration to Tucson; Binder and Cruikshank followed along as new grad students. Astronomy grad student W. K. Hartmann came into the academic program at UA and the research group at LPL in 1961. Senior faculty affiliating with LPL in the earliest years were T. Gehrels, A. B. Meinel, H

  8. Planetary atmospheric physics and solar physics research

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview is presented on current and planned research activities in the major areas of solar physics, planetary atmospheres, and space astronomy. The approach to these unsolved problems involves experimental techniques, theoretical analysis, and the use of computers to analyze the data from space experiments. The point is made that the research program is characterized by each activity interacting with the other activities in the laboratory.

  9. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    ERIC Educational Resources Information Center

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  10. Implementing planetary protection requirements for sample return missions.

    PubMed

    Rummel, J D

    2000-01-01

    NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.

  11. A Blind Search for Magnetospheric Emissions from Planetary Companions to Nearby Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Carmichael, S.; Clark, J.; Elkins, E.; Gudmundsen, P.; Mott, Z.; Szwajkowski, M.; Hennig, L. A.

    2010-01-01

    This paper reports a blind search for planetary magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (< 30 pc) with relatively young age estimates (< 3 Gyr), finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey, obtaining 3\\sigma limits on planetary emission of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 1023erg/s. Using models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic (magnetic) energy carried by the stellar winds in our samples is 15--50 (5--10) times larger than that of the solar wind. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 300 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100. Basic research in radio astronomy at NRL is supported by 6.1 Base funding. The LUNAR consortium, is funded by the NASA Lunar Science Institute (Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon.

  12. Integration of planetary protection activities

    NASA Technical Reports Server (NTRS)

    Race, Margaret S.

    1995-01-01

    For decades, NASA has been concerned about the protection of planets and other solar system bodies from biological contamination. Its policies regarding biological contamination control for outbound and inbound planetary spacecraft have evolved to focus on three important areas: (1) the preservation of celestial objects and the space environment; (2) protection of Earth from extraterrestrial hazards; and (3) ensuring the integrity of its scientific investigations. Over the years as new information has been obtained from planetary exploration and research, planetary protection parameters and policies have been modified accordingly. The overall focus of research under this cooperative agreement has been to provide information about non-scientific and societal factors related to planetary protection and use it in the planning and implementation phases of future Mars sample return missions.

  13. NOMINAL VALUES FOR SELECTED SOLAR AND PLANETARY QUANTITIES: IAU 2015 RESOLUTION B3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prša, Andrej; Harmanec, Petr; Torres, Guillermo

    In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the timemore » of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.« less

  14. Nominal Values for Selected Solar and Planetary Quantities: IAU 2015 Resolution B3

    NASA Astrophysics Data System (ADS)

    Prša, Andrej; Harmanec, Petr; Torres, Guillermo; Mamajek, Eric; Asplund, Martin; Capitaine, Nicole; Christensen-Dalsgaard, Jørgen; Depagne, Éric; Haberreiter, Margit; Hekker, Saskia; Hilton, James; Kopp, Greg; Kostov, Veselin; Kurtz, Donald W.; Laskar, Jacques; Mason, Brian D.; Milone, Eugene F.; Montgomery, Michele; Richards, Mercedes; Schmutz, Werner; Schou, Jesper; Stewart, Susan G.

    2016-08-01

    In this brief communication we provide the rationale for and the outcome of the International Astronomical Union (IAU) resolution vote at the XXIXth General Assembly in Honolulu, Hawaii, in 2015, on recommended nominal conversion constants for selected solar and planetary properties. The problem addressed by the resolution is a lack of established conversion constants between solar and planetary values and SI units: a missing standard has caused a proliferation of solar values (e.g., solar radius, solar irradiance, solar luminosity, solar effective temperature, and solar mass parameter) in the literature, with cited solar values typically based on best estimates at the time of paper writing. As precision of observations increases, a set of consistent values becomes increasingly important. To address this, an IAU Working Group on Nominal Units for Stellar and Planetary Astronomy formed in 2011, uniting experts from the solar, stellar, planetary, exoplanetary, and fundamental astronomy, as well as from general standards fields to converge on optimal values for nominal conversion constants. The effort resulted in the IAU 2015 Resolution B3, passed at the IAU General Assembly by a large majority. The resolution recommends the use of nominal solar and planetary values, which are by definition exact and are expressed in SI units. These nominal values should be understood as conversion factors only, not as the true solar/planetary properties or current best estimates. Authors and journal editors are urged to join in using the standard values set forth by this resolution in future work and publications to help minimize further confusion.

  15. Radio Jove: Citizen Science for Jupiter Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Higgins, C. A.; Thieman, J.; Reyes, F. J.; Typinski, D.; Flagg, R. F.; Greenman, W.; Brown, J.; Ashcraft, T.; Sky, J.; Cecconi, B.; Garcia, L. N.

    2016-12-01

    The Radio Jove Project (http://radiojove.gsfc.nasa.gov) has been operating as an educational activity for 18 years to introduce radio astronomy activities to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with radio observatories in real-time over the Internet. Recently some of our dedicated citizen science observers have upgraded their systems to better study radio emission from Jupiter and the Sun by adding dual-polarization spectrographs and wide-band antennas in the frequency range of 15-30 MHz. Some of these observations are being used in conjunction with professional telescopes such as the Long Wavelength Array (LWA), the Nancay Decametric Array, and the Ukrainian URAN2 Radio Telescope. In particular, there is an effort to support the Juno Mission radio waves instrument at Jupiter by using citizen science ground-based data for comparison and polarization verification. These data will be archived through a Virtual European Solar and Planetary Access (VESPA) archive (https://voparis-radiojove.obspm.fr/radiojove/welcome) for use by the amateur and professional radio science community. We overview the program and display recent observations that will be of interest to the science community.

  16. 2009 International Year of Astronomy (IYA2009)

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2009-01-01

    400 years ago, Galileo first turned a telescope to the sky, and to honor that historic moment, 2009 has been designated the International Year of Astronomy (IYA2009). This session will feature two scientists who have used the telescope to understand our solar system and well beyond to yield fantastic new discoveries. Jennifer Wiseman will share the work she does with NASA, presenting beautiful and tantalizing images from the Hubble Space Telescope and discussing how space astronomy can inspire all ages.

  17. GIS Technologies For The New Planetary Science Archive (PSA)

    NASA Astrophysics Data System (ADS)

    Docasal, R.; Barbarisi, I.; Rios, C.; Macfarlane, A. J.; Gonzalez, J.; Arviset, C.; De Marchi, G.; Martinez, S.; Grotheer, E.; Lim, T.; Besse, S.; Heather, D.; Fraga, D.; Barthelemy, M.

    2015-12-01

    Geographical information system (GIS) is becoming increasingly used for planetary science. GIS are computerised systems for the storage, retrieval, manipulation, analysis, and display of geographically referenced data. Some data stored in the Planetary Science Archive (PSA), for instance, a set of Mars Express/Venus Express data, have spatial metadata associated to them. To facilitate users in handling and visualising spatial data in GIS applications, the new PSA should support interoperability with interfaces implementing the standards approved by the Open Geospatial Consortium (OGC). These standards are followed in order to develop open interfaces and encodings that allow data to be exchanged with GIS Client Applications, well-known examples of which are Google Earth and NASA World Wind as well as open source tools such as Openlayers. The technology already exists within PostgreSQL databases to store searchable geometrical data in the form of the PostGIS extension. An existing open source maps server is GeoServer, an instance of which has been deployed for the new PSA, uses the OGC standards to allow, among others, the sharing, processing and editing of data and spatial data through the Web Feature Service (WFS) standard as well as serving georeferenced map images through the Web Map Service (WMS). The final goal of the new PSA, being developed by the European Space Astronomy Centre (ESAC) Science Data Centre (ESDC), is to create an archive which enables science exploitation of ESA's planetary missions datasets. This can be facilitated through the GIS framework, offering interfaces (both web GUI and scriptable APIs) that can be used more easily and scientifically by the community, and that will also enable the community to build added value services on top of the PSA.

  18. Workshop on Advanced Technologies for Planetary Instruments, part 1

    NASA Technical Reports Server (NTRS)

    Appleby, John F. (Editor)

    1993-01-01

    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.

  19. A bibliography of planetary geology principal investigators and their associates, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1984-01-01

    This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.

  20. How Create an Astronomy Outreach Program to Bring Astronomy to Thousands of People at Outdoor Concerts Astronomy Festivals, or Tourist Sites

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald

    2015-08-01

    I describe how to create an astronomy program for thousands of people at outdoor concerts based on my $308,000 NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013), and the Astronomy Festival on the National Mall (AFNM, 10,000 people/yr).MAUS reached 50,000 music lovers at local parks and at the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. AFNM was started in 2010 with co-sponsorship by the White House Office of Science and Technology Policy. MAUS and AFMN combine solar, optical, and radio telescope observations; large posters/banners; hands-on activities, imaging with a cell phone mount; citizen science activities; hand-outs; and teacher info packet. Representatives from scientific institutions participated. Tyco Brahe, Johannes Kepler, and Caroline Herschel made guest appearances.MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience-often the first time they looked through a telescope. While < 50% of the participants took part in a science activity in the past year, they found MAUS enjoyable and understandable; learned about astronomy; wanted to learn more; and increased their interest in science (ave. rating 3.6/4). MAUS is effective in promoting science education!Lessons learned: plan early; create partnerships with parks, concert organizers, and astronomy clubs; test equipment; have backup equipment; create professional displays; select the best location to obtain a largest number of participants; use social media/www sites to promote the events; use many telescopes for multiple targets; project a live image or video; select equipment that is easy to

  1. A Pilot Astronomy Outreach Project in Bangladesh

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dipen; Mridha, Shahjahan; Afroz, Maqsuda

    2015-08-01

    In its strategic planning for the "Astronomy for Development Project," the International Astronomical Union (IAU) has ecognized, among other important missions, the role of astronomy in understanding the far-reaching possibilities for promoting global tolerance and citizenship. Furthermore, astronomy is deemed inspirational for careers in science and technology. The "Pilot Astronomy Outreach Project in Bangladesh"--the first of its kind in the country--aspires to fulfill these missions. As Bangladesh lacks resources to promote astronomy education in universities and schools, the role of disseminating astronomy education to the greater community falls on citizen science organizations. One such group, Anushandhitshu Chokro (AChokro) Science Organization, has been carrying out a successful public outreach program since 1975. Among its documented public events, AChokro organized a total solar eclipse campaign in Bangladesh in 2009, at which 15,000 people were assembled in a single open venue for the eclipse observation. The organization has actively pursued astronomy outreach to dispel public misconceptions about astronomical phenomena and to promote science. AChokro is currently working to build an observatory and Science Outreach Center around a recently-acquired 14-inch Scmidt-Cassegrain telescope and a soon-to-be-acquired new 16-inch reflector, all funded by private donations. The telescopes will be fitted with photometers, spectrometers, and digital and CCD cameras to pursue observations that would include sun spot and solar magnetic fields, planetary surfaces, asteroid search, variable stars and supernovae. The Center will be integrated with schools, colleges, and community groups for regular observation and small-scale research. Special educational and observing sessions for adults will also be organized. Updates on the development of the Center, which is expected to be functioning by the end of 2015, will be shared and feedback invited on the fostering of

  2. Astronomy and Public Policy

    NASA Astrophysics Data System (ADS)

    Suntzeff, Nicholas B.

    2014-01-01

    Astronomy is an unusual science in that almost all of what we study can only be passively observed. We enjoy tremendous public support for our research and education, both domestically and abroad. Our discoveries in cosmology and exoplanets have captured world-wide attention, as have stunning images from the Great Observatories of NASA, and ground based telescopes. Despite the passive nature of our science, it touches humanity profoundly. There are groups of amateur astronomers in every conceivable country who meet to look at the sky. Almost one billion people from 150 countries participated in The International Year of Astronomy 2009. No other science reaches humanity as ours does. In a recent poll, it was found that the among all the things the US does abroad, US science is seen by the world as our most positive face. We as astronomers can use this good will to affect positive changes in the world through public policy. I would like to explore how astronomy has impacted public policy, especially foreign policy, and what more we can do in the future. I also hope to encourage astronomers that a career path into public policy is an excellent use of a Ph.D. in astronomy.

  3. The NASA Planetary Data System's Cartography and Imaging Sciences Node and the Planetary Spatial Data Infrastructure (PSDI) Initiative

    NASA Astrophysics Data System (ADS)

    Gaddis, L. R.; Laura, J.; Hare, T.; Hagerty, J.

    2017-06-01

    Here we address the role of the PSDI initiative in the context of work to archive and deliver planetary data by NASA’s Planetary Data System, and in particular by the PDS Cartography and Imaging Sciences Discipline Node (aka “Imaging” or IMG).

  4. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  5. Chandra X-ray Observatory - NASA's flagship X-ray telescope

    Science.gov Websites

    astronomy, taking its place in the fleet of "Great Observatories." Who we are NASA's Chandra X-ray astronomy, distances are measured in units of light years, where one light year is the distance that light gravity? The answer is still out there. By studying clusters of galaxies, X-ray astronomy is tackling this

  6. SCALE-UP Your Astronomy and Physics Undergraduate Courses to Incorporate Heliophysics

    NASA Astrophysics Data System (ADS)

    Al-Rawi, Ahlam N.; Cox, Amanda; Hoshino, Laura; Fitzgerald, Cullen; Cebulka, Rebecca; Rodriguez Garrigues, Alvar; Montgomery, Michele; Velissaris, Chris; Flitsiyan, Elena

    2016-01-01

    Although physics and astronomy courses include heliophysics topics, students still leave these courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program of incorporating heliophysics into undergraduate curriculum, UCF Physics has modified courses such as Astronomy (for non-science majors), Astrophysics, and SCALE-UP: Electricity and Magnetism for Engineers and Scientists to incorporate heliophysics topics. In this presentation, we discuss these incorporations and give examples that have been published in NASA Wavelength. In an associated poster, we present data on student learnin

  7. Building worlds and learning astronomy on Facebook

    NASA Astrophysics Data System (ADS)

    Harold, J. B.; Hines, D. C.

    2013-12-01

    James Harold (SSI), Dean Hines (STScI/SSI) and a team at the National Center for Interactive Learning at the Space Science Institute are developing an end-to-end stellar and planetary evolution game for the Facebook platform. Supported by NSF and NASA, and based in part on a prototype funded by STScI several years ago ('MyStar'), the game uses the 'sporadic play' model of games such as Farmville, where players might only take actions a few times a day, but continue playing for months. This framework is an excellent fit for teaching about the evolution of stars and planets. Players will select regions of the galaxy to build their stars and planets, and watch as the systems evolve in scaled real time (a million years to the minute). Massive stars will supernova within minutes, while lower mass stars like our sun will live for weeks, possibly evolving life before passing through a red giant stage and ending their lives as white dwarfs. In addition to allowing players to explore a variety of astronomy concepts (stellar lifecycles, habitable zones, the roles of giant worlds in creating habitable solar systems), the game also allows us to address specific misconceptions. For instance, the game's solar system visualization engine is being designed to confront common issues concerning orbital shapes and scales. 'Mini games' will also let players unlock advanced functionality, while allowing us to create activities focused on specific learning goals. This presentation will focus on the current state of the project as well as its overall goals, which include reaching a broad audience with basic astronomy concepts as well as current science results; exploring the potential of social, 'sporadic play' games in education; and determining if platforms such as Facebook allow us to reach significantly different demographics than are generally targeted by educational games.

  8. NASA's Desert RATS Science Backroom: Remotely Supporting Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Eppler, Dean; Gruener, John; Horz, Fred; Ming, Doug; Yingst, R. Aileen

    2012-01-01

    NASA's Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. In recent years, a D-RATS science backroom has conducted science operations and tested specific operational approaches. Approaches from the Apollo, Mars Exploration Rovers and Phoenix missions were merged to become the baseline for these tests. In 2010, six days of lunar-analog traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. In 2011, a variety of exploration science scenarios that tested operations for a near-earth asteroid using several small exploration vehicles and a single habitat. Communications between the ground and the crew in the field used a 50-second one-way delay, while communications between crewmembers in the exploration vehicles and the habitat were instantaneous. Within these frameworks, the team evaluated integrated science operations management using real-time science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results. Exploration scenarios for Mars may include architectural similarities such as crew in a habitat communicating with crew in a vehicle, but significantly more autonomy will have to be given to the crew rather than step-by-step interaction with a science backroom on Earth.

  9. Planetary programs

    NASA Technical Reports Server (NTRS)

    Mills, R. A.; Bourke, R. D.

    1985-01-01

    The goals of the NASA planetary exploration program are to understand the origin and evolution of the solar system and the earth, and the extent and nature of near-earth space resources. To accomplish this, a number of missions have been flown to the planets, and more are in active preparation or in the planning stage. This paper describes the current and planned planetary exploration program starting with the spacecraft now in flight (Pioneers and Voyagers), those in preparation for launch this decade (Galileo, Magellan, and Mars Observer), and those recommended by the Solar System Exploration Committee for the future. The latter include a series of modest objective Observer missions, a more ambitious set of Mariner Mark IIs, and the very challenging but scientifically rewarding sample returns.

  10. "Discoveries in Planetary Sciences": Slide Sets Highlighting New Advances for Astronomy Educators

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Schneider, N. M.; Beyer, R. A.

    2010-12-01

    Planetary science is a field that evolves rapidly, motivated by spacecraft mission results. Exciting new mission results are generally communicated rather quickly to the public in the form of press releases and news stories, but it can take several years for new advances to work their way into college textbooks. Yet it is important for students to have exposure to these new advances for a number of reasons. In some cases, new work renders older textbook knowledge incorrect or incomplete. In some cases, new discoveries make it possible to emphasize older textbook knowledge in a new way. In all cases, new advances provide exciting and accessible examples of the scientific process in action. To bridge the gap between textbooks and new advances in planetary sciences we have developed content on new discoveries for use by undergraduate instructors. Called 'Discoveries in Planetary Sciences', each new discovery is summarized in a 3-slide PowerPoint presentation. The first slide describes the discovery, the second slide discusses the underlying planetary science concepts, and the third presents the big picture implications of the discovery. A fourth slide includes links to associated press releases, images, and primary sources. This effort is generously sponsored by the Division for Planetary Sciences of the American Astronomical Society, and the slide sets are available at http://dps.aas.org/education/dpsdisc/. Sixteen slide sets have been released so far covering topics spanning all sub-disciplines of planetary science. Results from the following spacecraft missions have been highlighted: MESSENGER, the Spirit and Opportunity rovers, Cassini, LCROSS, EPOXI, Chandrayan, Mars Reconnaissance Orbiter, Mars Express, and Venus Express. Additionally, new results from Earth-orbiting and ground-based observing platforms and programs such as Hubble, Keck, IRTF, the Catalina Sky Survey, HARPS, MEarth, Spitzer, and amateur astronomers have been highlighted. 4-5 new slide sets are

  11. Planetary geosciences, 1989-1990

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T. (Editor); James, Odette B. (Editor); Lunine, Jonathan I. (Editor); Macpherson, Glenn J. (Editor); Phillips, Roger J. (Editor)

    1992-01-01

    NASA's Planetary Geosciences Programs (the Planetary Geology and Geophysics and the Planetary Material and Geochemistry Programs) provide support and an organizational framework for scientific research on solid bodies of the solar system. These research and analysis programs support scientific research aimed at increasing our understanding of the physical, chemical, and dynamic nature of the solid bodies of the solar system: the Moon, the terrestrial planets, the satellites of the outer planets, the rings, the asteroids, and the comets. This research is conducted using a variety of methods: laboratory experiments, theoretical approaches, data analysis, and Earth analog techniques. Through research supported by these programs, we are expanding our understanding of the origin and evolution of the solar system. This document is intended to provide an overview of the more significant scientific findings and discoveries made this year by scientists supported by the Planetary Geosciences Program. To a large degree, these results and discoveries are the measure of success of the programs.

  12. ACDA Thirty Years of Popularization of Astronomy in Colombia

    NASA Astrophysics Data System (ADS)

    Ocampo, W.; Higuera-G., Mario A.

    2017-07-01

    The Colombian Association of Astronomical Studies (ACDA) is a Non Profit Organization with thirty years of permanent efforts for the popularization of astronomy and related sciences in Colombia. ACDA put together amateur and profesional astronomers, as well as interested people. We surely had left a footprint on uncountable number of attending people to our activities, members and former members, and have supported the process of building a new society, with more awareness on the importance of science. We devote our efforts to our members and general people, to keep them motivated, support them and follow each member own interests in order to expand and spread their knowledge. In order to achieve our goals we have develop several strategies as: acquire of didactic material and optical instruments, video projections and discussion, astronomical observations, visits to observatories and planetariums, attending conferences and events, and mainly a weekly Saturday morning talk at the Bogotá Planetarium. ACDA has had different study teams on several fields including: Planetary Systems, Astrobiology, Space Exploration, Cosmology, History of Astronomy and Radioastronomy. ACDA has a national brandname on Astronomy due to seriousness and quality of its projects. A good list of members have become profesional astronomers. From our experience we can say: astronomy is a fertile field to teach science, in general there is an absence of astronomy culture in the public, our best communication experience are astronomical observations, explained astronomy movies and colloquiums, our best public are kids and aged people and finally, social networks gave dynamics to our astronomy spreading initiative.

  13. Origins of the Lunar and Planetary Laboratory, University of Arizona

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Hartmann, William K.

    2014-11-01

    The roots of the Lunar and Planetary Laboratory (LPL) extend deep into the rich fabric of G. P. Kuiper’s view of the Earth as a planet and planetary systems as expected companions to most stars, as well as the post-war emergent technology of infrared detectors suitable for astronomy. These concepts and events began with Kuiper’s theoretical work at Yerkes Observatory on the origin of the Solar System, his discovery of two planetary satellites and observational work with his near-infrared spectrometer on the then-new McDonald 82-inch telescope in the mid- to late-1940s. A grant for the production of a photographic atlas of the Moon in the mid-1950s enabled him to assemble the best existing images of the Moon and acquire new photographs. This brought E. A. Whitaker and D. W. G. Arthur to Yerkes. Others who joined in the lunar work were geologist Carl S. Huzzen and grad student E. P. Moore, as well as undergrad summer students A. B. Binder and D. P. Cruikshank (both in 1958). The Atlas was published in 1959, and work began on an orthographic lunar atlas. Kuiper’s view of planetary science as an interdisciplinary enterprise encompassing astronomy, geology, and atmospheric physics inspired his vision of a research institution and an academic curriculum tuned to the combination of all the scientific disciplines embraced in a comprehensive study of the planets. Arrangements were made with the University of Arizona (UA) to establish LPL in affiliation with the widely recognized Inst. of Atmospheric Physics. Kuiper moved to the UA in late 1960, taking the lunar experts, graduate student T. C. Owen (planetary atmospheres), and associate B. M. Middlehurst along. G. van Biesbroeck also joined the migration to Tucson; Binder and Cruikshank followed along as new grad students. Astronomy grad student W. K. Hartmann came into the academic program at UA and the research group at LPL in 1961. Senior faculty affiliating with LPL in the earliest years were T. Gehrels, A. B

  14. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.

  15. X-Ray Astronomy Research at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Austin, Robert A.

    1999-01-01

    For at least twenty years, NASA's Marshall Space Flight Center (MSFC) has played a major role in the development of X-ray astronomy in the United States. MSFC scientists and engineers are currently involved in a wide range of programs which will contribute to the growth of X-ray astronomy well into the next century. Areas of activity include calibration of X-ray astronomy instrumentation using Marshall's world-class X-ray Calibration Facility (XRCF), development of high-throughput, replicated X-ray optics, X-ray detector development, balloon-based X-ray astronomy, and analysis of Active Galactic Nuclei (AGNs) and clusters of galaxies. Recent milestones include the successful calibration of NASA's premier X-ray Astronomy Satellite - AXAF (recently renamed Chandra), a balloon flight of a large area (1000 sq cm) micro-strip proportional counter, and work on a hard X-ray (30-100 keV) telescope called HERO, capable of high quality spectroscopy and imaging through the use of grazing incidence optics and an Imaging Gas Scintillation Proportional Counter (IGSPC). In my presentation, I will provide a general overview of our research and facilities. I will conclude with a more detailed discussion of our High Energy Replicated Optics (HERO) program and plans for long duration (>100 days) balloon flights which will take place in the near future.

