Sample records for nasa solar probe

  1. NASA's Parker Solar Probe and Solar Orbiter Missions: Discovering the Secrets of our Star

    NASA Astrophysics Data System (ADS)

    Zurbuchen, T.

    2017-12-01

    This session will explore the importance of the Parker Solar Probe and Solar Orbiter missions to NASA Science, and the preparations for discoveries from these missions. NASA's Parker Solar Probe and Solar Orbiter Missions have complementary missions and will provide unique and unprecedented contributions to heliophysics and astrophysics overall. These inner heliospheric missions will also be part of the Heliophysics System Observatory which includes an increasing amount of innovative new technology and architectures to address science and data in an integrated fashion and advance models through assimilation and system-level tests. During this talk, we will briefly explore how NASA Heliophysics research efforts not only increase our understanding and predictive capability of space weather phenomena, but also provide key insights on fundamental processes important throughout the universe.

  2. The NASA Solar Probe mission - In situ determination of interplanetary out-of-the ecliptic and near-solar dust environments

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Randolph, James E.

    1991-01-01

    The NASA Solar Probe mission will be one of the most exciting dust missions ever flown and will lead to a revolutionary advance in our understanding of dust within our solar system. Solar Probe will map the dust environment from the orbit of Jupiter (5 AU), to within 4 solar radii of the sun's center. The region between 0.3 AU and 4 Rs has never been visited before, so the ten days that the spacecraft spends during each (of the two) orbit is purely exploratory in nature. Solar Probe will also reach heliographic latitudes as high as about 15 to 28 deg above (below) the ecliptic on its trajectory inbound (outbound) to (from) the sun. This, in addition to the ESA/NASA Ulysses mission, will help determine the out-of-the-ecliptic dust environment. A post-perihelion burn will reduce the satellite orbital period to 2.5 years about the sun. A possible extended mission would allow data reception for two more revolutions, mapping out a complete solar cycle. Because the near-solar dust environment is not well understood (or is controversial at best), and it is very important to have better knowledge of the dust environment to protect Solar Probe from high velocity dust hits, we urgently request the scientific community to obtain further measurements of the nearsolar dust properties.

  3. Parker Solar Probe Antenna Deployment

    NASA Image and Video Library

    2018-04-19

    Antenna's on NASA's Parker Solar Probe are deployed for testing at the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center on Thursday, April 19, 2018. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  4. Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2011-01-01

    The NASA Solar Probe Plus mission is planned to be launched in 2018 to study the upper solar corona with both.in-situ and remote sensing instrumentation. The mission will utilize 6 Venus gravity assist maneuver to gradually lower its perihelion to 9.5 Rs below the expected Alfven pOint to study the sub-alfvenic solar wind that is still at least partially co-rotates with the Sun. The detailed science objectives of this mission will be discussed. SPP will have a strong synergy with The ESA/NASA Solar orbiter mission to be launched a year ahead. Both missions will focus on the inner heliosphere and will have complimentary instrumentations. Strategies to exploit this synergy will be also presented.

  5. Parker Solar Probe Light Bar Test

    NASA Image and Video Library

    2018-06-05

    In the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center, on Tuesday, June 5, 2018, technicians and engineers perform light bar testing on NASA's Parker Solar Probe. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  6. Parker Solar Probe "Name Chip" Installation

    NASA Image and Video Library

    2018-05-21

    At the Astrotech processing facility in Titusville, Florida, near NASA's Kennedy Space Center, scientists and engineers from the Applied Physics Laboratory at Johns Hopkins University install a computer chip on NASA's Parker Solar Probe. Throughout its seven-year mission, NASA’s Parker Solar Probe will swoop through the Sun’s atmosphere, carrying more than scientific instruments on this historic journey — it will also hold more than 1.1 million names submitted by the public to go to the Sun. The submitted names were loaded into a memory card and mounted on a plaque bearing a dedication to the mission’s namesake, heliophysicist Dr. Eugene Parker. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida no earlier than Aug. 4, 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  7. The energetic particle environment of the solar probe mission: As estimated by the participants of the Solar Probe Environment Workshop

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Fisk, L. A.; Gold, R. E.; Lin, R. P.; Newkirk, G.; Simpson, J. A.; Vanhollebeke, M. A. I.

    1978-01-01

    NASA's long-range plan for the study of solar-terrestrial relations includes a Solar Probe Mission in which a spacecraft is placed in an eccentric orbit with perihelion at four solar radii. Possible radiation damage to the spacecraft and mission from energetic particles was discussed at a Solar Probe Environment Workshop which concluded that it would be unlikely for such a spacecraft to suffer fatal radiation damage, although a severe problem exists in limiting the neutron flux from a radioactive power supply enough to allow solar neutrons to be detected.

