Sample records for nasa satellite images

  1. NASA Satellite Image of Japan Captured March 11, 2011

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite passed over Japan one hour and 41 minutes before the quake hit. At the time Aqua passed overhead, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a visible of Japan covered by clouds. The image was taken at 0405 UTC on March 11 (1:05 p.m. local time Japan /11:05 p.m. EST March 10). The quake hit at 2:46 p.m. local time/Japan. Satellite: Aqua Credit: NASA/GSFC/Aqua NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  2. NASA Satellite Image of Tropical Cyclone Ului

    NASA Image and Video Library

    2017-12-08

    NASA image acquired March 18, 2010. Tropical Cyclone Ului persisted south of the Solomon Islands on March 18, 2010. A bulletin from the U.S. Navy’s Joint Typhoon Warning Center (JTWC) issued the same day reported that the cyclone had maximum sustained winds of 80 knots (150 kilometers per hour) and gusts up to 100 knots (185 kilometers per hour). Although still strong, the wind speeds had significantly diminished over the previous few days. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this true-color image of the storm on March 18, 2010. North of the storm lie the Solomon Islands (shown in the high-resolution image). Southeast of the storm is New Caledonia. Ului’s eye appears to span 100 kilometers (60 miles) and the whole storm spans several hundred kilometers. As of 15:00 UTC on March 18 (2:00 a.m. on March 19 in Sydney, Australia), Ului was roughly 670 nautical miles (1,240 kilometers) east of Cairns, Australia. The JTWC reported that Ului had been moving southward and was expected to turn west and accelerate toward Australia. The JTWC forecast that Ului would make landfall over the northeastern Queensland coast and diminish over land. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS To learn more about this image go to: earthobservatory.nasa.gov/NaturalHazards/view.php?id=43180

  3. NASA Satellite Captures Super Bowl Cities - Seattle

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Seattle, Washington acquired August 23, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. NASA Satellite Captures Super Bowl Cities - Phoenix

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Phoenix, Arizona acquired November 28, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Impact of Northern California Fires Seen in New NASA Satellite Image

    NASA Image and Video Library

    2017-10-23

    As firefighters continue to work toward full containment of the rash of wildfires burning in Northern California, a new image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite shows the growing fire scar on the landscape. In this ASTER image, acquired Oct. 21, 2017, vegetation is red, while burned areas appear dark gray. The image covers an area of 38 by 39 miles (60.5 by 63 kilometers) and is located near 38.5 degrees north, 122.4 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22049

  6. NASA Satellite Captures Super Bowl Cities - Denver, CO

    NASA Image and Video Library

    2016-02-06

    Landsat 7 image of Denver area acquired Nov 3, 2015. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. NASA Satellite Captures Super Bowl Cities - Seattle [annotated

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Seattle, Washington acquired August 23, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. NASA Satellite Captures Super Bowl Cities - Boston/Providence

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Boston/Providence area acquired August 25, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NASA Satellite Captures Super Bowl Cities - Phoenix [annotated

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Phoenix, Arizona acquired November 28, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA Satellite Captures Super Bowl Cities - Charlotte, NC

    NASA Image and Video Library

    2016-02-06

    Landsat 7 image of the Charlotte, NC area acquired Oct 18, 2015. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. NASA Satellite Captures Super Bowl Cities - Boston/Providence [annotated

    NASA Image and Video Library

    2015-01-30

    Landsat 7 image of Boston/Providence area acquired August 25, 2014. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD. Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. NASA Satellite View of Antarctica

    NASA Image and Video Library

    2017-12-08

    NASA image acquired November 2, 2011 The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite captured this image of the Knox, Budd Law Dome, and Sabrina Coasts, Antarctica on November 2, 2011 at 01:40 UTC (Nov. 1 at 9:40 p.m. EDT). Operation Ice Bridge is exploring Antarctic ice, and more information can be found at www.nasa.gov/icebridge. Image Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. NASA Satellite Captures Super Bowl Cities - Santa Clara, CA

    NASA Image and Video Library

    2017-12-08

    Landsat 7 image of the Santa Clara area acquired Nov 16, 2015. Landsat 7 is a U.S. satellite used to acquire remotely sensed images of the Earth's land surface and surrounding coastal regions. It is maintained by the Landsat 7 Project Science Office at the NASA Goddard Space Flight Center in Greenbelt, MD...Landsat satellites have been acquiring images of the Earth’s land surface since 1972. Currently there are more than 2 million Landsat images in the National Satellite Land Remote Sensing Data Archive. For more information visit: landsat.usgs.gov/..To learn more about the Landsat satellite go to:.landsat.gsfc.nasa.gov/ Credit: NASA/GSFC/Landsat 7 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. First Day of Winter Obvious on NASA Satellite Image of the U.S. Plains States

    NASA Image and Video Library

    2017-12-08

    Winter arrived officially on Dec. 22 at 12:35 a.m. EST, but the U.S. Plains states received an early and cool welcome on Dec. 19 from heavy snowfall that was seen by a NASA satellite. NASA's Aqua satellite passed overhead on Dec. 21 at 20:05 UTC (3:05 p.m. EST) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA's Aqua satellite captured a visible image of snow blanketing the ground through west and central Kansas, eastern and central Colorado, much of New Mexico, northern Texas and the panhandle of Oklahoma. According to CBS News, blizzard conditions were reported in northern New Mexico, the Texas Panhandle, Oklahoma and northwestern Kansas. The Associated Press reported snow drifts as high as 10 feet in southeast Colorado. Six people lost their lives in traffic accidents from this storm. Heavy snow is expected again today, Dec. 22 in New Mexico and Colorado. Snow is also expected to stretch across the plains into the upper Midwest today, according to the National Weather Service. Portions of many states are expecting some snow today, including the four corners states, north Texas, Kansas, southern Nebraska, western Oklahoma, northern Missouri, Iowa, northern Illinois and southern Wisconsin stretching east into northern New England. The first day of the winter season occurs when the sun is farthest south, either Dec. 21 or 22. The day is also known as the winter solstice. By the second day of winter, NASA's Aqua satellite is going to have a lot more snowfall to observe. Image Credit: NASA Goddard MODIS Rapid Response Team Caption: NASA, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Scar from One of Los Angeles' Biggest Wildfires Imaged by NASA Satellite

    NASA Image and Video Library

    2017-10-09

    On Sept. 1, 2017, the La Tuna Canyon fire began in the foothills north of Los Angeles. By the time it was contained, it became one of the biggest wildfires in the history of the city in terms of sheer acreage. The fire burned several structures and resulted in a large number of evacuations. The fire could be seen over a large area, from the Hollywood Burbank airport (left side of image), to NASA's Jet Propulsion Laboratory and the Rose Bowl (right side of image). In this image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite, vegetation is depicted in red (golf courses are particularly prominent), and the burned area is in dark gray. The image was acquired Oct. 7, 2017, covers an area of approximately 8 by 13 miles (13.5 by 20.5 kilometers), and is located at 34.2 degrees north, 118.2 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22044

  16. Destructive Thomas Fire Continues Its Advance in New NASA Satellite Image

    NASA Image and Video Library

    2017-12-11

    The Thomas fire, west of Los Angeles, continues to advance to the west and north and is threatening a number of coastal communities, including Santa Barbara. It is now the fifth largest wildfire in modern California history. According to CAL FIRE, as of midday Dec. 11, the fire had consumed more than 230,000 acres and was 15 percent contained. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite captured this image on Dec. 10. The image depicts vegetation in red, smoke in light brown, burned areas in dark grey, and active fires in yellow, as detected by the thermal infrared bands. The image covers an area of 14.3 by 19.6 miles (23 by 31.5 kilometers), and is located at 34.5 degrees north, 119.4 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22122

  17. Mobile satellite service communications tests using a NASA satellite

    NASA Technical Reports Server (NTRS)

    Chambers, Katherine H.; Koschmeder, Louis A.; Hollansworth, James E.; ONeill, Jack; Jones, Robert E.; Gibbons, Richard C.

    1995-01-01

    Emerging applications of commercial mobile satellite communications include satellite delivery of compact disc (CD) quality radio to car drivers who can select their favorite programming as they drive any distance; transmission of current air traffic data to aircraft; and handheld communication of data and images from any remote corner of the world. Experiments with the enabling technologies and tests and demonstrations of these concepts are being conducted before the first satellite is launched by utilizing an existing NASA spacecraft.

  18. Devastation from California's Largest Wildfire Seen in New NASA Satellite Image

    NASA Image and Video Library

    2018-01-05

    The Thomas Fire is the largest wildfire in California's recorded history. As of January 3, 2018, it was 93 percent contained after burning 282,000 acres and destroying 1,063 structures. The fire started Dec. 4, 2017, and quickly spread out of control, fanned by high temperatures and winds. At its peak, more than 8,500 firefighters mobilized to fight it. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite acquired this image on Dec. 26, 2017. It covers an area of 21 by 38 miles (33 by 61.8 kilometers), and is located at 34.5 degrees north, 119.3 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22189

  19. NASA Satellite Gives a Clear View for NASA's LADEE Launch

    NASA Image and Video Library

    2013-09-06

    NASA's Wallops Flight Facility is located on Wallops Island, Va. and is the site of tonight's moon mission launch. Satellite imagery from NOAA's GOES-East satellite shows that high pressure remains in control over the Mid-Atlantic region, providing an almost cloud-free sky. This visible image of the Mid-Atlantic was captured by NOAA's GOES-East satellite at 17:31 UTC/1:31 p.m. EDT and shows some fair weather clouds over the Delmarva Peninsula (which consists of the state of Delaware and parts of Maryland and Virginia - which together is "Delmarva") and eastern Virginia and North Carolina. Most of the region is cloud-free, making for a perfect viewing night to see a launch. NOAA operates GOES-East and NASA's GOES Project at the NASA Goddard Space Flight Center in Greenbelt, Md. creates images and animations from the data. NOAA's National Weather Service forecast for tonight, Sept. 6 calls for winds blowing from the east to 11 mph, with clear skies and overnight temperatures dropping to the mid-fifties. The Lunar Atmosphere and Dust Environment Explorer, known as LADEE (pronounced like "laddie"), launches tonight at 11:27 p.m. EDT from Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA Wallops and will be visible along the Mid-Atlantic with tonight's perfect weather conditions. LADEE is managed by NASA's Ames Research Center in Moffett Field, Calif. This will be the first launch to lunar orbit from NASA Wallops and the first launch of a Minotaur V rocket – the biggest ever launched from Wallops. NASA's LADEE is a robotic mission that will orbit the moon to gather detailed information about the lunar atmosphere, conditions near the surface and environmental influences on lunar dust. A thorough understanding of these characteristics will address long-standing unknowns, and help scientists understand other planetary bodies as well. LADEE also carries an important secondary payload, the Lunar Laser Communication Demonstration, or LLCD, which will help us open a new

  20. NASA's Terra Satellite Catches Powerful Supertyphoon Megi

    NASA Image and Video Library

    2017-12-08

    NASA image captured Oct. 18, 2010 at 02:35 UTC Typhoon Megi (15W) over the Philippines. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite at 10:35 a.m. Philippine Time (02:35 UTC) on October 18, 2010. Megi was bearing down on Palanan Bay as a “super typhoon” with category 5 strength on the Saffir Simpson scale. Image Credit: NASA Goddard MODIS Rapid Response Team To learn more go to: www.nasa.gov/mission_pages/hurricanes/archives/2010/h2010... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  1. NASA's Aqua Satellite Celebrates 10th Annivesary

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua Satellite Celebrates 10th Anniversary The Aqua satellite mission has proved to be a major component of the Earth Observing System (EOS) for its ability to gather unprecedented amounts of information on Earth’s water cycle, including measurements on water vapor, clouds, precipitation, ice, and snow. Aqua data has helped improve weather prediction, detection of forest fires, volcanic ash, and sandstorms. In addition, Aqua data have been used to detect and monitor such greenhouse gases as carbon dioxide, water vapor, and methane, and to examine the energy imbalance at the top of the Earth's atmosphere and the various components of it. With these uses of Aqua data, scientists have been able to better understand our Earth over the course of the past ten years. Aqua is a major international Earth Science satellite mission centered at NASA. Launched on May 4, 2002, the satellite has six different Earth-observing instruments on board and is named for the large amount of information being obtained about water in the Earth system from its stream of approximately 89 Gigabytes of data a day. The water variables being measured include almost all elements of the water cycle and involve water in its liquid, solid, and vapor forms. Additional variables being measured include radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures. For more information about NASA's Aqua satellite, visit: aqua.nasa.gov ------------ Caption: Artist rendition of the NASA's Aqua satellite, which carries the MODIS and AIRS instruments. Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on

  2. NASA Satellite View of Tropical Storm Isaac

    NASA Image and Video Library

    2017-12-08

    NASA's Terra satellite passed over Tropical Storm Isaac on Aug. 24 at 15:20 UTC (11:20 a.m. EDT) as it continued moving through the eastern Caribbean Sea. The MODIS instrument onboard Aqua captured this visible image. At 2 p.m. EDT on Aug. 24, Isaac's maximum sustained winds were near 60 mph (95 kmh). The National Hurricane Center noted that Isaac could strengthen later before reaching the coast of Hispaniola tonight, Aug. 24. Hispaniola is an island that contains the Dominican Republic and Haiti. Isaac is located about 135 miles (215 km) south-southeast of Port au Prince, Haiti, near latitude 16.8 north and longitude 71.4 west. Isaac is now moving toward the northwest near 14 mph (22 kmh). Isaac is expected to reach hurricane status over the weekend of Aug. 25-26 and NASA satellites will continue providing valuable temperature, rainfall, visible and infrared data. Text Credit: Rob Gutro NASA's Goddard Space Flight Center, Greenbelt, Md. To read more go to: www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012... Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. New NASA Satellite Zooms in on Tornado Swath

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A number of severe thunder storms swept through the mid-Atlantic states on April 28, bringing high winds, hailstones, and heavy rains to many areas. The intense storms spawned at least two tornadoes, one of which was classified as an F4 twister. The powerful tornado touched down in southern Maryland and ripped through the town of La Plata, destroying most of the historic downtown. The twister-the strongest ever recorded to hit the state and perhaps the strongest ever recorded in the eastern U.S.-flattened everything in its path along a 24-mile (39 km) swath running west to east through the state. The tornado's path can be seen clearly in this band-sharpened color image acquired on May 1 by the Advanced Land Imager (ALI), flying aboard NASA's EO-1 satellite. La Plata is situated toward the lefthand side of this scene and the twister's swath is the bright stripe passing through the town and running eastward 6 miles (10 km) toward the Patuxent River beyond the righthand side of the image. This stripe is the result of the vegetation flattened by the storm. The flattened vegetation reflects more light than untouched vegetation. EO-1 is the first Earth observing satellite launched as part of NASA's New Millennium Program. This program is designed to spearhead development and testing of a new generation of satellite remote sensing technologies for future Earth and space science missions. The ALI is designed to improve upon and extend the measurement heritage begun by the Landsat series of satellites well into the 21st Century. For more images of the tornado's path, including Landsat, visit Tornado Hits La Plata, Maryland in the Natural Hazards section of the Earth Observatory. Image courtesy Lawrence Ong, EO-1 Mission Science Office, NASA GSFC

  4. NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Alaska

    NASA Image and Video Library

    2017-12-08

    This image shows how the partial solar eclipse darkened clouds over Alaska. It was taken on Oct. 23 at 21:10 UTC (5:10 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. 2013 Yosemite Fire Assessed by NASA Satellite Data

    NASA Image and Video Library

    2014-09-02

    In this image from NASA Aqua satellite, the red areas seen by the MODIS instrument revealed that live fuel moisture had excessively dried up by more than 50 percent prior to the Rim Fire in August 2013.

  6. NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Western Canada

    NASA Image and Video Library

    2017-12-08

    This image shows how a partial solar eclipse darkened clouds over the Yukon and British Columbia in western Canada. It was taken on Oct. 23 at 21:20 UTC (5:20 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team Unlabeled image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Color Image of Mercury from NASA's MESSENGER Satellite

    NASA Image and Video Library

    2017-12-08

    NASA image acquired September 3, 2011 Dominici crater, the very bright crater to the top of this image, exhibits bright rays and contains hollows. This crater lies upon the peak ring of Homer Basin, a very degraded peak ring basin that has been filled by volcanism. This image contains several examples of craters that have excavated materials from depth that are spectrally distinct from the surface volcanic layers, providing windows into the subsurface. MESSENGER scientists are estimating the approximate depths of these spectrally distinct materials by applying knowledge of how impacts excavate material during the cratering process. The 1000, 750, and 430 nm bands of the Wide Angle Camera are displayed in red, green, and blue, respectively. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 250-meter/pixel (820 feet/pixel) morphology base map or the 1-kilometer/pixel (0.6 miles/pixel) color base map. It is not possible to cover all of Mercury's surface at this high resolution during MESSENGER's one-year mission, but several areas of high scientific interest are generally imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System

  8. NASA's Terra Satellite Sees Shadows of Solar Eclipse

    NASA Image and Video Library

    2015-03-20

    During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA's Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse's shadow over the clouds in the Arctic Ocean. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NASA-NOAA's Suomi NPP Satellite Captures Night-time Look at Cyclone Felleng

    NASA Image and Video Library

    2017-12-08

    NASA-NOAA's Suomi NPP satellite captured this false-colored night-time image of Cyclone Felleng during the night on Jan. 28, 2013. Felleng is located in the Southern Indian Ocean, and is northwest of Madagascar. The image revealed some pretty cold overshooting tops, topping at ~170K. The image shows some interesting gravity waves propagating out from the storm in both the thermal and visible imagery. For full storm history on NASA's Hurricane Web Page, visit: www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013... Credit: William Straka, UWM/NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA-NOAA's Suomi NPP Satellite Captures Night-time Look at Cyclone Felleng

    NASA Image and Video Library

    2013-01-31

    NASA-NOAA's Suomi NPP satellite captured this false-colored night-time image of Cyclone Felleng during the night on Jan. 28, 2013. Felleng is located in the Southern Indian Ocean, and is northwest of Madagascar. The image revealed some pretty cold overshooting tops, topping at ~170K. The image shows some interesting gravity waves propagating out from the storm in both the thermal and visible imagery. For full storm history on NASA's Hurricane Web Page, visit: www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013... Credit: William Straka, UWM/NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Earth imaging and scientific observations by SSTI ``Clark'' a NASA technology demonstration spacecraft

    NASA Astrophysics Data System (ADS)

    Hayduk, Robert J.; Scott, Walter S.; Walberg, Gerald D.; Butts, James J.; Starr, Richard D.

    1997-01-01

    The Small Satellite Technology Initiative (SSTI) is a National Aeronautics and Space Administration (NASA) program to demonstrate smaller, high technology satellites constructed rapidly and less expensively. Under SSTI, NASA funded the development of ``Clark,'' a high technology demonstration satellite to provide 3-m resolution panchromatic and 15-m resolution multispectral images, as well as collect atmospheric constituent and cosmic x-ray data. The 690-lb. satellite, to be launched in early 1997, will be in a 476 km, circular, sun-synchronous polar orbit. This paper describes the program objectives, the technical characteristics of the sensors and satellite, image processing, archiving and distribution. Data archiving and distribution will be performed by NASA Stennis Space Center and by the EROS Data Center, Sioux Falls, South Dakota, USA.

  12. A Night-time Look at Typhoon Soudelor from NASA-NOAA's Suomi NPP Satellite

    NASA Image and Video Library

    2015-08-10

    On August 6, 2015, NASA-NOAA's Suomi NPP satellite passed over powerful Typhoon Soudelor at night when it was headed toward Taiwan. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi satellite captured this night-time infrared image of the storm. At 1500 UTC (11 a.m. EDT) on August 6, 2015, Typhoon Soudelor had maximum sustained winds near 90 knots (103.6 mph/166.7 kph). It was centered near 21.3 North latitude and 127.5 East longitude, about 324 nautical miles (372.9 miles/600 km) south of Kadena Air Base, Okinawa, Japan. It was moving to the west at 10 knots (11.5 mph/18.5 kph). Taiwan is located west (left) of the powerful typhoon in this image. Credit: UWM/CIMSS/SSEC, William Straka III NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. NASA-NOAA's Suomi NPP Satellite Cyclone Haruna Near Madagascar at Night

    NASA Image and Video Library

    2017-12-08

    This night-time image revealed Cyclone Haruna's massive eye before it made landfall in southwestern Madagascar. This image was taken from the VIIRS instrument that flies aboard the NASA-NOAA Suomi NPP satellite. The image was taken on Feb. 20 at 2242 UTC (5:42 p.m. EST/U.S.) and shows a clear eye, surrounded by very powerful thunderstorms. The bright lights of the Capital city of Antananarivo are seen in this image. The capital city lies about 300 nautical miles northwest of the storm's center. Haruna's center made landfall near Manombo, Madagascar around 0600 UTC (1 a.m. EST/U.S.) and its eye became cloud-filled quickly. For the entire storm history, visit NASA's Hurricane Page: www.nasa.gov/mission_pages/hurricanes/archives/2013/h2013... Text: Credit: Univ.of Wisconsin/NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Hurricane Harvey Flooding Seen in New NASA Satellite Image

    NASA Image and Video Library

    2017-09-05

    On Sept. 5, 2017, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft captured this image of the area around Bay City, Texas, about 50 miles (80 kilometers) southwest of Houston. Hurricane Harvey caused extensive inland flooding, seen as dark blue areas where the water is relatively clear, and green-grey where the water carries sediment. The image covers an area of 32 by 65 miles (52 by 105 kilometers), and is centered at 29.2 degrees north, 95.8 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA21940

  15. Satellite image analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  16. NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.

    2012-01-01

    A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.

  17. Typhoon Chan-Hom "Eyes" NASA's Aqua Satellite

    NASA Image and Video Library

    2017-12-08

    Typhoon Chan-Hom's eye was visible from space when NASA's Aqua satellite passed overhead early on July 8, 2015. The MODIS instrument, known as the Moderate Resolution Imaging Spectrometer, flies aboard NASA's Aqua satellite. When Aqua passed over Typhoon Chan-Hom on July 8 at 04:25 UTC (12:25 a.m. EDT), MODIS captured a visible-light image of the storm that clearly showed its eye. The MODIS image also a ring of powerful thunderstorms surrounding the eye of the storm, and the bulk of thunderstorms wrapping around the system from west to east, along the southern side. At 0900 UTC (5 a.m. EDT), Typhoon Chan-Hom's maximum sustained winds were near 85 knots (97.8 mph/157.4 kph). Tropical-storm-force winds extended 145 nautical miles (166.9 miles/268.5 km) from the center, making the storm almost 300 nautical miles (345 miles/555 km) in diameter. Typhoon-force winds extended out to 35 nautical miles (40 miles/64.8 km) from the center. Chan-Hom's eye was centered near 20.5 North latitude and 132.7 East longitude, about 450 nautical miles (517.9 miles/833.4 km) southeast of Kadena Air Base, Iwo To, Japan. Chan-Hom was moving to the northwest at 11 knots (12.6 mph/20.3 kph). The typhoon was generating very rough seas with wave heights to 28 feet (8.5 meters). The Joint Typhoon Warning Center expects Chan-Hom to continue tracking northwestward over the next three days under the steering influence of a sub-tropical ridge (elongated area of high pressure). Chan-Hom is expected to intensify steadily peaking at 120 knots (138.1 mph/222.2 kph) on July 10. The JTWC forecast predicts that Chan-Hom will make landfall near Wenzhou, Zhejiang, China and begin decaying due to land interaction. For updated warnings and watches from China's National Meteorological Centre, visit: www.cma.gov.cn/en/WeatherWarnings/. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team b>NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific

  18. Satellite time synchronization of a NASA network.

    NASA Technical Reports Server (NTRS)

    Laios, S. C.

    1972-01-01

    A satellite time synchronization technique has been used for synchronization of remotely separated clocks during the past several years. The NASA network has been successfully synchronized to an accuracy of tens of microseconds via the NASA Geodetic Earth Orbiting Satellite GEOS-11. The results indicate that a polar orbit satellite having an onboard clock can effectively be used to synchronize clocks on a global basis.

  19. NASA GES DISC DAAC Satellite Data for GIS

    NASA Technical Reports Server (NTRS)

    Nickless, Darryl; Leptoukh, Gregory; Morahan, Michael; Pollack, Nathan; Savtchenko, Andrey; Teng, William

    2005-01-01

    NASA's Goddard Earth Science (GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC) makes available a large and continually growing collection of spatially continuous global satellite observations of environmental parameters. These products include those from the MODIS (Moderate Resolution Imaging Spectroradiometer) on both Terra and Aqua platforms, and the Tropical Rainfall Measuring Mission (TRMM). These data products are well suited for use within Geographic Information Systems (GIS), as both backdrops to cartographic products as well as spatial analysis. However, data format, file size, and other issues have limited their widespread use by traditional GIS users. To address these data usability issues, the GES DISC DAAC recently updated tools and improved documentation of conversion procedures. In addition, the GES DISC DAAC has also been working with a major GIS software vendor to incorporate the ability to read the native Hierarchial Data Format (HDF), the format in which most of the NASA data is stored. The result is the enabling of GIS users to realize the benefit of GES DISC DAAC data without a substantial expenditure in resources to incorporate these data into their GIS. Several documents regarding the potential uses of GES DISC DAAC satellite data in GIS have recently been created. These show the combinations of concurrent data from different satellite products with traditional GIS vector products for given geographic areas. These map products include satellite imagery of Hurricane Isabel and the California wildfires, and can be viewed at http://daac.gsfc.nasa.gov/MODIS/GIS/.

  20. NASA mobile satellite program

    NASA Technical Reports Server (NTRS)

    Knouse, G.; Weber, W.

    1985-01-01

    A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.

  1. NASA mobile satellite program

    NASA Astrophysics Data System (ADS)

    Knouse, G.; Weber, W.

    1985-04-01

    A three phase development program for ground and space segment technologies which will enhance and enable the second and third generation mobile satellite systems (MSS) is outlined. Phase 1, called the Mobile Satellite Experiment (MSAT-X), is directed toward the development of ground segment technology needed for future MSS generations. Technology validation and preoperational experiments with other government agencies will be carried out during the two year period following launch. The satellite channel capacity needed to carry out these experiments will be obtained from industry under a barter type agreement in exchange for NASA provided launch services. Phase 2 will develop and flight test the multibeam spacecraft antenna technology needed to obtain substantial frequency reuse for second generation commercial systems. Industry will provide the antenna, and NASA will fly it on the Shuttle and test it in orbit. Phase 3 is similar to Phase 2 but will develop an even larger multibeam antenna and test it on the space station.

  2. Collision Avoidance: Coordination of Predicted Conjunctions between NASA Satellites and Satellites of other Countries

    NASA Astrophysics Data System (ADS)

    Kelly, A.; Watson, W.

    2014-09-01

    This paper describes one of the challenges facing the flight operations teams of the International Earth Observing constellation satellites at the 705 km orbit, including NASAs satellites. The NASA Earth Science Mission Operations (ESMO) Project has been dealing with predicted conjunctions (close approach) between operational/non-operational space objects and the satellites in the International Earth observing constellations for several years. Constellation satellites include: NASAs Earth Observing System (EOS) Terra, Aqua, and Aura, CloudSat, the joint NASA/CNES CALIPSO mission, Earth Observing 1 (EO-1), the Japan Aerospace and Exploration Agency (JAXA) Global Change Observation Mission-Water 1 (GCOM-W1) mission, the United States Geological Survey (USGS) Landsat 7 and Landsat 8, and until 2013, Argentinas SAC-C mission and the CNES PARASOL mission. The NASA Conjunction Analysis and Risk Assessment (CARA) team provides daily reports to the ESMO Project regarding any high interest close approach events (HIEs) involving the constellation satellites. The daily CARA reports provide risk assessment results that help the operations teams to determine if there is a need to perform a risk mitigation action. If the conjuncting space object is an operational satellite that is capable of maneuvering, the affected satellite team needs to coordinate their action plan with the owner operator of the conjuncting satellite. It is absolutely critical for the two teams to communicate as soon as possible. The goal is to minimize the collision risk; this can happen if both satellite operators do not coordinate their maneuver plans. The constellation teams have established guidelines for coordinating HIEs. This coordination process has worked successfully for several years for satellites that are operated by other organizations in the United States and by NASAs international partners, all with whom NASA has a cooperative agreement. However, the situation is different for HIEs with

  3. Trends in NASA communication satellites

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.; Robbins, W. H.; Stretchberry, D. M.

    1972-01-01

    Satellite telecommunications can help to satisfy several national needs such as education, health care, cultural opportunities, and data transfer. There are current experiments being conducted with NASA spacecraft ATS 1, 3, and 5 in an attempt to satisfy these national needs. Future experiments are planned for the ATS F/G and CTS spacecrafts. The next generation of communications satellites must provide multiple region coverage, multichannel capability, high quality TV pictures, and must allow low cost ground receivers to be used. The proposed NASA spacecrafts, ATS H/I, will satisfy these requirements. Other countries of the world can benefit from ATS H/I technology.

  4. Simmering Vanuatu Volcano Imaged by NASA Satellite

    NASA Image and Video Library

    2017-10-06

    On Sept. 28, 2017, Manaro Voui volcano on Ambae island in Vanuatu began spewing ash in a moderate eruption, prompting authorities to order the evacuation of all 11,000 residents. This nighttime thermal infrared image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), acquired on Oct. 7, shows a hot spot (white) on the volcano's summit crater, but no large eruption. Cold clouds are dark gray, the warmer island is gray, and the ocean, (warmer than the island), is light gray. The image covers an area of 17 by 26 miles (27 by 42.4 kilometers), and is centered at 15.4 degrees south, 167.8 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22045

  5. NASA Satellite Images Erupting Russian Volcano

    NASA Image and Video Library

    2017-08-22

    Klyuchevskoi, one of the world's most active volcanoes, is seen poking through above a solid cloud deck, with an ash plume streaming to the west. Located on the Kamchatka Peninsula in far eastern Russia, it is one of many active volcanoes on the Peninsula. Nearby, to the south, the smaller Bezymianny volcano can be seem with a small steam plume coming from its summit. The image was acquired Aug. 20, 2017, covers an area of 12 by 14 miles (19.5 by 22.7 kilometers), and is located at 56.1 degrees north, 160.6 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA21878

  6. Oregon Wildfire Captured in NASA Satellite Image

    NASA Image and Video Library

    2017-08-24

    In early August 2017, the Cinder Butte fire burned 9 miles (15 kilometers) outside of the town of Riley, Oregon, and consumed more than 82 square miles (53,000 acres) of forest and brushland. The fire threatened tribal archaeological sites with strong significance to the Burns Paiute and Klamath tribes. Firefighters were able to contain the fire before it could damage the historic sites. On the image, the burned area is gray-brown, and cloud shadows are dark gray-to-black. The image was acquired Aug. 23, 2017, covers an area of 20 by 25 miles (31.5 by 39.9 kilometers), and is located at 43.5 degrees north, 119.9 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA21879

  7. NASA Satellite Scares Up An Eerie Image of Haunted Lakes and Ghost Ships

    NASA Image and Video Library

    2011-10-29

    NASA Terra satellite presents this false color view of portions of Wisconsin and Michigan, including Devil Lake, Druid Lake, Ghost Lake, Spider Lake, and Witches Lake in Wisconsin; and Bat Lake, Corpse Pond and Witch Lake in Michigan.

  8. NASA launches carbon dioxide research satellite

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-07-01

    Last week NASA launched a new satellite to study atmospheric carbon dioxide (CO2). Once in orbit, the Orbiting Carbon Observatory-2 (OCO-2) satellite, launched from Vandenberg Air Force Base in California, will take more than 100,000 individual measurements of atmospheric CO2 per day.

  9. NASA Satellite Captures Tropical Cyclones Tomas and Ului

    NASA Image and Video Library

    2010-03-17

    NASA Image acquired March 14 - 15, 2010 Two fierce tropical cyclones raged over the South Pacific Ocean in mid-March 2010, the U.S. Navy’s Joint Typhoon Warning Center (JTWC) reported. Over the Solomon Islands, Tropical Cyclone Ului had maximum sustained winds of 130 knots (240 kilometers per hour, 150 miles per hour) and gusts up to 160 knots (300 km/hr, 180 mph). Over Fiji, Tropical Cyclone Tomas had maximum sustained winds of 115 knots (215 km/hr, 132 mph) and gusts up to 140 knots (260 km/hr, 160 mph). The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites captured both storms in multiple passes over the South Pacific on March 15, 2010, local time. The majority of the image is from the morning of March 15 (late March 14, UTC time) as seen by MODIS on the Terra satellite, with the right portion of the image having been acquired earliest. The wedge-shaped area right of center is from Aqua MODIS, and it was taken in the early afternoon of March 15 (local time). Although it packs less powerful winds, according to the JTWC, Tomas stretches across a larger area. It was moving over the northern Fiji islands when Terra MODIS captured the right portion of the image. According to early reports, Tomas forced more than 5,000 people from their homes while the islands sustained damage to crops and buildings. The JTWC reported that Tomas had traveled slowly toward the south and was passing over an area of high sea surface temperatures. (Warm seas provide energy for cyclones.) This storm was expected to intensify before transitioning to an extratropical storm. Ului is more compact and more powerful. A few hours before this image was taken, the storm had been an extremely dangerous Category 5 cyclone with sustained winds of 140 knots (260 km/hr, 160 mph). Ului degraded slightly before dealing the southern Solomon Islands a glancing blow. Initial news reports say that homes were damaged on the islands, but no one was injured. Like Tomas

  10. NASA MISR Images Gulf of Mexico Oil Slick

    NASA Image and Video Library

    2010-05-06

    This image from NASA Terra satellite was acquired on May 1, 2010. The red symbol indicates the approximate position of the Deepwater Horizon platform and the source of the oil slick which resulted in a significant oil spill in the Gulf of Mexico.

  11. Early Results from NASA's Assessment of Satellite Servicing

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Reed, Benjamin B.; Townsend, Jacqueline A.; Ahmed, Mansoor; Whipple, Arthur O.; Oegerle, William R.

    2010-01-01

    Following recommendations by the NRC, NASA's FY 2008 Authorization Act and the FY 2009 and 2010 Appropriations bills directed NASA to assess the use of the human spaceflight architecture to service existing/future observatory-class scientific spacecraft. This interest in satellite servicing, with astronauts and/or with robots, reflects the success that NASA achieved with the Shuttle program and HST on behalf of the astronomical community as well as the successful construction of ISS. This study, led by NASA GSFC, will last about a year, leading to a final report to NASA and Congress in autumn 2010. We will report on its status, results from our March satellite servicing workshop, and recent concepts for serviceable scientific missions.

  12. CONSTELL: NASA's Satellite Constellation Model

    NASA Technical Reports Server (NTRS)

    Theall, Jeffrey R.; Krisko, Paula H.; Opiela, John N.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    The CONSTELL program represents an initial effort by the orbital debris modeling group at NASA/JSC to address the particular issues and problems raised by the presence of LEO satellite constellations. It was designed to help NASA better understand the potential orbital debris consequences of having satellite constellations operating in the future in LEO. However, it could also be used by constellation planners to evaluate architecture or design alternatives that might lessen debris consequences for their constellation or lessen the debris effects on other users of space. CONSTELL is designed to perform debris environment projections rapidly so it can support parametric assessments involving either the constellations themselves or the background environment which represents non-constellation users of the space. The projections need to be calculated quickly because a number of projections are often required to adequately span the parameter space of interest. To this end CONSTELL uses the outputs of other NASA debris environment models as inputs, thus doing away with the need for time consuming upfront calculations. Specifically, CONSTELL uses EVOLVE or ORDEM96 debris spatial density results as its background environment, debris cloud snapshot templates to simulate debris cloud propagation, and time dependent orbit profiles of the intact non- functional constellation spacecraft and upper stages. In this paper the environmental consequences of the deployment of particular LEO satellite constellations using the CONSTELL model will be evaluated. Constellations that will undergo a parametric assessment will reflect realistic parameter values. Among other results the increase in loss rate of non-constellation spacecraft, the number of collisions involving constellation elements, and the replacement rate of constellation satellites as a result of debris impact will be presented.

  13. NASA as a Catalyst: Use of Satellite Data in the States

    NASA Technical Reports Server (NTRS)

    Warnecke, Lisa

    1997-01-01

    NASA revolutionized our view of the world in 1972 with the launch of the first satellite to monitor the Earth. Recognizing the importance of states in governing the United States, NASA then established a program in the late 1970s to educate and assist states in using satellite data products. This report reviews this brief, but beneficial program that laid a foundation and catalyzed satellite data work that continues today in several states. More recently, outreach efforts as part of NASAs Mission to Planet Earth program and growing state government roles, responsibilities, and initiatives led NASA to begin a new effort in 1994 to understand and work effectively with states. This effort included an investigation and synthesis of current satellite data conditions in each of the 50 states that are included in this report. It provided strong evidence that some state governments are applying satellite data to an increasing array of government needs, while other states have very limited applications to date. A wide range of satellite data applications in executive branch agencies are described, as well as the recent status of the Gap Analysis Program in each of the states with this program. The report also reviews the status of satellite data and geographic information coordination efforts in each of the 50 states. In addition to this investigation, NASA convened a meeting of representatives of 12 states experienced with satellite data to identify future satellite data uses and needs, as well as NASA opportunities to enhance the utility of satellite data products. The findings and recommendations from this meeting, the 50 state investigations, and NASAs past state programs are also included in the report; they provide the rationale for NASA to establish a new outreach effort with state governments in the late 1990s.

  14. NASA's Aqua Satellite Sees Extra-Tropical Storm Vongfong Pulling Away from Hokkaido, Japan

    NASA Image and Video Library

    2017-12-08

    NASA's Aqua satellite passed over Extra-Tropical Storm Vongfong on Oct. 4 as it was moving away from Hokkaido, Japan, the northernmost of the big islands. Vongfong transitioned into an extra-tropical storm early on Oct. 4 as its core changed from warm to cold. The MODIS or Moderate Resolution Imaging Spectroradiometer instrument aboard NASA's Aqua satellite captured a visible image of Tropical Storm Vongfong over Japan on Oct. 14 at 03:15 UTC as it was southeast of the island of Hokkaido, Japan. The image showed that south of the center of circulation was almost devoid of clouds and showers, which were all pushed to the north and east of the center as a result of southwesterly wind shear. At 0300 UTC on Oct. 14, the Joint Typhoon Warning Center issued its final advisory on Tropical storm Vongfong. At that time Vongfong's center was located near 29.1 north latitude and 142.9 east longitude, about 111 nautical miles (127.7 miles/205.6 km) southeast of Misawa, Japan. Vongfong was moving to the northeast at a speedy 36 knots (41.4 mph/66.67 kph). Vongfong's maximum sustained winds were near 35 knots (40.2 mph/64.8 kph). Vongfong had transitioned into an extra-tropical system and will continue to move away from northern Japan and over the northwestern Pacific Ocean. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Imaging artificial satellites: An observational challenge

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Hill, D. C.

    2016-10-01

    According to the Union of Concerned Scientists, as of the beginning of 2016 there are 1381 active satellites orbiting the Earth, and the United States' Space Surveillance Network tracks about 8000 manmade orbiting objects of baseball-size and larger. NASA estimates debris larger than 1 cm to number more than half a million. The largest ones can be seen by eye—unresolved dots of light that move across the sky in minutes. For most astrophotographers, satellites are annoying streaks that can ruin hours of work. However, capturing a resolved image of an artificial satellite can pose an interesting challenge for a student, and such a project can provide connections between objects in the sky and commercial and political activities here on Earth.

  16. NASA/French Satellite Data Reveal New Details of Tsunami

    NASA Image and Video Library

    2005-01-12

    Displayed in blue color is the height of sea surface (shown in blue) measured by the Jason satellite two hours after the initial magnitude 9 earthquake hit the region (shown in red) southwest of Sumatra on December 26, 2004. The data were taken by a radar altimeter onboard the satellite along a track traversing the Indian Ocean when the tsunami waves had just filled the entire Bay of Bengal (see the model simulation inset image). The data shown are the changes of sea surface height from previous observations made along the same track 20-30 days before the earthquake, reflecting the signals of the tsunami waves. The maximum height of the leading wave crest was about 50 cm (or 1.6 ft), followed by a trough of sea surface depression of 40 cm. The directions of wave propagation along the satellite track are shown by the blue arrows. http://photojournal.jpl.nasa.gov/catalog/PIA07219

  17. Tracking and data relay satellite system: NASA's new spacecraft data acquisition system

    NASA Astrophysics Data System (ADS)

    Schneider, W. C.; Garman, A. A.

    The growth in NASA's ground network complexity and cost triggered a search for an alternative. Through a lease service contract, Western Union will provide to NASA 10 years of space communications services with a Tracking and Data Relay Satellite System (TDRSS). A constellation of four operating satellites in geostationary orbit and a single ground terminal will provide complete tracking, telemetry and command service for all of NASA's Earth orbital satellites below an altitude of 12,000 km. The system is shared: two satellites will be dedicated to NASA service; a third will provide backup as a shared spare; the fourth satellite will be dedicated to Western Union's Advanced Westar commercial service. Western Union will operate the ground terminal and provide operational satellite control. NASA's Network Control Center will provide the focal point for scheduling user services and controlling the interface between TDRSS and the rest of the NASA communications network, project control centers and data processing facilities. TDRSS single access user spacecraft data systems should be designed for efficient time shared data relay support. Reimbursement policy and rate structure for non-NASA users are currently being developed.

  18. NASA Satellite Laser Ranging Network

    NASA Technical Reports Server (NTRS)

    Carter, David L.

    2004-01-01

    I will be participating in the International Workshop on Laser Ranging. I will be presenting to the International Laser Ranging Service (ILRS) general body meeting on the recent accomplishments and status of the NASA Satellite Laser Ranging (SLR) Network. The recent accomplishments and NASA's future plans will be outlined and the benefits to the scientific community will be addressed. I am member of the ILRS governing board, the Missions working group, and the Networks & Engineering working group. I am the chairman of the Missions Working and will be hosting a meeting during the week of the workshop. I will also represent the NASA SLR program at the ILRS governing board and other working group meetings.

  19. The NASA Advanced Communications Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Beck, G. A.

    1984-10-01

    Forecasts indicate that a saturation of the capacity of the satellite communications service will occur in the U.S. domestic market by the early 1990s. In order to prevent this from happening, advanced technologies must be developed. NASA has been concerned with such a development. One key is the exploitation of the Ka-band (30/20 GHz), which is much wider than C- and Ku-bands together. Another is the use of multiple narrow antenna beams in the satellite to achieve large frequency reuse factors with very high antenna gains. NASA has developed proof-of-concept hardware components which form the basis for a flight demonstration. The Advanced Communications Technology Satellite (ACTS) system will provide this demonstration. Attention is given to the ACTS Program definition, the ACTS Flight System, the Multibeam Communications Package, and the spacecraft bus.

  20. Monitoring Areal Snow Cover Using NASA Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Harshburger, Brian J.; Blandford, Troy; Moore, Brandon

    2011-01-01

    The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data

  1. NASA's Aqua Satellite Tracking Super Typhoon Vongfong

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument aboard NASA's Aqua satellite captured this visible image of Super Typhoon Vongfong on Oct. 9 at 04:25 UTC (12:25 a.m. EDT as it moved north through the Philippine Sea. Credit: NASA Goddard MODIS Rapid Response Team --- Vongfong weakened to a Category 4 typhoon on the Saffir-Simpson scale on Thursday, October 9, with maximum sustained winds near 130 knots (149.6 mph/240.8 kph), down from a Category 5 typhoon on Oct. 8. Forecasters at the Joint Typhoon Warning Center predict slow weakening over the next several days. Vongfong was centered near 20.6 north and 129.5 east, about 384 nautical miles south-southeast of Kadena Air Base, Okinawa, Japan. It is moving to the north-northwest at 7 knots (8 mph/12.9 kph) and generating 44 foot (13.4 meter) high seas. For warnings and watches, visit the Japan Meteorological Agency website at: www.jma.go.jp/en/typh/. Vongfong is forecast to continue moving north through the Philippine Sea and is expected to pass just to the east of Kadena Air Base, then track over Amami Oshima before making landfall in Kyushu and moving over the other three big islands of Japan. Residents of all of these islands should prepare for typhoon conditions beginning on October 10. Read more: 1.usa.gov/1s0CCQy NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Tracking and data relay satellite system - NASA's new spacecraft data acquisition system

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Garman, A. A.

    1979-01-01

    This paper describes NASA's new spacecraft acquisition system provided by the Tracking and Data Relay Satellite System (TDRSS). Four satellites in geostationary orbit and a ground terminal will provide complete tracking, telemetry, and command service for all of NASA's orbital satellites below a 12,000 km altitude. Western Union will lease the system, operate the ground terminal and provide operational satellite control. NASA's network control center will be the focal point for scheduling user services and controlling the interface between TDRSS and the NASA communications network, project control centers, and data processing. TDRSS single access user spacecraft data systems will be designed for time shared data relay support, and reimbursement policy and rate structure for non-NASA users are being developed.

  3. NASA CYGNSS Satellite Measurements and Applications

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Ruf, C. S.; Baker, N. L.; Green, D. S.; Stough, T.

    2017-12-01

    NASA launched the CYGNSS mission 15 December 2016 which comprises a constellation of eight satellites flying in a low inclination (tropical) Earth orbit. Each satellite measures up to four independent GPS signals scattered by the ocean, to obtain surface roughness, near surface wind speed, and air-sea latent heat flux. Utilizing such a large number of satellites, these measurements which are uniquely able to penetrate clouds and heavy precipitation, allows CYGNSS to frequently sample tropical cyclone intensification and of the diurnal cycle of winds. Additionally, data retrievals over land have proven effective to map surface water and soil moisture. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is now conducting science measurements. An overview of the CYGNSS system, mission and measurement concept will be presented, together with highlights of early on-orbit performance. Scientific results obtained during the 2017 hurricane season and featured at the NASA CYGNSS Applications Workshop in Monterey, CA 31 October - 2 November 2, 2017 will also be presented.

