DOE Office of Scientific and Technical Information (OSTI.GOV)
Erika N. Bailey
2011-10-10
In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventuallymore » built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities« less
Plum Brook Reactor Facility Control Room during Facility Startup
1961-02-21
Operators test the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility systems in the months leading up to its actual operation. The “Reactor On” signs are illuminated but the reactor core was not yet ready for chain reactions. Just a couple weeks after this photograph, Plum Brook Station held a media open house to unveil the 60-megawatt test reactor near Sandusky, Ohio. More than 60 members of the print media and radio and television news services met at the site to talk with community leaders and representatives from NASA and Atomic Energy Commission. The Plum Brook reactor went critical for the first time on the evening of June 14, 1961. It was not until April 1963 that the reactor reached its full potential of 60 megawatts. The reactor control room, located on the second floor of the facility, was run by licensed operators. The operators manually operated the shim rods which adjusted the chain reaction in the reactor core. The regulating rods could partially or completely shut down the reactor. The control room also housed remote area monitoring panels and other monitoring equipment that allowed operators to monitor radiation sensors located throughout the facility and to scram the reactor instantly if necessary. The color of the indicator lights corresponded with the elevation of the detectors in the various buildings. The reactor could also shut itself down automatically if the monitors detected any sudden irregularities.
Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005
NASA Technical Reports Server (NTRS)
Bowles, Mark D.
2006-01-01
Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.
NASA Technical Reports Server (NTRS)
2005-01-01
This feature length DVD documentary, reviews the history of the Plum Brook Nuclear Reactor from the initial settlers of the area, through its use as a munitions facility during the second World War to the development of the nuclear facility and its use as one of the first nuclear test reactors built in the United States, and the only one built by NASA. It concludes with the beginning of the decommissioning of the facility. There is a brief review of the reactor design, and its workings. Through discussions with the NASA engineers and operators of the facility, the film reviews the work done to advance the knowledge of the effects of radiation, the properties of radiated materials, and the work to advance the state of the art in nuclear propulsion. The film shows footage of public tours, and shows actual footage of the facility in operation, and after its shutdown in 1973. The DVD was narrated by Kate Mulgrew, who leads the viewer through the history of the facility to its eventual ongoing decommissioning, and return to the state of pastoral uses.
NASA Glenn's Kilopower Media Day
2018-05-03
NASA announced the results of the demonstration, called the Kilopower Reactor Using Stirling Technology (KRUSTY) experiment, during a news conference Wednesday at its Glenn Research Center in Cleveland. Media toured Glenn’s Stirling Research Lab and other facilities after the press conference.
NASA Reactor Facility Hazards Summary. Volume 2
NASA Technical Reports Server (NTRS)
1959-01-01
Supplements to volume 1 are presented herein. Included in these papers are information unavailable when volume 1 was written, an evaluation of the proposed nuclear facility, and answers to questions raised by the AEC concerning volume 1.
Alternative Fuels Research Laboratory
NASA Technical Reports Server (NTRS)
Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.
2012-01-01
NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.
Lessons Learned from the NASA Plum Brook Reactor Facility Decommissioning
NASA Technical Reports Server (NTRS)
2010-01-01
NASA has been conducting decommissioning activities at its PBRF for the last decade. As a result of all this work there have been several lessons learned both good and bad. This paper presents some of the more exportable lessons.
NASA's Kilopower Reactor Development and the Path to Higher Power Missions
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Oleson, Steven R.; Poston, David I.; McClure, Patrick
2017-01-01
The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.
NASA's Kilopower Reactor Development and the Path to Higher Power Missions
NASA Technical Reports Server (NTRS)
Gibson, Marc A.; Oleson, Steven R.; Poston, Dave I.; McClure, Patrick
2017-01-01
The development of NASA's Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.
Operators in the Plum Brook Reactor Facility Control Room
1970-03-21
Donald Rhodes, left, and Clyde Greer, right, monitor the operation of the National Aeronautics and Space Administration’s (NASA) Plum Brook Reactor Facility from the control room. The 60-megawatt test reactor, NASA’s only reactor, was the eighth largest test reactor in the world. The facility was built by the Lewis Research Center in the late 1950s to study the effects of radiation on different materials that could be used to construct nuclear propulsion systems for aircraft or rockets. The reactor went critical for the first time in 1961. For the next two years, two operators were on duty 24 hours per day working on the fission process until the reactor reached its full-power level in 1963. Reactor Operators were responsible for monitoring and controlling the reactor systems. Once the reactor was running under normal operating conditions, the work was relatively uneventful. Normally the reactor was kept at a designated power level within certain limits. Occasionally the operators had to increase the power for a certain test. The shift supervisor and several different people would get together and discuss the change before boosting the power. All operators were required to maintain a Reactor Operator License from the Atomic Energy Commission. The license included six months of training, an eight-hour written exam, a four-hour walkaround, and testing on the reactor controls.
NASA Administrator James Webb and Lewis Director Abe Silverstein
1961-12-21
National Aeronautics and Space Administration (NASA) Administrator James Webb toured the new Plum Brook Reactor Facility in December 1961 with Abe Silverstein, the newly appointed Director of the Lewis Research Center. The 60-megawatt test reactor was built on 500 acres of the former Plum Brook Ordnance Works in Sandusky, Ohio. After nearly five years of construction, the facility went critical for the first time in June 1961. In late 1957 Hugh Dryden requested Silverstein’s assistance in creating the new space agency. After several months of commuting, Silverstein transferred to Headquarters in May 1958. Silverstein was a critical member of a team that devised a fiscal year 1960 budget and began planning missions. When NASA officially began operation on October 1, 1958, Silverstein was third in command. He directed mission planning, spacecraft design, launch operations, manned space missions, and unmanned probes. James Webb, named NASA administrator on January 7, 1961, sought to have those working on Apollo at the NASA centers report to a new Headquarters program office, not to the head of the Apollo Program. Silverstein requested to be appointed to the vacant center director position in Cleveland. He officially returned as director of the Lewis Research Center on November 1, 1961.
NASA Reactor Facility Hazards Summary. Volume 1
NASA Technical Reports Server (NTRS)
1959-01-01
The Lewis Research Center of the National Aeronautics and Space Administration proposes to build a nuclear research reactor which will be located in the Plum Brook Ordnance Works near Sandusky, Ohio. The purpose of this report is to inform the Advisory Committee on Reactor Safeguards of the U. S. Atomic Energy Commission in regard to the design Lq of the reactor facility, the characteristics of the site, and the hazards of operation at this location. The purpose of this research reactor is to make pumped loop studies of aircraft reactor fuel elements and other reactor components, radiation effects studies on aircraft reactor materials and equipment, shielding studies, and nuclear and solid state physics experiments. The reactor is light water cooled and moderated of the MTR-type with a primary beryllium reflector and a secondary water reflector. The core initially will be a 3 by 9 array of MTR-type fuel elements and is designed for operation up to a power of 60 megawatts. The reactor facility is described in general terms. This is followed by a discussion of the nuclear characteristics and performance of the reactor. Then details of the reactor control system are discussed. A summary of the site characteristics is then presented followed by a discussion of the larger type of experiments which may eventually be operated in this facility. The considerations for normal operation are concluded with a proposed method of handling fuel elements and radioactive wastes. The potential hazards involved with failures or malfunctions of this facility are considered in some detail. These are examined first from the standpoint of preventing them or minimizing their effects and second from the standpoint of what effect they might have on the reactor facility staff and the surrounding population. The most essential feature of the design for location at the proposed site is containment of the maximum credible accident.
Interior of the Plum Brook Reactor Facility
1961-02-21
A view inside the 55-foot high containment vessel of the National Aeronautics and Space Administration (NASA) Plum Brook Reactor Facility in Sandusky, Ohio. The 60-megawatt test reactor went critical for the first time in 1961 and began its full-power research operations in 1963. From 1961 to 1973, this reactor performed some of the nation’s most advanced nuclear research. The reactor was designed to determine the behavior of metals and other materials after long durations of irradiation. The materials would be used to construct a nuclear-powered rocket. The reactor core, where the chain reaction occurred, sat at the bottom of the tubular pressure vessel, seen here at the center of the shielding pool. The core contained fuel rods with uranium isotopes. A cooling system was needed to reduce the heat levels during the reaction. A neutron-impervious reflector was also employed to send many of the neutrons back to the core. The Plum Brook Reactor Facility was constructed from high-density concrete and steel to prevent the excess neutrons from escaping the facility, but the water in the pool shielded most of the radiation. The water, found in three of the four quadrants served as a reflector, moderator, and coolant. In this photograph, the three 20-ton protective shrapnel shields and hatch have been removed from the top of the pressure tank revealing the reactor tank. An overhead crane could be manipulated to reach any section of this room. It was used to remove the shrapnel shields and transfer equipment.
Advanced development of immobilized enzyme reactors
NASA Technical Reports Server (NTRS)
Jolly, Clifford D.; Schussel, Leonard J.; Carter, Layne
1991-01-01
Fixed-bed reactors have been used at NASA-Marshall to purify wastewater generated by an end-use equipment facility, on the basis of a combination of multifiltration unibeds and enzyme unibeds. The enzyme beds were found to effectively remove such targeted organics as urea, alcohols, and aldehydes, down to levels lying below detection limits. The enzyme beds were also found to remove organic contaminants not specifically targeted.
Space Nuclear Thermal Propulsion (SNTP) Air Force facility
NASA Technical Reports Server (NTRS)
Beck, David F.
1993-01-01
The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.
NASA Technical Reports Server (NTRS)
1972-01-01
Fuel samples, 90UC - 10 ZrC, and chemically vapor deposited tungsten fuel cups were fabricated for the study of the long term dimensional stability and compatibility of the carbide-tungsten fuel-cladding systems under irradiation. These fuel samples and fuel cups were assembled into the fuel pins of two capsules, designated as V-2E and V-2F, for irradiation in NASA Plum Brook Reactor Facility at a fission power density of 172 watts/c.c. and a miximum cladding temperature of 1823 K. Fabrication methods and characteristics of the fuel samples and fuel cups prepared are described.
Disposal Of Irradiated Cadmium Control Rods From The Plumbrook Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posivak, E.J.; Berger, S.R.; Freitag, A.A.
2008-07-01
Innovative mixed waste disposition from NASA's Plum Brook Reactor Facility was accomplished without costly repackaging. Irradiated characteristic hardware with contact dose rates as high as 8 Sv/hr was packaged in a HDPE overpack and stored in a Secure Environmental Container during earlier decommissioning efforts, awaiting identification of a suitable pathway. WMG obtained regulatory concurrence that the existing overpack would serve as the macro-encapsulant per 40CFR268.45 Table 1.C. The overpack vent was disabled and the overpack was placed in a stainless steel liner to satisfy overburden slumping requirements. The liner was sealed and placed in shielded shoring for transport to themore » disposal site in a US DOT Type A cask. Disposition via this innovative method avoided cost, risk, and dose associated with repackaging the high dose irradiated characteristic hardware. In conclusion: WMG accomplished what others said could not be done. Large D and D contractors advised NASA that the cadmium control rods could only be shipped to the proposed Yucca mountain repository. NASA management challenged MOTA to find a more realistic alternative. NASA and MOTA turned to WMG to develop a methodology to disposition the 'hot and nasty' waste that presumably had no path forward. Although WMG lead a team that accomplished the 'impossible', the project could not have been completed with out the patient, supportive management by DOE-EM, NASA, and MOTA. (authors)« less
NASA Astrophysics Data System (ADS)
Van Dyke, Melissa; Martin, James
2005-02-01
The NASA Marshall Space Flight Center's Early Flight Fission Test Facility (EFF-TF), provides a facility to experimentally evaluate nuclear reactor related thermal hydraulic issues through the use of non-nuclear testing. This facility provides a cost effective method to evaluate concepts/designs and support mitigation of developmental risk. Electrical resistance thermal simulators can be used to closely mimic the heat deposition of the fission process, providing axial and radial profiles. A number of experimental and design programs were underway in 2004 which include the following. Initial evaluation of the Department of Energy Los Alamos National Laboratory 19 module stainless steel/sodium heat pipe reactor with integral gas heat exchanger was operated at up to 17.5 kW of input power at core temperatures of 1000 K. A stainless steel sodium heat pipe module was placed through repeated freeze/thaw cyclic testing accumulating over 200 restarts to a temperature of 1000 K. Additionally, the design of a 37- pin stainless steel pumped sodium/potassium (NaK) loop was finalized and components procured. Ongoing testing at the EFF-TF is geared towards facilitating both research and development necessary to support future decisions regarding potential use of space nuclear systems for space exploration. All efforts are coordinated with DOE laboratories, industry, universities, and other NASA centers. This paper describes some of the 2004 efforts.
Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility
NASA Astrophysics Data System (ADS)
Kobak, J. A.; Rollbuhler, R. J.
1981-10-01
A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.
Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility
NASA Technical Reports Server (NTRS)
Kobak, J. A.; Rollbuhler, R. J.
1981-01-01
A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.
Transient Approximation of SAFE-100 Heat Pipe Operation
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Reid, Robert S.
2005-01-01
Engineers at Los Alamos National Laboratory (LANL) have designed several heat pipe cooled reactor concepts, ranging in power from 15 kWt to 800 kWt, for both surface power systems and nuclear electric propulsion systems. The Safe, Affordable Fission Engine (SAFE) is now being developed in a collaborative effort between LANL and NASA Marshall Space Flight Center (NASA/MSFC). NASA is responsible for fabrication and testing of non-nuclear, electrically heated modules in the Early Flight Fission Test Facility (EFF-TF) at MSFC. In-core heat pipes must be properly thawed as the reactor power starts. Computational models have been developed to assess the expected operation of a specific heat pipe design during start-up, steady state operation, and shutdown. While computationally intensive codes provide complete, detailed analyses of heat pipe thaw, a relatively simple. concise routine can also be applied to approximate the response of a heat pipe to changes in the evaporator heat transfer rate during start-up and power transients (e.g., modification of reactor power level) with reasonably accurate results. This paper describes a simplified model of heat pipe start-up that extends previous work and compares the results to experimental measurements for a SAFE-100 type heat pipe design.
Formation of Cosmic Carbon Dust Analogues in Plasma Reactors
NASA Technical Reports Server (NTRS)
Salama, Farid
2016-01-01
Cosmic carbon dust analogs are produced, processed and analyzed in the laboratory using NASA's COSmIC (COSmIC Simulation Chamber) Facility. These experiments can be used to derive information on the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars.
A Risk Communication Success Story
NASA Technical Reports Server (NTRS)
Peecook, Keith
2010-01-01
A key success of the decommissioning effort at the National Aeronautics and Space Administration's (NASA's) Plum Brook Reactor Facility (PBRF) has been the public outreach program. The approach has been based on risk communications rather than a public relations approach. As a result it has kept the public feeling more involved in the process. It ensures they have the information needed to understand the project and its goals, and to make recommendations. All this is done so that NASA can better plan and execute the necessary work without delays or suprises.
Alternative Fuel Research in Fischer-Tropsch Synthesis
NASA Technical Reports Server (NTRS)
Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.
2011-01-01
NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.
Technicians Manufacture a Nozzle for the Kiwi B-1-B Engine
1964-05-21
Technicians manufacture a nozzle for the Kiwi B-1-B nuclear rocket engine in the Fabrication Shop’s vacuum oven at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test basic nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The final phase of the program, called Reactor-In-Flight-Test, would be an actual launch test. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The turbopump, which pumped the fuels from the storage tanks to the engine, was the primary tool for restarting the engine. The NERVA had to be able to restart in space on its own using a safe preprogrammed startup system. Lewis researchers endeavored to design and test this system. This non-nuclear Kiwi engine, seen here, was being prepared for tests at Lewis’ High Energy Rocket Engine Research Facility (B-1) located at Plum Brook Station. The tests were designed to start an unfueled Kiwi B-1-B reactor and its Aerojet Mark IX turbopump without any external power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susan Stacy; Hollie K. Gilbert
2005-02-01
Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less
Nuclear electric propulsion development and qualification facilities
NASA Technical Reports Server (NTRS)
Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario
1991-01-01
This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.
NASA Technical Reports Server (NTRS)
1972-01-01
The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.
Non-Nuclear Testing of Compact Reactor Technologies at NASA MSFC
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Pearson, J. Boise; Godfroy, Thomas J.
2011-01-01
Safe, reliable, compact, autonomous, long-life fission systems have numerous potential applications, both terrestrially and in space. Technologies and facilities developed in support of these systems could be useful to a variety of concepts. At moderate power levels, fission systems can be designed to operate for decades without the need for refueling. In addition, fast neutron damage to cladding and structural materials can be maintained at an acceptable level. Nuclear design codes have advanced to the stage where high confidence in the behavior and performance of a system can be achieved prior to initial testing. To help ensure reactor affordability, an optimal strategy must be devised for development and qualification. That strategy typically involves a combination of non-nuclear and nuclear testing. Non-nuclear testing is particularly useful for concepts in which nuclear operating characteristics are well understood and nuclear effects such as burnup and radiation damage are not likely to be significant. To be mass efficient, a SFPS must operate at higher coolant temperatures and use different types of power conversion than typical terrestrial reactors. The primary reason is the difficulty in rejecting excess heat to space. Although many options exist, NASA s current reference SFPS uses a fast spectrum, pumped-NaK cooled reactor coupled to a Stirling power conversion subsystem. The reference system uses technology with significant terrestrial heritage while still providing excellent performance. In addition, technologies from the SFPS system could be applicable to compact terrestrial systems. Recent non-nuclear testing at NASA s Early Flight Fission Test Facility (EFF-TF) has helped assess the viability of the reference SFPS and evaluate methods for system integration. In July, 2011 an Annular Linear Induction Pump (ALIP) provided by Idaho National Laboratory was tested at the EFF-TF to assess performance and verify suitability for use in a10 kWe technology demonstration unit (TDU). In November, 2011 testing of a 37-pin core simulator (designed in conjunction with Los Alamos National Laboratory) for use with the TDU will occur. Previous testing at the EFFTF has included the thermal and mechanical coupling of a pumped NaK loop to Stirling engines (provided by GRC). Testing related to heat pipe cooled systems, gas cooled systems, heat exchangers, and other technologies has also been performed. Integrated TDU testing will begin at GRC in 2013. Thermal simulators developed at the EFF-TF are capable of operating over the temperature and power range typically of interest to compact reactors. Small and large diameter simulators have been developed, and simulators (coupled with the facility) are able to closely match the axial and radial power profile of all potential systems of interest. A photograph of the TDU core simulator during assembly is provided in Figure 2.
Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor
NASA Technical Reports Server (NTRS)
Pearson J. Boise; Reid, Robert S.
2007-01-01
As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).
Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments
NASA Technical Reports Server (NTRS)
Hicks, M. C.; Lauver, R. W.; Hegde, U. G.; Sikora, T. J.
2006-01-01
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA s Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450 C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.
Kilopower: Small and Affordable Fission Power Systems for Space
NASA Technical Reports Server (NTRS)
Mason, Lee; Palac, Don; Gibson, Marc
2017-01-01
The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs future requirements for sunlight-independent space power. An early opportunity for demonstration of In-Situ Resource Utilization (ISRU) capability on the surface of Mars is currently being considered for 2026 launch. Since a space fission system is the leading option for power generation for the first Mars human outpost, a smaller version of a planetary surface fission power system could be built to power the ISRU demonstration and ensure its end-to-end validity. Planning is underway to start the hardware development of this subscale flight demonstrator in 2018.
A Potential NASA Research Reactor to Support NTR Development
NASA Technical Reports Server (NTRS)
Eades, Michael; Gerrish, Harold; Hardin, Leroy
2013-01-01
In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.
2009-01-01
A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.
2010-01-01
A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.
Demonstration of Robustness and Integrated Operation of a Series-Bosch System
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, Matthew J.; Stanley, Christine; Barnett, Bill; Junaedi, Christian; Vilekar, Saurabh A.; Ryan, Kent
2016-01-01
Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a NASA-designed RWGS reactor designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith® technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with NASA's RWGS reactor. The test results will be provided in this paper. Separately, in 2015, a semi-continuous CF reactor was designed and fabricated at NASA based on the results from batch CF reactor testing. The batch CF reactor and the semi-continuous CF reactor were individually integrated with an upstream RWGS reactor to demonstrate the system operation and to evaluate performance. Here, we compare the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level.
Fuel Cell/Reformers Technology Development
NASA Technical Reports Server (NTRS)
2004-01-01
NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.
Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities
NASA Technical Reports Server (NTRS)
Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke
2014-01-01
High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Forsbacka, Matthew
2004-01-01
For a compact, fast-spectrum reactor, reactivity feedback is dominated by core deformation at elevated temperature. Given the use of accurate deformation measurement techniques, it is possible to simulate nuclear feedback in non-nuclear electrically heated reactor tests. Implementation of simulated reactivity feedback in response to measured deflection is being tested at the NASA Marshall Space Flight Center Early Flight Fission Test Facility (EFF-TF). During tests of the SAFE-100 reactor prototype, core deflection was monitored using a high resolution camera. "virtual" reactivity feedback was accomplished by applying the results of Monte Carlo calculations (MCNPX) to core deflection measurements; the computational analysis was used to establish the reactivity worth of van'ous core deformations. The power delivered to the SAFE-100 prototype was then dusted accordingly via kinetics calculations, The work presented in this paper will demonstrate virtual reactivity feedback as core power was increased from 1 kilowatt(sub t), to 10 kilowatts(sub t), held approximately constant at 10 kilowatts (sub t), and then allowed to decrease based on the negative thermal reactivity coefficient.
An Update on the Status of the Supply of Plutonium-238 for Future NASA Missions
NASA Astrophysics Data System (ADS)
Wham, R. M.
2016-12-01
For more than five decades, Radioisotope Power Systems (RPSs) have enabled space missions to operate in locations where the Sun's intensity is too weak, obscured, or otherwise inadequate for solar power or other conventional power‒generation technologies. The natural decay heat (0.57 W/g) from the radioisotope, plutonium-238 (238Pu), provides the thermal energy source used by an RPS to generate electricity for operation of instrumentation, as well as heat to keep key subsystems warm for missions such as Voyagers 1 and 2, the Cassini mission to Saturn, the New Horizons flyby of Pluto, and the Mars Curiosity rover which were sponsored by the National Aeronautics and Space Administration (NASA). Plutonium-238 is produced by irradiation of neptunium-237 in a nuclear reactor a relatively high neutron flux. The United States has not produced new quantities of 238Pu since the early 1990s. RPS‒powered missions have continued since then using existing 238Pu inventory managed by the U.S. Department of Energy (DOE), including material purchased from Russia. A new domestic supply is needed to ensure the continued availability of RPSs for future NASA missions. NASA and DOE are currently executing a project to reestablish a 238Pu supply capability using its existing facilities and reactors, which are much smaller than the large-scale production reactors and processing canyon equipment used previously. The project is led by the Oak Ridge National Laboratory (ORNL). Target rods, containing NpO2, will be fabricated at ORNL and irradiated in the ORNL High Flux Isotope Reactor and the Advanced Test Reactor at Idaho National Laboratory. Irradiated targets will be processed in chemical separations at the ORNL Radiochemical Engineering Center to recover the plutonium product and unconverted neptunium for recycle. The 238PuO2 product will be shipped to Los Alamos National Laboratory for fabrication of heat source pellets. Key activities, such as transport of the neptunium to ORNL, irradiation of neptunium, and chemical processing to recover the newly generated 238Pu, have begun and have been demonstrated with the initial amounts (50-100 g) produced. Product samples have been shipped to LANL for evaluation, including chemical impurity analysis. This paper will provide an overview of the approach to the project and its progress to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulder, R.U.; Benneche, P.E.; Hosticka, B.
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA from use at their institutions. These areas are discussed in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed further in the report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulder, R.U.; Benneche, P.E.; Hosticka, B.
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed here.« less
77 FR 37074 - License Amendment Request From the Alan J. Blotcky Reactor Facility
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... the Alan J. Blotcky Reactor Facility AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... section of this document. FOR FURTHER INFORMATION CONTACT: Theodore Smith, Project Manager, Reactor... provided the first time that a document is referenced. The Alan J. Blotcky Reactor Facility Decommissioning...
Non-nuclear Testing of Reactor Systems in the Early Flight Fission Test Facilities (EFF-TF)
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Martin, James
2004-01-01
The Early Flight Fission-Test Facility (EFF-TF) can assist in the &sign and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are "non-nuclear" in nature (e.g. system s nuclear operations are understood). For many systems. thermal simulators can he used to closely mimic fission heat deposition. Axial power profile, radial power profile. and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other NASA centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004.
Analysis of decommissioning costs for the AFRRI TRIGA reactor facility. Technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsbacka, M.; Moore, M.
1989-12-01
This report provides a cost analysis for decommissioning the Armed Forces Radiobiology Research Institute (AFRRI) TRIGA reactor facility. AFRRI is not suggesting that the AFRRI TRIGA reactor facility be decommissioned. This report was prepared in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations, which requires that funding for the decommissioning of reactor facilities be available when licensed activities cease. The planned method of decommissioning is complete decontamination (DECON) of the AFRRI TRIGA reactor site to allow for restoration of the site to full public access. The cost of DECON in 1990 dollars is estimated to be $3,200,000.more » The anticipated ancillary costs of facility site demobilization and spent fuel shipment will be an additional $600,000. Thus, the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for developing this cost estimate was a study of the decommissioning costs of similar reactor facility performed by Battelle Pacific Northwest Laboratory, as provided in U.S. Nuclear Regulatory Commission publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA reactor facility.« less
Two-phase reduced gravity experiments for a space reactor design
NASA Technical Reports Server (NTRS)
Antoniak, Zenen I.
1987-01-01
Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.