  8. Solar Probe Plus: A NASA Mission to Touch the Sun

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Bale, S. D.; Decker, R. B.; Howard, R.; Kasper, J. C.; McComas, D. J.; Szabo, A.; Velli, M. M.

    2013-12-01

    Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this poster, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  9. Solar Probe Plus: A NASA Mission to Touch the Sun

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Velli, M. M. C.; Kasper, J. C.; McComas, D. J.; Howard, R.; Bale, S. D.; Decker, R. B.

    2014-12-01

    Solar Probe Plus (SPP), currently in Phase C, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this presentation, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  10. Parker Solar Probe Arrival, Offload, and Transport to Astrotech

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe arrives for launch processing at the agency's Kennedy Space Center. The mission will revolutionize our understanding of the sun, where changing conditions can propegate out into the solar system.

  11. NASA's Van Allen Probes Discover a Surprise Circling Earth

    NASA Image and Video Library

    2017-12-08

    Two giant swaths of radiation, known as the Van Allen Belts, surrounding Earth were discovered in 1958. In 2012, observations from the Van Allen Probes showed that a third belt can sometimes appear. The radiation is shown here in yellow, with green representing the spaces between the belts. Credit: NASA/Van Allen Probes/Goddard Space Flight Center To read more go to: www.nasa.gov/mission_pages/rbsp/news/third-belt.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Design and spacecraft-integration of RTGs for solar probe

    NASA Technical Reports Server (NTRS)

    Schock, A.; Noravian, H.; Or, T.; Sankarankandath, V.

    1990-01-01

    The design, analysis, and spacecraft integration of radioisotope thermoelectric generators (RTG) to power the Solar Probe under study at NASA JPL is described. The mission of the Solar Probe is to explore the solar corona by performing in situ measurements at up to four solar radii to the sun. Design constraints for the RTG are discussed. The chief challenge in the design and system integration of the Solar Probe's RTG is a heat rejection problem. Two RTG orientations, horizontal and oblique, are analyzed for effectiveness and results are summarized in chart form. A number of cooling strategies are also investigated, including heat-pipe and reflector-cooled options. A methodology and general computer code are presented for analyzing the performance of arbitrarily obstructed RTGs with both axial and circumferential temperature, voltage, and current variation. This methodology is applied to the specific example of the Solar Probe RTG obstructed by a semicylindrical reflector of 15-inch radius.

  13. NASA seeks to revive lost probe that traced solar storms

    NASA Astrophysics Data System (ADS)

    Voosen, Paul

    2018-02-01

    NASA's Imager for Magnetopause-to-Aurora Global Exploration (IMAGE), a satellite that failed in 2005, was recently discovered to be reactivated by an amateur astronomer. Until its demise, IMAGE provided unparalleled views of solar storms crashing into Earth's magnetosphere, a capability that has not been replaced since. The amateur astronomer was on the search for Zuma, a classified U.S. satellite that's believed to have failed after launch. He instead discovered IMAGE, broadcasting again, likely thanks to a reboot that occurred after its batteries drained during a past solar eclipse. NASA scientists are now working to communicate with the satellite in the hopes of reviving its six scientific instruments.

  14. Status of Solar Sail Propulsion: Moving Toward an Interstellar Probe

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    NASA's In-Space Propulsion Technology Program has developed the first-generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first-generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams-per-square meter. A rigorous, multiyear technology development effort culminated last year in the testing of two different 20-meter solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding, and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails, including one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. The proposed mission is called the Interstellar Probe. The Interstellar Probe might be accomplished in several ways. A 200-meter sail, with an areal density approaching 1 gram-per-square meter, could accelerate a robotic probe to the very edge of the solar system in just under 20 years from launch. A sail using the technology just demonstrated could make the same mission, but take significantly longer. Conventional chemical propulsion systems would require

  15. NASA's Van Allen Probes Discover a Surprise Circling Earth

    NASA Image and Video Library

    2017-12-08

    On Aug. 31, 2012, a giant prominence on the sun erupted, sending out particles and a shock wave that traveled near Earth. This event may have been one of the causes of a third radiation belt that appeared around Earth a few days later, a phenomenon that was observed for the very first time by the newly-launched Van Allen Probes. This image of the prominence before it erupted was captured by NASA's Solar Dynamics Observatory (SDO). Credit: NASA/SDO/AIA/Goddard Space Flight Center To read more go to: www.nasa.gov/mission_pages/rbsp/news/third-belt.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. 3D Visualization of Solar Data: Preparing for Solar Orbiter and Parker Solar Probe

    NASA Astrophysics Data System (ADS)

    Mueller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; Ireland, J.; Fleck, B.