  4. NASA Captures 'EPIC' Earth Image

    NASA Image and Video Library

    2017-12-08

    A NASA camera on the Deep Space Climate Observatory satellite has returned its first view of the entire sunlit side of Earth from one million miles away. This color image of Earth was taken by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope. The image was generated by combining three separate images to create a photographic-quality image. The camera takes a series of 10 images using different narrowband filters -- from ultraviolet to near infrared -- to produce a variety of science products. The red, green and blue channel images are used in these color images. The image was taken July 6, 2015, showing North and Central America. The central turquoise areas are shallow seas around the Caribbean islands. This Earth image shows the effects of sunlight scattered by air molecules, giving the image a characteristic bluish tint. The EPIC team is working to remove this atmospheric effect from subsequent images. Once the instrument begins regular data acquisition, EPIC will provide a daily series of Earth images allowing for the first time study of daily variations over the entire globe. These images, available 12 to 36 hours after they are acquired, will be posted to a dedicated web page by September 2015. The primary objective of DSCOVR, a partnership between NASA, the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Air Force, is to maintain the nation’s real-time solar wind monitoring capabilities, which are critical to the accuracy and lead time of space weather alerts and forecasts from NOAA. For more information about DSCOVR, visit: www.nesdis.noaa.gov/DSCOVR/

  5. NASA's mobile satellite development program

    NASA Technical Reports Server (NTRS)

    Rafferty, William; Dessouky, Khaled; Sue, Miles

    1988-01-01

    A Mobile Satellite System (MSS) will provide data and voice communications over a vast geographical area to a large population of mobile users. A technical overview is given of the extensive research and development studies and development performed under NASA's mobile satellite program (MSAT-X) in support of the introduction of a U.S. MSS. The critical technologies necessary to enable such a system are emphasized: vehicle antennas, modulation and coding, speech coders, networking and propagation characterization. Also proposed is a first, and future generation MSS architecture based upon realized ground segment equipment and advanced space segment studies.

  6. Exploring NASA Satellite Data with High Resolution Visualization

    NASA Astrophysics Data System (ADS)

    Wei, J. C.; Yang, W.; Johnson, J. E.; Shen, S.; Zhao, P.; Gerasimov, I. V.; Vollmer, B.; Vicente, G. A.; Pham, L.

    2013-12-01

    Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme event (such as volcano eruption, dust storm, ...etc) interpretation from satellite. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. Such obstacles may be avoided by providing satellite data as ';Images' with accurate pixel-level (Level 2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. We will present a prototype service from the Goddard Earth Sciences Data and Information Services Center (GES DISC) supporting various visualization and data accessing capabilities from satellite Level 2 data (non-aggregated and un-gridded) at high spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement, like NO2 and SO2 from Ozone Monitoring Instrument (OMI), or same parameter with different methods of aggregation, like NO2 in OMNO2G and OMNO2D products), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting. The portal interface will connect to the backend services with OGC standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls. The interface will also be able to connect to other OGC WMS and WCS servers, which will greatly enhance its expandability to integrate additional outside data/map sources.

  7. NASA's IMAGE Spacecraft View of Aurora Australis from Space

    NASA Image and Video Library

    2017-12-08

    NASA file image acquired September 11, 2005 To view a video of this event go here: www.flickr.com/photos/gsfc/6257608714 From space, the aurora is a crown of light that circles each of Earth’s poles. The IMAGE satellite captured this view of the aurora australis (southern lights) on September 11, 2005, four days after a record-setting solar flare sent plasma—an ionized gas of protons and electrons—flying towards the Earth. The ring of light that the solar storm generated over Antarctica glows green in the ultraviolet part of the spectrum, shown in this image. The IMAGE observations of the aurora are overlaid onto NASA’s satellite-based Blue Marble image. From the Earth’s surface, the ring would appear as a curtain of light shimmering across the night sky. Like all solar storms, the September storm distorted the shape of the magnetic field that surrounds the Earth. Without buffeting from the solar wind (charged particles like protons and electrons that are ejected from the Sun), the Earth’s magnetic field would look something like a plump doughnut, with the North and South poles forming the slender hole in the center. In reality, the nearly constant solar winds flatten the space side of the “doughnut” into a long tail. The amount of distortion changes when solar storms, such as the flare on September 7, send stronger winds towards the Earth. Changes to the magnetic field release fast-moving particles, which flow with charged particles from the Sun towards the center of the “doughnut” at the Earth’s poles. As the particles sink into the atmosphere, they collide with oxygen and nitrogen, lighting the sky with Nature’s version of neon lights, the aurora. Though scientists knew that the aurora were caused by charged particles from the Sun and their interaction with the Earth’s magnetic field, they had no way to measure the interaction until NASA launched the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite in 2000. The

  8. NASA's mobile satellite communications program; ground and space segment technologies

    NASA Technical Reports Server (NTRS)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-01-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  9. Iran-Iraq Border Quake Region Imaged by NASA Satellite

    NASA Image and Video Library

    2017-11-15

    On Sunday, Nov. 12, 2017, a magnitude 7.3 earthquake struck along the Iran-Iraq border near Halabjah, Iraq. The earthquake was felt as far away as Kuwait, Qatar, Turkey, Lebanon and Israel. Extensive damage and numerous casualties were reported in the area near the epicenter (yellow star on image). The earthquake occurred along the boundary between the Arabian and Eurasian tectonic plates. This is an earthquake-prone area, and has experienced many deadly earthquakes in the past. In this perspective-view image, bright red areas are crops in fields, pale red on mountain ridges are shrubs and trees, dark gray areas are traces of earlier brush fires, and gray and tan colors are different rock types. The image was acquired Sept. 8, 2017, and the star marks the earthquake epicenter at 34.9 degrees north, 45.9 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22112

  10. NASA's Impacts Towards Improving International Water Management Using Satellites

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lawford, R. G.; Mohr, K. I.; Lee, C. M.

    2013-12-01

    Key objectives of the NASA's Water Resources and Capacity Building Programs are to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management. This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts to international partners, particularly developing countries. NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and internationally to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. This presentation will outline and describe NASA's international water related research, applications and capacity building programs' efforts to address developing countries critical water challenges in Asia, African and Latin America. This will specifically highlight impacts and case studies from NASA's programs in Water Resources (e.g., drought, snow

  11. Indonesia's Active Mount Agung Volcano Imaged by NASA Spacecraft

    NASA Image and Video Library

    2017-12-10

    After a new small eruption sent an ash cloud 1.24 miles (2 kilometers) into the sky on Dec. 7, 2017, Indonesia's Mount Agung volcano quieted down. This image was acquired Dec. 8 after the latest activity by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite. The image shows vegetation in red colors. The summit crater has a hot spot (yellow) as detected by ASTER's thermal infrared channels. More than 65,00 residents continue to be evacuated from the volcano's danger zone in case of a major eruption. The image covers an area of 11 by 12.3 miles (17.8 by 19.8 kilometers), and is located at 8.3 degrees south, 115.5 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22121

  12. Satellite Servicing in Mission Design Studies at the NASA GSFC

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.

    2003-01-01

    Several NASA missions in various stages of development have undergone one-week studies in the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Integrated Mission Design Center (IMDC), mostly in preparation for proposals. The possible role of satellite servicing has been investigated for several of these missions, applying the lessons learned from Hubble Space Telescope (HST) servicing, taking into account the current state of the art, projecting into the future, and implementing NASA long-range plans, and is presented here. The general benefits and costs of injecting satellite servicing are detailed, including components such as mission timeline, mass, fuel, spacecraft design, risk abatement, life extension, and improved performance. The approach taken in addressing satellite servicing during IMDC studies is presented.

  13. Satellite image collection optimization

    NASA Astrophysics Data System (ADS)

    Martin, William

    2002-09-01

    Imaging satellite systems represent a high capital cost. Optimizing the collection of images is critical for both satisfying customer orders and building a sustainable satellite operations business. We describe the functions of an operational, multivariable, time dynamic optimization system that maximizes the daily collection of satellite images. A graphical user interface allows the operator to quickly see the results of what if adjustments to an image collection plan. Used for both long range planning and daily collection scheduling of Space Imaging's IKONOS satellite, the satellite control and tasking (SCT) software allows collection commands to be altered up to 10 min before upload to the satellite.

  14. Updated NASA Satellite Flood Map of Southeastern Texas (ALOS-2 Data)

    NASA Image and Video Library

    2017-08-31

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, used synthetic aperture radar imagery from the Japan Aerospace Exploration Agency's (JAXA) ALOS-2 satellite to create this Flood Proxy Map depicting areas of Southeastern Texas that are likely flooded as a result of Hurricane Harvey (shown by light blue pixels). The map is derived images taken before (July 30, 2017) and after (Aug. 27, 2017) Hurricane Harvey made landfall. The map covers an area of 220 by 400 miles (350 by 640 kilometers). Each pixel measures about 55 yards (50 meters) across. Local ground observations provided anecdotal preliminary validation. The results are also cross-validated with ARIA Sentinel-1 flood proxy map v0.2. The map should be used as guidance, and may be less reliable over urban areas. ALOS-2 data were accessed through the International Charter. https://photojournal.jpl.nasa.gov/catalog/PIA21931

  15. New NASA Satellite Flood Map of Southeastern Texas (Sentinel-1 Data)

    NASA Image and Video Library

    2017-08-31

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, used synthetic aperture radar imagery from the European Space Agency's (ESA) Sentinel-1 satellite to create this Flood Proxy Map of Southeastern Texas, showing areas that are likely flooded as a result of Hurricane Harvey (light blue pixels). The images used to create the map were taken before (Aug. 5, 2017) and after (Aug. 29, 2017) Hurricane Harvey made landfall. The map covers an area of 155 by 211 miles (250 by 340 kilometers). Each pixel measures about 33 yards (30 meters) across. Local ground observations provided anecdotal preliminary validation. The results were also cross-validated with the ARIA ALOS-2 flood proxy map v0.2. The map should be used as guidance, and may be less reliable over urban areas. Sentinel-1 data were accessed through the Copernicus Open Access Hub. Contains modified Copernicus Sentinel data 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21932

  16. NASA's Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1983-01-01

    NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.

  17. Modeling of NASA's 30/20 GHz satellite communications system

    NASA Technical Reports Server (NTRS)

    Kwatra, S. C.; Maples, B. W.; Stevens, G. A.

    1984-01-01

    NASA is in the process of developing technology for a 30/20 GHz satellite communications link. Currently hardware is being assembled for a test transponder. A simulation package is being developed to study the link performance in the presence of interference and noise. This requires developing models for the components of the system. This paper describes techniques used to model the components for which data is available. Results of experiments performed using these models are described. A brief overview of NASA's 30/20 GHz communications satellite program is also included.

  18. NASA Images Show Decreased Clarity in Lake Tahoe Water

    NASA Image and Video Library

    2002-08-06

    Images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer aboard NASA's Terra satellite, launched in 1999, illustrate the state of gradually decreasing water clarity at Lake Tahoe, one of the clearest lakes in the world. The images are available at: http://asterweb.jpl.nasa.gov/default.htm. In the image on the left, acquired in November 2000, vegetation can be seen in red. The image on the right, acquired at the same time by a different spectral band of the instrument, is color-coded to show the bottom of the lake around the shoreline. Where the data are black, the bottom cannot be seen. Scientists monitoring the lake's water clarity from boat measurements obtained since 1965 have discovered that the lake along the California-Nevada border has lost more than one foot of visibility each year, according to the Lake Tahoe Watershed Assessment, a review of scientific information about the lake undertaken at the request of President Clinton and published in February 2000. The most likely causes are increases in algal growth, sediment washed in from surrounding areas and urban growth and development. http://photojournal.jpl.nasa.gov/catalog/PIA03854

  19. New Image of Kilauea's Lava Flows taken by NASA Spacecraft

    NASA Image and Video Library

    2018-05-24

    Hawaii's Kilauea's eruption, which began three weeks ago, has produced new lava flows that reached the ocean. The combination of molten lava and sea water produced clouds of noxious gases, such as hydrogen sulfide. In this image from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer instrument on NASA's Terra satellite, vegetation is displayed in red, clouds are white and the hot lava flows, detected by ASTER's thermal infrared channels, are overlaid in yellow. The image was acquired May 22, 2018, covers an area of 20.3 by 20.9 miles (32.6 by 33.6 kilometers), and is located at 19.6 degrees north, 154.9 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22459

  20. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Boeing Delta II rocket carrying NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite clears the tower after liftoff at 11:44 a.m. EDT from Launch Pad 17A, Cape Canaveral Air Station. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  1. NASA's SDO Satellite Captures Venus Transit Approach

    NASA Image and Video Library

    2012-06-05

    NASA image captured June 5, 2012 at 212357 UTC (about 5:24 p.m. EDT). On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. This image was captured by SDO's AIA instrument at 193 Angstroms. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite sits on Launch Pad 17A, Cape Canaveral Air Station, aboard the Boeing Delta II rocket waiting for launch. Liftoff is scheduled for 11:39 a.m. EDT. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  3. NASA's small spacecraft technology initiative _Clark_ spacecraft

    NASA Astrophysics Data System (ADS)

    Hayduk, Robert J.; Scott, Walter S.; Walberg, Gerald D.; Butts, James J.; Starr, Richard D.

    1996-11-01

    The Small Satellite Technology Initiative (SSTI) is a National Aeronautics and Space Administration (NASA) program to demonstrate smaller, high technology satellites constructed rapidly and less expensively. Under SSTI, NASA funded the development of "Clark," a high technology demonstration satellite to provide 3-m resolution panchromatic and 15-m resolution multispectral images, as well as collect atmospheric constituent and cosmic x-ray data. The 690-Ib. satellite, to be launched in early 1997, will be in a 476 km, circular, sun-synchronous polar orbit. This paper describes the program objectives, the technical characteristics of the sensors and satellite, image processing, archiving and distribution. Data archiving and distribution will be performed by NASA Stennis Space Center and by the EROS Data Center, Sioux Falls, South Dakota, USA.

  4. Happy Mother's Day - Flowers Fields as Seen by NASA Satellite

    NASA Image and Video Library

    2017-12-08

    NASA satellite image acquired February 2, 2008. Outside the ground is frozen, quite possibly covered in snow and ice, and yet, stroll through a supermarket in North America or Europe in February, and you’ll be confronted with large displays of roses. We expect flowers in winter, and equatorial countries meet those expectations. A quarter of the cut flowers sold in Europe are grown in Kenya. Straddling the equator, Kenya gets steady sunlight dealt out in days that vary little in length. It’s the perfect climate for flowers year-round. The center of Kenya’s flower industry is Lake Naivasha, shown here. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) flying on NASA’s Terra satellite captured this image of Lake Naivasha on February 2, 2008. Bright white squares mix with fields of green, tan, and purple along the shores of the lake. Sunlight glints off the long rows of glass greenhouses, turning them silvery blue and white in this view from space. Fallow fields are tan and pink, while growing plants turn the ground bright green. Roses, lilies, and carnations are the most common flowers grown in the greenhouses and fields scattered around the lake. The large-scale industry shown here extends into small-scale rural farms elsewhere in Kenya, where smaller filler flowers are grown. The flowers provide an important source of income to Kenya, but the industry comes with a price. Flowers are not held to the same standards for chemical residues as food products, which are tightly regulated. Strong chemical pesticides can be used on the flowers to produce the perfect, pest-free bloom, and this could pose a health risk to workers and local wildlife, including hippos, environmental groups told the Food and Agriculture Organization of the United Nations in 2002. The chemicals may also have threatened the water quality of Lake Naivasha, one of Kenya’s few freshwater lakes. The Kenya Flower Council instituted a code of conduct establishing

  5. An adaptive technique to maximize lossless image data compression of satellite images

    NASA Technical Reports Server (NTRS)

    Stewart, Robert J.; Lure, Y. M. Fleming; Liou, C. S. Joe

    1994-01-01

    Data compression will pay an increasingly important role in the storage and transmission of image data within NASA science programs as the Earth Observing System comes into operation. It is important that the science data be preserved at the fidelity the instrument and the satellite communication systems were designed to produce. Lossless compression must therefore be applied, at least, to archive the processed instrument data. In this paper, we present an analysis of the performance of lossless compression techniques and develop an adaptive approach which applied image remapping, feature-based image segmentation to determine regions of similar entropy and high-order arithmetic coding to obtain significant improvements over the use of conventional compression techniques alone. Image remapping is used to transform the original image into a lower entropy state. Several techniques were tested on satellite images including differential pulse code modulation, bi-linear interpolation, and block-based linear predictive coding. The results of these experiments are discussed and trade-offs between computation requirements and entropy reductions are used to identify the optimum approach for a variety of satellite images. Further entropy reduction can be achieved by segmenting the image based on local entropy properties then applying a coding technique which maximizes compression for the region. Experimental results are presented showing the effect of different coding techniques for regions of different entropy. A rule-base is developed through which the technique giving the best compression is selected. The paper concludes that maximum compression can be achieved cost effectively and at acceptable performance rates with a combination of techniques which are selected based on image contextual information.

  6. NASA's SDO Satellite Captures 2012 Venus Transit

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 5, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, HMI To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office (SSCO). Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. In this image, Sen. Mikulski receives an overview of NASA’s satellite servicing efforts from Benjamin Reed, deputy program manager of SSCO. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Desiree Stover Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Oregon Wildfire in Eclipse Zone Imaged by NASA Satellite

    NASA Image and Video Library

    2017-08-21

    The Whitewater Fire in the Mount Jefferson Wilderness in Oregon was started by a lightning strike. As of Aug. 18, 2017, more than 117,000 acres and 30 miles (48 kilometers) of the Pacific Crest Trail are closed to the public in an area that had been expected to be popular with people there to view the August 21 solar eclipse. The smoke clouds sit over the burned area, just west-northwest of Mount Jefferson. The image was acquired Aug. 18, 2017, covers an area of 16 by 17 miles (26.1 by 27.2 kilometers), and is located at 44.7 degrees north, 121.8 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA21877

  9. NASA Catches Tropical Storm Leslie and Hurricane Michael in the Atlantic

    NASA Image and Video Library

    2017-12-08

    This visible image of Tropical Storm Leslie and Hurricane Michael was taken by the MODIS instrument aboard both NASA's Aqua and Terra satellites on Sept. 9 at 12:50 p.m. EDT. Credit: NASA Goddard/MODIS Rapid Response Team -- Satellite images from two NASA satellites were combined to create a full picture of Tropical Storm Leslie and Hurricane Michael spinning in the Atlantic Ocean. Imagery from NASA's Aqua and Terra satellites showed Leslie now past Bermuda and Michael in the north central Atlantic, and Leslie is much larger than the smaller, more powerful Michael. Images of each storm were taken by the Moderate Resolution Imaging Spectroradiometer, or MODIS instrument that flies onboard both the Aqua and Terra satellites. Both satellites captured images of both storms on Sept. 7 and Sept. 10. The image from Sept. 7 showed a much more compact Michael with a visible eye. By Sept. 10, the eye was no longer visible in Michael and the storm appeared more elongated from south to north. To continue reading go to: 1.usa.gov/NkUPqn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    As light peers over the horizon at the crack of dawn, NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite waits for launch on Launch Pad 17A, Cape Canaveral Air Station, aboard the Boeing Delta II rocket. Liftoff is scheduled for 11:39 a.m. EDT. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  11. Launch of NASA's FUSE satellite from CCAS.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Clouds of smoke and steam billow around the Boeing Delta II rocket as it roars into the sky after liftoff at 11:44 a.m. EDT from Launch Pad 17A, Cape Canaveral Air Station. The rocket is carrying NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed to investigate the origin and evolution of the lightest elements in the universe - hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum.

  12. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office. Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. In this image, a gathering of Goddard employees watch the ribbon cutting. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Desiree Stover Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office. Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. In this image, a gathering of Goddard employees await the arrival of Sen. Mikulski to the facility. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Desiree Stover Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. NASA to launch European cosmic ray experimental satellite

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Europe's first observatory satellite (COS-B) designed for extraterrestrial gamma radiation study and launched on a Delta rocket for the European Space Agency (ESA) by NASA is briefly described. The COS-B's mission objectives are given along with launch operations.

  15. Trends in NASA communication satellites.

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.; Robbins, W. H.; Stretchberry, D. M.

    1972-01-01

    Discussion of the potential applications of satellite communications technology in meeting the national needs in education, health care, culture, and data transfer techniques. Experiments with the NASA ATS 1, 3 and 5 spacecraft, which are conducted in an attempt to satisfy such needs, are reviewed. The future needs are also considered, covering the requirements of multiple region coverage, communications between regions, large numbers of ground terminals, multichannel capability and high quality TV pictures. The ATS F and CTS spacecraft are expected to be available in the near future to expand experiments in this field.

  16. A Class for Teachers Featuring a NASA Satellite Mission

    NASA Astrophysics Data System (ADS)

    Battle, R.; Hawkins, I.

    1996-05-01

    As part of the NASA IDEA (Initiative to Develop Education through Astronomy) program, the UC Berkeley Center for EUV Astrophysics (CEA) received a grant to develop a self-contained teacher professional development class featuring NASA's Extreme Ultraviolet Explorer (EUVE) satellite mission. This class was offered in collaboration with the Physics/Astronomy Department and the Education Department of San Francisco State University during 1994, and in collaboration with the UCB Graduate School of Education in 1995 as an extension course. The class served as the foundation for the Science Education Program at CEA, providing valuable lessons and experience through a full year of intense collaboration with 50 teachers from the diverse school districts of the San Francisco Bay Area teaching in the 3rd--12th grade range. The underlying theme of the class focused on how scientists carry out research using a NASA satellite mission. Emphasis was given to problem-solving techniques, with specific examples taken from the pre- and post-launch stages of the EUVE mission. The two, semester-long classes were hosted by the CEA, so the teachers spent an average of 4 hours/week during 17 weeks immersed in astrophysics, collaborating with astronomers, and working with colleagues from the Lawrence Hall of Science and the Graduate School of Education. The teachers were taught the computer skills and space astrophysics concepts needed to perform hands-on analysis and interpretation of the EUVE satellite data and the optical identification program. As a final project, groups of teachers developed lesson plans based on NASA and other resources that they posted on the World Wide Web using html. This project's model treats teachers as professionals, and allows them to collaborate with scientists and to hone their curriculum development skills, an important aspect of their professional growth. We will summarize class highlights and showcase teacher-developed lesson plans. A detailed evaluation

  17. ACTS Satellite Telemammography Network Experiments

    NASA Technical Reports Server (NTRS)

    Kachmar, Brian A.; Kerczewski, Robert J.

    2000-01-01

    The Satellite Networks and Architectures Branch of NASA's Glenn Research Center has developed and demonstrated several advanced satellite communications technologies through the Advanced Communications Technology Satellite (ACTS) program. One of these technologies is the implementation of a Satellite Telemammography Network (STN) encompassing NASA Glenn, the Cleveland Clinic Foundation. the University of Virginia, and the Ashtabula County Medical Center. This paper will present a look at the STN from its beginnings to the impact it may have on future telemedicine applications. Results obtained using the experimental ACTS satellite demonstrate the feasibility of Satellite Telemammography. These results have improved teleradiology processes and mammography image manipulation, and enabled advances in remote screening methodologies. Future implementation of satellite telemammography using next generation commercial satellite networks will be explored. In addition, the technical aspects of the project will be discussed, in particular how the project has evolved from using NASA developed hardware and software to commercial off the shelf (COTS) products. Development of asymmetrical link technologies was an outcome of this work. Improvements in the display of digital mammographic images, better understanding of end-to-end system requirements, and advances in radiological image compression were achieved as a result of the research. Finally, rigorous clinical medical studies are required for new technologies such as digital satellite telemammography to gain acceptance in the medical establishment. These experiments produced data that were useful in two key medical studies that addressed the diagnostic accuracy of compressed satellite transmitted digital mammography images. The results of these studies will also be discussed.

  18. Feasibility of NASA TT&C via Commercial Satellite Services

    NASA Technical Reports Server (NTRS)

    Mitchell, Carl W.; Weiss, Roland

    1997-01-01

    This report presents the results of a study to identify impact and driving requirements by implementing commercial satellite communications service into traditional National Aeronautics and Space Administration (NASA) space-ground communications. The NASA communication system is used to relay spacecraft and instrument commands, telemetry and science data. NASA's goal is to lower the cost of operation and increase the flexibility of spacecraft operations. Use of a commercial network offers the opportunity to contact a spacecraft on a nearly "on-demand" basis with ordinary phone calls to enable real time interaction with science events.

  19. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office (SSCO). Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. Here, she receives an overview of a robotic console station used to practice satellite servicing activities. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Chris Gunn Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office. Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. In this image, Sen. Mikulski receives an overview of the Asteroid Redirect Mission in front of mockups of the asteroid and capture vehicle. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Bill Hrybyk Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office (SSCO). In this image, she is joined by Chris Scolese, Goddard Center Director (right) and Frank Cepollina, Associate Director of the SSCO (left). Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Chris Gunn Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2016-01-06

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office (SSCO). In this image, she is joined by Chris Scolese, Goddard Center Director (right) and Frank Cepollina, Associate Director of the SSCO (left). Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Chris Gunn Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Access NASA Satellite Global Precipitation Data Visualization on YouTube

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Su, J.; Acker, J.; Huffman, G.; Vollmer, B.; Wei, J.; Meyer, D.

    2017-01-01

    Since the satellite era began, NASA has collected a large volume of Earth science observations for research and applications around the world. The collected and archived satellite data at 12 NASA data centers can also be used for STEM education and activities such as disaster events, climate change, etc. However, accessing satellite data can be a daunting task for non-professional users such as teachers and students because of unfamiliarity of terminology, disciplines, data formats, data structures, computing resources, processing software, programming languages, etc. Over the years, many efforts including tools, training classes, and tutorials have been developed to improve satellite data access for users, but barriers still exist for non-professionals. In this presentation, we will present our latest activity that uses a very popular online video sharing Web site, YouTube (https://www.youtube.com/), for accessing visualizations of our global precipitation datasets at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). With YouTube, users can access and visualize a large volume of satellite data without the necessity to learn new software or download data. The dataset in this activity is a one-month animation for the GPM (Global Precipitation Measurement) Integrated Multi-satellite Retrievals for GPM (IMERG). IMERG provides precipitation on a near-global (60 deg. N-S) coverage at half-hourly time interval, providing more details on precipitation processes and development compared to the 3-hourly TRMM (Tropical Rainfall Measuring Mission) Multisatellite Precipitation Analysis (TMPA, 3B42) product. When the retro-processing of IMERG during the TRMM era is finished in 2018, the entire video will contain more than 330,000 files and will last 3.6 hours. Future plans include development of flyover videos for orbital data for an entire satellite mission or project. All videos, including the one-month animation, will be uploaded and

  4. NASA-NOAA's Suomi NPP Satellite Gets Colorful Look at Hurricane Blanca

    NASA Image and Video Library

    2015-06-05

    NASA-NOAA's Suomi NPP satellite flew over Hurricane Blanca in the Eastern Pacific Ocean and gathered infrared data on the storm that was false-colored to show locations of the strongest thunderstorms within the storm. The Visible Infrared Imaging Radiometer Suite or VIIRS instrument aboard the satellite gathered infrared data of the storm that was made into an image at the University of Wisconsin-Madison. The image was false-colored to show temperature. Coldest cloud top temperatures indicate higher, stronger, thunderstorms within a tropical cyclone. Those are typically the strongest storms with potential for heavy rainfall. VIIRS is a scanning radiometer that collects visible and infrared imagery and "radiometric" measurements. Basically it means that VIIRS data is used to measure cloud and aerosol properties, ocean color, sea and land surface temperature, ice motion and temperature, fires, and Earth's albedo (reflected light). The VIIRS image from June 5 at 8:11 UTC (4:11 a.m. EDT) showed two areas of coldest cloud top temperatures and strongest storms were west-southwest and east-northeast of the center of Blanca's circulation center. On June 5 at 5 a.m. EDT (0900 UTC) Blanca's maximum sustained winds were near 105 mph (165 kph) with higher gusts. The National Hurricane Center (NHC) forecast expects some strengthening during the next day or so. Weakening is forecast to begin by late Saturday. At that time, NHC placed the center of Hurricane Blanca near latitude 14.3 North, longitude 106.2 West. That puts the center about 350 miles (560 km) south-southwest of Manzanillo, Mexico and about 640 miles (1,030 km) south-southeast of Cabo San Lucas, Mexico. The estimated minimum central pressure is 968 millibars (28.59 inches). Blanca is moving toward the northwest near 10 mph (17 kph). A northwestward to north-northwestward motion at a similar forward speed is expected to continue through Saturday night. Blanca has been stirring up surf along the coast of southwestern

  5. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office. Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Bill Hrybyk Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office. Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Chris Gunn Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Access NASA Satellite Global Precipitation Data Visualization on YouTube

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Su, J.; Acker, J. G.; Huffman, G. J.; Vollmer, B.; Wei, J.; Meyer, D. J.

    2017-12-01

    Since the satellite era began, NASA has collected a large volume of Earth science observations for research and applications around the world. Satellite data at 12 NASA data centers can also be used for STEM activities such as disaster events, climate change, etc. However, accessing satellite data can be a daunting task for non-professional users such as teachers and students because of unfamiliarity of terminology, disciplines, data formats, data structures, computing resources, processing software, programing languages, etc. Over the years, many efforts have been developed to improve satellite data access, but barriers still exist for non-professionals. In this presentation, we will present our latest activity that uses the popular online video sharing web site, YouTube, to access visualization of global precipitation datasets at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). With YouTube, users can access and visualize a large volume of satellite data without necessity to learn new software or download data. The dataset in this activity is the 3-hourly TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis (TMPA). The video consists of over 50,000 data files collected since 1998 onwards, covering a zone between 50°N-S. The YouTube video will last 36 minutes for the entire dataset record (over 19 years). Since the time stamp is on each frame of the video, users can begin at any time by dragging the time progress bar. This precipitation animation will allow viewing precipitation events and processes (e.g., hurricanes, fronts, atmospheric rivers, etc.) on a global scale. The next plan is to develop a similar animation for the GPM (Global Precipitation Measurement) Integrated Multi-satellitE Retrievals for GPM (IMERG). The IMERG provides precipitation on a near-global (60°N-S) coverage at half-hourly time interval, showing more details on precipitation processes and development, compared to the 3

  8. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office (SSCO). Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. Here, she receives an overview of a robotic console station used to practice satellite servicing activities. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Desiree Stover NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NASA's global differential GPS system and the TDRSS augmentation service for satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz; Young, Larry; Stocklin, Frank; Rush, John

    2004-01-01

    NASA is planning to launch a new service for Earth satellites providing them with precise GPS differential corrections and other ancillary information enabling decimeter level orbit determination accuracy, and nanosecond time-transfer accuracy, onboard, in real-time. The TDRSS Augmentation Service for Satellites (TASS) will broadcast its message on the S-band multiple access channel of NASA's Tracking and Data Relay Satellite System (TDRSS). The satellite's phase array antenna has been configured to provide a wide beam, extending coverage up to 1000 km altitude over the poles. Global coverage will be ensured with broadcast from three or more TDRSS satellites. The GPS differential corrections are provided by the NASA Global Differential GPS (GDGPS) System, developed and operated by NASA's Jet Propulsion Laboratory. The GDGPS System employs a global ground network of more than 70 GPS receivers to monitor the GPS constellation in real time. The system provides real-time estimates of the GPS satellite states, as well as many other real-time products such as differential corrections, global ionospheric maps, and integrity monitoring. The unique multiply redundant architecture of the GDGPS System ensures very high reliability, with 99.999% demonstrated since the inception of the system in Early 2000. The estimated real time GPS orbit and clock states provided by the GDGPS system are accurate to better than 20 cm 3D RMS, and have been demonstrated to support sub-decimeter real time positioning and orbit determination for a variety of terrestrial, airborne, and spaceborne applications. In addition to the GPS differential corrections, TASS will provide real-time Earth orientation and solar flux information that enable precise onboard knowledge of the Earth-fixed position of the spacecraft, and precise orbit prediction and planning capabilities. TASS will also provide 5 seconds alarms for GPS integrity failures based on the unique GPS integrity monitoring service of the

  10. Developments in Nano-Satellite Structural Subsystem Design at NASA-GSFC

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter; Panetta, Peter V.

    1999-01-01

    The NASA-GSFC Nano-satellite Technology Development Program will enable flying constellations of tens to hundreds of nano-satellites for future NASA Space and Earth Science missions. Advanced technology components must be developed to make these future spacecraft compact, lightweight, low-power, low-cost, and survivable to a radiation environment over a two-year mission lifetime. This paper describes the efforts underway to develop lightweight, low cost, and multi-functional structures, serviceable designs, and robust mechanisms. As designs shrink, the integration of various subsystems becomes a vital necessity. This paper also addresses structurally integrated electrical power, attitude control, and thermal systems. These innovations bring associated fabrication, integration, and test challenges. Candidate structural materials and processes are examined and the merits of each are discussed. Design and fabrication processes include flat stock composite construction, cast aluminum-beryllium alloy, and an injection molded fiber-reinforced plastic. A viable constellation deployment scenario is described as well as a Phase-A Nano-satellite Pathfinder study.

  11. NASA Image eXchange (NIX)

    NASA Technical Reports Server (NTRS)

    vonOfenheim. William H. C.; Heimerl, N. Lynn; Binkley, Robert L.; Curry, Marty A.; Slater, Richard T.; Nolan, Gerald J.; Griswold, T. Britt; Kovach, Robert D.; Corbin, Barney H.; Hewitt, Raymond W.

    1998-01-01

    This paper discusses the technical aspects of and the project background for the NASA Image exchange (NIX). NIX, which provides a single entry point to search selected image databases at the NASA Centers, is a meta-search engine (i.e., a search engine that communicates with other search engines). It uses these distributed digital image databases to access photographs, animations, and their associated descriptive information (meta-data). NIX is available for use at the following URL: http://nix.nasa.gov./NIX, which was sponsored by NASAs Scientific and Technical Information (STI) Program, currently serves images from seven NASA Centers. Plans are under way to link image databases from three additional NASA Centers. images and their associated meta-data, which are accessible by NIX, reside at the originating Centers, and NIX utilizes a virtual central site that communicates with each of these sites. Incorporated into the virtual central site are several protocols to support searches from a diverse collection of database engines. The searches are performed in parallel to ensure optimization of response times. To augment the search capability, browse functionality with pre-defined categories has been built into NIX, thereby ensuring dissemination of 'best-of-breed' imagery. As a final recourse, NIX offers access to a help desk via an on-line form to help locate images and information either within the scope of NIX or from available external sources.

  12. NRAO Teams With NASA Gamma-Ray Satellite

    NASA Astrophysics Data System (ADS)

    2007-06-01

    The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can

  13. The NASA CYGNSS Small Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Gleason, S.; McKague, D. S.; Rose, R.; Scherrer, J.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a constellation of eight microsatellite observatories that was launched into a low (35°) inclination, low Earth orbit on 15 December 2016. Each observatory carries a 4-channel GNSS-R bistatic radar receiver. The radars are tuned to receive the L1 signals transmitted by GPS satellites, from which near-surface ocean wind speed is estimated. The mission architecture is designed to improve the temporal sampling of winds in tropical cyclones (TCs). The 32 receive channels of the complete CYGNSS constellation, combined with the 30 GPS satellite transmitters, results in a revisit time for sampling of the wind of 2.8 hours (median) and 7.2 hours (mean) at all locations between 38 deg North and 38 deg South latitude. Operation at the GPS L1 frequency of 1575 MHz allows for wind measurements in the TC inner core that are often obscured from other spaceborne remote sensing instruments by intense precipitation in the eye wall and inner rain bands. An overview of the CYGNSS mission wil be presented, followed by early on-orbit status and results.

  14. Satellite Image Classification of Building Damages Using Airborne and Satellite Image Samples in a Deep Learning Approach

    NASA Astrophysics Data System (ADS)

    Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G.

    2018-05-01

    The localization and detailed assessment of damaged buildings after a disastrous event is of utmost importance to guide response operations, recovery tasks or for insurance purposes. Several remote sensing platforms and sensors are currently used for the manual detection of building damages. However, there is an overall interest in the use of automated methods to perform this task, regardless of the used platform. Owing to its synoptic coverage and predictable availability, satellite imagery is currently used as input for the identification of building damages by the International Charter, as well as the Copernicus Emergency Management Service for the production of damage grading and reference maps. Recently proposed methods to perform image classification of building damages rely on convolutional neural networks (CNN). These are usually trained with only satellite image samples in a binary classification problem, however the number of samples derived from these images is often limited, affecting the quality of the classification results. The use of up/down-sampling image samples during the training of a CNN, has demonstrated to improve several image recognition tasks in remote sensing. However, it is currently unclear if this multi resolution information can also be captured from images with different spatial resolutions like satellite and airborne imagery (from both manned and unmanned platforms). In this paper, a CNN framework using residual connections and dilated convolutions is used considering both manned and unmanned aerial image samples to perform the satellite image classification of building damages. Three network configurations, trained with multi-resolution image samples are compared against two benchmark networks where only satellite image samples are used. Combining feature maps generated from airborne and satellite image samples, and refining these using only the satellite image samples, improved nearly 4 % the overall satellite image

  15. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances

  16. Applications based on restored satellite images

    NASA Astrophysics Data System (ADS)

    Arbel, D.; Levin, S.; Nir, M.; Bhasteker, I.

    2005-08-01

    Satellites orbit the earth and obtain imagery of the ground below. The quality of satellite images is affected by the properties of the atmospheric imaging path, which degrade the image by blurring it and reducing its contrast. Applications involving satellite images are many and varied. Imaging systems are also different technologically and in their physical and optical characteristics such as sensor types, resolution, field of view (FOV), spectral range of the acquiring channels - from the visible to the thermal IR (TIR), platforms (mobilization facilities; aircrafts and/or spacecrafts), altitude above ground surface etc. It is important to obtain good quality satellite images because of the variety of applications based on them. The more qualitative is the recorded image, the more information is yielded from the image. The restoration process is conditioned by gathering much data about the atmospheric medium and its characterization. In return, there is a contribution to the applications based on those restorations i.e., satellite communication, warfare against long distance missiles, geographical aspects, agricultural aspects, economical aspects, intelligence, security, military, etc. Several manners to use restored Landsat 7 enhanced thematic mapper plus (ETM+) satellite images are suggested and presented here. In particular, using the restoration results for few potential geographical applications such as color classification and mapping (roads and streets localization) methods.

  17. Ash from Kilauea Eruption Viewed by NASA's MISR

    Atmospheric Science Data Center

    2018-06-07

    ... title:  Ash from Kilauea Eruption Viewed by NASA's MISR View Larger Image   Ash ... Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite captured this view of the island as it passed overhead. ...

  18. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office. Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm (visible at top right), a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Bill Hrybyk Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office (SSCO). Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm (visible above, at right), a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Image credit: NASA/Desiree Stover Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall

  1. Shadow imaging of geosynchronous satellites

    NASA Astrophysics Data System (ADS)

    Douglas, Dennis Michael

    Geosynchronous (GEO) satellites are essential for modern communication networks. If communication to a GEO satellite is lost and a malfunction occurs upon orbit insertion such as a solar panel not deploying there is no direct way to observe it from Earth. Due to the GEO orbit distance of ~36,000 km from Earth's surface, the Rayleigh criteria dictates that a 14 m telescope is required to conventionally image a satellite with spatial resolution down to 1 m using visible light. Furthermore, a telescope larger than 30 m is required under ideal conditions to obtain spatial resolution down to 0.4 m. This dissertation evaluates a method for obtaining high spatial resolution images of GEO satellites from an Earth based system by measuring the irradiance distribution on the ground resulting from the occultation of the satellite passing in front of a star. The representative size of a GEO satellite combined with the orbital distance results in the ground shadow being consistent with a Fresnel diffraction pattern when observed at visible wavelengths. A measurement of the ground shadow irradiance is used as an amplitude constraint in a Gerchberg-Saxton phase retrieval algorithm that produces a reconstruction of the satellite's 2D transmission function which is analogous to a reverse contrast image of the satellite. The advantage of shadow imaging is that a terrestrial based redundant set of linearly distributed inexpensive small telescopes, each coupled to high speed detectors, is a more effective resolved imaging system for GEO satellites than a very large telescope under ideal conditions. Modeling and simulation efforts indicate sub-meter spatial resolution can be readily achieved using collection apertures of less than 1 meter in diameter. A mathematical basis is established for the treatment of the physical phenomena involved in the shadow imaging process. This includes the source star brightness and angular extent, and the diffraction of starlight from the satellite

  2. Argentine Flooding Observed by NASA Satellite

    NASA Image and Video Library

    2016-01-07

    Since August 2015, heavy rains have caused rivers to overflow and forced tens of thousands from their homes in Paraguay, Argentina and Brazil. Rosario, Argentina is located 186 miles (300 kilometers) northwest of Buenos Aires, on the western shore of the Parana River. The entire Parana River floodplain for hundreds of kilometers is still under water or wet, as seen in this image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft, acquired Jan. 6, 2016. The image covers an area of 30.8 by 33.9 miles (49.5 by 54.6 kilometers), and is located at 33 degrees south, 61 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20295

  3. Collecting and Animating Online Satellite Images.

    ERIC Educational Resources Information Center

    Irons, Ralph

    1995-01-01

    Describes how to generate automated classroom resources from the Internet. Topics covered include viewing animated satellite weather images using file transfer protocol (FTP); sources of images on the Internet; shareware available for viewing images; software for automating image retrieval; procedures for animating satellite images; and storing…

  4. NASA GRACE Sees a Drying California

    NASA Image and Video Library

    2014-10-01

    This trio of images depicts satellite observations of declining water storage in California as seen by NASA Gravity Recovery and Climate Experiment satellites in June 2002 left, June 2008 center and June 2014 right.

  5. NASA Launches NOAA Weather Satellite to Improve Forecasts

    NASA Image and Video Library

    2017-11-18

    Early on the morning of Saturday, Nov. 18, NASA successfully launched for the National Oceanic and Atmospheric Administration (NOAA) the first in a series of four advanced polar-orbiting satellites, equipped with next-generation technology and designed to improve the accuracy of U.S. weather forecasts out to seven days. The Joint Polar Satellite System-1 (JPSS-1) lifted off on a United Launch Alliance Delta II rocket from Vandenberg Air Force Base on California’s central coast. JPSS-1 data will improve weather forecasting and help agencies involved with post-storm recovery by visualizing storm damage and the geographic extent of power outages.

  6. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Optical and Microwave Communications

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Shaw, Harry

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available.In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  7. Next-Generation NASA Earth-Orbiting Relay Satellites: Fusing Microwave and Optical Communications

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2018-01-01

    NASA is currently considering architectures and concepts for the generation of relay satellites that will replace the Tracking and Data Relay Satellite (TDRS) constellation, which has been flying since 1983. TDRS-M, the last of the second TDRS generation, launched in August 2017, extending the life of the TDRS constellation beyond 2030. However, opportunities exist to re-engineer the concepts of geosynchronous Earth relay satellites. The needs of the relay satellite customers have changed dramatically over the last 34 years since the first TDRS launch. There is a demand for greater bandwidth as the availability of the traditional RF spectrum for space communications diminishes and the demand for ground station access grows. The next generation of NASA relay satellites will provide for operations that have factored in these new constraints. In this paper, we describe a heterogeneous constellation of geosynchronous relay satellites employing optical and RF communications. The new constellation will enable new optical communications services formed by user-to-space relay, space relay-to-space relay and space relay-to-ground links. It will build upon the experience from the Lunar Laser Communications Demonstration from 2013 and the Laser Communications Relay Demonstration to be launched in 2019.Simultaneous to establishment of the optical communications space segment, spacecraft in the TDRS constellation will be replaced with RF relay satellites with targeted subsets of the TDRS capabilities. This disaggregation of the TDRS service model will allow for flexibility in replenishing the needs of legacy users as well as addition of new capabilities for future users. It will also permit the U.S. government access to launch capabilities such as rideshare and to hosted payloads that were not previously available. In this paper, we also explore how the next generation of Earth relay satellites provides a significant boost in the opportunities for commercial providers to the

  8. The UCL NASA 3D-RPIF Imaging Centre - a status report.

    NASA Astrophysics Data System (ADS)

    Muller, J.-P.; Grindrod, P.

    2013-09-01

    The NASA RPIF (Regional Planetary Imaging Facility) network of 9 US and 8 international centres were originally set-up in 1977 to "maintain photographic and digital data as well as mission documentation and cartographic data. Each facility's general holding contains images and maps of planets and their satellites taken by solar system exploration spacecraft. These planetary image facilities are open to the public. The facilities are primarily reference centers for browsing, studying, and selecting lunar and planetary photographic and cartographic materials. Experienced staff can assist scientists, educators, students, media, and the public in ordering materials for their own use." In parallel, the NASA Planetary Data System (PDS) and ESA Planetary Science Archive (PSA) were set-up to distribute digital data initially on media such as CDROM and DVD but now entirely online. The UK NASA RPIF was the first RPIF to be established outside of the US, in 1980. In [1], the 3D-RPIF is described. Some example products derived using this equipment are illustrated here. In parallel, at MSSL a large linux cluster and associated RAID_based system has been created to act as a mirror PDS Imaging node so that huge numbers of rover imagery (from MER & MSL to begin with) and very high resolution (large size) data is available to users of the RPIF and a variety of EU-FP7 projects based at UCL.

  9. NASA seeks to revive lost probe that traced solar storms

    NASA Astrophysics Data System (ADS)

    Voosen, Paul

    2018-02-01

    NASA's Imager for Magnetopause-to-Aurora Global Exploration (IMAGE), a satellite that failed in 2005, was recently discovered to be reactivated by an amateur astronomer. Until its demise, IMAGE provided unparalleled views of solar storms crashing into Earth's magnetosphere, a capability that has not been replaced since. The amateur astronomer was on the search for Zuma, a classified U.S. satellite that's believed to have failed after launch. He instead discovered IMAGE, broadcasting again, likely thanks to a reboot that occurred after its batteries drained during a past solar eclipse. NASA scientists are now working to communicate with the satellite in the hopes of reviving its six scientific instruments.