  16. NASA PDS IMG: Accessing Your Planetary Image Data

    NASA Astrophysics Data System (ADS)

    Padams, J.; Grimes, K.; Hollins, G.; Lavoie, S.; Stanboli, A.; Wagstaff, K.

    2018-04-01

    The Planetary Data System Cartography and Imaging Sciences Node provides a number of tools and services to integrate the 700+ TB of image data so information can be correlated across missions, instruments, and data sets and easily accessed by the science community.

  17. Highlights of Astronomy

    NASA Astrophysics Data System (ADS)

    van der Hucht, Karel

    2008-02-01

    Preface Karel A. van der Hucht; Part I. Invited Discourses: Part II. Joint Discussions: 1. Particle acceleration - from Solar System to AGN Marian Karlicky and John C. Brown; 2. Pulsar emission and related phenomena Werner Becker, Janusz A. Gil and Bronislaw Rudak; 3. Solar activity regions and magnetic structure Debi Prasad Choudhary and Michal Sobotka; 4. The ultraviolet universe: Stars from birth to death Ana I. Gomez de Castro and Martin A. Barstow; 5. Calibrating the top of the stellar M-L relationship Claus Leitherer, Anthony F. J. Moat and Joachim Puls; 6. Neutron stars and black holes in star clusters Frederic A. Rasio; 7. The Universe at z > 6 Daniel Schaerer and Andrea Ferrara; 8. Solar and stellar activity cycles Klaus G. Strassmeier and Alexander Kosovichev; 9. Supernovae: One millennium after SN 1006 P. Frank Winkler, Wolfgang Hillebrandt and Brian P. Schmidt; 10. Progress in planetary exploration missions Guy J. Consolmagno; 11. Pre-solar grains as astrophysical tools Anja C. Andersen and John C. Lattanzio; 12. Long wavelength astrophysics T. Joseph W. Lazio and Namir E. Kassim; 13. Exploiting large surveys for galactic astronomy Christopher J. Corbally, Coryn A. L. Bailer-Jones, Sunetra Giridhar and Thomas H. Lloyd Evans; 14. Modeling dense stellar systems Alison I. Sills, Ladislav Subr and Simon F. Portegies Zwart; 15. New cosmology results from the Spitzer Space Telescope George Helou and David T. Frayer; 16. Nomenclature, precession and new models in fundamental astronomy Nicole Capitaine, Jan Vondrak & James L. Hilton; 17. Highlights of recent progress in seismology of the Sun and Sun-like stars John W. Leibacher and Michael J. Thompson; Part III. Special Sessions: SpS 1. Large astronomical facilities of the next decade Gerard F. Gilmore and Richard T. Schilizzi; SpS 2. Innovation in teaching and learning astronomy methods Rosa M. Ros and Jay M. Pasachoff; SpS 3. The Virtual Observatory in action: New science, new technology and next

  18. A bibliography of planetary geology principal investigators and their associates, 1976-1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include: solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided.

  19. Automation and Robotics for space operation and planetary exploration

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  20. Mini Planetary System Artist Concept

    NASA Image and Video Library

    2012-01-11

    This artist concept, based on data from NASA Kepler mission and ground-based telescopes, depicts an itsy bitsy planetary system -- so compact, in fact, that it more like Jupiter and its moons than a star and its planets.

  1. NASA's Laboratory Astrophysics Workshop: Opening Remarks

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima

    2002-01-01

    The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.

  2. NASA's newly painted Stratospheric Observatory for Infrared Astronomy 747SP is pushed back from L-3 Communications' Integrated Systems hangar in Waco, Texas

    NASA Image and Video Library

    2006-09-25

    NASA's freshly painted Stratospheric Observatory for Infrared Astronomy (SOFIA) 747SP aircraft sits outside a hangar at L-3 Communications Integrated Systems' facility in Waco, Texas. The observatory, which features a German-built 100-inch (2.5 meter) diameter infrared telescope weighing 20 tons, is approaching the flight test phase as part of a joint program by NASA and DLR Deutsches Zentrum fuer Luft- und Raumfahrt (German Aerospace Center). SOFIA's science and mission operations are being planned jointly by Universities Space Research Association (USRA) and the Deutsches SOFIA Institut (DSI). Once operational, SOFIA will be the world's primary infrared observatory during a mission lasting up to 20 years, as well as an outstanding laboratory for developing and testing instrumentation and detector technology.

  3. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Jason Townsend, NASA's Deputy Social Media Manager, kicks off the Lunar Atmosphere and Dust Environment Explorer (LADEE) NASA Social at Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  4. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld talks during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  5. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Lunar Atmosphere and Dust Environment Explorer (LADEE) Program Scientist Sarah Noble talks during a NASA Social about the LADEE mission at NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  6. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Bob Barber, Lunar Atmosphere and Dust Environment Explorer (LADEE) Spacecraft Systems Engineer at NASA Ames Research Center, points to a model of the LADEE spacecraft a NASA Social, Thursday, Sept. 5, 2013 at NASA Wallops Flight Facility in Virginia. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  7. Vision and Voyages: Lessons Learned from the Planetary Decadal Survey

    NASA Astrophysics Data System (ADS)

    Squyres, S. W.

    2015-12-01

    The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.

  8. Planetary CubeSats Come of Age

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Spangelo, Sara; Frick, Andreas; Castillo-Rogez, Julie; Klesh, Andrew; Wyatt, E. Jay; Reh, Kim; Baker, John

    2015-01-01

    Jet Propulsion Laboratory initiatives in developing and formulating planetary CubeSats are described. Six flight systems already complete or underway now at JPL for missions to interplanetary space, the Moon, a near-Earth asteroid, and Mars are described at the subsystem level. Key differences between interplanetary nanospacecraft and LEO CubeSats are explained, as well as JPL's adaptation of vendor components and development of system solutions to meet planetary-mission needs. Feasible technology-demonstration and science measurement objectives are described for multiple modes of planetary mission implementation. Seven planetary-science demonstration mission concepts, already proposed to NASA by Discovery-2014 PIs partnered with JPL, are described for investigations at Sun-Earth L5, Venus, NEA 1999 FG3, comet Tempel 2, Phobos, main-belt asteroid 24 Themis, and metal asteroid 16 Psyche. The JPL staff and facilities resources available to PIs for analysis, design, and development of planetary nanospacecraft are catalogued.

  9. Stratospheric Observatory for Infrared Astornomy and Planetary Science

    NASA Astrophysics Data System (ADS)

    Reach, William T.; SOFIA Sciece Mission Operations

    2016-10-01

    The Stratospheric Observatory for Infrared Astronomy enables observations at far-infrared wavelengths, including the range 30-300 microns that is nearly completely obscured from the ground. By flying in the stratosphere above 95% of atmospheric water vapor, access is opened to photometric, spectroscopic, and polarimetric observations of Solar System targets spanning small bodies through major planets. Extrasolar planetary systems can be observed through their debris disks or transits, and forming planetary systems through protoplanetary disks, protostellar envelopes, and molecular cloud cores. SOFIA operates out of Southern California most of the year. For the summer of 2016, we deployed to New Zealand with 3 scientific instruments. The HAWC+ far-infrared photopolarimeter was recently flown and is in commissioning, and two projects are in Phase A study to downselect to one new facility instrument. The Cycle 5 observing proposal results are anticipated to be be released by the time of this DPS meeting, and successful planetary proposals will be advertised.

  10. Strategy of Planetary Data Archives in Japanese Missions for Planetary Data System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ishihara, Y.; Murakami, S. Y.

    2017-12-01

    To preserve data acquired by Japanese planetary explorations for a long time, we need a data archiving strategy in a form suitable for resources. Planetary Data System(PDS) developed by NASA is an excellent system for saving data over a long period. Especially for the current version 4 (PDS4), it is possible to create a data archive with high completeness using information technology. Historically, the Japanese planetary missions have archived data by scientists in their ways, but in the past decade, JAXA has been aiming to conform data to PDS considering long term preservation. Hayabusa, Akatsuki are archived in PDS3. Kaguya(SELENE) data have been newly converted from the original format to PDS3. Hayabusa2 and BepiColombo, and future planetary explorations will release data in PDS4. The cooperation of engineers who are familiar with information technology is indispensable to create data archives for scientists. In addition, it is essential to have experience, information sharing, and a system to support it. There is a challenge in Japan about the system.

  11. NASA Astrophysics E/PO Impact: NASA SOFIA AAA Program Evaluation Results

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; Backman, Dana E.; Clark, Coral; Inverness Research Sofia Aaa Evaluation Team, Wested Sofia Aaa Evaluation Team

    2015-01-01

    SOFIA is an airborne observatory, studying the universe at infrared wavelengths, capable of making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA also inspires the development of new scientific instrumentation and fosters the education of young scientists and engineers.SOFIA is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR), consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters (100 inches). The SOFIA aircraft is based at NASA Armstrong Flight Research Center, Building 703, in Palmdale, California. The Science Program and Outreach Offices are located at NASA Ames Research center. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division.Data will be collected to study many different kinds of astronomical objects and phenomena, including star cycles, solar system formation, identification of complex molecules in space, our solar system, galactic dust, nebulae and ecosystems.Airborne Astronomy Ambassador (AAA) Program:The SOFIA Education and Communications program exploits the unique attributes of airborne astronomy to contribute to national goals for the reform of science, technology, engineering, and math (STEM) education, and to elevate public scientific and technical literacy.The AAA effort is a professional development program aspiring to improve teaching, inspire students, and inform the community. To date, 55 educators from 21 states; Cycles 0, 1 and 2; have completed their astronomy professional development and their SOFIA science flight experience. Evaluation has confirmed the program's positive impact on the teacher participants, on their students, and in their communities. The inspirational experience has positively impacted their practice and career trajectory. AAAs have incorporated content knowledge and specific components of their experience into their curricula, and have given

  12. Participation of women in spacecraft science teams

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie

    2017-06-01

    There is an ongoing discussion about the participation of women in science and particularly astronomy. Demographic data from NASA's robotic planetary spacecraft missions show women scientists to be consistently under-represented.

  13. The Construction (Using Multi-Media Techniques) of Certain Modules of a Programmed Course in Astronomy-Space Sciences for NASA Personnel of The Goddard Space Flight Center, Greenbelt, Maryland.

    ERIC Educational Resources Information Center

    Collagan, Robert B.

    This paper describes the development of a self-instructional multi-media course in astronomy-space sciences for non-technical NASA personnel. The course consists of a variety of programed materials including slides, films, film-loops, filmstrips video-tapes and audio-tapes, on concepts of time, space, and matter in our solar system and galaxy.…

  14. Kepler Mission Website: Portal to the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Harman, Pamela; DeVore, E.; Gould, A.; Koch, D.

    2008-05-01

    The 400th anniversary of Galileo's telescope is an opportunity to turn the public's eyes skyward and to the universe beyond the solar system. The Kepler Mission, launching in 2009, the International Year of Astronomy (IYA) will is specifically designed to survey our region of the Milky Way galaxy to detect and characterize hundreds of Earth-size and smaller planets in or near the habitable zone, using the transit method of detection. The habitable zone encompasses the distances from a star where liquid water can exist on a planet's surface. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. The Kepler Mission is a NASA Discovery Program Mission. The Kepler Mission website http://www.kepler.arc.nasa.gov/ offers classroom activity lesson plans Detecting Planet Transits, The Human Orrery, and Morning Star and Evening Star. The activities are suitable for the informal science education realm. The spacecraft paper model and LEGO model orrerey can be used in the classroom by teachers or at home by families. The mission simulation and animation, as well as lessons and models highlight the science concepts critical to employing the transit method of detection, Kepler's Laws. The Send Your Name to Space on Kepler Spacecraft provides a certificate of participation for all individuals that submit there name to be listed on a DVD placed on the spacecraft. This poster will provide details on each of the items described.

  15. The NASA SETI program

    NASA Technical Reports Server (NTRS)

    Billingham, J.; Brocker, D. H.

    1991-01-01

    In 1959, it was proposed that a sensible way to conduct interstellar communication would be to use radio at or near the frequency of hydrogen. In 1960, the first Search for Extraterrestrial Intelligence (SETI) was conducted using a radiotelescope at Green Bank in West Virginia. Since 1970, NASA has systematically developed a definitive program to conduct a sophisticated search for evidence of extraterrestrial intelligent life. The basic hypothesis is that life may be widespread in the univers, and that in many instances extraterrestrial life may have evolved into technological civilizations. The underlying scientific arguments are based on the continuously improving knowledge of astronomy and astrophysics, especially star system formation, and of planetary science, chemical evolution, and biological evolution. If only one in a million sun-like stars in our galaxy harbors species with cognitive intelligence, then there are 100,000 civilizations in the Milky Way alone. The fields of radioastronomy digital electronic engineering, spectrum analysis, and signal detection have advanced rapidly in the last twenty years and now allow for sophisticated systems to be built in order to attempt the detection of extraterrestrial intelligence signals. In concert with the scientific and engineering communities, NASA has developed, over the last several years, a Microwave Observing Project whose goal is to design, build, and operate SETI systems during the decade of the nineties in pursuit of the goal signal detection. The Microwave Observing Project is now approved and underway. There are two major components in the project: the Target Search Element and the Sky Survey Element.

  16. Starchitect: Building Worlds and Learning Astronomy on Facebook and Beyond

    NASA Astrophysics Data System (ADS)

    Harold, J. B.; Hines, D. C.

    2014-12-01

    Our team at the National Center for Interactive Learning at the Space Science Institute has developed Starchitect, an end-to-end stellar and planetary evolution game available both on Facebook and externally. Supported by NSF and NASA, the game uses the "sporadic play" model of games such as Farmville, where players might only take actions a few times a day, but continue playing for months. This framework is an excellent fit for teaching about the evolution of stars and planets. Players select regions of the galaxy to build their systems, and watch as they evolve in scaled real time (a million years to the minute). Massive stars will supernova within minutes, while lower mass stars like our sun will live for weeks, possibly evolving life before passing through a red giant stage and ending their lives as white dwarfs. Starchitect provides a wide variety of opportunities for communicating astronomy concepts, targeting known misconceptions, and encouraging players to dig deeper through external sites. The game directly addresses stellar lifecycles, habitable zones, and the roles of giant worlds in creating habitable solar systems as part of its core design. Meanwhile minigames can focus on additional concepts. For instance, the game's solar system visualization engine allows players to "fake" planetary scales to create more attractive images of their systems (which can then be posted to their Facebook wall), but this ability must be unlocked through completion of a minigame that looks at the relative scales of planets, moons, and solar system distances. Starchitect also incorporates current science through links to external content, science "Factlets", all-sky maps generated by missions, and more. Finally, the game is heavily instrumented to allow us to analyze the resulting gameplay in conjunction with Facebook's demographic data. This presentation will focus on the release, evaluation, and ongoing refinement of the game as well as its overall goals, which include

  17. IUS application to NASA planetary missions

    NASA Technical Reports Server (NTRS)

    Hanford, Denton; Saucier, Sidney

    1987-01-01

    The considerations involved in the selection of a new upper stage to launch three planetary missions following the decision to cancel the use of Centaur are discussed, and the methods by which the selected IUS will fly these missions are described. It is shown that the IUS is capable of accomplishing all three misssions (Magellan, Galileo, and Ulysses) with some compromises in mission transit time. Relatively minor modifications to the IUS, airborne support equipment, and software are required. The first of the three missions is to be accomplished two and a half years from go-ahead by the use of existing IUS flight hardware.

  18. Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. B.; Gulkis, S.; Boischot, A.

    1979-01-01

    Results are reported from the first low frequency radio receiver to be transported into the Jupiter magnetosphere. Dramatic new information was obtained both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio arcs, from above 30 MHz to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Studies in progress are outlined briefly.

  19. PARTNeR for Teaching and Learning Radio Astronomy Basics

    NASA Astrophysics Data System (ADS)

    Vaquerizo, Juan Ángel

    2010-10-01

    NASA has three satellite tracking stations around the world: CDSCC (Canberra, Australia), GDSCC (Goldstone, USA) and MDSCC (Madrid, Spain). One of the antennas located at MDSCC, DSS-61, is not used for satellite tracking any more and thanks to an agreement between INTA (Instituto Nacional de TA~l'cnica Aeroespacial) and NASA, it has been turned into an educational radio telescope. PARTNeR (Proyecto Académico con el RadioTelescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is a High School and University radio astronomy educational program that allows teachers and students to control this 34-meter radio telescope and conduct radio astronomical observations via the Internet. As radio astronomy is not a popular subject and astronomy has little presence in the High School Curriculum, teachers need specific training in those subjects to implement PARTNeR. Thus, High School teachers joining the project take a course to learn about the science of radio astronomy and how to use the antenna in their classrooms. Also, teachers are provided with some learning activities they can do with their students. These lesson plans are focused on the implementation of the project within an interdisciplinary framework. All educational resources are available on PARTNeR website. PARTNeR is an inquiry based approach to science education. Nowadays, students can join in three different observational programmes: variability studies in quasars, studies of radio-bursts in X-ray binaries (microquasars), and mapping of radio sources in the galactic plane. Nevertheless, any other project can be held after an evaluation by the scientific committee. The operational phase of the project started in the academic year 2003-04. Since then, 85 High Schools, seven Universities and six societies of amateur astronomers have been involved in the project. During the 2004-09 period, 103 High School teachers from Spain and Portugal have attended the training courses, and 105

  20. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report

    NASA Technical Reports Server (NTRS)

    Race, Margaret S. (Editor); Johnson, James E. (Editor); Spry, James A. (Editor); Siegel, Bette; Conley, Catharine A.

    2015-01-01

    This report on Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions summarizes the presentations, deliberations and findings of a workshop at NASA Ames Research Center, March 24-26, 2015, which was attended by more than 100 participants representing a diverse mix of science, engineering, technology, and policy areas. The main objective of the three-day workshop was to identify specific knowledge gaps that need to be addressed to make incremental progress towards the development of NASA Procedural Requirements (NPRs) for Planetary Protection during human missions to Mars.

  1. Teaching Planetary Sciences at the Universidad del País Vasco in Spain: The Aula Espazio Gela and its Master in Space Science and Technology

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sanchez-Lavega, A.; Pérez-Hoyos, S.

    2011-12-01

    Planetary science is a highly multidisciplinary field traditionally associated to Astronomy, Physics or Earth Sciences Departments. Spanish universities do not generally offer planetary sciences courses but some departments give courses associated to studies on Astronomy or Geology. We show a different perspective obtained at the Engeneering School at the Universidad del País Vasco in Bilbao, Spain, which offers a Master in Space Science and Technology to graduates in Engineering or Physics. Here we detail the experience acquired in two years of this master which offers several planetary science courses: Solar System Physics, Astronomy, Planetary Atmospheres & Space Weather together with more technical courses. The university also owns an urban observatory in the Engineering School which is used for practical exercises and student projects. The planetary science courses have also resulted in motivating part of the students to do their master thesis in scientific subjects in planetary sciences. Since the students have very different backgrounds their master theses have been quite different: From writing open software tools to detect bolides in video observations of Jupiter atmosphere to the photometric calibration and scientific use or their own Jupiter and Saturn images or the study of atmospheric motions of the Venus' South Polar Vortex using data from the Venus Express spacecraft. As a result of this interaction with the students some of them have been engaged to initiate Ph.D.s in planetary sciences enlarging a relative small field in Spain. Acknowledgements: The Master in Space Science and Technology is offered by the Aula Espazio Gela at the Universidad del País Vasco Engineer School in Bilbao, Spain and is funded by Diputación Foral de Bizkaia.

  2. HUBBLE'S PLANETARY NEBULA GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes

  3. Mars Technology Program: Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  4. Student comprehension of mathematics through astronomy

    NASA Astrophysics Data System (ADS)

    Search, Robert

    The purpose of this study is to examine how knowledge of astronomy can enhance college-level learning situations involving mathematics. The fundamental symbiosis between mathematics and astronomy was established early in the 17th century when Johannes Kepler deduced the 3 basic laws of planetary motion. This mutually harmonious relationship between these sciences has been reinforced repeatedly in history. In the early 20th century, for example, astronomer Arthur Eddington used photographic evidence from a 1919 solar eclipse to verify Einstein's mathematical theory of relativity. This study was conducted in 5 undergraduate mathematics classes over the course of 2 years. An introductory course in ordinary differential equations, taught in Spring Semester 2013, involved 4 students. A similar course in Spring Semester 2014 involved 6 students, a Summer Semester 2014 Calculus II course involved 2 students, and a Summer 2015 Astronomy course involved 8 students. The students were asked to use Kepler's astronomical evidence to deduce mathematical laws normally encountered on an undergraduate level. They were also asked to examine the elementary mathematical aspects involved in a theoretical trajectory to the planet Neptune. The summer astronomy class was asked to draw mathematical conclusions about large numbers from the recent discoveries concerning the dwarf planet Pluto. The evidence consists primarily of videotaped PowerPoint presentations conducted by the students in both differential equations classes, along with interviews and tests given in all the classes. All presentations were transcribed and examined to determine the effect of astronomy as a generator of student understanding of mathematics. An analysis of the data indicated two findings: definite student interest in a subject previously unknown to most of them and a desire to make the mathematical connection to celestial phenomena.

  5. Planetary Defense

    DTIC Science & Technology

    2016-05-01

    is very likely that they may develop a solution for planetary defense. 8 United States is leading in space private investments. SpaceX , for...technology, with the ultimate goal of enabling people to live on other planets.5 SpaceX is the only private company ever to return a spacecraft from low...a technically challenging feat previously accomplished only by governments.6 Contracted by NASA and commercial companies, SpaceX already did 50

  6. Student Planetary Investigators: A Program to Engage Students in Authentic Research Using NASA Mission Data

    NASA Astrophysics Data System (ADS)

    Hallau, K.; Turney, D.; Beisser, K.; Edmonds, J.; Grigsby, B.

    2015-12-01

    The Student Planetary Investigator (PI) Program engages students in authentic scientific research using NASA mission data. This student-focused STEM (Science, Technology, Engineering and Math) program combines problem-based learning modules, Next Generation Science Standards (NGSS) aligned curriculum, and live interactive webinars with mission scientists to create authentic research opportunities and career-ready experiences that prepare and inspire students to pursue STEM occupations. Primarily for high school students, the program employs distance-learning technologies to stream live presentations from mission scientists, archive those presentations to accommodate varied schedules, and collaborate with other student teams and scientists. Like its predecessor, the Mars Exploration Student Data Team (MESDT) program, the Student PI is free and open to teams across the country. To date, students have drafted research-based reports using data from the Lunar Reconnaissance Orbiter Mini-RF instrument and the MESSENGER Mercury orbiter, with plans to offer similar programs aligned with additional NASA missions in the future pending available funding. Overall, the program has reached about 600 students and their educators. Assessments based on qualitative and quantitative data gathered for each Student PI program have shown that students gain new understanding about the scientific process used by real-world scientists as well as gaining enthusiasm for STEM. Additionally, it is highly adaptable to other disciplines and fields. The Student PI program was created by the Johns Hopkins University Applied Physics Laboratory (APL) Space Department Education and Public Outreach office with support from NASA mission and instrument science and engineering teams.

  7. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld is seen in a video monitor during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  8. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks NASA Associate Administrator for the Science Mission Directorate John Grunsfeld a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  9. Astronomy Data Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-08-01

    We present innovative methods and techniques for using Blender, a 3D software package, in the visualization of astronomical data. N-body simulations, data cubes, galaxy and stellar catalogs, and planetary surface maps can be rendered in high quality videos for exploratory data analysis. Blender's API is Python based, making it advantageous for use in astronomy with flexible libraries like astroPy. Examples will be exhibited that showcase the features of the software in astronomical visualization paradigms. 2D and 3D voxel texture applications, animations, camera movement, and composite renders are introduced to the astronomer's toolkit and how they mesh with different forms of data.