    2017-12-01

    Solar Orbiter and Parker Solar Probe will focus on exploring the linkage between the Sun and the heliosphere. These new missions will collect unique data that will allow us to study, e.g., the coupling between macroscopic physical processes to those on kinetic scales, the generation of solar energetic particles and their propagation into the heliosphere and the origin and acceleration of solar wind plasma. Combined with the several petabytes of data from NASA's Solar Dynamics Observatory, the scientific community will soon have access to multi­dimensional remote-sensing and complex in-situ observations from different vantage points, complemented by petabytes of simulation data. Answering overarching science questions like "How do solar transients drive heliospheric variability and space weather?" will only be possible if the community has the necessary tools at hand. In this contribution, we will present recent progress in visualizing the Sun and its magnetic field in 3D using the open-source JHelioviewer framework, which is part of the ESA/NASA Helioviewer Project.

  17. Parker Solar Probe: A NASA Mission to Touch the Sun: Mission Status Update

    NASA Astrophysics Data System (ADS)

    Fox, N. J.

    2017-12-01

    The newly renamed, Parker Solar Probe (PSP) mission will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Parker Solar Probe mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. PSP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the science objectives. In this presentation, we provide an update on the progress of the Parker Solar Probe mission as we prepare for the July 2018 launch.

  18. Solar Probe Plus: A NASA Mission to Touch the SunMission Status Update

    NASA Astrophysics Data System (ADS)

    Fox, N. J.

    2016-12-01

    Solar Probe Plus (SPP), currently in Phase D, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives. In this presentation, we provide an update on the progress of the Solar Probe Plus mission as we prepare for the July 2018 launch.

  19. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A U.S. Air Force C-5 transport aircraft arrives at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  20. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, arrives at the Astrotech processing facility near the agency's Kennedy Space Center in Florida. The spacecraft arrived aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  1. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A U.S. Air Force C-5 transport aircraft touches down at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  2. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, is offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  3. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A U.S. Air Force C-5 transport aircraft approaches the runway for landing at Space Coast Regional Airport in Titusville, Florida, with NASA's Parker Solar Probe spacecraft aboard. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  4. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, has been offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  5. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    NASA's Parker Solar Probe, secured in its shipping container, arrives aboard a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be offloaded and transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  6. KSC-20180405-RV-CSH01_0122-Parker_Solar_Probe_Uncanning_Unbagging-3187876

    NASA Image and Video Library

    2018-04-04

    NASA's Parker Solar Probe arrives for launch processing at the Agency's Kennedy Space Center. The mission will Revolutionize our understanding of the sun, where changing conditions can propagate out into the solar system

  7. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    Preparations are underway to offload NASA's Parker Solar Probe spacecraft, secured in its shipping container, from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  8. Parker Solar Probe Spacecraft Arrival, Offload and Transport

    NASA Image and Video Library

    2018-04-03

    A forklift operator latches onto the shipping container with NASA's Parker Solar Probe inside, after it was offloaded from a U.S. Air Force C-5 transport aircraft at Space Coast Regional Airport in Titusville, Florida. The spacecraft will be transported to the Astrotech processing facility near the agency's Kennedy Space Center. The Parker Solar Probe will launch on a United Launch Alliance Delta IV Heavy rocket from Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  9. The FIELDS Instrument Suite for Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  10. Some Options for a Minimum Solar Probe Mission

    NASA Technical Reports Server (NTRS)

    Randolph, J. E.; Tsurutani, B. T.; Turner, P. R.; Miyake, R. M.; Ayon, J. A.

    1996-01-01

    Smaller and lower cost options of NASA's Solar Probe mission have recently been studied. The difference between these options and the results of earlier studies is dramatic. The motivation for low cost has encouraged the JPL design team to accomodate a smaller scientific payload using innovative multi-functional subsystems.

  11. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    The first stage of a United Launch Alliance Delta IV Heavy rocket is prepared to be lifted vertical at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  12. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    In this sunrise photograph, the first stage of a United Launch Alliance Delta IV Heavy rocket is at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  13. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    The United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  14. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    The United Launch Alliance Delta IV Heavy first stage has been lifted to the vertical position and is inside the Vertical Integration Facility near Space Launch 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  15. Science Planning for the Solar Probe Plus NASA Mission

    NASA Astrophysics Data System (ADS)

    Kusterer, M. B.; Fox, N. J.; Turner, F. S.; Vandegriff, J. D.