  10. A First: NASA Spots Single Methane Leak from Space

    NASA Image and Video Library

    2016-06-14

    Atmospheric methane is a potent greenhouse gas, but the percentage of it produced through human activities is still poorly understood. Future instruments on orbiting satellites can help address this issue by surveying human-produced methane emissions. Recent data from the Aliso Canyon event, a large accidental methane release near Porter Ranch, California, demonstrates this capability. The Hyperion imaging spectrometer onboard NASA's EO-1 satellite successfully detected this release event on three different overpasses during the winter of 2015-2016. This is the first time the methane plume from a single facility has been observed from space. The orbital observations were consistent with airborne measurements. This image pair shows a comparison of detected methane plumes over Aliso Canyon, California, acquired 11 days apart in Jan. 2016 by: (left) NASA's AVIRIS instrument on a NASA ER-2 aircraft at 4.1 miles (6.6 kilometers) altitude and (right) by the Hyperion instrument on NASA's Earth Observing-1 satellite in low-Earth orbit. The additional red streaks visible in the EO-1 Hyperion image result from measurement noise -- Hyperion was not specifically designed for methane sensing and is not as sensitive as AVIRIS-NG. Additionally, the EO-1 satellite's current orbit provided poor illumination conditions. Future instruments with much greater sensitivity on orbiting satellites can survey the biggest sources of human-produced methane around the world. http://photojournal.jpl.nasa.gov/catalog/PIA20716

  11. The NASA EV-2 CYGNSS Small Satellite Constellation Mission

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Gleason, S.; Jelenak, Z.; Katzberg, S. J.; Ridley, A. J.; Rose, R.; Scherrer, J.; Zavorotny, V.

    2012-12-01

    The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the principle deficiencies with current TC intensity forecasts, which lies in inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. CYGNSS is specifically designed to address these two limitations by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a constellation of satellites. The use of a dense constellation of nanosatellite results in spatial and temporal sampling properties that are markedly different from conventional imagers. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. Historical records of actual TC storm tracks are overlaid onto a simulated time series of the surface wind sampling enabled by the constellation. For comparison purposes, a similar analysis is conducted using the sampling properties of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core are examined. The spacecraft and constellation mission are described. The signal-to-noise ratio of the measured scattered signal and the resulting uncertainty in retrieved surface wind speed are also examined.

  12. NASA's SDO Satellite Captures Venus Transit Approach -- Bigger, Better!

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 5, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. NASA's SDO Satellite Captures 2012 Venus Transit [Close-Up

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 5, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, HMI To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Practical Application of NASA-Langley Advanced Satellite Products to In-Flight Icing Nowcasts

    NASA Technical Reports Server (NTRS)

    Bernstein, Ben C.; Wolff, Cory A.; Minnis, Patrick

    2006-01-01

    Experimental satellite-based icing products developed by the NASA Langley Research Center provide new tools to identify the locations of icing and its intensity. Since 1997, research forecasters at the National Center for Atmospheric Research (NCAR) have been helping to guide the NASA Glenn Research Center's Twin Otter aircraft into and out of clouds and precipitation for the purpose of characterizing in-flight icing conditions, including supercooled large drops, the accretions that result from such encounters and their effect on aircraft performance. Since the winter of 2003-04, the NASA Langley satellite products have been evaluated as part of this process, and are being considered as an input to NCAR s automated Current Icing Potential (CIP) products. This has already been accomplished for a relatively straightforward icing event, but many icing events have much more complex characteristics, providing additional challenges to all icing diagnosis tools. In this paper, four icing events with a variety of characteristics will be examined, with a focus on the NASA Langley satellite retrievals that were available in real time and their implications for icing nowcasting and potential applications in CIP.

  15. NASA Sees Cyclone Chapala Approaching Landfall in Yemen

    NASA Image and Video Library

    2017-12-08

    On Nov. 2, 2015 at 09:40 UTC (4:40 p.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured an image of Tropical Cyclone Chapala as the eye of the storm was approaching the Yemen coast. Chapala maintained an eye, although it appeared cloud-covered. Animated multispectral satellite imagery shows the system has maintained a 15-nautical-mile-wide eye and structure. The image was created by the MODIS Rapid Response Team at NASA's Goddard Space Flight Center, Greenbelt, Maryland. Chapala weakened from category four intensity a couple days ago while maintaining a course that steers it toward Yemen. Credit: NASA Goddard MODIS Rapid Response Team Read more: www.nasa.gov/f…/goddard/chapala-northern-indian-ocean NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. A new phase for NASA's communications satellite program

    NASA Technical Reports Server (NTRS)

    Dement, D. K.

    1980-01-01

    NASA's research in communications satellite technology is discussed, including orbit-efficient techniques and applications by the commercial sector. Attention is given to expanding the capacities of the C-band (6-4 GHz) and the Ku-band (14-11 GHz), opening the Ka-band (30/20 GHz), broadly applied 're-use' of the spectrum, and developing multibeam spacecraft antennas with on-board switching. Increasing wideband services in video, high-speed data, and voice trunking is considered, as are narrow-band systems that may be used for data collection or public safety, with possible expansion to a thin-route satellite system. In particular, communication for medical, disaster, or search-and-rescue emergencies may be met by the integration of a satellite service with land mobile communications via terrestrial radio links. Also considered is a large geostationary platform providing electrical power, thermal rejection, and orbital station-keeping for many communications payloads.

  17. NASA satellite to track North Pole expedition

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The proposed expedition of a lone explorer and the use of Nimbus 6 (NASA meteorological research satellite) to track his journey is reported. The journey is scheduled to start March 4, 1978, and will cover a distance of 6.000 Km (3,728 miles) from northern Canada to the North Pole and return, traveling the length of Greenland's isolated interior. The mode of transportation for the explorer will be by dog sled. Instrumentation and tracking techniques are discussed.

  18. NASA Sees Smoke from California’s Long Valley Wildfire

    NASA Image and Video Library

    2017-12-08

    NASA’s Aqua satellite captured a large area of smoke from the Long Valley Wildfire that was affecting Yosemite National Park. This natural-color satellite image was collected by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard the Aqua satellite. The image, taken July 20, showed actively burning areas in red, as detected by MODIS’s thermal bands. According to Inciweb, an interagency all-risk incident information management system that coordinates with federal, state and local agencies to manage wildfires, the fire started on Tuesday July 11, 2017. It is located about two miles north of Doyle, California and about 50 miles north of Reno, Nevada. As of July 21 the fire covered 83,733 acres and was 91 percent contained. NASA image courtesy NASA MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Preparing NASA's Next Solar Satellite for Launch

    NASA Image and Video Library

    2017-12-08

    Orbital Sciences team members move the second half of the payload fairing before it is placed over NASA's IRIS (Interface Region Imaging Spectrograph) spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit. The work is taking place in a hangar at Vandenberg Air Force Base, where IRIS is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg on June 26, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun's corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. High res file available here: 1.usa.gov/11yal3w Photo Credit: NASA/Tony Vauclin NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. High spatial resolution satellite observations for validation of MODIS land products: IKONOS observations acquired under the NASA scientific data purchase.

    Treesearch

    Jeffrey T. Morisette; Jaime E. Nickeson; Paul Davis; Yujie Wang; Yuhong Tian; Curtis E. Woodcock; Nikolay Shabanov; Matthew Hansen; Warren B. Cohen; Doug R. Oetter; Robert E. Kennedy

    2003-01-01

    Phase 1I of the Scientific Data Purchase (SDP) has provided NASA investigators access to data from four different satellite and airborne data sources. The Moderate Resolution Imaging Spectrometer (MODIS) land discipline team (MODLAND) sought to utilize these data in support of land product validation activities with a lbcus on tile EOS Land Validation Core Sites. These...

  1. A systems approach to the commercialization of space communications technology - The NASA/JPL Mobile Satellite Program

    NASA Technical Reports Server (NTRS)

    Weber, William J., III; Gray, Valerie W.; Jackson, Byron; Steele, Laura C.

    1991-01-01

    This paper discusss the systems approach taken by NASA and the Jet Propulsion Laboratory in the commercialization of land-mobile satellite services (LMSS) in the United States. As the lead center for NASA's Mobile Satellite Program, JPL was involved in identifying and addressing many of the key barriers to commercialization of mobile satellite communications, including technical, economic, regulatory and institutional risks, or uncertainties. The systems engineering approach described here was used to mitigate these risks. The result was the development and implementation of the JPL Mobile Satellite Experiment Project. This Project included not only technology development, but also studies to support NASA in the definition of the regulatory, market, and investment environments within which LMSS would evolve and eventually operate, as well as initiatives to mitigate their associated commercialization risks. The end result of these government-led endeavors was the acceleration of the introduction of commercial mobile satellite services, both nationally and internationally.

  2. Mobile satellite communications technology - A summary of NASA activities

    NASA Technical Reports Server (NTRS)

    Dutzi, E. J.; Knouse, G. H.

    1986-01-01

    Studies in recent years indicate that future high-capacity mobile satellite systems are viable only if certain high-risk enabling technologies are developed. Accordingly, NASA has structured an advanced technology development program aimed at efficient utilization of orbit, spectrum, and power. Over the last two years, studies have concentrated on developing concepts and identifying cost drivers and other issues associated with the major technical areas of emphasis: vehicle antennas, speech compression, bandwidth-efficient digital modems, network architecture, mobile satellite channel characterization, and selected space segment technology. The program is now entering the next phase - breadboarding, development, and field experimentation.

  3. NASA Satellite Observations: A Unique Asset for the Study of the Environment and Implications for Public Health

    NASA Technical Reports Server (NTRS)

    Estes Sue M.

    2010-01-01

    This slide presentation highlights how satellite observation systems are assets for studying the environment in relation to public health. It includes information on current and future satellite observation systems, NASA's public health and safety research, surveillance projects, and NASA's public health partners.

  4. Satellite Sees a Midwest White Out

    NASA Image and Video Library

    2017-12-08

    The GOES-East satellite captured a Midwestern wintertime "White Out" at 2015 UTC/3:15 p.m. EST on January 6, 2014. Blowing snow and intensely cold air created dangerous white-out conditions over the Midwest, particularly around the Great Lakes, where daytime temperatures averaged -20F with a wind chill near -50F. The GOES-East satellite is managed by NOAA. The image was created at NASA's GOES Project at NASA's Goddard Space Flight Center, Greenbelt, Md. Credit: NASA NOAA GOES Project, Dennis Chesters NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Advancing NASA's Satellite Control Capabilities: More than Just Better Technology

    NASA Technical Reports Server (NTRS)

    Smith, Danford

    2008-01-01

    This viewgraph presentation reviews the work of the Goddard Mission Services Evolution Center (GMSEC) in the development of the NASA's satellite control capabilities. The purpose of the presentation is to provide a quick overview of NASA's Goddard Space Flight Center and our approach to coordinating the ground system resources and development activities across many different missions. NASA Goddard's work in developing and managing the current and future space exploration missions is highlighted. The GMSEC, was established to to coordinate ground and flight data systems development and services, to create a new standard ground system for many missions and to reflect the reality that business reengineering and mindset were just as important.

  6. NASA Sees Winter Storm Slamming Eastern United States

    NASA Image and Video Library

    2017-12-08

    NASA satellite imagery captured the size of the massive winter storm that continued to pummel the U.S. East Coast early on January 23, 2016. This visible image of the major winter storm was taken from NOAA's GOES-East satellite on Saturday, January 23, 2016 at 1437 UTC (9:37 a.m. EST) as the Baltimore/Washington corridor was under a blizzard warning. Read more: go.nasa.gov/1RFv70u Credits: NASA/NOAA GOES Project NASA Sees Winter Storm Slamming Eastern United States

  7. Satellite Rings Movie

    NASA Image and Video Library

    2000-12-30

    This brief movie clip (of which the release image is a still frame), taken by NASA's Cassini spacecraft as it approached Jupiter, shows the motions, over a 16 hour-period, of two satellites embedded in Jupiter's ring. The moon Adrastea is the fainter of the two, and Metis the brighter. Images such as these will be used to refine the orbits of the two bodies. The movie was made from images taken during a 40-hour sequence of the Jovian ring on December 11, 2000. http://photojournal.jpl.nasa.gov/catalog/PIA02872

  8. NASA to launch second business communications satellite

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The two stage Delta 3910 launch vehicle was chosen to place the second small business satellite (SBS-B) into a transfer orbit with an apogee of 36,619 kilometers and a perigee of 167 km, at an inclination of 27.7 degrees to Earth's equator. The firing and separation sequence and the inertial guidance system are described as well as the payload assist module. Facilities and services for tracking and control by NASA, COMSAT, Intelsat, and SBS are outlined and prelaunch operations are summarized.

  9. The Galilean Satellites

    NASA Image and Video Library

    1997-11-18

    This composite includes the four largest moons of Jupiter which are known as the Galilean satellites. From left to right, the moons shown are Ganymede, Callisto, Io, and Europa. The Galilean satellites were first seen by the Italian astronomer Galileo Galilei in 1610. In order of increasing distance from Jupiter, Io is closest, followed by Europa, Ganymede, and Callisto. The order of these satellites from the planet Jupiter helps to explain some of the visible differences among the moons. Io is subject to the strongest tidal stresses from the massive planet. These stresses generate internal heating which is released at the surface and makes Io the most volcanically active body in our solar system. Europa appears to be strongly differentiated with a rock/iron core, an ice layer at its surface, and the potential for local or global zones of water between these layers. Tectonic resurfacing brightens terrain on the less active and partially differentiated moon Ganymede. Callisto, furthest from Jupiter, appears heavily cratered at low resolutions and shows no evidence of internal activity. North is to the top of this composite picture in which these satellites have all been scaled to a common factor of 10 kilometers (6 miles) per picture element. The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft obtained the Io and Ganymede images in June 1996, while the Europa images were obtained in September 1996. Because Galileo focuses on high resolution imaging of regional areas on Callisto rather than global coverage, the portrait of Callisto is from the 1979 flyby of NASA's Voyager spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA00601

  10. NASA Satellite Eyes Iceland Volcano Cauldron

    NASA Image and Video Library

    2010-04-18

    On Saturday, April 17, 2010, NASA Earth Observing-1 EO-1 spacecraft obtained this pair of images of the continuing eruption of Iceland Eyjafjallajökull volcano. On the left, new black ash deposits are visible on the ground.

  11. Satellite Imagery Via Personal Computer

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Automatic Picture Transmission (APT) was incorporated by NASA in the Tiros 8 weather satellite. APT included an advanced satellite camera that immediately transmitted a picture as well as low cost receiving equipment. When an advanced scanning radiometer was later introduced, ground station display equipment would not readily adjust to the new format until GSFC developed an APT Digital Scan Converter that made them compatible. A NASA Technical Note by Goddard's Vermillion and Kamoski described how to build a converter. In 1979, Electro-Services, using this technology, built the first microcomputer weather imaging system in the U.S. The company changed its name to Satellite Data Systems, Inc. and now manufactures the WeatherFax facsimile display graphics system which converts a personal computer into a weather satellite image acquisition and display workstation. Hardware, antennas, receivers, etc. are also offered. Customers include U.S. Weather Service, schools, military, etc.

  12. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  13. Supporting Energy-Related Societal Applications Using NASA's Satellite and Modeling Data

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Whitlock, C. H.; Chandler, W. S.; Hoell, J. M.; Zhang, T.; Mikovitz, J. C.; Leng, G. S.; Lilienthal, P.

    2006-01-01

    Improvements to NASA Surface Meteorology and Solar Energy (SSE) web site are now being made through the Prediction of Worldwide Energy Resource (POWER) project under NASA Science Mission Directorate Applied Science Energy Management Program. The purpose of this project is to tailor NASA Science Mission results for energy sector applications and decision support systems. The current status of SSE and research towards upgrading estimates of total, direct and diffuse solar irradiance from NASA satellite measurements and analysis are discussed. Part of this work involves collaborating with partners such as the National Renewable Energy Laboratory (NREL) and the Natural Resources Canada (NRCan). Energy Management and POWER plans including historic, near-term and forecast datasets are also overviewed.

  14. NASA SMAP Images Show Texas Soil Moisture Conditions Before/After Hurricane Harvey's Landfall

    NASA Image and Video Library

    2017-08-29

    Images of soil moisture conditions in Texas near Houston, generated by NASA's Soil Moisture Active Passive (SMAP) satellite before and after the landfall of Hurricane Harvey can be used to monitor changing ground conditions due to Harvey's rainfall. As seen in the left panel, SMAP observations show that soil surface conditions were already very wet a few days before the hurricane made landfall (August 21/22), with moisture levels in the 20 to 40 percent range. Such saturated soil surfaces contributed to the inability of water to infiltrate more deeply into soils, thereby increasing the likelihood of flooding. After Harvey made landfall, the southwest portion of Houston became exceptionally wet, as seen in the right panel image from August 25/26, signaling the arrival of heavy rains and widespread flooding. https://photojournal.jpl.nasa.gov/catalog/PIA21926

  15. NASA Earth Science Image Analysis for Climate Change Decisions

    NASA Technical Reports Server (NTRS)

    Hilderbrand, Peter H.

    2011-01-01

    This talk will briefly outline the ways in which NASA observes the Earth, then describes the NASA satellite measurements, and then proceeds to show how these measurements are used to understand the changes that are occurring as Earth's climate warms.

  16. New NASA Images of Irma's Towering Clouds

    NASA Image and Video Library

    2017-09-08

    On Sept. 7, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over Hurricane Irma at approximately 11:20 a.m. local time. The MISR instrument comprises nine cameras that view the Earth at different angles, and since it takes roughly seven minutes for all nine cameras to capture the same location, the motion of the clouds between images allows scientists to calculate the wind speed at the cloud tops. The animated GIF shows Irma's motion over the seven minutes of the MISR imagery. North is toward the top of the image. This composite image shows Hurricane Irma as viewed by the central, downward-looking camera (left), as well as the wind speeds (right) superimposed on the image. The length of the arrows is proportional to the wind speed, while their color shows the altitude at which the winds were calculated. At the time the image was acquired, Irma's eye was located approximately 60 miles (100 kilometers) north of the Dominican Republic and 140 miles (230 kilometers) north of its capital, Santo Domingo. Irma was a powerful Category 5 hurricane, with wind speeds at the ocean surface up to 185 miles (300 kilometers) per hour, according to the National Oceanic and Atmospheric Administration. The MISR data show that at cloud top, winds near the eye wall (the most destructive part of the storm) were approximately 90 miles per hour (145 kilometers per hour), and the maximum cloud-top wind speed throughout the storm calculated by MISR was 135 miles per hour (220 kilometers per hour). While the hurricane's dominant rotation direction is counter-clockwise, winds near the eye wall are consistently pointing outward from it. This is an indication of outflow, the process by which a hurricane draws in warm, moist air at the surface and ejects cool, dry air at its cloud tops. These data were captured during Terra orbit 94267. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21946

  17. NASA Satellites Find High-Energy Surprises in 'Constant' Crab Nebula

    NASA Image and Video Library

    2011-01-12

    NASA image release January 12, 2010 NASA's Chandra X-ray Observatory reveals the complex X-ray-emitting central region of the Crab Nebula. This image is 9.8 light-years across. Chandra observations were not compatible with the study of the nebula's X-ray variations. To read more go to: geeked.gsfc.nasa.gov/?p=4945 Credit: NASA/CXC/SAO/F. Seward et al. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  18. Utilization of NASA Lewis mobile terminals for the Hermes satellite

    NASA Technical Reports Server (NTRS)

    Edelman, E. A.; Fiala, J. L.; Rizzolla, L.

    1977-01-01

    The high power of the Hermes satellite enables two-way television and voice communication with small ground terminals. The Portable Earth Terminal (PET) and the Transportable Earth Terminal (TET) were developed and built by NASA-Lewis to provide communications capability to short-term users. The NASA-Lewis mobile terminals are described in terms of vehicles and onboard equipment, as well as operation aspects, including use in the field. The section on demonstrations divides the uses into categories of medicine, education, technology and government. Applications of special interest within each category are briefly described.

  19. Uniting Satellite Data With Health Records to Address the Societal Impacts of Particulate Air Pollution: NASA's Multi-Angle Imager for Aerosols

    NASA Astrophysics Data System (ADS)

    Nastan, A.; Diner, D. J.

    2017-12-01

    Epidemiological studies have demonstrated convincingly that airborne particulate matter has a major impact on human health, particularly in urban areas. However, providing an accurate picture of the health effects of various particle mixtures — distinguished by size, shape, and composition — is difficult due to the constraints of currently available measurement tools and the heterogeneity of atmospheric chemistry and human activities over space and time. The Multi-Angle Imager for Aerosols (MAIA) investigation, currently in development as part of NASA's Earth Venture Instrument Program, will address this issue through a powerful combination of technologies and informatics. Atmospheric measurements collected by the MAIA satellite instrument featuring multiangle and innovative polarimetric imaging capabilities will be combined with available ground monitor data and a chemical transport model to produce maps of speciated particulate matter at 1 km spatial resolution for a selected set of globally distributed cities. The MAIA investigation is also original in integrating data providers (atmospheric scientists), data users (epidemiologists), and stakeholders (public health experts) into a multidisciplinary science team that will tailor the observation and analysis strategy within each target area to improve our understanding of the linkages between different particle types and adverse human health outcomes.

  20. NASA/NOAA's Suomi NPP Satellite's Night-time View of Cyclone Evan

    NASA Image and Video Library

    2012-12-20

    This night-time view of Cyclone Evan was taken from the Visible Infrared Imaging Radiometer Suite (VIIRS) on NASA/NOAA's Suomi National Polar-orbiting Partnership on Dec. 16, 2012. The rectangular bright object in the image is a lightning flash. "Because of the scan time as compared to how quickly lightning flashes, you get a nice streak in the data," said William Straka, of the University of Wisconsin-Madison, who provided this image. On Dec. 17 at 0900 UTC (4 a.m. EST), Cyclone Evan had maximum sustained winds near 115 knots (132 mph/213 kph). Evan was a Category 4 cyclone on the Saffir-Simpson Scale and was battering Fiji. Image Credit: NASA/NOAA/UWM/William Straka Text Credit: NASA Goddard/Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Concepts for on-board satellite image registration, volume 1

    NASA Technical Reports Server (NTRS)

    Ruedger, W. H.; Daluge, D. R.; Aanstoos, J. V.

    1980-01-01

    The NASA-NEEDS program goals present a requirement for on-board signal processing to achieve user-compatible, information-adaptive data acquisition. One very specific area of interest is the preprocessing required to register imaging sensor data which have been distorted by anomalies in subsatellite-point position and/or attitude control. The concepts and considerations involved in using state-of-the-art positioning systems such as the Global Positioning System (GPS) in concert with state-of-the-art attitude stabilization and/or determination systems to provide the required registration accuracy are discussed with emphasis on assessing the accuracy to which a given image picture element can be located and identified, determining those algorithms required to augment the registration procedure and evaluating the technology impact on performing these procedures on-board the satellite.

  2. Image Detective 2.0: Engaging Citizen Scientists with NASA Astronaut Photography

    NASA Technical Reports Server (NTRS)

    Higgins, Melissa; Graff, Paige Valderrama; Heydorn, James; Jagge, Amy; Vanderbloemen, Lisa; Stefanov, William; Runco, Susan; Lehan, Cory; Gay, Pamela

    2017-01-01

    Image Detective 2.0 engages citizen scientists with NASA astronaut photography of the Earth obtained by crew members on the International Space Station (ISS). Engaged citizen scientists are helping to build a more comprehensive and searchable database by geolocating this imagery and contributing to new imagery collections. Image Detective 2.0 is the newest addition to the suite of citizen scientist projects available through CosmoQuest, an effort led by the Astronomical Society of the Pacific (ASP) and supported through a NASA Science Mission Directorate Cooperative Agreement Notice award. CosmoQuest hosts a number of citizen science projects enabling individuals from around the world to engage in authentic NASA science. Image Detective 2.0, an effort that focuses on imagery acquired by astronauts on the International Space Station, builds on work initiated in 2012 by scientists and education specialists at the NASA Johnson Space Center. Through the many lessons learned, Image Detective 2.0 enhances the original project by offering new and improved options for participation. Existing users, as well as new Image Detective participants joining through the CosmoQuest platform, gain first-hand experience working with astronaut photography and become more engaged with this valuable data being obtained from the International Space Station. Citizens around the world are captivated by astronauts living and working in space. As crew members have a unique vantage point from which to view our Earth, the Crew Earth Observations (CEO) online database, referred to as the Gateway to Astronaut Photography of Earth (https://eol.jsc.nasa.gov/), provides a means for crew members to share their unique views of our home planet from the ISS with the scientific community and the public. Astronaut photography supports multiple uses including scientific investigations, visualizations, education, and outreach. These astronaut images record how the planet is changing over time, from human

  3. NASA Sea Ice Validation Program for the Defense Meteorological Satellite Program Special Sensor Microwave Imager

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J. (Editor); Crawford, John P.; Drinkwater, Mark R.; Emery, William J.; Eppler, Duane T.; Farmer, L. Dennis; Fowler, Charles W.; Goodberlet, Mark; Jentz, Robert R.; Milman, Andrew

    1992-01-01

    The history of the program is described along with the SSM/I sensor, including its calibration and geolocation correction procedures used by NASA, SSM/I data flow, and the NASA program to distribute polar gridded SSM/I radiances and sea ice concentrations (SIC) on CD-ROMs. Following a discussion of the NASA algorithm used to convert SSM/I radiances to SICs, results of 95 SSM/I-MSS Landsat IC comparisons for regions in both the Arctic and the Antarctic are presented. The Landsat comparisons show that the overall algorithm accuracy under winter conditions is 7 pct. on average with 4 pct. negative bias. Next, high resolution active and passive microwave image mosaics from coordinated NASA and Navy aircraft underflights over regions of the Beaufort and Chukchi seas in March 1988 were used to show that the algorithm multiyear IC accuracy is 11 pct. on average with a positive bias of 12 pct. Ice edge crossings of the Bering Sea by the NASA DC-8 aircraft were used to show that the SSM/I 15 pct. ice concentration contour corresponds best to the location of the initial bands at the ice edge. Finally, a summary of results and recommendations for improving the SIC retrievals from spaceborne radiometers are provided.

  4. Applying NASA Imaging Radar Datasets to Investigate the Geomorphology of the Amazon's Planalto

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Campbell, K.; Islam, R.; Alexander, P. M.; Cracraft, J.

    2016-12-01

    The Amazon basin is a biodiversity rich biome and plays a significant role into shaping Earth's climate, ocean and atmospheric gases. Understanding the history of the formation of this basin is essential to our understanding of the region's biodiversity and its response to climate change. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired during that time over the Planalto, in the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. We employ UAVSAR data collections to assess the utility of these high quality imaging radar data for use in identifying geomorphologic features and vegetation communities within the context of improving the understanding of evolutionary processes, and their utility in aiding interpretation of datasets from Earth-orbiting satellites to support a basin-wide characterization across the Amazon. We derive maps of landcover and river branching structure from UAVSAR imagery. We compare these maps to those derived using imaging radar datasets from the Japanese Space Agency's ALOS PALSAR and Digital Elevation Models (DEMs) from NASA's Shuttle Radar Topography Mission (SRTM). Results provide an understanding of the underlying geomorphology of the Amazon planalto as well as its relationship to geologic processes and will support interpretation of the evolutionary history of the Amazon Basin. Portions of this work have been carried out within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility.This work is carried out with support from the NASA Biodiversity Program and the NSF DIMENSIONS of Biodiversity Program.

  5. NASA-Langley Web-Based Operational Real-time Cloud Retrieval Products from Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Palikonda, Rabindra; Minnis, Patrick; Spangenberg, Douglas A.; Khaiyer, Mandana M.; Nordeen, Michele L.; Ayers, Jeffrey K.; Nguyen, Louis; Yi, Yuhong; Chan, P. K.; Trepte, Qing Z.; hide

    2006-01-01

    At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.

  6. NASA-NOAA's Suomi NPP Gets an Infrared look at Typhoon Soudelor

    NASA Image and Video Library

    2015-08-10

    On August 6, 2015, NASA-NOAA's Suomi NPP satellite passed over powerful Typhoon Soudelor when it was headed toward Taiwan. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi satellite captured an infrared image of the typhoon. The infrared image that showed there were some thunderstorms within the typhoon with very cold cloud top temperatures, colder than -63F/-53C. Temperatures that cold stretch high into the troposphere and are capable of generating heavy rain. Credit: UWM/CIMSS/SSEC, William Straka III NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Proposed Use of the NASA Ames Nebula Cloud Computing Platform for Numerical Weather Prediction and the Distribution of High Resolution Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi

    2010-01-01

    The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.

  8. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2016-01-06

    Sen. Barbara Mikulski participated in a ribbon cutting at NASA’s Goddard Space Flight Center on January 6th, 2016, to officially open the new Robotic Operations Center (ROC) developed by the Satellite Servicing Capabilities Office. Within the ROC's black walls, NASA is testing technologies and operational procedures for science and exploration missions, including the Restore-L satellite servicing mission and also the Asteroid Redirect Mission. During her tour of the ROC, Sen. Mikulski saw first-hand an early version of the NASA Servicing Arm, a 2-meter-class robot with the dexterity to grasp and refuel a satellite on orbit. She also heard a description of Raven, a payload launching to the International Space Station that will demonstrate real-time, relative space navigation technology. The robotic technologies that NASA is developing within the ROC also support the Journey to Mars. Learn more about NASA’s satellite servicing technologies at ssco.gsfc.nasa.gov/. Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Satellite Rings Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This brief movie clip (of which the release image is a still frame), taken by NASA's Cassini spacecraft as it approached Jupiter, shows the motions, over a 16 hour-period, of two satellites embedded in Jupiter's ring. The moon Adrastea is the fainter of the two, and Metis the brighter. Images such as these will be used to refine the orbits of the two bodies.

    The movie was made from images taken during a 40-hour sequence of the Jovian ring on December 11, 2000.

    Cassini is a cooperative mission of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages Cassini for NASA's Office of Space Science, Washington, D.C.

  10. NASA to launch NOAA's GOES-C earth monitoring satellite

    NASA Technical Reports Server (NTRS)

    1978-01-01

    NASA's launch of the GOES-C geostationary satellite from Kennedy Space Center, Florida is planned for June 16, 1978. The launch vehicle is a three stage Delta 2914. As its contribution, GOES-C will contribute information from a data sparse area of the world centered in the Indian Ocean. GOES-C will replace GOES-1 and will become GOES-3 once it has successfully orbited at 35,750 kilometers (22,300 miles). NASA's Spaceflight Tracking and Data Network (STDN) will provide support for the mission. Included in the article are: (1) Delta launch vehicle statistics, first, second and third stages; (2) Delta/GOES-C major launch events; (3) Launch operations; (4) Delta/GOES-C personnel.

  11. Satellite Eyes New England Winter Storm Breaking Records

    NASA Image and Video Library

    2015-02-09

    Another large snowstorm affecting New England was dropping more snow on the region and breaking records on February 9, as NOAA's GOES-East satellite captured an image of the clouds associated with the storm system. On Feb. 9, NOAA's National Weather Service in Boston, Massachusetts noted that "The 30-day snowfall total at Boston ending 7 a.m. this morning is 61.6 inches. This exceeds the previous maximum 30 day snowfall total on record at Boston, which was 58.8 inches ending Feb 7 1978." The GOES-East image was created by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. It showed a blanket of clouds over the U.S. northeast that stretched down to the Mid-Atlantic where there was no snow on the ground in Washington, D.C. NOAA's National Weather Service Weather Prediction Center provided a look at the extent of the storm system and noted "Heavy snow will impact portions of New York State and New England as the new week begins. Freezing rain will spread from western Pennsylvania to Long Island, with rain for the mid-Atlantic states." The low pressure area bringing the snow to the northeast was located in central Pennsylvania. A cold front extended southward from the low across the Tennessee Valley while a stationary boundary extended eastward from the low across the central mid-Atlantic. To create the image, NASA/NOAA's GOES Project takes the cloud data from NOAA's GOES-East satellite and overlays it on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the storm. NOAA's GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth

  12. Maritime Communication Experiments and Search-and-Rescue Evaluations with the NASA ATS-6 Satellite : Volume 1. Summary.

    DOT National Transportation Integrated Search

    1978-05-01

    Maritime satellite communication experiments were conducted by this Center using the NASA Applications Technology Satellite-Number 6 (ATS-6) from September 1974 through April 1975. The objectives were: to acquire a base of satellite technology knowle...

  13. Satellite-based Tropical Cyclone Monitoring Capabilities

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  14. NASA Sees Heavy Rainfall in Tropical Storm Andrea

    NASA Image and Video Library

    2013-06-06

    NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the MODIS instrument captured this visible image of the storm. Andrea’s clouds had already extended over more than half of Florida. Credit: NASA Goddard MODIS Rapid Response Team --- NASA Sees Heavy Rainfall in Tropical Storm Andrea NASA’s TRMM satellite passed over Tropical Storm Andrea right after it was named, while NASA’s Terra satellite captured a visible image of the storm’s reach hours beforehand. TRMM measures rainfall from space and saw that rainfall rates in the southern part of the storm was falling at almost 5 inches per hour. NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the Moderate Resolution Imaging Spectroradiometer or MODIS instrument, captured a visible image of the storm. At that time, Andrea’s clouds had already extended over more than half of Florida. At 8 p.m. EDT on Wednesday, June 5, System 91L became the first tropical storm of the Atlantic Ocean hurricane season. Tropical Storm Andrea was centered near 25.5 North and 86.5 West, about 300 miles (485 km) southwest of Tampa, Fla. At the time Andrea intensified into a tropical storm, its maximum sustained winds were near 40 mph (65 kph). Full updates can be found at NASA's Hurricane page: www.nasa.gov/hurricane Rob Gutro NASA’s Goddard Space Flight Center

  15. NASA Observes Super Typhoon Hagupit; Philippines Under Warnings

    NASA Image and Video Library

    2017-12-08

    On Dec. 4 at 02:10 UTC, the MODIS instrument aboard NASA's Terra satellite took this visible image of Super Typhoon Hagupit approaching the Philippines. Image Credit: NASA Goddard's MODIS Rapid Response Team Read more: 1.usa.gov/12q3ssK NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Lunar Satellite Snaps Image of Earth

    NASA Image and Video Library

    2014-05-07

    This image, captured Feb. 1, 2014, shows a colorized view of Earth from the moon-based perspective of NASA's Lunar Reconnaissance Orbiter. Credit: NASA/Goddard/Arizona State University -- NASA's Lunar Reconnaissance Orbiter (LRO) experiences 12 "earthrises" every day, however LROC (short for LRO Camera) is almost always busy imaging the lunar surface so only rarely does an opportunity arise such that LROC can capture a view of Earth. On Feb. 1, 2014, LRO pitched forward while approaching the moon's north pole allowing the LROC Wide Angle Camera to capture Earth rising above Rozhdestvenskiy crater (112 miles, or 180 km, in diameter). Read more: go.nasa.gov/1oqMlgu NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Satellite Shows Major Winter Storm Hitting the U.S. South

    NASA Image and Video Library

    2014-02-11

    Clouds associated with the major winter storm that is bringing wintry precipitation and chilly temperatures to the U.S. south is the focus in an image from NOAA's GOES-East satellite today, February 12 at 1310 UTC/ 8:10 EST. Rain, freezing rain, sleet and snow are part of the large front that stretches from eastern Texas to the Carolinas in the Geostationary Operational Environmental satellite or GOES image. NOAA's weather maps show several areas of low pressure along the frontal boundary. One low pressure is in the northern Gulf of Mexico, while the other is in the Atlantic Ocean, just south of South Carolina. (Insert link: www.hpc.ncep.noaa.gov/noaa/noaad1.gif). NOAA's National Weather Service has been issuing watches and warnings throughout the south that extend along Mid-Atlantic east coast. The visible cloud and ground snow data in this image was taken from NOAA's GOES-East satellite. The image was created by the NASA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. The clouds and fallen snow were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites. NOAA's Weather Prediction Center, or WPC noted on Feb. 11 at 3:59 a.m. EST, "Once the intensifying surface low moves off the Southeast coast and begins its track up the Eastern Seaboard Wednesday night...winter weather will start lifting northward into the northern Mid-Atlantic states." GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes

  18. Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.

    2006-05-01

    One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.

  19. NASA Sees Heavy Rainfall in Tropical Storm Andrea

    NASA Image and Video Library

    2017-12-08

    This NOAA GOES-East satellite animation shows the development of System 91L into Tropical Storm Andrea over the course of 3 days from June 4 to June 6, just after Andrea was officially designated a tropical storm. Credit: NASA's GOES Project --- NASA Sees Heavy Rainfall in Tropical Storm Andrea NASA’s TRMM satellite passed over Tropical Storm Andrea right after it was named, while NASA’s Terra satellite captured a visible image of the storm’s reach hours beforehand. TRMM measures rainfall from space and saw that rainfall rates in the southern part of the storm was falling at almost 5 inches per hour. NASA’s Terra satellite passed over Tropical Storm Andrea on June 5 at 16:25 UTC (12:25 p.m. EDT) and the Moderate Resolution Imaging Spectroradiometer or MODIS instrument, captured a visible image of the storm. At that time, Andrea’s clouds had already extended over more than half of Florida. At 8 p.m. EDT on Wednesday, June 5, System 91L became the first tropical storm of the Atlantic Ocean hurricane season. Tropical Storm Andrea was centered near 25.5 North and 86.5 West, about 300 miles (485 km) southwest of Tampa, Fla. At the time Andrea intensified into a tropical storm, its maximum sustained winds were near 40 mph (65 kph). Full updates can be found at NASA's Hurricane page: www.nasa.gov/hurricane Rob Gutro NASA’s Goddard Space Flight Center

  20. Satellite images to aircraft in flight. [GEOS image transmission feasibility analysis

    NASA Technical Reports Server (NTRS)

    Camp, D.; Luers, J. K.; Kadlec, P. W.

    1977-01-01

    A study has been initiated to evaluate the feasibility of transmitting selected GOES images to aircraft in flight. Pertinent observations that could be made from satellite images on board aircraft include jet stream activity, cloud/wind motion, cloud temperatures, tropical storm activity, and location of severe weather. The basic features of the Satellite Aircraft Flight Environment System (SAFES) are described. This system uses East GOES and West GOES satellite images, which are interpreted, enhanced, and then retransmitted to designated aircraft.

  1. Oklahoma Area Struck By Magnitude 5.0 Earthquake Imaged by NASA Satellite

    NASA Image and Video Library

    2016-11-08

    On Sunday, Nov. 6, 2016, at 7:44 p.m. local time, a magnitude 5.0 earthquake struck near the town of Cushing, Oklahoma. Numerous buildings were damaged by the temblor, but only a few minor injuries were reported. Cushing is home to one of the world's largest oil storage terminals; no damage was reported to the petroleum facilities. A star marks the epicenter of the earthquake,which occurred at a depth of 3.1 miles (5 kilometers). The image was acquired April 28, 2011, covers an area of 7 by 9 miles (11.4 by 14.5 kilometers), and is located at 36 degrees north, 96.8 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA21099

  2. NASA CloudSat Captures Hurricane Daniel Transformation

    NASA Image and Video Library

    2006-07-25

    Hurricane Daniel intensified between July 18 and July 23rd. NASA new CloudSat satellite was able to capture and confirm this transformation in its side-view images of Hurricane Daniel as seen in this series of images

  3. NASA's K/Ka-Band Broadband Aeronautical Terminal for Duplex Satellite Video Communications

    NASA Technical Reports Server (NTRS)

    Densmore, A.; Agan, M.

    1994-01-01

    JPL has recently begun the development of a Broadband Aeronautical Terminal (BAT) for duplex video satellite communications on commercial or business class aircraft. The BAT is designed for use with NASA's K/Ka-band Advanced Communications Technology Satellite (ACTS). The BAT system will provide the systems and technology groundwork for an eventual commercial K/Ka-band aeronautical satellite communication system. With industry/government partnerships, three main goals will be addressed by the BAT task: 1) develop, characterize and demonstrate the performance of an ACTS based high data rate aeronautical communications system; 2) assess the performance of current video compression algorithms in an aeronautical satellite communication link; and 3) characterize the propagation effects of the K/Ka-band channel for aeronautical communications.

  4. K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for the NASA ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Densmore, Art; Jamnejad, Vahraz; Wu, T. K.; Woo, Ken

    1993-01-01

    This paper describes the development of the K- and Ka-band mobile-vehicular satellite-tracking reflector antenna system for NASA's ACTS Mobile Terminal (AMT) project. ACTS is NASA's Advanced Communications Technology Satellites. The AMT project will make the first experimental use of ACTS soon after the satellite is operational, to demonstrate mobile communications via the satellite from a van on the road. The AMT antenna system consists of a mechanically steered small reflector antenna, using a shared aperture for both frequency bands and fitting under a radome of 23 cm diameter and 10 cm height, and a microprocessor controlled antenna controller that tracks the satellite as the vehicle moves about. The RF and mechanical characteristics of the antenna and the antenna tracking control system are discussed. Measurements of the antenna performance are presented.

  5. Effect of satellite formations and imaging modes on global albedo estimation

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Gatebe, Charles K.; Miller, David W.; de Weck, Olivier L.

    2016-05-01

    We confirm the applicability of using small satellite formation flight for multi-angular earth observation to retrieve global, narrow band, narrow field-of-view albedo. The value of formation flight is assessed using a coupled systems engineering and science evaluation model, driven by Model Based Systems Engineering and Observing System Simulation Experiments. Albedo errors are calculated against bi-directional reflectance data obtained from NASA airborne campaigns made by the Cloud Absorption Radiometer for the seven major surface types, binned using MODIS' land cover map - water, forest, cropland, grassland, snow, desert and cities. A full tradespace of architectures with three to eight satellites, maintainable orbits and imaging modes (collective payload pointing strategies) are assessed. For an arbitrary 4-sat formation, changing the reference, nadir-pointing satellite dynamically reduces the average albedo error to 0.003, from 0.006 found in the static referencecase. Tracking pre-selected waypoints with all the satellites reduces the average error further to 0.001, allows better polar imaging and continued operations even with a broken formation. An albedo error of 0.001 translates to 1.36 W/m2 or 0.4% in Earth's outgoing radiation error. Estimation errors are found to be independent of the satellites' altitude and inclination, if the nadir-looking is changed dynamically. The formation satellites are restricted to differ in only right ascension of planes and mean anomalies within slotted bounds. Three satellites in some specific formations show average albedo errors of less than 2% with respect to airborne, ground data and seven satellites in any slotted formation outperform the monolithic error of 3.6%. In fact, the maximum possible albedo error, purely based on angular sampling, of 12% for monoliths is outperformed by a five-satellite formation in any slotted arrangement and an eight satellite formation can bring that error down four fold to 3%. More than

  6. NASA AIRS Examines Hurricane Matthew Cloud Top Temperatures

    NASA Image and Video Library

    2016-10-07

    At 11:29 p.m. PDT on Oct. 6 (2:29 a.m. EDT on Oct. 7), NASA's Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite produced this false-color infrared image of Matthew as the storm moved up Florida's central coast. The image shows the temperature of Matthew's cloud tops or the surface of Earth in cloud-free regions, with the most intense thunderstorms shown in purples and blues. http://photojournal.jpl.nasa.gov/catalog/PIA21097

  7. NASA Sees Hurricane Arthur's Cloud-Covered Eye

    NASA Image and Video Library

    2014-07-03

    This visible image of Tropical Storm Arthur was taken by the MODIS instrument aboard NASA's Aqua satellite on July 2 at 18:50 UTC (2:50 p.m. EDT). A cloud-covered eye is clearly visible. Credit: NASA Goddard MODIS Rapid Response Team Read more: www.nasa.gov/content/goddard/arthur-atlantic/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. All-Sky Microwave Imager Data Assimilation at NASA GMAO

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Jin, Jianjun; El Akkraoui, Amal; McCarty, Will; Todling, Ricardo; Gu, Wei; Gelaro, Ron

    2017-01-01

    Efforts in all-sky satellite data assimilation at the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center have been focused on the development of GSI configurations to assimilate all-sky data from microwave imagers such as the GPM Microwave Imager (GMI) and Global Change Observation Mission-Water (GCOM-W) Advanced Microwave Scanning Radiometer 2 (AMSR-2). Electromagnetic characteristics associated with their wavelengths allow microwave imager data to be relatively transparent to atmospheric gases and thin ice clouds, and highly sensitive to precipitation. Therefore, GMAOs all-sky data assimilation efforts are primarily focused on utilizing these data in precipitating regions. The all-sky framework being tested at GMAO employs the GSI in a hybrid 4D-EnVar configuration of the Goddard Earth Observing System (GEOS) data assimilation system, which will be included in the next formal update of GEOS. This article provides an overview of the development of all-sky radiance assimilation in GEOS, including some performance metrics. In addition, various projects underway at GMAO designed to enhance the all-sky implementation will be introduced.

  9. NASA Satellite Shows a Mean Irene Fury

    NASA Image and Video Library

    2011-08-28

    This infrared image of Hurricane Irene from the AIRS instrument on NASA Aqua spacecraft, was taken at 2:47 a.m. EDT on Aug. 28. The storm coldest cloud top temperatures and intense rains are shown in purples and blues.

  10. NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE): Changing patterns in the use of NRT satellite imagery

    NASA Astrophysics Data System (ADS)

    Davies, D.; Michael, K.; Schmaltz, J. E.; Harrison, S.; Ding, F.; Durbin, P. B.; Boller, R. A.; Cechini, M. F.; Rinsland, P. L.; Ye, G.; Mauoka, E.

    2015-12-01

    NASA's Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery approximately 3 hours from satellite observation, to monitor natural events globally and to meet the needs of the near real-time (NRT) applications community. This article describes LANCE, and how the use of NRT data and imagery has evolved. Since 2010 there has been a four-fold increase in both the volume of data and the number of files downloaded. Over the last year there has been a marked shift in the way in which users are accessing NRT imagery; users are gravitating towards Worldview and the Global Imagery Browse Services (GIBS) and away from MODIS Rapid Response, in part due to the increased exposure through social media. In turn this is leading to a broader range of users viewing NASA NRT imagery. This article also describes new, and planned, product enhancements to LANCE. Over the last year, LANCE has expanded to support NRT products from the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Multi-angle Imaging SpectroRadiometer (MISR). LANCE elements are also planning to ingest and process NRT data from the Visible Infrared Imager Radiometer Suite (VIIRS), and the advanced Ozone Mapping and Profiler Suite (OMPS) instruments onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite in the near future.