Development and Testing of Space Fission Technology at NASA-MSFC
NASA Technical Reports Server (NTRS)
Polzin, Kurt; Pearson, J. Boise; Houts, Michael
2008-01-01
The Early Flight Fission Test Facility (EFF-TF) at NASA-Marshall Space Flight Center (MSFC) provides a capability to perform hardware-directed activities to support multiple inspace nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations allowing for realistic thermal-hydraulic evaluations of systems. The EFF-TF is currently performing non-nuclear testing of hardware to support a technology development effort related to an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled reactor design, which builds on US and Russian space reactor technology as well as extensive US and international terrestrial liquid metal reactor experience. An important aspect of the current hardware development effort is the information and insight that can be gained from experiments performed in a relevant environment using realistic materials. This testing can often deliver valuable data and insights with a confidence that is not otherwise available or attainable. While the project is currently focused on potential fission surface power for the lunar surface, many of the present advances, testing capabilities, and lessons learned can be applied to the future development of a low-cost in-space fission power system. The potential development of such systems would be useful in fulfilling the power requirements for certain electric propulsion systems (magnetoplasmadynamic thruster, high-power Hall and ion thrusters). In addition, inspace fission power could be applied towards meeting spacecraft and propulsion needs on missions further from the Sun, where the usefulness of solar power is diminished. The affordable nature of the fission surface power system that NASA may decide to develop in the future might make derived systems generally attractive for powering spacecraft and propulsion systems in space. This presentation will discuss work on space nuclear systems that has been performed at MSFC's EFF-TF over the past 10 years. Emphasis will be place on both ongoing work related to FSP and historical work related to in-space systems potentially useful for powering electric propulsion systems.
A facility for testing 10 to 100-kWe space power reactors
NASA Astrophysics Data System (ADS)
Carlson, William F.; Bitten, Ernest J.
1993-01-01
This paper describes an existing facility that could be used in a cost-effective manner to test space power reactors in the 10 to 100-kWe range before launch. The facility has been designed to conduct full power tests of 100-kWe SP-100 reactor systems and already has the structural features that would be required for lower power testing. The paper describes a reasonable scenario starting with the acceptance at the test site of the unfueled reactor assembly and the separately shipped nuclear fuel. After fueling the reactor and installing it in the facility, cold critical tests are performed, and the reactor is then shipped to the launch site. The availability of this facility represents a cost-effective means of performing the required prelaunch test program.
Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop
NASA Technical Reports Server (NTRS)
Clark, John S. (Editor)
1991-01-01
Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.
10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is required... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing...
10 CFR 50.83 - Release of part of a power reactor facility or site for unrestricted use.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Release of part of a power reactor facility or site for... of a power reactor facility or site for unrestricted use. (a) Prior written NRC approval is required... release. Nuclear power reactor licensees seeking NRC approval shall— (1) Evaluate the effect of releasing...
Cyclotron Provides Neutron Therapy for Cancer Patients
1978-01-21
A cancer patient undergoes treatment in the Neutron Therapy Treatment Facility, or Cylotron, at the National Aeronautics and Space Administration (NASA) Lewis Research Center. After World War II Lewis researchers became interested in nuclear energy for propulsion. The focused their efforts on thermodynamics and strength of materials after radiation. In 1950 an 80-person Nuclear Reactor Division was created, and a cyclotron was built behind the Materials and Structures Laboratory. An in-house nuclear school was established to train these researchers in their new field. NASA cancelled its entire nuclear program in January 1973, just as the cyclotron was about to resume operations after a major upgrade. In 1975 the Cleveland Clinic Foundation partnered with NASA Lewis to use the cyclotron for a new type of radiation treatment for cancer patients. The cyclotron split beryllium atoms which caused neutrons to be released. The neutrons were streamed directly at the patient’s tumor. The facility had a dual-beam system that could target the tumor both vertically and horizontally. Over the course of five years, the cyclotron was used to treat 1200 patients. It was found to be particularly effective on salivary gland, prostrate, and other tumors. It was not as successful with tumors of the central nervous system. The program was terminated in 1980 as the Clinic began concentrating on non-radiation treatments.
ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA660, INTERIOR. REACTOR INSIDE TANK. METAL ...
ADVANCED REACTIVITY MEASUREMENT FACILITY, TRA-660, INTERIOR. REACTOR INSIDE TANK. METAL WORK PLATFORM ABOVE. THE REACTOR WAS IN A SMALL WATER-FILLED POOL. INL NEGATIVE NO. 66-6373. Unknown Photographer, ca. 1966 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NACA Zero Power Reactor Facility Hazards Summary
NASA Technical Reports Server (NTRS)
1957-01-01
The Lewis Flight Propulsion Laboratory of the National Advisory Committee for Aeronautics proposes to build a zero power research reactor facility which will be located in the laboratory grounds near Clevelaurd, Ohio. The purpose of this report is to inform the Advisory Commit tee on Reactor Safeguards of the U. S. Atomic Energy Commission in re gard to the design of the reactor facility, the cha,acteristics of th e site, and the hazards of operation at this location, The purpose o f this reactor is to perform critical experiments, to measure reactiv ity effects, to serve as a neutron source, and to serve as a training tool. The reactor facility is described. This is followed by a discu ssion of the nuclear characteristics and the control system. Site cha racteristics are then discussed followed by a discussion of the exper iments which may be conducted in the facility. The potential hazards of the facility are then considered, particularly, the maximum credib le accident. Finally, the administrative procedure is discussed.
Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1995-01-01
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less
U.S. Nuclear Cooperation with India: Issues for Congress
2008-10-17
safeguards-irrelevant.” The following facilities and activities were not on the separation list: ! 8 indigenous Indian power reactors ! Fast Breeder ...test Reactor (FTBR) and Prototype Fast Breeder Reactors (PFBR) under construction ! Enrichment facilities ! Spent fuel reprocessing facilities (except...potential use in a bomb. In addition, safeguards on enrichment, reprocessing plants, and breeder reactors would support the 2002 U.S. National Strategy to
Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development
NASA Technical Reports Server (NTRS)
Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber
2012-01-01
Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.
An analysis of decommissioning costs for the AFRRI TRIGA reactor facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsbacka, Matt
1990-07-01
A decommissioning cost analysis for the AFRRI TRIGA Reactor Facility was made. AFRRI is not at this time suggesting that the AFRRI TRIGA Reactor Facility be decommissioned. This report was prepared to be in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations which requires the assurance of availability of future decommissioning funding. The planned method of decommissioning is the immediate decontamination of the AFRRI TRIGA Reactor site to allow for restoration of the site to full public access - this is called DECON. The cost of DECON for the AFRRI TRIGA Reactor Facility in 1990 dollars ismore » estimated to be $3,200,000. The anticipated ancillary costs of facility site demobilization and spent fuel shipment is an additional $600,000. Thus the total cost of terminating reactor operations at AFRRI will be about $3,800,000. The primary basis for this cost estimate is a study of the decommissioning costs of a similar reactor facility that was performed by Battelle Pacific Northwest Laboratory (PNL) as provided in USNRC publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA. (author)« less
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...
5 CFR 5801.102 - Prohibited securities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...
The U.S. Geological Survey's TRIGA® reactor
DeBey, Timothy M.; Roy, Brycen R.; Brady, Sally R.
2012-01-01
The U.S. Geological Survey (USGS) operates a low-enriched uranium-fueled, pool-type reactor located at the Federal Center in Denver, Colorado. The mission of the Geological Survey TRIGA® Reactor (GSTR) is to support USGS science by providing information on geologic, plant, and animal specimens to advance methods and techniques unique to nuclear reactors. The reactor facility is supported by programs across the USGS and is organizationally under the Associate Director for Energy and Minerals, and Environmental Health. The GSTR is the only facility in the United States capable of performing automated delayed neutron analyses for detecting fissile and fissionable isotopes. Samples from around the world are submitted to the USGS for analysis using the reactor facility. Qualitative and quantitative elemental analyses, spatial elemental analyses, and geochronology are performed. Few research reactor facilities in the United States are equipped to handle the large number of samples processed at the GSTR. Historically, more than 450,000 sample irradiations have been performed at the USGS facility. Providing impartial scientific information to resource managers, planners, and other interested parties throughout the world is an integral part of the research effort of the USGS.
An evaluation of alloys and coatings for use in automobile thermal reactors
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Oldrieve, R. E.
1974-01-01
Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were analyzed in cyclic engine dynamometer tests with peak temperature of 1900 F (1040 C). Two developmental ferritic iron alloys GE1541 and NASA-18T - exhibited the best overall performance lasting at least 60% of the life of the test engine. Four of the alloys evaluated warrant consideration for reactor use. They include GE1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.-
Evaluation of alloys and coatings for use in automobile thermal reactors
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Oldrieve, R. E.
1974-01-01
Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were evaluated in cyclic engine dynamometer tests with a peak temperature of 1040 C (1900 F). Two developmental ferritic-iron alloys, GE-1541 and NASA-18T, exhibited the best overall performance by lasting at least 60 percent of the life of test engine. Four of the alloys evaluated warrant consideration for reactor use. They are GE-1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.
Thermal Characterization of a Simulated Fission Engine via Distributed Fiber Bragg Gratings
NASA Astrophysics Data System (ADS)
Duncan, Roger G.; Fielder, Robert S.; Seeley, Ryan J.; Kozikowski, Carrie L.; Raum, Matthew T.
2005-02-01
We report the use of distributed fiber Bragg gratings to monitor thermal conditions within a simulated nuclear reactor core located at the Early Flight Fission Test Facility of the NASA Marshall Space Flight Center. Distributed fiber-optic temperature measurements promise to add significant capability and advance the state-of-the-art in high-temperature sensing. For the work reported herein, seven probes were constructed with ten sensors each for a total of 70 sensor locations throughout the core. These discrete temperature sensors were monitored over a nine hour period while the test article was heated to over 700 °C and cooled to ambient through two operational cycles. The sensor density available permits a significantly elevated understanding of thermal effects within the simulated reactor. Fiber-optic sensor performance is shown to compare very favorably with co-located thermocouples where such co-location was feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulder, R. U.; Benneche, P. E.; Hosticka, B.
The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these users institutions is enhanced by the use of the nuclear facilities.
RADIATION FACILITY FOR NUCLEAR REACTORS
Currier, E.L. Jr.; Nicklas, J.H.
1961-12-12
A radiation facility is designed for irradiating samples in close proximity to the core of a nuclear reactor. The facility comprises essentially a tubular member extending through the biological shield of the reactor and containing a manipulatable rod having the sample carrier at its inner end, the carrier being longitudinally movable from a position in close proximity to the reactor core to a position between the inner and outer faces of the shield. Shield plugs are provided within the tubular member to prevent direct radiation from the core emanating therethrough. In this device, samples may be inserted or removed during normal operation of the reactor without exposing personnel to direct radiation from the reactor core. A storage chamber is also provided within the radiation facility to contain an irradiated sample during the period of time required to reduce the radioactivity enough to permit removal of the sample for external handling. (AEC)
The WPI reactor-readying for the next generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobek, L.M.
1993-01-01
Built in 1959, the 10-kW open-pool nuclear training reactor at Worcester Polytechnic Institute (WPI) was one of the first such facilities in the nation located on a university campus. Since then, the reactor and its related facilities have been used to train two generations of nuclear engineers and scientists for the nuclear industry. With the use of nuclear technology playing an increasing role in many segments of the economy, WPI with its nuclear reactor facility is committed to continuing its mission of training future nuclear engineers and scientists. The WPI reactor includes a 6-in. beam port, graphite thermal column, andmore » in-core sample facility. The reactor, housed in an open 8000-gal tank of water, is designed so that the core is readily accessible. Both the control console and the peripheral counting equipment used for student projects and laboratory exercises are located in the reactor room. This arrangement provides convenience and flexibility in using the reactor for foil activations in neutron flux measurements, diffusion measurements, radioactive decay measurements, and the neutron activation of samples for analysis. In 1988, the reactor was successfully converted to low-enriched uranium fuel.« less
Background radiation measurements at high power research reactors
NASA Astrophysics Data System (ADS)
Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.; Prospect Collaboration
2016-01-01
Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.
Studies of Plutonium-238 Production at the High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lastres, Oscar; Chandler, David; Jarrell, Joshua J
The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) is a versatile 85 MW{sub th}, pressurized, light water-cooled and -moderated research reactor. The core consists of two fuel elements, an inner fuel element (IFE) and an outer fuel element (OFE), each constructed of involute fuel plates containing high-enriched-uranium (HEU) fuel ({approx}93 wt% {sup 235}U/U) in the form of U{sub 3}O{sub 8} in an Al matrix and encapsulated in Al-6061 clad. An over-moderated flux trap is located in the center of the core, a large beryllium reflector is located on the outside of the core, and two controlmore » elements (CE) are located between the fuel and the reflector. The flux trap and reflector house numerous experimental facilities which are used for isotope production, material irradiation, and cold/thermal neutron scattering. Over the past five decades, the US Department of Energy (DOE) and its agencies have been producing radioisotope power systems used by the National Aeronautics and Space Administration (NASA) for unmanned, long-term space exploration missions. Plutonium-238 is used to power Radioisotope Thermoelectric Generators (RTG) because it has a very long half-life (t{sub 1/2} {approx} 89 yr.) and it generates about 0.5 watts/gram when it decays via alpha emission. Due to the recent shortage and uncertainty of future production, the DOE has proposed a plan to the US Congress to produce {sup 238}Pu by irradiating {sup 237}Np as early as in fiscal year 2011. An annual production rate of 1.5 to 2.0 kg of {sup 238}Pu is expected to satisfy these needs and could be produced in existing national nuclear facilities like HFIR and the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Reactors at the Savannah River Site were used in the past for {sup 238}Pu production but were shut down after the last production in 1988. The nation's {sup 237}Np inventory is currently stored at INL. A plan for producing {sup 238}Pu at US research reactor facilities such as the High Flux Isotope Reactor at ORNL has been initiated by the US DOE and NASA for space exploration needs. Two Monte Carlo-based depletion codes, TRITON (ORNL) and VESTA (IRSN), were used to study the {sup 238}Pu production rates with varying target configurations in a typical HFIR fuel cycle. Preliminary studies have shown that approximately 11 grams and within 15 to 17 grams of {sup 238}Pu could be produced in the first irradiation cycle in one small and one large VXF facility, respectively, when irradiating fresh target arrays as those herein described. Important to note is that in this study we discovered that small differences in assumptions could affect the production rates of Pu-238 observed. The exact flux at a specific target location can have a significant impact upon production, so any differences in how the control elements are modeled as a function of exposure, will also cause differences in production rates. In fact, the surface plot of the large VXF target Pu-238 production shown in Figure 3 illustrates that the pins closest to the core can potentially have production rates as high as 3 times those of pins away from the core, thus implying that a cycle-to-cycle rotation of the targets may be well advised. A methodology for generating spatially-dependent, multi-group self-shielded cross sections and flux files with the KENO and CENTRM codes has been created so that standalone ORIGEN-S inputs can be quickly constructed to perform a variety of {sup 238}Pu production scenarios, i.e. combinations of the number of arrays loaded and the number of irradiation cycles. The studies herein shown with VESTA and TRITON/KENO will be used to benchmark the standalone ORIGEN.« less
NASA-EPA automotive thermal reactor technology program
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Hibbard, R. R.
1972-01-01
The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... involving a test and research reactor facility licensed under 10 CFR part 50 and any related inquiry...
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... involving a test and research reactor facility licensed under 10 CFR part 50 and any related inquiry...
Background radiation measurements at high power research reactors
Ashenfelter, J.; Yeh, M.; Balantekin, B.; ...
2015-10-23
Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less
REACTIVITY MEASUREMENT FACILITY. CAMERA LOOKS DOWN INTO MTR CANAL. REACTOR ...
REACTIVITY MEASUREMENT FACILITY. CAMERA LOOKS DOWN INTO MTR CANAL. REACTOR IS FUELED AS AN ETR MOCK-UP. LIGHTS DANGLE BELOW WATER LEVEL. CONTROL RODS AND OTHER APPARATUS DESCEND FROM ABOVE WATER LEVEL. INL NEGATIVE NO. 56-900. Jack L. Anderson, Photographer, 3/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Preliminary plan for testing a thermionic reactor in the Plum Brook Space Power Facility
NASA Technical Reports Server (NTRS)
Haley, F. A.
1972-01-01
A preliminary plan is presented for testing a thermionic reactor in the Plum Brook Space Power Facility (SPF). A technical approach, cost estimate, manpower estimate, and schedule are presented to cover a 2 year full power reactor test.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... this part involving a test and research reactor facility licensed under 10 CFR part 50 and any related...
Researcher Poses with a Nuclear Rocket Model
1961-11-21
A researcher at the NASA Lewis Research Center with slide ruler poses with models of the earth and a nuclear-propelled rocket. The Nuclear Engine for Rocket Vehicle Applications (NERVA) was a joint NASA and Atomic Energy Commission (AEC) endeavor to develop a nuclear-powered rocket for both long-range missions to Mars and as a possible upper-stage for the Apollo Program. The early portion of the program consisted of basic reactor and fuel system research. This was followed by a series of Kiwi reactors built to test nuclear rocket principles in a non-flying nuclear engine. The next phase, NERVA, would create an entire flyable engine. The AEC was responsible for designing the nuclear reactor and overall engine. NASA Lewis was responsible for developing the liquid-hydrogen fuel system. The nuclear rocket model in this photograph includes a reactor at the far right with a hydrogen propellant tank and large radiator below. The payload or crew would be at the far left, distanced from the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang
2007-07-01
The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted wastemore » monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete storage space to allow the radioactivity to decay. For transport of reactor compartments at the shipyard, at the dock and at the storage facility, hydraulic keel blocks, developed and supplied by German subcontractors, are used. In July 2006 the first stage of the reactor compartment storage facility was commissioned and the first seven reactor compartments have been delivered from Nerpa shipyard. Following transports of reactor compartments to the storage facility are expected in 2007. (authors)« less
TREAT neutron-radiography facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, L.J.
1981-01-01
The TREAT reactor was built as a transient irradiation test reactor. By taking advantage of built-in system features, it was possible to add a neutron-radiography facility. This facility has been used over the years to radiograph a wide variety and large number of preirradiated fuel pins in many different configurations. Eight different specimen handling casks weighing up to 54.4 t (60 T) can be accommodated. Thermal, epithermal, and track-etch radiographs have been taken. Neutron-radiography service can be provided for specimens from other reactor facilities, and the capacity for storing preirradiated specimens also exists.
Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, L. B.; Kolb, J. O.
1970-01-01
Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.
Earthquake effects at nuclear reactor facilities: San Fernando earthquake of February 9th, 1971
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, G.; Ibanez, P.; Matthiesen, F.
1972-02-01
The effects of the San Fernando earthquake of February 9, 1971 on 26 reactor facilities located in California, Arizona, and Nevada are reported. The safety performance of the facilities during the earthquake is discussed. (JWR)
MYRRHA: A multipurpose nuclear research facility
NASA Astrophysics Data System (ADS)
Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert
2014-12-01
MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Piyush Sabharwall; SuJong Yoon
2001-11-01
Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less
1986-05-01
COUNT Technical FROM_ TO May 1986 20 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS iConitinue on reverse if neceasary and identify by...Reactor, Modes of Operation, The AFRRI Reactor, Exposure Facilities, and Cerenkov Radiation. I- 20 DISTRISUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT...6 Exposure Facilities 12 Cerenkov Radiation 17 Acoessiofl For NTIS GRA&I DT.C TABUnamnnounced [] UusnriOfltond -. By IZ Distribution/ Availability
Development Status of the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M; Pearson, Jon Boise; Godfroy, Thomas
2012-01-01
This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at NASA GRC.
Overview of Fuel Rod Simulator Usage at ORNL
NASA Astrophysics Data System (ADS)
Ott, Larry J.; McCulloch, Reg
2004-02-01
During the 1970s and early 1980s, the Oak Ridge National Laboratory (ORNL) operated large out-of-reactor experimental facilities to resolve thermal-hydraulic safety issues in nuclear reactors. The fundamental research ranged from material mechanical behavior of fuel cladding during the depressurization phase of a loss-of-coolant accident (LOCA) to basic heat transfer research in gas- or sodium-cooled cores. The largest facility simulated the initial phase (less than 1 min. of transient time) of a LOCA in a commercial pressurized-water reactor. The nonnuclear reactor cores of these facilities were mimicked via advanced, highly instrumented electric fuel rod simulators locally manufactured at ORNL. This paper provides an overview of these experimental facilities with an emphasis on the fuel rod simulators.
Modifications to the NRAD Reactor, 1977 to present
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, A.A.; Pruett, D.P.; Heidel, C.C.
1986-01-01
Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems.« less
Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-09-01
This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report.
Economical Production of Pu-238: NIAC Phase I Final Report
NASA Technical Reports Server (NTRS)
Howe, Steven D.; Crawford, Douglas; Navarro, Jorge; O'Brien, Robert C.; Katalenich, Jeff; Ring, Terry
2016-01-01
All space exploration missions traveling beyond Jupiter must use radioisotopic power sources for electrical power. The best isotope to power these sources is plutonium-238 (Pu-238). The US supply of Pu-238 is almost exhausted and will be gone within the next decade. The Department of Energy has initiated a production program with a $10M allocation from NASA but the cost is estimated at over $100M to get to production levels. The Center for Space Nuclear Research (CSNR) has conceived of a potentially better process to produce Pu-238 earlier and for significantly less cost. Potentially, the front end capital costs could be provided by private industry such that the government only had to pay for the product produced. In the Phase I NIAC (NASA Innovative Advanced Concepts) grant, the CSNR has evaluated the feasibility of using a low power, commercially available nuclear reactor to produce 1.5 kg of Pu-238 per year. The impact on the neutronics of the reactor have been assessed, the amount of Neptunium target material estimated, and the production rates calculated. In addition, the size of the post-irradiation processing facility has been established. Finally, as the study progressed, a new method for fabricating the Pu-238 product into the form used for power sources has been identified to reduce the cost of the final product. In short, the concept appears to be viable, can produce the amount of Pu-238 needed to support the NASA missions, can be available within a few years, and will cost significantly less than the current DOE program.
Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C.; Wachs, D.; Carmack, J.
The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...
Control console replacement at the WPI Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less
Stainless Steel NaK-Cooled Circuit (SNaKC) Fabrication and Assembly
NASA Technical Reports Server (NTRS)
Godfroy, Thomas J.
2007-01-01
An actively pumped Stainless Steel NaK Circuit (SNaKC) has been designed and fabricated by the Early Flight Fission Test Facility (EFF-TF) team at NASA's Marshall Space Flight Center. This circuit uses the eutectic mixture of sodium and potassium (NaK) as the working fluid building upon the experience and accomplishments of the SNAP reactor program from the late 1960's The SNaKC enables valuable experience and liquid metal test capability to be gained toward the goal of designing and building an affordable surface power reactor. The basic circuit components include a simulated reactor core a NaK to gas heat exchanger, an electromagnetic (EM) liquid metal pump, a liquid metal flow meter, an expansion reservoir and a drain/fill reservoir To maintain an oxygen free environment in the presence of NaK, an argon system is utilized. A helium and nitrogen system are utilized for core, pump, and heat exchanger operation. An additional rest section is available to enable special component testing m an elevated temperature actively pumped liquid metal environment. This paper summarizes the physical build of the SNaKC the gas and pressurization systems, vacuum systems, as well as instrumentation and control methods.
14 CFR 1204.1404 - Requests for use of NASA airfield facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Requests for use of NASA airfield facilities... ADMINISTRATIVE AUTHORITY AND POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1404 Requests for use of NASA airfield facilities. (a) Request for use...
Evaluation of performance of select fusion experiments and projected reactors
NASA Technical Reports Server (NTRS)
Miley, G. H.
1978-01-01
The performance of NASA Lewis fusion experiments (SUMMA and Bumpy Torus) is compared with other experiments and that necessary for a power reactor. Key parameters cited are gain (fusion power/input power) and the time average fusion power, both of which may be more significant for real fusion reactors than the commonly used Lawson parameter. The NASA devices are over 10 orders of magnitude below the required powerplant values in both gain and time average power. The best experiments elsewhere are also as much as 4 to 5 orders of magnitude low. However, the NASA experiments compare favorably with other alternate approaches that have received less funding than the mainline experiments. The steady-state character and efficiency of plasma heating are strong advantages of the NASA approach. The problem, though, is to move ahead to experiments of sufficient size to advance in gain and average power parameters.
Code of Federal Regulations, 2013 CFR
2013-01-01
... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.
1994-04-01
The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culbert, W.H.
1985-10-01
This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliancemore » with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-264; NRC-2012-0026] Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108 AGENCY: Nuclear Regulatory Commission... Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow Chemical Company...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-25
... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants AGENCY: Nuclear Regulatory... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants.'' This regulatory guide describes for applicants seeking nuclear power reactor licenses and licensees of nuclear power reactors...
Pratt & Whitney ESCORT derivative for mars surface power
NASA Astrophysics Data System (ADS)
Feller, Gerald J.; Joyner, Russell
1999-01-01
The purpose of this paper is to address the applicability of a common reactor system design from the Pratt & Whitney ESCORT nuclear thermal rocket engine concept to support current NASA mars surface-based power requirements. The ESCORT is a bimodal engine capable of supporting a wide range of propulsive thermal and vehicle electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In addition to an expander cycle propulsive mode, the ESCORT is capable of operating in an electrical power mode. In this mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. Recent Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential mars transfer missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. Additionally, these requirements detailed a surface power system capable of providing approximately 160 kW of electrical energy over an approximate 10 year period within a given weight and volume envelope. Current NASA studies use a SP-100 reactor (0.8 MT) and a NERVA derivative (1.6 MT) as baseline systems. A mobile power cart of approximate dimensions 1.7 m×4.5 m×4.4 m has been conceptualized to transport the reactor power system on the Mars Surface. The 63.25 cm diameter and 80.25 cm height of the ESCORT and its 1.3 MT of weight fit well within the current weight and volume target range of the NASA DRM requirements. The modifications required to the ESCORT reactor system to support this upgraded electrical power requirements along with operation in the Martian atmospheric conditions are addressed in this paper. Sufficient excess reactivity and burnup capability were designed into the ESCORT reactor system to support these upgraded requirements. Only slight modifications to reactor hardware were required to address any environmental considerations. These modifications involved sealing any refractory metal alloy components from the CO2 in the Martian Atmosphere. Also, the Brayton cycle Power Conversion Unit (PCU) hardware was modified to support the upgraded requirements. This paper discusses the design analysis performed and provides information on the final common reactor concept to be used on the Mars surface to support manned missions.