  10. Small planetary mission plan: Report to Congress

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document outlines NASA's small planetary projects plan within the context of overall agency planning. In particular, this plan is consistent with Vision 21: The NASA Strategic Plan, and the Office of Space Science and Applications (OSSA) Strategic Plan. Small planetary projects address focused scientific objectives using a limited number of mature instruments, and are designed to require little or no new technology development. Small missions can be implemented by university and industry partnerships in coordination with a NASA Center to use the unique services the agency provides. The timeframe for small missions is consistent with academic degree programs, which makes them an excellent training ground for graduate students and post-doctoral candidates. Because small missions can be conducted relatively quickly and inexpensively, they provide greater opportunity for increased access to space. In addition, small missions contribute to sustaining a vital scientific community by increasing the available opportunities for direct investigator involvement from just a few projects in a career to many.

  11. Voyager 1 planetary radio astronomy observations near jupiter.

    PubMed

    Warwick, J W; Pearce, J B; Riddle, A C; Alexander, J K; Desch, M D; Kaiser, M L; Thieman, J R; Carr, T D; Gulkis, S; Boischot, A; Harvey, C C; Pedersen, B M

    1979-06-01

    We report results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere. We obtained dramatic new information, both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 megahertz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are out-lined briefly.

  12. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  13. Interoperability in planetary research for geospatial data analysis

    NASA Astrophysics Data System (ADS)

    Hare, Trent M.; Rossi, Angelo P.; Frigeri, Alessandro; Marmo, Chiara

    2018-01-01

    For more than a decade there has been a push in the planetary science community to support interoperable methods for accessing and working with geospatial data. Common geospatial data products for planetary research include image mosaics, digital elevation or terrain models, geologic maps, geographic location databases (e.g., craters, volcanoes) or any data that can be tied to the surface of a planetary body (including moons, comets or asteroids). Several U.S. and international cartographic research institutions have converged on mapping standards that embrace standardized geospatial image formats, geologic mapping conventions, U.S. Federal Geographic Data Committee (FGDC) cartographic and metadata standards, and notably on-line mapping services as defined by the Open Geospatial Consortium (OGC). The latter includes defined standards such as the OGC Web Mapping Services (simple image maps), Web Map Tile Services (cached image tiles), Web Feature Services (feature streaming), Web Coverage Services (rich scientific data streaming), and Catalog Services for the Web (data searching and discoverability). While these standards were developed for application to Earth-based data, they can be just as valuable for planetary domain. Another initiative, called VESPA (Virtual European Solar and Planetary Access), will marry several of the above geoscience standards and astronomy-based standards as defined by International Virtual Observatory Alliance (IVOA). This work outlines the current state of interoperability initiatives in use or in the process of being researched within the planetary geospatial community.

  14. From "Frontiers of Astronomy" to Astrobiology

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    2011-10-01

    In his book Frontiers of Astronomy, Fred Hoyle outlined a number of ideas on the stellar synthesis of solid-state materials and their ejection into the interstellar medium. He also considered the possibility of interstellar organics being integrated into the early Earth during the accretion phase of planetary formation. These organics may have played a role in the origin of life and the creation of fossil fuels. In this paper, we assess these ideas with modern observational evidence, in particular on the evidence of stellar synthesis of complex organics and their delivery to the early Solar System.

  15. Tracking and Navigation of Future NASA Spacecraft with the Square Kilometer Array

    NASA Astrophysics Data System (ADS)

    Resch, G. M.; Jones, D. L.; Connally, M. J.; Weinreb, S.; Preston, R. A.

    2001-12-01

    The international radio astronomy community is currently working on the design of an array of small radio antennas with a total collecting area of one square kilometer - more than a hundred times that of the largest existing (100-m) steerable antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are a two-orders-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased ground-based tracking capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created.

  16. Quartz-like Crystals Found in Planetary Disks

    NASA Image and Video Library

    2008-11-11

    NASA Spitzer Space Telescope has, for the first time, detected tiny quartz-like crystals sprinkled in young planetary systems. The crystals, which are types of silica minerals called cristobalite and tridymite.

  17. Planetary Exploration Rebooted! New Ways of Exploring the Moon, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Fong, Terrence W.

    2010-01-01

    In this talk, I will summarize how the NASA Ames Intelligent Robotics Group has been developing and field testing planetary robots for human exploration, creating automated planetary mapping systems, and engaging the public as citizen scientists.

  18. Cornell Astronomy REU: Casting a Wide Net to Increase Access to Research Opportunities

    NASA Astrophysics Data System (ADS)

    Fernandez de Castro, Patricia; Haynes, Martha P.

    2018-01-01

    We describe a Research Experience for Undergraduates program in astrophysics and planetary science hosted in a major university setting that is geared especially but not exclusively to students who matriculate at smaller colleges and universities without major astronomy research programs, have not previously had off-campus research experiences and/or have non-traditional academic backgrounds.Individual research projects which students undertake with faculty mentors and their research groups are the keystone of the program. Built around this central activity are a set of other components that aim to expose students to the broad areas of astrophysical and planetary science research and to foster their appreciation of the research enterprise and their possible place within it. We describe the professional development activities that are offered to students, including lectures and workshops on a broad range of topics in astrophysics and planetary science, research group meetings, tutorials on research and scientific presentation skills, participation in outreach, education on the graduate school experience and application process, and discussions of the scientific enterprise, career paths and options in astronomy and related fields as well as the role REU group meetings with the program director (which complement meetings students attend within the context of their research group) play in developing students’ scientific competencies and pre-professional development. Also described are program elements that aim to make the program accessible to all students, including older students, those in relationships or with children as well as cohort building. Finally, we discuss lessons learned on how recruiting on merit and suitability to the research projects on offer, with a strong emphasis on smaller colleges and universities without major astronomy research programs can work towards a broader and more inclusive recruitment.This work was supported by NSF award AST-1156780.

  19. Electrostatic Phenomena on Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Calle, Carlos I.

    2017-02-01

    The diverse planetary environments in the solar system react in somewhat different ways to the encompassing influence of the Sun. These different interactions define the electrostatic phenomena that take place on and near planetary surfaces. The desire to understand the electrostatic environments of planetary surfaces goes beyond scientific inquiry. These environments have enormous implications for both human and robotic exploration of the solar system. This book describes in some detail what is known about the electrostatic environment of the solar system from early and current experiments on Earth as well as what is being learned from the instrumentation on the space exploration missions (NASA, European Space Agency, and the Japanese Space Agency) of the last few decades. It begins with a brief review of the basic principles of electrostatics.

  20. TeachAstronomy.com - Digitizing Astronomy Resources

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; Impey, C. D.; Austin, C.; Patikkal, A.; Paul, M.; Ganesan, N.

    2013-06-01

    Teach Astronomy—a new, free online resource—can be used as a teaching tool in non-science major introductory college level astronomy courses, and as a reference guide for casual learners and hobbyists. Digital content available on Teach Astronomy includes: a comprehensive introductory astronomy textbook by Chris Impey, Wikipedia astronomy articles, images from Astronomy Picture of the Day archives and (new) AstroPix database, two to three minute topical video clips by Chris Impey, podcasts from 365 Days of Astronomy archives, and an RSS feed of astronomy news from Science Daily. Teach Astronomy features an original technology called the Wikimap to cluster, display, and navigate site search results. Development of Teach Astronomy was motivated by steep increases in textbook prices, the rapid adoption of digital resources by students and the public, and the modern capabilities of digital technology. This past spring semester Teach Astronomy was used as content supplement to lectures in a massive, open, online course (MOOC) taught by Chris Impey. Usage of Teach Astronomy has been steadily growing since its initial release in August of 2012. The site has users in all corners of the country and is being used as a primary teaching tool in at least four states.

  1. Music and Astronomy Under the Stars 2009

    NASA Astrophysics Data System (ADS)

    Lubowich, D.

    2010-08-01

    Bring telescopes to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded astronomy outreach program at community parks during and after music concerts and outdoor family events—such as a Halloween Stars-Spooky Garden Walk. While there have been many astronomy outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience: music lovers who are attending summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500-16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience (Nassau and Suffolk Counties, New York) is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where over 5000 people participated in astronomy activities. The Amateur Observers' Society of New York assisted with the NY concerts and the Springfield STARS astronomy club assisted at Tanglewood. In 2009 over 15,000 people participated in astronomy

  2. NASA Planetary Science Division's Instrument Development Programs, PICASSO and MatISSE

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2016-01-01

    The Planetary Science Division (PSD) has combined several legacy instrument development programs into just two. The Planetary Instrument Concepts Advancing Solar System Observations (PICASSO) program funds the development of low TRL instruments and components. The Maturation of Instruments for Solar System Observations (MatISSE) program funds the development of instruments in the mid-TRL range. The strategy of PSD instrument development is to develop instruments from PICASSO to MatISSE to proposing for mission development.

  3. Significant achievements in the planetary geology program, 1981

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Editor)

    1981-01-01

    Recent developments in planetology research as reported at the 1981 NASA Planetary Geology Principal Investigators meeting are summarized. The evolution of the solar system, comparative planetology, and geologic processes active on other planets are considered. Galilean satellites and small bodies, Venus, geochemistry and regoliths, volcanic and aeolian processes and landforms, fluvial and periglacial processes, and planetary impact cratering, remote sensing, and cartography are discussed.

  4. An Inaugural Girl Scout Destinations Astronomy Camp

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; McCarthy, Donald W.; Wright, Joe; Wright, Rita; Mace, Mikayla; Floyd, Charmayne

    2017-10-01

    The University of Arizona (UA) conducted its first teenage Girl Scout Destinations Astronomy Camp. This program was preceded by 24 Leadership Workshops for Adult Girl Scout Leaders, initially supported by EPO funding from NIRCam for JWST. For five days in late June, 24 girls (ages 13-17 years) attended from 16 states. The Camp was led by UA astronomers and long-term educators. Representing Girl Scouts of the USA (GSUSA) were a husband/wife amateur astronomer team who are SOFIA Airborne Astronomy and NASA Solar System Ambassadors. Other leaders included a Stanford undergraduate engineering student who is a lifelong Girl Scout and Gold Award recipient and a recent UA Master’s degree science journalist. The Camp is a residential, hands-on “immersion” adventure in scientific exploration using telescopes in southern Arizona’s Catalina Mountains near Tucson. Under uniquely dark skies girls become real astronomers, operating telescopes (small and large) and associated technologies, interacting with scientists, obtaining images and quantitative data, investigating their own questions, and most importantly having fun actually doing science and building observing equipment. Girls achieve a basic understanding of celestial objects, how and why they move, and their historical significance, leading to an authentic understanding of science, research, and engineering. Girls can lead these activities back home in their own troops and councils, encouraging others to consider STEM field careers. These programs are supported by a 5-year NASA Collaborative Agreement, Reaching for the Stars: NASA Science for Girl Scouts (www.seti.org/GirlScoutStars), through the SETI Institute in collaboration with the UA, GSUSA, Girl Scouts of Northern California, the Astronomical Society of the Pacific, and Aries Scientific, Inc. The Girl Scout Destinations Astronomy Camp aligns with the GSUSA Journey: It’s Your Planet-Love It! and introduces the girls to some of the activities being

  5. Radio astronomy aspects of the NASA SETI Sky Survey

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.

    1986-01-01

    The application of SETI data to radio astronomy is studied. The number of continuum radio sources in the 1-10 GHz region to be counted and cataloged is predicted. The radio luminosity functions for steep and flat spectrum sources at 2, 8, and 22 GHz are derived using the model of Peacock and Gull (1981). The relation between source number and flux density is analyzed and the sensitivity of the system is evaluated.

  6. NASA's Asteroid Redirect Mission: A Robotic Boulder Capture Option for Science, Human Exploration, Resource Utilization, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar electric propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (4 - 10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (1 - 5 m) via robotic manipulators from the surface of a larger (100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well- characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense. Science: The RBC option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting

  7. Panel discussion: The future of IR astronomy

    NASA Technical Reports Server (NTRS)

    Caroff, Lawrence J.

    1995-01-01

    A panel discussion was held on the future of IR astronomy. The chairman gave a brief introduction to current planned programs for NASA and other space agencies, followed by short contributions from the six panel members on a variety of special topics. After that, a short question and answer session was held.

  8. Night Sky Network: A partnership with NASA, the ASP and Astronomical League

    NASA Astrophysics Data System (ADS)

    Chippindale, S.; Berendsen, M.

    2003-12-01

    In 2002, the Astronomical Society of the Pacific (ASP) surveyed amateur astronomers to determine their views and experiences with public outreach. The ultimate goal was to discover methods to support amateur astronomers in their outreach efforts. The survey discovered that they are looking for ready-made, themed materials, training in astronomy content and presentation skills, mentoring, and networking to enhance their astronomy events and support their ability to do educational outreach. Acting on these results and with funding from NASA, the ASP is forming a nationwide coalition of amateur astronomy clubs whose members bring the science, technology and inspiration of NASA's missions to the general public. The program consists of three primary components: outreach materials, training, and community building. Member-based astronomy clubs will receive kits of materials on various astronomy topics to supplement and enhance their events as well as a "professional development" component that includes training on how to use the materials and tips to strengthen their individual presentation skills. The Night Sky Network web site includes public pages and a user area where success stories and challenges can be exchanged, new information downloaded, and a support area for amateur astronomers doing outreach. We are currently testing our first kit, "PlanetQuest: The Search for Another Earth", in over two dozen clubs across the country. The second kit, "Big Bang to Black Holes" is under development for NASA's Structure and Evolution of the Universe Forum through the SAO and will be beta tested over the spring and summer of 2004. Sponsored and supported by NASA-Navigator Program, NASA-SAO Education Forum, the Astronomical Society of the Pacific, and the Astronomical League.

  9. NASA's Stratospheric Observatory for Infrared Astronomy 747SP shows off its new blue-and-white livery at L-3 Communications' Integrated Systems in Waco, Texas

    NASA Image and Video Library

    2006-09-25

    NASA's freshly painted Stratospheric Observatory for Infrared Astronomy (SOFIA) 747SP is shown at L-3 Communications Integrated Systems' facility in Waco, Texas, where major modifications and installation was performed. The observatory, which features a German-built 100-inch (2.5 meter) diameter infrared telescope weighing 20 tons, is approaching the flight test phase as part of a joint program by NASA and DLR Deutsches Zentrum fuer Luft- und Raumfahrt (German Aerospace Center). SOFIA's science and mission operations are being planned jointly by Universities Space Research Association (USRA) and the Deutsches SOFIA Institut (DSI). Once operational, SOFIA will be the world's primary infrared observatory during a mission lasting up to 20 years, as well as an outstanding laboratory for developing and testing instrumentation and detector technology.

  10. Inspiring the Next Generation: Astronomy Catalyzes K12 STEM Education

    NASA Astrophysics Data System (ADS)

    Borders, Kareen; Thaller, Michelle; Winglee, Robert; Borders, Kyla

    2017-06-01

    K-12 educators need effective and relevant astronomy professional development. NASA's Mission Science provides innovative and accessible opportunities for K-12 teachers. Science questions involve scale and distance, including Moon/Earth scale, solar system scale, and distance of objects in the universe. Teachers can gain an understanding of basic telescopes, the history of telescopes, ground and satellite based telescopes, and models of JWST Telescope. An in-depth explanation of JWST and Spitzer telescopes gave participants background knowledge for infrared astronomy observations. During teacher training, we taught the electromagnetic spectrum through interactive stations. The stations included an overview via lecture and power point, the use of ultraviolet beads to determine ultraviolet exposure, the study of lenticulars and diagramming of infrared data, looking at visible light through diffraction glasses and diagramming the data, protocols for using astronomy based research in the classroom, and infrared thermometers to compare environmental conditions around the observatory. An overview of LIDAR physics was followed up by a simulated LIDAR mapping of the topography of Mars.We will outline specific steps for K-12 infrared astronomy professional development, provide data demonstrating the impact of the above professional development on educator understanding and classroom use, and detail future plans for additional K-12 professional development.Funding was provided by Washington STEM, NASA, and the Washington Space Grant Consortium.

  11. Use of a multimission system for cost effective support of planetary science data processing

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1994-01-01

    JPL's Multimission Operations Systems Office (MOSO) provides a multimission facility at JPL for processing science instrument data from NASA's planetary missions. This facility, the Multimission Image Processing System (MIPS), is developed and maintained by MOSO to meet requirements that span the NASA family of planetary missions. Although the word 'image' appears in the title, MIPS is used to process instrument data from a variety of science instruments. This paper describes the design of a new system architecture now being implemented within the MIPS to support future planetary mission activities at significantly reduced operations and maintenance cost.

  12. Lunar LIGO and gravitational wave astronomy on the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lafave, Norman

    1994-01-01

    Gravitational wave astronomy continues to be one of the exploration concepts under consideration in NASA's strategy for conducting physics and astrophysics from the lunar surface. As with other proposals for new concepts in science and astronomy from the Moon, this one has a number of very interesting features which need to be developed further in order to assess them adequately. The possibility of robotic deployment of a gravitational wave antenna on the Moon in a triangular configuration and the question of closure on the third interferometer leg are discussed here.

  13. Planetary Science from NASA's WB-57 Canberra High Altitude Research Aircraft During the Great American Eclipse of 2017

    NASA Astrophysics Data System (ADS)

    Tsang, C.; Caspi, A.; DeForest, C. E.; Durda, D. D.; Steffl, A.; Lewis, J.; Wiseman, J.; Collier, J.; Mallini, C.; Propp, T.; Warner, J.

    2017-12-01

    The Great American Eclipse of 2017 provided an excellent opportunity for heliophysics research on the solar corona and dynamics that encompassed a large number of research groups and projects, including projects flown in the air and in space. Two NASA WB-57F Canberra high altitude research aircraft were launched from NASA's Johnson Space Center, Ellington Field into the eclipse path. At an altitude of 50,000ft, and outfitted with visible and near-infrared cameras, these aircraft provided increased duration of observations during eclipse totality, and much sharper images than possible on the ground. Although the primary mission goal was to study heliophysics, planetary science was also conducted to observe the planet Mercury and to search for Vulcanoids. Mercury is extremely challenging to study from Earth. The 2017 eclipse provided a rare opportunity to observe Mercury under ideal astronomical conditions. Only a handful of near-IR thermal images of Mercury exist, but IR images provide critical surface property (composition, albedo, porosity) information, essential to interpreting lower resolution IR spectra. Critically, no thermal image of Mercury currently exists. By observing the nightside surface during the 2017 Great American Eclipse, we aimed to measure the diurnal temperature as a function of local time (longitude) and attempted to deduce the surface thermal inertia integrated down to a few-cm depth below the surface. Vulcanoids are a hypothesized family of asteroids left over from the formation of the solar system, in the dynamically stable orbits between the Sun and Mercury at 15-45 Rs (4-12° solar elongation). Close proximity to the Sun, plus their small theoretical sizes, make Vulcanoid searches rare and difficult. The 2017 eclipse was a rare opportunity to search for Vulcanoids. If discovered these unique, highly refractory and primordial bodies would have a significant impact on our understanding of solar system formation. Only a handful of deep

  14. The Astronomy Genealogy Project: A Progress Report

    NASA Astrophysics Data System (ADS)

    Tenn, Joseph S.

    2016-01-01

    Although it is not yet visible, much progress has been made on the Astronomy Genealogy Project (AstroGen) since it was accepted as a project of the Historical Astronomy Division (HAD) three years ago. AstroGen will list the world's astronomers with information about their highest degrees and advisors. (In academic genealogy, your thesis advisor is your parent.) A small group (the AstroGen Team) has compiled a database of approximately 12,000 individuals who have earned doctorates with theses (dissertations) on topics in astronomy, astrophysics, cosmology, or planetary science. These include nearly all those submitted in Australia, Canada, the Netherlands, and New Zealand, and most of those in the United States (all through 2014 for most universities and all through 1990 for all). We are compiling more information than is maintained by the Mathematics Genealogy Project (MGP). In addition to name, degree, university, year of degree, and thesis advisor(s), all provided by MGP as well, we are including years of birth and death when available, mentors in addition to advisors, and links to the thesis when it is online and to the person's web page or obituary, when we can find it. We are still struggling with some questions, such as the boundaries of inclusion and whether or not to include subfields of astronomy. We believe that AstroGen will be a valuable resource for historians of science as well as a source of entertainment for those who like to look up their academic family trees. A dedicated researcher following links from AstroGen will be able to learn quite a lot about the careers of astronomy graduates of a particular university, country, or era. We are still seeking volunteers to enter the graduates of one or more universities.

  15. The Silicon Valley Astronomy Lectures: Ongoing Institutional Cooperation for Public Outreach

    NASA Astrophysics Data System (ADS)

    Fraknoi, A.

    2015-11-01

    For the last 15 years (with one year off for good behavior), four astronomical institutions in the San Francisco Bay Area have cooperated to produce a major evening public-lecture series on astronomy and space science topics. Co-sponsored by Foothill College's Astronomy Program, the Astronomical Society of the Pacific, the SETI Institute, and NASA Ames Research Center, the six annual Silicon Valley Astronomy Lectures have drawn audiences ranging from 450 to 950 people, and represent a significant opportunity to get information about modern astronomical research out to the public. Past speakers have included Nobel Laureate Arno Penzias, Vera Rubin, Frank Drake, Sandra Faber, and other distinguished scientists.

  16. Benefit assessment of NASA space technology goals

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The socio-economic benefits to be derived from system applications of space technology goals developed by NASA were assessed. Specific studies include: electronic mail; personal telephone communications; weather and climate monitoring, prediction, and control; crop production forecasting and water availability; planetary engineering of the planet Venus; and planetary exploration.

  17. NASA Video Catalog

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Subject Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  18. Radial Velocity Detection of Extra-Solar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported four closely related research programs at The University of Texas at Austin: 1) The McDonald Observatory Planetary Search (MOPS) Program, using the McDonald Observatory 2.7m Harlan Smith telescope and its 2dcoude spectrometer, 2) A high-precision radial-velocity survey of Hyades dwarfs, using the Keck telescope and its HIRES spectrograph, 3) A program at McDonald Observatory to obtain spectra of the parent stars of planetary systems at R = 210,000, and 4) the start of high precision radial velocity surveys using the Hobby-Eberly Telescope. The most important results from NASA support of these research programs are described. A list of all papers published under support of this grant is included at the end.

  19. PARTNeR: A Tool for Outreach and Teaching Astronomy

    NASA Astrophysics Data System (ADS)

    Gallego, Juan Ángel Vaquerizo; Fuertes, Carmen Blasco

    PARTNeR is an acronym for Proyecto Académico con el Radio Telescopio de NASA en Robledo (Academic Project with the NASA Radio Telescope at Robledo). It is intended for general Astronomy outreach and, in particular, radioastronomy, throughout Spanish educational centres. To satisfy this target, a new educational material has been developed in 2007 to help not only teachers but also students. This material supports cross curricular programs and provides with the possibility of including Astronomy in related subjects like Physics, Chemistry, Technology, Mathematics or even English language. In this paper, the material that has been developed will be shown in detail and how it can be adapted to the disciplines from 4th year ESO (Enseñanza Secundaria Obligatoria-Compulsory Secondary Education) to High School. The pedagogic results obtained for the first year it has been implemented with students in classrooms will also be presented.

  20. International Planetary Data Alliance (IPDA) Information Model

    NASA Technical Reports Server (NTRS)

    Hughes, John Steven; Beebe, R.; Guinness, E.; Heather, D.; Huang, M.; Kasaba, Y.; Osuna, P.; Rye, E.; Savorskiy, V.

    2007-01-01

    This document is the third deliverable of the International Planetary Data Alliance (IPDA) Archive Data Standards Requirements Identification project. The goal of the project is to identify a subset of the standards currently in use by NASAs Planetary Data System (PDS) that are appropriate for internationalization. As shown in the highlighted sections of Figure 1, the focus of this project is the Information Model component of the Data Architecture Standards, namely the object models, a data dictionary, and a set of data formats.