  11. Satellite Imaging in the Study of Pennsylvania's Environmental Issues.

    ERIC Educational Resources Information Center

    Nous, Albert P.

    This document focuses on using satellite images from space in the classroom. There are two types of environmental satellites routinely broadcasting: (1) Polar-Orbiting Operational Environmental Satellites (POES), and (2) Geostationary Operational Environmental Satellites (GOES). Imaging and visualization techniques provide students with a better…

  12. New Earth-Observing Small Satellite Missions on This Week @NASA – November 11, 2016

    NASA Image and Video Library

    2016-11-11

    NASA this month is scheduled to launch the first of six next-generation, Earth-observing small satellites. They’ll demonstrate innovative new approaches for measuring hurricanes, Earth's energy budget – which is essential to understanding greenhouse gas effects on climate, aerosols, and other atmospheric factors affecting our changing planet. These small satellites range in size from a loaf of bread to a small washing machine, and weigh as little as a few pounds to about 400 pounds. Their size helps keeps development and launch costs down -- because they often hitchhike to space as a “secondary payload” on another mission’s rocket. Small spacecraft and satellites are helping NASA advance scientific and human exploration, test technologies, reduce the cost of new space missions, and expand access to space. Also, CYGNSS Hurricane Mission Previewed, Expedition 50-51 Crew Prepares for Launch in Kazakhstan, and Orion Underway Recovery Test 5 Completed!

  13. Haystack Ultrawideband Satellite Imaging Radar

    DTIC Science & Technology

    2014-09-01

    SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Haystack Ultrawideband Satellite Imaging Radar 5a...www.ll.mit.edu September 2014 Since the launch of satellites into Earth orbits more than 50 years ago, space has become crowded. Commercial and military... satellites , both active and defunct, share the space environment with an assort- ment of space debris, such as remnants of damaged spacecraft and

  14. Open Source GIS Connectors to NASA GES DISC Satellite Data

    NASA Technical Reports Server (NTRS)

    Kempler, Steve; Pham, Long; Yang, Wenli

    2014-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) houses a suite of high spatiotemporal resolution GIS data including satellite-derived and modeled precipitation, air quality, and land surface parameter data. The data are valuable to various GIS research and applications at regional, continental, and global scales. On the other hand, many GIS users, especially those from the ArcGIS community, have difficulties in obtaining, importing, and using our data due to factors such as the variety of data products, the complexity of satellite remote sensing data, and the data encoding formats. We introduce a simple open source ArcGIS data connector that significantly simplifies the access and use of GES DISC data in ArcGIS.

  15. NASA Satellite Continues to Monitor Thailand Floods

    NASA Image and Video Library

    2011-11-02

    Flooding from the Chao Phraya River, Thailand, had begun to ebb in this image acquired by NASA Terra spacecraft on Nov. 1, 2011. Here, in blue-gray is the muddy water that had overflowed the banks of the river, flooding agricultural fields and villages.

  16. Space Images for NASA/JPL

    NASA Technical Reports Server (NTRS)

    Boggs, Karen; Gutheinz, Sandy C.; Watanabe, Susan M.; Oks, Boris; Arca, Jeremy M.; Stanboli, Alice; Peez, Martin; Whatmore, Rebecca; Kang, Minliang; Espinoza, Luis A.

    2010-01-01

    Space Images for NASA/JPL is an Apple iPhone application that allows the general public to access featured images from the Jet Propulsion Laboratory (JPL). A back-end infrastructure stores, tracks, and retrieves space images from the JPL Photojournal Web server, and catalogs the information into a streamlined rating infrastructure.

  17. Satellite Instructional Television Experiment (SITE): Reports from the NASA resident representative in India. [ATS 6

    NASA Technical Reports Server (NTRS)

    Galloway, H. L., Jr.

    1976-01-01

    Reports submitted by the NASA project representative for the Satellite Instructional Television Experiment (SITE) at Ahmedabad, India are presented. These reports deal with the coordination of all SITE related matters between the ATS 6 Project at Goddard Space Flight Center, NASA Headquarters, and the SITE Program in India.

  18. Use of NASA Satellite Data in Aiding Mississippi Barrier Island Restoration Projects

    NASA Technical Reports Server (NTRS)

    Giardino, Marco; Spruce, Joseph; Kalcic, Maria; Fletcher, Rose

    2009-01-01

    This presentation discusses a NASA Stennis Space Center project in which NASA-supported satellite and aerial data is being used to aid state and federal agencies in restoring the Mississippi barrier islands. Led by the Applied Science and Technology Project Office (ASTPO), this project will produce geospatial information products from multiple NASA-supported data sources, including Landsat, ASTER, and MODIS satellite data as well as ATLAS multispectral, CAMS multispectral, AVIRIS hyperspectral, EAARL, and other aerial data. Project objectives include the development and testing of a regional sediment transport model and the monitoring of barrier island restoration efforts through remote sensing. Barrier islands provide invaluable benefits to the State of Mississippi, including buffering the mainland from storm surge impacts, providing habitats for valuable wildlife and fisheries habitat, offering accessible recreational opportunities, and preserving natural environments for educating the public about coastal ecosystems and cultural resources. Unfortunately, these highly valued natural areas are prone to damage from hurricanes. For example, Hurricane Camille in 1969 split Ship Island into East and West Ship Island. Hurricane Georges in 1998 caused additional land loss for the two Ship Islands. More recently, Hurricanes Ivan, Katrina, Rita, Gustav, and Ike impacted the Mississippi barrier islands. In particular, Hurricane Katrina caused major damage to island vegetation and landforms, killing island forest overstories, overwashing entire islands, and causing widespread erosion. In response, multiple state and federal agencies are working to restore damaged components of these barrier islands. Much of this work is being implemented through federally funded Coastal Impact Assessment and Mississippi Coastal Improvement programs. One restoration component involves the reestablishment of the island footprints to that in 1969. Our project will employ NASA remote sensing

  19. Landsat—Earth observation satellites

    USGS Publications Warehouse

    ,

    2015-11-25

    Since 1972, Landsat satellites have continuously acquired space-based images of the Earth’s land surface, providing data that serve as valuable resources for land use/land change research. The data are useful to a number of applications including forestry, agriculture, geology, regional planning, and education. Landsat is a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA). NASA develops remote sensing instruments and the spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and data distribution. The result of this program is an unprecedented continuing record of natural and human-induced changes on the global landscape.

  20. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Philip H. Scherrer (left) principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, while colleagues Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters (right) look on Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  1. High-speed image transmission via the Advanced Communication Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Bazzill, Todd M.; Huang, H. K.; Thoma, George R.; Long, L. Rodney; Gill, Michael J.

    1996-05-01

    We are developing a wide area test bed network using the Advanced Communication Technology Satellite (ACTS) from NASA for high speed medical image transmission. The two test sites are the University of California, San Francisco, and the National Library of Medicine. The first phase of the test bed runs over a T1 link (1.544 Mbits/sec) using a Very Small Aperture Terminal. The second phase involves the High Data Rate Terminal via an ATM OC 3C (155 Mbits/sec) connection. This paper describes the experimental set up and some preliminary results from phase 1.

  2. NASA Sees First Land-falling Tropical Cyclone in Yemen

    NASA Image and Video Library

    2017-12-08

    On Nov. 3, 2015 at 07:20 UTC (2:20 a.m. EDT) the MODIS instrument aboard NASA's Aqua satellite captured this image of Tropical Cyclone Chapala over Yemen. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. NASA planetary data: applying planetary satellite remote sensing data in the classroom

    NASA Technical Reports Server (NTRS)

    Liggett, P.; Dobinson, E.; Sword, B.; Hughes, D.; Martin, M.; Martin, D.

    2002-01-01

    NASA supports several data archiving and distribution mechanisms that provide a means whereby scientists can participate in education and outreach through the use of technology for data and information dissemination. The Planetary Data System (PDS) is sponsored by NASA's Office of Space Science. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. In addition, the NASA Regional Planetary Image Facility (RPIF), an international system of planetary image libraries, maintains photographic and digital data as well as mission documentation and cartographic data.

  4. The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology

    NASA Astrophysics Data System (ADS)

    Rose, R.; Ruf, C.; Rose, D.; Brummitt, M.; Ridley, A.

    While hurricane track forecasts have improved in accuracy by ~50% since 1990, there has been essentially no improvement in the accuracy of intensity prediction. This lack of progress is thought to be caused by inadequate observations and modeling of the inner core due to two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the inner rain bands and 2) the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address these deficiencies by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a satellite constellation. This paper provides an overview of the CYGNSS flight segment requirements, implementation, and concept of operations for the CYGNSS constellation; consisting of 8 microsatellite-class spacecraft (<; 100kg) each hosting a GNSS receiver, operating in a 500 km orbit, inclined at 35° to provide 70% coverage of the historical TC track. The CYGNSS mission is enabled by modern electronic technology; it is an example of how nanosatellite technology can be applied to replace traditional "old school" solutions at significantly reduced cost while providing an increase in performance. This paper provides an overview of how we combined a reliable space-flight proven avionics design with selected microsatellite components to create an innovative, low-cost solution for a mainstream science investigation.

  5. NASA Overview (K-12, Educators, and General Public)

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2003-01-01

    This viewgraph presentation provides an overview of NASA activities intended for recruitment of employees. It includes NASA's vision statement and mission, images of solar system bodies and the Sojourner rover, as well as information the Aqua satellite and the Stratospheric Aerosol and Gas Experiment III (Sage III). Images of experimental aircraft, a space shuttle, and the Hubble Space Telescope (HST) are shown, and a section on mission planning is included.

  6. ASHI, an All Sky Heliospheric Imager for Future NASA Missions

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Buffington, A.; Hick, P. P.; Yu, H. S.; Bisi, M. M.

    2016-12-01

    We wish to answer the scientific question: "What are the shapes and time histories of heliospheric structures in the plasma parameters, density and velocity as structures move outward from the Sun and surround the spacecraft?" To provide answers to this question, we propose ASHI, an All-Sky Heliospheric Imager for future NASA missions. ASHI's primary applicability is to view the inner heliosphere from deep space as a photometric system. The zodiacal-light photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) on the Coriolis satellite, and the Heliospheric Imagers (HIs) on the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all point the way towards an optimum instrument for viewing Thomson-scattering observations. The specifications for such systems include viewing the whole sky starting beyond a few degrees of the Sun, and covering a hemisphere or more of sky. With an imager mass of about 2.5 kg per system (scalable to lower values for instruments viewing from closer than 1 AU), ten-minute exposures, 20 arc-second pointing, and low power consumption, this type of instrument has been a popular choice for recent NASA Mission concepts such as STEREO, Solar Orbiter, Solar probe, and EASCO. A key photometric specification for such imagers is 0.1% differential photometry which enables the 3-D reconstruction of density starting from near the Sun and extending outward. A proven concept using SMEI analyses, ASHI will provide an order of magnitude better resolution in three dimensions over time. As a new item we intend to include velocity in this concept, and for a heliospheric imager in deep space, provide high-resolution comparisions of in-situ density and velocity measurements obtained at the spacecraft, to structures observed remotely.

  7. New NASA Infrared Image of Irma Shows an Angry Eye

    NASA Image and Video Library

    2017-09-05

    Hurricane Irma is the strongest hurricane ever recorded outside the Caribbean Sea and Gulf of Mexico. These two images from the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite show what Hurricane Irma looked like when Aqua passed overhead just before 1 p.m. local time (10 a.m. PDT) on Sept. 5, 2017. Forecasts at the National Hurricane Center have Irma passing near the major islands to its west before turning northward near Florida this weekend. The first image (top) is an infrared snapshot from AIRS (see Figure 1 for larger image). In orange and red areas, the ocean surface shines through, while blue and purple areas represent cold, high clouds that obscure what lies below. Typical of well-developed hurricanes, Irma is nearly circular with a well-defined eye at its center. The eye is about 25 miles (40 kilometers) in diameter. Careful scrutiny shows a red pixel in the center of the eye, which means that AIRS achieved a bulls-eye with one of its "looks" and was able to see to the ocean between the dense clouds in the eye wall. The second image (bottom) shows the view through AIRS' microwave-colored "lenses" (see Figure 2 for larger image). Here the ocean surface looks yellow, while green represents various degrees of cloudiness. Blue shows areas where it is raining heavily. The eye is not apparent in this image because the "pixel size" of the microwave sounder, about 30 miles (50 kilometers), is larger than the eye and therefore cannot "thread the needle." The infrared sounder, on the other hand, has a pixel size of only 10 miles (16.5 kilometers) and can distinguish the small eye. https://photojournal.jpl.nasa.gov/catalog/PIA21941

  8. Visual Data Analysis for Satellites

    NASA Technical Reports Server (NTRS)

    Lau, Yee; Bhate, Sachin; Fitzpatrick, Patrick

    2008-01-01

    The Visual Data Analysis Package is a collection of programs and scripts that facilitate visual analysis of data available from NASA and NOAA satellites, as well as dropsonde, buoy, and conventional in-situ observations. The package features utilities for data extraction, data quality control, statistical analysis, and data visualization. The Hierarchical Data Format (HDF) satellite data extraction routines from NASA's Jet Propulsion Laboratory were customized for specific spatial coverage and file input/output. Statistical analysis includes the calculation of the relative error, the absolute error, and the root mean square error. Other capabilities include curve fitting through the data points to fill in missing data points between satellite passes or where clouds obscure satellite data. For data visualization, the software provides customizable Generic Mapping Tool (GMT) scripts to generate difference maps, scatter plots, line plots, vector plots, histograms, timeseries, and color fill images.

  9. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. On Feb. 11, 2010, NASA launched the SDO spacecraft, which is the most advanced spacecraft ever designed to study the sun. Seated left to right are: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md.; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment Instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  10. Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer

    Treesearch

    Mark Chopping; Gretchen G. Moisen; Lihong Su; Andrea Laliberte; Albert Rango; John V. Martonchik; Debra P. C. Peters

    2008-01-01

    A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona...

  11. Natural Satellite Ephemerides at JPL

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert Arthur; Brozovic, Marina

    2015-08-01

    There are currently 176 known natural planetary satellites in the solar system; 150 are officially recognized by the IAU and 26 have IAU provisional designations. We maintain ephemerides for all of the satellites at NASA's Jet Propulsion Laboratory (JPL) and make them available electronically through the On-Line Solar System Data Service known as Horizons(http://ssd.jpl.nasa.gov/horizons) and in the form of generic Spice Kernels (SPK files) from NASA's Navigation and Ancillary Information Facility (http://naif.jpl.nasa.gov/naif). General satellite information such as physical constants and descriptive orbital elements can be found on the JPL Solar System Dynamics Website (http://ssd.jpl.nasa.gov). JPL's ephemerides directly support planetary spacecraft missions both in navigation and science data analysis. They are also used in general scientific investigations of planetary systems. We produce the ephemerides by fitting numerically integrated orbits to observational data. Our model for the satellite dynamics accounts for the gravitational interactions within a planetary system and the external gravitational perturbations from the Sun and planets. We rely on an extensive data set to determine the parameters in our dynamical models. The majority of the observations are visual, photographic, and CCD astrometry acquired from Earthbased observatories worldwide and the Hubble Space Telescope. Additional observations include optical and photoelectric transits, eclipses, occultations, Earthbased radar ranging, spacecraft imaging,and spacecraft radiometric tracking. The latter data provide information on the planet and satellite gravity fields as well as the satellite position at the times of spacecraft close encounters. In this paper we report on the status of the ephemerides and our plan for future development, specifically that in support of NASA's Juno, Cassini, and New Horizons missions to Jupiter, Saturn, and Pluto, respectively.

  12. NASA Spacecraft Images Cambodian Flooding

    NASA Image and Video Library

    2011-08-29

    This image acquired by NASA Terra spacecraft shows unusually heavy rains over the upper Mekong River in Laos and Thailand that led to severe flooding in Cambodia in mid-August 2011. The city of Phnom Penh is at the bottom center of the image.

  13. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, far right, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Pictured from left of Dr. Guhathakurta's are: Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  14. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. Pictured right to left are: Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  15. Potential for calibration of geostationary meteorological satellite imagers using the Moon

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Grant, I.F.; ,

    2005-01-01

    Solar-band imagery from geostationary meteorological satellites has been utilized in a number of important applications in Earth Science that require radiometric calibration. Because these satellite systems typically lack on-board calibrators, various techniques have been employed to establish "ground truth", including observations of stable ground sites and oceans, and cross-calibrating with coincident observations made by instruments with on-board calibration systems. The Moon appears regularly in the margins and corners of full-disk operational images of the Earth acquired by meteorological instruments with a rectangular field of regard, typically several times each month, which provides an excellent opportunity for radiometric calibration. The USGS RObotic Lunar Observatory (ROLO) project has developed the capability for on-orbit calibration using the Moon via a model for lunar spectral irradiance that accommodates the geometries of illumination and viewing by a spacecraft. The ROLO model has been used to determine on-orbit response characteristics for several NASA EOS instruments in low Earth orbit. Relative response trending with precision approaching 0.1% per year has been achieved for SeaWiFS as a result of the long time-series of lunar observations collected by that instrument. The method has a demonstrated capability for cross-calibration of different instruments that have viewed the Moon. The Moon appears skewed in high-resolution meteorological images, primarily due to satellite orbital motion during acquisition; however, the geometric correction for this is straightforward. By integrating the lunar disk image to an equivalent irradiance, and using knowledge of the sensor's spectral response, a calibration can be developed through comparison against the ROLO lunar model. The inherent stability of the lunar surface means that lunar calibration can be applied to observations made at any time, including retroactively. Archived geostationary imager data

  16. NASA Satellite Reveals Grandeur of Arizona Grand Canyon

    NASA Image and Video Library

    2011-10-14

    Arguably one of America most magnificent national parks is the Grand Canyon in northern Arizona. NASA Terra spacecraft captured this image looking to the northeast, the buildings and roads in the center foreground are Grand Canyon Village.

  17. A low cost thermal infrared hyperspectral imager for small satellites

    NASA Astrophysics Data System (ADS)

    Crites, S. T.; Lucey, P. G.; Wright, R.; Garbeil, H.; Horton, K. A.

    2011-06-01

    The traditional model for space-based earth observations involves long mission times, high cost, and long development time. Because of the significant time and monetary investment required, riskier instrument development missions or those with very specific scientific goals are unlikely to successfully obtain funding. However, a niche for earth observations exploiting new technologies in focused, short lifetime missions is opening with the growth of the small satellite market and launch opportunities for these satellites. These low-cost, short-lived missions provide an experimental platform for testing new sensor technologies that may transition to larger, more long-lived platforms. The low costs and short lifetimes also increase acceptable risk to sensors, enabling large decreases in cost using commercial off the shelf (COTS) parts and allowing early-career scientists and engineers to gain experience with these projects. We are building a low-cost long-wave infrared spectral sensor, funded by the NASA Experimental Project to Stimulate Competitive Research program (EPSCOR), to demonstrate the ways in which a university's scientific and instrument development programs can fit into this niche. The sensor is a low-mass, power efficient thermal hyperspectral imager with electronics contained in a pressure vessel to enable the use of COTS electronics, and will be compatible with small satellite platforms. The sensor, called Thermal Hyperspectral Imager (THI), is based on a Sagnac interferometer and uses an uncooled 320x256 microbolometer array. The sensor will collect calibrated radiance data at long-wave infrared (LWIR, 8-14 microns) wavelengths in 230-meter pixels with 20 wavenumber spectral resolution from a 400-km orbit.

  18. Satellite Sees Holiday Lights Brighten Cities - Istanbul

    NASA Image and Video Library

    2017-12-08

    In several cities in the Middle East, city lights brighten during the Muslim holy month of Ramadan, as seen using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where the lights are 50 percent brighter, or more, during Ramadan. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Satellite Sees Holiday Lights Brighten Cities - Cairo

    NASA Image and Video Library

    2017-12-08

    In several cities in the Middle East, city lights brighten during the Muslim holy month of Ramadan, as seen using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where the lights are 50 percent brighter, or more, during Ramadan. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Satellite Shows Powerful Cold Front Moving Off U.S. East Coast

    NASA Image and Video Library

    2014-05-16

    NOAA's GOES-East satellite captured an image of a powerful cold front that triggered flash flood watches and warnings along the U.S. East Coast on May 16. NOAA's National Weather Service noted flash flooding was possible from New England into eastern North Carolina today, May 16. The clouds associated with the long cold front was captured using visible data from NOAA's GOES-East or GOES-13 satellite on at 1900 UTC (3:00 p.m. EDT) and was made into an image by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. The clouds stretched from Maine south through the Mid-Atlantic down to southern Florida with a tail of clouds extending into the western Caribbean Sea. South of Lake Michigan the rounded swirl of clouds indicates another low pressure system. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's National Weather Service website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Satellite Shows Developing U.S. Nor'easter

    NASA Image and Video Library

    2015-01-26

    National Weather Service forecasters have been tracking a low pressure area that moved from the Midwest into the Atlantic Ocean today, and is expected to become a strong nor'easter that will bring blizzard conditions to the northeastern U.S. The path of the system was captured in a NASA movie of NOAA's GOES-East satellite imagery. (This GOES 13 image was captured on January 26, 2015 at 1445 UTC.) On Monday, January 26, 2015, the National Weather Service noted: A storm system off the East Coast will continue to strengthen as it develops into a major nor'easter on Monday. As the storm moves up the coast, it is expected to bring snowfall of 1-3 feet or more to many parts of the Northeast through Tuesday evening, including New York City and Boston. Strong, gusty winds will combine with the snow to create blizzard conditions along and near the coast. Winter storm warnings are in effect for the panhandles of West Virginia and Maryland, much of interior New England down to the northern Mid-Atlantic as well as for Nantucket Island, Massachusetts. Winter weather advisories are in effect for portions of the Ohio Valley, Mid-Atlantic and the southern Appalachians as well as a narrow area across interior New England. To create the video and imagery, NASA/NOAA's GOES Project located at NASA's Goddard Space Flight Center in Greenbelt, Maryland overlays the cloud data from NOAA's GOES-East satellite on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, these data create the entire animation of the storm and show its movement. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a

  2. Assimilating All-Sky GPM Microwave Imager(GMI) Radiance Data in NASA GEOS-5 System for Global Cloud and Precipitation Analyses

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Jin, J.; McCarty, W.; Todling, R.; Holdaway, D. R.; Gelaro, R.

    2014-12-01

    The NASA Global Modeling and Assimilation Office (GMAO) works to maximize the impact of satellite observations in the analysis and prediction of climate and weather through integrated Earth system modeling and data assimilation. To achieve this goal, the GMAO undertakes model and assimilation development, generates products to support NASA instrument teams and the NASA Earth science program. Currently Atmospheric Data Assimilation System (ADAS) in the Goddard Earth Observing System Model, Version 5(GEOS-5) system combines millions of observations and short-term forecasts to determine the best estimate, or analysis, of the instantaneous atmospheric state. However, ADAS has been geared towards utilization of observations in clear sky conditions and the majority of satellite channel data affected by clouds are discarded. Microwave imager data from satellites can be a significant source of information for clouds and precipitation but the data are presently underutilized, as only surface rain rates from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) are assimilated with small weight assigned in the analysis process. As clouds and precipitation often occur in regions with high forecast sensitivity, improvements in the temperature, moisture, wind and cloud analysis of these regions are likely to contribute to significant gains in numerical weather prediction accuracy. This presentation is intended to give an overview of GMAO's recent progress in assimilating the all-sky GPM Microwave Imager (GMI) radiance data in GEOS-5 system. This includes development of various new components to assimilate cloud and precipitation affected data in addition to data in clear sky condition. New observation operators, quality controls, moisture control variables, observation and background error models, and a methodology to incorporate the linearlized moisture physics in the assimilation system are described. In addition preliminary results showing impacts of

  3. Typhoon Soudelor's Eye Close-Up from NASA-NOAA's Suomi NPP

    NASA Image and Video Library

    2015-08-10

    On August 6, 2015, NASA-NOAA's Suomi NPP satellite passed over powerful Typhoon Soudelor when it was headed toward Taiwan. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi satellite captured this night-time infrared close-up image of Soudelor's eye. At 1500 UTC (11 a.m. EDT) on August 6, 2015, Typhoon Soudelor had maximum sustained winds near 90 knots (103.6 mph/166.7 kph). It was centered near 21.3 North latitude and 127.5 East longitude, about 324 nautical miles (372.9 miles/600 km) south of Kadena Air Base, Okinawa, Japan. It was moving to the west at 10 knots (11.5 mph/18.5 kph). Credit: UWM/CIMSS/SSEC, William Straka III NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. NASA Spacecraft Tracks Argentine Flooding

    NASA Image and Video Library

    2015-08-19

    Northwest of Buenos Aires, Argentina, seven straight days of torrential rains of up to 16 inches 40 centimeters in August 2015 resulted in flooding between the cities of Escobar and Campana as seen by NASA Terra spacecraft. The flooding has since eased, allowing some evacuated residents of the 39 affected municipalities to return to their homes. The flooding was captured in this satellite image acquired Aug. 16, 2015, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. The image covers an area of 16.7 by 17.4 miles (26.9 by 28 kilometers), and is located at 34.2 degrees south, 58.6 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19871

  5. Image Segmentation Analysis for NASA Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    2010-01-01

    NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.

  6. Northern Everglades, Florida, satellite image map

    USGS Publications Warehouse

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  7. NASA Spots an "Eye" of Smoke and Phytoplankton near Cape Barren Island

    NASA Image and Video Library

    2017-12-08

    NASA-NOAA's Suomi NPP satellite passed over Australia's Cape Barren Island and captured an image of phytoplankton and smoke from fires that resembled an eye and eyebrow. The Tasmanian Fire Service reported that a vegetation fire near Thunder and Lightning Bay, Cape Barren Island started on December 4 and was still blazing on December 8. Cape Barren Island is one of a trail of islands in the Bass Strait of the South Pacific Ocean, between southeastern Australia and Tasmania. This natural-color satellite image from Dec. 7 was collected by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument that flies aboard NASA-NOAA's Suomi NPP satellite. The red dots in the image represent heat signatures from the fires as detected by VIIRS. A light grey stream of smoke was blowing to the southeast in what could be seen as the "eyebrow" to the "eye" or swirl of blue and green phytoplankton below it. Phytoplankton are tiny microscopic plant-like organisms that form the base of the marine food chain. Like land plants, phytoplankton contain chlorophyll which is used in photosynthesis to turn sunlight into chemical energy. The chlorophyll gives the phytoplankton their green color, which is visible from space when large numbers of the organism group together. NASA image courtesy MODIS Rapid Response Team #nasagoddard #earth #smoke #Phytoplankton #science b>NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. NASA Sees a Wider-Eyed Typhoon Soudelor Near Taiwan

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument aboard NASA's Aqua satellite flew over Typhoon Soudelor on Aug. 7, 2015, at 4:40 UTC (12:40 a.m. EDT) as it was approaching Taiwan. Credits: NASA Goddard's MODIS Rapid Response Team Clouds in Typhoon Soudelor's western quadrant were already spreading over Taiwan early on August 7 when NASA's Aqua satellite passed overhead. Soudelor is expected to make landfall and cross central Taiwan today and make a second landfall in eastern China. NASA satellite imagery revealed that Soudelor's eye "opened" five more miles since August 4. On Aug. 7 at 4:40 UTC (12:40 a.m. EDT) the Moderate Resolution Imaging Spectroradiometer or MODIS instrument aboard NASA's Aqua satellite captured a visible-light image of Typhoon Soudelor as its western quadrant began brushing eastern Taiwan. The MODIS image showed Soudelor's 17-nautical-mile-wide eye and thick bands of powerful thunderstorms surrounded the storm and spiraled into the center. Just three days before, the eye was 5 nautical miles smaller when the storm was more intense. On Aug. 4 at 4:10 UTC (12:10 a.m. EDT) Aqua's MODIS image showed the eye was 12-nautical-mile-wide eye. At 1500 UTC (11 a.m. EDT) on August 7, 2015, the Joint Typhoon Warning Center (JTWC) noted that Typhoon Soudelor's maximum sustained winds increased from 90 knots (103.6 mph/166.7 kph) to 105 knots (120.8 mph / 194.5 kph). It was centered near 23.1 North latitude and 123.2 East longitude, about 183 nautical miles (210.6 miles/338.9 km) southeast of Taipei, Taiwan. It was moving to the west-northwest at 10 knots (11.5 mph/18.5 kph). For warnings and watches for Taiwan, visit the Central Weather Bureau website: www.cwb.gov.tw/eng/. For warnings in China, visit the China Meteorological Administration website: www.cma.gov.cn/en. Soudelor's final landfall is expected in eastern China on Saturday, August 8. Clouds in Typhoon Soudelor's western quadrant were already spreading over Taiwan early on August 7 when NASA's Aqua satellite passed

  9. Satellite Sees Remaining Northeast Snowfall, Connecticut Still Recovering

    NASA Image and Video Library

    2017-12-08

    Last weekend's late October snow may have melted in Maryland, Delaware, parts of Pennsylvania and New Jersey, but residents in north central Connecticut are still dealing with the effects of the storm. According to Connecticut Light and Power, 430,868 residents were still without power today, Nov. 3, 2011. For estimated restoration times, visit their website at: www.cl-p.com/stormcenter/estimates/. A late October snowstorm from a Nor'easter blanketed the eastern U.S. from West Virginia to Maine and broke records the weekend before Halloween Monday. NASA's Aqua satellite flew over the region on October 30 after the snow was ending in New England and captured the ghostly blanket of white. When NASA's Aqua satellite passed over the northeastern U.S. on November 2, 2011 at 2:00 p.m. EDT, the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument captured a detailed image of the remaining snowfall. Snow still covers the ground in western and central Connecticut, southeastern New York, western and central Massachusetts, and parts of Vermont, New Hampshire and Maine. Over the Atlantic, cirrocumulus clouds create a diagonal border. The image was created at NASA's Goddard Space Flight Center in Greenbelt, Md. Image Credit: NASA Goddard MODIS Rapid Response Team; Caption: NASA Goddard, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Credit: NASA/GSFC

  11. NASA Spacecraft Captures Effects of U.S. Drought

    NASA Image and Video Library

    2012-09-06

    Two satellite images acquired by NASA Terra spacecraft, obtained about 10 years apart, clearly illustrate the effects of the near-historic drought conditions in southwestern Kansas. Farmers are among the hardest hit.

  12. The 2010 Eyjafjallajokull Eruptions: The NASA Applied Sciences Perspective for Aviation

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Haynes, J. A.; Trepte, C. R.; Krotkov, N. A.; Krueger, A. J.

    2010-12-01

    The volcanic ash from the eruption of the Eyjafjallajokull volcano in Iceland which began on March 17, 2010 was closely monitored by NASA Earth Observing System satellites. A wide variety of applications and techniques developed by the NASA Science Mission Directorate’s Applied Science Program were employed. These included information from imager data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua and Terra spacecraft. Horizontal distribution of the ash cloud and column amount of volcanic sufur dioxide gas was accurately mapped by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite. Highly precise retrievals of the vertical distribution of volcanic aerosols were obtained by the Caliop instrument onboard the Calipso satellite. The Multi-angle Imaging SpectroRadiometer (MISR) satellite also provided stereo-derived plume heights at 1km horizontal and ~0.5km vertical resolutions. All of this information was employed to assist in airspace management during the eruptive period. It will continue to be used to improve dispersion models and procedures for dealing with volcanic ash.

  13. New NASA Images of Irma's Towering Clouds (Anaglyph)

    NASA Image and Video Library

    2017-09-08

    On Sept. 7, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite passed over Hurricane Irma at approximately 11:20 am local time. The MISR instrument comprises nine cameras that view the Earth at different angles, and since it takes roughly seven minutes for all nine cameras to capture the same location, the motion of the clouds between images allows scientists to calculate the wind speed at the cloud tops. This stereo anaglyph combines two of the MISR angles to show a three-dimensional view of Irma. You will need red-blue glasses to view the anaglyph; place the red lens over your left eye. At this time, Irma's eye was located approximately 60 miles (100 kilometers) north of the Dominican Republic and 140 miles (230 kilometers) north of its capital, Santo Domingo. Irma was a powerful Category 5 hurricane, with wind speeds at the ocean surface up to 185 miles (300 kilometers) per hour. The MISR data show that at cloud top, winds near the eye wall (the most destructive part of the storm) were approximately 90 miles per hour (145 kilometers per hour), and the maximum cloud-top wind speed throughout the storm calculated by MISR was 135 miles per hour (220 kilometers per hour). While the hurricane's dominant rotation direction is counter-clockwise, winds near the eye wall are consistently pointing outward from it. This is an indication of outflow, the process by which a hurricane draws in warm, moist air at the surface and ejects cool, dry air at its cloud tops. https://photojournal.jpl.nasa.gov/catalog/PIA21945

  14. NOAA satellite observing systems: status and plans

    NASA Astrophysics Data System (ADS)

    John Hussey, W.; Schneider, Stanley R.; Gird, Ronald S.; Needham, Bruce H.

    1991-07-01

    NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) operates separates series of environmental monitoring satellites in polar and geostationary orbits. Two geostationary spacecraft are normally in opration: one stationed at 75° E longitude (GOES-EAST), and one stationed at 135° W longitude (GOES-WEST). Owing to a combination of premature in-orbit failures and a launch failure there is only one GOES satellite currently operational, GOES-7, which is migrated between 95° and 105° W longitude depending upon season. GOES-7 was launched in February 1987. Its primary observing instrument is a combined imager/sounder, the VISSR Atmospheric Sounder (VAS). The first in the next series of GOES satellite, (GOES I-M), is scheduled for launch in 1992. The major upgrade over the current GOES satellites will be the introduction of simultaneous imaging and sounding capability and improvements in imaging IR and sounding resolution. Because of the long lead times necessary in designing and building new systems, NOAA, in cooperation with NASA, has already begun the planning and study process for the GOES-N series of satellites, which will fly early in the next century. NOAA operates a two polar satellite system with equatorial nodal crossing times of 0730 (descending) and 1345 (ascending). The current operational satellites are NOAA-10 (AM) and NOAA-11 (PM). The next in the series (NOAA-D, which will become NOAA-12 once operational) is scheduled for launch in early summer 1991. The instruments onboard are used to make global measurements of numerous parameters such as atmospheric temperature, water vapor, ozone, sea surface temperature, sea ice, and vegetation. The NOAA K-N series of satellites, scheduled for deployment in the mid 1990's, will provide upgraded imaging and sounding capability. The imager will be enhanced to include a sixth channel for cloud/ice descrimination. A 15 channel advanced microwave sounder will be manifested for atmospheric

  15. Suomi NPP Satellite Views of Tropical Cyclone Mahasen in the Northern Indian Ocean

    NASA Image and Video Library

    2017-12-08

    The first tropical cyclone in the Northern Indian Ocean this season has been getting better organized as seen in NASA satellite imagery. Tropical Cyclone Mahasen is projected to track north through the Bay of Bengal and make landfall later this week. On May 13, NASA-NOAA's Suomi NPP satellite captured various night-time and day-time imagery that showed Mesospheric Gravity Waves, lightning, and heavy rainfall in false-colored imagery. For more information and updates on Cyclone Mahasen, visit NASA's Hurricane page at www.nasa.gov/hurricane. Image Credit: UWM-CIMSS/William Straka III/NASA/NOAA Text Credit: NASA Goddard/Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Satellite Sees Holiday Lights Brighten Cities - Saudi Arabia

    NASA Image and Video Library

    2017-12-08

    In several cities in the Middle East, city lights brighten during the Muslim holy month of Ramadan, as seen using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where the lights are 50 percent brighter, or more, during Ramadan. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Preliminary Analysis of Images from the Thermospheric Temperature Imager on Fast, Affordable, Science and Technology SATellite (FASTSAT)

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Jones, S.; Mentzell, E.; Gill, N.

    2011-12-01

    The Thermospheric Temperature Imager (TTI) on Fast, Affordable, Science and Technology SATellite (FASTSAT) measures the upper atmospheric atomic oxygen emission at 135.6 nm and the molecular nitrogen LBH emission at 135.4 nm to determine the atmospheric O/N2 density ratio. Observations of variations in this thermosheric ratio correspond to electron density variations in the ionosphere. The TTI design makes use of a Fabry-Perot interferometer to measure Doppler widened atmospheric emissions to determine neutral atmospheric temperature from low Earth orbit. FASTSAT launched November 10, 2010 and TTI is currently observing geomagnetic signatures in the aurora and airglow. This work is supported by NASA.

  18. Preliminary Analysis of Images from the Thermospheric Temperature Image on Fast, Affordable, Science and Technology Satellite (FASTSAT)

    NASA Technical Reports Server (NTRS)

    Rodriquez, Marcello; Jones, Sarah; Mentzell, Eric; Gill, Nathaniel

    2011-01-01

    The Thermospheric Temperature Imager (TTI) on Fast, Affordable, Science and Technology SATellite (FASTSAT) measures the upper atmospheric atomic oxygen emission at 135.6 nm and the molecular nitrogen LBH emission at 135.4 nm to determine the atmospheric O/N2 density ratio. Observations of variations in this thermospheric ratio correspond to electron density variations in the ionosphere. The TTI design makes use of a Fabry-Perot interferometer to measure Doppler widened atmospheric emissions to determine neutral atmospheric temperature from low Earth orbit. FASTSAT launched November 10, 2010 and TTI is currently observing geomagnetic signatures in the aurora and airglow. This work is supported by NASA.

  19. New Martian satellite search

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The approach pictures taken by the Viking 1 and Viking 2 spacecrafts two days before their Mars orbital insertion maneuvers were analyzed in order to search for new satellites within the orbit of Phobos. To accomplish this task, search procedure and analysis strategy were formulated, developed and executed using the substantial image processing capabilities of the Image Processing Laboratory at the Jet Propulsion Laboratory. The development of these new search capabilities should prove to be valuable to NASA in processing of image data obtained from other spacecraft missions. The result of applying the search procedures to the Viking approach pictures was as follows: no new satellites of comparable size (approx. 20 km) and brightness to Phobos or Demios were detected within the orbit of Phobos.

  20. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  1. Remote Acoustic Imaging of Geosynchronous Satellites

    NASA Astrophysics Data System (ADS)

    Watson, Z.; Hart, M.

    Identification and characterization of orbiting objects that are not spatially resolved are challenging problems for traditional remote sensing methods. Hyper temporal imaging, enabled by fast, low-noise electro-optical detectors is a new sensing modality which may allow the direct detection of acoustic resonances on satellites enabling a new regime of signature and state detection. Detectable signatures may be caused by the oscillations of solar panels, high-gain antennae, or other on-board subsystems driven by thermal gradients, fluctuations in solar radiation pressure, worn reaction wheels, or orbit maneuvers. Herein we present the first hyper-temporal observations of geosynchronous satellites. Data were collected at the Kuiper 1.54-meter telescope in Arizona using an experimental dual-channel imaging instrument that simultaneously measures light in two orthogonally polarized beams at sampling rates extending up to 1 kHz. In these observations, we see evidence of acoustic resonances in the polarization state of satellites. The technique is expected to support object identification and characterization of on-board components and to act as a discriminant between active satellites, debris, and passive bodies.

  2. Most Amazing High Definition Image of Earth - Blue Marble 2012

    NASA Image and Video Library

    2017-12-08

    January 25, 2012 *Updated February 2, 2012: According to Flickr, "The western hemisphere Blue Marble 2012 image has rocketed up to over 3.1 million views making it one of the all time most viewed images on the site after only one week." A 'Blue Marble' image of the Earth taken from the VIIRS instrument aboard NASA's most recently launched Earth-observing satellite - Suomi NPP. This composite image uses a number of swaths of the Earth's surface taken on January 4, 2012. The NPP satellite was renamed 'Suomi NPP' on January 24, 2012 to honor the late Verner E. Suomi of the University of Wisconsin. Suomi NPP is NASA's next Earth-observing research satellite. It is the first of a new generation of satellites that will observe many facets of our changing Earth. Suomi NPP is carrying five instruments on board. The biggest and most important instrument is The Visible/Infrared Imager Radiometer Suite or VIIRS. To read more about NASA's Suomi NPP go to: www.nasa.gov/npp Credit: NASA/NOAA/GSFC/Suomi NPP/VIIRS/Norman Kuring NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Air Traffic Control Experimentation and Evaluation with the NASA ATS-6 Satellite : Volume 7. Aircraft Antenna Evaluation Test

    DOT National Transportation Integrated Search

    1976-09-01

    Aircraft L-band antennas designed for satellite communication were evaluated using an FAA KC-135 aircraft and the NASA ATS-6 satellite. All tests were performed between September 1974 and April 1975 as one component of the U.S. DOT/FAA aeronautical t...

  4. NASA Operational Simulator for Small Satellites (NOS3)

    NASA Technical Reports Server (NTRS)

    Zemerick, Scott

    2015-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operationstraining, verification and validation (VV), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  5. NASA Satellite Tracks Underwater Volcanic Eruption in Canary Islands

    NASA Image and Video Library

    2011-11-02

    In July 2011, volcanic tremors began on the Island of El Hierro in the Canary Islands; by September, many tourists evacuated the resort island, fearing a volcanic eruption. This image is from NASA Terra spacecraft.

  6. Applications of NASA and NOAA Satellite Observations by NASA's Short-term Prediction Research and Transition (SPoRT) Center in Response to Natural Disasters

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Jedlovec, Gary J.

    2012-01-01

    NASA s Short-term Prediction Research and Transition (SPoRT) Center supports the transition of unique NASA and NOAA research activities to the operational weather forecasting community. SPoRT emphasizes real-time analysis and prediction out to 48 hours. SPoRT partners with NOAA s National Weather Service (NWS) Weather Forecast Offices (WFOs) and National Centers to improve current products, demonstrate future satellite capabilities and explore new data assimilation techniques. Recently, the SPoRT Center has been involved in several activities related to disaster response, in collaboration with NOAA s National Weather Service, NASA s Applied Sciences Disasters Program, and other partners.

  7. Double regions growing algorithm for automated satellite image mosaicking

    NASA Astrophysics Data System (ADS)

    Tan, Yihua; Chen, Chen; Tian, Jinwen

    2011-12-01

    Feathering is a most widely used method in seamless satellite image mosaicking. A simple but effective algorithm - double regions growing (DRG) algorithm, which utilizes the shape content of images' valid regions, is proposed for generating robust feathering-line before feathering. It works without any human intervention, and experiment on real satellite images shows the advantages of the proposed method.

  8. Satellite Shows an "Arctic Blanket" Over the U.S.

    NASA Image and Video Library

    2017-12-08

    View detail image here: bit.ly/1bvJlaN Arctic air has surged into the U.S. pushing into the Southeastern states and dropping high temperatures there into the 20s with colder wind chills. This NOAA GOES-East satellite image was captured at 1445 UTC/9:45 a.m. EST on January 28, and between the clouds and the snow on the ground with cold air overhead, it appears as if much of the U.S. has been covered by an "Arctic Blanket." According to NOAA's National Weather Service (NWS), the Gulf coast states from southern Louisiana east to the Carolinas are facing a wintry mix of precipitation along the southern edge of the Arctic air. Meanwhile, NWS notes that wind chills throughout much of the central and eastern U.S. are in single and negative numbers during the day on January 28. The GOES-East satellite is managed and operated by NOAA. This image was created by the NASA/NOAA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  10. Antennas Lower Cost of Satellite Access

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Whether for scientific inquiry, weather forecasting, or public safety, the world relies upon the data gathered by satellite remote sensing. Some of NASA s most valuable work is in its remote sensing capabilities - the ability to retrieve data acquired at great distances - affording a height and scope not available from the ground. NASA satellites in low Earth orbit (LEO) monitor ocean health by taking large-scale pictures of phytoplankton blooms and measuring surface temperatures; snap photographs of full hurricanes from above, teaching researchers about how these giant storms form; and capture images of cloud formation and air pollution, all allowing researchers to further develop understanding of the planet s health. NASA remote sensing satellites also monitor shifts in the Earth s crust, analyze wind patterns around the world to develop efficient wind energy, help people around the world recover from natural disasters, and monitor diminishing sea ice levels. Just as researchers are more heavily relying on this data from space to conduct their work, the instruments carried on satellites are getting more sophisticated and capable of capturing increasingly complex and accurate measurements. The satellites are covering larger areas, from farther away, and generating more and more valuable data. The ground-based receivers for this wealth of satellite data have grown increasingly capable of handling greater bandwidth and higher power levels. They have also become less expensive, through a NASA research partnership, with the creation of a high-rate X-band data receiver system that is now in widespread use around the globe.

  11. Infrared Astronomical Satellite View of the Sky

    NASA Image and Video Library

    2009-11-03

    Nearly the entire sky, as seen in infrared wavelengths and projected at one-half degree resolution, is shown in this image, assembled from six months of data from the NASA Infrared Astronomical Satellite, or IRAS.

  12. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Jason Townsend, NASA's social media manager, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  13. South Florida Everglades: satellite image map

    USGS Publications Warehouse

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  14. A Star Image Extractor for Small Satellites

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Yamauchi, Masahiro; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Yano, Taihei; Suganuma, Masahiro; Nakasuka, Shinichi; Sako, Nobutada; Inamori, Takaya

    We have developed a Star Image Extractor (SIE) which works as an on-board real-time image processor. It is a logic circuit written on an FPGA(Field Programmable Gate Array) device. It detects and extracts only an object data from raw image data. SIE will be required with the Nano-JASMINE 1) satellite. Nano-JASMINE is the small astrometry satellite that observes objects in our galaxy. It will be launched in 2010 and needs two years mission period. Nano-JASMINE observes an object with the TDI (Time Delayed Integration) observation mode. TDI is one of operation modes of CCD detector. Data is obtained, by rotating the imaging system including CCD at a rated synchronized with a vertical charge transfer of CCD. Obtained image data is sent through SIE to the Mission-controller.