Facilities Utilization Program Implementation Handbook
NASA Technical Reports Server (NTRS)
1987-01-01
This Facilities Utilization Program Implementation Handbook (FUPIH) prescribes procedures for the review and the reporting on the utilization of NASA facilities. The Directors of NASA Field Installations should designate an Installation Official responsible for coordinating the assignment of buildings space and implementing the facilities utilization reviews and annual report preparation. The individual designated shall be known as the 'Facilities Utilization Officer (FUO).' Functional responsibilities of the FUO are detailed in NASA Management Instruction (NMI) 7234.1. It is recognized that titles used in the implementation of the Facilities Utilization Program may vary between field installations. The Facilities Utilization Program (FUP) is designed to provide a uniform and orderly process for meeting or addressing the following objectives: the establishment of sound facilities requirements to meet NASA's programmatic and institutional needs; the optimum allocation of available facilities and related resources to meet these requirements; and the early identification and request for required additional facilities resources. The detailed review and reporting system enacted by NMI 7234.1 should encourage more comprehensive utilization planning for all NASA facilities and ensure, to the maximum extent practicable, that all such facilities are put to their highest and best use consistent with NASA programmatic and institutional priorities. A principal purpose of the FUP is the early identification of NASA facilities which may be or may become underutilized or excess to NASA needs and to provide a timely reference point from which corrective actions (i.e., consolidation, elimination of duplication, improved utilization of disposal) may be taken. Because the supply of this handbook is limited, distribution should be controlled at the field installation level.
Opportunities for Materials Science and Biological Research at the OPAL Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, S. J.
Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research,more » radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.« less
Nuclear energy center site survey reactor plant considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harty, H.
The Energy Reorganization Act of 1974 required the Nuclear Regulatory Commission (NRC) to make a nuclear energy center site survey (NECSS). Background information for the NECSS report was developed in a series of tasks which include: socioeconomic inpacts; environmental impact (reactor facilities); emergency response capability (reactor facilities); aging of nuclear energy centers; and dry cooled nuclear energy centers.
ACHP | News | President Appoints Clement A. Price Vice Chairman of ACHP
Project Honored For Federal Leadership, Commitment to Historic Hanford Facility Department of EnergyÂs B Reactor Preservation Project Honored For Federal Leadership, Commitment to Historic Hanford Facility Reactor Preservation Project at DOEÂs Hanford Site in southeastern Washington state. ÂThe B Reactor
Pressure Loss Predictions of the Reactor Simulator Subsystem at NASA GRC
NASA Technical Reports Server (NTRS)
Reid, Terry V.
2015-01-01
Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA GRC. The TDU consists of three subsystems: the Reactor Simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the Heat Exchanger Manifold (HXM). An Annular Linear Induction Pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now), is referred to as the RxSim subsystem and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the CAD model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras turbulence model), and 2.223 kg/sec (using the k-? turbulence model). The computational error of the predictions for the available mass flow is -0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k-epsilon turbulence model) when compared to measured data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-01
Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.
Control console replacement at the WPI Reactor. [Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Upgrade Program (DOE Grant No. DE-FG02-90ER12982), the original control console at the Worcester Polytechnic Institute (WPI) Reactor has been replaced with a modern system. The new console maintains the original design bases and functionality while utilizing current technology. An advanced remote monitoring system has been added to augment the educational capabilities of the reactor. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduatemore » use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The reactor power level was upgraded from 1 to 10 kill in 1969, and its operating license was renewed for 20 years in 1983. In 1988, the reactor was converted to low enriched uranium. The low power output of the reactor and ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training.« less
Plans and Recent Developments for Fluid Physics Experiments Aboard the ISS
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Motil, Brian J.
2016-01-01
From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensable laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for Fluid Physics, NASA GRC is developing and testing the Pack Bed Reactor Experiment (PBRE), Zero Boil Off (ZBOT) Two Phase Flow Separator Experiment (TPFSE), Multiphase Flow Heat Transfer (MFHT) Experiment and the Electro-HydroDynamic (EHD) experiment. An overview each experiment, including its objectives, concept and status will be presented. In addition, data will be made available after a nominal period to NASAs Physical Science Informatics PSI database to the scientific community to enable additional analyses of results.
Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991
NASA Technical Reports Server (NTRS)
Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland
1993-01-01
NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.
Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.
Hill, R N; Nutt, W M; Laidler, J J
2011-01-01
The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society
A Research Reactor Concept to Support NTP Development
NASA Technical Reports Server (NTRS)
Eades, Michael J.; Blue, T. E.; Gerrish, Harold P.; Hardin, Leroy A.
2014-01-01
In support of efforts for research into the design and development of man rated Nuclear Thermal Propulsion (NTP), the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed NTP based research reactor (NTPRR). The proposed NTPRR would be licensed by NASA and operated jointly by NASA and university partners. The purpose of the NTPRR would be used to perform further research into the technologies and systems needed for a successful NTP project and promote nuclear training and education.
14 CFR 1204.1404 - Requests for use of NASA airfield facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Requests for use of NASA airfield... ADMINISTRATIVE AUTHORITY AND POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1404 Requests for use of NASA airfield facilities. (a) Request for use...
14 CFR 1204.1404 - Requests for use of NASA airfield facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Requests for use of NASA airfield... ADMINISTRATIVE AUTHORITY AND POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1404 Requests for use of NASA airfield facilities. (a) Request for use...
14 CFR § 1204.1404 - Requests for use of NASA airfield facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Requests for use of NASA airfield... ADMINISTRATION ADMINISTRATIVE AUTHORITY AND POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1404 Requests for use of NASA airfield facilities. (a...
14 CFR 1204.1404 - Requests for use of NASA airfield facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Requests for use of NASA airfield... ADMINISTRATIVE AUTHORITY AND POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1404 Requests for use of NASA airfield facilities. (a) Request for use...
Simulation of the neutron flux in the irradiation facility at RA-3 reactor.
Bortolussi, S; Pinto, J M; Thorp, S I; Farias, R O; Soto, M S; Sztejnberg, M; Pozzi, E C C; Gonzalez, S J; Gadan, M A; Bellino, A N; Quintana, J; Altieri, S; Miller, M
2011-12-01
A facility for the irradiation of a section of patients' explanted liver and lung was constructed at RA-3 reactor, Comisión Nacional de Energía Atómica, Argentina. The facility, located in the thermal column, is characterized by the possibility to insert and extract samples without the need to shutdown the reactor. In order to reach the best levels of security and efficacy of the treatment, it is necessary to perform an accurate dosimetry. The possibility to simulate neutron flux and absorbed dose in the explanted organs, together with the experimental dosimetry, allows setting more precise and effective treatment plans. To this end, a computational model of the entire reactor was set-up, and the simulations were validated with the experimental measurements performed in the facility. Copyright © 2011 Elsevier Ltd. All rights reserved.
Characterization of fast neutron spectrum in the TRIGA for hardness testing of electronic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, George W.
1986-07-01
Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering Laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems. (author)« less
NASA Technical Reports Server (NTRS)
Duke, E. L.; Regenie, V. A.; Deets, D. A.
1986-01-01
The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.
A rapid prototyping facility for flight research in advanced systems concepts
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Brumbaugh, Randal W.; Disbrow, James D.
1989-01-01
The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.
Investigation of materials for fusion power reactors
NASA Astrophysics Data System (ADS)
Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.
2014-06-01
The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.
Shock Tube and Ballistic Range Facilities at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.
2010-01-01
The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.
A Small Fission Power System with Stirling Power Conversion for NASA Science Missions
NASA Technical Reports Server (NTRS)
Mason, Lee; Carmichael, Chad
2011-01-01
In early 2010, a joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) study team developed a concept for a 1 kWe Fission Power System with a 15-year design life that could be available for a 2020 launch to support future NASA science missions. The baseline concept included a solid block uranium-molybdenum reactor core with embedded heat pipes and distributed thermoelectric converters directly coupled to aluminum radiator fins. A short follow-on study was conducted at NASA Glenn Research Center (GRC) to evaluate an alternative power conversion approach. The GRC study considered the use of free-piston Stirling power conversion as a substitution to the thermoelectric converters. The resulting concept enables a power increase to 3 kWe with the same reactor design and scalability to 10 kW without changing the reactor technology. This paper presents the configuration layout, system performance, mass summary, and heat transfer analysis resulting from the study.
10 CFR 52.167 - Issuance of manufacturing license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... proposed reactor(s) can be incorporated into a nuclear power plant and operated at sites having... design and manufacture the proposed nuclear power reactor(s); (5) The proposed inspections, tests... the construction of a nuclear power facility using the manufactured reactor(s). (2) A holder of a...
BIOLOGICAL IRRADIATION FACILITY
McCorkle, W.H.; Cern, H.S.
1962-04-24
A facility for irradiating biological specimens with neutrons is described. It includes a reactor wherein the core is off center in a reflector. A high-exposure room is located outside the reactor on the side nearest the core while a low-exposure room is located on the opposite side. Means for converting thermal neutrons to fast neutrons are movably disposed between the reactor core and the high and low-exposure rooms. (AEC)
Looking Southwest at Reactor Box Furnaces With Reactor Boxes and ...
Looking Southwest at Reactor Box Furnaces With Reactor Boxes and Repossessed Uranium in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO
Space Nuclear Reactor Engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, David Irvin
We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.
N Reactor Deactivation Program Plan. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, J.L.
1993-12-01
This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directivemore » to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.« less
7. Historic aerial photo of rocket engine test facility complex, ...
7. Historic aerial photo of rocket engine test facility complex, June 1962. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-60674. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
9. Historic aerial photo of rocket engine test facility complex, ...
9. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1270. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
10. Historic photo of rendering of rocket engine test facility ...
10. Historic photo of rendering of rocket engine test facility complex, April 28, 1964. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-69472. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
8. Historic aerial photo of rocket engine test facility complex, ...
8. Historic aerial photo of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-65-1271. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Structured Transition of Wind Tunnel Operations Skills from Government-to Contractor-Managed
NASA Technical Reports Server (NTRS)
Dunn, Steven C.; Schlank, John J.
2010-01-01
In 2004, NASA awarded the Research, Operations, Maintenance, and Engineering (ROME) contract at NASA Langley Research Center to a team led by Jacobs Technology, Inc. A key component of the contract was the transitioning of the five large wind tunnel facilities from NASA managed and NASA or NASA/contractor workforces to fully contractor operated. The contractor would manage daily operations while NASA would continue to develop long-term strategies, make decisions regarding commitment of funds and commitment of facilities, and provide oversight of the contractor's performance. A major challenge would be the transition of knowledge of facility operations and maintenance from the incumbent civil servant workforce to the contractor workforce. While the contract has since been modified multiple times, resulting in a blended NASA/ROME workforce across the facilities, the processes developed and implemented to capture and document facility knowledge from the incumbent subject matter experts, build training and certification programs, and grow individual skills across subject areas and across facilities, are worthy of documentation. This is the purpose of this paper.
ETR CRITICAL FACILITY, TRA654. SCIENTISTS STAND AT EDGE OF TANK ...
ETR CRITICAL FACILITY, TRA-654. SCIENTISTS STAND AT EDGE OF TANK AND LIFT REMOVABLE BRIDGE ABOVE THE REACTOR. CONTROL RODS AND FUEL RODS ARE BELOW ENOUGH WATER TO SHIELD WORKERS ABOVE. NOTE CRANE RAILS ALONG WALLS, PUMICE BLOCK WALLS. INL NEGATIVE NO. 57-3690. R.G. Larsen, Photographer, 7/29/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
Wright, Mike
2003-01-01
This paper examines the Marshall Space Flight Center s role in the Reactor-In-Flight (RIlT) project that NASA was involved with in the early 1960 s. The paper outlines the project s relation to the joint NASA-Atomic Energy Commission nuclear initiative known as Project Rover. It describes the justification for the RIFT project, its scope, and the difficulties that were encountered during the project. It also provides as assessment of NASA s overall capabilities related to nuclear propulsion in the early 1960 s.
New hypersonic facility capability at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Haas, Jeffrey E.; Chamberlin, Roger; Dicus, John H.
1989-01-01
Four facility activities are underway at NASA Lewis Research Center to develop new hypersonic propulsion test capability. Two of these efforts consist of upgrades to existing operational facilities. The other two activities will reactivate facilities that have been in a standby condition for over 15 years. These four activities are discussed and the new test facilities NASA Lewis will have in place to support evolving high speed research programs are described.
Reference reactor module for NASA's lunar surface fission power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, David I; Kapernick, Richard J; Dixon, David D
Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on themore » lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.« less
14 CFR 1204.1401 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1401 Definitions. For the purpose of this subpart, the following definitions apply: (a) NASA Airfield Facility. Those aeronautical facilities owned and operated by NASA that consist of the following: (1) Shuttle...
14 CFR 1204.1401 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1401 Definitions. For the purpose of this subpart, the following definitions apply: (a) NASA Airfield Facility. Those aeronautical facilities owned and operated by NASA that consist of the following: (1) Shuttle...
14 CFR 1204.1401 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1401 Definitions. For the purpose of this subpart, the following definitions apply: (a) NASA Airfield Facility. Those aeronautical facilities owned and operated by NASA that consist of the following: (1) Shuttle...
2003-03-01
facility and Mr. Joseph Talnagi of the Ohio State Research Reactor facility for their personal guidance and insight into reactor dosimetry and neutron...62 Test C1: Dosimetry ..................................................................................................... 63 Special...66 Annex A-3. Preliminary Dosimetry Calculations
Looking Northeast in Oxide Building at Reactors on Second Floor ...
Looking Northeast in Oxide Building at Reactors on Second Floor Including Reactor One (Left) and Reactor Two (Right) - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
Neutron scattering facilities at Chalk River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holden, T.M.; Powell, B.M.; Dolling, G.
1995-12-31
The Chalk River Laboratories of AECL Research provides neutron beams for research with the NRU reactor. The NRU reactor has eight reactor loops for engineering test experiments, 30 isotope irradiation sites and beam tubes, six of which feed the neutron scattering instruments. The peak thermal flux is 3 {times} 10{sup 14}n cm{sup {minus}2} s{sup {minus}1}. The neutron spectrometers are operated as national facilities for Canadian neutron scattering research. Since the research requirements for the Canadian nuclear industry are changing, and since the NRU reactor is unlikely to operate much beyond the year 2000, a new Irradiation Research Facility (IRF) ismore » being considered for start-up in the first decade of the next century. An outline is given of this proposed new neutron source.« less
A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Khericha
2010-12-01
The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn thesemore » actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.« less
14 CFR § 1204.1401 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1401 Definitions. For the purpose of this subpart, the following definitions apply: (a) NASA Airfield Facility. Those aeronautical facilities owned and operated by NASA that consist of the following...
6. Historic photo of rocket engine test facility Building 202 ...
6. Historic photo of rocket engine test facility Building 202 complex in operation at night, September 12, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45924. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
13. Historic drawing of rocket engine test facility layout, including ...
13. Historic drawing of rocket engine test facility layout, including Buildings 202, 205, 206, and 206A, February 3, 1984. NASA GRC drawing number CF-101539. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan
NASA Astrophysics Data System (ADS)
Hill, T. J.; Stanley, M. L.; Martinell, J. S.
1993-01-01
The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.
None
2017-12-09
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-05-21
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DESIGN CRITERIA FOR HIGH TEMPERATURE LATTICE TEST REACTOR PROJECT CAH-100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballard, D.L.; Brown, W.W.; Harrison, C.W.
Design and construction specifications to be followed in the development of the reactor, its associated systems and experimental facilities, and the housing and required services for the facility are presented. The testing procedures to be used are outlined. (D.C.W.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Rene Gerardo; Hutchinson, Jesson D.; Mcclure, Patrick Ray
2015-08-20
The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and evaluate the operational performance of a compact reactor configuration that closely resembles the flight unit to be used by NASA to execute a deep space exploration mission. The reactor design will include heat pipes coupled to Stirling engines to demonstrate how one can generate electricity when extracting energy from a “nuclear generated” heat source. This series of experiments is a larger scale follow up to the DUFF series of experiments1,2 that were performed using the Flat-Top assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez Aviles, Camila A.; Rao, Nageswara S.
We consider the problem of inferring the operational state of a reactor facility by using measurements from a radiation sensor network, which is deployed around the facility’s ventilation stack. The radiation emissions from the stack decay with distance, and the corresponding measurements are inherently random with parameters determined by radiation intensity levels at the sensor locations. We fuse measurements from network sensors to estimate the intensity at the stack, and use this estimate in a one-sided Sequential Probability Ratio Test (SPRT) to infer the on/off state of the reactor facility. We demonstrate the superior performance of this method over conventionalmore » majority vote fusers and individual sensors using (i) test measurements from a network of NaI sensors, and (ii) emulated measurements using radioactive effluents collected at a reactor facility stack. We analytically quantify the performance improvements of individual sensors and their networks with adaptive thresholds over those with fixed ones, by using the packing number of the radiation intensity space.« less
Mass tracking and material accounting in the integral fast reactor (IFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orechwa, Y.; Adams, C.H.; White, A.M.
1991-01-01
This paper reports on the Integral Fast Reactor (IFR) which is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory. There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure with compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstratedmore » in the facilities at ANL-West, utilizing Experimental Breeder Reactor II and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations.« less
POWER-BURST FACILITY (PBF) CONCEPTUAL DESIGN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasserman, A.A.; Johnson, S.O.; Heffner, R.E.
1963-06-21
A description is presented of the conceptual design of a high- performance, pulsed reactor called the Power Burst Facility (PBF). This reactor is designed to generate power bursts with initial asymptotic periods as short as 1 msec, producing energy releases large enough to destroy entire fuel subassemblies placed in a capsule or flow loop mounted in the reactor, all without damage to the reactor itself. It will be used primarily to evaluate the consequences and hazards of very rapid destructive accidents in reactors representing the entire range of current nuclear technology as applied to power generation, propulsion, and testing. Itmore » will also be used to carry out detailed studies of nondestructive reactivity feedback mechanisms in the shortperiod domain. The facility was designed to be sufficiently flexible to accommodate future cores of even more advanced design. The design for the first reactor core is based upon proven technology; hence, completion of the final design of this core will involve no significant development delays. Construction of the PBF is proposed to begin in September 1984, and is expected to take approximately 20 months to complete. (auth)« less
Pressure Loss Predictions of the Reactor Simulator Subsystem at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Reid, Terry V.
2016-01-01
Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA Glenn Research Center. The TDU consists of three subsystems: the reactor simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the heat exchanger manifold (HXM). An annular linear induction pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now) is referred to as the "RxSim subsystem" and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the computer-aided-design (CAD) model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras (S?A) turbulence model) and 2.223 kg/sec (using the k- turbulence model). The computational error of the predictions for the available mass flow is ?0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k- turbulence model) when compared to measured data.
14 CFR § 1204.1405 - Approving authority.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal... a NASA airfield, as well as the authority to approve or disapprove the use of the NASA airfield... established for the facility is vested in: (a) Shuttle Landing Facility. Director of Center Support Operations...
PBF (PER620) interior of Reactor Room. Camera facing south from ...
PBF (PER-620) interior of Reactor Room. Camera facing south from stairway platform in southwest corner (similar to platform in view at left). Reactor was beneath water in circular tank. Fuel was stored in the canal north of it. Platform and apparatus at right is reactor bridge with control rod mechanisms and actuators. The entire apparatus swung over the reactor and pool during operations. Personnel in view are involved with decontamination and preparation of facility for demolition. Note rails near ceiling for crane; motor for rollup door at upper center of view. Date: March 2004. INEEL negative no. HD-41-3-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Removal design report for the 108-F Biological Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded bymore » adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.« less
Initial Testing of the Stainless Steel NaK-Cooled Circuit (SNaKC)
NASA Technical Reports Server (NTRS)
Garber, Anne; Godfroy, Thomas
2007-01-01
An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK) was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around the 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. This presentation addresses the construction, fill and initial testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).
Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A
2010-01-01
We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is inmore » support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.« less
NASA Technical Reports Server (NTRS)
Rivers, Melissa; Quest, Juergen; Rudnik, Ralf
2015-01-01
Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.
NASA Technical Reports Server (NTRS)
Stradling, J.; Pippen, D. L.
1985-01-01
The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.
14 CFR 1204.1403 - Available airport facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AUTHORITY AND POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1403 Available airport facilities. The facilities available vary at each NASA Installation having an airfield. The airport facilities available are: (a) Shuttle Landing Facility—(1) Runways...
14 CFR 1204.1403 - Available airport facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AUTHORITY AND POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1403 Available airport facilities. The facilities available vary at each NASA Installation having an airfield. The airport facilities available are: (a) Shuttle Landing Facility—(1) Runways...
Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, P.K.; Freemerman, R.L.
1989-11-01
On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Brian; Gutowska, Izabela; Chiger, Howard
Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bruyn, D.; Engelen, J.; Ortega, A.
MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK-CEN in replacement of its material testing reactor BR2. SCK-CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of threemore » years. In this paper, we present the latest concept of the reactor building and the plant layout. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1,2. Many iterations have been performed to take into account the safety requirements. The present configuration enables an easy operation and maintenance of the facility, including the possibility to change large components of the reactor. In a companion paper 3, we present the latest configuration of the reactor core and primary system. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-08
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-020; NRC-2010-0313] Massachusetts Institute of Technology Reactor Notice of Issuance of Renewed Facility Operating; License No. R-37 The U.S. Nuclear... Institute of Technology (the licensee), which authorizes continued operation of the Massachusetts Institute...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramalho, Antonio G.
The Portuguese Research Reactor (RPI) is the main research facility in the Laboratorio de Fisica e Engenharia Nucleares. This laboratory is one of the departments of Junta de Energia Nuclear, the coordinating body of the nuclear activity in Portugal. A description of the facility, reactor utilization, positioning within Portugal, and areas of cooperation with other institutions are summarized.
REACTIVITY MEASUREMENT FACILITY, UNDER CONSTRUCTION OVER MTR CANAL IN BASEMENT ...
REACTIVITY MEASUREMENT FACILITY, UNDER CONSTRUCTION OVER MTR CANAL IN BASEMENT OF MTR BUILDING, TRA-603. WOOD PLANKS REST ON CANAL WALL OBSERVABLE IN FOREGROUND. INL NEGATIVE NO. 11745. Unknown Photographer, 8/20/1954 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-326; NRC-2010-0217] University of California, Irvine; License Renewal for University of California, Irvine Nuclear Reactor Facility; Supplemental Information... Renewal for University of California, Irvine Nuclear Reactor Facility,'' to inform the public that the NRC...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, Darius D.; Kraus, Adam R.; Bucknor, Matthew D.
A 1/2 scale test facility has been constructed at Argonne National Laboratory to study the heat removal performance and natural circulation flow patterns in a Reactor Cavity Cooling System (RCCS). Our test facility, the Natural convection Shutdown heat removal Test Facility (NSTF), supports the broader goal of developing an inherently safe and fully passive ex-vessel decay heat removal for advanced reactor designs. The project, initiated in 2010 to support the Advanced Reactor Technologies (ART), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs, has been conducting experimental operations since early 2014. The following paper provides a summary ofmore » some primary design features of the 26-m tall test facility along with a description of the data acquisition suite that guides our experimental practices. Specifics of the distributed fiber optic temperature measurements will be discussed, which introduces an unparalleled level of data density that has never before been implemented in a large scale natural circulation test facility. Results from our test series will then be presented, which provide insight into the thermal hydraulic behavior at steady-state and transient conditions for varying heat flux levels and exhaust chimney configuration states. (C) 2016 Elsevier B.V. All rights reserved.« less
14 CFR § 1204.1403 - Available airport facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AUTHORITY AND POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1403 Available airport facilities. The facilities available vary at each NASA Installation having an airfield. The airport facilities available are: (a) Shuttle Landing Facility—(1) Runways...
NASA Wallops Flight Facility Air-Sea Interaction Research Facility
NASA Technical Reports Server (NTRS)
Long, Steven R.
1992-01-01
This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... lightwater nuclear power reactors for normal operation. 50.60 Section 50.60 Energy NUCLEAR REGULATORY... lightwater nuclear power reactors for normal operation. (a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the...
PBF Reactor Building (PER620). Camera faces north into highbay/reactor pit ...
PBF Reactor Building (PER-620). Camera faces north into high-bay/reactor pit area. Inside from for reactor enclosure is in place. Photographer: John Capek. Date: March 15, 1967. INEEL negative no. 67-1769 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Code of Federal Regulations, 2011 CFR
2011-01-01
..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Federal and..., Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear... of this chapter, see § 2.106(d). (b) If the Director, Office of Nuclear Reactor Regulation, Director...