  1. Episodes from the Early History of Astronomy

    NASA Astrophysics Data System (ADS)

    Aaboe, Asger

    The author does not attempt to give a general survey of early astronomy; rather, he chooses to present a few "episodes" and treats them in detail. However, first he provides the necessary astronomical background in his descriptive account of what you can see when you look at the sky with the naked eye, unblinkered by received knowledge, but with curiosity and wit. Chapter 1 deals with the arithmetical astronomy of ancient Mesopotamia where astronomy first was made an exact science. Next are treated Greek geometrical models for planetary motion, culminating in Ptolemy's equant models in his Almagest. Ptolemy does not assign them absolute size in this work, but, as is shown here, if we scale the models properly, they will yield good values, not only of the directions to the planets, but of the distances to them, as well. Thus one can immediately find the dimensions of the Copernican System from parameters in the Almagest - we have evidence that Copernicus did just that. Further, Islamic astronomers' modifications of Ptolemy's models by devices using only uniform circular motion are discussed, as are Copernicus's adoption of some of them. finally, it is made precise which bothersome problem was resolved by the heliocentric hypothesis, as it was by the Tychonic arrangement. Next, the Ptolemaic System, the first cosmological scheme to incorporate quantitative models, is described as Ptolemy himself did it in a recenlty recovered passage from his Planetary Hypotheses. Here he does assign absolute size to his models in order to fit them into the snugly nested spherical shells that made up his universe. This much maligned system was, in fact, a harmonious construct that remained the basis for how educated people thought of their world for a millennium and a half. Finally, after a brief review of the geometry of the ellipse, the author gives an elementary derivation of Kepler's equation, and shows how Kepler solved it, and further proves that a planet moves very nearly

  2. Capturing Public Interest in Astronomy through Art and Music

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Sabraw, J.; Salgado, J. F.; Statler, T.; Summers, F.

    2008-11-01

    This is a summary of our 90-minute International Year of Astronomy (IYA) symposium workshop about engaging greater public interest in astronomy during the International Year of Astronomy 2009 through art and music. The session focused on: (i) plans for visually interesting and challenging astronomy presentations to connect with an audience at venues such as museums, concert halls, etc that might be apprehensive about science but open to creative experiences; (ii) the nuts-and-bolts of turning creative ideas into exhibits or visualizations; (iii) balancing scientific accuracy with artistic license; and (iv) how scientists, Education and Public Outreach (EPO) professionals, artists, musicians et al. can bridge the ``two cultures''---starting and sustaining multi-disciplinary collaborations, articulating expectations, and building synergy. The presenters shared with the EPO community some of the astronomy-art projects and resources that we have been developing for the IYA through a variety of collaborations. Our portfolios include state-of-the-art astronomy visualizations and tools, music videos and podcasts that highlight stunning images from NASA's Great Observatories; a video suite of astronomical images that can accompany live performances of Holst's The Planets and Mussorgsky's Pictures at an Exhibition; and SCALE, a multicomponent traveling art installation including the largest pastel drawing of the Milky Way.

  3. Planetary protection implementation on Mars Reconnaissance Orbiter mission

    NASA Astrophysics Data System (ADS)

    Barengoltz, J.; Witte, J.

    2008-09-01

    In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach. Cleaning alone for a large orbiter like MRO is insufficient to achieve the bio-burden threshold requirement in NASA PP requirements. The burden requirement for an orbiter includes spores encapsulated in non-metallic materials and trapped in joints, as well as located on all internal and external surfaces (the total spore burden). Total burden estimates are dominated by the mated and encapsulated burden. The encapsulated burden cannot be cleaned. The total burden of a smaller orbiter (e.g., Mars Odyssey) likely could not have met the requirement by cleaning; for the large MRO it is clearly impossible. Of course, a system-level partial sterilization, with its attendant costs and system design issues, could have been employed. In the approach taken by the MRO Project, hardware which will burn up (completely vaporize or ablate) before reaching the surface or will at least attain high temperature (500 °C for 0.5 s or more) due to entry heating was exempt from burden accounting. Thus the bio-burden estimate was reduced. Lockheed Martin engineers developed a process to perform what is called breakup and burn-up (B&B) analysis.Lockheed Martin Corporation.2 The use of the B&B analysis to comply with the spore burden requirement is

  4. NASA-Ames vertical gun

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  5. Atomic Data Needs for X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A. (Editor); Kallman, Timothy R. (Editor); Pradhan, Anil K. (Editor)

    2000-01-01

    This publication contains written versions of most of the invited talks presented at the workshop on "Atomic Data Needs for X-ray Astronomy," which was held at NASA's Goddard Space Flight Center on December 16-17, 1999. The workshop was divided into five major areas: Observational Spectroscopy, Theoretical Calculations of Atomic Data, Laboratory Measurements of Atomic Parameters, Spectra Modeling, and Atomic Databases. These proceedings are expected to be of interest to producers and users of atomic data. Moreover, the contributions presented here have been written in a way that can be used by a general audience of scientists and graduate students in X-ray astronomy, modelling, and in computational and experimental atomic physics.

  6. Planetary Habitability

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1997-01-01

    This grant was entitled 'Planetary Habitability' and the work performed under it related to elucidating the conditions that lead to habitable, i.e. Earth-like, planets. Below are listed publications for the past two and a half years that came out of this work. The main thrusts of the research involved: (1) showing under what conditions atmospheric O2 and O3 can be considered as evidence for life on a planet's surface; (2) determining whether CH4 may have played a role in warming early Mars; (3) studying the effect of varying UV levels on Earth-like planets around different types of stars to see whether this would pose a threat to habitability; and (4) studying the effect of chaotic obliquity variations on planetary climates and determining whether planets that experienced such variations might still be habitable. Several of these topics involve ongoing research that has been carried out under a new grant number, but which continues to be funded by NASA's Exobiology program.

  7. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2005-05-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses, classes for undergraduate majors, and High Schools. Here we briefly describe a few of the more popular tools. The Life of the Sun (New!): The history of the Sun is animated as a movie, showing students how the size and color of our star has evolved and will evolve in time. Animated Orbits of Planets and Moons: The orbital motions of planets, moons, asteroids, and comets are animated at their correct relative speeds in accurate to-scale drawings. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country of impact (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Astronomical Distances: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Funding for the Astronomy Workshop is provided by a NASA EPO grant.

  8. Planetary protection policy (U.S.A.)

    NASA Technical Reports Server (NTRS)

    Rummel, John D.

    1992-01-01

    Through existing treaty obligations of the United States, NASA is committed to exploring space while avoiding biological contamination of the planets, and to the protection of the earth against harm from materials returned from space. Because of the similarities between Mars and earth, plans for the exploration of Mars evoke discussions of these Planetary Protection issues. U.S. Planetary Protection Policy will be focused on the preservation of these goals in an arena that will change with the growth of scientific knowledge about the Martian environment. Early opportunities to gain the appropriate data will be used to guide later policy implementation. Because human presence on Mars will result in the end of earth's separation from the Martian environment, it is expected that precursor robotic missions will address critical planetary protection concerns before humans arrive.

  9. International Agreement on Planetary Protection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The maintenance of a NASA policy, is consistent with international agreements. The planetary protection policy management in OSS, with Field Center support. The advice from internal and external advisory groups (NRC, NAC/Planetary Protection Task Force). The technology research and standards development in bioload characterization. The technology research and development in bioload reduction/sterilization. This presentation focuses on: forward contamination - research on the potential for Earth life to exist on other bodies, improved strategies for planetary navigation and collision avoidance, and improved procedures for sterile spacecraft assembly, cleaning and/or sterilization; and backward contamination - development of sample transfer and container sealing technologies for Earth return, improvement in sample return landing target assessment and navigation strategy, planning for sample hazard determination requirements and procedures, safety certification, (liaison to NEO Program Office for compositional data on small bodies), facility planning for sample recovery system, quarantine, and long-term curation of 4 returned samples.

  10. Astronomy Education Review: A Five-Year Progress Report

    NASA Astrophysics Data System (ADS)

    Fraknoi, Andrew; Wolff, S.

    2006-12-01

    For the last five years, we have been publishing (with support from NOAO, NASA, the AAS, and the ASP) an on-line journal/magazine called Astronomy Education Review, focusing on astronomy and space-science education and outreach. It can be found at: http://aer.noao.edu This project, the first of its kind in our field, has made it possible to elaborate, encourage, and support -in one convenient location -the literature of astronomy education research, together with discussions of some of the key issues that professionals in the field are grappling with. (In this sense, the journal resembles Science or Nature.) We present statistics about the 164 papers and articles published in the first nine issues of the journal and about its international readership. We also discuss the future plans for this publication and the role that the AAS community can play in supporting it.

  11. A bibliography of planetary geology principal investigators and their associates, 1979 - 1980

    NASA Technical Reports Server (NTRS)

    Lettvin, E. (Compiler); Boyce, J. M. (Compiler)

    1980-01-01

    This bibliography cites 698 reports and articles published from May 1979 through May 1980 by principal investigators and associates who received support from NASA's Office of Space Science, as part of the Planetary Geology program. Entries are arranged in the following categories: (1) general interest; (2) solar system, asteroids, comets, and satellites; (3) structure, tectonics, and stratigraphy; (4) regolith and volatiles; (5) volcanism; (6) impact craters; (7) Eolian glacial An author index is provided. The bibliography serves as a companion document to NASA TM 81776, "Reports of Planetary Geology Programs, 1979-1980".

  12. Theoretical and observational planetary physics

    NASA Technical Reports Server (NTRS)

    Caldwell, J.

    1986-01-01

    This program supports NASA's deep space exploration missions, particularly those to the outer Solar System, and also NASA's Earth-orbital astronomy missions, using ground-based observations, primarily with the NASA IRTF at Mauna Kea, Hawaii, and also with such instruments as the Kitt Peak 4 meter Mayall telescope and the NRAO VLA facility in Socorro, New Mexico. An important component of the program is the physical interpretation of the observations. There were two major scientific discoveries resulting from 8 micrometer observations of Jupiter. The first is that at that wavelength there are two spots, one near each magnetic pole, which are typically the brightest and therefore warmest places on the planet. The effect is clearly due to precipitating high energy magnetospheric particles. A second ground-based discovery is that in 1985, Jupiter exhibited low latitude (+ or - 18 deg.) stratospheric wave structure.

  13. Highlights of Astronomy, Volume 14

    NASA Astrophysics Data System (ADS)

    van der Hucht, Karel

    2007-08-01

    Preface Karel A. van der Hucht; Part I. Invited Discourses: Part II. Joint Discussions: 1. Particle acceleration - from Solar System to AGN Marian Karlicky and John C. Brown; 2. Pulsar emission and related phenomena Werner Becker, Janusz A. Gil and Bronislaw Rudak; 3. Solar activity regions and magnetic structure Debi Prasad Choudhary and Michal Sobotka; 4. The ultraviolet universe: Stars from birth to death Ana I. Gomez de Castro and Martin A. Barstow; 5. Calibrating the top of the stellar M-L relationship Claus Leitherer, Anthony F. J. Moat and Joachim Puls; 6. Neutron stars and black holes in star clusters Frederic A. Rasio; 7. The Universe at z > 6 Daniel Schaerer and Andrea Ferrara; 8. Solar and stellar activity cycles Klaus G. Strassmeier and Alexander Kosovichev; 9. Supernovae: One millennium after SN 1006 P. Frank Winkler, Wolfgang Hillebrandt and Brian P. Schmidt; 10. Progress in planetary exploration missions Guy J. Consolmagno; 11. Pre-solar grains as astrophysical tools Anja C. Andersen and John C. Lattanzio; 12. Long wavelength astrophysics T. Joseph W. Lazio and Namir E. Kassim; 13. Exploiting large surveys for galactic astronomy Christopher J. Corbally, Coryn A. L. Bailer-Jones, Sunetra Giridhar and Thomas H. Lloyd Evans; 14. Modeling dense stellar systems Alison I. Sills, Ladislav Subr and Simon F. Portegies Zwart; 15. New cosmology results from the Spitzer Space Telescope George Helou and David T. Frayer; 16. Nomenclature, precession and new models in fundamental astronomy Nicole Capitaine, Jan Vondrak & James L. Hilton; 17. Highlights of recent progress in seismology of the Sun and Sun-like stars John W. Leibacher and Michael J. Thompson; Part III. Special Sessions: SpS 1. Large astronomical facilities of the next decade Gerard F. Gilmore and Richard T. Schilizzi; SpS 2. Innovation in teaching and learning astronomy methods Rosa M. Ros and Jay M. Pasachoff; SpS 3. The Virtual Observatory in action: New science, new technology and next

  14. Teaching Planetary Science as Part of the Search for Extraterrestrial Intelligence (SETI)

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Greenberg, Adam H.

    2017-10-01

    In Spring 2016 and 2017, UCLA offered a course titled "EPSS C179/279 - Search for Extraterrestrial Intelligence: Theory and Applications". The course is designed for advanced undergraduate students and graduate students in the science, technical, engineering, and mathematical fields. Each year, students designed an observing sequence for the Green Bank telescope, observed known planetary systems remotely, wrote a sophisticated and modular data processing pipeline, analyzed the data, and presented their results. In 2016, 15 students participated in the course (9U, 5G; 11M, 3F) and observed 14 planetary systems in the Kepler field. In 2017, 17 students participated (15U, 2G; 10M, 7F) and observed 10 planetary systems in the Kepler field, TRAPPIST-1, and LHS 1140. In order to select suitable targets, students learned about planetary systems, planetary habitability, and planetary dynamics. In addition to planetary science fundamentals, students learned radio astronomy fundamentals, collaborative software development, signal processing techniques, and statistics. Evaluations indicate that the course is challenging but that students are eager to learn because of the engrossing nature of SETI. Students particularly value the teamwork approach, the observing experience, and working with their own data. The next offering of the course will be in Spring 2018. Additional information about our SETI work is available at seti.ucla.edu.

  15. Astronomy Outreach for Special Needs Children

    NASA Astrophysics Data System (ADS)

    Lubowich, D.

    2008-06-01

    While there are many outreach programs for the public and for children, there are few programs for special needs children. I describe a NASA-STScI-IDEAS funded outreach program I created for children using a telescope (including remote and robotic observations), hands-on astronomy demonstrations (often with edible ingredients). The target audience is seriously ill children with special medical needs and their families who are staying at the Long Island Ronald McDonald House in conjunction the children's surgery and medical treatments at local hospitals. These educational activities help children and their families learn about astronomy while providing a diversion to take their minds off their illness during a stressful time. A related program for hospitalized children has been started at the Hagedorn Pediatric Inpatient Center at Winthrop University Hospital.

  16. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-01-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  17. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2012-05-01

    {\\bf The Astronomy Workshop} (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe a few of the available tools. {\\bf Solar Systems Visualizer}: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. {\\bf Solar System Calculators}: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed. {\\bf Stellar Evolution}: The "Life of the Sun" tool animates the history of the Sun as a movie, showing students how the size and color of our star has evolved and will evolve over billions of years. In "Star Race," the user selects two stars of different masses and watches their evolution in a split-screeen format that emphasizes the great differences in stellar lifetimes and fates.

  18. Radial Velocity Detection of Extra-Solar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported four closely related research programs at The University of Texas at Austin: 1) The McDonald Observatory Planetary Search (MOPS) Program, using the McDonald Observatory 2.7m Harlan Smith telescope and its 2dcoud6 spectrometer, 2) A high-precision radial-velocity survey of Hyades dwarfs, using the Keck telescope and its HIRES spectrograph, 3) A program at McDonald Observatory to obtain spectra of the parent stars of planetary systems at R = 210,000, and 4) the start of high precision radial velocity surveys using the Hobby-Eberly Telescope. The most important results from NASA support of these research programs are described below. A list of all papers published under support of this grant is included at the end.

  19. NASA supported research programs

    NASA Technical Reports Server (NTRS)

    Libby, W. F.

    1975-01-01

    A summary of the scientific NASA grants and achievements accomplished by the University of California, Los Angles, is presented. The development of planetary and space sciences as a major curriculum of the University, and statistical data on graduate programs in aerospace sciences are discussed. An interdisciplinary approach to aerospace science education is emphasized. Various research programs and scientific publications that are a direct result of NASA grants are listed.

  20. Astronomy in the City for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.; Garc, Beatriz

    2016-10-01

    Astronomy is part of our culture. Astronomy cannot be isolated in a classroom, it has to be integrated in the normal life of teachers and students. ``Astronomy in the city'' is an important part of NASE (Network for Astronomy School Education) (Ros & Hemenway 2012). In each NASE course we introduce a ``working group session'' chaired by a local expert in cultural astronomy. The chair introduces several examples of astronomy in their city and after that, the participants have the opportunity to discuss and mention several similar examples. After this session all participants visit one or two sites proposed and introduced by the chair. After more than 5 years using this method we visited and discovered several examples of astronomy in the city: •Astronomy in ancient typical clothes. •Archaeological temples oriented according to the sunrise or set. •Petroglyphs with astronomical meaning. •Astronomy in monuments. •Sundials. •Oriented Colonial churches. •Astronomy in Souvenirs. In any case, teachers and students discover that Astronomy is part of their everyday life. They can take into account the Sun's path when they park their car or when they take a bus ``what is the best part in order to be seat in the shadow during the journey?'' The result is motivation to go with ``open eyes'' when they are in the street and they try to get more and more information about their surroundings. In summary, one of the main activities is to introduce local cultural aspects in NASE astronomy courses. The participants can discover a new approach to local culture from an astronomical point of view.

  1. Catalyzing Effective Science Education: Contributions from the NASA Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Bartolone, L.; Eisenhamer, B.; Lawton, B. L.; Schultz, G. R.; Peticolas, L.; Schwerin, T.; Shipp, S.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-06-01

    Advancing scientific literacy and strengthening the Nation’s future workforce through stimulating, informative, and effective learning experiences are core principles of the NASA Science Mission Directorate (SMD) education and public outreach (E/PO) program. To support and coordinate its E/PO community in offering a coherent suite of activities and experiences that effectively meet the needs of the education community, NASA SMD has created four Science Education and Public Outreach Forums (Astrophysics, Planetary Science, Heliophysics, Earth Science). Forum activities include: professional development to raise awareness of the existing body of best practices and educational research; analysis and cataloging of SMD-funded education materials with respect to AAAS Benchmarks for Science Literacy; Working Groups that assemble needs assessment and best practices data relevant to Higher Education, K-12 Formal Education, and Informal Science Education audiences; and community collaborations that enable SMD E/PO community members to develop new partnerships and to learn and share successful strategies and techniques. This presentation will highlight examples of Forum and community-based activities related to astronomy education and teacher professional development, within the context of the principles articulated within the NRC Framework for K-12 Science Education and the Next Generation Science Standards. Among these are an emerging community of practice for K-12 educators and online teacher professional development and resources that incorporate misconception research and authentic experiences with NASA Astrophysics data.

  2. Education and Public Outreach for NASA's EPOXI Mission.

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Crow, C. A.; Behne, J.; Brown, R. N.; Counley, J.; Livengood, T. A.; Ristvey, J. D.; Warner, E. M.

    2009-09-01

    NASA's EPOXI mission is reusing the Deep Impact (DI) flyby spacecraft to study comets and extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission extrasolar planets transiting their parent stars were observed to gain further knowledge and understanding of planetary systems. Observations of Earth also allowed for characterization of Earth as an extrasolar planet. A movie of a lunar transit of the Earth created from EPOCh images and links to existing planet finding activities from other NASA missions are available on the EPOXI website. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comet properties and formation by observing comet Hartley 2 in November 2010. The EPOXI Education and Public Outreach (E/PO) program is both creating new materials and updating and modifying existing Deep Impact materials based on DI mission results. Comparing Comets is a new educational activity under development that will guide students in conducting analyses of comet surface features similar to those the DIXI scientists will perform after observing comet Hartley 2. A new story designed to stimulate student creativity was developed in alignment with national educational standards. EPOXI E/PO also funded Family Science Night (FSN), a program bringing together students, families, and educators for an evening at the National Air and Space Museum in Washington, DC. FSN events include time for families to explore the museum, a presentation by a space scientist, and an astronomy themed IMAX film. Nine events were held during the 2008-2009 school year with a total attendance of 3,145 (attendance since inception reached 44,732). Half of attendance is reserved for schools with high percentages of underrepresented minorities. EPOXI additionally offers a bi-monthly newsletter to keep the public, teachers, and space enthusiasts updated on current mission activities. For more

  3. Erik Lindbergh christens NASA's 747 Clipper Lindbergh with a special commemorative concoction representing local, NASA, and industry partners

    NASA Image and Video Library

    2007-05-21

    Erik Lindbergh christens NASA's 747 Clipper Lindbergh, the Stratospheric Observatory for Infrared Astronomy, with a special commemorative concoction representing local, NASA, and industry partners. The liquid consisted of a small amount of California wine representing NASA Dryden where the aircraft will be stationed, a small amount of Dr. Pepper (a Waco, TX invention), a quantity of French bottled water (to symbolize Charles Lindbergh's flight to Paris on this date), and a dash of German beer to represent the SOFIA German industry partners.

  4. NASA in the Park, 2018

    NASA Image and Video Library

    2018-06-20

    NASA in the Park on June 16 in Huntsville featured more than 60 exhibits and demonstrations by NASA experts, as well as performances by Marshall musicians, educational opportunities, games and hands-on activities for all ages. Brian Mitchell of Marshall’s Planetary Mission Planning Office gives attendees an opportunity to learn about Science missions managed by his office.

  5. Pre-College Astronomy Education in the United States in the Twentieth Century

    NASA Astrophysics Data System (ADS)

    Bishop, J. E.

    2003-03-01

    The nature of pre-college astronomy education in the United States can be divided into several periods: 1900 to about 1955, 1955 to about 1980, and about 1980 to 2000. Until the Space Age, astronomy in elementary and secondary schools was minimal, a situation influenced in great part of the work of the National Education Association Committee of Ten in 1892. With the launch of the Russian Sputnik in November 1957, a rapid response of concern and action took place to improve science and math education, including astronomy. Efforts by small planetariums and the National Aeronautics and Space Administration (NASA) played large roles in re-introducing astronomy back into schools in the 1960s and 1970s. During the last decades, educational-research-based astronomy programs and a nationwide effort to improve astronomy and other science education were important at all pre-college levels. Although the basic astronomical literacy of students leaving secondary school at the close of the century needed improvement, awareness of astronomical discoveries had increased since the opening of the Space Age.

  6. Capturing Public Interest in Astronomy through Art and Music

    NASA Astrophysics Data System (ADS)

    Sharma, Mangala; Sabraw, J.; Salgado, J. F.; Statler, T. S.; Summers, F.

    2008-05-01

    Our 90-minute interactive panel and brainstorming session is about engaging greater public interest in astronomy during IYA 2009 through art and music. This session will focus on: (i) plans for visually interesting and challenging astronomy presentations (examples below) to connect with an audience at venues such as museums, concert halls, etc. that might be apprehensive about science but open to creative experiences (ii) ways to capitalize on interest generated through the arts to inspire lifelong appreciation of astronomy (iii) the nuts-and-bolts of turning creative ideas into exhibits or visualizations (iv) balancing scientific accuracy with artistic license (v) ways to publicize and disseminate programs at the interface of astronomy and the fine arts; and (vi) how scientists, E/PO professionals, artists, musicians et al. can bridge the "two cultures" - starting and sustaining multi-disciplinary collaborations, articulating expectations, and building synergy. The presenters will share with the E/PO community some of the astronomy-art projects and resources that we have been developing for the IYA through a variety of collaborations. Our portfolios include state-of-the-art astronomy visualizations and tools, music videos and podcasts that highlight stunning images from NASA's Great Observatories; a video suite of Solar System images that can accompany live performances of Holst's The Planets; and SCALE: a multicomponent traveling art installation including the largest pastel drawing of the Milky Way.

  7. NASA's Discovery Program

    NASA Astrophysics Data System (ADS)

    Kicza, Mary; Bruegge, Richard Vorder

    1995-01-01

    NASA's Discovery Program represents an new era in planetary exploration. Discovery's primary goal: to maintain U.S. scientific leadership in planetary research by conducting a series of highly focused, cost effective missions to answer critical questions in solar system science. The Program will stimulate the development of innovative management approaches by encouraging new teaming arrangements among industry, universities and the government. The program encourages the prudent use of new technologies to enable/enhance science return and to reduce life cycle cost, and it supports the transfer of these technologies to the private sector for secondary applications. The Near-Earth Asteroid Rendezvous and Mars Pathfinder missions have been selected as the first two Discovery missions. Both will be launched in 1996. Subsequent, competitively selected missions will be conceived and proposed to NASA by teams of scientists and engineers from industry, academia, and government organizations. This paper summarizes the status of Discovery Program planning.