  15. image1goes5117.jpg

    NASA Image and Video Library

    2017-12-08

    NASA Sees Severe Weather from Central to Eastern US A vigorous weather system has generated severe weather over the mid-section of the U.S. and satellites are providing a look at it as it is moving toward the East Coast. NASA and NOAA satellites have been tracking a storm system that has generated flooding and tornadic thunderstorms in the central U.S. and is expected bring severe weather to the U.S. Mid-Atlantic region. At NASA's Goddard Space Flight Center in Greenbelt, Maryland, data from NOAA's GOES-East satellite were used to create images and an animation of the movement of the powerful storm. On April 30, the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument aboard NASA's Aqua satellite captured a visible image of the storms moving over eastern Texas and Louisiana. Tornadoes in eastern Texas killed four people. The system generated heavy rainfall and caused additional fatalities and damages in Arkansas, Missouri, Mississippi, Alabama and Tennessee. On Monday, May 1, NOAA's National Weather Service noted, "Major to record flooding continues over portions of the central U.S. Severe thunderstorms are possible from the Mid-Atlantic to the northeastern U.S. "Major to record flooding will continue over portions of eastern Oklahoma, northern Arkansas, Missouri, Illinois and Indiana. Rivers will gradually recede over the next several days. Additional strong to severe thunderstorms will be possible Monday afternoon and evening over portions of the Mid-Atlantic and Northeast U.S. Damaging winds, large hail, and isolated tornadoes will be possible." Image caption: On May 1, 2017, at 10:37 a.m. EDT (1437 UTC) NOAA's GOES-East satellite captured this visible image of the storm system centered over Iowa with an associated cold front that stretches into the Gulf of Mexico. Credits: NASA/NOAA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar

  16. Oceanography Satellite Launches on This Week @NASA – January 22, 2016

    NASA Image and Video Library

    2016-01-22

    On Jan. 17, Jason-3, a U.S.-European oceanography satellite mission launched from California’s Vandenberg Air Force Base aboard a SpaceX Falcon 9 rocket. The mission is led by the National Oceanic and Atmospheric Administration (NOAA) in partnership with NASA, the French space agency, CNES, and the European Organisation for the Exploitation of Meteorological Satellites. After a six-month checkout period, Jason-3 will start full science operations – continuing a nearly quarter-century record of tracking global sea level rise, direction of ocean currents and amount of solar energy stored by oceans – all, key data to understanding changes in global climate and more accurately forecasting severe weather. Also, 2015 global temperatures announced, 10-year anniversary of New Horizons’ launch and ABCs from space!

  17. NASA/NOAA/AMS Earth Science Electronic Theatre

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat 7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite, Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  18. NASA Spacecraft Images Texas Wildfire

    NASA Image and Video Library

    2012-05-15

    The Livermore and Spring Ranch fires near the Davis Mountain Resort, Texas, burned 13,000 and 11,000 acres respectively. When NASA Terra spacecraft acquired this image on May 12, 2012, both fires had been contained.

  19. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    DTIC Science & Technology

    2011-09-01

    instrument a minute time -scale snapshot imager. Snapshot imaging is im- portant because it allows for resolving short time -scale changes of the satellite ...curves of fringe amplitude standard deviation as a function of satellite V-magnitude, giving the corresponding integration time . From this figure we can...combiner (in R-band). We conclude that it is possible to track fringes on typical highly resolved satellites to a magnitude of V = 14.5. This range

  20. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2015-08-05

    This animation shows images of the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA). Read more: www.nasa.gov/feature/goddard/from-a-million-miles-away-na... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2017-12-08

    This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA). Read more: www.nasa.gov/feature/goddard/from-a-million-miles-away-na... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. NASA Satellite Images Annual Spring Thaw, Red River, North Dakota

    NASA Image and Video Library

    2011-04-21

    NASA Terra spacecraft shows the annual spring thaw in the upper Midwest is underway. Snow-covered ground contrasts with the dark tones of water under broken cloud cover. Along the Red River in North Dakota, floodwaters are moving northward into Canada.

  3. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Alan Title, second from left, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. Pictured from left to right: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md., Alan Title, Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  4. Looking at Earth from space: Direct readout from environmental satellites

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Direct readout is the capability to acquire information directly from meteorological satellites. Data can be acquired from NASA-developed, National Oceanic and Atmospheric Administration (NOAA)-operated satellites, as well as from other nations' meteorological satellites. By setting up a personal computer-based ground (Earth) station to receive satellite signals, direct readout may be obtained. The electronic satellite signals are displayed as images on the computer screen. The images can display gradients of the Earth's topography and temperature, cloud formations, the flow and direction of winds and water currents, the formation of hurricanes, the occurrence of an eclipse, and a view of Earth's geography. Both visible and infrared images can be obtained. This booklet introduces the satellite systems, ground station configuration, and computer requirements involved in direct readout. Also included are lists of associated resources and vendors.

  5. Dominica Hurricane Damage Mapped by NASA's ARIA Team

    NASA Image and Video Library

    2017-09-29

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, and Caltech, also in Pasadena, created this Damage Proxy Map (DPM) depicting areas including the Commonwealth of Dominica, that are likely damaged (shown by red and yellow pixels) as a result of Hurricane Maria (a Category 5 storm at landfall in Dominica on Sept. 18, 2017). The map is derived from synthetic aperture radar (SAR) images from the Copernicus Sentinel-1 satellites, operated by the European Space Agency (ESA). The images were taken before (March 27, 2017) and after (Sept. 23, 2017) the landfall of the storm. The map covers the area within the large red polygon, which measures 53 by 106 miles (85 by 170 kilometers). Each pixel measures about 98 feet (30 meters) across. The color variation from yellow to red indicates increasingly more significant ground surface change. Preliminary validation was done by comparing the data to a crowdsourced map by Clemson Center for Geospatial Technologies and optical satellite imagery feom DigitalGlobe. This damage proxy map should be used as guidance to identify damaged areas, and may be less reliable over vegetated areas. Sentinel-1 data were accessed through the Copernicus Open Access Hub. The image contains modified Copernicus Sentinel data (2017), processed by ESA and analyzed by the NASA/JPL-Caltech ARIA team. This research was carried out at JPL under a contract with NASA. https://photojournal.jpl.nasa.gov/catalog/PIA22037

  6. Image Analysis via Fuzzy-Reasoning Approach: Prototype Applications at NASA

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steven J.

    2004-01-01

    A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.

  7. NASA Tests New Robotic Refueling Technologies

    NASA Image and Video Library

    2014-03-05

    RROxiTT lead roboticist Alex Janas stands with the Oxidizer Nozzle Tool as he examines the work site. Credit: NASA/Goddard/Chris Gunn NASA has successfully concluded a remotely controlled test of new technologies that would empower future space robots to transfer hazardous oxidizer – a type of propellant – into the tanks of satellites in space today. Concurrently on the ground, NASA is incorporating results from this test and the Robotic Refueling Mission on the International Space Station to prepare for an upcoming ground-based test of a full-sized robotic servicer system that will perform tasks on a mock satellite client. Collectively, these efforts are part of an ongoing and aggressive technology development campaign to equip robots and humans with the tools and capabilities needed for spacecraft maintenance and repair, the assembly of large space telescopes, and extended human exploration. Read more here: www.nasa.gov/content/goddard/nasa-tests-new-robotic-refue... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Satellite Image Shows Entry of the Polar Vortex into the Northern U.S.

    NASA Image and Video Library

    2017-12-08

    The Polar Vortex is a whirling and persistent large area of low pressure, found typically over both north and south poles. The northern Polar Vortex is pushing southward over western Wisconsin/eastern Minnesota today, Monday, January 6, 2014 and is bringing frigid temperatures to half of the continental United States. It is expected to move northward back over Canada toward the end of the week. This image was captured by NOAA's GOES-East satellite on January 6, 2014 at 1601 UTC/11:01 a.m. EST. A frontal system that brought rain to the coast is draped from north to south along the U.S. East Coast. Behind the front lies the clearer skies bitter cold air associated with the Polar Vortex. The GOES image also revealed snow on the ground in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Michigan, Iowa and Missouri, stretching into the Great Plains. Cloudiness over Texas is associated with a low pressure system centered over western Oklahoma that is part of the cold front connected to the movement of the Polar Vortex. The GOES image was created at NASA's GOES Project, located at NASA's Goddard Space Flight Center in Greenbelt, Md. Both the northern and southern polar vortices are located in the middle and upper troposphere (lowest level of the atmosphere) and the stratosphere (next level up in the atmosphere). The polar vortex is a winter phenomenon. It develops and strengthens in its respective hemisphere's winter as the sun sets over the polar region and temperatures cool. They weaken in the summer. In the northern hemisphere, they circulate in a counter-clockwise direction, so the vortex sitting over western Wisconsin is sweeping in cold Arctic air around it. The Arctic Polar Vortex peaks in the Northern Hemisphere's wintertime and has already moved southward several times this winter. In the past, it has also moved southward over Europe.On January 21, 1985, the National Oceanic and Atmospheric Administration Daily Weather Map series showed a strong polar vortex

  9. Use of NASA Near Real-Time and Archived Satellite Data to Support Disaster Assessment

    NASA Technical Reports Server (NTRS)

    McGrath, Kevin M.; Molthan, Andrew L.; Burks, Jason E.

    2014-01-01

    NASA's Short-term Prediction Research and Transition (SPoRT) Center partners with the NWS to provide near realtime data in support of a variety of weather applications, including disasters. SPoRT supports NASA's Applied Sciences Program: Disasters focus area by developing techniques that will aid the disaster monitoring, response, and assessment communities. SPoRT has explored a variety of techniques for utilizing archived and near real-time NASA satellite data. An increasing number of end-users - such as the NWS Damage Assessment Toolkit (DAT) - access geospatial data via a Web Mapping Service (WMS). SPoRT has begun developing open-standard Geographic Information Systems (GIS) data sets via WMS to respond to end-user needs.

  10. Post Launch Calibration and Testing of the Advanced Baseline Imager on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  11. Post Launch Calibration and Testing of the Advanced Baseline Imager on the GOES-R Satellite

    NASA Technical Reports Server (NTRS)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-01-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United States National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  12. Post launch calibration and testing of the Advanced Baseline Imager on the GOES-R satellite

    NASA Astrophysics Data System (ADS)

    Lebair, William; Rollins, C.; Kline, John; Todirita, M.; Kronenwetter, J.

    2016-05-01

    The Geostationary Operational Environmental Satellite R (GOES-R) series is the planned next generation of operational weather satellites for the United State's National Oceanic and Atmospheric Administration. The first launch of the GOES-R series is planned for October 2016. The GOES-R series satellites and instruments are being developed by the National Aeronautics and Space Administration (NASA). One of the key instruments on the GOES-R series is the Advance Baseline Imager (ABI). The ABI is a multi-channel, visible through infrared, passive imaging radiometer. The ABI will provide moderate spatial and spectral resolution at high temporal and radiometric resolution to accurately monitor rapidly changing weather. Initial on-orbit calibration and performance characterization is crucial to establishing baseline used to maintain performance throughout mission life. A series of tests has been planned to establish the post launch performance and establish the parameters needed to process the data in the Ground Processing Algorithm. The large number of detectors for each channel required to provide the needed temporal coverage presents unique challenges for accurately calibrating ABI and minimizing striping. This paper discusses the planned tests to be performed on ABI over the six-month Post Launch Test period and the expected performance as it relates to ground tests.

  13. Satellite Picture Shows the Snow-covered U.S. Deep Freeze

    NASA Image and Video Library

    2017-12-08

    NOAA's GOES-East satellite provided a look at the frigid eastern two-thirds of the U.S. on Jan. 7, 2015, that shows a blanket of northern snow, lake-effect snow from the Great Lakes and clouds behind the Arctic cold front. A visible picture captured at 1600 UTC (11 a.m. EST) showed the effects of the latest Arctic outbreak. The cold front that brought the Arctic air has moved as far south as Florida, and stretches back over the Gulf of Mexico and just west of Texas today. The image shows clouds behind the frontal boundary stretching from the Carolinas west over the Heartland. Farther north, a wide band of fallen snow covers the ground from New England west to Montana, with rivers appearing like veins. The GOES-East satellite image also shows wind-whipped lake-effect snows off the Great Lakes, blowing to the southeast. Meanwhile, Florida, the nation's warm spot appeared almost cloud-free. To create the image, NASA/NOAA's GOES Project used cloud data from NOAA's GOES-East satellite and overlaid it on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the Arctic outbreak. The forecast from NOAA's National Weather Service Weather Prediction Center (WPC) calls for more snow along the Appalachian Mountains from Tennessee north to upstate New York. Snow is also expected to fall from New England west to Montana, and in eastern New Mexico and the Colorado Rockies. The WPC summary for Jan. 7 noted: Bitter cold will be felt from the western High Plains to the Mid-Atlantic and Northeast U.S. for the next few days. Widespread subzero overnight lows are forecast for the Dakotas, Upper Midwest, Great Lakes, and interior New England. Wind Chill Advisories and Warnings are in effect for many of these areas. GOES-East provides visible and infrared images over the eastern U.S. and the Atlantic Ocean from

  14. Satellite Data Visualization, Processing and Mapping using VIIRS Imager Data

    NASA Astrophysics Data System (ADS)

    Phyu, A. N.

    2016-12-01

    A satellite is a manmade machine that is launched into space and orbits the Earth. These satellites are used for various purposes for examples: Environmental satellites help us monitor and protect our environment; Navigation (GPS) satellites provides accurate time and position information: and Communication satellites allows us the interact with each other over long distances. Suomi NPP is part of the constellation of Joint Polar Satellite System (JPSS) fleet of satellites which is an Environmental satellite that carries the Visual Infrared Imaging Radiometer Suite (VIIRS) instrument. VIIRS is a scanning radiometer that takes high resolution images of the Earth. VIIRS takes visible, infrared and radiometric measurements of the land, oceans, atmosphere and cryosphere. These high resolution images provide information that helps weather prediction and environmental forecasting of extreme events such as forest fires, ice jams, thunder storms and hurricane. This project will describe how VIIRS instrument data is processed, mapped, and visualized using variety of software and application. It will focus on extreme events like Hurricane Sandy and demonstrate how to use the satellite to map the extent of a storm. Data from environmental satellites such as Suomi NPP-VIIRS is important for monitoring climate change, sea level rise, land surface temperature changes as well as extreme weather events.

  15. NASA's 3D view shows Hurricane Matthew's intensity

    NASA Image and Video Library

    2017-12-08

    Scientists use satellite data to peer into the massive storm – learning how and why it changed throughout its course. More info: www.nasa.gov/matthew NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Near-Infrared Image of Typhoon Usagi Between Taiwan and the Philippines

    NASA Image and Video Library

    2017-12-08

    On Sept. 21, Typhoon Usagi was moving between the northern Philippines and Taiwan when NASA's Aqua satellite passed overhead. NASA's AIRS instrument that flies aboard the Aqua satellite captured this near-infrared image on Sept. 21 at 505 UTC/1:05 a.m. EDT as Usagi. The near-infrared image is similar to how the clouds of the typhoon would appear in the daylight. Image Credit: NASA JPL, Ed Olsen Caption: NASA Goddard, Rob Gutro NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NASA Satellite Eyes Deadly Tibetan Landslide

    NASA Image and Video Library

    2016-10-05

    On July 17, 2016, one of the largest ice avalanches ever recorded tumbled down a Tibetan mountain, killing 9 people. The cause of the collapse is still unclear. On September 22, a second glacier, 1.9 miles (3 kilometers) farther south, collapsed. Geologists investigating the July collapse warned about the possibility of a second collapse, which did occur. The image covers an area of 7.8 by 10.2 miles (12.6 by 16.4 kilometers), was acquired October 4, 2017, and is located at 334 degrees north, 82.3 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA21069

  18. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Here, scientists are showing an animation from Walt Feimer, lead animator for the Heliophysics team. Credit: NASA/GSFC

  19. Satellite Sees Winter Storm March Over Mid-Atlantic

    NASA Image and Video Library

    2014-03-03

    On March 3, a major winter storm brought snow to the mid-Atlantic, freezing rain to the Carolinas and rain and some freezing rain to the Gulf Coast states. NOAA's GOES-East satellite captured an image of the clouds associated with the winter storm on March 3 at 12:45 p.m. EST (1745 UTC)/ as it continued on its march over the mid-Atlantic. Bands of snow and sometimes heavy snow affected the Washington, D.C., region, Delaware and central Virginia, stretching west into West Virginia and eastern Kentucky. Snow also stretched back into the Ohio and Tennessee valleys while rain and freezing rain affected the Carolinas, and while the Gulf Coast states received rain. National Weather Service Winter Storm Warnings remained in effect until 6 p.m. EST on March 3 for Washington, D.C., and Baltimore, Md. In Richmond and Norfolk, Va., the Winter Storm warnings were in effect for six additional hours ending at midnight. On March 3, NOAA's National Weather Prediction Center in College Park, Md., noted the late-season winter storm will continue to shift eastward through the Tennessee Valley and the mid-Atlantic today, making for hazardous travel conditions. NOAA noted that unseasonably cold temperatures more typical of January will prevail east of the Rocky Mountains for the next few days keeping winter around for a while longer. The clouds are associated with a cold front that stretched from eastern Maine through Maryland and west into the Tennessee Valley. At NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md., the cloud data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the position of this major winter storm. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary

  20. NASA Spacecraft Images Fiji Flooding

    NASA Image and Video Library

    2012-04-10

    This image, acquired by NASA Terra spacecraft, shows Fiji, hard hit by heavy rains in early 2012, causing flooding and landslides. Hardest hit was the western part of the main Island of Viti Levu, Fiji, and the principal city of Nadi.

  1. NASA Blue Marble 2007 East

    NASA Image and Video Library

    2010-03-12

    RELEASE DATE: OCTOBER 9, 2007 Credit: NASA/Goddard Space Flight Center/Reto Stöckli A day’s clouds. The shape and texture of the land. The living ocean. City lights as a beacon of human presence across the globe. This amazingly beautiful view of Earth from space is a fusion of science and art, a showcase for the remote-sensing technology that makes such views possible, and a testament to the passion and creativity of the scientists who devote their careers to understanding how land, ocean, and atmosphere—even life itself—interact to generate Earth’s unique (as far as we know!) life-sustaining environment. Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth’s atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA’s Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth’s night side are visualized from data collected by the Defense

  2. Satellite Image Atlas of Glaciers of the World

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    2005-01-01

    In 1978, the USGS began the preparation of the 11-chapter USGS Professional Paper 1386, 'Satellite Image Atlas of Glaciers of the World'. Between 1979 and 1981, optimum satellite images were distributed to a team of 70 scientists, representing 25 nations and 45 institutions, who agreed to author sections of the Professional Paper concerning either a geographic area (chapters B-K) or a glaciological topic (included in Chapter A). The scientists used Landsat 1, 2, and 3 multispectral scanner (MSS) images and Landsat 2 and 3 return beam vidicon (RBV) images to inventory the areal occurrence of glacier ice on our planet within the boundaries of the spacecrafts' coverage (between about 82? north and south latitudes). Some later contributors also used Landsat 4 and 5 MSS and Thematic Mapper, Landsat 7 Enhanced Thematic Mapper-Plus (ETM+), and other satellite images. In addition to analyzing images of a specific geographic area, each author was asked to summarize up-to-date information about the glaciers within each area and compare their present-day areal distribution with reliable historical information (from published maps, reports, and photographs) about their past extent. Because of the limitations of Landsat images for delineating or monitoring small glaciers in some geographic areas (the result of inadequate spatial resolution, lack of suitable seasonal coverage, or absence of coverage), some information on the areal distribution of small glaciers was derived from ancillary sources, including other satellite images. Completion of the atlas will provide an accurate regional inventory of the areal extent of glaciers on our planet during a relatively narrow time interval (1972-1981).

  3. Satellite Shows Developing U.S. Nor'easter

    NASA Image and Video Library

    2015-01-26

    National Weather Service forecasters have been tracking a low pressure area that moved from the Midwest into the Atlantic Ocean today, and is expected to become a strong nor'easter that will bring blizzard conditions to the northeastern U.S. The path of the system was captured in a NASA movie of NOAA's GOES-East satellite imagery. On Monday, January 26, 2015, the National Weather Service noted: A storm system off the East Coast will continue to strengthen as it develops into a major nor'easter on Monday. As the storm moves up the coast, it is expected to bring snowfall of 1-3 feet or more to many parts of the Northeast through Tuesday evening, including New York City and Boston. Strong, gusty winds will combine with the snow to create blizzard conditions along and near the coast. Winter storm warnings are in effect for the panhandles of West Virginia and Maryland, much of interior New England down to the northern Mid-Atlantic as well as for Nantucket Island, Massachusetts. Winter weather advisories are in effect for portions of the Ohio Valley, Mid-Atlantic and the southern Appalachians as well as a narrow area across interior New England. To create the video and imagery, NASA/NOAA's GOES Project located at NASA's Goddard Space Flight Center in Greenbelt, Maryland overlays the cloud data from NOAA's GOES-East satellite on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, these data create the entire animation of the storm and show its movement. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric

  4. First Images from NASA's New Moon Mission

    NASA Image and Video Library

    2009-07-02

    These images show cratered regions near the moon's Mare Nubium region, as photographed by the Lunar Reconnaissance Orbiter's LROC instrument. Each image shows a region 1,400 meters (0.87 miles) wide. the bottoms of both images face lunar north. The image below shows the location of these two images in relation to each other. Credit: NASA/Goddard Space Flight Center/Arizona State University

  5. NASA Watching Issac's Approach to U.S. Gulf Coast

    NASA Image and Video Library

    2017-12-08

    The MODIS instrument on NASA's Aqua satellite captured this visible image of Tropical Storm Isaac on Aug. 27 at 3:00 p.m. EDT is it was moving northwest through the Gulf of Mexico. Issac's large reach is seen by its eastern cloud cover over the entire state of Florida. To read more go to: www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012... Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA's upper atmosphere research satellite: A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.

    1992-01-01

    The Upper Atmosphere Research Satellite (UARS) is a major initiative in the NASA Office of Space Science and Applications, and is the prototype for NASA's Earth Observing System (EOS) planned for launch in the 1990s. The UARS combines a balanced program of experimental and theoretical investigations to perform diagnostic studies, qualitative model analysis, and quantitative measurements and comparative studies of the upper atmosphere. UARS provides theoretical and experimental investigations which pursue four specific research topics: atmospheric energy budget, chemistry, dynamics, and coupling processes. An international cadre of investigators was assembled by NASA to accomplish those scientific objectives. The observatory, its complement of ten state of the art instruments, and the ground system are nearing flight readiness. The timely UARS program will play a major role in providing data to understand the complex physical and chemical processes occurring in the upper atmosphere and answering many questions regarding the health of the ozone layer.

  7. ASPECT spectral imaging satellite proposal to AIDA/AIM CubeSat payload

    NASA Astrophysics Data System (ADS)

    Kohout, Tomas; Näsilä, Antti; Tikka, Tuomas; Penttilä, Antti; Muinonen, Karri; Kestilä, Antti; Granvik, Mikael; Kallio, Esa

    2016-04-01

    ASPECT (Asteroid Spectral Imaging Mission) is a part of AIDA/AIM project and aims to study the composition of the Didymos binary asteroid and the effects of space weathering and shock metamorphism in order to gain understanding of the formation and evolution of the Solar System. The joint ESA/NASA AIDA (Asteroid Impact & Deflection Assessment) mission to binary asteroid Didymos consists of AIM (Asteroid Impact Mission, ESA) and DART (Double Asteroid Redirection Test, NASA). DART is targeted to impact Didymos secondary component (Didymoon) and serve as a kinetic impactor to demonstrate deflection of potentially hazardous asteroids. AIM will serve as an observational spacecraft to evaluate the effects of the impact and resulting changes in the Didymos dynamic parameters. The AIM mission will also carry two CubeSat miniaturized satellites, released in Didymoon proximity. This arrangement opens up a possibility for secondary scientific experiments. ASPECT is one of the proposed CubeSat payloads. Whereas Didymos is a space-weathered binary asteroid, the DART impactor is expected to produce a crater and excavate fresh material from the secondary component (Didymoon). Spectral comparison of the mature surface to the freshly exposed material will allow to directly deter-mine space weathering effects. It will be also possible to study spectral shock effects within the impact crater. ASPECT will also demonstrate for the first time the joint spacecraft - CubeSat operations in asteroid proximity and miniature spectral imager operation in deep-space environment. Science objectives: 1. Study of the surface composition of the Didymos system. 2. Photometric observations (and modeling) under varying phase angle and distance. 3. Study of space weathering effects on asteroids (comparison of mature / freshly exposed material). 4. Study of shock effects (spectral properties of crater interior). 5. Observations during the DART impact. Engineering objectives: 1. Demonstration of Cube

  8. NASA Spacecraft Images Texas Wildfire

    NASA Image and Video Library

    2011-09-13

    The tri-county Riley Road wildfire burning in Texas north of Houston was 85 percent contained when NASA Terra spacecraft acquired this image on Sept. 12, 2011. Burned areas are dark gray and black; vegetation red; and bare ground and roads light gray.

  9. Typhoon Soudelor's Eye Close-Up from NASA-NOAA's Suomi NPP

    NASA Image and Video Library

    2015-08-10

    On August 6, 2015, NASA-NOAA's Suomi NPP satellite passed over powerful Typhoon Soudelor when it was headed toward Taiwan. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi satellite captured this night-time infrared close-up image of Soudelor's eye. The infrared image that showed there were some thunderstorms within the typhoon with very cold cloud top temperatures, colder than -63F/-53C. Temperatures that cold stretch high into the troposphere and are capable of generating heavy rain. At 1500 UTC (11 a.m. EDT) on August 6, 2015, Typhoon Soudelor had maximum sustained winds near 90 knots (103.6 mph/166.7 kph). It was centered near 21.3 North latitude and 127.5 East longitude, about 324 nautical miles (372.9 miles/600 km) south of Kadena Air Base, Okinawa, Japan. It was moving to the west at 10 knots (11.5 mph/18.5 kph). Credit: UWM/CIMSS/SSEC, William Straka III NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Assessing the Value of Enhancing AirNow Data with NASA Satellite Data

    NASA Astrophysics Data System (ADS)

    Pasch, A. N.; Burke, B.; Huang, S.; Dye, T.; Dawes, S. S.; DeWinter, J. L.; Zahn, P. H.; Haderman, M.; Szykman, J.; White, J. E.; Dickerson, P.; van Donkelaar, A.; Martin, R.

    2013-12-01

    We will describe the methodology and findings from a study that addressed how satellite-enhanced air quality information provided through the U.S. Environmental Protection Agency's (EPA) AirNow Satellite Data Processor (ASDP) program could contribute to greater socioeconomic benefits. This study was funded by the National Aeronautics and Space Administration (NASA) and conducted, in partnership with the EPA, by the Center for Technology in Government at the University at Albany (CTG) and Sonoma Technology, Inc. (STI). AirNow is the national repository of real-time air quality data and forecasts for the United States. While mainly a public outreach and awareness tool, AirNow relies on the same network of ground-based air quality monitors that is used by federal, state, local, and tribal governments throughout the United States. Extensive as the monitoring network is, considerable gaps exist in certain parts of the United States. Even areas with monitors considered adequate for regulatory purposes can lack information needed to resolve localized air quality issues or give forecasters sufficient confidence about the potential air quality impact of specific events. Monitors are expensive to deploy and maintain; thus, EPA is seeking other ways to improve coverage and detail. Satellite-estimated data can provide information for many places where ground monitors do not exist, and supplement ground monitors, providing additional information for use in analysis and forecasting. ASDP uses satellite-derived estimates for fine-particle pollution (PM2.5) and provides coverage for a small window of time during the day. As satellite capabilities improve in terms of different types of sensors and increased coverage throughout the day, the ASDP program is prepared to extend its scope to additional pollutants and provide greater enhancements to the ground-based networks. In this study, CTG assessed the socioeconomic benefits of air quality data at a community level through three

  11. NASA Blue Marble 2007 West

    NASA Image and Video Library

    2010-03-12

    RELEASE DATE: OCTOBER 9, 2007 Credit: NASA/Goddard Space Flight Center/Reto Stöckli A day’s clouds. The shape and texture of the land. The living ocean. City lights as a beacon of human presence across the globe. This amazingly beautiful view of Earth from space is a fusion of science and art, a showcase for the remote-sensing technology that makes such views possible, and a testament to the passion and creativity of the scientists who devote their careers to understanding how land, ocean, and atmosphere—even life itself—interact to generate Earth’s unique (as far as we know!) life-sustaining environment. Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth’s atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA’s Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth’s night side are visualized from data collected by the Defense

  12. NASA Sees Large Tropical Cyclone Yasi Headed Toward Queensland, Australia

    NASA Image and Video Library

    2017-12-08

    NASA image acquired January 30, 2011 at 23:20 UTC. Satellite: Terra Click here to see the most recent image captured Feb. 1: www.flickr.com/photos/gsfc/5407540724/ Tropical Storm Anthony made landfall in Queensland, Australia this past weekend, and now the residents are watching a larger, more powerful cyclone headed their way. NASA's Terra satellite captured a visible image of the large Tropical Cyclone Yasi late yesterday as it makes its way west through the Coral Sea toward Queensland. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies aboard NASA's Terra satellite captured an image of Cyclone Yasi on Jan. 30 at 23:20 UTC (6:20 p.m. EST/09:20 a.m., Monday, January 31 in Australia/Brisbane local time). Although the image did not reveal a visible eye, the storm appears to be well-formed and also appears to be strengthening. Warnings and watches are already in effect throughout the Coral Sea. The Solomon Islands currently have a Tropical Cyclone warning for the provinces of Temotu, Rennell & Bellona, Makira and Guadalcanal. The Australian Bureau of Meteorology has already posted a Tropical Cyclone Watch from Cooktown to Yeppoon and inland to between Georgetown and Moranbah in Queensland, Australia. The Australian Bureau of Meteorology expects damaging winds to develop in coastal and island communities between Cooktown and Yeppoon Wednesday morning, and inland areas on Wednesday afternoon. Updates from the Australian Bureau of Meteorology can be monitored at the Bureau's website at www.bom.gov.au. On January 31 at 1500 UTC (10 a.m. EST/ 1:00 a.m. Tuesday February 1, 2011 in Australia/Brisbane local time), Tropical Cyclone Yasi had maximum sustained winds near 90 knots (103 mph/166 kmh). Yasi is a Category Two Cyclone on the Saffir-Simpson Scale. It was centered about 875 miles E of Cairns, Australia, near 13.4 South latitude and 160.4 East longitude. It was moving west near 19 knots (22 mph/35 kmh). Cyclone-force winds extend out to 30

  13. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Tom Woods, (second from right), principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  14. A neuromorphic approach to satellite image understanding

    NASA Astrophysics Data System (ADS)

    Partsinevelos, Panagiotis; Perakakis, Manolis

    2014-05-01

    Remote sensing satellite imagery provides high altitude, top viewing aspects of large geographic regions and as such the depicted features are not always easily recognizable. Nevertheless, geoscientists familiar to remote sensing data, gradually gain experience and enhance their satellite image interpretation skills. The aim of this study is to devise a novel computational neuro-centered classification approach for feature extraction and image understanding. Object recognition through image processing practices is related to a series of known image/feature based attributes including size, shape, association, texture, etc. The objective of the study is to weight these attribute values towards the enhancement of feature recognition. The key cognitive experimentation concern is to define the point when a user recognizes a feature as it varies in terms of the above mentioned attributes and relate it with their corresponding values. Towards this end, we have set up an experimentation methodology that utilizes cognitive data from brain signals (EEG) and eye gaze data (eye tracking) of subjects watching satellite images of varying attributes; this allows the collection of rich real-time data that will be used for designing the image classifier. Since the data are already labeled by users (using an input device) a first step is to compare the performance of various machine-learning algorithms on the collected data. On the long-run, the aim of this work would be to investigate the automatic classification of unlabeled images (unsupervised learning) based purely on image attributes. The outcome of this innovative process is twofold: First, in an abundance of remote sensing image datasets we may define the essential image specifications in order to collect the appropriate data for each application and improve processing and resource efficiency. E.g. for a fault extraction application in a given scale a medium resolution 4-band image, may be more effective than costly

  15. Integrated Stewardship of NASA Satellite and Field Campaign Data

    NASA Astrophysics Data System (ADS)

    Hausman, J.; Tsontos, V. M.; Hardman, S. H.

    2016-02-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is NASA's archive, steward and distributor for physical oceanographic satellite data. Those data are typically organized along the lines of single parameters, such as Sea Surface Temperature, Ocean Winds, Salinity, etc. However there is a need supplement satellite data with in situ and various other remote sensing data to provide higher spatial and temporal sampling and information on physical processes that the satellites are not capable of measuring. This presentation will discuss how PO.DAAC is creating a stewardship and distribution plan that will accommodate satellite, in situ and other remote sensing data that can be used to solve a more integrated approach to data access and utilization along thematic lines in support of science and applications, specifically those posed by Salinity Processes in the Upper Ocean Regional Study (SPURS) and Oceans Melting Greenland (OMG) projects. SPURS used shipboard data, moorings and in situ instruments to investigate changes in salinity and how that information can be used in explaining the water cycle. OMG is studying ice melt in Greenland and how it contributes to changes in sea level through shipboard measurements, airborne and a variety of in situ instruments. PO.DAAC plans on adapting to stewarding and distributing these varieties of data through applications of file format and metadata standards (so data are discoverable and interoperable), extend the internal data system (to allow for better archiving, collection generation and querying of in situ and airborne data) and integration into tools (visualization and data access). We are also working on Virtual Collections with ESDWG, which could provide access to relevant data across DAACs/Agencies along thematic lines. These improvements will improve long-term data management and make it easier for users of various background, regardless if remote sensing or in situ, to discover and use the data.

  16. NASA Sees Winter's Northeastern U.S. Snowcover Extend Farther South

    NASA Image and Video Library

    2015-02-17

    A winter storm that moved through the Mid-Atlantic on Feb. 16 and 17, 2015 extended the northeastern U.S. snowcover farther south. Until this storm hit, southern New Jersey and southeastern Pennsylvania appeared snow-free on satellite imagery from the previous week. The overnight storm blanketed the entire states of New Jersey and Pennsylvania, as seen on this Feb. 16 image. The image was taken from the MODIS or Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Terra satellite. The snow cover from the storm actually extended even farther south than the image. Snowfall also blanketed West Virginia, Kentucky, Maryland, Delaware and Virginia, while freezing rain and icy conditions affected the Carolinas, Tennessee and Georgia. On Feb. 17, 2015, NOAA's National Weather Service noted "The winter storm that brought widespread snow, sleet and freezing rain to parts of the south-central U.S. and Mid-Atlantic will wind down as it moves offshore Tuesday. Lingering snow and freezing rain is possible early Tuesday for parts of the Northeast and mid-Atlantic, with rain across parts of the Southeast." Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Proceedings of the Twentieth NASA Propagation Experimenters Meeting (NAPEX XX) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nassar (Editor)

    1996-01-01

    The NASA Propagation Experimenters (NAPEX) Meeting and associated Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop convene yearly to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications (satcom)industry, academia, and government with an interest in space-ground radio wave propagation have peer discussion of work in progress, disseminate propagation results, and interact with the satcom industry. NAPEX XX, in Fairbanks, Alaska, June 4-5, 1996, had three sessions: (1) "ACTS Propagation Study: Background, Objectives, and Outcomes," covered results from thirteen station-years of Ka-band experiments; (2) "Propagation Studies for Mobile and Personal Satellite Applications," provided the latest developments in measurement, modeling, and dissemination of propagation phenomena of interest to the mobile, personal, and aeronautical satcom industry; and (3)"Propagation Research Topics," covered a range of topics including space/ground optical propagation experiments, propagation databases, the NASA Propagation Web Site, and revision plans for the NASA propagation effects handbooks. The ACTS Miniworkshop, June 6, 1996, covered ACTS status, engineering support for ACTS propagation terminals, and the ACTS Propagation Data Center. A plenary session made specific recommendations for the future direction of the program.

  18. Al Roker Interview with NASA for GOES-R Mission

    NASA Image and Video Library

    2016-11-19

    During the countdown for the launch of NOAA's Geostationary Operational Environmental Satellite, or GOES-R, Stephanie Martin of NASA Communications, right, interviews Al Roker, weather forecaster on NBC's "Today Show." GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  19. Al Roker Interview with NASA for GOES-R Mission

    NASA Image and Video Library

    2016-11-19

    During the countdown for the launch of NOAA's Geostationary Operational Environmental Satellite, or GOES-R, Stephanie Martin of NASA Communications, left, interviews Al Roker, weather forecaster on NBC's "Today Show." GOES-R is the first satellite in a series of next-generation GOES satellites for NOAA, the National Oceanographic and Atmospheric Administration. It will launch to a geostationary orbit over the western hemisphere to provide images of storms and help meteorologists predict severe weather conditionals and develop long-range forecasts.

  20. NASA Spacecraft Images Oregon Wildfire

    NASA Image and Video Library

    2012-09-21

    This image, acquired by NASA Terra spacecraft, is of the Pole Creek fire southwest of Sisters, Ore., which had grown to 24,000 acres as of Sept. 20, 2012. No structures have been destroyed, and the fire is mostly confined to the national forest.

  1. Satellite Cloud and Radiative Property Processing and Distribution System on the NASA Langley ASDC OpenStack and OpenShift Cloud Platform

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.

    2017-12-01

    Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.

  2. NASA FACTS: E. coli AntiMicrobial Satellite (EcAMSat)

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan; Cappuccio, Gelsomina; Tomko, David

    2013-01-01

    The E. coli AntiMicrobial Satellite(EcAMSat) mission will investigate space microgravity affects on the antibiotic resistance of E. coli, a bacterial pathogen responsible for urinary tract infection in humans and animals. EcAMSat is being developed through a partnership between NASAs Ames Research Center and the Stanford University School of Medicine. Dr. A.C. Matin is the Stanford University Principal Investigator. EcAMSat will investigate spaceflight effects on bacterial antibiotic resistance and its genetic basis. Bacterial antibiotic resistance may pose a danger to astronauts in microgravity, where the immune response is weakened. Scientists believe that the results of this experiment could help design effective countermeasures to protect astronauts health during long duration human space missions.

  3. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  4. Satellite Video Shows Movement of Major U.S. Winter Storm

    NASA Image and Video Library

    2014-02-12

    A new NASA video of NOAA's GOES satellite imagery shows three days of movement of the massive winter storm that stretches from the southern U.S. to the northeast. Visible and infrared imagery from NOAA's GOES-East or GOES-13 satellite from Feb. 10 at 1815 UTC/1:15 p.m. EST to Feb. 12 to 1845 UTC/1:45 p.m. EST were compiled into a video made by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. In the video, viewers can see the development and movement of the clouds associated with the progression of the frontal system and related low pressure areas that make up the massive storm. The video also shows the snow covered ground over the Great Lakes region and Ohio Valley that stretches to northern New England. The clouds and fallen snow data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites. On February 12 at 10 a.m. EST, NOAA's National Weather Service or NWS continued to issue watches and warnings from Texas to New England. Specifically, NWS cited Winter Storm Warnings and Winter Weather Advisories were in effect from eastern Texas eastward across the interior section of southeastern U.S. states and across much of the eastern seaboard including the Appalachians. Winter storm watches are in effect for portions of northern New England as well as along the western slopes of northern and central Appalachians. For updates on local forecasts, watches and warnings, visit NOAA's www.weather.gov webpage. NOAA's Weather Prediction Center or WPC noted the storm is expected to bring "freezing rain spreading into the Carolinas, significant snow accumulations are expected in the interior Mid-Atlantic states tonight into Thursday and ice storm warnings and freezing rain advisories are in effect across much of central Georgia. GOES satellites provide the kind of continuous

  5. NASA Spacecraft Captures Image of Brazil Flooding

    NASA Image and Video Library

    2011-01-19

    On Jan. 18, 2011, NASA Terra spacecraft captured this 3-D perspective image of the city of Nova Friburgo, Brazil. A week of torrential rains triggered a series of deadly mudslides and floods. More details about this image at the Photojournal.

  6. Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Flaherty, Roger; Stocklin, Frank; Weinberg, Aaron

    2006-01-01

    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth

  7. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2015-08-05

    This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).

  8. NASA high performance computing, communications, image processing, and data visualization-potential applications to medicine.

    PubMed

    Kukkonen, C A

    1995-06-01

    High-speed information processing technologies being developed and applied by the Jet Propulsion Laboratory for NASA and Department of Defense mission needs have potential dual-uses in telemedicine and other medical applications. Fiber optic ground networks connected with microwave satellite links allow NASA to communicate with its astronauts in Earth orbit or on the moon, and with its deep space probes billions of miles away. These networks monitor the health of astronauts and or robotic spacecraft. Similar communications technology will also allow patients to communicate with doctors anywhere on Earth. NASA space missions have science as a major objective. Science sensors have become so sophisticated that they can take more data than our scientists can analyze by hand. High performance computers--workstations, supercomputer and massively parallel computers are being used to transform this data into knowledge. This is done using image processing, data visualization and other techniques to present the data--one's and zero's in forms that a human analyst can readily relate to and understand. Medical sensors have also explored in the in data output--witness CT scans, MRI, and ultrasound. This data must be presented in visual form and computers will allow routine combination of many two dimensional MRI images into three dimensional reconstructions of organs that then can be fully examined by physicians. Emerging technologies such as neural networks that are being "trained" to detect craters on planets or incoming missiles amongst decoys can be used to identify microcalcification in mammograms.

  9. NASA UAVSAR Images Colorado Slumgullion Landslide

    NASA Image and Video Library

    2012-08-15

    This false-color, oblique perspective image of the Slumgullion landslide in southwestern Colorado depicting its surface motion was created by data acquired by NASA UAVSAR between two airplane flights in August 2011.

  10. The Next Landsat Satellite: The Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Rons, James R.; Dwyer, John L.; Barsi, Julia A.

    2012-01-01

    The Landsat program is one of the longest running satellite programs for Earth observations from space. The program was initiated by the launch of Landsat 1 in 1972. Since then a series of six more Landsat satellites were launched and at least one of those satellites has been in operations at all times to continuously collect images of the global land surface. The Department of Interior (DOI) U.S. Geological Survey (USGS) preserves data collected by all of the Landsat satellites at their Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota. This 40-year data archive provides an unmatched record of the Earth's land surface that has undergone dramatic changes in recent decades due to the increasing pressure of a growing population and advancing technologies. EROS provides the ability for anyone to search the archive and order digital Landsat images over the internet for free. The Landsat data are a public resource for observing, characterizing, monitoring, trending, and predicting land use change over time providing an invaluable tool for those addressing the profound consequences of those changes to society. The most recent launch of a Landsat satellite occurred in 1999 when Landsat 7 was placed in orbit. While Landsat 7 remains in operation, the National Aeronautics and Space Administration (NASA) and the DOI/ USGS are building its successor satellite system currently called the Landsat Data Continuity Mission (LDCM). NASA has the lead for building and launching the satellite that will carry two Earth-viewing instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will take images that measure the amount of sunlight reflected by the land surface at nine wavelengths of light with three of those wavelengths beyond the range of human vision. T1RS will collect coincident images that measure light emitted by the land surface as a function of surface temperature at two longer wavelengths well beyond the

  11. Image stretching on a curved surface to improve satellite gridding

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1975-01-01

    A method for substantially reducing gridding errors due to satellite roll, pitch and yaw is given. A gimbal-mounted curved screen, scaled to 1:7,500,000, is used to stretch the satellite image whereby visible landmarks coincide with a projected map outline. The resulting rms position errors averaged 10.7 km as compared with 25.6 and 34.9 km for two samples of satellite imagery upon which image stretching was not performed.

  12. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. Photo Credit: (NASA/Carla Cioffi)

  13. Using Existing NASA Satellites as Orbiting Testbeds to Accelerate Technology Infusion into Future Missions

    NASA Technical Reports Server (NTRS)

    Mandl, Daniel; Ly, Vuong; Frye, Stuart

    2006-01-01

    One of the shared problems for new space mission developers is that it is extremely difficult to infuse new technology into new missions unless that technology has been flight validated. Therefore, the issue is that new technology is required to fly on a successful mission for flight validation. We have been experimenting with new technology on existing satellites by retrofitting primarily the flight software while the missions are on-orbit to experiment with new operations concepts. Experiments have been using Earth Observing 1 (EO-1), which is part of the New Millennium Program at NASA. EO-1 finished its prime mission one year after its launch on November 21,2000. From November 21,2001 until the present, EO-1 has been used in parallel with additional science data gathering to test out various sensor web concepts. Similarly, the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) satellite was also a one year mission flown by the University of Berkeley, sponsored by NASA and whose prime mission ended August 30,2005. Presently, CHIPS is being used to experiment with a seamless space to ground interface by installing Core Flight System (cFS), a "plug-and-play" architecture developed by the Flight Software Branch at NASA/GSFC on top of the existing space-to-ground Internet Protocol (IP) interface that CHIPS implemented. For example, one targeted experiment is to connect CHIPS to a rover via this interface and the Internet, and trigger autonomous actions on CHIPS, the rover or both. Thus far, having satellites to experiment with new concepts has turned out to be an inexpensive way to infuse new technology for future missions. Relevant experiences thus far and future plans will be discussed in this presentation.

  14. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Colarco, Peter; daSilva, Arlindo; Chin, Mian; Diehl, Thomas

    2010-01-01

    We have implemented a module for tropospheric aerosols (GO CART) online in the NASA Goddard Earth Observing System version 4 model and simulated global aerosol distributions for the period 2000-2006. The new online system offers several advantages over the previous offline version, providing a platform for aerosol data assimilation, aerosol-chemistry-climate interaction studies, and short-range chemical weather forecasting and climate prediction. We introduce as well a methodology for sampling model output consistently with satellite aerosol optical thickness (AOT) retrievals to facilitate model-satellite comparison. Our results are similar to the offline GOCART model and to the models participating in the AeroCom intercomparison. The simulated AOT has similar seasonal and regional variability and magnitude to Aerosol Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer, and Multiangle Imaging Spectroradiometer observations. The model AOT and Angstrom parameter are consistently low relative to AERONET in biomass-burning-dominated regions, where emissions appear to be underestimated, consistent with the results of the offline GOCART model. In contrast, the model AOT is biased high in sulfate-dominated regions of North America and Europe. Our model-satellite comparison methodology shows that diurnal variability in aerosol loading is unimportant compared to sampling the model where the satellite has cloud-free observations, particularly in sulfate-dominated regions. Simulated sea salt burden and optical thickness are high by a factor of 2-3 relative to other models, and agreement between model and satellite over-ocean AOT is improved by reducing the model sea salt burden by a factor of 2. The best agreement in both AOT magnitude and variability occurs immediately downwind of the Saharan dust plume.