2011-01-20
CAPE CANAVERAL, Fla. -- A traditional ribbon-cutting ceremony takes place outside the Propellants North Administration and Maintenance Facility at NASA's Kennedy Space Center in Florida. From left, are Thomas Wilczek, contracting officer technical representative/project manager for NASA Construction of Facilities; Bradley O’Toole, NASA contracting officer; James Wright, deputy assistant administrator for the Office of Strategic Infrastructure at NASA Headquarters; Frank Kline, NASA Construction of Facility project manager; Bob Cabana, Kennedy's center director; Mike Benik, director of Kennedy's Center Operations; Ward Davis, president of HW Davis Construction Inc.; and Rick Ferreira, chief operating officer of Jones Edmunds and Associates Inc. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
2011-01-20
CAPE CANAVERAL, Fla. -- A traditional ribbon-cutting ceremony takes place outside the Propellants North Administration and Maintenance Facility at NASA's Kennedy Space Center in Florida. From left, are Thomas Wilczek, contracting officer technical representative/project manager for NASA Construction of Facilities; Bradley O’Toole, NASA contracting officer; James Wright, deputy assistant administrator for the Office of Strategic Infrastructure at NASA Headquarters; Frank Kline, NASA Construction of Facility project manager; Bob Cabana, Kennedy's center director; Mike Benik, director of Kennedy's Center Operations; Ward Davis, president of HW Davis Construction Inc.; and Rick Ferreira, chief operating officer of Jones Edmunds and Associates Inc. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
Fission Surface Power Technology Development Update
NASA Technical Reports Server (NTRS)
Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott
2011-01-01
Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.3 Definitions. As used in this part: Combined license... power facilities. Exclusion area means that area surrounding the reactor, in which the reactor licensee.... Activities unrelated to operation of the reactor may be permitted in an exclusion area under appropriate...
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMISSION (CONTINUED) REACTOR SITE CRITERIA § 100.3 Definitions. As used in this part: Combined license... power facilities. Exclusion area means that area surrounding the reactor, in which the reactor licensee.... Activities unrelated to operation of the reactor may be permitted in an exclusion area under appropriate...
NASA Technical Reports Server (NTRS)
Rivers, Melissa B.; Quest, Jurgen; Rudnik, Ralf
2015-01-01
Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment, surface pressure and wing bending and twist data are presented herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, G.A.
For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitionedmore » the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)« less
Facilities Engineering in NASA
NASA Technical Reports Server (NTRS)
Pagluiso, M. A.
1970-01-01
An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.
NASA's Hydrogen Outpost: The Rocket Systems Area at Plum Brook Station
NASA Technical Reports Server (NTRS)
Arrighi, Robert S.
2016-01-01
"There was pretty much a general knowledge about hydrogen and its capabilities," recalled former researcher Robert Graham. "The question was, could you use it in a rocket engine? Do we have the technology to handle it? How will it cool? Will it produce so much heat release that we can't cool the engine? These were the questions that we had to address." The National Aeronautics and Space Administration's (NASA) Glenn Research Center, referred to historically as the Lewis Research Center, made a concerted effort to answer these and related questions in the 1950s and 1960s. The center played a critical role transforming hydrogen's theoretical potential into a flight-ready propellant. Since then NASA has utilized liquid hydrogen to send humans and robots to the Moon, propel dozens of spacecraft across the universe, orbit scores of satellite systems, and power 135 space shuttle flights. Rocket pioneers had recognized hydrogen's potential early on, but its extremely low boiling temperature and low density made it impracticable as a fuel. The Lewis laboratory first demonstrated that liquid hydrogen could be safely utilized in rocket and aircraft propulsion systems, then perfected techniques to store, pump, and cleanly burn the fuel, as well as use it to cool the engine. The Rocket Systems Area at Lewis's remote testing area, Plum Brook Station, played a little known, but important role in the center's hydrogen research efforts. This publication focuses on the activities at the Rocket Systems Area, but it also discusses hydrogen's role in NASA's space program and Lewis's overall hydrogen work. The Rocket Systems Area included nine physically modest test sites and three test stands dedicated to liquid-hydrogen-related research. In 1962 Cleveland Plain Dealer reporter Karl Abram claimed, "The rocket facility looks more like a petroleum refinery. Its test rigs sprout pipes, valves and tanks. During the night test runs, excess hydrogen is burned from special stacks in the best Oklahoma oil field tradition." Besides the Rocket Systems Area, Plum Brook Station also included a nuclear test reactor, a large vacuum tank, a hypersonic wind tunnel, and a full-scale upper-stage rocket stand. The Rocket Systems Area operated from 1961 until NASA shut down all of Plum Brook in 1974. The center reopened Plum Brook in the late 1980s and continues to use several test facilities. The Rocket Systems Area, however, was not restored. Today Plum Brook resembles a nature preserve more than an oil refinery. Lush fields and forests separate the large test facilities. Until recently, the abandoned Rocket Systems Area structures and equipment were visible amongst the greenery. These space-age ruins, particularly the three towers, stood as silent sentinels over the sparsely populated reservation. Few knew the story of these mysterious facilities when NASA removed them in the late 2000s.
Final report of the decontamination and decommissioning of the BORAX-V facility turbine building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arave, A.E.; Rodman, G.R.
1992-12-01
The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D&D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D&D plans for the turbine building were prepared from 1979 through 1990. D&D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loosemore » contamination, the D&D activities were completed with no radiation exposure to the workers. The D&D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less
Final report of the decontamination and decommissioning of the BORAX-V facility turbine building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arave, A.E.; Rodman, G.R.
1992-12-01
The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D D plans for the turbine building were prepared from 1979 through 1990. D D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and themore » absence of loose contamination, the D D activities were completed with no radiation exposure to the workers. The D D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain.« less
NASA Technical Reports Server (NTRS)
1989-01-01
One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.
An Update of the Nation's Long-Term Strategic Needs for NASA's Aeronautics Test Facilities
NASA Technical Reports Server (NTRS)
Anton, Philip S.; Raman, Raj; Osburg, Jan; Kallimani, James G.
2009-01-01
The National Aeronautics and Space Administration's (NASA's) major wind tunnel (WT), propulsion test (PT), and simulation facilities exist to serve NASA's and the nation's aeronautics needs. RAND Corporation researchers conducted a prior study of these facilities from 2002 to 2003, identifying (1) NASA's continuing ability to serve national needs, (2) which facilities appear strategically important from an engineering perspective given the vehicle classes the nation investigates and produces, and (3) management challenges and issues. This documented briefing (DB) is the final report from a new, one-year study (conducted from September 2006 through January 2008), partially updating the prior assessment. The study focuses on updating the list of facilities in the prior study that were deemed to be strategically important (again, from an engineering perspective) in serving those needs. This update also adds a new assessment of national needs for six major aeronautics simulators at NASA and lists those deemed strategically important.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Certification Full cost. Amendment, Renewal, Other Approvals Full cost. C. Test Facility/Research Reactor... of components requiring Commission and Executive Branch review, for example, actions under 10 CFR 110... export of reactor and other components requiring Executive Branch review, for example, those actions...
ETR CRITICAL FACILITY (ETRCF), TRA654. SOUTH SIDE. CAMERA FACING NORTH ...
ETR CRITICAL FACILITY (ETR-CF), TRA-654. SOUTH SIDE. CAMERA FACING NORTH AND ROLL-UP DOOR. ORIGINAL SIDING HAS BEEN REPLACED WITH STUCCO-LIKE MATERIAL. INL NEGATIVE NO. HD46-40-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
SPERTI Reactor Pit Building (PER605) from contrasting direction as photo ...
SPERT-I Reactor Pit Building (PER-605) from contrasting direction as photo above (ID-33-F-32). Note Guard House door, security fencing around facility. Photographer: R.G. Larsen. Date: July 22, 1955. INEEL negative no. 55-1702. - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Code of Federal Regulations, 2014 CFR
2014-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...
The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. R. Allen; J. B. Benson; J. A. Foster
2009-05-01
To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities ismore » granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.« less
PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. T. Khericha
2007-04-01
The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed tomore » achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.« less
Supporting NASA Facilities Through GIS
NASA Technical Reports Server (NTRS)
Ingham, Mary E.
2000-01-01
The NASA GIS Team supports NASA facilities and partners in the analysis of spatial data. Geographic Information System (G[S) is an integration of computer hardware, software, and personnel linking topographic, demographic, utility, facility, image, and other geo-referenced data. The system provides a graphic interface to relational databases and supports decision making processes such as planning, design, maintenance and repair, and emergency response.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James
2017-01-01
The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site. Fabrication, assembly, and testing of the depleted uranium core has allowed for higher fidelity system level testing at GRC, and has validated the fabrication methods to be used on the highly enriched uranium core that will supply heat for the DAF KRUSTY demonstration.
Development Status of the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Pearson, Jon Boise; Godfoy, Thomas
2012-01-01
This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at GRC.
NASA Technical Reports Server (NTRS)
Yen, Judy C. H.; Tomsik, Thomas M.
2004-01-01
This paper describes the results of a series of catalyst screening tests conducted with Jet-A fuel under auto-thermal reforming (ATR) process conditions at the research laboratories of SOFCo-EFS Holdings LLC under Glenn Research Center Contract. The primary objective is to identify best available catalysts for future testing at the NASA GRC 10-kW(sub e) reformer test facility. The new GRC reformer-injector test rig construction is due to complete by March 2004. Six commercially available monolithic catalyst materials were initially selected by the NASA/SOFCo team for evaluation and bench scale screening in an existing 0.05 kW(sub e) microreactor test apparatus. The catalyst screening tests performed lasted 70 to 100 hours in duration in order to allow comparison between the different samples over a defined range of ATR process conditions. Aging tests were subsequently performed with the top two ranked catalysts as a more representative evaluation of performance in a commercial aerospace application. The two catalyst aging tests conducted lasting for approximately 600 hours and 1000 hours, respectively.
Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities
NASA Technical Reports Server (NTRS)
Sydnor, George Honeycutt
2012-01-01
In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.
Institutional environmental impact statement, Michoud Assembly Facility, New Orleans, Louisiana
NASA Technical Reports Server (NTRS)
1978-01-01
A description and analysis of Michoud Assembly Facility as an operational base for both NASA and NASA-related programs and various government tenant-agencies and their contractors is given. Tenant-agencies are governmental agencies or governmental agency contractors which are not involved in a NASA program, but utilize office or manufacturing space at the Michoud Assembly Facility. The statements represent the full description of the likely environmental effects of the facility and are used in the process of making program and project decisions.
Stennis cuts ribbon on records retention facility
2010-08-24
NASA's John C. Stennis Space Center cut the ribbon Aug. 24 on a new, storm-resistant Records Retention Facility that consolidates and protects records storage at the nation's premier rocket engine test facility. This facility will also house history office operations. Participants in the ribbon-cutting included: (l to r) Gay Irby, Center Operations deputy director at Stennis; Linda Cureton, NASA chief information officer; Patrick Scheuermann, Stennis director; Jane Odom, NASA chief archivist; Dinna Cottrell, Stennis chief information officer; and James Cluff, Stennis records manager.
NASA Technical Reports Server (NTRS)
Ware, Randolph (Principal Investigator)
1996-01-01
This report consists of the following sections: a list of the NASA DOSE (Dynamics of the Solid Earth) Program Global Positioning System (GPS)-based campaigns supported by the UNAVCO (University Navstar Consortium) Boulder Facility; a list of NASA DOSE GPS permanent site installations supported by the UNAVCO Boulder Facility; and example science snapshots indicating the research projects supported with equipment and technical support available to DOSE Principal Investigators via the UNAVCO Boulder Facility.
The advantages and disadvantages of using the TREAT reactor for nuclear laser experiments
NASA Astrophysics Data System (ADS)
Dickson, P. W.; Snyder, A. M.; Imel, G. R.; McConnell, R. J.
The Transient Reactor Test Facility (TREAT) is a large air-cooled test facility located at the Idaho National Engineering Laboratory. Two of the major design features of TREAT, its large size and its being an air-cooled reactor, provide clues to both its advantages and disadvantages for supporting nuclear laser experiments. Its large size, which is dictated by the dilute uranium/graphite fuel, permits accommodation of geometrically large experiments. However, TREAT's large size also results in relatively long transients so that the energy deposited in an experiment is large relative to the peak power available from the reactor. TREAT's air-cooling mode of operation allows its configuration to be changed fairly readily. Due to air cooling, the reactor cools down slowly, permitting only one full power transient a day, which can be a disadvantage in some experimental programs. The reactor is capable of both steady-state or transient operation.
Feasibility of EB Welded Hastelloy X and Combination of Refractory Metals
NASA Technical Reports Server (NTRS)
Martinez, Diana A.
2004-01-01
As NASA continues to expand its horizon, exploration and discovery creates the need of advancement in technology. The Jupiter Icy Moon Orbiter's (JIMO) mission to explore and document the outer surfaces, rate the possibility of holding potential life forms, etc. within the three moons (Callisto, Ganymede, and Europa) proves to be challenging. The orbiter itself consists of many sections including: the nuclear reactor and the power conversion system, the radiator panels, and the thrusters and antenna. The nuclear reactor serves as a power source, and if successfully developed, can operate for extended periods. During the duration of my tenure at NASA Glenn Research Center's (NASA GRC) Advanced Metallics Branch, I was assigned to assist Frank J. Ritzert on analyzing the feasibility of the Electron Beam Welded Hastelloy X (HX), a nickel-based superalloy, to Niobium- 1 %Zirconium (Nb-1 Zr) and other refractory metals/alloys including Tantalum, Molybdenum, Tungsten, and Rhenium alloys. This welding technique is going to be used for the nuclear reactor within JIMO.
Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The MARIA reactor is open-pool type, water and beryllium moderated. It has two independent primary cooling systems: fuel and pool cooling system. Each fuel assembly is cooled down separately in pressurized channels with individual performances characterization. The fuel assemblies consist of five layers of bent plates or six concentric tubes. Currently it is one of the most powerful research reactors in Europe with operation availability at least up to 2030. Its nominal thermal power is 30 MW. It is characterized by high neutron flux density: up to 3x10{sup 14} n cm{sup -2} s{sup -1} in case of thermal neutrons, andmore » up to 2x10{sup 13} n cm{sup -2} s{sup -1} in case of fast neutrons. The reactor is operated for ca. 4000 h per year. The reactor facility is equipped with fully equipped three hot cells with shielding up to 10{sup 15} Bq. Adjacent to the reactor facility, the radio-pharmaceutics plant (POLATOM) and Material Research Laboratory are located. They are equipped with a number of hot cells with instrumentation. The transport system of radioactive materials from reactor facility to Material Research Laboratory is available. During 2014 the MARIA reactor has been operated with three different types of fuel the same time: previous 36% enriched fuel, and two types of new LEU fuels. In the meantime, molybdenum irradiation programme has been developed. Maria is a multifunctional research tool, with a notable application in production of radioisotopes, radio-pharmaceutics manufacturing (ca. 600 TBq/y), {sup 99}Mo for medical scintigraphy (ca. 6000 TBq/y), neutron transmutation doping of silicon single crystals, wide scientific research based on neutron beams utilization. From the beginning MARIA reactor was intended for loop and fuel testing research activities. Currently it is used mostly as material testing and irradiation facility and for that reason it has wide experimental capabilities. There are eight horizontal irradiation channels from among whom six of them are equipped with instrumentation for condensed matter physics research: - H3 - spectrometer and diffractometer with double monochromator; - H4 - small angle scattering spectrometer; - H5 - polarized neutrons spectrometer; - H6, H7 - two 3-axial crystal neutron spectrometers; - H8 - neutron radiography stand. For two horizontal channels are ongoing exploitation programs: - H2 - station with epithermal neutron beam produced in uranium converter is being developed. Intelligent converter will be installed on the periphery of reactor core. The intensity of the beam will be at the level 2x10{sup 9} n cm{sup -2}s{sup -1} what makes the beam unique in the Europe. - H1 - special pneumatic horizontal mail is being developed for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. The number of neutron irradiation facilities in MARIA reactor is increasing every year. Numerous of thermal neutron irradiation channels including fast hydraulic rabbit system and large size channels for fast neutron irradiation are used routinely. Recently new in-pile facility with ITER-like neutron energy spectrum for 14 MeV neutron irradiation has been constructed. Taking into account its performance and ability of almost incessant operation the facility appears as one of the most powerful 14 MeV neutron sources. The facility shall be used for material research connected with thermonuclear devices (ITER) and 4. generation nuclear reactors. The system of independent fuels channels used in MARIA reactor appear to be very flexible and very convenient to be used as irradiation channels for uranium targets for {sup 99}Mo production. Currently, MARIA reactor supplies ca. 18% world production of {sup 99}Mo. The MARIA reactor research activities are still extended. The current scientific projects are connected e.g. with silicon neutron transmutation doping, in-pile gamma heating measurements, French calculation codes implementation (TRIPOLI4, APOLLO2). The horizontal neutron beams utilization is also developed. The MARIA reactor, due to its primary application connected with loop and fuel testing, is very convenient for testing the nuclear instrumentation, control and measurement systems.« less
Studies of neutron-rich nuclei far from stability at TRISTAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, R.L.
The ISOL facility, TRISTAN, is a user facility located at Brookhaven National Laboratory's High Flux Beam Reactor. Short-lived, neutron-rich nuclei, far from stability, are produced by thermal neutron fission of /sup 235/U. An extensive array of experimental end stations are available for nuclear structure studies. These studies are augmented by a variety of long-lived ion sources suitable for use at a reactor facility. Some recent results at TRISTAN are presented as examples of using an ISOL facility to study series of nuclei, whereby an effective means of conducting nuclear structure investigations is available.
Two-Dimensional Diffusion Theory Analysis of Reactivity Effects of a Fuel-Plate-Removal Experiment
NASA Technical Reports Server (NTRS)
Gotsky, Edward R.; Cusick, James P.; Bogart, Donald
1959-01-01
Two-dimensional two-group diffusion calculations were performed on the NASA reactor simulator in order to evaluate the reactivity effects of fuel plates removed successively from the center experimental fuel element of a seven- by three-element core loading at the Oak Ridge Bulk Shielding Facility. The reactivity calculations were performed by two methods: In the first, the slowing-down properties of the experimental fuel element were represented by its infinite media parameters; and, in the second, the finite size of the experimental fuel element was recognized, and the slowing-down properties of the surrounding core were attributed to this small region. The latter calculation method agreed very well with the experimented reactivity effects; the former method underestimated the experimental reactivity effects.
Facilities for animal research in space
NASA Technical Reports Server (NTRS)
Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.
1991-01-01
The animal facilities used aboard or designed for various spacecraft research missions are described. Consideration is given to the configurations used in Cosmos-1514 (1983) and Cosmos-1887 (1987) missions; the reusable Biosatellite capsule flown three times by NASA between 1966 and 1969; the NASA's Lifesat spacecraft that is being currently designed; the Animal Enclosure Module flown on Shuttle missions in 1983 and 1984; the Research Animal Holding Facility developed for Shuttle-Spacelab missions; the Rhesus Research Facility developed for a Spacelab mission; and the Japanese Animal Holding Facility for the Space Station Freedom. Special attention is given to the designs of NASA's animal facilities developed for Space Station Freedom and the details of various subsystems of these facilities. The main characteristics of the rodent and the primate habitats provided by these various facilities are discussed.
General layout of reactor and control areas upon advent of ...
General layout of reactor and control areas upon advent of power burst facility (PBF). Shows relationship of PBF to SPERT-I, -II, -III, and -IV. Ebasco Services 1205-PER/PBF-U-102. Date: July 1965. INEEL index no. 761-0100-00-205-123006 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL ...
10. Photocopy of drawing, February 1958, NUCLEAR REACTOR FACILITY, STRUCTURAL CROSS SECTION. Giffals & Vallet, Inc., L. Rosetti, Associated Architects and Engineers, Detroit, Michigan; and U.S. Army Engineer Division, New England Corps of Engineers, Boston, Massachusetts. Drawing Number 35-84-04. (Original: AMTL Engineering Division, Watertown). - Watertown Arsenal, Building No. 100, Wooley Avenue, Watertown, Middlesex County, MA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierman, S.R.; Graf, W.A.; Kass, M.
1960-07-29
Design panameters are presented for phases of the facility to reprocess low-enrichment fuels from nonproduction reactors. Included are plant flowsheets and equipment layouts for fuel element dissolution, centrifugation, solution adjustment, and waste handling. Also included are the basic design criteria for the supporting facilities which service these phases and all other facilites located in the vicinity of the selected building (Bldg. 221-U). (J.R.D.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-07-29
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
None
2018-01-16
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
Operational Phase Life Cycle Assessment of Select NASA Ground Test Facilities
NASA Technical Reports Server (NTRS)
Sydnor, George H.; Marshall, Timothy J.; McGinnis, Sean
2011-01-01
NASA's Aeronautics Test Program (ATP) is responsible for many large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. In order to accomplish these national objectives, significant energy and resources are consumed. A select group of facilities was analyzed using life-cycle assessment (LCA) to determine carbon footprint and environmental impacts. Most of these impacts stem from electricity and natural gas consumption, used directly at the facility and to generate support processes such as compressed air and steam. Other activities were analyzed but determined to be smaller in scale and frequency with relatively negligible environmental impacts. More specialized facilities use R-134a, R-14, jet fuels, or nitrogen gas, and these unique inputs can have a considerable effect on a facility s overall environmental impact. The results of this LCA will be useful to ATP and NASA as the nation looks to identify its top energy consumers and NASA looks to maximize research output and minimize environmental impact. Keywords: NASA, Aeronautics, Wind tunnel, Keyword 4, Keyword 5
NASA Astrophysics Data System (ADS)
Chevalier, V.; Mirotta, S.; Guillot, J.; Biard, B.
2018-01-01
The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palabrica, R.J.
1981-01-01
The Philippines has a 1-MW swimming-pool reactor facility operated by the Philippine Atomic Energy Commission (PAEC). The reactor is light-water moderated and cooled, graphite reflected, and fueled with 90% enriched uranium. Since it became critical in 1963 it has been utilized for research, radioisotope production, and training. It was used initially in the training of PAEC personnel and other research institutions and universities. During the last few years, however, it has played a key role in training personnel for the Philippine Nuclear Power Project (PNPP).
ETR CRITICAL FACILITY, TRA654. CONTEXTUAL VIEW. CAMERA ON ROOF OF ...
ETR CRITICAL FACILITY, TRA-654. CONTEXTUAL VIEW. CAMERA ON ROOF OF MTR BUILDING AND FACING SOUTH. ETR AND ITS COOLANT BUILDING AT UPPER PART OF VIEW. ETR COOLING TOWER NEAR TOP EDGE OF VIEW. EXCAVATION AT CENTER IS FOR ETR CF. CENTER OF WHICH WILL CONTAIN POOL FOR REACTOR. NOTE CHOPPER TUBE PROCEEDING FROM MTR IN LOWER LEFT OF VIEW, DIAGONAL TOWARD LEFT. INL NEGATIVE NO. 56-4227. Jack L. Anderson, Photographer, 12/18/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Lewis Research Center space station electric power system test facilities
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.; Martin, Donald F.
1988-01-01
NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.
Ammonia Oxidation Plant at Plum Brook Ordnance Works
1943-06-21
An ammonia oxidation plant at the Plum Brook Ordnance Works near Sandusky, Ohio, which later became the National Aeronautics and Space Administration’s (NASA) Plum Brook Station. During World War II the ordnance works produced trinitroluene (TNT), dinitrotoluene (DNT), and pentolite which were crated and shipped to an arsenal in Ravenna, Ohio. There, the explosives were packed into shells and sent to Allied forces overseas. Plum Brook was the third largest producer of TNT during World War II. Toluene, sulfuric acid, and nitric acid were used to manufacture the TNT. Nitric Acid is made by oxidizing ammonia, adding water, and concentrating it. The facility in this photograph was used for this oxidation. The structure included air compressors, filters, aftercoolers, power recovery systems, air receivers, heaters, ammonia gasifiers, gas mixers, cooler condensers, absorption columns, and bleaching columns. The Plum Brook Ordnance Works was shut down immediately after the war and remained vacant for the next ten years. NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA), acquired the 500 acres of the site in 1955 to build a nuclear test reactor. By 1963, the agency had acquired the entire 9000 acres from the Army. Almost all of the military facilities were removed in the early 1960s. Plum Brook Station contained over 30 test facilities at its peak in the late 1960s. Today there are four major facilities in operation.
10 CFR 1.44 - Office of New Reactors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR... Office of New Reactors. The Office of New Reactors— (a) Develops, promulgates and implements regulations... safeguarding of nuclear reactor facilities licensed under part 52 of this chapter prior to initial commencement...
10 CFR 1.44 - Office of New Reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR... Office of New Reactors. The Office of New Reactors— (a) Develops, promulgates and implements regulations... safeguarding of nuclear reactor facilities licensed under part 52 of this chapter prior to initial commencement...
CRITICAL EXPERIMENT TANK (CET) REACTOR HAZARDS SUMMARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becar, N.J.; Kunze, J.F.; Pincock, G..D.
1961-03-31
The Critical Experiment Tank (CET) reactor assembly, the associated systems, and the Low Power Test Facility in which the reactor is to be operated are described. An evaluation and summary of the hazards associated with the operation of the CET reactor in the LPTF at the ldsho Test Station are also presented. (auth)
PBF Reactor Building (PER620). Reactor vessel arrives from gate city ...
PBF Reactor Building (PER-620). Reactor vessel arrives from gate city steel at door of PBF. On flatbed, it is too high to fit under door. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-737 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
10 CFR 1.44 - Office of New Reactors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR... safeguarding of nuclear reactor facilities licensed under part 52 of this chapter prior to initial commencement... Office of New Reactors. The Office of New Reactors— (a) Develops, promulgates and implements regulations...
10 CFR 1.44 - Office of New Reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR... safeguarding of nuclear reactor facilities licensed under part 52 of this chapter prior to initial commencement... Office of New Reactors. The Office of New Reactors— (a) Develops, promulgates and implements regulations...
10 CFR 1.44 - Office of New Reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Office of New Reactors. 1.44 Section 1.44 Energy NUCLEAR... safeguarding of nuclear reactor facilities licensed under part 52 of this chapter prior to initial commencement... Office of New Reactors. The Office of New Reactors— (a) Develops, promulgates and implements regulations...
Computer simulation of the NASA water vapor electrolysis reactor
NASA Technical Reports Server (NTRS)
Bloom, A. M.
1974-01-01
The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.
Launch Services Safety Overview
NASA Technical Reports Server (NTRS)
Loftin, Charles E.