  8. Music and Astronomy Under the Stars - 2009 Update

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald A.

    2010-01-01

    Bring telescope to where the people are! Music and Astronomy Under the Stars is a three-year NASA-funded outreach program at parks during and after concerts and family events - a Halloween Spooky Garden Walk. While there have been many outreach activities and telescope observations at city sidewalks and parks, this program targets a completely different audience - music lovers who attend summer concerts held in community parks. These music lovers who may never have visited a science museum, planetarium, or star party are exposed to telescope observations and astronomy information with no additional travel costs. Music and Astronomy Under the Stars increased awareness, engagement, and interest in astronomy at classical, pop, rock, and ethnic music concerts. This program includes solar observing before the concerts, telescope observations including a live image projection system, an astronomical video presentation, and astronomy banners/posters. Approximately 500 - 16,000 people attended each event and 25% to 50% of the people at each event participated in the astronomy program. This program also reached underrepresented and underserved groups (women, minorities, older adults). The target audience is 2,900,000 people, which is larger than combined population of Atlanta, Boston, Denver, Minneapolis, and San Francisco. Although eleven events were planned in 2009, two were canceled due to rain and our largest event, the NY Philharmonic in the Park (attended by 67,000 people in 2008), was cancelled for financial reasons. Our largest event in 2009 was the Tanglewood Music Festival, Lenox MA, attended by 16,000 people where 5000 people participated in astronomy activities. The Amateur Observers' Society of NY assisted with the NY concerts and the Springfield STARS club assisted at Tanglewood. 1500 people looked through telescopes at the Halloween program (6000 saw the posters). In 2009 over 15,000 people participated in these astronomy activities which were attended by

  9. Enhancing the Radio Astronomy Capabilities at NASA's Deep Space Network

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Teitelbaum, Lawrence; Franco, Manuel M.; Garcia-Miro, Cristina; Horiuchi, Shinji; Jacobs, Christopher; Kuiper, Thomas; Majid, Walid

    2015-08-01

    NASA's Deep Space Network (DSN) is well known for its role in commanding and communicating with spacecraft across the solar system that produce a steady stream of new discoveries in Astrophysics, Heliophysics, and Planetary Science. Equipped with a number of large antennas distributed across the world, the DSN also has a history of contributing to a number of leading radio astronomical projects. This paper summarizes a number of enhancements that are being implemented currently and that are aimed at increasing its capabilities to engage in a wide range of science observations. These enhancements include* A dual-beam system operating between 18 and 27 GHz (~ 1 cm) capable of conducting a variety of molecular line observations, searches for pulsars in the Galactic center, and continuum flux density (photometry) of objects such as nearby protoplanetary disks* Enhanced spectroscopy and pulsar processing backends for use at 1.4--1.9 GHz (20 cm), 18--27 GHz (1 cm), and 38--50 GHz (0.7 cm)* The DSN Transient Observatory (DTN), an automated, non-invasive backend for transient searching* Larger bandwidths (>= 0.5 GHz) for pulsar searching and timing; and* Improved data rates (2048 Mbps) and better instrumental response for very long baseline interferometric (VLBI) observations with the new DSN VLBI processor (DVP), which is providing unprecedented sensitivity for maintenance of the International Celestial Reference Frame (ICRF) and development of future versions.One of the results of these improvements is that the 70~m Deep Space Station 43 (DSS-43, Tidbinbilla antenna) is now the most sensitive radio antenna in the southern hemisphere. Proposals to use these systems are accepted from the international community.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics & Space Administration.

  10. Lessons from X-Ray Astronomy Applied to HST

    NASA Astrophysics Data System (ADS)

    Schreier, Ethan J.; Doxsey, Rodger

    2000-09-01

    Riccardo Giacconi, probably more than any other single individual, established x-ray astronomy as an essential sub-discipline of astronomy. Its incorporation into the mainstream of astronomy was substantially completed with the Einstein Observatory which, with its imaging capabilities and its Guest Observer program, invited non-x-ray astronomers to use the facility. It was therefore perhaps fitting that when optical astronomy moved into space, with the Hubble Space Telescope, it called on Riccardo to oversee the transition. He brought with him lessons about building and operating space observatories, experience working with NASA on large science projects, a business-like approach to attacking tasks, and his unique vision and abilities. Among the guiding principles he brought to HST were: involvement of a strong scientific research staff in all aspects of the program; establishment of a vital, active research environment; attention to "science system engineering" and applying a rational scientific approach to problems; creation of an atmosphere of "ruthless intellectual honesty" and maintenance of the highest regard for process. These formed the basis both for attacking the problems of HST, and for building an Institute to do so.

  11. Robots and Humans in Planetary Exploration: Working Together?

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Today's approach to human-robotic cooperation in planetary exploration focuses on using robotic probes as precursors to human exploration. A large portion of current NASA planetary surface exploration is focussed on Mars, and robotic probes are seen as precursors to human exploration in: Learning about operation and mobility on Mars; Learning about the environment of Mars; Mapping the planet and selecting landing sites for human mission; Demonstration of critical technology; Manufacture fuel before human presence, and emplace elements of human-support infrastructure

  12. Modifying your Physics and Astronomy Courses to Incorporate Heliophysics - Some Examples

    NASA Astrophysics Data System (ADS)

    Cebulka, Rebecca; Cox, Amanda; Rodriguez Garrigues, Alvar; Hoshino, Laura; Fitzgerald, Cullen; Montgomery, M.; Al-Rawi, Ahlam N.; Velissaris, Christos; Flitsiyan, Elena

    2016-01-01

    Although physics and astronomy courses include heliophysics topics, students still leave the courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program, UCF Physics has modified courses such as SCALE-UP: Electricity and Magnetism for Engineers and Scientists, Astronomy (for non-science majors), and Astrophysics to include heliophysics topics. In this poster, we present the previous labs, the student-modified labs to incorporate heliophysics, and we present student learning statistics.

  13. Reports of Planetary Geology and Geophysics Program, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Abstracts of reports from NASA's Planetary Geology and Geophysics Program are presented. Research is documented in summary form of the work conducted. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  14. On-Board Perception System For Planetary Aerobot Balloon Navigation

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Scheid, Robert E.; T. Salomon, Phil

    1996-01-01

    NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.

  15. Get Involved in Planetary Discoveries through New Worlds, New Discoveries

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Shipp, S. S.; Halligan, E.; Dalton, H.; Boonstra, D.; Buxner, S.; SMD Planetary Forum, NASA

    2013-01-01

    "New Worlds, New Discoveries" is a synthesis of NASA’s 50-year exploration history which provides an integrated picture of our new understanding of our solar system. As NASA spacecraft head to and arrive at key locations in our solar system, "New Worlds, New Discoveries" provides an integrated picture of our new understanding of the solar system to educators and the general public! The site combines the amazing discoveries of past NASA planetary missions with the most recent findings of ongoing missions, and connects them to the related planetary science topics. "New Worlds, New Discoveries," which includes the "Year of the Solar System" and the ongoing celebration of the "50 Years of Exploration," includes 20 topics that share thematic solar system educational resources and activities, tied to the national science standards. This online site and ongoing event offers numerous opportunities for the science community - including researchers and education and public outreach professionals - to raise awareness, build excitement, and make connections with educators, students, and the public about planetary science. Visitors to the site will find valuable hands-on science activities, resources and educational materials, as well as the latest news, to engage audiences in planetary science topics and their related mission discoveries. The topics are tied to the big questions of planetary science: how did the Sun’s family of planets and bodies originate and how have they evolved? How did life begin and evolve on Earth, and has it evolved elsewhere in our solar system? Scientists and educators are encouraged to get involved either directly or by sharing "New Worlds, New Discoveries" and its resources with educators, by conducting presentations and events, sharing their resources and events to add to the site, and adding their own public events to the site’s event calendar! Visit nasa.gov/yss> to find quality resources and ideas. Connect with

  16. The Evolution of the Penn State University Astronomy Outreach Program

    NASA Astrophysics Data System (ADS)

    Palma, C.; Charlton, J. C.

    2008-06-01

    The Penn State Dept. of Astronomy & Astrophysics has a long tradition of outreach. Faculty, students, and staff all participate as volunteers to create and deliver a variety of outreach programming to diverse audiences, including for example K-12 students, K-12 teachers, and senior citizens, in addition to open events that invite all members of the general public to attend. In the past four years, the University and the Department have provided institutional support for science outreach efforts. Many of our programs also receive financial support through NASA Education and Public outreach awards and through NSF awards to PSU Astronomy faculty. We actively collaborate with the NASA Pennsylvania Space Grant Consortium, the Penn State Center for Science and the Schools, four local school districts, and our colleagues from other science disciplines at the University. With this set of partners we are able to continue to innovate and offer new outreach programming annually. In this poster, we present an overview of the variety of outreach programs offered recently and those in the development stages. We describe how each program fits into the Department and University structure. In this way we provide a case study of a large, dynamic, university-based astronomy outreach venture.

  17. Planets in Inuit Astronomy

    NASA Astrophysics Data System (ADS)

    MacDonald, John

    2018-02-01

    phenomenon of the "polar night." For several reasons, the role of planets in Inuit astronomy is difficult to determine, due, in part, to the characteristics of the planets themselves. Naked-eye differentiation between the major visible planets is by no means straightforward, and for observers living north of the Arctic Circle, the continuous or semicontinuous periods of daylight/twilight obtaining throughout the late spring, summer, and early fall effectively prevent year-round viewing of the night sky, making much planetary movement unobservable, far less an appreciation of the planets' predictable synodic and sidereal periods. Mitigating against the significant use of planets in Inuit culture is also the principle that their applied astronomy, along with its cosmology and mythologies depend principally on—apart from the sun and the moon—the predictability of the "fixed stars." Inuit of course did see the major planets and took note of them when they moved through their familiar asterisms or appeared, irregularly, as markers of solstice, or harbingers of daylight after winter's dark. Generally, however, planets seem to have been little regarded until after the introduction of Christianity, when, in parts of the Canadian eastern Arctic, Venus, in particular, became associated with Christmas. While there are anecdotal accounts that some of the planets, again especially Venus, may have had a place in Greenlandic mythology, this assertion is far from certain. Furthermore, reports from Alaska and Greenland suggesting that the appearance of Venus was a regular marker of the new year, or a predictor of sun's return, need qualification, given the apparent irregularity of Venus's appearances above the horizon. A survey of relevant literature, including oral history, pertaining either directly or peripherally to Inuit astronomical traditions, reveals few bona fide mention of planets. References to planets in Inuit mythology and astronomy are usually speculative, typically lacking

  18. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak

    2017-01-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.

  19. Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography; 2) Software and Hardware Upgrades for the University of North Dakota Asteroid and Comet Internet Telescope (ACIT); 3) Web-based Program for Calculating Effects of an Earth Impact; 4) On-Line Education, Web- and Virtual-Classes in an Urban University: A Preliminary Overview; 5) Modelling Planetary Material's Structures: From Quasicrystalline Microstructure to Crystallographic Materials by Use of Mathematica; 6) How We Used NASA Lunar Set in Planetary and Material Science Studies: Textural and Cooling Sequences in Sections of Lava Column from a Thin and a Thick Lava-Flow, from the Moon and Mars with Terrestrial Analogue and Chondrule Textural Comparisons; 7) Classroom Teaching of Space Technology and Simulations by the Husar Rover Model; 8) New Experiments (In Meteorology, Aerosols, Soil Moisture and Ice) on the New Hunveyor Educational Planetary Landers of Universities and Colleges in Hungary; 9) Teaching Planetary GIS by Constructing Its Model for the Test Terrain of the Hunveyor and Husar; 10) Undergraduate Students: An Untapped Resource for Planetary Researchers; 11) Analog Sites in Field Work of Petrology: Rock Assembly Delivered to a Plain by Floods on Earth and Mars; 12) RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility; 13) Full Text Searching and Customization in the NASA ADS Abstract Service.

  20. 75 FR 57520 - NASA Advisory Council; Planetary Science Subcommittee; Supporting Research and Technology Working...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Science Subcommittee; Supporting Research and Technology Working Group; Meeting AGENCY: National... announces a meeting of the Supporting Research and Technology Working Group of the Planetary Science... INFORMATION CONTACT: Dr. Michael New, Planetary Science Division, National Aeronautics and Space...

  1. Space Mysteries: Making Science and Astronomy Learning Fun

    NASA Astrophysics Data System (ADS)

    Plait, P.; Tim, G.; Cominsky, L.

    2001-12-01

    How do you get and keep a student's attention during class? Make learning fun! Using a game to teach students ensures that they have fun, enjoy the lesson and remember it. We have developed a series of interactive web and CD based games called "Space Mysteries" to teach students math, physics and astronomy. Using real NASA data, the students must find out Who (or What) dunit in an engaging astronomy mystery. The games include video interviews with famous scientists, actors playing roles who give clues to the solution, and even a few blind alleys and red herrings. The first three games are currently online in beta release at http://mystery.sonoma.edu.

  2. Music and Astronomy Under The Stars after 4 years and 50,000 People

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald A.

    2013-01-01

    Since 2009 my NASA-funded Music and Astronomy Under the Stars (MAUS) program has brought astronomy to 50,000 music lovers at the National Mall (co-sponsor OSTP); Central Park Jazz, Newport Folk, Ravinia, or Tanglewood music festivals; and classical, folk, pop/rock, opera, Caribbean, or county-western concerts in parks assisted by astronomy clubs (55 events; 28parks). MAUS combines solar, optical, and radio telescope observations; live image projection; large posters/banners (From the Earth to the Universe and Visions of the Universe); videos; and hands-on activities (Night Sky Network; Harvard-Smithsonian CfA); imaging with a cell phone mount; and hand-outs(with info on science museums, astronomy clubs, and citizen science before and after the concerts or at intermission. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, the McCoy Tyner Quartet, Ravi Coltrane, Esperanza Spalding, the Stanley Clarke Band, Phish, Blood Sweat and Tears, Deep Purple, Patti Smith, Tony Orlando, and Ronan Tynan performed at these concerts. MAUS reached underserved groups and attracted large enthusiastic crowds. Many young children participated in this family learning experience-often the first time they looked through a telescope. Lessons learned: plan early; create partnerships with parks and astronomy clubs; test equipment; have backup equipment; create professional displays; select the best location to obtain a largest number of participants; use media/www sites to promote the events; use many telescopes for multipletargets; project a live image or video; select equipment that is easy to use, store, set-up, and take down; use hands-on astronomy activities; position the displays for maximum visibility (they became teachable moments); and have educator hand-outs. While < 50% of the participants attended a science museum or took part in astronomy programs in the previous year (based on our survey), they found MAUS enjoyable and understandable; learned about astronomy; wanted to learn

  3. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  4. PDS4: Developing the Next Generation Planetary Data System

    NASA Technical Reports Server (NTRS)

    Crichton, D.; Beebe, R.; Hughes, S.; Stein, T.; Grayzeck, E.

    2011-01-01

    The Planetary Data System (PDS) is in the midst of a major upgrade to its system. This upgrade is a critical modernization of the PDS as it prepares to support the future needs of both the mission and scientific community. It entails improvements to the software system and the data standards, capitalizing on newer, data system approaches. The upgrade is important not only for the purpose of capturing results from NASA planetary science missions, but also for improving standards and interoperability among international planetary science data archives. As the demands of the missions and science community increase, PDS is positioning itself to evolve and meet those demands.

  5. Planetary Protection Concerns During Pre-Launch Radioisotope Power System Final Integration Activities

    NASA Technical Reports Server (NTRS)

    Chen, Fei; McKay, Terri; Spry, James A.; Colozza, Anthony J.; DiStefano, Salvador

    2012-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a next-generation radioisotope-based power system that is currently being developed as an alternative to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Power sources such as these may be needed for proposed missions to solar system planets and bodies that have challenging Planetary Protection (PP) requirements (e.g. Mars, Europa, Enceladus) that may support NASA s search for life, remnants of past life, and the precursors of life. One concern is that the heat from the ASRG could potentially create a region in which liquid water may occur. As advised by the NASA Planetary Protection Officer, when deploying an ASRG to Mars, the current COSPAR/NASA PP policy should be followed for Category IVc mission. Thus, sterilization processing of the ASRG to achieve bioburden reduction would be essential to meet the Planetary Protection requirements. Due to thermal constraints and associated low temperature limits of elements of the ASRG, vapor hydrogen peroxide (VHP) was suggested as a candidate alternative sterilization process to complement dry heat microbial reduction (DHMR) for the assembled ASRG. The following proposed sterilization plan for the ASRG anticipates a mission Category IVc level of cleanliness. This plan provides a scenario in which VHP is used as the final sterilization process. Keywords: Advanced Stirling Radioisotope Generator (ASRG), Planetary Protection (PP), Vapor hydrogen peroxide (VHP) sterilization.

  6. A Large Array of Small Antennas to Support Future NASA Missions

    NASA Astrophysics Data System (ADS)

    Jones, D. L.; Weinreb, S.; Preston, R. A.

    2001-01-01

    A team of engineers and scientists at JPL is currently working on the design of an array of small radio antennas with a total collecting area up to twenty times that of the largest existing (70 m) DSN antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are an order-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased DSN capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created. The DSN array would also bean immensely valuable instrument for radio astronomy. Indeed, it would be by far the most sensitive radio telescope in the world. Additional information is contained in the original extended abstract.

  7. Planetary Science Enabled by High Power Ion Propulsion Systems from NASA's Prometheus Program

    NASA Astrophysics Data System (ADS)

    Cooper, John

    2004-11-01

    NASA's Prometheus program seeks to develop new generations of spacecraft nuclear-power and ion propulsion systems for applications to future planetary missions. The Science Definition Team for the first mission in the Prometheus series, the Jupiter Icy Moons Orbiter (JIMO), has defined science objectives for in-situ orbital exploration of the icy Galilean moons (Europa, Ganymede, Callisto) and the Jovian magnetosphere along with remote observations of Jupiter's atmosphere and aurorae, the volcanic moon Io, and other elements of the Jovian system. Important to this forum is that JIMO power and propulsion systems will need to be designed to minimize magnetic, radio, neutral gas, and plasma backgrounds that might otherwise interfere with achievement of mission science objectives. Another potential Prometheus mission of high science interest would be an extended tour of primitive bodies in the solar system, including asteroids, Jupiter family comets, Centaurs, and Kuiper Belt Objects (KBO). The final landed phase of this mission might include an active keplerian experiment for detectable (via downlink radio doppler shift) acceleration of a small kilometer-size Centaur or KBO object, likely the satellite of a larger object observable from Earth. This would have obvious application to testing of mitigation techniques for Earth impact hazards.

  8. Mars Rover Model Celebration: Developing Inquiry Based Lesson Plans to Teach Planetary Science In Elementary And Middle School

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.; Dominey, W.; Ramsey, J.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2012-12-01

    The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the development of a detailed set of new 5E lesson plans to

  9. Advances in SPICE Support of Planetary Science

    NASA Technical Reports Server (NTRS)

    Acton, C. H.

    2013-01-01

    SPICE is the de facto international standard for determining the geometric conditions-parameters such as altitude, lighting angles, and LAT/LON coverage of an instrument footprint-pertaining to scientific observations acquired by instruments on board robotic spacecraft. This system, comprised of data and allied software, is used for planning science observations and for analyzing the data returned from those observations. Use of SPICE is not a NASA requirement but is recommended by NASA's Planetary Data System and by the International Planetary Data Alliance. Owing in part to its reliability, stability, portability and user support, the use of SPICE has spread to many national space agencies, including those of the U.S., Europe (ESA), Japan, Russia and India. SPICE has been in use since the Magellan mission to Venus and so has many well-known capabilities. But the NAIF Team responsible for implementing SPICE continues to add new features; this presentation describes a number of these.

  10. Reports of planetary geology and geophysics program, 1989

    NASA Technical Reports Server (NTRS)

    Holt, Henry (Editor)

    1990-01-01

    Abstracts of reports from Principal Investigators of NASA's Planetary Geology and Geophysics Program are compiled. The research conducted under this program during 1989 is summarized. Each report includes significant accomplishments in the area of the author's funded grant or contract.

  11. Significant achievements in the planetary geology program, 1980

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Editor)

    1980-01-01

    Recent developments in planetology research as reported at the 1980 NASA Planetology Program Principal Investigators meeting are summarized. Important developments are summarized in topics ranging from solar system evolution and comparative planetology to geologic processes active on other planetary bodies.

  12. Design Tools for Cost-Effective Implementation of Planetary Protection Requirements

    NASA Technical Reports Server (NTRS)

    Hamlin, Louise; Belz, Andrea; Evans, Michael; Kastner, Jason; Satter, Celeste; Spry, Andy

    2006-01-01

    Since the Viking missions to Mars in the 1970s, accounting for the costs associated with planetary protection implementation has not been done systematically during early project formulation phases, leading to unanticipated costs during subsequent implementation phases of flight projects. The simultaneous development of more stringent planetary protection requirements, resulting from new knowledge about the limits of life on Earth, together with current plans to conduct life-detection experiments on a number of different solar system target bodies motivates a systematic approach to integrating planetary protection requirements and mission design. A current development effort at NASA's Jet Propulsion Laboratory is aimed at integrating planetary protection requirements more fully into the early phases of mission architecture formulation and at developing tools to more rigorously predict associated cost and schedule impacts of architecture options chosen to meet planetary protection requirements.

  13. Design of Hybrid Mobile Communication Networks for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Alena, Richard L.; Ossenfort, John; Lee, Charles; Walker, Edward; Stone, Thom

    2004-01-01

    The Mobile Exploration System Project (MEX) at NASA Ames Research Center has been conducting studies into hybrid communication networks for future planetary missions. These networks consist of space-based communication assets connected to ground-based Internets and planetary surface-based mobile wireless networks. These hybrid mobile networks have been deployed in rugged field locations in the American desert and the Canadian arctic for support of science and simulation activities on at least six occasions. This work has been conducted over the past five years resulting in evolving architectural complexity, improved component characteristics and better analysis and test methods. A rich set of data and techniques have resulted from the development and field testing of the communication network during field expeditions such as the Haughton Mars Project and NASA Mobile Agents Project.

  14. An inside look at NASA planetology

    NASA Technical Reports Server (NTRS)

    Dwornik, S. E.

    1976-01-01

    Staffing, financing and budget controls, and research grant allocations of NASA are reviewed with emphasis on NASA-supported research in planetary geological sciences: studies of the composition, structure, and history of solar system planets. Programs, techniques, and research grants for studies of Mars photographs acquired through Mariner 6-10 flights are discussed at length, and particularly the handling of computer-enhanced photographic data. Scheduled future NASA-sponsored planet exploration missions (to Mars, Jupiter, Saturn, Uranus) are mentioned.

  15. Justifying Alternative Models in Learning Astronomy: A Study of K-8 Science Teachers' Understanding of Frames of Reference

    ERIC Educational Resources Information Center

    Shen, Ji; Confrey, Jere

    2010-01-01

    Understanding frames of reference is critical in describing planetary motion and learning astronomy. Historically, the geocentric and heliocentric models were defended and advocated against each other. Today, there are still many people who do not understand the relationship between the two models. This topic is not adequately treated in astronomy…

  16. The Interactive Planetarium: Student-led Investigations of Naked-Eye Astronomy and Planetary Motion

    NASA Astrophysics Data System (ADS)

    Rice, Emily L.; McCrady, N.