    2015-12-01

    With a planned launch in 2018, there are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus mission. The geometry of the celestial bodies and the spacecraft during some of the Solar Probe Plus mission orbits cause limited uplink and downlink opportunities. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. The aim is to write the instrument data to the spacecraft SSR for downlink before a set of data downlink opportunities large enough to get the data to the ground and before the start of another data collection cycle. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To add further complexity, two of the spacecraft payloads have the capability to write a large volumes of data to their internal payload SSR while sending a smaller "survey" portion of the data to the spacecraft SSR for downlink. The instrument scientists would then view the survey data on the ground, determine the most interesting data from their payload SSR, send commands to transfer that data from their payload SSR to the spacecraft SSR for downlink. The timing required for downlink and analysis of the survey data, identifying uplink opportunities for commanding data transfers, and downlink opportunities big enough for the selected data within the data collection period is critical. To solve these challenges, the Solar Probe Plus Science Working Group has designed a orbit-type optimized data file priority downlink scheme to downlink high priority survey data quickly. This file priority scheme would maximize the reaction time that the payload teams have to perform the survey and selected data method on orbits where the downlink and uplink availability will support using this method. An interactive display and analysis science planning tool is being designed for the SPT to use as an aid to planning. The

  16. Coordinated science with the Solar Orbiter, Solar Probe Plus, Interhelioprobe and SPORT missions

    NASA Astrophysics Data System (ADS)

    Maksimovic, Milan; Vourlidas, Angelos; Zimovets, Ivan; Velli, Marco; Zhukov, Andrei; Kuznetsov, Vladimir; Liu, Ying; Bale, Stuart; Ming, Xiong

    The concurrent science operations of the ESA Solar Orbiter (SO), NASA Solar Probe Plus (SPP), Russian Interhelioprobe (IHP) and Chinese SPORT missions will offer a truly unique epoch in heliospheric science. While each mission will achieve its own important science objectives, taken together the four missions will be capable of doing the multi-point measurements required to address many problems in Heliophysics such as the coronal origin of the solar wind plasma and magnetic field or the way the Solar transients drive the heliospheric variability. In this presentation, we discuss the capabilities of the four missions and the Science synergy that will be realized by concurrent operations

  17. Nasa's Solar Probe Plus Mission and Implications for the Theoretical Understanding of the Heliosphere

    NASA Astrophysics Data System (ADS)

    Velli, Marco

    2012-07-01

    Solar Probe Plus (SPP), one of the most challenging missions to understand the origins of the Heliosphere, will carry a payload consisting of plasma and energetic particle detectors, elec- tromagnetic field antennas and magnetometers, and a white light imager, to the unexplored regions extending from 70 to 8.5 solar radii (0.3 to 0.05 AU) from the photosphere of the Sun. Solar Probe Plus's goals are to understand the extended heating of the solar corona and acceleration of the solar wind,the origins of solar wind structures including high and low speed streams, and the origins of energetic particle acceleration in Coronal Mass Ejections and CMEs. In addition, combined measurements from the white light imager and the EM field antennas will allow the first direct measurements of dust deep in the inner solar system. This presentation will provide a broad context for the mission objectives and measurements and illustrate the likely progress SPP will bring to the understanding of the Heliosphere, stellar winds, and the fundamental physics of particle acceleration, reconnection, collisionless shocks and turbulence in space and astrophysical plasmas.

  18. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    A brilliant blue sky serves as a backdrop as the United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  19. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    A view from above in the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The first stage of a United Launch Alliance Delta IV Heavy is being prepared to be lifted to vertical in the facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  20. Parker Solar Probe Delta IV Heavy LVOS

    NASA Image and Video Library

    2018-04-17

    A brilliant blue sky serves as a backdrop as the United Launch Alliance Delta IV Heavy first stage is being lifted to the vertical position at the Vertical Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  1. A close-up of the sun. [solar probe mission planning conference

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Davies, R. W. (Editor)

    1978-01-01

    NASA's long-range plan for the study of solar-terrestrial relations includes a Solar Probe Mission in which a spacecraft is put into an eccentric orbit with perihelion near 4 solar radii (0.02 AU). The scientific experiments which might be done with such a mission are discussed. Topics include the distribution of mass within the Sun, solar angular momentum, the fine structure of the solar surface and corona, the acceleration of the solar wind and energetic particles, and the evolution of interplanetary dust. The mission could also contribute to high-accuracy tests of general relativity and the search for cosmic gravitational radiation.