2008-01-01
NASA/KSC Launch Services Division Safety (SA-D) services include: (1) Assessing the safety of the launch vehicle (2) Assessing the safety of NASA ELV spacecraft (S/C) / launch vehicle (LV) interfaces (3) Assessing the safety of spacecraft processing to ensure resource protection of: - KSC facilities - KSC VAFB facilities - KSC controlled property - Other NASA assets (4) NASA personnel safety (5) Interfacing with payload organizations to review spacecraft for adequate safety implementation and compliance for integrated activities (6) Assisting in the integration of safety activities between the payload, launch vehicle, and processing facilities
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
... necessary in the FONSI. NASA has posted the 2005 EA on the internet at http://sites.wff.nasa.gov/code250... Aeronautics and Space Administration (NASA) Final Site-Wide Environmental Assessment (EA) for Wallops Flight...). Under the Proposed Action in the 2005 EA, NASA would construct new facilities, demolish old facilities...
NASA Astrophysics Data System (ADS)
Belyaev, I. A.; Sviridov, V. G.; Batenin, V. M.; Biryukov, D. A.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, E. V.
2017-11-01
The results are presented of experimental investigations into liquid metal heat transfer performed by the joint research group consisting of specialist in heat transfer and hydrodynamics from NIU MPEI and JIHT RAS. The program of experiments has been prepared considering the concept of development of the nuclear power industry in Russia. This concept calls for, in addition to extensive application of water-cooled, water-moderated (VVER-type) power reactors and BN-type sodium cooled fast reactors, development of the new generation of BREST-type reactors, fusion power reactors, and thermonuclear neutron sources. The basic coolants for these nuclear power installations will be heavy liquid metals, such as lead and lithium-lead alloy. The team of specialists from NRU MPEI and JIHT RAS commissioned a new RK-3 mercury MHD-test facility. The major components of this test facility are a unique electrical magnet constructed at Budker Nuclear Physics Institute and a pressurized liquid metal circuit. The test facility is designed for investigating upward and downward liquid metal flows in channels of various cross-sections in a transverse magnetic field. A probe procedure will be used for experimental investigation into heat transfer and hydrodynamics as well as for measuring temperature, velocity, and flow parameter fluctuations. It is generally adopted that liquid metals are the best coolants for the Tokamak reactors. However, alternative coolants should be sought for. As an alternative to liquid metal coolants, molten salts, such as fluorides of lithium and beryllium (so-called FLiBes) or fluorides of alkali metals (so-called FLiNaK) doped with uranium fluoride, can be used. That is why the team of specialists from NRU MPEI and JIHT RAS, in parallel with development of a mercury MHD test facility, is designing a test facility for simulating molten salt heat transfer and hydrodynamics. Since development of this test facility requires numerical predictions and verification of numerical codes, all examined configurations of the MHD flow are also investigated numerically.
Developing a concept for a national used fuel interim storage facility in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Donald Wayne
2013-07-01
In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less
12. Historic plot plan and drawings index for rocket engine ...
12. Historic plot plan and drawings index for rocket engine test facility, June 28, 1956. NASA GRC drawing number CE-101810. On file at NASA Glenn Research Center. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
5. Historic photo of scale model of rocket engine test ...
5. Historic photo of scale model of rocket engine test facility, June 18, 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45264. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Transmutation of actinides in power reactors.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.
U.S. Nuclear Cooperation with India: Issues for Congress
2008-11-03
separation list: ! 8 indigenous Indian power reactors ! Fast Breeder test Reactor (FTBR) and Prototype Fast Breeder Reactors (PFBR) under construction...facilities like reprocessing and enrichment plants and breeder reactors could be viewed as providing a significant nonproliferation benefit because the... breeder reactors would support the 2002 U.S. National Strategy to Combat Weapons of Mass Destruction, in which the United States pledged to “continue to
NASA Technical Reports Server (NTRS)
Miller, Robert J.; Hartman, G. Joseph (Technical Monitor)
1994-01-01
NASA/Ames' Hypervelocity Free-Flight Radiation Facility has been reactivated after having been decommissioned for some 15 years, first tests beginning in early 1994. This paper discusses two widely different studies from the first series, one involving spectroscopic analysis of model shock-layer radiation, and the other the production of representative impact damage in space shuttle thermal protection tiles for testing in the Ames arc-jet facilities. These studies emphasize the interorganizational and interdisciplinary value of the facility in the newly-developing structure of NASA.
Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri
2001-01-01
The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.
NASA Technical Reports Server (NTRS)
Tavana, Madjid
2005-01-01
"To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.
Macromolecular Networks Containing Fluorinated Cyclic Moieties
2015-12-12
Approved for public release. Distribution is unlimited. Cyanate Esters Around the Solar System 4 Images: courtesy NASA (public release) • The...science decks on the Mars Phoenix lander are made from M55J/cyanate ester composites • The solar panel supports on the MESSENGER space probe use cyanate...thermonuclear fusion reactor Fusion reactor, photo courtesy of Gerritse ((Wikimedia Commons) • Unique cyanate ester composites have been designed by NASA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, B.L.; Miller, R.L.
1983-10-01
This document presents, in summary form, generic conceptual information relevant to the decommissioning of a reference research reactor (RRR). All of the data presented were extracted from NUREG/CR-1756 and arranged in a form that will provide a basis for future comparison studies for the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program.
ELECTRICAL LINES ARRIVE FROM CENTRAL FACILITIES AREA, SOUTH OF MTR. ...
ELECTRICAL LINES ARRIVE FROM CENTRAL FACILITIES AREA, SOUTH OF MTR. EXCAVATION RUBBLE IN FOREGROUND. CONTRACTOR CRAFT SHOPS, CRANES, AND OTHER MATERIALS ON SITE. CAMERA FACES EAST, WITH LITTLE BUTTE AND MIDDLE BUTTE IN DISTANCE. INL NEGATIVE NO. 335. Unknown Photographer, 7/1/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Stability Estimation of ABWR on the Basis of Noise Analysis
NASA Astrophysics Data System (ADS)
Furuya, Masahiro; Fukahori, Takanori; Mizokami, Shinya; Yokoya, Jun
In order to investigate the stability of a nuclear reactor core with an oxide mixture of uranium and plutonium (MOX) fuel installed, channel stability and regional stability tests were conducted with the SIRIUS-F facility. The SIRIUS-F facility was designed and constructed to provide a highly accurate simulation of thermal-hydraulic (channel) instabilities and coupled thermalhydraulics-neutronics instabilities of the Advanced Boiling Water Reactors (ABWRs). A real-time simulation was performed by modal point kinetics of reactor neutronics and fuel-rod thermal conduction on the basis of a measured void fraction in a reactor core section of the facility. A time series analysis was performed to calculate decay ratio and resonance frequency from a dominant pole of a transfer function by applying auto regressive (AR) methods to the time-series of the core inlet flow rate. Experiments were conducted with the SIRIUS-F facility, which simulates ABWR with MOX fuel installed. The variations in the decay ratio and resonance frequency among the five common AR methods are within 0.03 and 0.01 Hz, respectively. In this system, the appropriate decay ratio and resonance frequency can be estimated on the basis of the Yule-Walker method with the model order of 30.
Nuclear Thermal Propulsion Ground Test History
NASA Technical Reports Server (NTRS)
Gerrish, Harold P.
2014-01-01
Nuclear Thermal Propulsion (NTP) was started in 1955 under the Atomic Energy Commission as project Rover and was assigned to Los Alamos National Laboratory. The Nevada Test Site was selected in 1956 and facility construction began in 1957. The KIWI-A was tested on July 1, 1959 for 5 minutes at 70MW. KIWI-A1 was tested on July 8, 1960 for 6 minutes at 85MW. KIWI-A3 was tested on October 10, 1960 for 5 minutes at 100MW. The National Aeronautics and Space Administration (NASA) was formed in 1958. On August 31, 1960 the AEC and NASA established the Space Nuclear Propulsion Office and named Harold Finger as Director. Immediately following the formation of SNPO, contracts were awarded for the Reactor In Flight Test (RIFT), master plan for the Nuclear Rocket Engine Development Station (NRDS), and the Nuclear Engine for Rocket Vehicle Application (NERVA). From December 7, 1961 to November 30, 1962, the KIWI-B1A, KIWI-B1B, and KIWI-B4A were tested at test cell A. The last two engines were only tested for several seconds before noticeable failure of the fuel elements. Harold Finger called a stop to any further hot fire testing until the problem was well understood. The KIWI-B4A cold flow test showed the problem to be related to fluid dynamics of hydrogen interstitial flow causing fuel element vibrations. President Kennedy visited the NTS one week after the KIWI-B4A failure and got to see the engine starting to be disassembled in the maintenance facility. The KIWI-B4D and KIWI-B4E were modified to not have the vibration problems and were tested in test cell C. The NERVA NRX program started testing in early 1964 with NRX-A1 cold flow test series (unfueled graphite core), NRX-A2 and NRX-A3 power test series up to 1122 MW for 13 minutes. In March 1966, the NRX-EST (Engine System Test) was the first breadboard using flight functional relationship and total operating time of 116 minutes. The NRX-EST demonstrated the feasibility of a hot bleed cycle. The NRX-A5 had multiple start-ups in May-June 1966 with 30.75 minutes accumulative operating time at or above 1GW. The NRX-A6 was tested in December 1969 and ran for 62 minutes at 1100 MW. Each engine had post-test examination and found various structure anomalies which were identified for correction and the fuel element corrosion rate was reduced. The Phoebus series of research reactors began testing at test cell C, in June 1965 with Phoebus 1A. Phoebus 1A operated for 10.5 minutes at 1100 MW before unexpected loss of propellant and leading to an engine breakdown. Phoebus 1B ran for 30 minutes in February of 1967. Phoebus 2A was the highest steady state reactor built at 5GW. Phoebus 2A ran for 12 minutes at 4100 MW demonstrating sufficient power is available. The Peewee test bed reactor was tested November- December 1968 in test cell C for 40 minutes at 500MW with overall performance close to pre-run predictions. The XE' engine was the only engine tested with close to a flight configuration and fired downward into a diffuser at the Engine Test Stand (ETS) in 1969. The XE' was 1100 MW and had 28 start-ups. The nuclear furnace NF-1 was operated at 44 MW with multiple test runs at 90 minutes in the summer of 1972. The NF-1 was the last NTP reactor tested. The Rover/NERVA program was cancelled in 1973. However, before cancellation, a lot of other engineering work was conducted by Aerojet on a 75, 000 lbf prototype flight engine and by Los Alamos on a 16,000 lbf "Small Engine" nuclear rocket design. The ground test history of NTP at the NRDS also offers many lessons learned on how best to setup, operate, emergency shutdown, and post-test examine NTP engines. The reactor and engine maintenance and disassembly facilities were used for assembly and inspection of radioactive engines after testing. Most reactor/ engines were run at test cell A or test cell C with open air exhaust. The Rover/NERVA program became aware of a new environmental regulation that would restrict the amount of radioactive particulates allowed to be release in open air and successfully demonstrated a scrubber concept with the NF-1. The ETS stand was the only one with a high altitude test chamber used for XE'. The ETS and other test cells showed the effects the engine's radiation had on the facility materials and instrumentation as well as side effects the ground test facility has back on the engine operation. The breakdown of Phoebus 1A at test cell C showed how the site was cleaned up and back to operation for five more engines before the program was cancelled.
Facilities maintenance handbook
NASA Technical Reports Server (NTRS)
1991-01-01
This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and develop management information in order to statistically identify and analyze variances from those plans. It will also add credibility to the NASA facilities maintenance budgeting process. The key to a successful maintenance program is the understanding and support of the senior Center managers.
11. Historic photo of cutaway rendering of rocket engine test ...
11. Historic photo of cutaway rendering of rocket engine test facility complex, June 11, 1965. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-74433. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Developing a NASA strategy for the verification of large space telescope observatories
NASA Astrophysics Data System (ADS)
Crooke, Julie A.; Gunderson, Johanna A.; Hagopian, John G.; Levine, Marie
2006-06-01
In July 2005, the Office of Program Analysis and Evaluation (PA&E) at NASA Headquarters was directed to develop a strategy for verification of the performance of large space telescope observatories, which occurs predominantly in a thermal vacuum test facility. A mission model of the expected astronomical observatory missions over the next 20 years was identified along with performance, facility and resource requirements. Ground testing versus alternatives was analyzed to determine the pros, cons and break points in the verification process. Existing facilities and their capabilities were examined across NASA, industry and other government agencies as well as the future demand for these facilities across NASA's Mission Directorates. Options were developed to meet the full suite of mission verification requirements, and performance, cost, risk and other analyses were performed. Findings and recommendations from the study were presented to the NASA Administrator and the NASA Strategic Management Council (SMC) in February 2006. This paper details the analysis, results, and findings from this study.
Technical publications of the NASA Wallops Flight Facility, 1980 through 1983
NASA Technical Reports Server (NTRS)
Foster, J. N.
1984-01-01
This bibliography lists the publications sponsored by the NASA Wallops Flight Center/NASA Goddard Space Flight Center, Wallops Flight Facility during the period 1980 through 1983. The compilation contains citations listed by type of publication; i.e., NASA formal report, NASA contractor report, journal article, or presentation; by contract/grant number; and by accession number. Oceanography, astrophysics, artificial satellites, fluid mechanics, and sea ice are among the topics covered.
2011-06-29
JSC2011-E-060128 (29 June 2011) --- NASA astronaut Chris Ferguson, STS-135 commander, left, looks out over the Space Vehicle Mock-up Facility (SVMF) after the crew of the final shuttle mission trained in the facility at NASA?s Johnson Space Center in Houston on June 29, 2011. The training marked the crew's final scheduled session in the SVMF. NASA astronaut Sandy Magnus, mission specialist, is in background at center. Photo credit: NASA photo/Houston Chronicle, Smiley N. Pool
PBF Reactor Building (PER620). PBF crane holds fuel test assembly ...
PBF Reactor Building (PER-620). PBF crane holds fuel test assembly aloft prior to lowering into reactor for test. Date: 1982. INEEL negative no. 82-4909 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
Clement, J. D.
1973-01-01
Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
The U.S. Department of Energy (DOE) proposes to consent to a proposal by the Puerto Rico Electric Power Authority (PREPA) to allow public access to the Boiling Nuclear Superheat (BONUS) reactor building located near Rincon, Puerto Rico for use as a museum. PREPA, the owner of the BONUS facility, has determined that the historical significance of this facility, as one of only two reactors of this design ever constructed in the world, warrants preservation in a museum, and that this museum would provide economic benefits to the local community through increased tourism. Therefore, PREPA is proposing development of the BONUSmore » facility as a museum.« less
Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes
NASA Technical Reports Server (NTRS)
Hegde, Uday; Hicks, Michael
2013-01-01
The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.
10 CFR 50.58 - Hearings and report of the Advisory Committee on Reactor Safeguards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Hearings and report of the Advisory Committee on Reactor... Hearings and report of the Advisory Committee on Reactor Safeguards. (a) Each application for a....22, or for a testing facility, shall be referred to the Advisory Committee on Reactor Safeguards for...
10 CFR 50.58 - Hearings and report of the Advisory Committee on Reactor Safeguards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Hearings and report of the Advisory Committee on Reactor... Hearings and report of the Advisory Committee on Reactor Safeguards. (a) Each application for a....22, or for a testing facility, shall be referred to the Advisory Committee on Reactor Safeguards for...
Overview of the NASA Dryden Flight Research Facility aeronautical flight projects
NASA Technical Reports Server (NTRS)
Meyer, Robert R., Jr.
1992-01-01
Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.
2011-01-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, an audience at the ribbon-cutting ceremony for the new environmentally friendly Propellants North Administration and Maintenance Facility listens to opening remarks made by Frank Kline, a NASA Construction of Facilities project manager. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
HSR Model Deformation Measurements from Subsonic to Supersonic Speeds
NASA Technical Reports Server (NTRS)
Burner, A. W.; Erickson, G. E.; Goodman, W. L.; Fleming, G. A.
1999-01-01
This paper describes the video model deformation technique (VMD) used at five NASA facilities and the projection moire interferometry (PMI) technique used at two NASA facilities. Comparisons between the two techniques for model deformation measurements are provided. Facilities at NASA-Ames and NASA-Langley where deformation measurements have been made are presented. Examples of HSR model deformation measurements from the Langley Unitary Wind Tunnel, Langley 16-foot Transonic Wind Tunnel, and the Ames 12-foot Pressure Tunnel are presented. A study to improve and develop new targeting schemes at the National Transonic Facility is also described. The consideration of milled targets for future HSR models is recommended when deformation measurements are expected to be required. Finally, future development work for VMD and PMI is addressed.
SP-100 ground engineering system test site description and progress update
NASA Astrophysics Data System (ADS)
Baxter, William F.; Burchell, Gail P.; Fitzgibbon, Davis G.; Swita, Walter R.
1991-01-01
The SP-100 Ground Engineering System Test Site will provide the facilities for the testing of an SP-100 reactor, which is technically prototypic of the generic design for producing 100 kilowatts of electricity. This effort is part of the program to develop a compact, space-based power system capable of producing several hundred kilowatts of electrical power. The test site is located on the U.S. Department of Energy's Hanford Site near Richland, Washington. The site is minimizing capital equipment costs by utilizing existing facilities and equipment to the maximum extent possible. The test cell is located in a decommissioned reactor containment building, and the secondary sodium cooling loop will use equipment from the Fast Flux Test Facility plant which has never been put into service. Modifications to the facility and special equipment are needed to accommodate the testing of the SP-100 reactor. Definitive design of the Ground Engineering System Test Site facility modifications and systems is in progress. The design of the test facility and the testing equipment will comply with the regulations and specifications of the U.S. Department of Energy and the State of Washington.
2003-09-10
KENNEDY SPACE CENTER, FLA. - Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.
2016-01-01
The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.
Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities
NASA Technical Reports Server (NTRS)
Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim
2016-01-01
The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1991-04-01
This Environmental Impact Statement (EIS) assesses the potential environmental impacts, both on a broad programmatic level and on a project-specific level, concerning a proposed action to provide new tritium production capacity to meet the nation`s nuclear defense requirements well into the 21st century. A capacity equivalent to that of about a 3,000-megawatt (thermal) heavy-water reactor was assumed as a reference basis for analysis in this EIS; this is the approximate capacity of the existing production reactors at DOE`s Savannah River Site near Aiken, South Carolina. The EIS programmatic alternatives address Departmental decisions to be made on whether to build newmore » production facilities, whether to build one or more complexes, what size production capacity to provide, and when to provide this capacity. Project-specific impacts for siting, constructing, and operating new production reactor capacity are assessed for three alternative sites: the Hanford Site near Richland, Washington; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; and the Savannah River Site. For each site, the impacts of three reactor technologies (and supporting facilities) are assessed: a heavy-water reactor, a light-water reactor, and a modular high-temperature gas-cooled reactor. Impacts of the no-action alternative also are assessed. The EIS evaluates impacts related to air quality; noise levels; surface water, groundwater, and wetlands; land use; recreation; visual environment; biotic resources; historical, archaeological, and cultural resources; socioeconomics; transportation; waste management; and human health and safety. The EIS describes in detail the potential radioactive releases from new production reactors and support facilities and assesses the potential doses to workers and the general public. This volume contains 15 appendices.« less
The New Facilities for Neutron Radiography at the LVR-15 Reactor
NASA Astrophysics Data System (ADS)
Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.; Krejci, F.; Jakubek, J.
2016-09-01
Neutron radiography is an imaging method often used at research reactor sites. Back in 2011 a project was started with the goal to build a neutron radiography facility at the site of the LVR-15 research reactor in Rez, Czech Republic. In the scope of the project two horizontal channels were adapted for the needs of neutron radiography. This comprises the HC1 channel which offers an intense thermal neutron beam with a diameter of 10 cm, which can be used for imaging of larger samples, and the HC3 channel which beam is restricted just to 4x80 mm2, but is highly thermalized, collimated and reduced from gamma background, thus capable of providing better radiograph resolution. Both facilities are equipped with newest Timepix based detectors, with thin 6LiF converters for neutron detection capable of delivering high resolution. Both facilities offer a unique opportunity for non-destructive testing in the Czech region. In 2015 both facilities were put into test operation and several radiographs were acquired, which are presented in the following text.
14. Historic view of engineer in Building 100 control room ...
14. Historic view of engineer in Building 100 control room examining data printout. 1957. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-46210. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
13. Historic view of Building 100 control room, showing personnel ...
13. Historic view of Building 100 control room, showing personnel with data recording instrumentation. 1957. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-46211. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
The Australian Replacement Research Reactor
NASA Astrophysics Data System (ADS)
Kennedy, Shane; Robinson, Robert
2004-03-01
The 20-MW Australian Replacement Research Reactor represents possibly the greatest single research infrastructure investment in Australia's history. Construction of the facility has commenced, following award of the construction contract in July 2000, and the construction licence in April 2002. The project includes a large state-of-the-art liquid deuterium cold-neutron source and supermirror guides feeding a large modern guide hall, in which most of the instruments are placed. Alongside the guide hall, there is good provision of laboratory, office and space for support activities. While the facility has "space" for up to 18 instruments, the project has funding for an initial set of 8 instruments, which will be ready when the reactor is fully operational in July 2006. Instrument performance will be competitive with the best research-reactor facilities anywhere, and our goal is to be in the top 3 such facilities worldwide. Staff to lead the design effort and man these instruments have been hired on the international market from leading overseas facilities, and from within Australia, and 7 out of 8 instruments have been specified and costed. At present the instrumentation project carries 10contingency. An extensive dialogue has taken place with the domestic user community and our international peers, via various means including a series of workshops over the last 2 years covering all 8 instruments, emerging areas of application like biology and the earth sciences, and computing infrastructure for the instruments.
Evaluating the Emergency Notification Systems of the NASA White Sands Test
NASA Technical Reports Server (NTRS)
Chavez, Alfred Paul
2004-01-01
The problem was that the NASA Fire and Emergency Services did not know if the current emergency notification systems on the NASA White Sands Test Facility were appropriate for alerting the employees of an emergency. The purpose of this Applied Research Project was to determine if the current emergency notification systems of the White Sands Test Facility are appropriate for alerting the employees of an emergency. This was a descriptive research project. The research questions were: 1) What are similar facilities using to alert the employees of an emergency?; 2) Are the current emergency notification systems suitable for the community hazards on the NASA White Sands Test Facility?; 3) What is the NASA Fire and Emergency Services currently using to measure the effectiveness of the emergency notification systems?; and 4) What are the current training methods used to train personnel to the emergency notification systems at the NASA White Sands Test Facility? The procedures involved were to research other established facilities, research published material from credible sources, survey the facility to determine the facility perception of the emergency notification systems, and evaluate the operating elements of the established emergency notification systems for the facility. The results were that the current systems are suitable for the type of hazards the facility may endure. The emergency notification systems are tested frequently to ensure effectiveness in the event of an emergency. Personnel are trained and participate in a yearly drill to make certain personnel are educated on the established systems. The recommendations based on the results were to operationally improve the existing systems by developing and implementing one system that can overall notify the facility of a hazard. Existing procedures and training should also be improved to ensure that all personnel are educated on what to do when the emergency notification systems are activated.
Final Report for the “WSU Neutron Capture Therapy Facility Support”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald E. Tripard; Keith G. Fox
2006-08-24
The objective for the cooperative research program for which this report has been written was to provide separate NCT facility user support for the students, faculty and scientists who would be doing the U.S. Department of Energy Office (DOE) of Science supported advanced radiotargeted research at the WSU 1 megawatt TRIGA reactor. The participants were the Idaho National laboratory (INL, P.I., Dave Nigg), the Veterinary Medical Research Center of Washington State University (WSU, Janean Fidel and Patrick Gavin), and the Washington State University Nuclear Radiation Center (WSU, P.I., Gerald Tripard). A significant number of DOE supported modifications were made tomore » the WSU reactor in order to create an epithermal neutron beam while at the same time maintaining the other activities of the 1 MW reactor. These modifications were: (1) Removal of the old thermal column. (2) Construction and insertion of a new epithermal filter, collimator and shield. (3) Construction of a shielded room that could accommodate the very high radiation field created by an intense neutron beam. (4) Removal of the previous reactor core fuel cluster arrangement. (5) Design and loading of the new reactor core fuel cluster arrangement in order to optimize the neutron flux entering the epithermal neutron filter. (6) The integration of the shielded rooms interlocks and radiological controls into the SCRAM chain and operating electronics of the reactor. (7) Construction of a motorized mechanism for moving and remotely controlling the position of the entire reactor bridge. (8) The integration of the reactor bridge control electronics into the SCRAM chain and operating electronics of the reactor. (9) The design, construction and attachment to the support structure of the reactor of an irradiation box that could be inserted into position next to the face of the reactor. (Necessitated by the previously mentioned core rearrangement). All of the above modifications were successfully completed and tested. The resulting epithermal beam of 1 x 10{sup 9} n/sec-cm{sup 2} was measured by Idaho National Laboratory with assistance from WSU's Neutron Activation Analysis Group. The beam is as good as our initial proposals for the project had predicted. In addition to all of the design, construction and insertion of the hardware, shielding, electronics and radiation monitoring systems there was considerable manpower and effort put into changes in the Technical Specifications of the reactor and implementing procedures for use of the new facility. This staff involvement is one of the reasons we requested special facility support from the DOE. Once the facility was competed and all of the recalibrations and measurements made to characterize the differences between this reactor core and the previous core we began to assist INL in making their beam measurements with foils and phantoms. Although we proposed support for only one additional staff position to support this new NCT facility the staff support provided by the WSU Nuclear Radiation Center was greater than had been anticipated by our initial proposal. INL was also assisted in the testing of a heavy water (deuterated water) bladder that can be inserted into the collimator in order to produce an intense, external thermal neutron beam. The external epithermal and/or thermal neutron beam capability remains available for use, if funding becomes available for future research projects.« less
Conceptual design of BNCT facility based on the TRR medical room
NASA Astrophysics Data System (ADS)
Golshanian, M.; Rajabi, A. A.; Kasesaz, Y.