    2007-12-01

    We have developed a set of interactive, learner-centered planetarium lab activities for the introductory astronomy course for non-majors at UCLA. A planetarium is ideal for the visualization of the celestial sphere as a 2D projection in 3D space and for the direct spatial simulation of geometric relationships. These concepts are fundamental to content areas frequently covered in introductory courses but are notoriously difficult for non-specialists. Opportunities for engaging students in actively learning content and process skills are limited in the traditional "sky show” approach typically employed in a planetarium setting. The novel aspect of our activities is that they actively engage students in learning: students make predictions, design observational tests, and direct the motion of the planetarium sky in order to evaluate their hypotheses. We have also developed complementary, kinesthetic lab activities that take place outside the planetarium with overlapping content and process goals. Several hundred schools, colleges, and universities across the country have immediate access to a planetarium as a classroom, and our method represents a novel way to use the planetarium as interactive lab equipment in college-level introductory astronomy courses.

  17. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Director of NASA's Planetary Science Division, Jim Green, speaks to NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  18. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees film director of NASA's Planetary Science Division, Jim Green as he discusses the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. FETTU Wins International Year of Astronomy 2009 Prize

    NASA Astrophysics Data System (ADS)

    2010-02-01

    The "From Earth to the Universe" (FETTU) project -- a worldwide series of exhibitions featuring striking astronomical imagery -- has won the first Mani Bhaumik prize for excellence in astronomy education and public outreach. This award was given for the best of the tens of thousands of activities conducted during the International Year of Astronomy (IYA) 2009. NASA was a major sponsor of the project, which was led by the Chandra X-ray Center, that placed these images into public parks, metro stations, libraries, and other non-traditional locations around the world. The exhibit showcases some of the best astronomical images taken from telescopes both on the ground and in space, representing the wide variety of wavelengths and objects observed. While FETTU has been a worldwide effort, a NASA grant provided the primary funding for the FETTU exhibits in the US. NASA funds also supplied the project's infrastructure as well as educational and other materials that helped the FETTU international efforts to thrive. "We are truly thrilled to see how many people FETTU has reached both in the US and around the world," said Hashima Hasan, NASA's Single Point of Contact for IYA2009. "It's an investment we feel has been well spent." In the US, FETTU has been placed on semi-permanent display at Chicago's O'Hare and Atlanta's Hartsfield airports. In addition, a traveling version of the exhibit has visited over a dozen US cities such as Washington, DC, Anchorage, AK, Memphis, TN, and New York City. Three tactile and Braille versions of the FETTU exhibit were also made possible by the NASA funds, each of which has traveled to multiple locations around the country. "It's been so rewarding to see how people - many of whom had never seen these images - have embraced the wonders of astronomy through these exhibits," said Kimberly Kowal Arcand, co-chair of the FETTU project at the Chandra X-ray Center, which is located at the Smithsonian Astrophysical Observatory in Cambridge, Mass. "The

  20. Planetary submillimeter spectroscopy

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1988-01-01

    The aim is to develop a comprehensive observational and analytical program to study solar system physics and meterology by measuring molecular lines in the millimeter and submillimeter spectra of planets and comets. A primary objective is to conduct observations with new JPL and Caltech submillimeter receivers at the Caltech Submillimeter Observatory (CSO) on Mauna Kea, Hawaii. A secondary objective is to continue to monitor the time variable planetary phenomena (e.g., Jupiter and Uranus) at centimeter wavelength using the NASA antennas of the Deep Space Network (DSN).

  1. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2012-05-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.

  2. Robotics Technology for Planetary Missions into the 21st Century

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Lavery, D.; Rodriguez, G.

    1997-01-01

    This paper summarizes the objectives, current status and future thrusts of technolgy development in planetary robitics at the Jet Propulsion Laboratory, under sponsorship by the NASA Office of Space Science.

  3. Planetary radio astronomy observations from Voyager-2 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1981-01-01

    Voyager-2 planetry radio astronomy measurements obtained near Saturn are discussed. They indicate that Saturnian kilometric radiation is emitted by a strong, dayside source at auroral latitudes in the northern hemisphere and by a weaker (by more than an order of magnitude) source at complementary latitudes in the southern hemisphere. These emissions are variable both due to Saturn's rotation and, on longer time scales, probably due to influences of the solar wind and the satellite Dione. The Saturn electrostatic discharge bursts first discovered by Voyager-1 and attributed to emissions from the B-ring were again observed with the same broadband spectral properties and a 10(h)11(m) + or - 5(m) episodic recurrence period but with an occurrence frequency of only of about 30 percent of that detected with Voyager-1. During the crossing of the ring plane at a distance of 2.88 R sub S, an intense noise event is interpreted to be consequence of the impact/vaporization/ionization of charged micron-size G-ring particles distributed over a total vertical thickness of about 1500 km.

  4. NASA's Optical Communications Program for 2015 and Beyond

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M.

    2015-01-01

    NASA's Space Communications and Navigation (SCaN) program at NASA headquarters is pursuing a vibrant and wide-ranging optical communications program for further planetary and near-Earth missions following the spectacular success of NASA's Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft orbiting the moon in 2013. This invited paper will discuss NASA's new laser communication missions, key scenarios and details, and the plans to infuse this new technology into NASA's existing communications networks.

  5. The Rocky World of Young Planetary Systems Artist Concept

    NASA Image and Video Library

    2004-10-18

    This artist concept illustrates how planetary systems arise out of massive collisions between rocky bodies. NASA Spitzer Space Telescope show that these catastrophes continue to occur around stars even after they have developed full-sized planets.

  6. A General Framework for Discovery and Classification in Astronomy

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2012-09-01

    An analysis of the discovery of 82 classes of astronomical objects reveals an extended structure of discovery, consisting of detection, interpretation and understanding, each with its own nuances and a microstructure including conceptual, technological and social roles. This is true with a remarkable degree of consistency over the last 400 years of telescopic astronomy, ranging from Galileo's discovery of satellites, planetary rings and star clusters, to the discovery of quasars and pulsars. Telescopes have served as ``engines of discovery'' in several ways, ranging from telescope size and sensitivity (planetary nebulae and spiral nebulae), to specialized detectors (TNOs) and the opening of the electromagnetic spectrum for astronomy (pulsars, pulsar planets, and most active galaxies). A few classes (radiation belts, the solar wind and cosmic rays) were initially discovered without the telescope. Classification also plays an important role in discovery. While it might seem that classification marks the end of discovery, or a post-discovery phase, in fact it often marks the beginning, even a pre-discovery phase. Nowhere is this more clearly seen than in the classification of stellar spectra, long before dwarfs, giants and supergiants were known, or their evolutionary sequence recognized. Classification may also be part of a post-discovery phase, as in the MK system of stellar classification, constructed after the discovery of stellar luminosity classes. Some classes are declared rather than detected, as in the case of gas and ice giant planets, and, infamously, Pluto as a dwarf planet. Others are inferred rather than detected, including most classes of stars.

  7. Economic impact of large public programs: The NASA experience

    NASA Technical Reports Server (NTRS)

    Ginzburg, E.; Kuhn, J. W.; Schnee, J.; Yavitz, B.

    1976-01-01

    The economic impact of NASA programs on weather forecasting and the computer and semiconductor industries is discussed. Contributions to the advancement of the science of astronomy are also considered.

  8. Operation of the University of Hawaii 2.2 M Telescope on Mauna KEA

    NASA Technical Reports Server (NTRS)

    Hall, Donald N. B.

    1997-01-01

    During the period October 5, 1993-October 31, 1997, operation of the University of Hawaii's 2.2-meter telescope was partially funded by NASA Planetary Astronomy Program. During the grant period, the fraction of observing time devoted to studies of solar system objects (e.g., planets, planetary satellites, asteroids, and comets) was approximately 24% (i.e., it exceeded the fractional funding provided by this NASA grant). The number of nights allocated to planetary observing time is summarized. Proposals for use of the solar system observing time coming from within and outside the University of Hawaii competed for this observing time on an equal basis; applications were judged on scientific merit by a time allocation committee at the University of Hawaii.

  9. Successfully Engaging Scientists in NASA Education and Public Outreach: Examples from a Teacher Professional Development Workshop Series and a Planetary Analog Festival

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.

    2014-12-01

    The Lunar Workshops for Educators are a series of weeklong workshops for grade 6-9 science teachers focused on lunar science and exploration, sponsored by the Lunar Reconnaissance Orbiter (LRO). These workshops have been held across the country for the past five years, in places underserved with respect to NASA workshops and at LRO team member institutions. MarsFest is a planetary analog festival that has been held annually in Death Valley National Park since 2012, made possible with support from the Curiosity (primarily the Sample Analysis at Mars) Education and Public Outreach team, NASA's Ames Research Center, NASA's Goddard Space Flight Center, the SETI Institute, and Death Valley National Park. Both the Lunar Workshops for Educators and MarsFest rely strongly on scientist engagement for their success. In the Lunar Workshops, scientists and engineers give talks for workshop participants, support facility tours and field trips, and, where possible, have lunch with the teachers to interact with them in a less formal setting. Teachers have enthusiastically appreciated and benefited from all of these interactions, and the scientists and engineers also provide positive feedback about their involvement. In MarsFest, scientists and engineers give public presentations and take park visitors on field trips to planetary analog sites. The trips are led by scientists who do research at the field trip sites whenever possible. Surveys of festival participants indicate an appreciation for learning about scientific research being conducted in the park from the people involved in that research, and scientists and engineers report enjoying sharing their work with the public through this program. The key to effective scientist engagement in all of the workshops and festivals has been a close relationship and open communication between the scientists and engineers and the activity facilitators. I will provide more details about both of these programs, how scientists and engineers

  10. Hybrid Studies: Looking at Solar System Astronomy in America

    NASA Astrophysics Data System (ADS)

    DeVorkin, David

    In his 1980 book Cosmos, Carl Sagan proclaimed that in the 1940s and 1950s, 'the world's only full-time planetary astrophysicist' was Gerard Kuiper. Sagan, a student of Kuiper at the Yerkes Observatory, reflected a mindset that had become a missionary statement for planetary specialists and NASA programme managers. 'The subject was then considered by most professional astronomers to be at least slightly disreputable, tainted with Lowellian excesses', Sagan contended (1980, p. 143), referring to Percival Lowell's flamboyant claims about observing evidence of advanced civilisations on Mars at the turn of the century.

  11. Star Formation and Exoplanetary Systems in the National Science Olympiad Astronomy Event for High School Students

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Young, Donna; Schroeder, Dustin M.; Van Hecke, Mark A.

    2014-11-01

    Science Olympiad is one of the nation’s largest secondary school science competitions, reaching over 240,000 students on more than 6,000 teams. The competition covers various aspects of science and technology, exposing students to a variety of career options in STEM. 9 of Science Olympiad’s 46 events (with 23 for both middle and high school) have a focus on Earth and Space Science, including process skills and knowledge of a variety of subjects, including: Astrophysics, Planetary Sciences, Oceanography, Meteorology, Remote Sensing, and Geologic Mapping, among others. The Astronomy event is held for students from 9th - 12th grade, and covers topics based upon stellar evolution and/or galactic astronomy. For the 2014-2015 competition season, Astronomy will focus on star formation and exoplanets in concert with stellar evolution, bringing recent and groundbreaking research to light for young potential astronomers and planetary scientists. The event tests students on their “understanding of the basic concepts of mathematics and physics relating to stellar evolution and star and planet formation,” including qualitative responses, DS9 image analysis, and quantitative problem solving. We invite any members of the exoplanet and star formation communities that are interested in developing event materials to contact the National event supervisors, Donna Young (donna@aavso.org) and Tad Komacek (tkomacek@lpl.arizona.edu). We also encourage you to contact your local regional or state Science Olympiad tournament directors to help supervise events and run competitions in your area.

  12. Definition and Development of Habitation Readiness Levels (HRLs) for Planetary Surface Habitats

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Toups, Larry

    2007-01-01

    One could argue that NASA has never developed a true habitat for a planetary surface, with only the Lunar Module from the 1960's-era Apollo Program providing for a sparse 2 person, 3 day capability. An integral part of NASA's current National Vision for Space Exploration is missions back to the moon and eventually to Mars. One of the largest leaps i11 lunar surface exploration beyond the Apollo lunar missions will be the conduct of these extended duration human missions. These missions could range from 30 to 90 days in length initially and may eventually range up to 500 days in length. To enable these extended duration human missions, probably the single-most important lunar surface element is the Surface Habitat. The requirements that must be met by the Surface Habitat will go far beyond the safety, performance and operational requirements of the Lunar Module, and NASA needs to develop a basis for making intelligent, technically correct habitat design decisions. This paper will discuss the possibilities of the definition and development of a Habitation Readiness Level (HRL) scale that might be mapped to current Technology Readiness Levels (TRLs) for technology development. HRLs could help measure how well a particular technology thrust is advanced by a proposed planetary habitat concept. The readiness level would have to be measured differently than TRLs, and may include such milestones as habitat design performance under simulated mission operations and constraints (including relevant field testing), functional allocation demonstrations, crew interface evaluation and post-occupancy evaluation. With many concepts for planetary habitats proposed over the past 20 years, there are many strategic technical challenges facing designers of planetary habitats that will support NASA's exploration of the moon and Mars. The systematic assessment of a variety of planetary habitat options will be an important approach and will influence the associated requirements for human

  13. The high energy astronomy observatories

    NASA Technical Reports Server (NTRS)

    Neighbors, A. K.; Doolittle, R. F.; Halpers, R. E.

    1977-01-01

    The forthcoming NASA project of orbiting High Energy Astronomy Observatories (HEAO's) designed to probe the universe by tracing celestial radiations and particles is outlined. Solutions to engineering problems concerning HEAO's which are integrated, yet built to function independently are discussed, including the onboard digital processor, mirror assembly and the thermal shield. The principle of maximal efficiency with minimal cost and the potential capability of the project to provide explanations to black holes, pulsars and gamma-ray bursts are also stressed. The first satellite is scheduled for launch in April 1977.

  14. Planetary Geochemistry Techniques: Probing In-Situ with Neutron and Gamma Rays (PING) Instrument

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Bodnarik, J.; Burger, D.; Evans, L.; Floyd, S.; Lin, L.; McClanahan, T.; Nankung, M.; Nowicki, S.; Schweitzer, J.; hide

    2011-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument is a promising planetary science application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our technology development program at NASA Goddard Space Flight Center's (NASA/GSFC) Astrochemistry Laboratory is to extend the application of neutron interrogation techniques to landed in situ planetary composition measurements by using a 14 MeV Pulsed Neutron Generator (PNG) combined with neutron and gamma ray detectors, to probe the surface and subsurface of planetary bodies without the need to drill. We are thus working to bring the PING instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets.

  15. Astronomy Outreach for Large, Unique, and Unusual Audiences

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald

    2015-08-01

    My successful outreach program venues include: outdoor concerts and festivals; the US National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald Houses of Long Island and Chicago; the Winthrop U. Hospital Children’s Medical Center the Fresh Air Fund summer camps (low-income and special needs); a Halloween star party (costumed kids look through telescopes); a Super Bowl Star Party (targeting women); Science Festivals (World, NYC; Princeton U.; the USA Science and Engineering Festival); and the NYC Columbus Day Parade. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage lifelong learning. In 2010 I created Astronomy Festival on the National Mall (co-sponsored by the White House Office of Science and Technology Policy) with the participation of astronomy clubs, scientific institutions and with Tyco Brahe, Johannes Kepler, and Caroline Herschel making guest appearances. My programs include solar, optical, and radio telescope observations, hands-on activities, a live image projection system; large outdoor posters and banners; videos; hands-on activities, and edible astronomy demonstrations.My NASA-funded Music and Astronomy Under the Stars (MAUS) program (60 events 2009 - 2013) reached 50,000 music lovers at local parks and the Central Park Jazz, Newport Folk, Ravinia, or Tanglewood Music Festivals with classical, folk, pop/rock, opera, Caribbean, or county-western concerts assisted by astronomy clubs. Yo-Yo-Ma, the Chicago and Boston Symphony Orchestras, Ravi Coltrane, Esperanza Spalding, Phish, Blood Sweat and Tears, Deep Purple, Tony Orlando, and Wilco performed at these events. MAUS reached underserved groups and attracted large crowds. Young kids participated in this family learning experience - often the first time they looked through a telescope. While < 50% of the participants took part in a science activity in the past year, they

  16. The Planetary and Eclipse Oil Paintings of Howard Russell Butler

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Olson, R. M.

    2013-10-01

    The physics-trained artist Howard Russell Butler (1856-1934) has inspired many astronomy students through his planetary and eclipse paintings that were long displayed at the Hayden Planetarium in New York, the Fels Planetarium at the Franklin Institute in Philadelphia, and the Buffalo Museum of Science. We discuss not only the eclipse triptychs (1918, 1923, and 1925) at each of those institutions but also his paintings of Mars as seen from Phobos and from Deimos (with landscapes of those moons in the foreground depicted in additional oils hung at Princeton University) and the Earth from our Moon. We also describe his involvement with astronomy and his unique methodology that allowed him to surpass the effects then obtainable with photography, as well as his inclusion in a U.S. Naval Observatory eclipse expedition in 1918, as well as his auroral, solar-prominence, and 1932-eclipse paintings.

  17. Analysis of Co-spatial UV-optical HST/STIS Spectra of Planetary Nebula NGC 3242

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.; Henry, Richard B. C.; Balick, Bruce; Kwitter, Karen B.; Dufour, Reginald J.; Shaw, Richard A.; Corradi, Romano L. M.

    2016-10-01

    This project sought to consider two important aspects of the planetary nebula NGC 3242 using new long-slit HST/STIS spectra. First, we investigated whether this object is chemically homogeneous by spatially dividing the slit into different regions and calculating the abundances of each region. The major result is that the elements of He, C, O, and Ne are chemically homogeneous within uncertainties across the regions probed, implying that the stellar outflow was well-mixed. Second, we constrained the stellar properties using photoionization models computed by CLOUDY and tested the effects of three different density profiles on these parameters. The three profiles tested were a constant density profile, a Gaussian density profile, and a Gaussian with a power-law density profile. The temperature and luminosity were not affected significantly by the choice of density structure. The values for the stellar temperature and luminosity from our best-fit model are {89.7}-4.7+7.3 kK and log(L/L ⊙) = {3.36}-0.22+0.28, respectively. Comparing to evolutionary models on an HR diagram, this corresponds to an initial and final mass of {0.95}-0.09+0.35{M}⊙ and {0.56}-0.01+0.01{M}⊙ , respectively. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  18. Transit timing at Toruń Center for Astronomy

    NASA Astrophysics Data System (ADS)

    Bykowski, W.; Maciejewski, G.

    2011-01-01

    The transit monitoring is one of well-known methods for discovering and observing new extrasolar planets. Among various advantages, this way of searching other worlds does not require complex and expensive equipment -- it can be performed with a relatively small telescope and high-quality CCD camera. At the Center for Astronomy of Nicolaus Copernicus University in Toruń, Poland, we collect observational data using the 60-cm Cassegrain telescope hoping that it would be possible to discover new objects in already known planetary systems using the transit timing variation method. Our observations are a part of a bigger cooperation between observatories from many countries.

  19. The General History of Astronomy

    NASA Astrophysics Data System (ADS)

    Taton, René; Wilson, Curtis; Hoskin, editor Michael, , General

    2009-09-01

    Part V. Early Phases in the Reception of Newton's Theory: 14. The vortex theory in competition with Newtonian celestial dynamics Eric J. Aiton; 15. The shape of the Earth Seymour L. Chapin; 16. Clairaut and the motion of the lunar apse: The inverse-square law undergoes a test Craig B. Waff; 17. The precession of the equinoxes from Newton to d'Alembert and Euler Curtis Wilson; 18. The solar tables of Lacaille and the lunar tables of Mayer Eric G. Forbes and Curtis Wilson; 19. Predicting the mid-eighteenth-century return of Halley's Comet Craig B. Waff; Part VI. Celestial Mechanics During the Eighteenth Century: 20. The problem of perturbation analytically treated: Euler, Clairaut, d'Alembert Curtis Wilson; 21. The work of Lagrange in celestial mechanics Curtis Wilson; 22. Laplace Bruno Morando; Part VII. Observational Astronomy and the Application of Theory in the Late Eighteenth and Early Nineteenth Century: 23. Measuring solar parallax: The Venus transits of 1761 and 1769 and their nineteenth-century sequels Albert Van Helden; 24. The discovery of Uranus, the Titius-Bode and the asteroids Michael Hoskin; 25. Eighteenth-and nineteenth century developments in the theory and practice of orbit determination Brian G. Marsden; 26. The introduction of statistical reasoning into astronomy: from Newton to Poincaré Oscar Sheynin; 27. Astronomy and the theory of errors: from the method of averages to the method of least squares F. Schmeidler; Part VIII. The Development of Theory During the Nineteenth Century: 28. The golden age of celestial mechanics Bruno Morando; Part IX. The Application of Celestial Mechanics to the Solar System to the End of the Nineteenth Century: 29. Three centuries of lunar and planetary ephemerides and tables Bruno Morando; 30. Satellite ephemerides to 1900 Yoshihide Kozai; Illustrations; Combined index for Parts 2A and 2B.

  20. Copernican Astronomy and Oceanic Exploration

    NASA Astrophysics Data System (ADS)

    McKittrick, Paul

    2014-01-01

    This paper examines the relationships between the century long development of the “New Astronomy” (Copernicus’ axially rotating and solar orbiting earth, governed by Kepler’s laws of planetary motion) of the sixteenth and early seventeenth centuries and the emerging astronomical navigation technologies of the fifteenth and sixteenth century Iberian oceanic explorers and their sixteenth and seventeenth century Protestant competitors. Since the first breakthroughs in Portuguese astronomical navigation in ascertaining latitude at sea were based upon the theories and observations of classically trained Ptolemaic astronomers and cosmographers, it can be argued that the new heliocentric astronomy was not necessary for future developments in early modern navigation. By examining the history of the concurrent revolutions in early modern navigation and astronomy and focusing upon commonalities, we can identify the period during which the old astronomy provided navigators with insufficient results - perhaps hastening the acceptance of the new epistemology championed by Galileo and rejected by Bellarmine. Even though this happened during the period of northern protestant ascendancy in exploration, its roots can be seen during pre-Copernican acceptance in both Lutheran and Catholic Europe. Copernican mathematics was used to calculate Reinhold’s Prutenic Tables despite the author’s ontological rejection of the heliocentric hypothesis. These tables became essential for ascertaining latitude at sea. Kepler’s Rudophine Tables gained even more widespread currency across Europe. His theories were influenced by Gilbert’s work on magnetism - a work partially driven by the requirements of English polar exploration. Sailors themselves never needed to accept a heliocentric cosmography, but the data they brought back to the metropolis undermined Ptolemy, as better data kept them alive at sea. This exchange between theoretician and user in the early modern period drove both

  1. Planetary Taxonomy: Label Round Bodies "Worlds"

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc; Levison, H. F.

    2009-05-01

    The classification of planetary bodies is as important to Astronomy as taxonomy is to other sciences. The etymological, historical, and IAU definitions of planet rely on a dynamical criterion, but some authors prefer a geophysical criterion based on "roundness". Although the former criterion is superior when it comes to classifying newly discovered objects, the conflict need not exist if we agree to identify the subset of "round" planetary objects as "worlds". This addition to the taxonomy would conveniently recognize that "round" objects such as Earth, Europa, Titan, Triton, and Pluto share some common planetary-type processes regardless of their distance from the host star. Some of these worlds are planets, others are not. Defining how round is round and handling the inevitable transition objects are non-trivial tasks. Because images at sufficient resolution are not available for the overwhelming majority of newly discovered objects, the degree of roundness is not a directly observable property and is inherently problematic as a basis for classification. We can tolerate some uncertainty in establishing the "world" status of a newly discovered object, and still establish its planet or satellite status with existing dynamical criteria. Because orbital parameters are directly observable, and because mass can often be measured either from orbital perturbations or from the presence of companions, the dynamics provide a robust and practical planet classification scheme. It may also be possible to determine which bodies are dynamically dominant from observations of the population magnitude/size distribution.

  2. The UCL NASA 3D-RPIF Imaging Centre - a status report.

    NASA Astrophysics Data System (ADS)

    Muller, J.-P.; Grindrod, P.