  15. Study on Mosaic and Uniform Color Method of Satellite Image Fusion in Large Srea

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, H.; Wang, X.; Guo, L.; Wang, R.

    2018-04-01

    Due to the improvement of satellite radiometric resolution and the color difference for multi-temporal satellite remote sensing images and the large amount of satellite image data, how to complete the mosaic and uniform color process of satellite images is always an important problem in image processing. First of all using the bundle uniform color method and least squares mosaic method of GXL and the dodging function, the uniform transition of color and brightness can be realized in large area and multi-temporal satellite images. Secondly, using Color Mapping software to color mosaic images of 16bit to mosaic images of 8bit based on uniform color method with low resolution reference images. At last, qualitative and quantitative analytical methods are used respectively to analyse and evaluate satellite image after mosaic and uniformity coloring. The test reflects the correlation of mosaic images before and after coloring is higher than 95 % and image information entropy increases, texture features are enhanced which have been proved by calculation of quantitative indexes such as correlation coefficient and information entropy. Satellite image mosaic and color processing in large area has been well implemented.

  16. Investigation and Comparison between New Satellite Impact Test Results and NASA Standard Breakup Model

    NASA Technical Reports Server (NTRS)

    Sakuraba, K.; Tsuruda, Y.; Hanada, T.; Liou, J.-C.; Akahoshi, Y.

    2007-01-01

    This paper summarizes two new satellite impact tests conducted in order to investigate on the outcome of low- and hyper-velocity impacts on two identical target satellites. The first experiment was performed at a low velocity of 1.5 km/s using a 40-gram aluminum alloy sphere, whereas the second experiment was performed at a hyper-velocity of 4.4 km/s using a 4-gram aluminum alloy sphere by two-stage light gas gun in Kyushu Institute of Technology. To date, approximately 1,500 fragments from each impact test have been collected for detailed analysis. Each piece was analyzed based on the method used in the NASA Standard Breakup Model 2000 revision. The detailed analysis will conclude: 1) the similarity in mass distribution of fragments between low and hyper-velocity impacts encourages the development of a general-purpose distribution model applicable for a wide impact velocity range, and 2) the difference in area-to-mass ratio distribution between the impact experiments and the NASA standard breakup model suggests to describe the area-to-mass ratio by a bi-normal distribution.

  17. The NASA Airborne Earth Science Microwave Imaging Radiometer (AESMIR): A New Sensor for Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2003-01-01

    The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a versatile new airborne imaging radiometer recently developed by NASA. The AESMIR design is unique in that it performs dual-polarized imaging at all standard passive microwave frequency bands (6-89 GHz) using only one sensor headscanner package, providing an efficient solution for Earth remote sensing applications (snow, soil moisture/land parameters, precipitation, ocean winds, sea surface temperature, water vapor, sea ice, etc.). The microwave radiometers themselves will incorporate state-of-the-art receivers, with particular attention given to instrument calibration for the best possible accuracy and sensitivity. The single-package design of AESMIR makes it compatible with high-altitude aircraft platforms such as the NASA ER-2s. The arbitrary 2-axis gimbal can perform conical and cross-track scanning, as well as fixed-beam staring. This compatibility with high-altitude platforms coupled with the flexible scanning configuration, opens up previously unavailable science opportunities for convection/precip/cloud science and co-flying with complementary instruments, as well as providing wider swath coverage for all science applications. By designing AESMIR to be compatible with these high-altitude platforms, we are also compatible with the NASA P-3, the NASA DC-8, C-130s and ground-based deployments. Thus AESMIR can provide low-, mid-, and high- altitude microwave imaging. Parallel filter banks allow AESMIR to simultaneously simulate the exact passbands of multiple satellite radiometers: SSM/I, TMI, AMSR, Windsat, SSMI/S, and the upcoming GPM/GMI and NPOESS/CMIS instruments --a unique capability among aircraft radiometers. An L-band option is also under development, again using the same scanner. With this option, simultaneous imaging from 1.4 to 89 GHz will be feasible. And, all receivers except the sounding channels will be configured for 4-Stokes polarimetric operation using high-speed digital

  18. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Mic Woltman, chief of the Fleet Systems Integration Branch of NASA's Launch Services Program, left, and Gabriel Rodriguez-Mena, a United Launch Alliance systems test engineer, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  19. GOES-S NASA Social

    NASA Image and Video Library

    2018-02-28

    Pam Sullivan, NASA's GOES-R flight director, left, and A.J. Sandora, Lockheed Martin's GOES-R Series Mechanical Operations Assembly, Test and Launch Operations (ATLO) manager, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S. The spacecraft is the second satellite in a series of next-generation NOAA weather satellites. It will launch to a geostationary position over the U.S. to provide images of storms and help predict weather forecasts, severe weather outlooks, watches, warnings, lightning conditions and longer-term forecasting. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  20. WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Shepherd, G. G.; Thuillier, G.; Gault, W. A.; Solheim, B. H.; Hersom, C.; Alunni, J. M.; Brun, J.-F.; Brune, S.; Charlot, P.; Cogger, L. L.

    1993-01-01

    The WIND imaging interferometer (WINDII) was launched on the Upper Atmosphere Research Satellite (UARS) on September 12, 1991. This joint project, sponsored by the Canadian Space Agency and the French Centre National d'Etudes Spatiales, in collaboration with NASA, has the responsibility of measuring the global wind pattern at the top of the altitude range covered by UARS. WINDII measures wind, temperature, and emission rate over the altitude range 80 to 300 km by using the visible region airglow emission from these altitudes as a target and employing optical Doppler interferometry to measure the small wavelength shifts of the narrow atomic and molecular airglow emission lines induced by the bulk velocity of the atmosphere carrying the emitting species. The instrument used is an all-glass field-widened achromatically and thermally compensated phase-stepping Michelson interferometer, along with a bare CCD detector that images the airglow limb through the interferometer. A sequence of phase-stepped images is processed to derive the wind velocity for two orthogonal view directions, yielding the vector horizontal wind. The process of data analysis, including the inversion of apparent quantities to vertical profiles, is described.

  1. Second Shuttle Join NASA's STS Fleet: Challenger Launches First New Tracking Satellite

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA made a major stride in readying a second delivery vehicle for its Space Transportation System (STS) fleet with the perfect landing of Shuttle Orbiter Challenger at Edwards Air Force Base, California, April 9, 1983. Besides being the first flight test of Challenger's performance, the mission marked the orbiting of the first spacecraft in NASA's new Tracking and Data Relay Satellite System (TDRSS). The new family of orbiting space communications platforms is essential to serve future Shuttle missions. Although the Inertial Upper Stage (IUS) second stage engine firing failed to place TDRS in its final 35,888 kilometer (22,300 mile) geosynchronous orbit, its release from the orbiter cargo bay went as planned. Launch officials were confident they can achieve its planned orbit in a matter of weeks.

  2. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many

  3. Assessment of Satellite Albedos Using NASA-CAR Airborne Data

    NASA Astrophysics Data System (ADS)

    Kharbouche, S.; Charles, G.; Muller, J. P.

    2016-12-01

    Airborne BRF (Bidirectional Reflectance Factor) data has been acquired at multiple altitudes by the NASA CAR (Cloud Absorption Radiometer) multi-spectral instrument since the late 1990s in order to study the reflectance over different types of landscapes depending upon wavelengths, view angles and spatial scales, and to assess derived BRFs from multispectral satellites. As the measured BRFs are taken over a very short period (< 2 minutes), we minimise the effects of solar angles and atmospheric effects. This allows the derivation of a dense set of BRFs which allow direct display of polar plots of the BRDF for different sites in the Arctic. Also, as the measurements have been taken at different flight heights, the upscaling issue can be addressed and detailed with concrete samples. The CAR instrument is well calibrated (back to NIST standards) and can be compared with some ground measurements on the ground. So the derived BRF data for this instrument are likely to be highly reliable and can be used in the validation of some satellites products like radiance, reflectance and albedo, as well as in the BRDF (Bidirectional Reflectance Distribution Function) modelling and in the development of new atmospheric correction techniques. The NASA-CAR, developed by NASA-GSFC can be carried and integrated into many experimental aircraft. So, CAR can be considered as an airborne multi-wavelength scanning radiometer that can measure radiance with instantaneous fields of view of 1°. Over targeted sites, the CAR flies circularly and scans through 180° from straight above, through the horizon to straight down. Data are recorded in 14 narrow spectral bands located in the ultraviolet, visible and near-infrared regions in the electromagnetic spectrum (0.340-2.301 mm). The ray or spot at nadir depends on the flight height. It varies from 1m (height=110m) to 48m (height=5500m). We will show in this presentation the accuracy of BRF, BRDF and Black-Sky-Albedo of MODIS, MISR, MERIS, VGT

  4. Pre-Flight Radiometric Model of Linear Imager on LAPAN-IPB Satellite

    NASA Astrophysics Data System (ADS)

    Hadi Syafrudin, A.; Salaswati, Sartika; Hasbi, Wahyudi

    2018-05-01

    LAPAN-IPB Satellite is Microsatellite class with mission of remote sensing experiment. This satellite carrying Multispectral Line Imager for captured of radiometric reflectance value from earth to space. Radiometric quality of image is important factor to classification object on remote sensing process. Before satellite launch in orbit or pre-flight, Line Imager have been tested by Monochromator and integrating sphere to get spectral and every pixel radiometric response characteristic. Pre-flight test data with variety setting of line imager instrument used to see correlation radiance input and digital number of images output. Output input correlation is described by the radiance conversion model with imager setting and radiometric characteristics. Modelling process from hardware level until normalize radiance formula are presented and discussed in this paper.

  5. Inflation Tests of the Echo 1 Satellite in Weeksville, N.C.

    NASA Image and Video Library

    1958-08-13

    Inflation Tests of the Echo 1 Satellite in Weeksville, N.C. 1958-L-03603 Image Langley engineers Edwin Kilgore (center), Norman Crabill (right) and an unidentified man take a peek inside the vast balloon during inflation tests. Page. 183 Space Flight Revolution NASA Langley Research Center From Sputnik to Apollo. NASA SP-4308.

  6. Satellite Shows an "Arctic Blanket" Over the U.S. [detail

    NASA Image and Video Library

    2014-01-28

    Arctic air has surged into the U.S. pushing into the Southeastern states and dropping high temperatures there into the 20s with colder wind chills. This NOAA GOES-East satellite image was captured at 1445 UTC/9:45 a.m. EST on January 28, and between the clouds and the snow on the ground with cold air overhead, it appears as if much of the U.S. has been covered by an "Arctic Blanket." According to NOAA's National Weather Service (NWS), the Gulf coast states from southern Louisiana east to the Carolinas are facing a wintry mix of precipitation along the southern edge of the Arctic air. Meanwhile, NWS notes that wind chills throughout much of the central and eastern U.S. are in single and negative numbers during the day on January 28. The GOES-East satellite is managed and operated by NOAA. This image was created by the NASA/NOAA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Geosynchronous Meteorological Satellite Data Seminar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A seminar was organized by NASA to acquaint the meteorological community with data now available, and data scheduled to be available in the future, from geosynchronous meteorological satellites. The twenty-four papers were presented in three half-day sessions in addition to tours of the Image Display and LANDSAT Processing Facilities during the afternoon of the second day.

  8. Data rescue of NASA First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) aerial observations

    NASA Astrophysics Data System (ADS)

    Santhana Vannan, S. K.; Boyer, A.; Deb, D.; Beaty, T.; Wei, Y.; Wei, Z.

    2017-12-01

    The Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) for biogeochemical dynamics is one of the NASA Earth Observing System Data and Information System (EOSDIS) data centers. ORNL DAAC (https://daac.ornl.gov) is responsible for data archival, product development and distribution, and user support for biogeochemical and ecological data and models. In particular, ORNL DAAC has been providing data management support for NASA's terrestrial ecology field campaign programs for the last several decades. Field campaigns combine ground, aircraft, and satellite-based measurements in specific ecosystems over multi-year time periods. The data collected during NASA field campaigns are archived at the ORNL DAAC (https://daac.ornl.gov/get_data/). This paper describes the effort of the ORNL DAAC team for data rescue of a First ISLSCP Field Experiment (FIFE) dataset containing airborne and satellite data observations from the 1980s. The data collected during the FIFE campaign contain high resolution aerial imageries collected over Kansas. The data rescue workflow was prepared to test for successful recovery of the data from a CD-ROM and to ensure that the data are usable and preserved for the future. The imageries contain spectral reflectance data that can be used as a historical benchmark to examine climatological and ecological changes in the Kansas region since the 1980s. Below are the key steps taken to convert the files to modern standards. Decompress the imageries using custom compression software provided with the data. The compression algorithm created for MS-DOS in 1980s had to be set up to run on modern computer systems. Decompressed files were geo-referenced by using metadata information stored in separate compressed header files. Standardized file names were applied (File names and details were described in separate readme documents). Image files were converted to GeoTIFF format with embedded georeferencing information. Leverage Open Geospatial

  9. NASA's Solar Eclipse Composite Image July 11, 2010

    NASA Image and Video Library

    2017-12-08

    Eclipse 2010 Composite A solar eclipse photo (gray and white) from the Williams College Expedition to Easter Island in the South Pacific (July 11, 2010) was embedded with an image of the Sun’s outer corona taken by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft and shown in red false color. LASCO uses a disk to blot out the bright sun and the inner corona so that the faint outer corona can be monitored and studied. Further, the dark silhouette of the moon was covered with an image of the Sun taken in extreme ultraviolet light at about the same time by the Atmospheric Imaging Assembly on Solar Dynamics Observatory (SDO). The composite brings out the correlation of structures in the inner and outer corona. Credits: Williams College Eclipse Expedition -- Jay M. Pasachoff, Muzhou Lu, and Craig Malamut; SOHO’s LASCO image courtesy of NASA/ESA; solar disk image from NASA’s SDO; compositing by Steele Hill, NASA Goddard Space Flight Center. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  10. Let Our Powers Combine! Harnessing NASA's Earth Observatory Natural Event Tracker (EONET) in Worldview

    NASA Technical Reports Server (NTRS)

    Wong, Min Minnie; Ward, Kevin; Boller, Ryan; Gunnoe, Taylor; Baynes, Kathleen; King, Benjamin

    2016-01-01

    Constellations of NASA Earth Observing System (EOS) satellites orbit the earth to collect images and data about the planet in near real-time. Within hours of satellite overpass, you can discover where the latest wildfires, severe storms, volcanic eruptions, and dust and haze events are occurring using NASA's Worldview web application. By harnessing a repository of curated natural event metadata from NASA Earth Observatory's Natural Event Tracker (EONET), Worldview has moved natural event discovery to the forefront and allows users to select events-of-interest from a curated list, zooms to the area, and adds the most relevant imagery layers for that type of natural event. This poster will highlight NASA Worldviews new natural event feed functionality.

  11. NASA Spacecraft Images Continued Thailand Flooding

    NASA Image and Video Library

    2011-10-28

    On Oct. 25, 2011, the Chao Phraya River was in flood stage as NASA Terra spacecraft imaged flooded agricultural fields and villages depicted here in dark blue, and the sediment-laden water in shades of tan.

  12. From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 1

    NASA Image and Video Library

    2017-03-22

    A NASA-led science team spent six weeks in January and February studying Hawaii's volcanos and coral reefs using the agency's ER-2 aircraft. The mission, called Hyperspectral InfraRed Imager (HyspIRI), focused on observing coral reef health and volcano emissions and eruptions. Flying at 65,000 feet (19,800 meters), above 95 percent of Earth’s atmosphere, the ER-2 can closely replicate the data a future satellite could collect. Data from this mission will help in developing a NASA satellite to study natural hazards and ecosystems. NASA's ER-2 aircraft are based at NASA's Armstrong Flight Research Center Building 703 in Palmdale, California.

  13. Combining points and lines in rectifying satellite images

    NASA Astrophysics Data System (ADS)

    Elaksher, Ahmed F.

    2017-09-01

    The quick advance in remote sensing technologies established the potential to gather accurate and reliable information about the Earth surface using high resolution satellite images. Remote sensing satellite images of less than one-meter pixel size are currently used in large-scale mapping. Rigorous photogrammetric equations are usually used to describe the relationship between the image coordinates and ground coordinates. These equations require the knowledge of the exterior and interior orientation parameters of the image that might not be available. On the other hand, the parallel projection transformation could be used to represent the mathematical relationship between the image-space and objectspace coordinate systems and provides the required accuracy for large-scale mapping using fewer ground control features. This article investigates the differences between point-based and line-based parallel projection transformation models in rectifying satellite images with different resolutions. The point-based parallel projection transformation model and its extended form are presented and the corresponding line-based forms are developed. Results showed that the RMS computed using the point- or line-based transformation models are equivalent and satisfy the requirement for large-scale mapping. The differences between the transformation parameters computed using the point- and line-based transformation models are insignificant. The results showed high correlation between the differences in the ground elevation and the RMS.

  14. Satellite Radar Detects Damage from Sept. 2017 Chiapas, Mexico Quake

    NASA Image and Video Library

    2017-09-19

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, and Caltech, also in Pasadena, created this Damage Proxy Map (DPM) depicting areas of Southern Mexico that are likely damaged (shown by red and yellow pixels) from the magnitude 8.1 Chiapas earthquake of Sept. 7, 2017 (near midnight local time, early morning on Sept. 8 UTC). The map is derived from synthetic aperture radar (SAR) images from the Copernicus Sentinel-1A and Sentinel-1B satellites, operated by the European Space Agency (ESA). The images were taken before (Sept. 7, 2017 UTC) and after (Sept. 13, 2017 UTC) the earthquake. The map covers an area of 155 by 106 miles (250 by 170 kilometers). Each pixel measures about 33 yards (30 meters) across. The color variation from yellow to red indicates increasingly more significant ground surface change. Preliminary validation was done by comparing the SAR images to optical satellite imagery from DigitalGlobe. This damage proxy map should be used as guidance to identify damaged areas, and may be less reliable over vegetated areas. Sentinel-1 data were accessed through the Copernicus Open Access Hub. The image contains modified Copernicus Sentinel data (2017), processed by ESA and analyzed by the NASA-JPL/Caltech ARIA team. This research was carried out at JPL under a contract with NASA. https://photojournal.jpl.nasa.gov/catalog/PIA21956

  15. NASA Spacecraft Image Shows Location of Iranian Earthquake

    NASA Image and Video Library

    2017-12-08

    On April 9, 2013 at 11:52 GMT, a magnitude 6.3 earthquake hit southwestern Iran's Bushehr province near the town of Kaki. Preliminary information is that several villages have been destroyed and many people have died, as reported by BBC News. This perspective view of the region was acquired Nov. 17, 2012, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. The location of the earthquake's epicenter is marked with a yellow star. Vegetation is displayed in red; the vertical exaggeration of the topography is 2X. The image is centered near 28.5 degrees north latitude, 51.6 degrees east longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image Credit: NASA

  16. Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1994-01-01

    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry.

  17. NASA Spacecraft Images New Mexico Wildfire

    Atmospheric Science Data Center

    2014-05-15

    article title:  NASA Spacecraft Images New Mexico Wildfire     Left, ...   Lightning ignited the Silver Fire in western New Mexico on June 7, 2013. It has since consumed more than 137,000 acres of timber ...

  18. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  19. Remote microscopy and volumetric imaging on the surface of icy satellites

    NASA Astrophysics Data System (ADS)

    Soto, Alejandro; Nowicki, Keith; Howett, Carly; Feldkhun, Daniel; Retherford, Kurt D.

    2017-10-01

    With NASA PIDDP support we have applied recent advancements in Fourier-domain microscopy to develop an instrument capable of microscopic imaging from meter-scale distances for use on a planetary lander on the surface of an icy satellite or other planetary bodies. Without moving parts, our instrument projects dynamic patterns of laser light onto a distant target using a lightweight large-aperture reflector, which then collects the light scattered or fluoresced by the target on a fast photon-bucket detector. Using Fourier Transform based techniques, we reconstruct an image from the detected light. The remote microscope has been demonstrated to produce 2D images with better than 15 micron lateral resolution for targets at a distance of 5 meters and is capable of linearly proportionally higher resolution at shorter distances. The remote microscope is also capable of providing three-dimensional (3D) microscopic imaging capabilities, allowing future surface scientists to explore the morphology of microscopic features in surface ices, for example. The instrument enables microscopic in-situ imaging during day or night without the use of a robotic arm, greatly facilitating the surface operations for a lander or rover while expanding the area of investigation near a landing site for improved science targeting. We are developing this remote microscope for in-situ planetary exploration as a collaboration between the Southwest Research Institute, LambdaMetrics, and the University of Colorado.

  20. Guatemala Volcanic Eruption Captured in NASA Spacecraft Image

    NASA Image and Video Library

    2015-02-19

    Guatemala's Fuego volcano continued its frequent moderate eruptions in early February 2015. Pyroclastic flows from the eruptions descended multiple drainages, and the eruptions sent ash plumes spewing over Guatemala City 22 miles (35 kilometers) away, and forced closure of the international airport. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument onboard NASA's Terra spacecraft captured a new image of the region on February 17. Fuego is on the left side of the image. The thermal infrared inset image shows the summit crater activity (white equals hot), and remnant heat in the flows on the flank. Other active volcanoes shown in the image are Acatenango close by to the north, Volcano de Agua in the middle of the image, and Pacaya volcano to the east. The image covers an area of 19 by 31 miles (30 by 49.5 kilometers), and is located at 14.5 degrees north, 90.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19297

  1. NASA's SDO Shows Images of Significant Solar Flare

    NASA Image and Video Library

    2017-12-08

    Caption: An X-class solar flare erupted on the left side of the sun on the evening of Feb. 24, 2014. This composite image, captured at 7:59 p.m. EST, shows the sun in X-ray light with wavelengths of both 131 and 171 angstroms. Credit: NASA/SDO More info: The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Satellite Sees Major Winter Storm Ready to Wallop Mid-Atlantic

    NASA Image and Video Library

    2014-03-02

    A major winter storm is poised to wallop the Mid-Atlantic and bring large amounts of snow to cities including Baltimore, Md., Washington, D.C. area on March 2 and 3, according to NOAA's National Weather Service. NOAA's GOES-East satellite captured this image of the clouds associated with the winter storm as it continued moving east toward those cities. On March 2, the National Weather Prediction Center in College Park, Md. noted that there is a slight risk for severe thunderstorms over parts of the western Gulf Coast and the Lower Mississippi Valley as a result of the southern portion of the system. The update at 7 a.m. EST noted that freezing rain/sleet is possible over parts of the lower Mississippi Valley and parts of the central Appalachians, while eastern Texas and the lower Mississippi Valley into the Ohio Valley are expected to experience heavy rain. The NWS Short Range Forecast Discussion stated "A strong storm over the Southern Plains/Lower Mississippi Valley will advance northeastward along a quasi-stationary front to off the Southern Mid-Atlantic Coast by Monday evening. Moisture from the Gulf of Mexico will overrun and pool along the associated front producing an area of snow extending from the Central Plains into the Northeast." The clouds are associated with a cold from that stretches from eastern Maine through Maryland and west into the Tennessee Valley. The low pressure center associated with the front was located over Arkansas. At NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. the cloud data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the position of this major winter storm. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary

  3. America National Parks Viewed in 3D by NASA MISR Anaglyph 4

    NASA Image and Video Library

    2016-08-25

    Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite is releasing four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. Shown in the annotated image are Sequoia National Park, Kings Canyon National Park, Manzanar National Historic Site, Devils Postpile National Monument, Yosemite National Park, and parts of Death Valley National Park. MISR views Earth with nine cameras pointed at different angles, giving it the unique capability to produce anaglyphs, stereoscopic images that allow the viewer to experience the landscape in three dimensions. The anaglyphs were made by combining data from MISR's vertical-viewing and 46-degree forward-pointing camera. You will need red-blue glasses in order to experience the 3D effect; ensure you place the red lens over your left eye. The images have been rotated so that north is to the left in order to enable 3D viewing because the Terra satellite flies from north to south. All of the images are 235 miles (378 kilometers) from west to east. These data were acquired July 7, 2016, Orbit 88051. http://photojournal.jpl.nasa.gov/catalog/PIA20892

  4. America National Parks Viewed in 3D by NASA MISR Anaglyph 2

    NASA Image and Video Library

    2016-08-25

    Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite is releasing four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. Shown in the annotated image are Grand Teton National Park, John D. Rockefeller Memorial Parkway, Yellowstone National Park, and parts of Craters of the Moon National Monument. MISR views Earth with nine cameras pointed at different angles, giving it the unique capability to produce anaglyphs, stereoscopic images that allow the viewer to experience the landscape in three dimensions. The anaglyphs were made by combining data from MISR's vertical-viewing and 46-degree forward-pointing camera. You will need red-blue glasses in order to experience the 3D effect; ensure you place the red lens over your left eye. The images have been rotated so that north is to the left in order to enable 3D viewing because the Terra satellite flies from north to south. All of the images are 235 miles (378 kilometers) from west to east. These data were acquired June 25, 2016, Orbit 87876. http://photojournal.jpl.nasa.gov/catalog/PIA20890

  5. NASA Damage Map Aids Northern California Wildfire Response

    NASA Image and Video Library

    2017-10-18

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, and Caltech, also in Pasadena, created this Damage Proxy Map depicting areas in Northern California that are likely damaged (shown by red and yellow pixels) as a result of the region's current outbreak of wildfires. The map is derived from synthetic aperture radar (SAR) images from the Copernicus Sentinel-1 satellites, operated by the European Space Agency (ESA). The images were taken before (Sep. 27, 2017, 7 p.m. PDT) and after (Oct. 9, 2017, 7 p.m. PDT) the onset of the fires. The map has been provided to various agencies to aid in the wildfire response. The map covers the area within the large red polygon, and measures 155 by 106 miles (250 by 170 kilometers). The illustrative figure from the map depicted in the inset shows damage in the city of Santa Rosa. Each pixel in the Damage Proxy Map measures about 98 feet (30 meters) across. The color variation from yellow to red indicates increasingly more significant ground surface change. Preliminary validation was done by comparing to optical satellite imagery from DigitalGlobe. This Damage Proxy Map should be used as guidance to identify damaged areas, and may be less reliable over vegetated areas. Sentinel-1 data were accessed through the Copernicus Open Access Hub. The image contains modified Copernicus Sentinel data (2017), processed by ESA and analyzed by the NASA-JPL/Caltech ARIA team. This research was carried out at JPL under a contract with NASA. https://photojournal.jpl.nasa.gov/catalog/PIA22048

  6. Persistent Flooding in Louisiana Imaged by NASA Spacecraft

    NASA Image and Video Library

    2016-03-21

    Torrential rains in the mid-South of the United States in mid-March 2016 produced flooding throughout Texas, Louisiana and Mississippi. On March 21, 2016, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft acquired this image showing persistent flooding along the Mississippi River between the Louisiana cities of Alexandria and Natchitoches. The image covers an area of 25 to 36 miles (41 by 58 kilometers), and is located at 31.5 degrees north, 92.8 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20533

  7. Satellite Views Early Thanksgiving Travel Trouble Areas in U.S.

    NASA Image and Video Library

    2017-12-08

    This NOAA's GOES satellite infrared image taken on Nov. 25 at 11:45 UTC (6:45 a.m. EST) shows two main weather systems over the U.S. Credit: NASA/NOAA GOES Project As the U.S. Thanksgiving holiday approaches this Thursday, November 27, NOAA's GOES-East and GOES-West satellites are keeping a weather eye out for storms that may affect early travelers. In an image from Nov. 25, the satellites show an active weather pattern is in place for travelers across the central and eastern U.S. NOAA's GOES-East satellite provides visible and infrared images over the eastern U.S. and the Atlantic Ocean, while NOAA's GOES-West satellite covers the western U.S. and Pacific Ocean from its fixed orbit in space. Data from both satellites were combined at NASA's GOES Project to create a full view of the U.S. on Nov. 25 at 11:45 UTC (6:45 a.m. EST). The image shows clouds associated with cold front stretching from the Gulf of Mexico over northern Florida and along the U.S. East coast to eastern Canada. Clouds associated with another area of low pressure are in the northern Rockies and northwestern U.S. To create the image, NASA/NOAA's GOES Project takes the cloud data from NOAA's GOES-East satellite and overlays it on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the storm and show its movement. After the storm system passes, the snow on the ground becomes visible. NOAA's National Weather Service Weather Prediction Center said "a storm system will develop off the coast of the Carolinas early Wednesday (Nov. 25) and strengthen as it moves rapidly up the East Coast Wednesday into early Thursday (Nov. 26). Heavy snow is likely to begin in the central Appalachians early Wednesday morning, spreading northeast through the interior Mid-Atlantic into New England by Wednesday night. Winter Storm Watches are in

  8. Renewable Energy SCADA/Training Using NASA's Advanced Technology Communication Satellite

    NASA Technical Reports Server (NTRS)

    Kalu, A.; Emrich, C.; Ventre, G.; Wilson, W.; Acosta, Roberto (Technical Monitor)

    2000-01-01

    The lack of electrical energy in the rural communities of developing countries is well known, as is the economic unfeasibility of providing much needed energy to these regions via electric grids. Renewable energy (RE) can provide an economic advantage over conventional forms in meeting some of these energy needs. The use of a Supervisory Control and Data Acquisition (SCADA) arrangement via satellite could enable experts at remote locations to provide technical assistance to local trainees while they acquire a measure of proficiency with a newly installed RE system through hands-on training programs using the same communications link. Upon full mastery of the technologies, indigenous personnel could also employ similar SCADA arrangements to remotely monitor and control their constellation of RE systems. Two separate ACTS technology verification experiments (TVEs) have demonstrated that the portability of the Ultra Small Aperture Terminal (USAT) and the versatility of NASA's Advanced Communications Technology Satellite (ACTS), as well as the advantages of Ka band satellites, can be invaluable in providing energy training via distance education (DE), and for implementing renewable energy system SCADA. What has not been tested is the capabilities of these technologies for a simultaneous implementation of renewable energy DE and SCADA. Such concurrent implementations will be useful for preparing trainees in developing countries for their eventual SCADA operations. The project described in this correspondence is the first effort, to our knowledge, in this specific TVE. The setup for this experiment consists of a one-Watt USAT located at Florida Solar Energy Center (FSEC) connected to two satellite modems tuned to different frequencies to establish two duplex ACTS Ka-band communication channels. A short training program on operation and maintenance of the system will be delivered while simultaneously monitoring and controlling the hybrid using the same satellite

  9. Proceedings of the Twenty-First NASA Propagation Experimenters Meeting (NAPEX XXI) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The NASA Propagation Experimenters (NAPEX) meeting is convened each year to discuss studies supported by the NASA Propagation Program. Representatives from the satellite communications industry, academia and government who have an interest in space-ground radio wave propagation are invited to NAPEX meetings for discussions and exchange of information. The reports delivered at this meeting by program managers and investigators present recent activities and future plans. This forum provides an opportunity for peer discussion of work in progress, timely dissemination of propagation results, and close interaction with the satellite communications industry.

  10. The Use of NASA near Real-time and Archived Satellite Data to Support Disaster Assessment

    NASA Technical Reports Server (NTRS)

    McGrath, Kevin M.; Molthan, Andrew; Burks, Jason

    2014-01-01

    With support from a NASA's Applied Sciences Program, The Short-term Prediction Research and Transition (SPoRT) Center has explored a variety of techniques for utilizing archived and near real-time NASA satellite data to support disaster assessment activities. MODIS data from the NASA Land Atmosphere Near Real-time Capability for EOS currently provides true color and other imagery for assessment and potential applications including, but not limited to, flooding, fires, and tornadoes. In May 2013, the SPoRT Center developed unique power outage composites using the VIIRS Day/Night Band to represent the first clear sky view of damage inflicted upon Moore and Oklahoma City, Oklahoma following the devastating EF-5 tornado that occurred on May 20. Pre-event imagery provided by the NASA funded Web-Enabled Landsat Data project offer a basis of comparison for monitoring post-disaster recovery efforts. Techniques have also been developed to generate products from higher resolution imagery from the recently available International Space Station SERVIR Environmental Research and Visualization System instrument. Of paramount importance is to deliver these products to end users expeditiously and in formats compatible with Decision Support Systems (DSS). Delivery techniques include a Tile Map Service (TMS) and a Web Mapping Service (WMS). These mechanisms allow easy integration of satellite products into DSS's, including the National Weather Service's Damage Assessment Toolkit for use by personnel conducting damage surveys. This poster will present an overview of the developed techniques and products and compare the strengths and weaknesses of the TMS and WMS.

  11. SUBMIT YOUR IMAGES TO NASA's "LET IT SNOW" PHOTO CONTEST!

    NASA Image and Video Library

    2017-12-08

    NASA's Global Precipitation Measurement (GPM) mission wants to see your best photos of winter weather! You can submit your images to the contest here: www.flickr.com/groups/gpm-extreme-weather/ To read more about this image and or to see the high res file go to: earthobservatory.nasa.gov/IOTD/view.php?id=80082

  12. Studies of soundings and imagings measurements from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1973-01-01

    Soundings and imaging measurements from geostationary satellites are presented. The subjects discussed are: (1) meteorological data processing techniques, (2) sun glitter, (3) cloud growth rate study, satellite stability characteristics, and (4) high resolution optics. The use of perturbation technique to obtain the motion of sensors aboard a satellite is described. The most conditions, and measurement errors. Several performance evaluation parameters are proposed.

  13. Using Optical Interferometry for GEO Satellites Imaging: An Update

    DTIC Science & Technology

    2016-05-27

    of a geostationary satellite using the Navy Precision Optical Inter- ferometer (NPOI) during the glint season of March 2015. We succeeded in detecting...night. These baseline lengths correspond to a resolution of ∼4 m at geostationary altitude. This is the first multiple-baseline interferometric...detection of a satellite. Keywords: geostationary satellites, optical interferometry, imaging, telescope arrays 1. INTRODUCTION Developing the ability to

  14. NASA Sees Typhoon Soudelor's Remnants Over Eastern China

    NASA Image and Video Library

    2017-12-08

    On August 9 at 03:00 UTC (Aug. 8 at 11 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite passed over the remnant clouds of Typhoon Soudelor when it was over eastern China. By 22:35 UTC (6:35 p.m. EDT) on August 8, 2015, Typhoon Soudelor had made landfall in eastern China and was rapidly dissipating. Maximum sustained winds had dropped to 45 knots (51.7 mph/83.3 kph) after landfall, making it a tropical storm. Image credit: NASA Goddard MODIS Rapid Response Team/Jeff Schmaltz..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. New NASA Maps Show Flooding Changes In Aftermath of Hurricane Harvey

    NASA Image and Video Library

    2017-09-13

    Data from NASA's Soil Moisture Active Passive (SMAP) satellite have been used to create new surface flooding maps of Southeast Texas and the Tennessee Valley following Hurricane Harvey. The SMAP observations detect the proportional cover of surface water within the satellite sensor's field of view. This sequence of images shows changes in the extent of surface flooding from successive five-day SMAP observation composite images. Widespread flooding can be seen in the Houston metropolitan area on Aug. 27 following record rainfall from the Category 4 hurricane, which made landfall on Aug. 25th, 2017 (left image). Flood waters around Houston had substantially receded by Aug. 31 (middle image), while flooding had increased across Louisiana, eastern Arkansas, and western Tennessee as then Tropical Storm Harvey passed over the area. The far right image shows the change in flooded area between Aug. 27 and Aug. 31, with regions showing the most flooding recession depicted in yellow and orange shades and those where flooding had increased depicted in blue shades. The SMAP satellite has a low-frequency (L-band) microwave radiometer with enhanced capabilities for detecting surface water changes in nearly all weather conditions and under low-to-moderate vegetation cover. SMAP provides global coverage with one-to-three-day repeat sampling that is well suited for global monitoring of inland surface water cover dynamics. https://photojournal.jpl.nasa.gov/catalog/PIA21951

  16. The NASA/NOAA Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations from space in a historical perspective. Fly in from outer space to Cambridge and Harvard University. Zoom through the Cosmos to SLC and site of the 2002 Winter Olympics using 1 m IKONOS "Spy Satellite" data. Contrast the 1972 Apollo 17 "Blue Marble" image of the Earth with the latest US and International global satellite images that allow us to view our Planet from any vantage point. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, & Landsat 7, of storms & fires like Hurricane Isabel and the LNSan Diego firestorms of 2003. See how High Definition Television (HDTV) is revolutionizing the way we do science communication. Take the pulse of the planet on a daily, annual and 30-year time scale. See daily thunderstorms, the annual blooming of the northern hemisphere landmasses and oceans, fires in Africa, dust storms in Iraq, and carbon monoxide exhaust from global burning. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. Spectacular new global visualizations of the observed and simulated atmosphere & oceans are shown. See the currents and vortexes in the oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fishermen. See the how the ocean blooms in response to El Niiioh Niiia climate changes. The Etheater will be presented using the latest High Definition TV (HDTV) and video projection technology on a large screen. See the global city lights, and the great NE US blackout of August 2003 observed by the "night-vision" DMSP satellite.

  17. Satellite Models for Global Environmental Change in the NASA Health and Air Quality Programs

    NASA Astrophysics Data System (ADS)

    Haynes, J.; Estes, S. M.

    2015-12-01

    Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. Health and Air Quality providers and researchers are effective by the global environmental changes that are occurring and they need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. This presentation maintains a diverse constellation of Earth observing research satellites and sponsors research in developing satellite data applications across a wide spectrum of areas including environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality. Successfully providing predictions with the accuracy and specificity required by decision makers will require advancements over current capabilities in a number of interrelated areas. These areas include observations, modeling systems, forecast development, application integration, and the research to operations transition process. This presentation will highlight many projects on which NASA satellites have been a primary partner with local, state, Federal, and international operational agencies over the past twelve years in these areas. Domestic and International officials have increasingly recognized links between environment and health. Health providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the health research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Health Models to provide a method for bridging gaps of environmental

  18. Satellite Shows Developing U.S. Nor'easter

    NASA Image and Video Library

    2017-12-08

    Greenbelt, Maryland overlays the cloud data from NOAA's GOES-East satellite on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, these data create the entire animation of the storm and show its movement. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center

  19. Estimating seasonal evapotranspiration from temporal satellite images

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Estimating seasonal evapotranspiration (ET) has many applications in water resources planning and management, including hydrological and ecological modeling. Availability of satellite remote sensing images is limited due to repeat cycle of satellite or cloud cover. This study was conducted to determine the suitability of different methods namely cubic spline, fixed, and linear for estimating seasonal ET from temporal remotely sensed images. Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model in conjunction with the wet METRIC (wMETRIC), a modified version of the METRIC model, was used to estimate ET on the days of satellite overpass using eight Landsat images during the 2001 crop growing season in Midwest USA. The model-estimated daily ET was in good agreement (R2 = 0.91) with the eddy covariance tower-measured daily ET. The standard error of daily ET was 0.6 mm (20%) at three validation sites in Nebraska, USA. There was no statistically significant difference (P > 0.05) among the cubic spline, fixed, and linear methods for computing seasonal (July–December) ET from temporal ET estimates. Overall, the cubic spline resulted in the lowest standard error of 6 mm (1.67%) for seasonal ET. However, further testing of this method for multiple years is necessary to determine its suitability.

  20. Numerical simulations of imaging satellites with optical interferometry

    NASA Astrophysics Data System (ADS)

    Ding, Yuanyuan; Wang, Chaoyan; Chen, Zhendong

    2015-08-01

    Optical interferometry imaging system, which is composed of multiple sub-apertures, is a type of sensor that can break through the aperture limit and realize the high resolution imaging. This technique can be utilized to precisely measure the shapes, sizes and position of astronomical objects and satellites, it also can realize to space exploration and space debris, satellite monitoring and survey. Fizeau-Type optical aperture synthesis telescope has the advantage of short baselines, common mount and multiple sub-apertures, so it is feasible for instantaneous direct imaging through focal plane combination.Since 2002, the researchers of Shanghai Astronomical Observatory have developed the study of optical interferometry technique. For array configurations, there are two optimal array configurations proposed instead of the symmetrical circular distribution: the asymmetrical circular distribution and the Y-type distribution. On this basis, two kinds of structure were proposed based on Fizeau interferometric telescope. One is Y-type independent sub-aperture telescope, the other one is segmented mirrors telescope with common secondary mirror.In this paper, we will give the description of interferometric telescope and image acquisition. Then we will mainly concerned the simulations of image restoration based on Y-type telescope and segmented mirrors telescope. The Richardson-Lucy (RL) method, Winner method and the Ordered Subsets Expectation Maximization (OS-EM) method are studied in this paper. We will analyze the influence of different stop rules too. At the last of the paper, we will present the reconstruction results of images of some satellites.

  1. ISAMS and MLS for NASA's Upper Atmosphere Research Satellite

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, D.; Dickinson, P. H. G.

    1990-04-01

    The primary goal of NASA's Upper Atmosphere Research Satellite (UARS), planned to be launched in 1991, is to compile data about the structure and behavior of the stratospheric ozone layer, and especially about the threat of the chlorine-based pollutants to its stablility. Two of the payload instruments, manufactured in the UK, are described: the Improved Stratospheric and Mesospheric Sounder (ISAMS), a radiometer designed to measure thermal emission from selected atmospheric constituents at the earth's limb, then making it possible to obtain nearly global coverage of the vertical distribution of temperature and composition from 80 deg S to 80 deg N latitude; and the Microwave Limb Sounder (MLS), a limb sounding radiometer, measuring atmospheric thermal emission from selected molecular spectral lines at mm wavelength, in the frequency regions of 63, 183, and 205 GHz.

  2. This is NASA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The organization, operations, functions, and objectives of NASA are outlined. Data include manned space flights, satellite weather observations, orbiting radio relays, and new views of the earth and beyond the earth as observed by satellites. Details of NASA's work in international programs, educational training programs, and adopting space technology to earth uses are also given.

  3. On-Orbit Calibration of a Multi-Spectral Satellite Satellite Sensor Using a High Altitude Airborne Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, R. O.; Shimada, M.

    1996-01-01

    Earth-looking satellites must be calibrated in order to quantitatively measure and monitor components of land, water and atmosphere of the Earth system. The inevitable change in performance due to the stress of satellite launch requires that the calibration of a satellite sensor be established and validated on-orbit. A new approach to on-orbit satellite sensor calibration has been developed using the flight of a high altitude calibrated airborne imaging spectrometer below a multi-spectral satellite sensor.

  4. Summary of the Geocarto International Special Issue on "NASA Earth Science Satellite Data for Applications to Public Health" to be Published in Early 2014

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2013-01-01

    At the 2011 Applied Science Public Health review held in Santa Fe, NM, it was announced that Dr. Dale Quattrochi from the NASA Marshall Space Flight Center, John Haynes, Program Manager for the Applied Sciences Public Health program at NASA Headquarters, and Sue Estes, Deputy Program Manager for the NASA Applied Sciences Public Health Program located at the Universities Space Research Association (USRA) at the National Space Science and Technology Center (NSSTC) in Huntsville, AL, would edit a special issue of the journal Geocarto International on "NASA Earth Science Satellite Data for Applications to Public Health". This issue would be focused on compiling research papers that use NASA Earth Science satellite data for applications to public health. NASA's Public Health Program concentrates on advancing the realization of societal and economic benefits from NASA Earth Science in the areas of infectious disease, emergency preparedness and response, and environmental health (e.g., air quality). This application area as a focus of the NASA Applied Sciences program, has engaged public health institutions and officials with research scientists in exploring new applications of Earth Science satellite data as an integral part of public health decision- and policy-making at the local, state and federal levels. Of interest to this special issue are papers submitted on are topics such as epidemiologic surveillance in the areas of infectious disease, environmental health, and emergency response and preparedness, national and international activities to improve skills, share data and applications, and broaden the range of users who apply Earth Science satellite data in public health decisions, or related focus areas.. This special issue has now been completed and will be published n early 2014. This talk will present an overview of the papers that will be published in this special Geocarto International issue.

  5. NASA's SDO Shows Images of Significant Solar Flare

    NASA Image and Video Library

    2014-02-25

    Caption: These SDO images from 7:25 p.m. EST on Feb. 24, 2014, show the first moments of an X-class flare in different wavelengths of light -- seen as the bright spot that appears on the left limb of the sun. Hot solar material can be seen hovering above the active region in the sun's atmosphere, the corona. Credit: NASA/SDO More info: The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. An aeronautical mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, T. C.; Dessouky, K. I.; Lay, N. E.

    1990-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile satellite environment. The results were also of interest to the general mobile satellite community because of the advanced nature of the technologies employed in the terminal.

  7. Satellite Sees Holiday Lights Brighten Cities - Atlanta

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Satellite Sees Holiday Lights Brighten Cities - Florida

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NASA Radar Images Show Continued Deformation from Mexico Quake

    NASA Image and Video Library

    2010-08-04

    This image shows a UAVSAR interferogram swath overlaid atop a Google Earth image. New NASA airborne radar images show the continuing deformation in Earth surface resulting from the magnitude 7.2 temblor in Baja California on April 4, 2010.

  10. NPP Satellite Launch

    NASA Image and Video Library

    2011-10-28

    NASA Deputy Administrator Lori Garver, left, watches the launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) at the National Oceanic and Atmospheric Administration (NOAA) Satellite Operations Center on Friday, Oct. 28, 2011 in Suitland, Md. U.S Congresswoman Donna Edwards, D-Md., is seen next to Garver. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)

  11. Applied imaging at the NASA Lewis Research Center

    NASA Astrophysics Data System (ADS)

    Slater, Howard A.; Owens, Jay C.