2017-10-01
This paper presents a conceptual design of the Boron Neutron Capture Therapy (BNCT) facility based on the medical room of Tehran Research Reactor (TRR). The medical room is located behind the east wall of the reactor pool. The designed beam line is an in-pool Beam Shaping Assembly (BSA) which is considered between the reactor core and the medical room wall. The final designed BSA can provide 2.96× 109 n/cm2ṡs epithermal neutron flux at the irradiation position with acceptable beam contamination to use as a clinical BNCT.
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., begin to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., begin to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., prepare to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
2010-09-20
CAPE CANAVERAL, Fla. - Workers of Superior Solar LLC in Longwood, Fla., begin to install more than 300 solar panels on the roof of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Each panel, built in Sharp Corp.'s Memphis, Tenn., plant, will produce 235 watts of clean energy. The green facility in Kennedy's Launch Complex 39 area will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to a single-story shop to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification. If successful, it will be the first NASA facility to achieve this highest of LEED ratings after it is completed. The facility was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Jim Grossmann
Cyber Mutual Assistance Workshop Report
2018-02-01
Information Technology, Nuclear Reactors, Materials/Waste, Defense Industrial Base, Critical Manufacturing, Food/ Agriculture Government Facilities and...Manufacturing, Food/ Agriculture Government Facilities and Chemical, Commercial Facilities [DHS 2017c]. Distributed Energy Resources (DER) are
ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...
ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
2013-09-05
NASA Lunar Atmosphere and Dust Environment Explorer (LADEE) Program Scientist Sarah Noble talks during a NASA Social about the LADEE mission at NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
14 CFR 1204.1405 - Approving authority.
Code of Federal Regulations, 2011 CFR
2011-01-01
... POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1405 Approving authority. The authority to establish limitations and procedures for use of a NASA airfield, as well as the authority to approve or disapprove the use of the NASA airfield facilities subject...
14 CFR 1204.1405 - Approving authority.
Code of Federal Regulations, 2010 CFR
2010-01-01
... POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1405 Approving authority. The authority to establish limitations and procedures for use of a NASA airfield, as well as the authority to approve or disapprove the use of the NASA airfield facilities subject...
14 CFR 1204.1405 - Approving authority.
Code of Federal Regulations, 2013 CFR
2013-01-01
... POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1405 Approving authority. The authority to establish limitations and procedures for use of a NASA airfield, as well as the authority to approve or disapprove the use of the NASA airfield facilities subject...
14 CFR 1204.1405 - Approving authority.
Code of Federal Regulations, 2012 CFR
2012-01-01
... POLICY Use of NASA Airfield Facilities by Aircraft Not Operated for the Benefit of the Federal Government § 1204.1405 Approving authority. The authority to establish limitations and procedures for use of a NASA airfield, as well as the authority to approve or disapprove the use of the NASA airfield facilities subject...
15. Historic view of engineer in Building 100 control room ...
15. Historic view of engineer in Building 100 control room examining data printout. August 28, 1962. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-61500. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
4. Historic photo of fuel and oxidant tanks in hilltop ...
4. Historic photo of fuel and oxidant tanks in hilltop area of rocket engine test facility. 1956. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-1956-160D. - Rocket Engine Testing Facility, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Heat barrier for use in a nuclear reactor facility
Keegan, Charles P.
1988-01-01
A thermal barrier for use in a nuclear reactor facility is disclosed herein. Generally, the thermal barrier comprises a flexible, heat-resistant web mounted over the annular space between the reactor vessel and the guard vessel in order to prevent convection currents generated in the nitrogen atmosphere in this space from entering the relatively cooler atmosphere of the reactor cavity which surrounds these vessels. Preferably, the flexible web includes a blanket of heat-insulating material formed from fibers of a refractory material, such as alumina and silica, sandwiched between a heat-resistant, metallic cloth made from stainless steel wire. In use, the web is mounted between the upper edges of the guard vessel and the flange of a sealing ring which surrounds the reactor vessel with a sufficient enough slack to avoid being pulled taut as a result of thermal differential expansion between the two vessels. The flexible web replaces the rigid and relatively complicated structures employed in the prior art for insulating the reactor cavity from the convection currents generated between the reactor vessel and the guard vessel.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC?s Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA?s space exploration program. T he large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world?s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada?s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic de-sign and subsequent on-going construction.
NASA Technical Reports Server (NTRS)
2006-01-01
NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.
2006-02-15
NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.
The NASA integrated test facility and its impact on flight research
NASA Technical Reports Server (NTRS)
Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.
1988-01-01
The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.
Operational Philosophy for the Advanced Test Reactor National Scientific User Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Benson; J. Cole; J. Jackson
2013-02-01
In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groupsmore » conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.« less
Engine component instrumentation development facility at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan
1992-01-01
The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns
2014-01-01
The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during themore » development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.« less
2011-01-07
CAPE CANAVERAL, Fla. -- Finishing touches adorn the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Artwork for the facility was produced by Greg Lee, a graphics specialist with Abacus Technology Corp., with input from the facility's future occupants. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2011 CFR
2011-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2012 CFR
2012-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2010 CFR
2010-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2014 CFR
2014-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
Looking East at BottomHalf of Reactor Number One and TopHalf ...
Looking East at Bottom-Half of Reactor Number One and Top-Half of Reactor Number 2 Including Weigh Hopper on Third Floor of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
PBF Reactor Building (PER620). After lowering reactor vessel onto blocks, ...
PBF Reactor Building (PER-620). After lowering reactor vessel onto blocks, it is rolled on logs into PBF. Metal framework under vessel is handling device. Various penetrations in reactor bottom were for instrumentation, poison injection, drains. Large one, below center "manhole" was for primary coolant. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-736 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Employees check out the new chamber facilities of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). From left are Ray Wheeler, with NASA; Debbie Wells and Larry Burns, with Dynamac; A.O. Rule, president of Environmental Growth Chambers, Inc. (ECG); Neil Yorio, with Dynamac; and John Wiezchowski, with ECG. The SLSL is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASAs life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA- sponsored research. About 20 percent of the facility will be available for use by Floridas university researchers through the Florida Space Research Institute.
Stokke, Jennifer M; Mazyck, David W
2008-04-01
The release of mercury to the environment is of particular concern because of its volatility, persistence, and tendency to bioaccumulate. The recovery of mercury from end-box exhaust at chlor-alkali facilities is important to prevent release into the environment and reduce emissions as required by NESHAP (National Emission Standards for Hazardous Air Pollutants). A pilot-scale photocatalytic reactor packed with silica-titania composite (STC) pellets was tested at a chloralkali facility over a 3-month period. This pilot reactor treated up to 10 ft3/min (ACFM) of end-box exhaust and achieved 95% removal. The pilot reactor was able to maintain excellent removal efficiency even with large fluctuations in influent mercury concentration (400-1600 microg/ft3). The STC pellets were regenerated ex situ by regeneration with hydrochloric acid and performed similarly to virgin STC pellets when returned to service. On the basis of these promising results, two full-scale reactors with in situ regeneration capabilities were installed and operated. After optimization, these reactors performed similarly to the pilot reactor. A cost analysis was performed comparing the treatment costs (i.e., cost per pound of mercury removed) for sulfur-impregnated activated carbon and the STC system. The STC proved to be both technologically and economically feasible for this installation.
Liquid Metal Fast Breeder Reactor Program: Argonne facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephens, S. V.
1976-09-01
The objective of the document is to present in one volume an overview of the Argonne National Laboratory test facilities involved in the conduct of the national LMFBR research and development program. Existing facilities and those under construction or authorized as of September 1976 are described. Each profile presents brief descriptions of the overall facility and its test area and data relating to its experimental and testing capability. The volume is divided into two sections: Argonne-East and Argonne-West. Introductory material for each section includes site and facility maps. The profiles are arranged alphabetically by title according to their respective locationsmore » at Argonne-East or Argonne-West. A glossary of acronyms and letter designations in common usage to describe organizations, reactor and test facilities, components, etc., involved in the LMFBR program is appended.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-10
..., Classified information, Criminal penalties, Fire protection, Intergovernmental relations, Nuclear power plants and reactors, Radiation protection, Reactor siting criteria, Reporting and recordkeeping...
A Multi-Methods Approach to HRA and Human Performance Modeling: A Field Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo; David I Gertman
2012-06-01
The Advanced Test Reactor (ATR) is a research reactor at the Idaho National Laboratory is primarily designed and used to test materials to be used in other, larger-scale and prototype reactors. The reactor offers various specialized systems and allows certain experiments to be run at their own temperature and pressure. The ATR Canal temporarily stores completed experiments and used fuel. It also has facilities to conduct underwater operations such as experiment examination or removal. In reviewing the ATR safety basis, a number of concerns were identified involving the ATR canal. A brief study identified ergonomic issues involving the manual handlingmore » of fuel elements in the canal that may increase the probability of human error and possible unwanted acute physical outcomes to the operator. In response to this concern, that refined the previous HRA scoping analysis by determining the probability of the inadvertent exposure of a fuel element to the air during fuel movement and inspection was conducted. The HRA analysis employed the SPAR-H method and was supplemented by information gained from a detailed analysis of the fuel inspection and transfer tasks. This latter analysis included ergonomics, work cycles, task duration, and workload imposed by tool and workplace characteristics, personal protective clothing, and operational practices that have the potential to increase physical and mental workload. Part of this analysis consisted of NASA-TLX analyses, combined with operational sequence analysis, computational human performance analysis (CHPA), and 3D graphical modeling to determine task failures and precursors to such failures that have safety implications. Experience in applying multiple analysis techniques in support of HRA methods is discussed.« less
Assembly and Thermal Hydraulic Test of a Stainless Steel Sodium-Potassium Circuit
NASA Technical Reports Server (NTRS)
Garber, A.; Godfroy, T.; Webster, K.
2007-01-01
Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system was originally built for use with lithium, but due to a shift in focus, it was redesigned for use with a eutectic mixture of sodium potassium (NaK). Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a full design) was selected for fabrication and test. This paper summarizes the first fill and checkout testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James E.; Sabharwall, Piyush; Yoon, Su -Jong
2014-09-01
This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs)more » at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.« less
STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups
2011-04-29
JSC2011-E-043875 (29 April 2011) --- NASA astronaut Rex Walheim, STS-135 mission specialist, participates in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA
12. Historic view of Building 100 control room, showing television ...
12. Historic view of Building 100 control room, showing television monitoring of tests and personnel operating rocket engine test controls. May 27, 1957. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. NASA photo number C-45021. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
56. Historic photo of excavation work at Building 202, shows ...
56. Historic photo of excavation work at Building 202, shows facility with exhaust scrubber in foreground, February 24, 1969. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-69-712. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
55. Historic photo of excavation work at Building 202, shows ...
55. Historic photo of excavation work at Building 202, shows facility with detention tank in foreground, February 24, 1969. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-69-711. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Demonstration of Robustness and Integrated Operation of a Series-Bosch System
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Mansell, J. Matthew; Barnett, Bill; Stanley, Christine M.; Junaedi, Christian; Vilekar, Saurabh A.; Kent, Ryan
2016-01-01
Manned missions beyond low Earth orbit will require highly robust, reliable, and maintainable life support systems that maximize recycling of water and oxygen. Bosch technology is one option to maximize oxygen recovery, in the form of water, from metabolically-produced carbon dioxide (CO2). A two stage approach to Bosch, called Series-Bosch, reduces metabolic CO2 with hydrogen (H2) to produce water and solid carbon using two reactors: a Reverse Water-Gas Shift (RWGS) reactor and a carbon formation (CF) reactor. Previous development efforts demonstrated the stand-alone performance of a RWGS reactor containing Incofoam(TradeMark) catalyst and designed for robustness against carbon formation, two membrane separators intended to maximize single pass conversion of reactants, and a batch CF reactor with both transit and surface catalysts. In the past year, Precision Combustion, Inc. (PCI) developed and delivered a RWGS reactor for testing at NASA. The reactor design was based on their patented Microlith(TradeMark) technology and was first evaluated under a Phase I Small Business Innovative Research (SBIR) effort in 2010. The Microlith(TradeMark) RWGS reactor was recently evaluated at NASA to compare its performance and operating conditions with the Incofoam(TradeMark) RWGS reactor. Separately, in 2015, a fully integrated demonstration of an S-Bosch system was conducted. In an effort to mitigate risk, a second integrated test was conducted to evaluate the effect of membrane failure on a closed-loop Bosch system. Here, we report and discuss the performance and robustness to carbon formation of both RWGS reactors. We report the results of the integrated operation of a Series-Bosch system and we discuss the technology readiness level. 1
WET OXIDATION OF MUNICIPAL SLUDGE BY THE VERTICAL TUBE REACTOR
A study was undertaken to assess the feasibility of carrying out oxidation of dilute sewage sludge by means of the vertical tube reactor (VTR) system. A pilot scale facility along with a laboratory reactor were used for this study. Dilute sewage sludge was oxidized in the laborat...
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.
Advancing Test Capabilities at NASA Wind Tunnels
NASA Technical Reports Server (NTRS)
Bell, James
2015-01-01
NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant enhancements to NASA capabilities in ground-based testing. They ensure that these wind tunnels will provide accurate and relevant experimental data for years to come, supporting both NASAs mission and the missions of our government and industry customers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun
2015-07-01
A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to dependmore » largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.« less
High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.
2004-02-04
The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to themore » knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125{mu}m in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.« less
High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors
NASA Astrophysics Data System (ADS)
Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.
2004-02-01
The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5×1019 n/cm2, and a maximum gamma dose of 2×103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center.
Engineering directorate technical facilities catalog
NASA Technical Reports Server (NTRS)
Maloy, Joseph E.
1993-01-01
The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).
2013-09-05
NASA Associate Administrator for the Science Mission Directorate John Grunsfeld is seen in a video monitor during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
2013-09-05
NASA Associate Administrator for the Science Mission Directorate John Grunsfeld talks during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
2013-09-05
Bob Barber, Lunar Atmosphere and Dust Environment Explorer (LADEE) Spacecraft Systems Engineer at NASA Ames Research Center, points to a model of the LADEE spacecraft a NASA Social, Thursday, Sept. 5, 2013 at NASA Wallops Flight Facility in Virginia. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
PBF Reactor Building (PER620). Camera faces south toward verticallift door, ...
PBF Reactor Building (PER-620). Camera faces south toward vertical-lift door, which is closed. Note crane and its trolley positioned near door; its rails along side walls. Reactor vessel and lifting beams are positioned above reactor pit. Photographer: John Capek. Date: January 9, 1970. INEEL negative no. 70-132 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
SPERTI. Detail view of Reactor Pit Building (PER605) and Instrument ...
SPERT-I. Detail view of Reactor Pit Building (PER-605) and Instrument Cell (PER-606). Earth shielding covers side of Cell Building next to reactor. Instrumentation required protection from radiation emitted during reactor operation. Photographer: R.G. Larsen. Date: May 20, 1955. INEEL negative no. 55-1290 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara
2005-02-06
Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an earlymore » prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.« less
Microgravity research in NASA ground-based facilities
NASA Technical Reports Server (NTRS)
Lekan, Jack
1989-01-01
An overview of reduced gravity research performed in NASA ground-based facilities sponsored by the Microgravity Science and Applications Program of the NASA Office of Space Science and Applications is presented. A brief description and summary of the operations and capabilities of each of these facilities along with an overview of the historical usage of them is included. The goals and program elements of the Microgravity Science and Applications programs are described and the specific programs that utilize the low gravity facilities are identified. Results from two particular investigations in combustion (flame spread over solid fuels) and fluid physics (gas-liquid flows at microgravity conditions) are presented.
2013-09-05
Jason Townsend, NASA's Deputy Social Media Manager, kicks off the Lunar Atmosphere and Dust Environment Explorer (LADEE) NASA Social at Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)
Hyperthermal Environments Simulator for Nuclear Rocket Engine Development
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.
2011-01-01
An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Flanagan, George F.; Voth, Marcus
Development of non-power molten salt reactor (MSR) test facilities is under consideration to support the analyses needed for development of a full-scale MSR. These non-power MSR test facilities will require review by the US Nuclear Regulatory Commission (NRC) staff. This report proposes chapter adaptations for NUREG-1537 in the form of interim staff guidance to address preparation and review of molten salt non-power reactor license applications. The proposed adaptations are based on a previous regulatory gap analysis of select chapters from NUREG-1537 for their applicability to non-power MSRs operating with a homogeneous fuel salt mixture.
Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator
NASA Technical Reports Server (NTRS)
Garber, Anne E.; Dickens, Ricky E.
2011-01-01
The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.
NASA Astrophysics Data System (ADS)
Dougherty, K.; Sarkissian, J.
2002-01-01
The recent Australian film, The Dish, highlighted the role played by the Parkes Radio Telescope in tracking and communicating with the Apollo 11 mission. However the events depicted in this film represent only a single snapshot of the role played by Australian radio astronomy and space tracking facilities in the exploration of the Solar System. In 1960, NASA established its first deep space tracking station outside the United States at Island Lagoon, near Woomera in South Australia. From 1961 until 1972, this station was an integral part of the Deep Space Network, responsible for tracking and communicating with NASA's interplanetary spacecraft. It was joined in 1965 by the Tidbinbilla tracking station, located near Canberra in eastern Australia, a major DSN facility that is still in operation today. Other NASA tracking facilities (for the STADAN and Manned Space Flight networks) were also established in Australia during the 1960s, making this country home to the largest number of NASA tracking facilities outside the United States. At the same time as the Island Lagoon station was being established in South Australia, one of the world's major radio telescope facilities was being established at Parkes, in western New South Wales. This 64-metre diameter dish, designed and operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), was also well-suited for deep space tracking work: its design was, in fact, adapted by NASA for the 64-metre dishes of the Deep Space Network. From Mariner II in 1962 until today, the Parkes Radio Telescope has been contracted by NASA on many occasions to support interplanetary spacecraft, as well as the Apollo lunar missions. This paper will outline the role played by both the Parkes Radio Telescope and the NASA facilities based in Australia in the exploration of the Solar System between 1960 and 1976, when the Viking missions landed on Mars. It will outline the establishment and operation of the Deep Space Network in Australia and consider the joint US-Australian agreement under which it was managed. It will also discuss the relationship of the NASA stations to the Parkes Radio Telescope and the integration of Parkes into the NASA network to support specific space missions. The particular involvement of Australian facilities in significant space missions will be highlighted and assessed.
2003-09-10
KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
Experimental Studies of NaK in a Simulated Space Environment
NASA Technical Reports Server (NTRS)
Gibons, Marc; Sanzi, James; Ljubanovic, Damir
2011-01-01
Space fission power systems are being developed at the National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) with a short term goal of building a full scale, non-nuclear, Technology Demonstration Unit (TDU) test at NASA's Glenn Research Center. Due to the geometric constraints, mass restrictions, and fairly high temperatures associated with space reactors, liquid metals are typically used as the primary coolant. A eutectic mixture of sodium (22 percent) and potassium (78 percent), or NaK, has been chosen as the coolant for the TDU with a total system capacity of approximately 55 L. NaK, like all alkali metals, is very reactive, and warrants certain safety considerations. To adequately examine the risk associated with the personnel, facility, and test hardware during a potential NaK leak in the large scale TDU test, a small scale experiment was performed in which NaK was released in a thermal vacuum chamber under controlled conditions. The study focused on detecting NaK leaks in the vacuum environment as well as the molecular flow of the NaK vapor. This paper reflects the work completed during the NaK experiment and provides results and discussion relative to the findings.
Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi
2013-07-01
Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)« less
Centrifuge Facility Conceptual System Study. Volume 1: Facility overview and habitats
NASA Technical Reports Server (NTRS)
Synnestvedt, Robert (Editor)
1990-01-01
The results are presented for a NASA Phase 1 study conducted from mid 1987 through mid 1989 at Ames Research Center. The Centrifuge Facility is the major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using non-human specimens (such as small primates, rodents, plants, insects, cell tissues). Five systems are described which comprise the Facility: habitats, holding units, centrifuge, glovebox, and service unit. Volume 1 presents a facility overview and describes the habitats - modular units which house living specimens.
Pillai, Maroor R A; Dash, Ashutosh; Knapp, Furn F Russ
2015-01-01
This paper discusses the benefits of obtaining (99m)Tc from non-fission reactor-produced low-specific-activity (99)Mo. This scenario is based on establishing a diversified chain of facilities for the distribution of (99m)Tc separated from reactor-produced (99)Mo by (n,γ) activation of natural or enriched Mo. Such facilities have expected lower investments than required for the proposed chain of cyclotrons for the production of (99m)Tc. Facilities can receive and process reactor-irradiated Mo targets then used for extraction of (99m)Tc over a period of 2 wk, with 3 extractions on the same day. Estimates suggest that a center receiving 1.85 TBq (50 Ci) of (99)Mo once every 4 d can provide 1.48-3.33 TBq (40-90 Ci) of (99m)Tc daily. This model can use research reactors operating in the United States to supply current (99)Mo needs by applying natural (nat)Mo targets. (99)Mo production capacity can be enhanced by using (98)Mo-enriched targets. The proposed model reduces the loss of (99)Mo by decay and avoids proliferation as well as waste management issues associated with fission-produced (99)Mo.
Recent Developments at the NASA Langley Research Center National Transonic Facility
NASA Technical Reports Server (NTRS)
Paryz, Roman W.
2011-01-01
Several upgrade projects have been completed or are just getting started at the NASA Langley Research Center National Transonic Facility. These projects include a new high capacity semi-span balance, model dynamics damping system, semi-span model check load stand, data acquisition system upgrade, facility automation system upgrade and a facility reliability assessment. This presentation will give a brief synopsis of each of these efforts.
Gaseous fuel reactors for power systems
NASA Technical Reports Server (NTRS)
Kendall, J. S.; Rodgers, R. J.
1977-01-01
Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.
STS-134 crew during EVA TPS Overview training in the TPS/PABF
2009-12-15
JSC2009-E-284901 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (left), STS-134 pilot; and Michael Fincke, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.
NASA chief technologist visits Stennis
2010-08-26
NASA Chief Technologist Bobby Braun visited John C. Stennis Space Center on Aug. 26. While at Stennis, he spoke to employees and the media about innovation and technology in NASA's future and the important role Stennis will play in space exploration programs. Braun also toured facilities and received briefings on work under way at the nation's premier rocket engine test facility.
Analysis of ORNL site temperature and humidity data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, B.E.
1989-08-01
The Advanced Neutron Source (ANS) is planned as a new state-of-the-art facility for neutron research and is currently undergoing conceptual design at the Oak Ridge National Laboratory (ORNL). The current concept calls for a nuclear research reactor with an operating power near 350 MW and extensive experiment and user support facilities. Analyses have been undertaken to determine an acceptable design basis wet-bulb temperature range for the facility. Comparisons are drawn with the design wet-bulb temperature previously used for the High Flux Isotope Reactor (HFIR), which is located on an adjacent site a Oak Ridge. This report explains the importance ofmore » wet-bulb temperature to the reactor cooling system performance, and describes the analysis of available meteorological data, and presents the results and the recommendations for a wet-bulb temperature range for use as a part of the plant design basis conditions. 1 ref., 6 figs.« less
Methods and systems for the production of hydrogen
Oh, Chang H [Idaho Falls, ID; Kim, Eung S [Ammon, ID; Sherman, Steven R [Augusta, GA
2012-03-13
Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.
2012-03-01
Propylene Glycol Deicer Biodegredation Kinetics: Complete-Mix Stirred Tank Reactors , Filter, and Fluidized Bed . Journal of Environmental...scale sequencing batch reactor containing municipal waste water treatment facility activated sludge (AS) performing simultaneous organic carbon...Sequencing Batch Reactor Operation ..................................................................... 13 PG extraction from AS
PBF Reactor Building (PER620). Camera in second basement near subpile ...
PBF Reactor Building (PER-620). Camera in second basement near sub-pile room (directly below reactor vessel). Door and penetrations lead to sub-pile room. Date: August 15, 1969. Photographer: Larry Page. INEEL negative no. 69-4310 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Licensing of Non-Power Reactors: Format and Content,'' for the Production of Radioisotopes and NUREG-1537, part 2, ``Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors... production facility and the Research and Test Reactor Licensing Branch (PRLB) of the Division of Policy and...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
10 CFR 50.44 - Combustible gas control for nuclear power reactors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Combustible gas control for nuclear power reactors. 50.44... FACILITIES Standards for Licenses, Certifications, and Regulatory Approvals § 50.44 Combustible gas control... capability for ensuring a mixed atmosphere. (2) Combustible gas control. (i) All boiling water reactors with...
Facility Measurement Uncertainty Analysis at NASA GRC
NASA Technical Reports Server (NTRS)
Stephens, Julia; Hubbard, Erin
2016-01-01
This presentation provides and overview of the measurement uncertainty analysis currently being implemented in various facilities at NASA GRC. This presentation includes examples pertinent to the turbine engine community (mass flow and fan efficiency calculation uncertainties.
9. Historic construction view of Building 100. 1956. On file ...
9. Historic construction view of Building 100. 1956. On file at NASA Plumbrook Research Facility, Sandusky, Ohio. - Rocket Engine Testing Facility, GRC Building No. 100, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
A Summary of Closed Brayton Cycle Development Activities at NASA
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2009-01-01
NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.
PBF Reactor Building (PER620). Camera on main floor faces south ...
PBF Reactor Building (PER-620). Camera on main floor faces south (open) doorway. In foreground is canal gate, lined with stainless steel and painted with protective coatings. Reactor pit is round with protective coatings. Reactor put is round form discernible beyond. Lifting beams and rigging are in place for a load test before reactor vessel arrives. Photographer: John Capek. Date: January 26, 1970. INEEL negative no. 70-347 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Space technology test facilities at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Rodrigues, Annette T.
1990-01-01
The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.
PBF Reactor Building (PER620). Camera is in cab of electricpowered ...