    2013-09-01

    The NASA RPIF (Regional Planetary Imaging Facility) network of 9 US and 8 international centres were originally set-up in 1977 to "maintain photographic and digital data as well as mission documentation and cartographic data. Each facility's general holding contains images and maps of planets and their satellites taken by solar system exploration spacecraft. These planetary image facilities are open to the public. The facilities are primarily reference centers for browsing, studying, and selecting lunar and planetary photographic and cartographic materials. Experienced staff can assist scientists, educators, students, media, and the public in ordering materials for their own use." In parallel, the NASA Planetary Data System (PDS) and ESA Planetary Science Archive (PSA) were set-up to distribute digital data initially on media such as CDROM and DVD but now entirely online. The UK NASA RPIF was the first RPIF to be established outside of the US, in 1980. In [1], the 3D-RPIF is described. Some example products derived using this equipment are illustrated here. In parallel, at MSSL a large linux cluster and associated RAID_based system has been created to act as a mirror PDS Imaging node so that huge numbers of rover imagery (from MER & MSL to begin with) and very high resolution (large size) data is available to users of the RPIF and a variety of EU-FP7 projects based at UCL.

  3. NASA's SOFIA airborne observatory lands at Edwards AFB after being flown from Waco, Texas to NASA Dryden for systems installation, integration and flight test

    NASA Image and Video Library

    2007-05-31

    NASA's SOFIA airborne observatory lands at Edwards AFB after being flown from Waco, Texas to NASA Dryden for systems installation, integration and flight test. NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, arrived at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. on May 31, 2007. The heavily modified Boeing 747SP was ferried to Dryden from Waco, Texas, where L-3 Communications Integrated Systems installed a German-built 2.5-meter infrared telescope and made other major modifications over the past several years. SOFIA is scheduled to undergo installation and integration of mission systems and a multi-phase flight test program at Dryden over the next three years that is expected to lead to a full operational capability to conduct astronomy missions in about 2010. During its expected 20-year lifetime, SOFIA will be capable of "Great Observatory" class astronomical science, providing astronomers with access to the visible, infrared and sub-millimeter spectrum with optimized performance in the mid-infrared to sub-millimeter range.

  4. Overview of Innovative Aircraft Power and Propulsion Systems and Their Applications for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Landis, Geoffrey; Lyons, Valerie

    2003-01-01

    Planetary exploration may be enhanced by the use of aircraft for mobility. This paper reviews the development of aircraft for planetary exploration missions at NASA and reviews the power and propulsion options for planetary aircraft. Several advanced concepts for aircraft exploration, including the use of in situ resources, the possibility of a flexible all-solid-state aircraft, the use of entomopters on Mars, and the possibility of aerostat exploration of Titan, are presented.

  5. Authentic Astronomy Research Experiences for Teachers: the NASA/IPAC Teacher Archive Research Program (NITARP)

    NASA Astrophysics Data System (ADS)

    Rebull, L.; NITARP Team

    2011-12-01

    Since 2004, we have provided authentic astronomy research experiences for teachers using professional astronomical data. (The program used to be called the Spitzer Teacher Program for Teachers and Students, and in 2009 was renamed NITARP--NASA/IPAC Teacher Archive Research Program.) We partner small groups of teachers with a mentor astronomer, the team does research, writes up a poster, and presents it at the major annual meeting for professional US astronomers, the American Astronomical Society (winter meeting). The teachers incorporate this research experience into their classroom, and their experiences color their teaching for years to come, influencing hundreds of students per teacher. This program, to the best of our knowledge, is completely unique in the following three ways: (1) Each team does original research using real astronomical data, not canned labs or reproductions of previously done research. (2) Each team writes up the results of their research and presents it at an AAS meeting. Each team also presents the educational results of their experience. (3) The 'products' of the program are primarily the scientific results, as opposed to curriculum packets. The teachers in the program involve students at their school and incorporate the experience into their teaching in a way that works for them, their environment, and their local/state standards. The educators in the program are selected from a nationwide annual application process, and they get three trips, all reasonable expenses paid. First, they attend a winter AAS meeting to get their bearings as attendees of the largest professional astronomy meetings in the world. We sponsor a kickoff workshop specifically for the NITARP educators on the day before the AAS meeting starts. After the meeting, they work remotely with their team to write a proposal, as well as read background literature. In the summer (at a time convenient to all team members), the educators plus up to two students per teacher come

  6. Educational Applications of Astronomy & Space Flight Operations at the Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Erickson, L. K.

    1999-09-01

    Within two years, the Kennedy Space Center will complete a total redesign of NASA's busiest Visitor's Center. Three million visitors per year will be witness to a new program focused on expanding the interests of the younger public in NASA's major space programs, in space operations, and in astronomy. This project, being developed through the Visitor's Center director, a NASA faculty fellow, and the Visitor's Center contractor, is centered on the interaction between NASA programs, the visiting youth, and their parents. The goal of the Center's program is to provide an appealing learning experience for teens and pre teens using stimulating displays and interactive exhibits that are also educational.

  7. The stars, the moon, and the shadowed earth: Viennese astronomy in the fifteenth century

    NASA Astrophysics Data System (ADS)

    Byrne, James Steven

    This dissertation is a study of astronomy at the University of Vienna from the beginning of the fifteenth century through the career of Johannes Regiomontanus (d. 1476), the university's most celebrated astronomer. Regiomontanus and his mentor Georg Peurbach (d. 1461) established a framework for the practice of astronomy, including the linkage of cosmology to astronomy, attempts to correct the errors and ambiguities of the medieval astronomical tradition, a renewed interest in Ptolemy's Almagest , and a program of observations intended as a basis for the reform of planetary tables and models, that remained in place for the more celebrated astronomical achievements of the following century. This study traces the roots of this framework to astronomical teaching at the University of Vienna in the first half of the fifteenth century, as well as its expansion by Regiomontanus as he moved from Vienna to Italy, Hungary, and Germany. Chapter One provides background for the reader unfamiliar with medieval, Ptolemaic astronomy, and also argues that the shift described in the next chapter was, in part, motivated by astrological concerns. Chapter Two demonstrates that, by the middle of the fifteenth century, Viennese astronomy had come to incorporate a significant element of Aristotelian cosmology. Chapter Three examines fourteenth- and fifteenth-century responses to the Theorica planetarum , the most common astronomical teaching text at medieval universities, arguing that university astronomers were capable of identifying and addressing problems with the Theorica in a sophisticated manner. Chapter Four argues that the seemingly contradictory aspects of Regiomontanus's astronomical career can be understood as all contributing to a program of reform that encompassed both the correction of astronomical tables on the basis of new and comprehensive observations as well as the construction of homocentric planetary models to replace the venerable Ptolemaic system. Chapter Five shows

  8. NASA Video Catalog. Supplement 15

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  9. NASA Video Catalog. Supplement 13

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  10. NASA Video Catalog. Supplement 14

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The Table of Contents shows how the entries are arranged by divisions and categories according to the NASA Scope and Coverage Category Guide. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  11. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  12. A bibliography of planetary geology and geophysics principal investigators and their associates, 1983 - 1984

    NASA Technical Reports Server (NTRS)

    Witbeck, N. E. (Editor)

    1984-01-01

    A compilation is given of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program. Topics include the solar system, asteroids, volcanoes, stratigraphy, remote sensing, and planetary craters.

  13. Engaging Scientists in Meaningful E/PO: How the NASA SMD E/PO Community Addresses the Needs of the Higher Ed Community

    NASA Astrophysics Data System (ADS)

    Manning, James; Meinke, Bonnie K.; Schultz, Gregory R.; Smith, Denise A.; Lawton, Brandon L.; Gurton, Suzanne; NASA Astrophysics E/PO Community

    2015-01-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams to bring cutting-edge discoveries of NASA missions to the introductory astronomy college classroom. The Astrophysics Forum assists scientist and educator involvement in SMD E/PO (uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise) and makes SMD E/PO resources and expertise accessible to the science and education communities. We present three new opportunities for college instructors to bring the latest NASA discoveries in Astrophysics into their classrooms.To address the expressed needs of the higher education community, the Astrophysics Forum collaborated with the Astrophysics E/PO community, researchers, and Astronomy 101 instructors to place individual science discoveries and learning resources into context for higher education audiences. Among these resources are two Resource Guides on the topics of cosmology and exoplanets, each including a variety of accessible sources.The Astrophysics Forum also coordinates the development of the Astro 101 slide set series--5 to 7-slide presentations on new discoveries from NASA Astrophysics missions relevant to topics in introductory astronomy courses. These sets enable Astronomy 101 instructors to include new discoveries not yet in their textbooks into the broader context of the course: http://www.astrosociety.org/education/astronomy-resource-guides/.The Astrophysics Forum also coordinated the development of 12 monthly Universe Discovery Guides, each featuring a theme and a representative object well-placed for viewing, with an accompanying interpretive story, strategies for conveying the topics, and supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs: http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611

  14. Planetary Protection Technologies: Technical Challenges for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Buxbaum, Karen L.

    2005-01-01

    The search for life in the solar system, using either in situ analysis or sample return, brings with it special technical challenges in the area of planetary protection. Planetary protection (PP) requires planetary explorers to preserve biological and organic conditions for future exploration and to protect the Earth from potential extraterrestrial contamination that could occur as a result of sample return to the Earth-Moon system. In view of the exploration plans before us, the NASA Solar System Exploration Program Roadmap published in May 2003 identified planetary protection as one of 13 technologies for "high priority technology investments." Recent discoveries at Mars and Jupiter, coupled with new policies, have made this planning for planetary protection technology particularly challenging and relevant.New missions to Mars have been formulated, which present significantly greater forward contamination potential. New policies, including the introduction by COSPAR of a Category IVc for planetary protection, have been adopted by COSPAR in response. Some missions may not be feasible without the introduction of new planetary protection technologies. Other missions may be technically possible but planetary protection requirements may be so costly to implement with current technology that they are not affordable. A strategic investment strategy will be needed to focus on technology investments designed to enable future missions and reduce the costs of future missions. This presentation will describe some of the potential technological pathways that may be most protective.

  15. The Planetary Data System— Archiving Planetary Data for the use of the Planetary Science Community

    NASA Astrophysics Data System (ADS)

    Morgan, Thomas H.; McLaughlin, Stephanie A.; Grayzeck, Edwin J.; Vilas, Faith; Knopf, William P.; Crichton, Daniel J.

    2014-11-01

    NASA’s Planetary Data System (PDS) archives, curates, and distributes digital data from NASA’s planetary missions. PDS provides the planetary science community convenient online access to data from NASA’s missions so that they can continue to mine these rich data sets for new discoveries. The PDS is a federated system consisting of nodes for specific discipline areas ranging from planetary geology to space physics. Our federation includes an engineering node that provides systems engineering support to the entire PDS.In order to adequately capture complete mission data sets containing not only raw and reduced instrument data, but also calibration and documentation and geometry data required to interpret and use these data sets both singly and together (data from multiple instruments, or from multiple missions), PDS personnel work with NASA missions from the initial AO through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. PDS makes the data in PDS easily searchable so that members of the planetary community can both query the archive to find data relevant to specific scientific investigations and easily retrieve the data for analysis. To ensure long-term preservation of data and to make data sets more easily searchable with the new capabilities in Information Technology now available (and as existing technologies become obsolete), the PDS (together with the COSPAR sponsored IPDA) developed and deployed a new data archiving system known as PDS4, released in 2013. The LADEE, MAVEN, OSIRIS REx, InSight, and Mars2020 missions are using PDS4. ESA has adopted PDS4 for the upcoming BepiColumbo mission. The PDS is actively migrating existing data records into PDS4 and developing tools to aid data providers and users. The PDS is also incorporating challenge

  16. NASA African American History Month Profile - Kimberly Ennix-Sandhu (AFRC)

    NASA Image and Video Library

    2018-02-20

    Kimberly Ennix-Sandhu is the SOFIA Operations Center System Safety Lead at NASA Armstrong Flight Research Center. SOFIA is the Stratospheric Observatory for Infrared Astronomy. Kimberly has worked for NASA for 27 years. She started out in jet and rocket propulsion research engineering and moved to Safety and Mission Assurance as a system safety engineer.

  17. Lidar Past, Present, and Future in NASA's Earth and Space Science Programs

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.

    2004-01-01

    Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.

  18. Optical information processing for NASA's space exploration

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Ochoa, Ellen; Juday, Richard

    1990-01-01

    The development status of optical processing techniques under development at NASA-JPL, NASA-Ames, and NASA-Johnson, is evaluated with a view to their potential applications in future NASA planetary exploration missions. It is projected that such optical processing systems can yield major reductions in mass, volume, and power requirements relative to exclusively electronic systems of comparable processing capabilities. Attention is given to high-order neural networks for distortion-invariant classification and pattern recognition, multispectral imaging using an acoustooptic tunable filter, and an optical matrix processor for control problems.

  19. Science Case for Planetary Exploration with Planetary CubeSats and SmallSats

    NASA Astrophysics Data System (ADS)

    Castillo-Rogez, Julie; Raymond, Carol; Jaumann, Ralf; Vane, Gregg; Baker, John

    2016-07-01

    Nano-spacecraft and especially CubeSats are emerging as viable low cost platforms for planetary exploration. Increasing miniaturization of instruments and processing performance enable smart and small packages capable of performing full investigations. While these platforms are limited in terms of payload and lifetime, their form factor and agility enable novel mission architectures and a refreshed relationship to risk. Leveraging a ride with a mothership to access far away destinations can significantly augment the mission science return at relatively low cost. Depending on resources, the mothership may carry several platforms and act as telecom relay for a distributed network or other forms of fractionated architectures. In Summer 2014 an international group of scientists, engineers, and technologists started a study to define investigations to be carried out by nano-spacecrafts. These applications flow down from key science priorities of interest across space agencies: understanding the origin and organization of the Solar system; characterization of planetary processes; assessment of the astrobiological significance of planetary bodies across the Solar system; and retirement of strategic knowledge gaps (SKGs) for Human exploration. This presentation will highlight applications that make the most of the novel architectures introduced by nano-spacecraft. Examples include the low cost reconnaissance of NEOs for science, planetary defense, resource assessment, and SKGs; in situ chemistry measurements (e.g., airless bodies and planetary atmospheres), geophysical network (e.g., magnetic field measurements), coordinated physical and chemical characterization of multiple icy satellites in a giant planet system; and scouting, i.e., risk assessment and site reconnaissance to prepare for close proximity observations of a mothership (e.g., prior to sampling). Acknowledgements: This study is sponsored by the International Academy of Astronautics (IAA). Part of this work is

  20. The Extended Region Around the Planetary Nebula NGC 3242

    NASA Image and Video Library

    2009-04-03

    This ultraviolet image from NASA Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as Jupiter Ghost. The small circular white and blue area at the center of the image is the well-known portion of the nebula.

  1. Overview of the 2008 COSPAR Planetary Protection Policy Workshop

    NASA Astrophysics Data System (ADS)

    Rummel, John

    In January 2008 the COSPAR Panel on Planetary Protection held a Policy Workshop in Montŕal, Canada to consider a number of recommendations that had been suggested at prior e Panel business meetings for updating and clarifying the COSPAR Planetary Protection Policy that had been adopted at the World Space Congress in 2002. One particular element of the Policy that was due for clarification was the definition of "Special Regions" on Mars, which was discussed by the Panel at a Special Regions Colloquium in Rome in September 2008, and which was recommended for updating by both the US National Research Council's Committee on Preventing the Forward Contamination of Mars and by a Special Regions Science Analysis Group organized by NASA under its Mars Exploration Program Analysis Group in 2006. In other business, the Workshop also discussed and adopted wording to reflect the planetary protection considerations associated with future human missions to Mars (subsequent to several NASA and ESA workshops defining those), and addressed the planetary protection categorizations of both Venus and the Earth's Moon. The Workshop also defined a plan to move forward on the categorization of Outer Planet Satellites (to be done in conjunction with SC's B and F), and revised certain portions of the wording of the 1983 version of the COSPAR policy statement, emphasized full participation by all national members in planetary protection decisions and the need to study the ethical considerations of space exploration, and provided for a traceable version of the policy to be assembled and maintained by the Panel. This talk will review the Montŕal Workshop, and use its themes to introduce the remaining speakers in the session. e

  2. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. David H. Grinspoon, senior scientist at the Planetary Science Institute, speaks about working on NASA's Voyager team while serving as moderator for a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  3. Enhancing Astronomy Major Learning Through Group Research Projects

    NASA Astrophysics Data System (ADS)

    McGraw, Allison M.; Hardegree-Ullman, K.; Turner, J.; Shirley, Y. L.; Walker-Lafollette, A.; Scott, A.; Guvenen, B.; Raphael, B.; Sanford, B.; Smart, B.; Nguyen, C.; Jones, C.; Smith, C.; Cates, I.; Romine, J.; Cook, K.; Pearson, K.; Biddle, L.; Small, L.; Donnels, M.; Nieberding, M.; Kwon, M.; Thompson, R.; De La Rosa, R.; Hofmann, R.; Tombleson, R.; Smith, T.; Towner, A. P.; Wallace, S.

    2013-01-01

    The University of Arizona Astronomy Club has been using group research projects to enhance the learning experience of undergraduates in astronomy and related fields. Students work on two projects that employ a peer-mentoring system so they can learn crucial skills and concepts necessary in research environments. Students work on a transiting exoplanet project using the 1.55-meter Kuiper Telescope on Mt. Bigelow in Southern Arizona to collect near-UV and optical wavelength data. The goal of the project is to refine planetary parameters and to attempt to detect exoplanet magnetic fields by searching for near-UV light curve asymmetries. The other project is a survey that utilizes the 12-meter Arizona Radio Observatory on Kitt Peak to search for the spectroscopic signature of infall in nearby starless cores. These are unique projects because students are involved throughout the entire research process, including writing proposals for telescope time, observing at the telescopes, data reduction and analysis, writing papers for publication in journals, and presenting research at scientific conferences. Exoplanet project members are able to receive independent study credit for participating in the research, which helps keep the project on track. Both projects allow students to work on professional research and prepare for several astronomy courses early in their academic career. They also encourage teamwork and mentor-style peer teaching, and can help students identify their own research projects as they expand their knowledge.

  4. SOFIA Aircraft Visits NASA Ames, Reporter Package for TWAN/Web

    NASA Image and Video Library

    2011-10-19

    Taking a break from its science mission flights, the Stratospheric Observatory For Infrared Astronomy or SOFIA came to NASA Ames Research Center to offer tours to employees and VIP's alike. For two days, the aircraft was opened up so that dignitaries, members of the media, NASA employees and the general public could take self-guided tours of the aircraft.

  5. Planetary Science Research Discoveries (PSRD): Effective Education and Outreach Website at http://www.soest.hawaii.edu/PSRdiscoveries

    NASA Technical Reports Server (NTRS)

    Taylor, G. J.; Martel, L. M. V.

    2000-01-01

    Planetary Science Research Discoveries (PSRD) website reports the latest research about planets, meteorites, and other solar system bodies being made by NASA-sponsored scientists. In-depth articles explain research results and give insights to contemporary questions in planetary science.

  6. The Georgians Experience Astronomy Research in Schools (GEARS) High School Galaxy Unit

    NASA Astrophysics Data System (ADS)

    Higdon, Sarah; Higdon, J.; Aguilar, J.

    2012-01-01

    The Georgians Experience Astronomy Research in Schools (GEARS) project aims to provide a rigorous and inquiry-based astronomy curriculum to GA's public schools. Exposure to data mining and research activities using the astronomy archives can be the trigger for the next generation of scientists, and it improves a student's ability to solve problems. Students then consolidate their findings and improve their communication skills by writing scientific reports and creating video presentations. The GEARS curriculum has units on the solar system, life in the Universe, stars, galaxies and cosmology. Here we present some of the activities in the Galaxy Unit. The GEARS material is freely available. Please email shigdon_AT_georgiasouthern.edu if you would like more details. NASA Grant NNX09AH83A through the GADOE funds this project.

  7. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.

    2013-05-01

    Abstract (2,250 Maximum Characters): The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.

  8. Misconceptions in Astronomy: Before and After a Constructivist Learning Environment

    NASA Astrophysics Data System (ADS)

    Ruzhitskaya, Lanika; Speck, A.

    2009-01-01

    We present results of a pilot study on college students’ misconceptions in astronomy. The study was conducted on the campus of a Midwestern university among 43 non-science major students enrolled in an introductory astronomy laboratory course. The laboratory course was based on a constructivist learning environment where students learned astronomy by doing astronomy. During the course, students worked with educational simulations created by Project CLEA team and RedShift College Education Astronomy Workbook by Bill Walker as well as were involved in think-pair-share discussions based on Lecture-Tutorials (Prather et al 2008). Several laboratories were prompted by an instructor's brief presentations. On the first and last days of the course students were surveyed on what their beliefs were about causes of the seasons, the moon's apparent size in the sky and its phases, planetary orbits, structure of the solar system, the sun, distant stars, and the nature of light. The majority of the surveys’ questions were based on Neil Comins’ 50 most commonly cited misconceptions. The outcome of the study showed that while students constructed correct understanding of a number of phenomena, they also created a set of new misconceptions. For example, if on the first day of the course, nine out of 43 students knew what caused the seasons on Earth; on the last day of the course, 20 students gained the similar understanding. However, by the end of the course more students believed that smaller planets must rotate faster based on the conservation of angular momentum and Kepler's laws. Our findings suggest that misconceptions pointed out by Neil Comins over a decade ago are still relevant today; and that learning based exclusively on simulations and collaborative group discussions does not necessarily produce the best results, but may set a ground for creating new misconceptions.

  9. Partnering to Enhance Planetary Science Education and Public Outreach Programs

    NASA Astrophysics Data System (ADS)

    Dalton, H.; Shipp, S. S.; Shupla, C. B.; Shaner, A. J.; LaConte, K.

    2015-12-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions. To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center's Astromaterials Research and Exploration Science group, who provide Apollo samples for the event. Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance. Additional information about LPI's E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO's partners here: http://www.lpi.usra.edu/education/partners/.

  10. The Role of Geologic Mapping in NASA PDSI Planning

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Skinner, J. A.; Radebaugh, J.

    2017-12-01

    Geologic mapping is an investigative process designed to derive the geologic history of planetary objects at local, regional, hemispheric or global scales. Geologic maps are critical products that aid future exploration by robotic spacecraft or human missions, support resource exploration, and provide context for and help guide scientific discovery. Creation of these tools, however, can be challenging in that, relative to their terrestrial counterparts, non-terrestrial planetary geologic maps lack expansive field-based observations. They rely, instead, on integrating diverse data types wth a range of spatial scales and areal coverage. These facilitate establishment of geomorphic and geologic context but are generally limited with respect to identifying outcrop-scale textural details and resolving temporal and spatial changes in depositional environments. As a result, planetary maps should be prepared with clearly defined contact and unit descriptions as well as a range of potential interpretations. Today geologic maps can be made from images obtained during the traverses of the Mars rovers, and for every new planetary object visited by NASA orbital or flyby spacecraft (e.g., Vesta, Ceres, Titan, Enceladus, Pluto). As Solar System Exploration develops and as NASA prepares to send astronauts back to the Moon and on to Mars, the importance of geologic mapping will increase. In this presentation, we will discuss the past role of geologic mapping in NASA's planetary science activities and our thoughts on the role geologic mapping will have in exploration in the coming decades. Challenges that planetary mapping must address include, among others: 1) determine the geologic framework of all Solar System bodies through the systematic development of geologic maps at appropriate scales, 2) develop digital Geographic Information Systems (GIS)-based mapping techniques and standards to assist with communicating map information to the scientific community and public, 3) develop

  11. NASA Video Catalog. Supplement 12

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This report lists 1878 video productions from the NASA STI Database. This issue of the NASA Video Catalog cites video productions listed in the NASA STI Database. The videos listed have been developed by the NASA centers, covering Shuttle mission press conferences; fly-bys of planets; aircraft design, testing and performance; environmental pollution; lunar and planetary exploration; and many other categories related to manned and unmanned space exploration. Each entry in the publication consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged by STAR categories. A complete Table of Contents describes the scope of each category. For users with specific information, a Title Index is available. A Subject Term Index, based on the NASA Thesaurus, is also included. Guidelines for usage of NASA audio/visual material, ordering information, and order forms are also available.