    1993-01-01

    NASA Lewis Research Center in Cleveland, Ohio has just completed the celebration of its 50th anniversary. `During the past 50 years, Lewis helped win World War II, made jet aircraft safer and more efficient, helped Americans land on the Moon ... and engaged in the type of fundamental research that benefits all of us in our daily lives.' As part of the center's long history, the Photographic and Printing Branch has continued to develop and meet the center's research imaging requirements. As imaging systems continue to advance and researchers more clearly understand the power of imaging, investigators are relying more and more on imaging systems to meet program objectives. Today, the Photographic and Printing Branch supports a research community of over 5,000 including advocacy for NASA Headquarters and other government agencies. Complete classified and unclassified imaging services include high- speed image acquisition, technical film and video documentaries, still imaging, and conventional and unconventional photofinishing operations. These are the foundation of the branch's modern support function. This paper provides an overview of the varied applied imaging programs managed by the Photographic and Printing Branch. Emphasis is placed on recent imaging projects including icing research, space experiments, and an on-line image archive.

  12. NASA Unveils First Images From Chandra X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  13. NASA Sun Earth

    NASA Image and Video Library

    2017-12-08

    CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Ea CME blast and subsequent impact at Earth -- This illustration shows a CME blasting off the Sun’s surface in the direction of Earth. This left portion is composed of an EIT 304 image superimposed on a LASCO C2 coronagraph. Two to four days later, the CME cloud is shown striking and beginning to be mostly deflected around the Earth’s magnetosphere. The blue paths emanating from the Earth’s poles represent some of its magnetic field lines. The magnetic cloud of plasma can extend to 30 million miles wide by the time it reaches earth. These storms, which occur frequently, can disrupt communications and navigational equipment, damage satellites, and even cause blackouts. (Objects in the illustration are not drawn to scale.) Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  14. NASA Releases New High-Resolution Earthrise Image

    NASA Image and Video Library

    2017-12-08

    NASA's Lunar Reconnaissance Orbiter (LRO) recently captured a unique view of Earth from the spacecraft's vantage point in orbit around the moon. "The image is simply stunning," said Noah Petro, Deputy Project Scientist for LRO at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The image of the Earth evokes the famous 'Blue Marble' image taken by Astronaut Harrison Schmitt during Apollo 17, 43 years ago, which also showed Africa prominently in the picture." In this composite image we see Earth appear to rise over the lunar horizon from the viewpoint of the spacecraft, with the center of the Earth just off the coast of Liberia (at 4.04 degrees North, 12.44 degrees West). The large tan area in the upper right is the Sahara Desert, and just beyond is Saudi Arabia. The Atlantic and Pacific coasts of South America are visible to the left. On the moon, we get a glimpse of the crater Compton, which is located just beyond the eastern limb of the moon, on the lunar farside. LRO was launched on June 18, 2009, and has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the moon. LRO experiences 12 earthrises every day; however the spacecraft is almost always busy imaging the lunar surface so only rarely does an opportunity arise such that its camera instrument can capture a view of Earth. Occasionally LRO points off into space to acquire observations of the extremely thin lunar atmosphere and perform instrument calibration measurements. During these movements sometimes Earth (and other planets) pass through the camera's field of view and dramatic images such as the one shown here are acquired. This image was composed from a series of images taken Oct. 12, when LRO was about 83 miles (134 kilometers) above the moon's farside crater Compton. Capturing an image of the Earth and moon with LRO's Lunar Reconnaissance Orbiter Camera (LROC) instrument is a complicated task. First the spacecraft

  15. Identification of geostationary satellites using polarization data from unresolved images

    NASA Astrophysics Data System (ADS)

    Speicher, Andy

    In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight

  16. NASA Sees Post-Patricia Moisture, Winds Stalking the Mid-Atlantic

    NASA Image and Video Library

    2017-12-08

    The remnant moisture from what was once Hurricane Patricia and moisture from the Gulf of Mexico were being transported north by a trough of low pressure over Wisconsin. The clouds and moisture were streaming into the Eastern third of the U.S. on October 28, 2015. The hybrid system was generating windy conditions which were seen from NASA's RapidScat instrument, while NOAA's GOES-East satellite captured an image of the impressive and sizeable cloud cover. Read more: www.nasa.gov/feature/goddard/patricia-eastern-pacific-2015 Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NASA AIRS Instrument Captures Data on Monster Winter Storm Affecting 30 States

    NASA Image and Video Library

    2011-02-02

    This visible image from NASA Aqua satellite Jan. 31 shows thickening clouds along a developing intense front in the plains and Midwestern states that will produce excessive snow, freezing rain, sleet, and wind in those areas.

  18. Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm

    NASA Astrophysics Data System (ADS)

    Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan

    2017-12-01

    Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.

  19. Vegetation canopy structure from NASA EOS multiangle imaging

    USDA-ARS?s Scientific Manuscript database

    We used red band bidirectional reflectance data from the NASA Multiangle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) mapped onto a 250 m grid in a multiangle approach to obtain estimates of woody plant fractional cover and crown height through adjus...

  20. Feature detection in satellite images using neural network technology

    NASA Technical Reports Server (NTRS)

    Augusteijn, Marijke F.; Dimalanta, Arturo S.

    1992-01-01

    A feasibility study of automated classification of satellite images is described. Satellite images were characterized by the textures they contain. In particular, the detection of cloud textures was investigated. The method of second-order gray level statistics, using co-occurrence matrices, was applied to extract feature vectors from image segments. Neural network technology was employed to classify these feature vectors. The cascade-correlation architecture was successfully used as a classifier. The use of a Kohonen network was also investigated but this architecture could not reliably classify the feature vectors due to the complicated structure of the classification problem. The best results were obtained when data from different spectral bands were fused.

  1. A Look at Hurricane Matthew from NASA AIRS

    NASA Image and Video Library

    2016-10-06

    Hurricane Matthew, currently an extremely dangerous Category 4 storm on the Saffir-Simpson Hurricane Wind Scale, continues to bear down on the southeastern United States. At 11:27 a.m. PDT (2:27 p.m. EDT and 18:23 UT) today, NASA's Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite observed the storm as its eye was passing over the Bahamas. An AIRS false-color infrared image shows that the northeast and southwest quadrants of the storm had the coldest cloud tops, denoting the regions of the storm where the strongest precipitation was occurring at the time. Data from the Advanced Microwave Sounding Unit (AMSU), another of AIRS' suite of instruments, indicate that the northeast quadrant, which appears smaller in the infrared image, likely had the most intense rain bands at the time. The AIRS infrared image shows that at the time of the image the storm had full circulation, with a small eye surrounded by a thick eye wall and can be seen at http://photojournal.jpl.nasa.gov/catalog/PIA21092.

  2. A Star Image Extractor for the Nano-JASMINE satellite

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Gouda, N.; Kobayashi, Y.; Tsujimoto, T.; Yano, T.; Suganuma, M.; Yamada, Y.; Nakasuka, S.; Sako, N.

    2008-07-01

    We have developped a software of Star-Image-Extractor (SIE) which works as the on-board real-time image processor. It detects and extracts only the object data from raw image data. SIE has two functions: reducing image data and providing data for the satellite's high accuracy attitude control system.

  3. A Novel Ship-Tracking Method for GF-4 Satellite Sequential Images.

    PubMed

    Yao, Libo; Liu, Yong; He, You

    2018-06-22

    The geostationary remote sensing satellite has the capability of wide scanning, persistent observation and operational response, and has tremendous potential for maritime target surveillance. The GF-4 satellite is the first geostationary orbit (GEO) optical remote sensing satellite with medium resolution in China. In this paper, a novel ship-tracking method in GF-4 satellite sequential imagery is proposed. The algorithm has three stages. First, a local visual saliency map based on local peak signal-to-noise ratio (PSNR) is used to detect ships in a single frame of GF-4 satellite sequential images. Second, the accuracy positioning of each potential target is realized by a dynamic correction using the rational polynomial coefficients (RPCs) and automatic identification system (AIS) data of ships. Finally, an improved multiple hypotheses tracking (MHT) algorithm with amplitude information is used to track ships by further removing the false targets, and to estimate ships’ motion parameters. The algorithm has been tested using GF-4 sequential images and AIS data. The results of the experiment demonstrate that the algorithm achieves good tracking performance in GF-4 satellite sequential images and estimates the motion information of ships accurately.

  4. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  5. TerraLook: GIS-Ready Time-Series of Satellite Imagery for Monitoring Change

    USGS Publications Warehouse

    ,

    2008-01-01

    TerraLook is a joint project of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) with a goal of providing satellite images that anyone can use to see changes in the Earth's surface over time. Each TerraLook product is a user-specified collection of satellite images selected from imagery archived at the USGS Earth Resources Observation and Science (EROS) Center. Images are bundled with standards-compliant metadata, a world file, and an outline of each image's ground footprint, enabling their use in geographic information systems (GIS), image processing software, and Web mapping applications. TerraLook images are available through the USGS Global Visualization Viewer (http://glovis.usgs.gov).

  6. Validation assessment of shoreline extraction on medium resolution satellite image

    NASA Astrophysics Data System (ADS)

    Manaf, Syaifulnizam Abd; Mustapha, Norwati; Sulaiman, Md Nasir; Husin, Nor Azura; Shafri, Helmi Zulhaidi Mohd

    2017-10-01

    Monitoring coastal zones helps provide information about the conditions of the coastal zones, such as erosion or accretion. Moreover, monitoring the shorelines can help measure the severity of such conditions. Such measurement can be performed accurately by using Earth observation satellite images rather than by using traditional ground survey. To date, shorelines can be extracted from satellite images with a high degree of accuracy by using satellite image classification techniques based on machine learning to identify the land and water classes of the shorelines. In this study, the researchers validated the results of extracted shorelines of 11 classifiers using a reference shoreline provided by the local authority. Specifically, the validation assessment was performed to examine the difference between the extracted shorelines and the reference shorelines. The research findings showed that the SVM Linear was the most effective image classification technique, as evidenced from the lowest mean distance between the extracted shoreline and the reference shoreline. Furthermore, the findings showed that the accuracy of the extracted shoreline was not directly proportional to the accuracy of the image classification.

  7. Satellite Articulation Characterization from an Image Trajectory Matrix Using Optimization

    NASA Astrophysics Data System (ADS)

    Curtis, D. H.; Cobb, R. G.

    Autonomous on-orbit satellite servicing and inspection benefits from an inspector satellite that can autonomously gain as much information as possible about the primary satellite. This includes performance of articulated objects such as solar arrays, antennas, and sensors. This paper presents a method of characterizing the articulation of a satellite using resolved monocular imagery. A simulated point cloud representing a nominal satellite with articulating solar panels and a complex articulating appendage is developed and projected to the image coordinates that would be seen from an inspector following a given inspection route. A method is developed to analyze the resulting image trajectory matrix. The developed method takes advantage of the fact that the route of the inspector satellite is known to assist in the segmentation of the points into different rigid bodies, the creation of the 3D point cloud, and the identification of the articulation parameters. Once the point cloud and the articulation parameters are calculated, they can be compared to the known truth. The error in the calculated point cloud is determined as well as the difference between the true workspace of the satellite and the calculated workspace. These metrics can be used to compare the quality of various inspection routes for characterizing the satellite and its articulation.

  8. NASA ASTER Images More Effects of Japan Tsunami

    NASA Image and Video Library

    2011-03-15

    This before-and-after image pair acquired by NASA Terra spacecraft of the Japan coastal cities of Ofunato and Kesennuma reveals changes to the landscape that are likely due to the effects of the tsunami on March 11, 2011. The new image is on the left.

  9. The Galilean Satellites

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this 'family portrait,' the four Galilean Satellites are shown to scale. These four largest moons of Jupiter shown in increasing distance from Jupiter are (left to right) Io, Europa, Ganymede, and Callisto.

    These global views show the side of volcanically active Io which always faces away from Jupiter, icy Europa, the Jupiter-facing side of Ganymede, and heavily cratered Callisto. The appearances of these neighboring satellites are amazingly different even though they are relatively close to Jupiter (350,000 kilometers for Io; 1, 800,000 kilometers for Callisto). These images were acquired on several orbits at very low 'phase' angles (the sun, spacecraft, moon angle) so that the sun is illuminating the Jovian moons from completely behind the spacecraft, in the same way a full moon is viewed from Earth. The colors have been enhanced to bring out subtle color variations of surface features. North is to the top of all the images which were taken by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft.

    Io, which is slightly larger than Earth's moon, is the most colorful of the Galilean satellites. Its surface is covered by deposits from actively erupting volcanoes, hundreds of lava flows, and volcanic vents which are visible as small dark spots. Several of these volcanoes are very hot; at least one reached a temperature of 2000 degrees Celsius (3600 degrees Fahrenheit) in the summer of 1997. Prometheus, a volcano located slightly right of center on Io's image, was active during the Voyager flybys in 1979 and is still active as Galileo images were obtained. This global view was obtained in September 1996 when Galileo was 485,000 kilometers from Io; the finest details that can be discerned are about 10 km across. The bright, yellowish and white materials located at equatorial latitudes are believed to be composed of sulfur and sulfur dioxide. The polar caps are darker and covered by a redder material.

    Europa has a very different surface from its

  10. Custom Sky-Image Mosaics from NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David

    2005-01-01

    yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user

  11. NPP Satellite Launch

    NASA Image and Video Library

    2011-10-28

    Dr. Kathy Sullivan, center, Deputy Administrator of the National Oceanic and Atmospheric Administration (NOAA) and former NASA astronaut is interviewed by a local television network at NOAA's Satellite Operations Facility in Suitland, Md. after the successful launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) on Friday, Oct. 28, 2011. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)

  12. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Astrophysics Data System (ADS)

    Moraguez, M.; Liou, J.; Fitz-Coy, N.; Patankar, K.; Cowardin, H.

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  13. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Technical Reports Server (NTRS)

    Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather

    2015-01-01

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  14. Internet-Based Laboratory Activities Designed for Studying the Sun with Satellites

    NASA Astrophysics Data System (ADS)

    Slater, T. F.

    1998-12-01

    Yohkoh Public Outreach Project (YPOP) is a collaborative industry, university, and K-16 project bringing fascinating and dynamic images of the Sun to the public in real-time. Partners have developed an extensive public access and educational WWW site containing more than 100 pages of vibrant images with current information that focuses on movies of the X-ray output of our Sun taken by the Yohkoh Satellite. More than 5 Gb of images and movies are available on the WWW site from the Yohkoh satellite, a joint project of the Institute for Space and Astronautical Sciences (ISAS) and NASA. Using a movie theater motif, the site was created by teams working at Lockheed Martin Advanced Technology Center, Palo Alto, CA in the Solar and Astrophysics Research Group, the Montana State University Solar Physics Research Group, and the Montana State University Conceptual Astronomy and Physics Education Research Group with funding from the NASA Learning Technology Project (LTP) program (NASA LTP SK30G4410R). The Yohkoh Movie Theater Internet Site is found at URL: http://www.lmsal.com/YPOP/ and mirrored at URL: http://solar.physics.montana.edu/YPOP/. In addition to being able to request automated movies for any dates in a 5 Gb on-line database, the user can view automatically updated daily images and movies of our Sun over the last 72 hours. Master science teachers working with the NASA funded Yohkoh Public Outreach Project have developed nine technology-based on-line lessons for K-16 classrooms. These interdisciplinary science, mathematics, and technology lessons integrate Internet resources, real-time images of the Sun, and extensive NASA image databases. Instructors are able to freely access each of the classroom-ready activities. The activities require students to use scientific inquiry skills and manage electronic information to solve problems consistent with the emphasis of the NRC National Science Education Standards.

  15. NASA ARIA Project Maps Deformation of Earth Surface from Nepal Quake

    NASA Image and Video Library

    2015-05-02

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the European Union's Copernicus Sentinel-1A satellite, operated by the European Space Agency and also available from the Alaska Satellite Facility (https://www.asf.alaska.edu), to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 12-day interval between two Sentinel-1 images acquired on April 17 and April 29, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 8 inches (20 centimeters) of surface motion. The contours show the land around Kathmandu has moved upward by more than 40 inches (1 meter). Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The background image is from Google Earth. The map contains Copernicus data (2015). http://photojournal.jpl.nasa.gov/catalog/PIA19535

  16. Laser Geodynamics Satellite (LAGEOS)

    NASA Image and Video Library

    2016-05-04

    This 1975 NASA video highlights the development of LAser GEOdynamics Satellite (LAGEOS I) developed at NASA's Marshall Space Flight Center in Huntsville, Alabama. LAGEOS I is a passive satellite constructed from brass and aluminum and contains 426 individual precision reflectors made from fused silica glass. The mirrored surface of the satellite was designed to reflect laser beams from ground stations for accurate ranging measurements. LAGEOS I was launched on May 4, 1976 from Vandenberg Air Force Base, California. The two-foot diameter, 900-pound satellite orbited the Earth from pole to pole, measuring the movements of the Earth's surface relative to earthquakes, continental drift, and other geophysical phenomena. Scientists at NASA's Marshall Space Flight Center in Huntsville, Alabama came up with the idea for the satellite and built it at the Marshall Center.

  17. GOES-13 Satellite Sees a "Giant Apostrophe" from Strong Eastern U.S. Low Pressure

    NASA Image and Video Library

    2017-12-08

    NASA image captured April 12, 2011 at 1731 UTC (1:31 p.m. EDT) A giant swirl of clouds that form an apostrophe-like shape over the eastern U.S. was spotted in visible imagery from the Geostationary Operational Environmental Satellite, GOES-13 on April 12, 2011 at 1731 UTC (1:31 p.m. EDT). The GOES-13 satellite monitors weather over the eastern continental U.S. and Atlantic Ocean, while GOES-11 monitors the western U.S. and the Eastern Pacific Ocean. GOES-13 captured this image of the clouds associated with a strong upper level low pressure area that is moving though the Tennessee River Valley and bringing moderate to heavy rainfall as it moves eastward. The low is forecast by the National Weather Service to bring unsettled conditions to the Mid-Atlantic and then to New England late Tuesday and Wednesday as it tracks northeast. Severe thunderstorms are possible today in extreme eastern Virginia and North Carolina as the cold front associated with the low pushes through that region. Meanwhile, rainfall from the low stretches from Massachusetts south to Florida today. It seems that New Englanders are having a tough time getting warm spring weather and this low won't help as it moves north. The low pressure area may even bring some light to moderate snowfall on the northern fringe of the storm. The GOES series of satellites keep an eye on the weather happening over the continental U.S. and eastern Pacific and Atlantic Oceans. NASA's GOES Project, located at NASA's Goddard Space Flight Center in Greenbelt, Md., procures and manages the development and launch of the GOES series of satellites for NOAA and creates images and animations. The GOES satellites are operated by NOAA. Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments

  18. NASA Captures Images of a Late Summer Flare

    NASA Image and Video Library

    2014-08-25

    On Aug. 24, 2014, the sun emitted a mid-level solar flare, peaking at 8:16 a.m. EDT. NASA's Solar Dynamics Observatory captured images of the flare, which erupted on the left side of the sun. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an M5 flare. M-class flares are ten times less powerful than the most intense flares, called X-class flares. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Proceedings of the Fourteenth NASA Propagation Experimenters Meeting (NAPEX 14) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1990-01-01

    The NASA Propagation Experimenters Meeting (NAPEX), supported by the NASA Propagation Program, is convened annually to discuss studies made on radio wave propagation by investigators from domestic and international organizations. NAPEX XIV was held on May 11, 1990, at the Balcones Research Centers, University of Texas, Austin, Texas. The meeting was organized into two technical sessions: Satellite (ACTS) and the Olympus Spacecraft, while the second focused on the fixed and mobile satellite propagation studies and experiments. Following NAPEX XIV, the ACTS Miniworkshop was held at the Hotel Driskill, Austin, Texas, on May 12, 1990, to review ACTS propagation activities since the First ACTS Propagation Studies Workshop was held in Santa Monica, California, on November 28 and 29, 1989.

  20. Informing future NRT satellite distribution capabilities: Lessons learned from NASA's Land Atmosphere NRT capability for EOS (LANCE)

    NASA Astrophysics Data System (ADS)

    Davies, D.; Murphy, K. J.; Michael, K.

    2013-12-01

    NASA's Land Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) provides data and imagery from Terra, Aqua and Aura satellites in less than 3 hours from satellite observation, to meet the needs of the near real-time (NRT) applications community. This article describes the architecture of the LANCE and outlines the modifications made to achieve the 3-hour latency requirement with a view to informing future NRT satellite distribution capabilities. It also describes how latency is determined. LANCE is a distributed system that builds on the existing EOS Data and Information System (EOSDIS) capabilities. To achieve the NRT latency requirement, many components of the EOS satellite operations, ground and science processing systems have been made more efficient without compromising the quality of science data processing. The EOS Data and Operations System (EDOS) processes the NRT stream with higher priority than the science data stream in order to minimize latency. In addition to expediting transfer times, the key difference between the NRT Level 0 products and those for standard science processing is the data used to determine the precise location and tilt of the satellite. Standard products use definitive geo-location (attitude and ephemeris) data provided daily, whereas NRT products use predicted geo-location provided by the instrument Global Positioning System (GPS) or approximation of navigational data (depending on platform). Level 0 data are processed in to higher-level products at designated Science Investigator-led Processing Systems (SIPS). The processes used by LANCE have been streamlined and adapted to work with datasets as soon as they are downlinked from satellites or transmitted from ground stations. Level 2 products that require ancillary data have modified production rules to relax the requirements for ancillary data so reducing processing times. Looking to the future, experience gained from LANCE can provide valuable lessons on

  1. Usability of NASA Satellite Imagery-Based Daily Solar Radiation for Crop Yield Simulation and Management Decisions

    NASA Astrophysics Data System (ADS)

    Yang, H.; Cassman, K. G.; Stackhouse, P. W.; Hoell, J. M.

    2007-12-01

    We tested the usability of NASA satellite imagery-based daily solar radiation for farm-specific crop yield simulation and management decisions using the Hybrid-Maize model (www.hybridmaize.unl.edu). Solar radiation is one of the key inputs for crop yield simulation. Farm-specific crop management decisions using simulation models require long-term (i.e., 20 years or longer) daily local weather data including solar radiation for assessing crop yield potential and its variation, optimizing crop planting date, and predicting crop yield in a real time mode. Weather stations that record daily solar radiation have sparse coverage and many of them have record shorter than 15 years. Based on satellite imagery and other remote sensed information, NASA has provided estimates of daily climatic data including solar radiation at a resolution of 1 degree grid over the earth surface from 1983 to 2005. NASA is currently continuing to update the database and has plans to provide near real-time data in the future. This database, which is free to the public at http://power.larc.nasa.gov, is a potential surrogate for ground- measured climatic data for farm-specific crop yield simulation and management decisions. In this report, we quantified (1) the similarities between NASA daily solar radiation and ground-measured data atr 20 US sites and four international sites, and (2) the accuracy and precision of simulated corn yield potential and its variability using NASA solar radiation coupled with other weather data from ground measurements. The 20 US sites are in the western Corn Belt, including Iowa, South Dakota, Nebraska, and Kansas. The four international sites are Los Banos in the Philippines, Beijing in China, Cali in Columbia, and Ibatan in Nigeria. Those sites were selected because of their high quality weather record and long duration (more than 20 years on average). We found that NASA solar radiation was highly significantly correlated (mean r2 =0.88**) with the ground

  2. NASA ARIA Project Provides New Look at Earth Surface Deformation from Nepal Quake

    NASA Image and Video Library

    2015-05-04

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 70-day interval between two ALOS-2 images, acquired February 21 and May 2, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 4.7 inches (11.9 centimeters) of surface motion. The contours show the land around Kathmandu has moved toward the satellite by up to 4.6 feet (1.4 meter), or 5.2 feet (1.6 meters) if we assume purely vertical motion. Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The PALSAR-2 data were provided by JAXA through the Committee on Earth Observation Satellite (CEOS) in support of the response effort. The background image is from Google Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19383

  3. Embedded Implementation of VHR Satellite Image Segmentation

    PubMed Central

    Li, Chao; Balla-Arabé, Souleymane; Ginhac, Dominique; Yang, Fan

    2016-01-01

    Processing and analysis of Very High Resolution (VHR) satellite images provide a mass of crucial information, which can be used for urban planning, security issues or environmental monitoring. However, they are computationally expensive and, thus, time consuming, while some of the applications, such as natural disaster monitoring and prevention, require high efficiency performance. Fortunately, parallel computing techniques and embedded systems have made great progress in recent years, and a series of massively parallel image processing devices, such as digital signal processors or Field Programmable Gate Arrays (FPGAs), have been made available to engineers at a very convenient price and demonstrate significant advantages in terms of running-cost, embeddability, power consumption flexibility, etc. In this work, we designed a texture region segmentation method for very high resolution satellite images by using the level set algorithm and the multi-kernel theory in a high-abstraction C environment and realize its register-transfer level implementation with the help of a new proposed high-level synthesis-based design flow. The evaluation experiments demonstrate that the proposed design can produce high quality image segmentation with a significant running-cost advantage. PMID:27240370

  4. Satellite Sees Holiday Lights Brighten Cities - United States

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Satellite Sees Holiday Lights Brighten Cities - United States

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Satellite Sees Holiday Lights Brighten Cities - Los Angeles

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. NASA Satellite Observations: A Unique Asset for the Study of the Environment and Implications for Public

    NASA Technical Reports Server (NTRS)

    Estes, Sue

    2010-01-01

    Health providers/researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. The field of geospatial health remains in its infancy, and this program will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential. NASA will discuss some of their Public Health Projects and also providing the audience with information on opportunities for future collaborations with NASA for future research.

  8. Improve EPA's AIRNow Air Quality Index Maps with NASA/NOAA Satellite Data

    NASA Astrophysics Data System (ADS)

    Pasch, A.; Zahn, P. H.; DeWinter, J. L.; Haderman, M. D.; White, J. E.; Dickerson, P.; Dye, T. S.; Martin, R. V.

    2011-12-01

    The U.S. Environmental Protection Agency's (EPA) AIRNow program provides maps of real-time hourly Air Quality Index (AQI) conditions and daily AQI forecasts nationwide (http://www.airnow.gov). The public uses these maps to make decisions concerning their respiratory health. The usefulness of the AIRNow air quality maps depends on the accuracy and spatial coverage of air quality measurements. Currently, the maps use only ground-based measurements, which have significant gaps in coverage in some parts of the United States. As a result, contoured AQI levels have high uncertainty in regions far from monitors. To improve the usefulness of air quality maps, scientists at EPA and Sonoma Technology, Inc. are working in collaboration with the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), and university researchers on a project to incorporate additional measurements into the maps via the AIRNow Satellite Data Processor (ASDP). These measurements include estimated surface PMNASA/NOAA satellite aerosol optical depth retrievals and surface PM2.5 concentration predictions from the Community Multi-scale Air Quality model. Once operational, the ASDP will be able to fuse multiple PM2.5 concentration data sets to generate AQI maps with improved spatial coverage. The goal of ASDP is to provide better AQI information in monitor-sparse locations and augment monitor-dense locations with more information. The methodology and evaluation of the data fusion will be presented, along with several case studies from fall 2009 through summer 2010.

  9. Benefit from NASA

    NASA Image and Video Library

    2001-09-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.

  10. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.

  11. NASA compendium of satellite communications programs

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A comprehensive review is given of worldwide satellite communication programs that range in time from the inception of satellite communications to mid-1974. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed. The background for understanding these results is established through brief summaries of the program organization, system configuration, and satellite and ground terminal characteristics. Major consideration is given to the communications system aspects of each program, but general spacecraft technology and other experiments conducted as part of the same program are mentioned summarily.

  12. NASA compendium of satellite communications programs

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A comprehensive review of worldwide satellite communication programs is reported that ranges in time from the inception of satellite communications to mid-1971. Particular emphasis is placed on program results, including experiments conducted, communications system operational performance, and technology employed.

  13. Utilizing a TDRS satellite for direct broadcast satellite-radio propagation experiments and demonstrations

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1993-01-01

    The NASA/VOA Direct Broadcast Satellite-Radio (DBS-R) Program will be using a NASA Tracking Data Relay Satellite (TDRS) satellite at 62 deg. West longitude to conduct live satellite S-band propagation experiments and demonstrations of satellite sound broadcasting over the next two years (1993-1994). The NASA/VOA DBS-R program has applied intensive effort to garner domestic and international support for the DBS-R concept. An S-band DBS-R allocation was achieved for Region 2 at WARC-92 held in Spain. With this allocation, the DBS-R program now needs to conduct S-band propagation experiments and systems demonstrations that will assist in the development of planning approaches for the use of Broadcast Satellite Service (Sound) frequency bands prior to the planning conference called for by WARC-92. These activities will also support receiver concept development applied to qualities ranging from AM to Monophonic FM, Stereophonic FM, Monophonic CD, and Stereophonic CD quality.

  14. An Approach for Stitching Satellite Images in a Bigdata Mapreduce Framework

    NASA Astrophysics Data System (ADS)

    Sarı, H.; Eken, S.; Sayar, A.

    2017-11-01

    In this study we present a two-step map/reduce framework to stitch satellite mosaic images. The proposed system enable recognition and extraction of objects whose parts falling in separate satellite mosaic images. However this is a time and resource consuming process. The major aim of the study is improving the performance of the image stitching processes by utilizing big data framework. To realize this, we first convert the images into bitmaps (first mapper) and then String formats in the forms of 255s and 0s (second mapper), and finally, find the best possible matching position of the images by a reduce function.

  15. Angry Indonesian Volcano Imaged by NASA Spacecraft

    NASA Image and Video Library

    2014-02-11

    This image acquired by NASA Terra spacecraft is of Mount Sinabung, a stratovolcano located in Indonesia. In late 2013, a lava dome formed on the summit. In early January 2014, the volcano erupted, and it erupted again in early February.

  16. Mississippi Company Using NASA Software Program to Provide Unique Imaging Service: DATASTAR Success Story

    NASA Technical Reports Server (NTRS)

    2001-01-01

    DATASTAR, Inc., of Picayune, Miss., has taken NASA's award-winning Earth Resources Laboratory Applications (ELAS) software program and evolved it to the point that the company is now providing a unique, spatial imagery service over the Internet. ELAS was developed in the early 80's to process satellite and airborne sensor imagery data of the Earth's surface into readable and useable information. While there are several software packages on the market that allow the manipulation of spatial data into useable products, this is usually a laborious task. The new program, called the DATASTAR Image Processing Exploitation, or DIPX, Delivery Service, is a subscription service available over the Internet that takes the work out of the equation and provides normalized geo-spatial data in the form of decision products.

  17. Aqua Satellite Orbiting Earth Artist Concept

    NASA Image and Video Library

    2002-05-08

    NASA Aqua satellite carries six state-of-the-art instruments in a near-polar low-Earth orbit. Aqua is seen in this artist concept orbiting Earth. The six instruments are the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU-A), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Each has unique characteristics and capabilities, and all six serve together to form a powerful package for Earth observations. http://photojournal.jpl.nasa.gov/catalog/PIA18156

  18. NASA Compendium of Satellite Communications Programs

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A comprehensive review is presented of worldwide communication programs that range in time from the inception of satellite communications to August 1971. The programs included are: Echo, Courier, West Ford, Telstar, Relay, Syncom, Lincoln experimental satellites, Intelsat, Tacsat, Skynet, Nato system, and Telesat.

  19. Lake Ice Detection in Low-Resolution Optical Satellite Images

    NASA Astrophysics Data System (ADS)

    Tom, M.; Kälin, U.; Sütterlin, M.; Baltsavias, E.; Schindler, K.

    2018-05-01

    Monitoring and analyzing the (decreasing) trends in lake freezing provides important information for climate research. Multi-temporal satellite images are a natural data source to survey ice on lakes. In this paper, we describe a method for lake ice monitoring, which uses low spatial resolution (250 m-1000 m) satellite images to determine whether a lake is frozen or not. We report results on four selected lakes in Switzerland: Sihl, Sils, Silvaplana and St. Moritz. These lakes have different properties regarding area, altitude, surrounding topography and freezing frequency, describing cases of medium to high difficulty. Digitized Open Street Map (OSM) lake outlines are back-projected on to the image space after generalization. As a pre-processing step, the absolute geolocation error of the lake outlines is corrected by matching the projected outlines to the images. We define the lake ice detection as a two-class (frozen, non-frozen) semantic segmentation problem. Several spectral channels of the multi-spectral satellite data are used, both reflective and emissive (thermal). Only the cloud-free (clean) pixels which lie completely inside the lake are analyzed. The most useful channels to solve the problem are selected with xgboost and visual analysis of histograms of reference data, while the classification is done with non-linear support vector machine (SVM). We show experimentally that this straight-forward approach works well with both MODIS and VIIRS satellite imagery. Moreover, we show that the algorithm produces consistent results when tested on data from multiple winters.

  20. AO corrected satellite imaging from Mount Stromlo

    NASA Astrophysics Data System (ADS)

    Bennet, F.; Rigaut, F.; Price, I.; Herrald, N.; Ritchie, I.; Smith, C.

    2016-07-01

    The Research School of Astronomy and Astrophysics have been developing adaptive optics systems for space situational awareness. As part of this program we have developed satellite imaging using compact adaptive optics systems for small (1-2 m) telescopes such as those operated by Electro Optic Systems (EOS) from the Mount Stromlo Observatory. We have focused on making compact, simple, and high performance AO systems using modern high stroke high speed deformable mirrors and EMCCD cameras. We are able to track satellites down to magnitude 10 with a Strehl in excess of 20% in median seeing.

  1. Satellite Ocean Biology: Past, Present, Future

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.

    2012-01-01

    Since 1978 when the first satellite ocean color proof-of-concept sensor, the Nimbus-7 Coastal Zone Color Scanner, was launched, much progress has been made in refining the basic measurement concept and expanding the research applications of global satellite time series of biological and optical properties such as chlorophyll-a concentrations. The seminar will review the fundamentals of satellite ocean color measurements (sensor design considerations, on-orbit calibration, atmospheric corrections, and bio-optical algorithms), scientific results from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate resolution Imaging Spectroradiometer (MODIS) missions, and the goals of future NASA missions such as PACE, the Aerosol, Cloud, Ecology (ACE), and Geostationary Coastal and Air Pollution Events (GeoCAPE) missions.

  2. Tenth Anniversary Image from Camera on NASA Mars Orbiter

    NASA Image and Video Library

    2012-02-29

    NASA Mars Odyssey spacecraft captured this image on Feb. 19, 2012, 10 years to the day after the camera recorded its first view of Mars. This image covers an area in the Nepenthes Mensae region north of the Martian equator.

  3. NASA Ground-Truthing Capabilities Demonstrated

    NASA Technical Reports Server (NTRS)

    Lopez, Isaac; Seibert, Marc A.

    2004-01-01

    NASA Research and Education Network (NREN) ground truthing is a method of verifying the scientific validity of satellite images and clarifying irregularities in the imagery. Ground-truthed imagery can be used to locate geological compositions of interest for a given area. On Mars, astronaut scientists could ground truth satellite imagery from the planet surface and then pinpoint optimum areas to explore. These astronauts would be able to ground truth imagery, get results back, and use the results during extravehicular activity without returning to Earth to process the data from the mission. NASA's first ground-truthing experiment, performed on June 25 in the Utah desert, demonstrated the ability to extend powerful computing resources to remote locations. Designed by Dr. Richard Beck of the Department of Geography at the University of Cincinnati, who is serving as the lead field scientist, and assisted by Dr. Robert Vincent of Bowling Green State University, the demonstration also involved researchers from the NASA Glenn Research Center and the NASA Ames Research Center, who worked with the university field scientists to design, perform, and analyze results of the experiment. As shown real-time Hyperion satellite imagery (data) is sent to a mass storage facility, while scientists at a remote (Utah) site upload ground spectra (data) to a second mass storage facility. The grid pulls data from both mass storage facilities and performs up to 64 simultaneous band ratio conversions on the data. Moments later, the results from the grid are accessed by local scientists and sent directly to the remote science team. The results are used by the remote science team to locate and explore new critical compositions of interest. The process can be repeated as required to continue to validate the data set or to converge on alternate geophysical areas of interest.

  4. Verification technology of remote sensing camera satellite imaging simulation based on ray tracing

    NASA Astrophysics Data System (ADS)

    Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun

    2017-08-01

    Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.

  5. Earthshots: Satellite images of environmental change – Chernobyl, Ukraine

    USGS Publications Warehouse

    ,

    2013-01-01

    The Landsat 5 image from April 29, 1986, was the first satellite image of the accident. The data from Landsat were used to help confirm that an explosion had happened at Chernobyl and that the plant had been shut down.

  6. Flood Identification from Satellite Images Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Chang, L.; Kao, I.; Shih, K.

    2011-12-01

    Typhoons and storms hit Taiwan several times every year and they cause serious flood disasters. Because the rivers are short and steep, and their flows are relatively fast with floods lasting only few hours and usually less than one day. Flood identification can provide the flood disaster and extent information to disaster assistance and recovery centers. Due to the factors of the weather, it is not suitable for aircraft or traditional multispectral satellite; hence, the most appropriate way for investigating flooding extent is to use Synthetic Aperture Radar (SAR) satellite. In this study, back-propagation neural network (BPNN) model and multivariate linear regression (MLR) model are built to identify the flooding extent from SAR satellite images. The input variables of the BPNN model are Radar Cross Section (RCS) value and mean of the pixel, standard deviation, minimum and maximum of RCS values among its adjacent 3×3 pixels. The MLR model uses two images of the non-flooding and flooding periods, and The inputs are the difference between the RCS values of two images and the variances among its adjacent 3×3 pixels. The results show that the BPNN model can perform much better than the MLR model. The correct percentages are more than 80% and 73% in training and testing data, respectively. Many misidentified areas are very fragmented and unrelated. In order to reinforce the correct percentage, morphological image analysis is used to modify the outputs of these identification models. Through morphological operations, most of the small, fragmented and misidentified areas can be correctly assigned to flooding or non-flooding areas. The final results show that the flood identification of satellite images has been improved a lot and the correct percentages increases up to more than 90%.

  7. An Overview of the NASA Spring/Summer 2008 Arctic Campaign - ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites)

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Clarke, Antony; Crawford, James H.; Dibbs, Jack; Ferrare, Richard A.; Hostetler, Chris A.; Maring, Hal; Russell, Philip B.; Singh, Hanwant B.

    2008-01-01

    ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) is a major NASA led airborne field campaign being performed in the spring and summer of 2008 at high latitudes (http://cloud1.arc.nasa.gov/arctas/). ARCTAS is a part of the International Polar Year program and its activities are closely coordinated with multiple U. S. (NOAA, DOE), Canadian, and European partners. Observational data from an ensemble of aircraft, surface, and satellite sensors are closely integrated with models of atmospheric chemistry and transport in this experiment. Principal NASA airborne platforms include a DC-8 for detailed atmospheric composition studies, a P-3 that focuses on aerosols and radiation, and a B-200 that is dedicated to remote sensing of aerosols. Satellite validation is a central activity in all these platforms and is mainly focused on CALIPSO, Aura, and Aqua satellites. Major ARCTAS themes are: (1) Long-range transport of pollution to the Arctic including arctic haze, tropospheric ozone, and persistent pollutants such as mercury; (2) Boreal forest fires and their implications for atmospheric composition and climate; (3) Aerosol radiative forcing from arctic haze, boreal fires, surface-deposited black carbon, and other perturbations; and (4) Chemical processes with focus on ozone, aerosols, mercury, and halogens. The spring deployment (April) is presently underway and is targeting plumes of anthropogenic and biomass burning pollution and dust from Asia and North America, arctic haze, stratosphere-troposphere exchange, and ozone photochemistry involving HOx and halogen radicals. The summer deployment (July) will target boreal forest fires and summertime photochemistry. The ARCTAS mission is providing a critical link to enhance the value of NASA satellite observations for Earth science. In this talk we will discuss the implementation of this campaign and some preliminary results.

  8. Ice Sheet Change Detection by Satellite Image Differencing

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Scambos, Ted A.; Choi, Hyeungu; Haran, Terry M.

    2010-01-01

    Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM(plus) sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes.

  9. Optimized satellite image compression and reconstruction via evolution strategies

    NASA Astrophysics Data System (ADS)

    Babb, Brendan; Moore, Frank; Peterson, Michael

    2009-05-01

    This paper describes the automatic discovery, via an Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), of vectors of real-valued coefficients representing matched forward and inverse transforms that outperform the 9/7 Cohen-Daubechies-Feauveau (CDF) discrete wavelet transform (DWT) for satellite image compression and reconstruction under conditions subject to quantization error. The best transform evolved during this study reduces the mean squared error (MSE) present in reconstructed satellite images by an average of 33.78% (1.79 dB), while maintaining the average information entropy (IE) of compressed images at 99.57% in comparison to the wavelet. In addition, this evolved transform achieves 49.88% (3.00 dB) average MSE reduction when tested on 80 images from the FBI fingerprint test set, and 42.35% (2.39 dB) average MSE reduction when tested on a set of 18 digital photographs, while achieving average IE of 104.36% and 100.08%, respectively. These results indicate that our evolved transform greatly improves the quality of reconstructed images without substantial loss of compression capability over a broad range of image classes.

  10. NASA Satellite Imagery Shows Sparse Population of Region Near Baja, California Earthquake

    NASA Image and Video Library

    2010-04-09

    This image from NASA Terra spacecraft shows where a magnitude 7.2 earthquake struck in Mexico Baja, California at shallow depth along the principal plate boundary between the North American and Pacific plates on April 4, 2010.

  11. America National Parks Viewed in 3D by NASA MISR Anaglyph 3

    NASA Image and Video Library

    2016-08-25

    Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite is releasing four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. Shown in the annotated image are Lewis and Clark National Historic Park, Mt. Rainier National Park, Olympic National Park, Ebey's Landing National Historical Reserve, San Juan Island National Historic Park, North Cascades National Park, Lake Chelan National Recreation Area, and Ross Lake National Recreation Area (also Mt. St. Helens National Volcanic Monument, administered by the U.S. Forest Service) MISR views Earth with nine cameras pointed at different angles, giving it the unique capability to produce anaglyphs, stereoscopic images that allow the viewer to experience the landscape in three dimensions. The anaglyphs were made by combining data from MISR's vertical-viewing and 46-degree forward-pointing camera. You will need red-blue glasses in order to experience the 3D effect; ensure you place the red lens over your left eye. The images have been rotated so that north is to the left in order to enable 3D viewing because the Terra satellite flies from north to south. All of the images are 235 miles (378 kilometers) from west to east. These data were acquired May 12, 2012, Orbit 65960. http://photojournal.jpl.nasa.gov/catalog/PIA20891

  12. America National Parks Viewed in 3D by NASA MISR Anaglyph 1

    NASA Image and Video Library

    2016-08-25

    Just in time for the U.S. National Park Service's Centennial celebration on Aug. 25, NASA's Multiangle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite is releasing four new anaglyphs that showcase 33 of our nation's national parks, monuments, historical sites and recreation areas in glorious 3D. Shown in the annotated image are Walnut Canyon National Monument, Sunset Crater Volcano National Monument, Wupatki National Monument, Grand Canyon National Park, Pipe Spring National Monument, Zion National Park, Cedar Breaks National Monument, Bryce Canyon National Park, Capitol Reef National Park, Navajo National Monument, Glen Canyon National Recreation Area, Natural Bridges National Monument, Canyonlands National Park, and Arches National Park. MISR views Earth with nine cameras pointed at different angles, giving it the unique capability to produce anaglyphs, stereoscopic images that allow the viewer to experience the landscape in three dimensions. The anaglyphs were made by combining data from MISR's vertical-viewing and 46-degree forward-pointing camera. You will need red-blue glasses in order to experience the 3D effect; ensure you place the red lens over your left eye. The images have been rotated so that north is to the left in order to enable 3D viewing because the Terra satellite flies from north to south. All of the images are 235 miles (378 kilometers) from west to east. These data were acquired June 18, 2016, Orbit 87774. http://photojournal.jpl.nasa.gov/catalog/PIA20889

  13. NASA Tech Helps Better Understand Our Home Planet

    NASA Image and Video Library

    2018-04-20

    NASA’s Earth observations are critical for understanding our home planet and how it is changing. For Earth Day NASA is spotlighting some of the agency’s work with the latest technologies that have the potential to transform how we see our Blue Marble. Join us as we speak with NASA Ames scientist Ved Chirayath, who has developed cameras that can image marine environments below the ocean’s surface; Shayna Skolnik, founder and CEO of Navteca, a company that’s working to bring NASA Earth data to life through virtual reality; and Brian Campbell, senior education and outreach specialist for ICESat-2 satellite, which is set to launch this fall to measure polar ice and other important Earth features.

  14. Estimating Advective Near-surface Currents from Ocean Color Satellite Images

    DTIC Science & Technology

    2015-01-01

    of surface current information. The present study uses the sequential ocean color products provided by the Geostationary Ocean Color Imager (GOCI) and...on the SuomiNational Polar-Orbiting Partner- ship (S-NPP) satellite. The GOCI is the world’s first geostationary orbit satellite sensor over the...used to extract the near-surface currents by the MCC algorithm. We not only demonstrate the retrieval of currents from the geostationary satellite ocean

  15. Satellite Sees Holiday Lights Brighten Cities - Texas and Louisiana

    NASA Image and Video Library

    2017-12-08

    City lights shine brighter during the holidays in the United States when compared with the rest of the year, as shown using a new analysis of daily data from the NASA-NOAA Suomi NPP satellite. Dark green pixels are areas where lights are 50 percent brighter, or more, during December. Because snow reflects so much light, the researchers could only analyze snow-free cities. They focused on the U.S. West Coast from San Francisco and Los Angeles, and cities south of a rough imaginary line from St. Louis to Washington, D.C. Credit: Jesse Allen, NASA’s Earth Observatory Read more: www.nasa.gov/content/goddard/satellite-sees-holiday-light....NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Family Portrait of Jupiter's Great Red Spot and the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This 'family portrait,' a composite of the Jovian system, includes the edge of Jupiter with its Great Red Spot, and Jupiter's four largest moons, known as the Galilean satellites. From top to bottom, the moons shown are Io, Europa, Ganymede and Callisto.

    The Great Red Spot, a storm in Jupiter's atmosphere, is at least 300 years old. Winds blow counterclockwise around the Great Red Spot at about 400 kilometers per hour (250 miles per hour). The storm is larger than one Earth diameter from north to south, and more than two Earth diameters from east to west. In this oblique view, the Great Red Spot appears longer in the north-south direction.