PBF Reactor Building (PER-620). Camera is in cab of electric-powered rail crane and facing east. Reactor pit and storage canal have been shaped. Floors for wings on east and west side are above and below reactor in view. Photographer: Larry Page. Date: August 23, 1967. INEEL negative no. 67-4403 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Small Reactor for Deep Space Exploration
none,
2018-06-06
This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.
STS-134 crew during EVA TPS Overview training in the TPS/PABF
2009-12-15
JSC2009-E-284891 (15 Dec. 2009) --- STS-134 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center. Pictured from the right are NASA astronauts Andrew Feustel, Greg Chamitoff, Michael Fincke, all mission specialists; along with NASA astronaut Gregory H. Johnson, pilot; and European Space Agency astronaut Roberto Vittori, mission specialist.
NASA Technical Reports Server (NTRS)
Wilder, M. C.; Bogdanoff, D. W.
2015-01-01
The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).
Western Aeronautical Test Range
NASA Technical Reports Server (NTRS)
Sakahara, Robert D.
2008-01-01
This viewgraph presentation reviews the work of the Western Aeronautical Test Range (WATR). NASA's Western Aeronautical Test Range is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). Maps show the general location of the WATR area that is used for aeronautical testing and evaluation. The products, services and facilities of WATR are discussed,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkataraman, M.; Natarajan, R.; Raj, Baldev
The reprocessing of spent fuel from Fast Breeder Test Reactor (FBTR) has been successfully demonstrated in the pilot plant, CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell). Since commissioning in 2003, spent mixed carbide fuel from FBTR of different burnups and varying cooling period, have been reprocessed in this facility. Reprocessing of the spent fuel with a maximum burnup of 100 GWd/t has been successfully carried out so far. The feed backs from these campaigns with progressively increasing specific activities, have been useful in establishing a viable process flowsheet for reprocessing the Prototype Fast Breeder Reactor (PFBR)more » spent fuel. Also, the design of various equipments and processes for the future plants, which are either under design for construction, namely, the Demonstration Fast Reactor Fuel Reprocessing Plant (DFRP) and the Fast reactor fuel Reprocessing Plant (FRP) could be finalized. (authors)« less
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.
2010-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio, U.S.A. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, U.S.A. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent ongoing construction.
Facility Activation and Characterization for IPD Turbopump Testing at NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Sass, J. P.; Pace, J. S.; Raines, N. G.; Meredith, T. O.; Taylor, S. A.; Ryan, H. M.
2005-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is, in part, supported by NASA. IPD is also supported through the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today's state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The IPD Program recently achieved two major milestones. The first was the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The second major milestone was the successful completion of the IPD Fuel Turbopump (FTP) cold-flow test project at the NASA SSC E-1 test facility in November 2003. A total of six IPD FTP cold-flow tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in early 2005. Following and overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD oxidizer and fuel turbopumps. In addition, some of the facility challenges encountered and the lessons learned during the test projects shall be detailed.
Mass tracking and material accounting in the Integral Fast Reactor (IFR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orechwa, Y.; Adams, C.H.; White, A.M.
1991-01-01
The Integral Fast Reactor (IFR) is a generic advanced liquid metal cooled reactor concept being developed at Argonne National Laboratory (ANL). There are a number of technical features of the IFR which contribute to its potential as a next-generation reactor. These are associated with large safety margins with regard to off-normal events involving the heat transport system, and the use of metallic fuel which makes possible the utilization of innovative fuel cycle processes. The latter feature permits fuel cycle closure the compact, low-cost reprocessing facilities, collocated with the reactor plant. These primary features are being demonstrated in the facilities atmore » ANL-West, utilizing Experimental Breeder Reactor 2 and the associated Fuel Cycle Facility (FCF) as an IFR prototype. The demonstration of this IFR prototype includes the design and implementation of the Mass-Tracking System (MTG). In this system, data from the operations of the FCF, including weights and batch-process parameters, are collected and maintained by the MTG running on distributed workstations. The components of the MTG System include: (1) an Oracle database manager with a Fortran interface, (2) a set of MTG Tasks'' which collect, manipulate and report data, (3) a set of MTG Terminal Sessions'' which provide some interactive control of the Tasks, and (4) a set of servers which manage the Tasks and which provide the communications link between the MTG System and Operator Control Stations, which control process equipment and monitoring devices within the FCF.« less
2009-12-11
CAPE CANAVERAL, Fla. - Trenches are prepared to support the walls of the Propellants North Administrative and Maintenance Facility in Launch Complex 39 at NASA's Kennedy Space Center in Florida. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2009-12-11
CAPE CANAVERAL, Fla. - Construction of the Propellants North Administrative and Maintenance Facility begins in Launch Complex 39 at NASA's Kennedy Space Center in Florida. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahlmeister, J E; Haberer, W V; Casey, D F
1960-12-15
The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less
2011-01-20
CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony for the space agency's most environmentally friendly facility, the Propellants North Administrative and Maintenance Facility in Kennedy's Launch Complex 39 area. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
2011-01-07
CAPE CANAVERAL, Fla. -- Finishing touches adorn the second-floor conference room of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
2011-01-20
CAPE CANAVERAL, Fla. -- Frank Kline, Construction of Facilities project manager at NASA's Kennedy Space Center in Florida, far right, shows off the environmentally friendly features of the new Propellants North Administration and Maintenance Facility. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
2011-01-20
CAPE CANAVERAL, Fla. -- Frank Kline, Construction of Facilities project manager at NASA's Kennedy Space Center in Florida, addresses an audience at the ribbon-cutting ceremony for the new environmentally friendly Propellants North Administration and Maintenance Facility. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
2011-01-20
CAPE CANAVERAL, Fla. -- Frank Kline, Construction of Facilities project manager at NASA's Kennedy Space Center in Florida, far right, shows off the environmentally friendly features of the new Propellants North Administration and Maintenance Facility. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
2011-01-20
CAPE CANAVERAL, Fla. -- Frank Kline, Construction of Facilities project manager at NASA's Kennedy Space Center in Florida, far left, shows off the environmentally friendly features of the new Propellants North Administration and Maintenance Facility. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
2011-01-20
CAPE CANAVERAL, Fla. -- Frank Kline, Construction of Facilities project manager at NASA's Kennedy Space Center in Florida, addresses an audience at the ribbon-cutting ceremony for the new environmentally friendly Propellants North Administration and Maintenance Facility. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
9 CFR 71.20 - Approval of livestock facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... shall signify the class or classes of livestock that the facility will handle.) (14) Cattle and bison: —This facility will handle cattle and bison: [Initials of operator, date] —This facility will handle cattle and bison known to be brucellosis reactors, suspects, or exposed: [Initials of operator, date...
STS-134 crew during EVA TPS Overview training in the TPS/PABF
2009-12-15
JSC2009-E-284896 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (left), STS-134 pilot; along with astronauts Michael Fincke (center) and Greg Chamitoff, both mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.
STS-134 crew during EVA TPS Overview training in the TPS/PABF
2009-12-15
JSC2009-E-284893 (15 Dec. 2009) --- NASA astronaut Gregory H. Johnson (right), STS-134 pilot; and European Space Agency astronaut Roberto Vittori, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.
Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard
2007-01-01
A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.
NASA Technical Reports Server (NTRS)
Chan, Y. Y.; Nishimura, Y.; Mineck, R. E.
1989-01-01
Results are reported from a NAE/NRC and NASA cooperative program on two-dimensional wind-tunnel wall-interference research, aimed at developing the technology for correcting or eliminating wall interference effects in two-dimensional transonic wind-tunnel investigations. Both NASA Langley and NAE facilities are described, along with a NASA-designed and fabricated airfoil model. It is shown that data from the NAE facility, corrected for wall interference, agree with those obtained from the NASA tunnel, which has adaptive walls; the comparison of surface pressure data shows that the flowfield conditions in which the model is investigated appear to be nearly identical under most conditions. It is concluded that both approaches, posttest correction and an adaptive wall, adequately eliminate the tunnel-wall interference effects.
3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant tomore » the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.« less
System Concepts for Affordable Fission Surface Power
NASA Technical Reports Server (NTRS)
Mason, Lee; Poston, David; Qualls, Louis
2008-01-01
This paper presents an overview of an affordable Fission Surface Power (FSP) system that could be used for NASA applications on the Moon and Mars. The proposed FSP system uses a low temperature, uranium dioxide-fueled, liquid metal-cooled fission reactor coupled to free-piston Stirling converters. The concept was determined by a 12 month NASA/DOE study that examined design options and development strategies based on affordability and risk. The system is considered a low development risk based on the use of terrestrial-derived reactor technology, high efficiency power conversion, and conventional materials. The low-risk approach was selected over other options that could offer higher performance and/or lower mass.
A Practical Approach to Starting Fission Surface Power Development
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2006-01-01
The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. L. Sharp; R. T. McCracken
The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzedmore » in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety basis. The need for a design basis reconstitution program for the ATR has been identified along with the use of sound configuration management principles in order to support safe and efficient facility operation.« less
Overview of the Orion Vibroacoustic Test Capability at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Hughes, William O.; Hozman, Aron D.; McNelis, Mark E.; Otten, Kim D.
2008-01-01
In order to support the environmental test needs for our new Orion and Constellation program, NASA is developing unique world-class test facilities. To optimize this testing of spaceflight hardware while minimizing transportation issues, a one-stop, under one roof test capability is being developed at the Space Power Facility at the NASA Glenn Research Center's Plum Brook Station. This facility will provide the capability to perform the following environmental testing: (1) reverberation acoustic testing, (2) mechanical base-shake sine testing, (3) modal testing, (4) thermal-vacuum testing, and (5) EMI/EMC (electromagnetic interference and compatibility) testing. An overview of this test capability will be provided in this presentation, with special focus on the two new vibroacoustic test facilities currently being designed and built, the Reverberant Acoustic Test Facility (RATF) and the Mechanical Vibration Facility (MVF). Testing of the engineering developmental hardware and qualification hardware of the Orion (Crew Exploration Vehicle) will commence shortly after the facilities are commissioned.
GAMMA FACILITY, TRA611, INTERIOR. WITH HELP OF OVERHEAD CHAIN AND ...
GAMMA FACILITY, TRA-611, INTERIOR. WITH HELP OF OVERHEAD CHAIN AND HOOK, SCIENTIST GUIDES METAL CONTAINER (HOLDING POTATOES, IN THIS CASE) INTO RECEIVING "COLUMN" IN THE GAMMA CANAL. NOTE OTHER COLUMNS AT RIGHT AND LEFT WALLS OF CANAL. NEAR BOTTOM OF CANAL, SPENT MTR FUEL WILL IRRADIATE POTATOES. INL NEGATIVE NO. 56-439. R.G. Larsen, Photographer, 2/8/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
STS-134 crew during EVA TPS Overview training in the TPS/PABF
2009-12-15
JSC2009-E-284897 (15 Dec. 2009) --- STS-134 crew members participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center. Pictured from the right are NASA astronauts Andrew Feustel, Greg Chamitoff, Michael Fincke, all mission specialists; along with NASA astronaut Gregory H. Johnson, pilot; and European Space Agency astronaut Roberto Vittori, mission specialist. John Ray (left) assisted the crew members.
Looking North at Reactor Number One and Air Vent on ...
Looking North at Reactor Number One and Air Vent on Fourth Floor of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO
A Proposed Approach for Prioritizing Maintenance at NASA Centers
NASA Technical Reports Server (NTRS)
Dunn, Steven C.; Sawyer, Melvin H.
2013-01-01
The National Aeronautics and Space Administration (NASA) manages a vast array of infrastructure assets across ten National Centers with a worth of at least 30 billion dollars. Eighty percent of this infrastructure is greater than 40 years old and is in degraded condition. Maintenance budgets are typically less than one percent of current replacement value (CRV), much less than the 2-4% recommended by the National Research Council. The maintenance backlog was 2.55 billion dollars in FY10 and growing. NASA s annual budgets have flattened and are at risk of being reduced, so the problem is becoming even more difficult. NASA Centers utilize various means to prioritize and accomplish maintenance within available budgets, though data is suspect and processes are variable. This paper offers a structured means to prioritize maintenance based on mission criticality and facility performance (ability of the facility to deliver on its purpose). Mission alignment is assessed using the current timeframe Mission Dependence Index and a measure of facility alignment with the 2011 NASA Strategic Plan for the long-term perspective. Facility performance is assessed by combining specific findings from a structured facility condition assessment and an assessment of actual functional output. These are then combined in a matrix to identify the facilities most critical to mission and able to deliver services. The purpose of this approach is to provide the best benefits for the available funding. Additionally, this rationale can also be applied to the prioritization of investment (recapitalization) projects so that the ultimate customers of this paper, the senior infrastructure managers at each NASA Center, are better able to strategically manage their capabilities.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.
NASA Technical Reports Server (NTRS)
Anton, Philip S.; Gritton, Eugene C.; Mesic, Richard; Steinberg, Paul; Johnson, Dana J.
2004-01-01
This monograph reveals and discusses the National Aeronautics and Space Administration's (NASA's) wind tunnel and propulsion test facility management issues that are creating real risks to the United States' competitive aeronautics advantage.
75 FR 34219 - Revision of Fee Schedules; Fee Recovery for FY 2010
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
....8 $6.3 $7.5 Spent Fuel Storage/Reactor Decommissioning..... -- -- 2.7 0.2 0.2 Test and Research... 2009 fee is also shown for comparative purposes. Table V--Rebaselined Annual Fees FY2009 Annual FY 2010... Decommissioning Test and Research Reactors (Non-power 87,600 81,700 Reactors) High Enriched Uranium Fuel Facility...
PBF (PER620) interior. Detail view across top of reactor tank. ...
PBF (PER-620) interior. Detail view across top of reactor tank. Camera facing northeast. Ait tubing is cleanup equipment. Note projections from reactor structure above water level in tank. Date: May 2004. INEEL negative no. HD-41-5-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-407, NRC-2011-0153] University of Utah, University of Utah TRIGA Nuclear Reactor, Notice of Issuance of Renewed Facility Operating License No. R-126 AGENCY... University of Utah (UU, the licensee), which authorizes continued operation of the UU TRIGA Nuclear Reactor...
NASA tire/runway friction projects
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1995-01-01
The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.
NASA's Agency-Wide Strategy for Environmental Regulatory Risk Analysis and Communication
NASA Technical Reports Server (NTRS)
Scroggins, Sharon
2008-01-01
NASA's Agency-wide.resource for identifying and managing risks associated with changing environmental regulations Goals of the RRAC PC: 1) Proactively. detect, analyze and communicate environmental regulatory risks to NASA Programs and facilities; 2) Communicate with regulators and participate in the mitigation of such risks; and 3) Provide centralized support on emerging regulations to NASA HQ Environmental Management Division. When significant regulatory changes are identified, timely communication is essential. Communication of changing requirements to the regulatory stakeholders - NASA Programs and Facilities. Communication of potential issues to management and, when appropriate, back to the regulating agency.
Test facilities of the structural dynamics branch of NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Montague, Gerald T.; Kielb, Robert E.
1988-01-01
The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheryl Morton; Carl Baily; Tom Hill
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
NASA Astrophysics Data System (ADS)
Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.
2006-01-01
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.
2017-11-01
NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.
Coupled reactor kinetics and heat transfer model for heat pipe cooled reactors
NASA Astrophysics Data System (ADS)
Wright, Steven A.; Houts, Michael
2001-02-01
Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). This paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities. .
Flow-Tube Reactor Experiments on the High Temperature Oxidation of Carbon Weaves
NASA Technical Reports Server (NTRS)
Panerai, Francesco; White, Jason D.; Robertson, Robert; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.
2017-01-01
Under entry conditions carbon weaves used in thermal protection systems (TPS) decompose via oxidation. Modeling this phenomenon is challenging due to the different regimes encountered along a flight trajectory. Approaches using equilibrium chemistry may lead to over-estimated mass loss and recession at certain conditions. Concurrently, there is a shortcoming of experimental data on carbon weaves to enable development of improved models. In this work, a flow-tube test facility was used to measure the oxidation of carbon weaves at temperatures up to 1500 K. The material tested was the 3D carbon weave used for the heat shield of the NASA Adaptive Deployable Entry and Placement Technology, ADEPT. Oxidation was characterized by quantifying decomposition gases (CO and CO2), by mass measurements, and by microscale surface analysis. The current set of measurements contributes to the development of finite rate chemistry models for carbon fabrics used in woven TPS materials.
Space station prototype Sabatier reactor design verification testing
NASA Technical Reports Server (NTRS)
Cusick, R. J.
1974-01-01
A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.
2011-01-20
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, James Wright, the deputy assistant administrator for the Office of Strategic Infrastructure at NASA Headquarters, addresses an audience at the ribbon-cutting ceremony for the new environmentally friendly Propellants North Administration and Maintenance Facility. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
Impact Testing for Materials Science at NASA - MSFC
NASA Technical Reports Server (NTRS)
Sikapizye, Mitch
2010-01-01
The Impact Testing Facility (ITF) at NASA - Marshall Space Flight Center is host to different types of guns used to study the effects of high velocity impacts. The testing facility has been and continues to be utilized for all NASA missions where impact testing is essential. The Facility has also performed tests for the Department of Defense, other corporations, as well as universities across the nation. Current capabilities provided by Marshall include ballistic guns, light gas guns, exploding wire gun, and the Hydrometeor Impact Gun. A new plasma gun has also been developed which would be able to propel particles at velocities of 20km/s. This report includes some of the guns used for impact testing at NASA Marshall and their capabilities.
Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott
2012-01-01
A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.
Capabilities and Testing of the Fission Surface Power Primary Test Circuit (FSP-PTC)
NASA Technical Reports Server (NTRS)
Garber, Anne E.
2007-01-01
An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK), which was used in the SNAP-10A fission reactor, was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around a 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. NaK flow rates of greater than 1 kg/sec may be achieved, depending upon the power applied to the EM pump. The heat exchanger provides for the removal of thermal energy from the circuit, simulating the presence of an energy conversion system. The presence of the test section increases the versatility of the circuit. A second liquid metal pump, an energy conversion system, and highly instrumented thermal simulators are all being considered for inclusion within the test section. This paper summarizes the capabilities and ongoing testing of the Fission Surface Power Primary Test Circuit (FSP-PTC).
Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit
NASA Astrophysics Data System (ADS)
Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.
A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.
2011-01-07
CAPE CANAVERAL, Fla. -- Finishing touches adorn the second-floor conference room of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Artwork for the conference room was produced by Greg Lee, a graphics specialist with Abacus Technology Corp., with input from the facility's future occupants. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
2011-01-07
CAPE CANAVERAL, Fla. -- Finishing touches adorn the second-floor conference room of the Propellants North Administrative and Maintenance Facility at NASA's Kennedy Space Center in Florida. Artwork for the conference room was produced by Greg Lee, a graphics specialist with Abacus Technology Corp., with input from the facility's future occupants. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first net-zero facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop to store cryogenic fuel transfer equipment. Photo credit: NASA/Frankie Martin
STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups
2011-04-29
JSC2011-E-043876 (29 April 2011) --- NASA astronauts Sandy Magnus and Rex Walheim (mostly out of frame at right), both STS-135 mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA
STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups
2011-04-29
JSC2011-E-043872 (29 April 2011) --- NASA astronauts Sandy Magnus and Rex Walheim, both STS-135 mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. A crew instructor (right) assisted Magnus and Walheim. Photo credit: NASA
STS-134 crew during EVA TPS Overview training in the TPS/PABF
2009-12-15
JSC2009-E-284898 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (center), STS-134 pilot; and Michael Fincke (right), mission specialist; along with European Space Agency astronaut Roberto Vittori, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.
STS-134 crew during EVA TPS Overview training in the TPS/PABF
2009-12-15
JSC2009-E-284900 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (center), STS-134 pilot; and Michael Fincke (right), mission specialist; along with European Space Agency astronaut Roberto Vittori, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, D. D.; Farmer, M. T.; Lomperski, S.
The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m 2 tomore » accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.« less
Decontamination and deactivation of the power burst facility at the Idaho National Laboratory.
Greene, Christy Jo
2007-05-01
Successful decontamination and deactivation of the Power Burst Facility located at the Idaho National Laboratory was accomplished through the use of extensive planning, job sequencing, engineering controls, continuous radiological support, and the use of a dedicated group of experienced workers. Activities included the removal and disposal of irradiated fuel, miscellaneous reactor components and debris stored in the canal, removal and disposition of a 15.6 curie Pu:Be start-up source, removal of an irradiated in-pile tube, and the removal of approximately 220,000 pounds of lead that was used as shielding primarily in Cubicle 13. The canal and reactor vessel were drained and water was transferred to an evaporation tank adjacent to the facility. The canal was decontaminated using underwater divers, and epoxy was affixed to the interior surfaces of the canal to contain loose contamination. The support structures and concrete or steel frame walls that form the confinement were left in place. The reactor core was left in place and a carbon steel shielding plate was placed over the reactor core to reduce radiation levels. All low-level waste and mixed low level waste generated as a result of the work activities was characterized and disposed.
As Universities Close Their Reactors, Energy Dept. Considers a Policy Shift.
ERIC Educational Resources Information Center
Southwick, Ron
2001-01-01
Discusses how, as many universities shut down their nuclear reactors used for research and training, the Energy Department considers moving its support to regional facilities, a change that might lead to more shutdowns. (EV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerner, R.C.; Bauer, T.H.; Morman, J.A.
Prototypic oxide fuel was subjected to simulated, fast reactor severe accident conditions in a series of in-pile tests in the Transient Reactor Test Facility reactor. Seven experiments were performed on fresh and previously irradiated oxide fuel pins under transient overpower and transient undercooled. overpower accident conditions. For each of the tests, fuel motions were observed by the hodoscope. Hodoscope data are correlated with coolant flow, pressure, and temperature data recorded by the loop instrumentation. Data were analyzed from the onset of initial failure to a final mass distribution at the end of the test. In this paper results of thesemore » analyses are compared to pre- and posttest accident calculations and to posttest metallographic accident calculations and to posttest metallographic examinations and computed tomographic reconstructions from neutron radiographs.« less
RADON LEVELS AND ЕQUIVALENT DOSE RATES AT THE IRT-SOFIA RESEARCH REACTOR SITE.
Krezhov, Kiril; Mladenov, Aleksander; Dimitrov, Dobromir
2018-06-11
Results from radon measurements by active sampling of indoor air in the buildings within the Nuclear Scientific Experimental and Educational Centre (NSEEC) protected site at the Institute for Nuclear Research and Nuclear Energy (INRNE) are presented. The inspected buildings included in this report are the IRT research reactor structure and several auxiliary formations wherein the laundry facilities and the gamma irradiator GOU-1 (60Co source) are installed as well as the Central Alarm Station (CAS) premises. Besides the reactor hall and the primary cooling loop area, special attention was given to the premises of the First Class Radiochemical Laboratory in the IRT reactor basement. Determination of radon concentration distribution in the premises of the constructions within the site is an important part of radiation surveillance during the operation and maintenance of the NSEEC facilities as well as for their involvement in the educational activities at INRNE.
Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility
NASA Technical Reports Server (NTRS)
Maes, Miguel; Woods, Stephen S.
2006-01-01
NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.
2011-02-08
CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony at a new 18,500-square-foot Electrical Maintenance Facility (EMF) officially opening for business. Addressing the attendees is NASA Construction of Facility Project Manager Nick Rivieccio. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder
2009-11-19
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, recipients of a NASA Team Award for their parts in the successful construction of NASA's first large-scale solar power generation facility pose for a group portrait. Representatives from NASA, Florida Power & Light Company, or FPL, and SunPower Corporation formally commissioned the one-megawatt facility and announced plans to pursue a new research, development and demonstration project at Kennedy to advance America's use of renewable energy. The facility is the first element of a major renewable energy project currently under construction at Kennedy. The completed system features a fixed-tilt, ground-mounted solar power system designed and built by SunPower, along with SunPower solar panels. A 10-megawatt solar farm, which SunPower is building on nearby Kennedy property, will supply power to FPL's customers when it is completed in April 2010. Photo credit: NASA/Jim Grossmann
Coordinating Council. First Meeting: NASA/RECON database
NASA Technical Reports Server (NTRS)
1990-01-01
A Council of NASA Headquarters, American Institute of Aeronautics and Astronautics (AIAA), and the NASA Scientific and Technical Information (STI) Facility management met (1) to review and discuss issues of NASA concern, and (2) to promote new and better ways to collect and disseminate scientific and technical information. Topics mentioned for study and discussion at subsequent meetings included the pros and cons of transferring the NASA/RECON database to the commercial sector, the quality of the database, and developing ways to increase foreign acquisitions. The input systems at AIAA and the STI Facility were described. Also discussed were the proposed RECON II retrieval system, the transmittal of document orders received by the Facility and sent to AIAA, and the handling of multimedia input by the Departments of Defense and Commerce. A second meeting was scheduled for six weeks later to discuss database quality and international foreign input.
NASA directory of observation station locations, volume 1
NASA Technical Reports Server (NTRS)
1973-01-01
Geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs is presented. A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems. The principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes are discussed. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Observation stations in the NASA Geodetic Satellites Program are included along with stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-12-21
CAPE CANAVERAL, Fla. -- The Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida is ready for business. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- Kennedy Space Center's Propellants North Administrative and Maintenance Facility with the NASA insignia glistens a shade of green in the Launch Complex 39 area. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. Shown here is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-12-17
CAPE CANAVERAL, Fla. -- The NASA insignia glistens a shade of green on Kennedy Space Center's Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area. The environmentally friendly facility is slated to be NASA's second Platinum-rated by the U.S. Green Building Council's (USGBC) Leadership in Environmental and Energy Design (LEED) certification system. It will be the space agency's first carbon-neutral facility, which means it will produce enough energy onsite from renewable sources to offset what it requires to operate. The facility consists of a two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy, and a single-story shop that will be used to store cryogenic fuel transfer equipment. Photo credit: NASA/Frank Michaux
2010-11-24
CAPE CANAVERAL, Fla. -- Construction begins to wrap up at the Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. This is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
2010-11-24
CAPE CANAVERAL, Fla. -- Construction begins to wrap up at the Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. This is the facility's two-story administrative building, which will house managers, mechanics and technicians who fuel spacecraft at Kennedy. Next door is a single-story shop that will be used to store cryogenic fuel transfer equipment. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
2010-11-24
CAPE CANAVERAL, Fla. -- Construction begins to wrap up at the Propellants North Administrative and Maintenance Facility in the Launch Complex 39 area of NASA's Kennedy Space Center in Florida. On the left is the facility's single-story shop, which will be used to store cryogenic fuel transfer equipment. On the right is a two-story administrative building that will house managers, mechanics and technicians who fuel spacecraft at Kennedy. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Platinum certification, which is the highest of LEED ratings. The facility, set to be complete in December 2010, was designed for NASA by Jones Edmunds and Associates. H. W. Davis Construction is the construction contractor. Photo credit: NASA/Frankie Martin
TEST REACTOR AREA PLOT PLAN CA. 1968. MTR AND ETR ...