  12. LISA and NASA's Physics of the Cosmos Theme

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    In the past year, the LISA Project at NASA has completed a major review and has thoroughly reviewed its cost estimates. This talk will summarize the conclusions of the Beyond Einstein Program Assessment, and review the main conclusions of the cost estimation work done at NASA, including reduced mission concepts. Astro2010, the decadal review which sets priorities for astronomy and astrophysics projects in the U.S., is getting organized. Preparing for and participating in Astro2010 will be a crucial activity for the NASA side of the LISA Project in thc next 18 months.

  13. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy

    NASA Astrophysics Data System (ADS)

    Case, S.

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets.

  14. How bright planets became dim stars: planetary speculations in John Herschel's double star astronomy.

    PubMed

    Case, Stephen

    2014-03-01

    Previous research on the origins of double star astronomy in the early nineteenth century emphasized the role mathematical methods and instrumentation played in motivating early observations of these objects. The work of the British astronomer John Herschel, however, shows that questions regarding the physical nature of double stars were also important. In particular, an analysis of John Herschel's early work on double stars illustrates the way in which speculations regarding these objects were shaped by assumptions of the properties of stars themselves. For Herschel, a major consideration in double star astronomy was distinguishing between types of double stars. Optical doubles were useful in determining parallax while binary doubles were not. In practice, classification of a specific double star pair into one of these categories was based on the assumption that stars were of approximately the same luminosity and thus differences in relative brightness between stars were caused by difference in distances. Such assumptions, though ultimately abandoned, would lead Herschel in the 1830s to advance the possibility that the dim companion stars in certain double star pairs were not stars at all but in fact planets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. NASA Spacecraft Captures 3-D View of Massive Australian Wildfire

    NASA Image and Video Library

    2013-02-05

    This 3-D view was created from data acquired Feb. 4, 2013 by NASA Terra spacecraft showing a massive wildfire which damaged Australia largest optical astronomy facility, the Siding Spring Observatory.

  16. UV Astronomy: Stars from Birth to Death

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.; Barstow, Martin A.

    The Joint Discussion on UV Astronmy: Stars from Birth to Death was held during the IAU General Assembly of 2006, in August 2006. It was aimed to provide a forum where the accomplishments of UV astrophysics could be highlighted and a new roadmap for the future discussed. This meeting focussed in particular on stellar astrophysics. The understanding of stellar physics is at the very base of our understanding of the Universe. The chemical evolution of the Universe is controlled by stars. Supernovae are prime distance indicators that have allowed to measure the evolution of the curvature of the Universe and to detect the existence of dark energy. The development of life sustaining system depends strongly on the evolution of stars like our Sun. Some of the most extreme forms of matter in the Universe, the densest and more strongly magnetized, are the magnetars, debris of stellar evolution. The excellent contributions presented in this Joint Discussion dealt with the many aspects of stellar astrophysics from the analysis of dissipative processes in the atmosphere of cool stars and their impact on the evolution of the planetary systems to the study of the atmospheres and winds of the hot massive stars or the determination of the abundances in white dwarfs. The physics of disks, its role in the evolution of binary systems, and the formation of supernovae were among the main topics treated in the meeting. We should also not forget the role of starbursts and, in general, high mass stars in the chemical evolution of galaxies. The metallicity gradient in the Galaxy is traced in the UV spectrum of planetary nebulae. The evolution of young planetary disks and the role of the central stars in the photoevaporation of the giant gaseous planets that have been detected recently. The book contains a summary of the numerous and high quality contributions to this Joint Discussion classified in five chapters: * Chapter 1: Star Formation and Young Stellar Objects * Chapter 2: Life in Main

  17. Bringing Astronomy Directly to People Who Do Not Come to Star Parties, Science Museums, or Science Festivals

    NASA Astrophysics Data System (ADS)

    Lubowich, Donald A.

    2013-01-01

    My successful programs have included telescope observations, hands-on activities, and edible astronomy demonstrations for: outdoor concerts or music festivals; the National Mall; churches, synagogues, seminaries, or clergy conferences; the Ronald McDonald House of Long Island (New Hyde Park, NY), the Winthrop University Hospital Children’s Medical Center (Mineola, NY); the Fresh Air Fund summer camps; a Halloween star party with costumed kids looking through telescopes; a Super Bowl Star Party; the World Science Festival (NYC); the Princeton University Science and Engineering Expo; the USA Science and Engineering Festival; and the NYC Columbus Day Parade. These outreach activities have reached thousands of people including many young girls. Information was also provided about local science museums, citizen science projects, astronomy educational sites, and astronomy clubs to encourage learning after these events. In 2010 I created Astronomy Night on the National Mall (co-sponsored the White House Office of Science and Technology Policy) with the participation of astronomy clubs, Chandra X-Ray Center, STScI, NASA, NOAO, NSF and the National Air and Space Museum. Since 2009 my NASA-funded Music and Astronomy Under the Stars (MAUS) program has brought astronomy to 50,000 music lovers who attended the Central Park Jazz, Newport Folk, Tanglewood, or Ravinia music festivals or classical, folk, rock, pop, opera, or county-western concerts in local parks assisted by astronomy clubs. MAUS is an evening, nighttime, and cloudy weather traveling astronomy program combining solar, optical, and radio telescope observations; a live image projection system; large outdoor posters and banners; videos; and hands-on activities before and after the concerts or at intermission. Yo-Yo-Ma and the Chicago Symphony or Boston Symphony Orchestras, the McCoy Tyner Quartet with Ravi Coltrane, Esperanza Spalding, the Stanley Clarke Band, Phish, Blood Sweat and Tears, Deep Purple, Patti Smith

  18. Avenues for Scientist Involvement in Planetary Science Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Cobabe-Ammann, E. A.; Dalton, H.; Bleacher, L.; Scalice, D.

    2012-12-01

    The Planetary Science Education and Public Outreach (E/PO) Forum is charged by NASA's Science Mission Directorate (SMD) with engaging, extending, and supporting the community of E/PO professionals and scientists involved in planetary science education activities in order to help them more effectively and efficiently share NASA science with all learners. A number of resources and opportunities for involvement are available for planetary scientists involved in - or interested in being involved in - E/PO. The Forum provides opportunities for community members to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested planetary scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend annual E/PO community meetings and meetings of opportunity at science and education conferences. The Forum also provides professional development opportunities on a myriad of topics, from common pre-conceptions in planetary science to program evaluation, to delivering effective workshops. Thematic approaches, such as the Year of the Solar System (http://solarsystem.nasa.gov/yss), are coordinated by the Forum; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - currently is being researched by SMD's Audience-Based Working Groups. Their findings and recommendations will be made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also in production is a "one-stop-shop" of SMD E/PO products and resources that can be used in conjunction with E/PO activities. Further supporting higher-education efforts, the Forum coordinates a network of planetary science

  19. Rediscovering Kepler's laws using Newton's gravitation law and NASA data

    NASA Astrophysics Data System (ADS)

    Springsteen, Paul; Keith, Jason

    2010-03-01

    Kepler's three laws of planetary motion were originally discovered by using data acquired from Tycho Brache's naked eye observations of the planets. We show how Kepler's third law can be reproduced using planetary data from NASA. We will also be using Newton's Gravitational law to explain why Kepler's three laws exist as they do.

  20. This is NASA

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Highlights of NASA's first 20 years are described including the accomplishments of the National Advisory Committee for Aeronautics from its creation in 1915 until its absorption into NASA in 1958. Current and future activities are assessed in relation to the Federal R&D research plan for FY 1980 and to U.S. civil space policy. A NASA organization chart accompanies descriptions of the responsibilities of Headquarters, its various offices, and field installations. Directions are given for contacting the agency for business activities or contracting purposes; for obtaining educational publications and other media, and for tours. Manpower statistics are included with a list of career opportunities. Special emphasis is given to manned space flight, space launch vehicles, space shuttle, planetary exploration, and investigations of the stars and the solar system.

  1. The Planetary Data System — Renewing Our Science Nodes in Order to Better Serve Our Science Community

    NASA Astrophysics Data System (ADS)

    Morgan, T. H.; McLaughlin, S.; Grayzeck, E. J.; Knopf, W.; McNutt, R. L., Jr.; Crichton, D. J.; New, M. H.

    2015-12-01

    In order to improve NASA's ability to provide an agile response to the needs of the Planetary Science Community, the Planetary Data System (PDS) is being transformed. NASA has used the highly successful virtual institute model (e.g., for NASA's Astrobiology Program) to re-compete the Science Nodes within the PDS Structure. We expect the new PDS will improve both archive searchability and product discoverability, continue the adaption of the new PDS4 Standard, and enhance our ability to work with other archive/curation activities within NASA and with the International community of space faring nations (through the International Planetary Data Alliance). PDS will continue to work with NASA missions from the initial Announcement of Opportunity through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented. In this presentation we discuss recent changes in the PDS, and our future activities to build on these changes. Please visit our User Support Area at the meeting (Booth #446) if you have questions accessing our data sets or providing data to the PDS or about the new PDS structure.

  2. Teaching and Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay; Percy, John

    2005-12-01

    Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel

  3. Teaching and Learning Astronomy

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay; Percy, John

    2009-07-01

    Preface; Part I. Astronomy in the Curriculum Around the World: Preface; 1. Why astronomy is useful and should be included in the school curriculum John R. Percy; 2. Astronomy and mathematics education Rosa M. Ros; 3. Astronomy in the curriculum around the world; 4. Engaging gifted science students through astronomy Robert Hollow; 5. Poster highlights: astronomy in the curriculum around the world; Part II. Astronomy Education Research: Preface; 6. Astronomy education research down under John M. Broadfoot and Ian S. Ginns; 7. A contemporary review of K-16 astronomy education research Janelle M. Bailey and Timothy F. Slater; 8. Implementing astronomy education research Leonarda Fucili; 9. The Astronomy Education Review: report on a new journal Sidney C. Wolff and Andrew Fraknoi; 10. Poster highlights: astronomy education research; Part III. Educating Students: Preface; 11. Textbooks for K-12 astronomy Jay M. Pasachoff; 12. Distance/internet astronomy education David H. McKinnon; 13. Educating students with robotic telescopes - open discussion; 14. Poster highlights - educating students; Part IV. Educating teachers: Preface; 15. Pre-service astronomy education of teachers Mary Kay Hemenway; 16. In-service education of teachers Michèle Gerbaldi; 17. Poster highlights: educating teachers; Part V. Astronomy and Pseudoscience: Preface; 18. Astronomy, pseudoscience and rational thinking Jayant V. Narlikar; 19. Astronomical pseudosciences in North America John R. Percy and Jay M. Pasachoff; Part VI. Astronomy and Culture: Preface; 20. Teaching astronomy in other cultures: archeoastronomy Julieta Fierro; 21. Poster highlights: astronomy and culture; Part VII. Astronomy in Developing Countries: Preface; 22. Astronomy Curriculum for developing countries Case Rijsdijk; 23. Science education resources for the developing countries James C. White II; Part VIII. Public Outreach in Astronomy: Preface; 24. What makes informal education programs successful? Nahide Craig and Isabel

  4. The planetary data system

    USGS Publications Warehouse

    Acton, Charles; Slavney, Susan; Arvidson, Raymond E.; Gaddis, Lisa R.; Gordon, Mitchell; Lavoie, Susan

    2017-01-01

    In the early 1980s, the Space Science Board (SSB) of the National Research Council was concerned about the poor and inconsistent treatment of scientific information returned from NASA’s space science missions. The SSB formed a panel [The Committee on Data Management and Computation (CODMAC)] to assess the situation and make recommendations to NASA for improvements. The CODMAC panel issued a report [1,2] that led to a number of actions, one of which was the convening of a Planetary Data Workshop in November 1983 [3]. The key findings of that workshop were that (1) important datasets were being irretrievably lost, and (2) the use of planetary data by the wider community is constrained by inaccessibility and a lack of commonality in format and documentation. The report further stated, “Most participants felt the present system (of data archiving and access) is inadequate and immediate changes are necessary to insure retention of and access to these and future datasets.”

  5. The ADS All Sky Survey: footprints of astronomy literature, in the sky

    NASA Astrophysics Data System (ADS)

    Pepe, Alberto; Goodman, A. A.; Muench, A. A.; Seamless Astronomy Group at the CfA

    2014-01-01

    The ADS All-Sky Survey (ADSASS) aims to transform the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource for astronomers, into a data resource. The ADS is not a data repository per se, but it implicitly contains valuable holdings of astronomical data, in the form of images, tables and object references contained within articles. The objective of the ADSASS effort is to extract these data and make them discoverable and available through existing data viewers. In this talk, the ADSASS viewer - http://adsass.org/ - will be presented: a sky heatmap of astronomy articles based on the celestial objects they reference. The ADSASS viewer is as an innovative research and visual search tool for it allows users to explore astronomical literature based on celestial location, rather than keyword string. The ADSASS is a NASA-funded initiative carried out by the Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics.

  6. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  7. Mars Science Laboratory Planetary Protection Status

    NASA Astrophysics Data System (ADS)

    Benardini, James; La Duc, Myron; Naviaux, Keith; Samuels, Jessica

    With over 500 sols of surface operations, the Mars Science Laboratory (MSL) Rover has trekked over 5km. A key finding along this journey thus far, is that water molecules are bound to fine-grained soil particles, accounting for about 2 percent of the particles' weight at Gale Crater where Curiosity landed. There is no concern to planetary protection as the finding resulted directly from SAM baking (100-835°C) out the soil for analysis. Over that temperature range, OH and/or H2O was released, which was bound in amorphous phases. MSL has completed an approved Post-Launch Report. The Project continues to be in compliance with planetary protection requirements as Curiosity continues its exploration and scientific discoveries there is no evidence suggesting the presence of a special region. There is no spacecraft induced special region and no currently flowing liquid. All systems of interest to planetary protection are functioning nominally. The project has submitted an extended mission request to the NASA PPO. The status of the PP activities will be reported.

  8. SmallSat Innovations for Planetary Science

    NASA Astrophysics Data System (ADS)

    Weinberg, Jonathan; Petroy, Shelley; Roark, Shane; Schindhelm, Eric

    2017-10-01

    As NASA continues to look for ways to fly smaller planetary missions such as SIMPLEX, MoO, and Venus Bridge, it is important that spacecraft and instrument capabilities keep pace to allow these missions to move forward. As spacecraft become smaller, it is necessary to balance size with capability, reliability and payload capacity. Ball Aerospace offers extensive SmallSat capabilities matured over the past decade, utilizing our broad experience developing mission architecture, assembling spacecraft and instruments, and testing advanced enabling technologies. Ball SmallSats inherit their software capabilities from the flight proven Ball Configurable Platform (BCP) line of spacecraft, and may be tailored to meet the unique requirements of Planetary Science missions. We present here recent efforts in pioneering both instrument miniaturization and SmallSat/sensorcraft development through mission design and implementation. Ball has flown several missions with small, but capable spacecraft. We also have demonstrated a variety of enhanced spacecraft/instrument capabilities in the laboratory and in flight to advance autonomy in spaceflight hardware that can enable some small planetary missions.

  9. Europlanet/IDIS: Combining Diverse Planetary Observations and Models

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard

    2013-04-01

    is compatible with IVOA standards. For some major data archives with different standards adaptation tools are available to make the access transparent to the user. EuroPlaNet-IDIS has contributed to the definition of PDAP, the Planetary Data Access Protocol of the International Planetary Data Alliance (IPDA) [7] to access the major planetary data archives of NASA in the USA [8], ESA in Europe [9] and JAXA in Japan [10]. Acknowledgement: Europlanet-RI was funded by the European Commission under the 7th Framework Program, grant 228319 "Capacities Specific Programme" - Research Infrastructures Action. Reference: [1] Details to IDIS and the Europlanet-RI via Web-site: http://www.idis.europlanet-ri.eu/ [2] Demonstrator implementation for Plasma-VO AMDA: http://cdpp-amda.cesr.fr/DDHTML/index.html [3] Demonstrator implementation for the IDIS-VO: http://www.idis-dyn.europlanet-ri.eu/vodev.shtml [4] Europlanet Data Model EPN-DM: http://www.europlanet-idis.fi/documents/public_documents/EPN-DM-v2.0.pdf [5] Europlanet Table Access Protocol EPN-TAP: http://www.europlanet-idis.fi/documents/public_documents/EPN-TAPV_0.26.pdf [6] International Virtual Observatory Alliance IVOA: http://www.ivoa.net [7] International Planetary Data Alliance IPDA: http://planetarydata.org/ [8] NASA's Planetary Data System: http://pds.jpl.nasa.gov/ [9] ESA's Planetary Science Archive PSA: http://www.sciops.esa.int/index.php?project=PSA [10] JAXAs Data Archive and Transmission System DARTS: http://darts.isas.jaxa.jp/

  10. Space instrumentation for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.

    1999-02-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  11. Planetary Nebula NGC 7293 also Known as the Helix Nebula

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the planetary nebula NGC 7293 also known as the Helix Nebula. It is the nearest example of what happens to a star, like our own Sun, as it approaches the end of its life when it runs out of fuel, expels gas outward and evolves into a much hotter, smaller and denser white dwarf star. http://photojournal.jpl.nasa.gov/catalog/PIA07902

  12. Discovery Planetary Mission Operations Concepts

    NASA Technical Reports Server (NTRS)

    Coffin, R.

    1994-01-01

    The NASA Discovery Program of small planetary missions will provide opportunities to continue scientific exploration of the solar system in today's cost-constrained environment. Using a multidisciplinary team, JPL has developed plans to provide mission operations within the financial parameters established by the Discovery Program. This paper describes experiences and methods that show promise of allowing the Discovery Missions to operate within the program cost constraints while maintaining low mission risk, high data quality, and reponsive operations.

  13. Building Effective Scientist-Educator Communities of Practice: NASA's Science Education and Public Outreach Forums

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Peticolas, L. M.; Shipp, S. S.; Smith, D. A.

    2014-12-01

    Since 1993, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practices of science and engineering as embodied in the 2013 Next Generation Science Standards. This presentation by the leads of the four NASA SMD Science EPO Forums provides big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting tools that were developed to foster a collaborative community and examples of program effectiveness and impact. The Forums are led by: Astrophysics - Space Telescope Science Institute (STScI); Earth Science - Institute for Global Environmental Strategies (IGES); Heliophysics - University of California, Berkeley; and Planetary Science - Lunar and Planetary Institute (LPI).

  14. Reports of Planetary Geology and Geophysics Program, 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Abstracts compiled from reports from Principal Investigators of the NASA Planetary Geology and Geophysics Program, Office of Space Science and Applications are presented. The purpose is to document in summary form work conducted in this program during 1986. Each report reflects significant accomplishments within the area of the author's funded grant or contract.

  15. Applying Multiagent Simulation to Planetary Surface Operations

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Sims, Michael H.; Clancey, William J.; Lee, Pascal; Swanson, Keith (Technical Monitor)

    2000-01-01

    This paper describes a multiagent modeling and simulation approach for designing cooperative systems. Issues addressed include the use of multiagent modeling and simulation for the design of human and robotic operations, as a theory for human/robot cooperation on planetary surface missions. We describe a design process for cooperative systems centered around the Brahms modeling and simulation environment being developed at NASA Ames.

  16. Partnering to Enhance Planetary Science Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Dalton, Heather; Shipp, Stephanie; Shupla, Christine; Shaner, Andrew; LaConte, Keliann

    2015-11-01

    The Lunar and Planetary Institute (LPI) in Houston, Texas utilizes many partners to support its multi-faceted Education and Public Outreach (E/PO) program. The poster will share what we have learned about successful partnerships. One portion of the program is focused on providing training and NASA content and resources to K-12 educators. Teacher workshops are performed in several locations per year, including LPI and the Harris County Department of Education, as well as across the country in cooperation with other programs and NASA Planetary Science missions.To serve the public, LPI holds several public events per year called Sky Fest, featuring activities for children, telescopes for night sky viewing, and a short scientist lecture. For Sky Fest, LPI partners with the NASA Johnson Space Center Astronomical Society; they provide the telescopes and interact with members of the public as they are viewing celestial objects. International Observe the Moon Night (InOMN) is held annually and involves the same aspects as Sky Fest, but also includes partners from Johnson Space Center’s Astromaterials Research and Exploration Science group, who provide Apollo samples for the event.Another audience that LPI E/PO serves is the NASA Planetary Science E/PO community. Partnering efforts for the E/PO community include providing subject matter experts for professional development workshops and webinars, connections to groups that work with diverse and underserved audiences, and avenues to collaborate with groups such as the National Park Service and the Afterschool Alliance.Additional information about LPI’s E/PO programs can be found at http://www.lpi.usra.edu/education. View a list of LPI E/PO’s partners here: http://www.lpi.usra.edu/education/partners/.

  17. Innovation in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2013-01-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing

  18. Innovation in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Ros, Rosa M.; Pasachoff, Naomi

    2008-07-01

    Preface; Part I. General Strategies for Effective Teaching: Introduction; 1. Main objectives of SpS2; 2. Learning astronomy by doing astronomy; 3. Hands-on Universe-Europe; 4. Life on Earth in the atmosphere of the Sun; 5. A model of teaching astronomy to pre-service teachers; 6. How to teach, learn about, and enjoy astronomy; 7. Clickers: a new teaching tool of exceptional promise; 8. Educational opportunities in pro-am collaboration; 9. Teaching history of astronomy to second-year engineering students; 10. Teaching the evolution of stellar and Milky Way concepts through the ages; 11. Educational efforts of the International Astronomical Union; 12. Astronomy in culture; 13. Light pollution: a tool for astronomy education; 14. Astronomy by distance learning; 15. Edible astronomy demonstrations; 16. Amateur astronomers as public outreach partners; 17. Does the Sun rotate around Earth or Earth rotate around the Sun?; 18. Using sounds and sonifications for astronomy outreach; 19. Teaching astronomy and the crisis in science education; 20. Astronomy for all as part of a general education; Poster abstracts; Part II. Connecting Astronomy with the Public: Introduction; 21. A status report from the Division XII working group; 22. Outreach using media; 23. Astronomy podcasting; 24. IAU's communication strategy, hands-on science communication, and the communication of the planet definition discussion; 25. Getting a word in edgeways: the survival of discourse in audiovisual astronomy; 26. Critical evaluation of the new Hall of Astronomy; 27. Revitalizing astronomy teaching through research on student understanding; Poster abstracts; Part III. Effective Use of Instruction and Information Technology: Introduction; 28. ESO's astronomy education program; 29. U.S. student astronomy research and remote observing projects; 30. Global network of autonomous observatories dedicated to student research; 31. Remote telescopes in education: report of an Australian study; 32. Visualizing

  19. Strategic approaches to planetary base development

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.

    1992-01-01

    The evolutionary development of a planetary expansionary outpost is considered in the light of both technical and economic issues. The outline of a partnering taxonomy is set forth which encompasses both institutional and temporal issues related to establishing shared interests and investments. The purely technical issues are discussed in terms of the program components which include nonaerospace technologies such as construction engineering. Five models are proposed in which partnership and autonomy for participants are approached in different ways including: (1) the standard customer/provider relationship; (2) a service-provider scenario; (3) the joint venture; (4) a technology joint-development model; and (5) a redundancy model for reduced costs. Based on the assumed characteristics of planetary surface systems the cooperative private/public models are championed with coordinated design by NASA to facilitate outside cooperation.

  20. Robot Manipulator Technologies for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Das, H.; Bao, X.; Bar-Cohen, Y.; Bonitz, R.; Lindemann, R.; Maimone, M.; Nesnas, I.; Voorhees, C.

    1999-01-01

    NASA exploration missions to Mars, initiated by the Mars Pathfinder mission in July 1997, will continue over the next decade. The missions require challenging innovations in robot design and improvements in autonomy to meet ambitious objectives under tight budget and time constraints. The authors are developing design tools, component technologies and capabilities to address these needs for manipulation with robots for planetary exploration. The specific developments are: 1) a software analysis tool to reduce robot design iteration cycles and optimize on design solutions, 2) new piezoelectric ultrasonic motors (USM) for light-weight and high torque actuation in planetary environments, 3) use of advanced materials and structures for strong and light-weight robot arms and 4) intelligent camera-image coordinated autonomous control of robot arms for instrument placement and sample acquisition from a rover vehicle.