    Europa, the smallest of the four moons, is about the size of Earth's moon, while Ganymede is the largest moon in the solar system. North is at the top of this composite picture in which the massive planet and its largest satellites have all been scaled to a common factor of 15 kilometers (9 miles) per picture element.

    The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft obtained the Jupiter, Io and Ganymede images in June 1996, while the Europa images were obtained in September 1996. Because Galileo focuses on high resolution imaging of regional areas on Callisto rather than global coverage, the portrait of Callisto is from the 1979 flyby of NASA's Voyager spacecraft.

    Launched in October 1989, the spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at: http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at: http:/ /www.jpl.nasa.gov/galileo/sepo.

  17. Satellite View of the Americas on Earth Day

    NASA Image and Video Library

    2014-04-22

    Today, April 22, 2014 is Earth Day, and what better way to celebrate than taking a look at our home planet from space. NOAA's GOES-East satellite captured this stunning view of the Americas on Earth Day, April 22, 2014 at 11:45 UTC/7:45 a.m. EDT. The data from GOES-East was made into an image by the NASA/NOAA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. In North America, clouds associated with a cold front stretch from Montreal, Canada, south through the Tennessee Valley, and southwest to southern Texas bringing rain east of the front today. A low pressure area in the Pacific Northwest is expected to bring rainfall in Oregon, Washington, Idaho, stretching into the upper Midwest, according to NOAA's National Weather Service. That low is also expected to bring precipitation north into the provinces of British Columbia and Alberta, Canada. Another Pacific low is moving over southern Nevada and the National Weather Service expects rain from that system to fall in central California, Nevada, and northern Utah. Near the equator, GOES imagery shows a line of pop up thunderstorms. Those thunderstorms are associated with the Intertropical Convergence Zone (ITCZ). The ITCZ encircles the Earth near the equator. In South America, convective (rapidly rising air that condenses and forms clouds) thunderstorms pepper Colombia, Venezuela, Ecuador, Peru, Bolivia, Paraguay and northwestern and southeastern Brazil. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For more information about GOES satellites, visit: www.goes.noaa.gov/ or

  18. MISR Browse Images: Cold Land Processes Experiment (CLPX)

    Atmospheric Science Data Center

    2013-04-02

    ... MISR Browse Images: Cold Land Processes Experiment (CLPX) These MISR Browse images provide a ... over the region observed during the NASA Cold Land Processes Experiment (CLPX). CLPX involved ground, airborne, and satellite measurements ...

  19. NASA Image Shows a Slightly Stronger Emily

    NASA Image and Video Library

    2011-08-02

    NASA Aqua spacecraft continues to track the gradual organization of Tropical Storm Emily, as seen in this image taken Aug. 2, 2011 at 1:05 p.m. EDT. At that time, the storm was located about 270 miles southeast of San Juan, Puerto Rico.

  20. NASA Terra Spacecraft Images Russian Volcanic Eruption

    NASA Image and Video Library

    2013-01-16

    Plosky Tolbachik volcano in Russia far eastern Kamchatka peninsula erupted on Nov. 27, 2012, for the first time in 35 years, sending clouds of ash to the height of more than 9,800 feet 3,000 meters in this image from NASA Terra spacecraft.

  1. President Park Geun-hye of South Korea Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    President Park Geun-hye of South Korea and Center Director Christopher Scolese are greeted by Frank Cepollina, Associate Director of the Satellite Servicing Capabilities Office, and Benjamin Reed, Deputy Project Manager of the Satellite Servicing Capabilities Office. As part of her visit to the United States, President Park Geun-hye of South Korea visited NASA’s Goddard Space Flight Center in Greenbelt, Md. On Oct. 14, 2015. The visit offered an opportunity to celebrate past collaborative efforts between the American and South Korean space programs along with presentations on current projects and programs underway at Goddard. Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Direct Broadcast Satellite: Radio Program

    NASA Astrophysics Data System (ADS)

    Hollansworth, James E.

    1992-10-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  3. Short-Term Prediction Research and Transition (SPoRT) Center: Transitioning Satellite Data to Operations

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.

  4. NPP Satellite Launch

    NASA Image and Video Library

    2011-10-28

    The Satellite Operations Facility of the National Oceanic and Atmospheric Administration (NOAA) is seen here minutes before the launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) on Friday, Oct. 28, 2011 in Suitland, Md. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)

  5. Benefit from NASA

    NASA Image and Video Library

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.

  6. NASA Operational Simulator for Small Satellites: Tools for Software Based Validation and Verification of Small Satellites

    NASA Technical Reports Server (NTRS)

    Grubb, Matt

    2016-01-01

    The NASA Operational Simulator for Small Satellites (NOS3) is a suite of tools to aid in areas such as software development, integration test (IT), mission operations training, verification and validation (VV), and software systems check-out. NOS3 provides a software development environment, a multi-target build system, an operator interface-ground station, dynamics and environment simulations, and software-based hardware models. NOS3 enables the development of flight software (FSW) early in the project life cycle, when access to hardware is typically not available. For small satellites there are extensive lead times on many of the commercial-off-the-shelf (COTS) components as well as limited funding for engineering test units (ETU). Considering the difficulty of providing a hardware test-bed to each developer tester, hardware models are modeled based upon characteristic data or manufacturers data sheets for each individual component. The fidelity of each hardware models is such that FSW executes unaware that physical hardware is not present. This allows binaries to be compiled for both the simulation environment, and the flight computer, without changing the FSW source code. For hardware models that provide data dependent on the environment, such as a GPS receiver or magnetometer, an open-source tool from NASA GSFC (42 Spacecraft Simulation) is used to provide the necessary data. The underlying infrastructure used to transfer messages between FSW and the hardware models can also be used to monitor, intercept, and inject messages, which has proven to be beneficial for VV of larger missions such as James Webb Space Telescope (JWST). As hardware is procured, drivers can be added to the environment to enable hardware-in-the-loop (HWIL) testing. When strict time synchronization is not vital, any number of combinations of hardware components and software-based models can be tested. The open-source operator interface used in NOS3 is COSMOS from Ball Aerospace. For

  7. MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Al-Hamdan, M.; Crosson, W.; Limaye, A.; McCracken, J.; Meyer, P.; Richeson, J.; Sims, W.; Srinivasan, K.; Varnevas, K.

    2010-01-01

    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo.

  8. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively

  9. From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 4)

    NASA Image and Video Library

    2017-04-20

    Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes

  10. From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 2)

    NASA Image and Video Library

    2017-04-03

    Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes

  11. From the Ground Up: Building an Earth Science Satellite (HyspIRI Hawaii, Part 3)

    NASA Image and Video Library

    2017-04-12

    Flying high aboard NASA’s ER-2, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) uses over 224 sensors to identify, measure, and monitor natural features of the Earth's surface and atmosphere based on reflective light from the sun. The instrument was recently used for the Hyperspectral InfraRed Imager (HyspIRI) airborne preparatory mission, which focused on observing coral reef health and volcano emissions and eruptions around the Hawaiian Islands. Data from this mission will help develop a NASA satellite to study natural hazards and ecosystems. The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) instrument is developed and managed by NASA's Jet Propulsion Laboratory, Pasadena, California. NASA’s ER-2 aircraft is managed and based at NASA’s Armstrong Flight Research Center, Building 703 in Palmdale, California. Read more about the HyspIRI Hawaii mission here: https://www.nasa.gov/feature/jpl/nasa-tests-observing-capability-on-hawaiis-coral-reefs https://www.nasa.gov/feature/jpl/nasa-led-campaign-studies-hawaii-s-iconic-volcanoes

  12. Mission planning optimization of video satellite for ground multi-object staring imaging

    NASA Astrophysics Data System (ADS)

    Cui, Kaikai; Xiang, Junhua; Zhang, Yulin

    2018-03-01

    This study investigates the emergency scheduling problem of ground multi-object staring imaging for a single video satellite. In the proposed mission scenario, the ground objects require a specified duration of staring imaging by the video satellite. The planning horizon is not long, i.e., it is usually shorter than one orbit period. A binary decision variable and the imaging order are used as the design variables, and the total observation revenue combined with the influence of the total attitude maneuvering time is regarded as the optimization objective. Based on the constraints of the observation time windows, satellite attitude adjustment time, and satellite maneuverability, a constraint satisfaction mission planning model is established for ground object staring imaging by a single video satellite. Further, a modified ant colony optimization algorithm with tabu lists (Tabu-ACO) is designed to solve this problem. The proposed algorithm can fully exploit the intelligence and local search ability of ACO. Based on full consideration of the mission characteristics, the design of the tabu lists can reduce the search range of ACO and improve the algorithm efficiency significantly. The simulation results show that the proposed algorithm outperforms the conventional algorithm in terms of optimization performance, and it can obtain satisfactory scheduling results for the mission planning problem.

  13. Landsat: a global land imaging program

    USGS Publications Warehouse

    Byrnes, Raymond A.

    2012-01-01

    Landsat satellites have continuously acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs across four decades. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space. In practice, NASA develops remote-sensing instruments and spacecraft, launches satellites, and validates their performance. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground-data reception, archiving, product generation, and distribution. The result of this program is a visible, long-term record of natural and human-induced changes on the global landscape.

  14. Direct Geolocation of Satellite Images with the EO-CFI Libraries

    NASA Astrophysics Data System (ADS)

    de Miguel, Eduardo; Prado, Elena; Estebanez, Monica; Martin, Ana I.; Gonzalez, Malena

    2016-08-01

    The INTA Remote Sensing Laboratory has implemented a tool for the direct geolocation of satellite images. The core of the tool is a C code based on the "Earth Observation Mission CFI SW" from ESA. The tool accepts different types of inputs for satellite attitude (euler angles, quaternions, default attitude models). Satellite position can be provided either in ECEF or ECI coordinates. The line of sight of each individual detector is imported from an external file or is generated by the tool from camera parameters. Global DEM ACE2 is used to define ground intersection of the LOS.The tool has been already tailored for georeferencing images from the forthcoming Spanish Earth Observation mission SEOSat/Ingenio, and for the camera APIS onboard the INTA cubesat OPTOS. The next step is to configure it for the geolocation of Sentinel 2 L1b images.The tool has been internally validated by different means. This validation shows that the tool is suitable for georeferencing images from high spatial resolution missions. As part of the validation efforts, a code for simulating orbital info for LEO missions using EO-CFI has been produced.

  15. Some Defence Applications of Civilian Remote Sensing Satellite Images

    DTIC Science & Technology

    1993-11-01

    This report is on a pilot study to demonstrate some of the capabilities of remote sensing in intelligence gathering. A wide variety of issues, both...colour images. The procedure will be presented in a companion report. Remote sensing , Satellite imagery, Image analysis, Military applications, Military intelligence.

  16. NASA-Produced Map Shows Extent of Southern California Wildfire Damage

    NASA Image and Video Library

    2017-12-14

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory in Pasadena, California, and Caltech, also in Pasadena, created a Damage Proxy Map (DPM) depicting areas in Southern California that are likely damaged (shown by red and yellow pixels) as a result of recent wildfires, including the Thomas Fire in Ventura and Santa Barbara Counties, highlighted in the attached image taken from the DPM. The map is derived from synthetic aperture radar (SAR) images from the Copernicus Sentinel-1 satellites, operated by the European Space Agency (ESA). The images were taken before (Nov. 28, 2017, 6 a.m. PST) and after (Dec. 10, 2017, 6 a.m. PST) the onset of the fires. The map covers an area of 107 by 107 miles (172 by 172 kilometers), shown by the large red polygon. Each pixel measures about 33 yards (30 meters) across. The color variation from yellow to red indicates increasingly more significant ground surface change. Preliminary validation was done by comparing the map to optical satellite imagery from DigitalGlobe. This damage proxy map should be used as guidance to identify damaged areas, and may be less reliable over vegetated areas. For example, the colored pixels seen over mountainous areas may seem a little scattered even though the reality could be that the contiguous areas were burned. Patches of farmland can also appear as signals due to plowing or irrigation. The full map is available to download from https://aria-share.jpl.nasa.gov/events/20171210-SoCal_Fire/. https://photojournal.jpl.nasa.gov/catalog/PIA22191

  17. Ariane: NASA's European rival

    NASA Astrophysics Data System (ADS)

    The successful test launch of two three-quarter ton satellites in the European Space Agency's (ESA) Ariane rocket last June firmly placed ESA in competition with NASA for the lucrative and growing satellite launching market. Under the auspices of the private (but largely French-government financed) Arianespace company, ESA is already attracting customers to its three-stage rocket by offering low costs.According to recent reports [Nature, 292, pp. 785 and 788, 1981], Arianespace has been able to win several U.S. customers away from NASA, including Southern Pacific Communications, Western Union, RCA, Satellite Television Corporation, and GTE. Nature [292, 1981] magazine in an article entitled ‘More Trouble for the Hapless Shuttle’ suggests that it will be possible for Ariane to charge lower prices for a launch than NASA, even with the space shuttle.

  18. Echo 30" Sub Satellite

    NASA Image and Video Library

    2012-09-07

    James Hansen describes the work on Project Echo s air density experiment known as the Sub-Satellite. Before launch engineers subjected the sub-satellite to many tests. Here, the sub-satellite is shown prior to tests to determine the capacity of the 30-inch Sub-Satellite to withstand the high temperature of direct sunlight in space, Langley researchers subjected it to 450 F heat test. Results indicated that the aluminum-covered Mylar plastic would effectively reflect the dangerous heat. -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, p. 168.

  19. Satellite instrument provides nighttime sensing capability

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  20. Estimating GATE rainfall with geosynchronous satellite images

    NASA Technical Reports Server (NTRS)

    Stout, J. E.; Martin, D. W.; Sikdar, D. N.

    1979-01-01

    A method of estimating GATE rainfall from either visible or infrared images of geosynchronous satellites is described. Rain is estimated from cumulonimbus cloud area by the equation R = a sub 0 A + a sub 1 dA/dt, where R is volumetric rainfall, A cloud area, t time, and a sub 0 and a sub 1 are constants. Rainfall, calculated from 5.3 cm ship radar, and cloud area are measured from clouds in the tropical North Atlantic. The constants a sub 0 and a sub 1 are fit to these measurements by the least-squares method. Hourly estimates by the infrared version of this technique correlate well (correlation coefficient of 0.84) with rain totals derived from composited radar for an area of 100,000 sq km. The accuracy of this method is described and compared to that of another technique using geosynchronous satellite images. It is concluded that this technique provides useful estimates of tropical oceanic rainfall on a convective scale.

  1. The application of support vector machines to analysis of global satellite data sets from MlSR

    NASA Technical Reports Server (NTRS)

    Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Diner, David J.

    2005-01-01

    The Multi-angle Imaging Spectro Radiometer (MISR) is one of a suite of five instruments onboard NASA's Terra EOS satellite, launched in December 1999. Typical satellite imagers view the earth from a single direction, but MISR's cameras image the earth simultaneously from nine different directions in four spectral bands. In this way, MISR provides unique multiangle information about solar radiation scattered from clouds, aerosols and other terrestrial surfaces. One of the primary goals of the MISR mission is to improve our understanding of how clouds and aerosols affect the earth's global energy balance.

  2. Full Disk Image of the Sun, March 26, 2007 Anaglyph

    NASA Image and Video Library

    2007-04-27

    NASA Solar TErrestrial RElations Observatory STEREO satellites have provided the first three-dimensional images of the Sun. The structure of the corona shows well in this image. 3D glasses are necessary to view this image.

  3. A Satellite View of a Back-door Cold Front

    NASA Image and Video Library

    2014-05-29

    A "backdoor cold front" is bringing April temperatures to the U.S. northeast and Mid-Atlantic today, May 29. The backdoor cold front brings relief to the Mid-Atlantic after temperatures in Washington, D.C. hit 92F on Tuesday, May 27 and 88F on Wednesday, May 28 at Reagan National Airport, according to the National Weather Service (NWS). NWS forecasters expect the high temperature for May 29 to only reach 60F in the District of Columbia. NOAA's GOES-East satellite captured a view of the clouds associated with the backdoor cold front that stretch from southern Illinois to North Carolina. The National Weather Service forecast expects the backdoor cold front to bring showers to the Midwest, Northeast, and Mid-Atlantic today, May 29. According to the National Oceanic and Atmospheric Administration, a backdoor cold front is a cold front moving south or southwest along the Atlantic seaboard and Great Lakes; these are especially common during the spring months. This visible image was taken by NOAA's GOES-East satellite on May 29 at 12:30 UTC (8:30 a.m. EDT). The image was created at NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland. In addition to the backdoor cold front clouds, the GOES-East image shows clouds circling around a low pressure area located in eastern Texas. That low pressure area is expected to bring rain from Texas eastward over the southeastern U.S. According to NOAA's National Weather Service, the slow-moving low pressure area in the Deep South "will bring heavy showers and thunderstorms from Louisiana to Alabama through Thursday. This area is already saturated from previous rainfall, so flash flooding will be possible." Image: NASA/NOAA GOES Project Caption: NASA Goddard/Rob Gutro

  4. NASA Captures First Color Image of Mercury from Orbit

    NASA Image and Video Library

    2011-03-30

    NASA image acquired: March 29, 2011 The first image acquired by MESSENGER from orbit around Mercury was actually part of an eight-image sequence, for which images were acquired through eight of the WAC’s eleven filters. Here we see a color version of that first imaged terrain; in this view the images obtained through the filters with central wavelengths of 1000 nm, 750 nm, and 430 nm are displayed in red, green, and blue, respectively. One of MESSENGER’s measurement objectives is to create an eight-color global base map at a resolution of 1 km/pixel (0.6 miles/pixel) to help understand the variations of composition across Mercury’s surface. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft ever to orbit the planet Mercury. The mission is currently in its commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  5. Geologic information from satellite images

    NASA Technical Reports Server (NTRS)

    Lee, K.; Knepper, D. H.; Sawatzky, D. L.

    1974-01-01

    Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photo-interpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familiar shapes and patterns. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration.

  6. NASA's Swift Mission Observes Mega Flares from a Mini Star

    NASA Image and Video Library

    2017-12-08

    Caption: DG CVn, a binary consisting of two red dwarf stars shown here in an artist's rendering, unleashed a series of powerful flares seen by NASA's Swift. At its peak, the initial flare was brighter in X-rays than the combined light from both stars at all wavelengths under typical conditions. Image Credit: NASA's Goddard Space Flight Center/S. Wiessinger ----- On April 23, NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star. The initial blast from this record-setting series of explosions was as much as 10,000 times more powerful than the largest solar flare ever recorded. Read more: 1.usa.gov/1poKiJ5 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Images of war: using satellite images for human rights monitoring in Turkish Kurdistan.

    PubMed

    de Vos, Hugo; Jongerden, Joost; van Etten, Jacob

    2008-09-01

    In areas of war and armed conflict it is difficult to get trustworthy and coherent information. Civil society and human rights groups often face problems of dealing with fragmented witness reports, disinformation of war propaganda, and difficult direct access to these areas. Turkish Kurdistan was used as a case study of armed conflict to evaluate the potential use of satellite images for verification of witness reports collected by human rights groups. The Turkish army was reported to be burning forests, fields and villages as a strategy in the conflict against guerrilla uprising. This paper concludes that satellite images are useful to validate witness reports of forest fires. Even though the use of this technology for human rights groups will depend on some feasibility factors such as prices, access and expertise, the images proved to be key for analysis of spatial aspects of conflict and valuable for reconstructing a more trustworthy picture.

  8. NASA Launches Five Rockets in Five Minutes

    NASA Image and Video Library

    2017-12-08

    NASA image captured March 27, 2012 NASA successfully launched five suborbital sounding rockets this morning from its Wallops Flight Facility in Virginia as part of a study of the upper level jet stream. The first rocket was launched at 4:58 a.m. EDT and each subsequent rocket was launched 80 seconds apart. Each rocket released a chemical tracer that created milky, white clouds at the edge of space. Tracking the way the clouds move can help scientists understand the movement of the winds some 65 miles up in the sky, which in turn will help create better models of the electromagnetic regions of space that can damage man-made satellites and disrupt communications systems. The launches and clouds were reported to be seen from as far south as Wilmington, N.C.; west to Charlestown, W. Va.; and north to Buffalo, N.Y. Credit: NASA/Wallops To watch a video of the launch and to read more go to: www.nasa.gov/mission_pages/sunearth/missions/atrex-launch... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. NASA Launches Five Rockets in Five Minutes

    NASA Image and Video Library

    2012-03-27

    NASA image captured March 27, 2012 NASA successfully launched five suborbital sounding rockets this morning from its Wallops Flight Facility in Virginia as part of a study of the upper level jet stream. The first rocket was launched at 4:58 a.m. EDT and each subsequent rocket was launched 80 seconds apart. Each rocket released a chemical tracer that created milky, white clouds at the edge of space. Tracking the way the clouds move can help scientists understand the movement of the winds some 65 miles up in the sky, which in turn will help create better models of the electromagnetic regions of space that can damage man-made satellites and disrupt communications systems. The launches and clouds were reported to be seen from as far south as Wilmington, N.C.; west to Charlestown, W. Va.; and north to Buffalo, N.Y. Credit: NASA/Wallops To watch a video of the launch and to read more go to: www.nasa.gov/mission_pages/sunearth/missions/atrex-launch... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Simulation analysis of space remote sensing image quality degradation induced by satellite platform vibration

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Zhang, Xiaofang; Huang, Yu; Hao, Weiwei; Guo, Baiwei

    2012-11-01

    Satellite platform vibration causes the image quality to be degraded, it is necessary to study its influence on image quality. The forms of Satellite platform vibration consist of linear vibration, sinusoidal vibration and random vibration. Based on Matlab & Zemax, the simulation system has been developed for simulating impact caused by satellite platform vibration on image quality. Dynamic Data Exchange is used for the communication between Matlab and Zemax. The data of sinusoidal vibration are produced by sinusoidal curve with specific amplitude and frequency. The data of random vibration are obtained by combining sinusoidal signals with 10Hz, 100Hz and 200Hz's frequency, 100, 12, 1.9's amplitude and white noise with zero mean value. Satellite platform vibration data which produced by Matlab are added to the optical system, and its point spread function can be obtained by Zemax. Blurred image can be gained by making the convolution of PSF and the original image. The definition of the original image and the blurred image are evaluated by using average gradient values of image gray. The impact caused by the sine and random vibration of six DOFs on the image quality are respectively simulated. The simulation result reveal that the decenter of X-, Y-, Z- direction and the tilt of Z-direction have a little effect on image quality, while the tilt of X-, Y- direction make image quality seriously degraded. Thus, it can be concluded that correcting the error of satellite platform vibration by FSM is a viable and effective way.

  11. Using the NASA Giovanni DICCE Portal to Investigate Land-Ocean Linkages with Satellite and Model Data

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Zalles, Daniel; Krumhansl, Ruth

    2012-01-01

    Data-enhanced Investigations for Climate Change Education (DICCE), a NASA climate change education project, employs the NASA Giovanni data system to enable teachers to create climate-related classroom projects using selected satellite and assimilated model data. The easy-to-use DICCE Giovanni portal (DICCE-G) provides data parameters relevant to oceanic, terrestrial, and atmospheric processes. Participants will explore land-ocean linkages using the available data in the DICCE-G portal, in particular focusing on temperature, ocean biology, and precipitation variability related to El Ni?o and La Ni?a events. The demonstration includes the enhanced information for educators developed for the DICCE-G portal. The prototype DICCE Learning Environment (DICCE-LE) for classroom project development will also be demonstrated.

  12. JPL-20180522-GRACFOf-0001-NASAs GRACE FO Satellite Launches Aboard a SpaceX Falcon 9 Rocket

    NASA Image and Video Library

    2018-05-22

    3-2-1 liftoff of Falcon 9 with GRACE-FO! NASA's Gravity Recovery and Climate Experiment Follow-on, or GRACE-FO, launched from Vandenberg Air Force Base on California's Central Coast on May 22, 2018. The twin orbiters shared a ride to space with five Iridium NEXT communications satellites. GRACE-FO will continue a study begun by the original GRACE mission, which proved that water movement can be tracked with high precision by its effect on Earth's gravitational field. GRACE-FO will continue the record of regional variations in gravity, telling us about changes in glaciers, ground water, sea levels and the health of our planet as a whole. For more, visit https://gracefo.jpl.nasa.gov .

  13. TOPEX/El Niño Watch - Satellite shows Pacific Stabilizing, July 11, 1998

    NASA Image and Video Library

    1998-07-21

    Height measurements taken by NASA U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on July 11, 1998; sea surface height is an indicator of the heat content of the ocean.

  14. Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

  15. NASA Spacecraft Watches as Eruption Reshapes African Volcano

    NASA Image and Video Library

    2017-02-23

    On Jan. 24, 2017, the Hyperion Imager on NASA's Earth Observing 1 (EO-1) spacecraft observed a new eruption at Erta'Ale volcano, Ethiopia, from an altitude of 438 miles (705 kilometers). Data were collected at a resolution of 98 feet (30 meters) per pixel at different visible and infrared wavelengths and were combined to create these images. A visible-wavelength image is on the left. An infrared image is shown on the right. The infrared image emphasizes the hottest areas and reveals a spectacular rift eruption, where a crack opens and lava gushes forth, fountaining into the air. The lava flows spread away from the crack. Erta'Ale is the location of a long-lived lava lake, and it remains to be seen if this survives this new eruption. The observation was scheduled via the Volcano Sensor Web, a network of sensors linked by artificial intelligence software to create an autonomous global monitoring program of satellite observations of volcanoes. The Volcano Sensor Web was alerted to this new activity by data from another spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA11239

  16. One Web Satellites Ground Breaking

    NASA Image and Video Library

    2017-03-16

    A model of a OneWeb satellite like those the company will build to will connect all areas of the world to the Internet wirelessly. The company plans to launch 2,000 of the satellites as part of its constellation. The satellites will be built at a new factory at Exploration Park at NASA's Kennedy Space Center. The company held a groundbreaking ceremony for the factory. Photo credit: NASA/Kim Shiflett

  17. NASA Spacecraft Images Severe Flooding in South Asia

    NASA Image and Video Library

    2011-09-27

    NASA Terra spacecraft captured this image of the city of Jhudo, Pakistan, and surrounding countryside on Sept. 24, 2011. Torrential monsoon rains in south Asia have displaced hundreds of thousands of residents in India, Pakistan and Thailand.

  18. NASA Sees Quick Development of Hurricane Dora

    NASA Image and Video Library

    2017-12-08

    The fourth tropical cyclone of the Eastern Pacific Ocean season formed on June 25 and by June 26 it was already a hurricane. NASA-NOAA's Suomi NPP satellite passed over Dora on June 25 when it was a tropical storm and the next day it became the first hurricane of the season. Tropical Depression Dora developed around 11 p.m. EDT on Saturday, June 24 about 180 miles (290 km) south of Acapulco, Mexico. By 5 a.m. EDT on June 25, the depression had strengthened into a tropical storm and was named Dora. At 19:36 UTC (3:36 p.m. EDT), the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi NPP satellite provided a visible-light image of the storm. The VIIRS imagery showed well-defined convective spiral bands of thunderstorms with a developing central dense overcast or CDO cloud feature. Seven and a half hours later, Dora showed signs of better organization. At 11 p.m. EDT, the National Hurricane Center or NHC noted "Dora's cloud pattern has continued to quickly improve this evening. Several well-defined spiral bands wrap around the center and the CDO has become more symmetric and expanded since the previous advisory." At 5 a.m. EDT on Monday, June 26, Dora became the first hurricane of the Eastern Pacific Ocean hurricane season. Satellite data indicate that maximum sustained winds have increased to near 80 mph (130 kph) with higher gusts. The NHC said the eye of Hurricane Dora was located near latitude 16.7 degrees North and longitude 105.3 degrees West. That's about 170 miles (275 km) south-southwest of Manzanillo, Mexico. Dora was moving toward the west-northwest near 13 mph (20 kph), and the NHC forecast said that general motion with some decrease in forward speed is expected over the next 48 hours. On the forecast track, the center of Dora is expected to remain offshore of the coast of southwestern Mexico. Some strengthening is likely today before weakening is forecast to begin on Tuesday, June 27. For updated forecasts, visit: www

  19. Spawning of Massive Antarctic Iceberg Captured by NASA

    NASA Image and Video Library

    2017-07-14

    Between July 10 and 12, 2017, the Larsen C Ice Shelf in West Antarctica calved one of the largest icebergs in history (named "A-68"), weighing approximately one trillion tons. The rift in the ice shelf that spawned the iceberg has been present on the shelf since at least the beginning of the Landsat era (approximately the 1970s), but remained relatively dormant until around 2012, when it was observed actively moving through a suture zone in the ice shelf (Jansen et al., 2015). Suture zones are wide bands of ice that extend from glacier grounding lines (the boundary between a floating ice shelf and ice resting on bedrock) to the sea comprised of a frozen mixture of glacial ice and sea water, traditionally considered to be stabilizing features in ice shelves. When the Antarctic entered its annual dark period in late April, scientists knew the rift only had a few more miles to go before it completely calved the large iceberg. However, due to the lack of sunlight during the Antarctic winter, visible imagery is generally not available each year between May and August. This frame is from an animation that shows the ice shelf as imaged by the NASA/NOAA satellite Suomi NPP, which features the VIIRS (Visible Infrared Imaging Radiometer Suite) instrument. VIIRS has a day/night panchromatic band capable of collecting nighttime imagery of Earth with a spatial resolution of 2,460 feet (750 meters). An image from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite shows the last cloud-free, daytime image of the ice shelf on April 6; the MODIS thermal imagery band is shown on April 29. The images from May 9 to July 14 show available cloud-free imagery from Suomi NPP. Luckily, despite several cloudy days leading up to the break, the weather mostly cleared on July 11, allowing scientists to see the newly formed iceberg on July 12. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21785

  20. Satellite radars for geologic mapping in tropical regions

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Sabins, F. F.

    1987-01-01

    This paper presents interpretations of the satellite radar images of cloud-covered portions of Indonesia and Amazonia obtained from NASA's Shuttle imaging radar experiments in 1981 (SIR-A) and 1984 (SIR-B). It was found that different terrain categories observed from distinctive image textures correlate well with major lithologic associations. The images show geologic structures at regional and local scales. The SIR-B images of East Kalimantan, Indonesia, reveal structural features and terrain distributions that had been overlooked or not perceived in previous surface mapping. Variability in radar response from the vegetation cover is interpretable only in coastal areas or alluvial areas that are relatively level.

  1. Mapping Vineyard Areas Using WORLDVIEW-2 Satellite Images

    NASA Astrophysics Data System (ADS)

    Sertel, E.; Ozelkan, E.; Yay, I.; Seker, D. Z.; Ormeci, C.

    2011-12-01

    The observation of Earth surface from the space has lead to new research possibilities in many fields like agriculture, hydrology, geology, geodesy etc. Different satellite image data have been used for agricultural monitoring for different scales namely local, regional and global. It is important to monitor agricultural field in local scale to determine the crop yield, diseases, and to provide Farmer Registries. Worldview-2 is a new satellite system that could be used for agricultural applications especially in local scale. It is the first high resolution 8-band multispectral commercial satellite launched in October 2009. The satellite has an altitude of 770 kilometers and its spatial resolution for panchromatic mode and multispectral mode are 46 cm and 1.85 meter, respectively. In addition to red (630 - 690 nm), blue (450 - 510 nm), Green (510 - 580 nm) and Near Infrared (770 - 895 nm) bands, Worldview-2 has four new spectral bands lying on beginning of blue (400 - 450 nm), yellow (585 - 625 nm), red edge (705 - 745 nm) and Near Infrared (860 - 1040 nm) regions of the electromagnetic spectrum. Since Worldview-2 data are comparatively new, there have not been many studies in the literature about the usage of these new data for different applications. In this research, Worldview-2 data were used to delineate the vineyard areas and identify different grape types in Sarkoy, Turkey. Phenological observations of grape fields have been conducted for the last three years over a huge test area owned by the Government Viniculture Institute. Based on the phenological observations, it was found that July and August period is the best data acquisition time for satellite data since leaf area index is really higher. In August 2011, Worldview-2 data of the region were acquired and spectral measurements were collected in the field for different grape types using a spectroradiometer. Satellite image data and spectral measurements were correlated and satellite image data were

  2. Fundamental Limitations for Imaging GEO Satellites

    DTIC Science & Technology

    2015-10-18

    details of a geostationary satellite can be phase stabilized. We conclude that it is possible to phase such an interferometer with shorter baselines using...Jorgensen, A., Restaino, S., Armstrong, J., Baines, E., Hindsley, R. “Simulated Synthesis Imaging of Geostationary Satellites” Proceedings of the AMOS...A. M. “Simulated optical interferometric observations of geostationary satellites” Proceedings of the SPIE 8165, 2011 [3] C Leinert, S. Bowyer, L

  3. Idaho Wildfire Imaged by NASA's Terra Spacecraft

    NASA Image and Video Library

    2017-08-14

    A wildfire burned 46,000 acres southwest of Pocatello, Idaho, threatening homes and filling the area with smoke. The human-caused fire was 85 percent contained by Aug. 10, 2017. The extent of the burned area is evident in this image as the dark gray area. The image was acquired Aug. 13, 2017, covers an area of 22 by 28 miles (36 by 45 kilometers), and is located at 42.7 degrees north, 112.6 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA21875

  4. A public service communications satellite user brochure

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The capabilities of a proposed communications satellite that would be devoted to experiments and demonstrations of various public services is described. A Public Service Communications Satellite study was undertaken at the NASA Goddard Space Flight Center (GSFC) to define the problems and opportunities of a renewed NASA role and the form such NASA involvement should take. The concept that has evolved has resulted from careful consideration of experiments that were already undertaken on existing satellites.

  5. NASA Spacecraft Images Some of Earth Newest Real

    NASA Image and Video Library

    2012-01-20

    In December, 2011, NASA Terra spacecraft captured this image of a new volcanic island forming in the Red Sea. This region is part of the Red Sea Rift where the African and Arabian tectonic plates are pulling apart.

  6. NASA Spacecraft Images One of Earth Iceberg Incubators

    NASA Image and Video Library

    2012-04-13

    Acquired by NASA Terra spacecraft, this image shows the west coast of Greenland, one of Earth premiere incubators for icebergs -- large blocks of land ice that break off from glaciers or ice shelves and float in the ocean.

  7. Satellite Eyes First Major Atlantic Hurricane in 3 Years: Gonzalo

    NASA Image and Video Library

    2014-10-15

    Hurricane Gonzalo has made the jump to major hurricane status and on Oct. 15 was a Category 4 storm on the Saffir-Simpson Hurricane Scale. NOAA's GOES-East satellite provided imagery of the storm. According to the National Hurricane Center, Gonzalo is the first category 4 hurricane in the Atlantic basin since Ophelia in 2011. NOAA's GOES-East satellite provides visible and infrared images of weather from its orbit in a fixed position over the Earth. On Oct. 15 at 15:15 UTC (11:15 a.m. EDT) GOES saw Gonzalo had tightly wrapped bands of thunderstorms spiraling into the center of its circulation. The eye of the storm was obscured by high clouds in the image. NOAA aircraft data and microwave images clearly show concentric eyewalls, with the inner radius of maximum winds now only about 4-5 nautical miles from the center. NOAA manages the GOES satellites, while NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland created the image. The NASA/NOAA GOES Project creates images and animations from GOES data. At 11 a.m. EDT on Oct. 15, Gonzalo's maximum sustained winds increased to near 130 mph (215 kph) and the National Hurricane Center (NHC) noted that fluctuations in intensity are expected over the next couple of days. Gonzalo's cloud-covered eye was located near latitude 23.5 north and longitude 68.0 west, about 640 miles (1,025 km) south-southwest of Bermuda. Gonzalo is moving toward the northwest near 12 mph (19 kph). The minimum central pressure recently reported by an air force reconnaissance aircraft was 949 millibars. Tropical storm conditions are possible in Bermuda by late Thursday night, Oct. 16, and hurricane conditions are possible over Bermuda on Friday Oct. 16. Ocean swells however, will be felt over a much larger area, reached the U.S. east coast on Oct. 16. Large swells generated by Gonzalo are affecting portions of the Virgin Islands, the northern coasts of Puerto Rico and the Dominican Republic and portions of the Bahamas

  8. Using PACS and wavelet-based image compression in a wide-area network to support radiation therapy imaging applications for satellite hospitals

    NASA Astrophysics Data System (ADS)

    Smith, Charles L.; Chu, Wei-Kom; Wobig, Randy; Chao, Hong-Yang; Enke, Charles

    1999-07-01

    An ongoing PACS project at our facility has been expanded to include providing and managing images used for routine clinical operation of the department of radiation oncology. The intent of our investigation has been to enable out clinical radiotherapy service to enter the tele-medicine environment through the use of a PACS system initially implemented in the department of radiology. The backbone for the imaging network includes five CT and three MR scanners located across three imaging centers. A PC workstation in the department of radiation oncology was used to transmit CT imags to a satellite facility located approximately 60 miles from the primary center. Chest CT images were used to analyze network transmission performance. Connectivity established between the primary department and satellite has fulfilled all image criteria required by the oncologist. Establishing the link tot eh oncologist at the satellite diminished bottlenecking of imaging related tasks at the primary facility due to physician absence. A 30:1 compression ratio using a wavelet-based algorithm provided clinically acceptable images treatment planning. Clinical radiotherapy images can be effectively managed in a wide- area-network to link satellite facilities to larger clinical centers.

  9. TDRS-M NASA Social

    NASA Image and Video Library

    2017-08-17

    Social media gather in Kennedy Space Center’s Press Site auditorium for a briefing focused on preparations to launch NASA's Tracking and Data Relay Satellite, TDRS-M. The latest spacecraft destined for the agency's constellation of communications satellites, TDRS-M will allow nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18. NASA Social Media Team includes: Emily Furfaro and Amber Jacobson. Guest speakers include: Badri Younes, Deputy Associate Administrator for Space Communications and Navigation at NASA Headquarters in Washington; Dave Littmann, Project Manager for TDRS-M at NASA’s Goddard Space Flight Center; Neil Mallik, NASA Deputy Network Director for Human Spaceflight; Nicole Mann, NASA Astronaut; Steve Bowen, NASA Astronaut; Skip Owen, NASA Launch Services; Scott Messer, United Launch Alliance Program Manager for NASA Missions.

  10. Methods and potentials for using satellite image classification in school lessons

    NASA Astrophysics Data System (ADS)

    Voss, Kerstin; Goetzke, Roland; Hodam, Henryk

    2011-11-01

    The FIS project - FIS stands for Fernerkundung in Schulen (Remote Sensing in Schools) - aims at a better integration of the topic "satellite remote sensing" in school lessons. According to this, the overarching objective is to teach pupils basic knowledge and fields of application of remote sensing. Despite the growing significance of digital geomedia, the topic "remote sensing" is not broadly supported in schools. Often, the topic is reduced to a short reflection on satellite images and used only for additional illustration of issues relevant for the curriculum. Without addressing the issue of image data, this can hardly contribute to the improvement of the pupils' methodical competences. Because remote sensing covers more than simple, visual interpretation of satellite images, it is necessary to integrate remote sensing methods like preprocessing, classification and change detection. Dealing with these topics often fails because of confusing background information and the lack of easy-to-use software. Based on these insights, the FIS project created different simple analysis tools for remote sensing in school lessons, which enable teachers as well as pupils to be introduced to the topic in a structured way. This functionality as well as the fields of application of these analysis tools will be presented in detail with the help of three different classification tools for satellite image classification.

  11. Family Portrait of Jupiter Great Red Spot and the Galilean Satellites

    NASA Image and Video Library

    1997-11-18

    This "family portrait," a composite of the Jovian system, includes the edge of Jupiter with its Great Red Spot, and Jupiter's four largest moons, known as the Galilean satellites. From top to bottom, the moons shown are Io, Europa, Ganymede and Callisto. The Great Red Spot, a storm in Jupiter's atmosphere, is at least 300 years old. Winds blow counterclockwise around the Great Red Spot at about 400 kilometers per hour (250 miles per hour). The storm is larger than one Earth diameter from north to south, and more than two Earth diameters from east to west. In this oblique view, the Great Red Spot appears longer in the north-south direction. Europa, the smallest of the four moons, is about the size of Earth's moon, while Ganymede is the largest moon in the solar system. North is at the top of this composite picture in which the massive planet and its largest satellites have all been scaled to a common factor of 15 kilometers (9 miles) per picture element. The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft obtained the Jupiter, Io and Ganymede images in June 1996, while the Europa images were obtained in September 1996. Because Galileo focuses on high resolution imaging of regional areas on Callisto rather than global coverage, the portrait of Callisto is from the 1979 flyby of NASA's Voyager spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA00600

  12. Feature Detection Systems Enhance Satellite Imagery

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In 1963, during the ninth orbit of the Faith 7 capsule, astronaut Gordon Cooper skipped his nap and took some photos of the Earth below using a Hasselblad camera. The sole flier on the Mercury-Atlas 9 mission, Cooper took 24 photos - never-before-seen images including the Tibetan plateau, the crinkled heights of the Himalayas, and the jagged coast of Burma. From his lofty perch over 100 miles above the Earth, Cooper noted villages, roads, rivers, and even, on occasion, individual houses. In 1965, encouraged by the effectiveness of NASA s orbital photography experiments during the Mercury and subsequent Gemini manned space flight missions, U.S. Geological Survey (USGS) director William Pecora put forward a plan for a remote sensing satellite program that would collect information about the planet never before attainable. By 1972, NASA had built and launched Landsat 1, the first in a series of Landsat sensors that have combined to provide the longest continuous collection of space-based Earth imagery. The archived Landsat data - 37 years worth and counting - has provided a vast library of information allowing not only the extensive mapping of Earth s surface but also the study of its environmental changes, from receding glaciers and tropical deforestation to urban growth and crop harvests. Developed and launched by NASA with data collection operated at various times by the Agency, the National Oceanic and Atmospheric Administration (NOAA), Earth Observation Satellite Company (EOSAT, a private sector partnership that became Space Imaging Corporation in 1996), and USGS, Landsat sensors have recorded flooding from Hurricane Katrina, the building boom in Dubai, and the extinction of the Aral Sea, offering scientists invaluable insights into the natural and manmade changes that shape the world. Of the seven Landsat sensors launched since 1972, Landsat 5 and Landsat 7 are still operational. Though both are in use well beyond their intended lifespans, the mid

  13. Convolutional neural network features based change detection in satellite images

    NASA Astrophysics Data System (ADS)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  14. Landsat: A Global Land-Imaging Project

    USGS Publications Warehouse

    Headley, Rachel

    2010-01-01

    Across nearly four decades since 1972, Landsat satellites continuously have acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space; consequently, NASA develops remote-sensing instruments and spacecraft, then launches and validates the satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground-data reception, archiving, product generation, and distribution. The result of this program is a visible, long-term record of natural and human-induced changes on the global landscape.

  15. Landsat: A global land-imaging mission

    USGS Publications Warehouse

    ,

    2012-01-01

    Across four decades since 1972, Landsat satellites have continuously acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space. NASA develops remote-sensing instruments and spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and distribution. The result of this program is a long-term record of natural and human induced changes on the global landscape.

  16. Public Service Communication Satellite Program

    NASA Technical Reports Server (NTRS)

    Brown, J. P.

    1977-01-01

    The proposed NASA Public Service Communication Satellite Program consists of four different activities designed to fulfill the needs of public service sector. These are: interaction with the users, experimentation with existing satellites, development of a limited capability satellite for the earliest possible launch, and initiation of an R&D program to develop the greatly increased capability that future systems will require. This paper will discuss NASA efforts in each of these areas.

  17. Concepts for on-board satellite image registration. Volume 3: Impact of VLSI/VHSIC on satellite on-board signal processing

    NASA Technical Reports Server (NTRS)

    Aanstoos, J. V.; Snyder, W. E.

    1981-01-01

    Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort.

  18. NASA EO-1 Spacecraft Images Chile Volcanic Eruption

    NASA Image and Video Library

    2011-06-17

    On June 14, 2011, NASA Earth Observing-1 EO-1 spacecraft obtained this image showing ash-rich volcanic plume billowing out of the vent, punching through a low cloud layer. The plume grey color is a reflection of its ash content.

  19. NASA Spacecraft Images Wildfire Near Yosemite National Park

    NASA Image and Video Library

    2013-06-21

    This image, acquired by NASA Terra spacecraft, is of the Carstens, Calif. wildfire which continues to burn in the foothills west of Yosemite National Park. Vegetation is displayed in green and burned and bare areas are dark to light gray.

  20. Satellite Views Powerful Winter Storm Battering Mid-Atlantic and New England

    NASA Image and Video Library

    2014-02-13

    The monster winter storm that brought icing to the U.S. southeast moved northward along the Eastern Seaboard and brought snow, sleet and rain from the Mid-Atlantic to New England on February 13. A new image from NOAA's GOES satellite showed clouds associated with the massive winter storm stretch from the U.S. southeast to the northeast. Data from NOAA's GOES-East satellite taken on Feb. 13 at 1455 UTC/9:45 a.m. EST were made into an image by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. The clouds and fallen snow data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites.The image showed that the clouds associated with the storm were blanketing much of the U.S. East Coast. At 3:11 a.m. EST, a surface map issued by the National Weather Service or NWS showed the storm's low pressure area was centered over eastern North Carolina. Since then, the low has continued to track north along the eastern seaboard. By 11 a.m. EST, precipitation from the storm was falling from South Carolina to Maine, according to National Weather Service radar. By 11 a.m. EST, the Washington, D.C. region snow and sleet totals ranged from 3" in far eastern Maryland to over 18" in the northern and western suburbs in Maryland and Virginia. NWS reported that snow, sleet and rain were still falling and more snow is expected as the back side of the low moves into the region. The New York City region remained under an NWS Winter Storm Warning until 6 a.m. on Friday, February 14 and the National Weather Service expects minor coastal impacts Thursday into Friday afternoon. New England was also being battered by the storm. At 10:56 a.m. EST, Barnstable, Mass. on Cape Cod was experiencing rain and winds gusting to 28 mph. An NWS wind advisory is in effect for Cape Cod until 7 p.m. EST. Further north