TEST REACTOR AREA PLOT PLAN CA. 1968. MTR AND ETR AREAS SOUTH OF PERCH AVENUE. "COLD" SERVICES NORTH OF PERCH. ADVANCED TEST REACTOR IN NEW SECTION WEST OF COLD SERVICES SECTION. NEW PERIMETER FENCE ENCLOSES BETA RAY SPECTROMETER, TRA-669, AN ATR SUPPORT FACILITY, AND ATR STACK. UTM LOCATORS HAVE BEEN DELETED. IDAHO NUCLEAR CORPORATION, FROM A BLAW-KNOX DRAWING, 3/1968. INL INDEX NO. 530-0100-00-400-011646, REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
The SANS facility at the Pitesti 14MW TRIGA reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ionita, I.; Grabcev, B.; Todireanu, S.
2006-12-15
The SANS facility existing at the Pitesti 14MW TRIGA reactor is presented. The main characteristics and the preliminary evaluation of the installation performances are given. A monochromatic neutron beam with 1.5 A {<=} {lambda} {<=} 5 A is produced by a mechanical velocity selector with helical slots. A fruitful partnership was established between INR Pitesti (Romania) and JINR Dubna (Russia). The first step in this cooperation consists in the manufacturing in Dubna of a battery of gas-filled positional detectors devoted to the SANS instrument.
Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M
2017-12-01
The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human Research Initiative (HRI)
NASA Technical Reports Server (NTRS)
Motil, Brian
2003-01-01
A code U initiative starting in the FY04 budget includes specific funding for 'Phase Change' and 'Multiphase Flow Research' on the ISS. NASA GRC developed a concept for two facilities based on funding/schedule constraints: 1) Two Phase Flow Facility (TphiFFy) which assumes integrating into FIR; 2) Contact Line Dynamics Experiment Facility (CLiDE) which assumes integration into MSG. Each facility will accommodate multiple experiments conducted by NRA selected PIs with an overall goal of enabling specific NASA strategic objectives. There may also be a significant ground-based component.
HEDL FACILITIES CATALOG 400 AREA
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAYANCSIK BA
1987-03-01
The purpose of this project is to provide a sodium-cooled fast flux test reactor designed specifically for irradiation testing of fuels and materials and for long-term testing and evaluation of plant components and systems for the Liquid Metal Reactor (LMR) Program. The FFTF includes the reactor, heat removal equipment and structures, containment, core component handling and examination, instrumentation and control, and utilities and other essential services. The complex array of buildings and equipment are arranged around the Reactor Containment Building.
THE COOLING REQUIREMENTS AND PROCESS SYSTEMS OF THE SOUTH AFRICAN RESEARCH REACTOR, SAFARI 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colley, J.R.
1962-12-01
The SAFARI 1 research reactor is cooled and moderated by light water. There are three process systems, a primary water system which cools the reactor core and surroundings, a pool water system, and a secondary water system which removes the heat from the primary and pool systems. The cooling requirements for the reactor core and experimental facilities are outlined, and the cooling and purification functions of the three process systems are described. (auth)
2012-07-30
CAPE CANAVERAl, Fla. - Dr. Ray Wheeler, left, explains plant growth experimentation facilities to Dr. Mason Peck, NASA's chief Technologist, during a tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
The Birth of Nuclear-Generated Electricity
DOE R&D Accomplishments Database
1999-09-01
The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.
Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Slezak, S.E.; Bentz, J.H.
1994-03-01
This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactormore » vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.« less
Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross
2011-01-01
The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.
SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-09-25
U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in amore » remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.« less
SL-1 Accident Briefing Report - 1961 Nuclear Reactor Meltdown Educational Documentary
None
2018-01-16
U.S. Atomic Energy Commission (Idaho Operations Office) briefing about the SL-1 Nuclear Reactor Meltdown. The SL-1, or Stationary Low-Power Reactor Number One, was a United States Army experimental nuclear power reactor which underwent a steam explosion and meltdown on January 3, 1961, killing its three operators. The direct cause was the improper withdrawal of the central control rod, responsible for absorbing neutrons in the reactor core. The event is the only known fatal reactor accident in the United States. The accident released about 80 curies (3.0 TBq) of Iodine-131, which was not considered significant due to its location in a remote desert of Idaho. About 1,100 curies (41 TBq) of fission products were released into the atmosphere. The facility, located at the National Reactor Testing Station approximately 40 miles (64 km) west of Idaho Falls, Idaho, was part of the Army Nuclear Power Program and was known as the Argonne Low Power Reactor (ALPR) during its design and build phase. It was intended to provide electrical power and heat for small, remote military facilities, such as radar sites near the Arctic Circle, and those in the DEW Line. The design power was 3 MW (thermal). Operating power was 200 kW electrical and 400 kW thermal for space heating. In the accident, the core power level reached nearly 20 GW in just four milliseconds, precipitating the reactor accident and steam explosion.
STS-135 crew during Ingress/Egress Timeline training in building 9NW space station mockups
2011-04-29
JSC2011-E-043869 (29 April 2011) --- NASA astronauts Sandy Magnus and Rex Walheim, both STS-135 mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. A model of a space shuttle is in the foreground. Photo credit: NASA
STS-335 crew training, EVA TPS Overview with instructor John Ray
2010-11-03
JSC2010-E-183521 (3 Nov. 2010) --- NASA astronaut Chris Ferguson, STS-135 commander, participates in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-134 crew during EVA TPS Overview training in the TPS/PABF
2009-12-15
JSC2009-E-284895 (15 Dec. 2009) --- NASA astronauts Gregory H. Johnson (left), STS-134 pilot; along with astronauts Michael Fincke, Greg Chamitoff and Andrew Feustel (mostly out of frame), all mission specialists, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA?s Johnson Space Center.
2002-08-09
Performance Acceptance Test of a prototype-model NEXT (NASA Evolutionary Xenon Thruster) ion engine that was delivered to NASA Glenn Research Center by Aerojet. The test dates were May 10 - May 17, 2006. The test was conducted in the Vacuum Facility 6 test facility located in the Electric Power Laboratory. The test successfully demonstrated the PM manufacturing process carried out by Aerojet under the guidance of NASA Glenn Research Center and PM1 acceptable functionality
PBF Reactor Building (PER620). Fuel rod test assembly is on ...
PBF Reactor Building (PER-620). Fuel rod test assembly is on display at PBF. Date: 1982. INEEL negative no. 82-4893 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
An Overview of INEL Fusion Safety R&D Facilities
NASA Astrophysics Data System (ADS)
McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.
1997-06-01
The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.
NASA Technical Reports Server (NTRS)
McMillan, Courtenay
2016-01-01
NASA is able to achieve human spaceflight goals in partnership with international and commercial teams by establishing common goals and building connections. Presentation includes photographs from NASA missions - on orbit, in Mission Control, and at other NASA facilities.
14 CFR 1260.35 - Investigative Requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (a) NASA reserves the right to perform security checks and to deny or restrict access to a NASA Center, facility, or computer system, or to NASA technical information, as NASA deems appropriate. To the...
14 CFR 1260.35 - Investigative Requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (a) NASA reserves the right to perform security checks and to deny or restrict access to a NASA Center, facility, or computer system, or to NASA technical information, as NASA deems appropriate. To the...
14 CFR § 1260.35 - Investigative Requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... January 2004 (a) NASA reserves the right to perform security checks and to deny or restrict access to a NASA Center, facility, or computer system, or to NASA technical information, as NASA deems appropriate...
14 CFR 1260.35 - Investigative Requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (a) NASA reserves the right to perform security checks and to deny or restrict access to a NASA Center, facility, or computer system, or to NASA technical information, as NASA deems appropriate. To the...
14 CFR 1260.35 - Investigative Requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (a) NASA reserves the right to perform security checks and to deny or restrict access to a NASA Center, facility, or computer system, or to NASA technical information, as NASA deems appropriate. To the...
NASA/FAA North Texas Research Station Overview
NASA Technical Reports Server (NTRS)
Borchers, Paul F.
2012-01-01
NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.
NASA Lewis Wind Tunnel Model Systems Criteria
NASA Technical Reports Server (NTRS)
Soeder, Ronald H.; Haller, Henry C.
1994-01-01
This report describes criteria for the design, analysis, quality assurance, and documentation of models or test articles that are to be tested in the aeropropulsion facilities at the NASA Lewis Research Center. The report presents three methods for computing model allowable stresses on the basis of the yield stress or ultimate stress, and it gives quality assurance criteria for models tested in Lewis' aeropropulsion facilities. Both customer-furnished model systems and in-house model systems are discussed. The functions of the facility manager, project engineer, operations engineer, research engineer, and facility electrical engineer are defined. The format for pretest meetings, prerun safety meetings, and the model criteria review are outlined Then, the format for the model systems report (a requirement for each model that is to be tested at NASA Lewis) is described, the engineers that are responsible for developing the model systems report are listed, and the time table for its delivery to the facility manager is given.
2009-11-19
CAPE CANAVERAL, Fla. – NASA's first large-scale solar power generation facility is unveiled at NASA's Kennedy Space Center in Florida. Representatives from NASA, Florida Power & Light Company, or FPL, and SunPower Corporation formally commissioned the one-megawatt facility and announced plans to pursue a new research, development and demonstration project at Kennedy to advance America's use of renewable energy. The facility is the first element of a major renewable energy project currently under construction at Kennedy. The completed system features a fixed-tilt, ground-mounted solar power system designed and built by SunPower, along with SunPower solar panels. A 10-megawatt solar farm, which SunPower is building on nearby Kennedy property, will supply power to FPL's customers when it is completed in April 2010. Photo credit: NASA/Jim Grossmann
2009-11-19
CAPE CANAVERAL, Fla. – NASA's first large-scale solar power generation facility is ready for operation at NASA's Kennedy Space Center in Florida. Representatives from NASA, Florida Power & Light Company, or FPL, and SunPower Corporation formally commissioned the one-megawatt facility and announced plans to pursue a new research, development and demonstration project at Kennedy to advance America's use of renewable energy. The facility is the first element of a major renewable energy project currently under construction at Kennedy. The completed system features a fixed-tilt, ground-mounted solar power system designed and built by SunPower, along with SunPower solar panels. A 10-megawatt solar farm, which SunPower is building on nearby Kennedy property, will supply power to FPL's customers when it is completed in April 2010. Photo credit: NASA/Jim Grossmann
2009-11-19
CAPE CANAVERAL, Fla. – NASA's first large-scale solar power generation facility opens at NASA's Kennedy Space Center in Florida. Representatives from NASA, Florida Power & Light Company, or FPL, and SunPower Corporation formally commissioned the one-megawatt facility and announced plans to pursue a new research, development and demonstration project at Kennedy to advance America's use of renewable energy. The facility is the first element of a major renewable energy project currently under construction at Kennedy. The completed system features a fixed-tilt, ground-mounted solar power system designed and built by SunPower, along with SunPower solar panels. A 10-megawatt solar farm, which SunPower is building on nearby Kennedy property, will supply power to FPL's customers when it is completed in April 2010. Photo credit: NASA/Jim Grossmann
Space agency notes 20th anniversary
NASA Technical Reports Server (NTRS)
Frosch, R. A.
1978-01-01
The twentieth anniversary of NASA is announced. A chronology of major milestones of the NASA program is given along with a brief outline of the programs and responsibilities of NASA Headquarters and the NASA centers and facilities. The NASA launch record is included.
ERIC Educational Resources Information Center
Ashby, Susanne
2000-01-01
Introduces NASA Quest as part of NASA's Learning Technologies Project, which connects students to the people of NASA through the various pages at the website where students can glimpse the various types of work performed at different NASA facilities and talk to NASA workers about the type of work they do. (ASK)
Initial Back-to-Back Fission Chamber Testing in ATRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin Chase; Troy Unruh; Joy Rempe
2014-06-01
Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to providemore » calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.« less
NASA Astrophysics Data System (ADS)
Shalbi, Safwan; Salleh, Wan Norhayati Wan; Mohamad Idris, Faridah; Aliff Ashraff Rosdi, Muhammad; Syahir Sarkawi, Muhammad; Liyana Jamsari, Nur; Nasir, Nur Aishah Mohd
2018-01-01
In order to design facilities for boron neutron capture therapy (BNCT), the neutron measurement must be considered to obtain the optimal design of BNCT facility such as collimator and shielding. The previous feasibility study showed that the thermal column could generate higher thermal neutrons yield for BNCT application at the TRIGA MARK II reactor. Currently, the facility for BNCT are planned to be developed at thermal column. Thus, the main objective was focused on the thermal neutron and epithermal neutron flux measurement at the thermal column. In this measurement, pure gold and cadmium were used as a filter to obtain the thermal and epithermal neutron fluxes from inside and outside of the thermal column door of the 200kW reactor power using a gold foil activation method. The results were compared with neutron fluxes using TLD 600 and TLD 700. The outcome of this work will become the benchmark for the design of BNCT collimator and the shielding
Postirradiation thermocyclic loading of ferritic-martensitic structural materials
NASA Astrophysics Data System (ADS)
Belyaeva, L.; Orychtchenko, A.; Petersen, C.; Rybin, V.
Thermonuclear fusion reactors of the Tokamak-type will be unique power engineering plants to operate in thermocyclic mode only. Ferritic-martensitic stainless steels are prime candidate structural materials for test blankets of the ITER fusion reactor. Beyond the radiation damage, thermomechanical cyclic loading is considered as the most detrimental lifetime limiting phenomenon for the above structure. With a Russian and a German facility for thermal fatigue testing of neutron irradiated materials a cooperation has been undertaken. Ampule devices to irradiate specimens for postirradiation thermal fatigue tests have been developed by the Russian partner. The irradiation of these ampule devices loaded with specimens of ferritic-martensitic steels, like the European MANET-II, the Russian 05K12N2M and the Japanese Low Activation Material F82H-mod, in a WWR-M-type reactor just started. A description of the irradiation facility, the qualification of the ampule device and the modification of the German thermal fatigue facility will be presented.
NASA Technical Reports Server (NTRS)
Waid, Michael
2011-01-01
Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Good Laboratory Practices of Materials Testing at NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Hirsch, David; Williams, James H.
2005-01-01
An approach to good laboratory practices of materials testing at NASA White Sands Test Facility is presented. The contents include: 1) Current approach; 2) Data analysis; and 3) Improvements sought by WSTF to enhance the diagnostic capability of existing methods.
NASA Data Acquisitions System (NDAS) Software Architecture
NASA Technical Reports Server (NTRS)
Davis, Dawn; Duncan, Michael; Franzl, Richard; Holladay, Wendy; Marshall, Peggi; Morris, Jon; Turowski, Mark
2012-01-01
The NDAS Software Project is for the development of common low speed data acquisition system software to support NASA's rocket propulsion testing facilities at John C. Stennis Space Center (SSC), White Sands Test Facility (WSTF), Plum Brook Station (PBS), and Marshall Space Flight Center (MSFC).
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2010-01-01
Topics in this student project report include: biography, NASA history and structure, overview of Johnson Space Center facilities and major projects, and an overview of the Usability Testing and Analysis Facility (UTAF). The UTAF section slides include space habitat evaluations with mockups, crew space vehicle evaluations, and human factors research.
2011-01-20
CAPE CANAVERAL, Fla. -- NASA's Kennedy Space Center in Florida hosts a ribbon-cutting ceremony for the space agency's most environmentally friendly facility, the Propellants North Administrative and Maintenance Facility in Kennedy's Launch Complex 39 area. From left, are Mike Benik, director of Kennedy's Center Operations; James Wright, deputy assistant administrator for the Office of Strategic Infrastructure at NASA Headquarters; Bob Cabana, Kennedy's center director; Ward Davis, president of HW Davis Construction Inc.; and Rick Ferreira, chief operating officer of Jones Edmunds and Associates Inc. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett
Acquisition plan for Digital Document Storage (DDS) prototype system
NASA Technical Reports Server (NTRS)
1990-01-01
NASA Headquarters maintains a continuing interest in and commitment to exploring the use of new technology to support productivity improvements in meeting service requirements tasked to the NASA Scientific and Technical Information (STI) Facility, and to support cost effective approaches to the development and delivery of enhanced levels of service provided by the STI Facility. The DDS project has been pursued with this interest and commitment in mind. It is believed that DDS will provide improved archival blowback quality and service for ad hoc requests for paper copies of documents archived and serviced centrally at the STI Facility. It will also develop an operating capability to scan, digitize, store, and reproduce paper copies of 5000 NASA technical reports archived annually at the STI Facility and serviced to the user community. Additionally, it will provide NASA Headquarters and field installations with on-demand, remote, electronic retrieval of digitized, bilevel, bit mapped report images along with branched, nonsequential retrieval of report subparts.
Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.
2016-01-01
The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.
The new postirradiation examination facility of the Atomic Energy Corporation of South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walt, P.L. van der; Aspeling, J.C.; Jonker, W.D.
1992-01-01
The Pelindaba Hot Cell Complex (HCC) forms an important part of the infrastructure and support services of the Atomic Energy Corporation (AEC) of South Africa. It is a comprehensive, one-stop facility designed to make South Africa self-sufficient in the fields of spent-fuel qualification and verification, reactor pressure vessel surveillance program testing, ad hoc failure analyses for the nuclear power industry, and research and development studies in conjunction with the Safari I material test reactor (MTR) and irradiation rigs. Local technology and expertise was used for the design and construction of the HCC, which start up in 1980. The facility wasmore » commissioned in 1990.« less
2009-12-11
CAPE CANAVERAL, Fla. - Concrete is poured into the trenches that will provide the foundation for the walls of the Propellants North Administrative and Maintenance Facility in Launch Complex 39 at NASA's Kennedy Space Center in Florida. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, D.P. Jr.; Vernetson, W.G.; Ratner, R.T.
The University of Florida Training Reactor (UFTR) facilities including the analytical laboratory are used for a wide range of educational, research, training, and service functions. The UFTR is a 100-kW light-water-cooled, graphite-and-water-moderated modified Argonaut-type reactor. The UFTR utilizes high enriched plate-type fuel in a two-slab arrangement and operates at a 100-kW power level. Since first licensed to operate at 10 kW in 1959, this nonpower reactor facility has had an active but evolving record of continuous service to a wide range of academic, utility, and community users. The services of the UFTR have also been used by various state authoritiesmore » in criminal investigations. Because of its relatively low power and careful laboratory analyses, the UFTR neutron flux characteristics in several ports are not only well characterized but they are also quite invariant with time. As a result, such a facility is well-suited to the application of the multielement analysis using the k{sub o}-standardization method of neutron activation analysis. The analysis of untreated evidential botanical samples presented a unique opportunity to demonstrate implementation of this method at the UFTR facilities.« less
Review of the TREAT Conversion Conceptual Design and Fuel Qualification Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, David
The U.S. Department of Energy (DOE) is preparing to re establish the capability to conduct transient testing of nuclear fuels at the Idaho National Laboratory (INL) Transient Reactor Test (TREAT) facility. The original TREAT core went critical in February 1959 and operated for more than 6,000 reactor startups before plant operations were suspended in 1994. DOE is now planning to restart the reactor using the plant's original high-enriched uranium (HEU) fuel. At the same time, the National Nuclear Security Administration (NNSA) Office of Material Management and Minimization Reactor Conversion Program is supporting analyses and fuel fabrication studies that will allowmore » for reactor conversion to low-enriched uranium (LEU) fuel (i.e., fuel with less than 20% by weight 235U content) after plant restart. The TREAT Conversion Program's objectives are to perform the design work necessary to generate an LEU replacement core, to restore the capability to fabricate TREAT fuel element assemblies, and to implement the physical and operational changes required to convert the TREAT facility to use LEU fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Brunett, Acacia J.; Grabaskas, David
In 2015, as part of a Regulatory Technology Development Plan (RTDP) effort for sodium-cooled fast reactors (SFRs), Argonne National Laboratory investigated the current state of knowledge of source term development for a metal-fueled, pool-type SFR. This paper provides a summary of past domestic metal-fueled SFR incidents and experiments and highlights information relevant to source term estimations that were gathered as part of the RTDP effort. The incidents described in this paper include fuel pin failures at the Sodium Reactor Experiment (SRE) facility in July of 1959, the Fermi I meltdown that occurred in October of 1966, and the repeated meltingmore » of a fuel element within an experimental capsule at the Experimental Breeder Reactor II (EBR-II) from November 1967 to May 1968. The experiments described in this paper include the Run-Beyond-Cladding-Breach tests that were performed at EBR-II in 1985 and a series of severe transient overpower tests conducted at the Transient Reactor Test Facility (TREAT) in the mid-1980s.« less
An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Werner; Sam Bhattacharyya; Mike Houts
Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuelmore » and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.« less
77 FR 34367 - Proposed Subsequent Arrangement
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... reactors, and a research reactor, at the Post Irradiation Examination Facility (PIEF), the Irradiated.../2011, ``Post-Irradiation Examination and R&D Programs Using Irradiated Fuels at KAERI,'' dated June... fuel elements for post-irradiation examination and for research, development and manufacture of DUPIC...
10 CFR 51.121 - Status of NEPA actions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... address inquiries to: (a) Utilization facilities: ATTN: Document Control Desk, Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND...
10 CFR 51.121 - Status of NEPA actions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... address inquiries to: (a) Utilization facilities: ATTN: Document Control Desk, Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND...
10 CFR 51.121 - Status of NEPA actions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... address inquiries to: (a) Utilization facilities: ATTN: Document Control Desk, Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND...
NASA Astrophysics Data System (ADS)
Nevinitsa, V. A.; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.
2015-12-01
A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing 233U from 232Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.
International Space Station -- Fluids and Combustion Facility
NASA Technical Reports Server (NTRS)
2000-01-01
The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)
2011-02-08
CAPE CANAVERAL, Fla. -- A traditional ribbon-cutting ceremony takes place inside the new 18,500-square-foot Electrical Maintenance Facility (EMF) at NASA's Kennedy Space Center in Florida. From left are Kennedy Director of Operations Mike Benik, NASA Construction of Facility Project Manager Nick Rivieccio and Kennedy Center Director Bob Cabana. Located in Kennedy's Launch Complex 39 area, the EMF will provide new and renovated space for maintenance shops, offices, and equipment and material storage in support of the electrical maintenance functions for the center. The facility is projected to receive Gold certification under the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) rating system. Photo credit: NASA/ Troy Cryder
STS-335 crew training, EVA TPS Overview with instructor John Ray
2010-11-03
JSC2010-E-183519 (3 Nov. 2010) --- NASA astronauts Doug Hurley, STS-135 pilot; and Sandy Magnus, mission specialist, participate in an EVA Thermal Protection System (TPS) overview training session in the TPS/ Precision Air Bearing Facility in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
1998-09-30
The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.
14 CFR 1212.702 - Associate Administrator for Management Systems and Facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Associate Administrator for Management Systems and Facilities. 1212.702 Section 1212.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.702 Associate...
14 CFR 1212.702 - Associate Administrator for Management Systems and Facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Associate Administrator for Management Systems and Facilities. 1212.702 Section 1212.702 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PRIVACY ACT-NASA REGULATIONS NASA Authority and Responsibilities § 1212.702 Associate...
Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.
In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less
Decommissioning ALARA programs Cintichem decommissioning experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, J.J.; LaGuardia, T.S.
1995-03-01
The Cintichem facility, originally the Union Carbide Nuclear Company (UCNC) Research Center, consisted primarily of a 5MW pool type reactor linked via a four-foot-wide by twelve-foot-deep water-filled canal to a bank of five adjacent hot cells. Shortly after going into operations in the early 1960s, the facility`s operations expanded to provide various reactor-based products and services to a multitude of research, production, medical, and education groups. From 1968 through 1972, the facility developed a process of separating isotopes from mixed fission products generated by irradiating enriched Uranium target capsules. By the late 1970s, 20 to 30 capsules were being processedmore » weekly, with about 200,000 curies being produced per week. Several isotopes such as Mo{sup 99}, I{sup 131}, and Xe{sup 133} were being extracted for medical use.« less
14 CFR § 1230.124 - Conditions.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., whether on the ground, in aircraft, or in space. NPD 7100.8 can be accessed at http://nodis3.gsfc.nasa.gov....gsfc.nasa.gov/. ... applies to NASA Headquarters and NASA Centers, including Component Facilities, and Technical and Service...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
... facility, a wind farm, a methane- gas cofiring facility, and several small solar photovoltaic facilities... maintenance of select plant systems and other regulatory compliance activities. Major buildings and plant... the plant cooling towers and the reactor, auxiliary, control, turbine, office, and service buildings...
2004-02-19
KENNEDY SPACE CENTER, FLA. - NASA Administrator Sean O’Keefe (center) is welcomed to the Central Florida Research Park, near Orlando. Central Florida leaders are proposing the research park as the site for the new NASA Shared Services Center. The center would centralize NASA’s payroll, accounting, human resources, facilities and procurement offices that are now handled at each field center. The consolidation is part of the One NASA focus. Six sites around the U.S. are under consideration by NASA.