  2. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  3. Designing a sun-pointing Faraday cup for solar probe plus

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Daigneau, P. S.; Caldwell, D.; Freeman, M.; Gauron, T.; Maruca, B. A.; Bookbinder, J.; Korreck, K. E.; Cirtain, J. W.; Effinger, M. E.; Halekas, J. S.; Larson, D. E.; Lazarus, A. J.; Stevens, M. L.; Taylor, E. R.; Wright, K. H., Jr.

    2013-06-01

    The NASA Solar Probe Plus (SPP) mission will be the first spacecraft to pass through the sub-Alfvénic solar corona. The objectives of the mission are to trace the flow of energy that heats and accelerates the solar corona and solar wind, to determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, and to explore mechanisms that accelerate and transport energetic particles. The Solar Wind Electrons, Alphas, and Protons (SWEAP) Investigation instrument suite on SPP will measure the bulk solar wind conditions in the inner heliosphere. SWEAP consists of the Solar Probe Cup (SPC), a sun-pointing Faraday Cup, and the Solar Probe ANalyzers (SPAN), a set of 3 electrostatic analyzers that will reside in the penumbra of SPP's thermal protection system and measure solar wind ions and electrons. SPP is scheduled to launch in 2018 into an equatorial solar orbit where a sequence of Venus gravity assists will gradually lower its closest solar approach to within 9.5 solar radii (RS) of the center of the Sun. The photon flux at 9.5 RS is more than 500 times greater than at 1 AU and therefore presents a design challenge for SPC, which will point directly at the Sun. SPC is derived from the Faraday cup instruments successfully flown on spacecraft from the beginning of the space age, but updated with high temperature materials to operate through the solar encounters. Current work includes both instrument design and the development of a testing approach capable of demonstrating adequate performance in encounter conditions. This paper will briefly discuss the suite as a whole, and then focus on the design and capabilities of SPC. We will also present the planned calibration and characterization of the instrument and the testing required to demonstrate the technological readiness of the design.

  4. Solar Probe Plus: Mission design challenges and trades

    NASA Astrophysics Data System (ADS)

    Guo, Yanping

    2010-11-01

    NASA plans to launch the first mission to the Sun, named Solar Probe Plus, as early as 2015, after a comprehensive feasibility study that significantly changed the original Solar Probe mission concept. The original Solar Probe mission concept, based on a Jupiter gravity assist trajectory, was no longer feasible under the new guidelines given to the mission. A complete redesign of the mission was required, which called for developing alternative trajectories that excluded a flyby of Jupiter. Without the very powerful gravity assist from Jupiter it was extremely difficult to get to the Sun, so designing a trajectory to reach the Sun that is technically feasible under the new mission guidelines became a key enabler to this highly challenging mission. Mission design requirements and challenges unique to this mission are reviewed and discussed, including various mission scenarios and six different trajectory designs utilizing various planetary gravity assists that were considered. The V 5GA trajectory design using five Venus gravity assists achieves a perihelion of 11.8 solar radii ( RS) in 3.3 years without any deep space maneuver (DSM). The V 7GA trajectory design reaches a perihelion of 9.5 RS using seven Venus gravity assists in 6.39 years without any DSM. With nine Venus gravity assists, the V 9GA trajectory design shows a solar orbit at inclination as high as 37.9° from the ecliptic plane can be achieved with the time of flight of 5.8 years. Using combined Earth and Venus gravity assists, as close as 9 RS from the Sun can be achieved in less than 10 years of flight time at moderate launch C3. Ultimately the V 7GA trajectory was chosen as the new baseline mission trajectory. Its design allowing for science investigation right after launch and continuing for nearly 7 years is unprecedented for interplanetary missions. The redesigned Solar Probe Plus mission is not only feasible under the new guidelines but also significantly outperforms the original mission concept

  5. NASA's SDO Sees Solar Flares

    NASA Image and Video Library

    2014-06-10

    A solar flare bursts off the left limb of the sun in this image captured by NASA's Solar Dynamics Observatory on June 10, 2014, at 7:41 a.m. EDT. This is classified as an X2.2 flare, shown in a blend of two wavelengths of light: 171 and 131 angstroms, colorized in gold and red, respectively. Credit: NASA/SDO/Goddard/Wiessinger NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Solar Eclipse from NASA Goddard

    NASA Image and Video Library

    2017-08-21

    View of the partial solar eclipse from NASA's Goddard Space Flight Center in Greenbelt, Md on Monday, August 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Credit: NASA/Goddard/Rebecca Roth

  7. Proposed Solar Probe telecommunications system concept

    NASA Astrophysics Data System (ADS)

    Kellogg, K.; Devereaux, A.; Vacchione, J.; Kapoor, V.; Crist, R.

    1992-01-01

    A proposed telecommunications system concept for NASA's Solar Probe mission is described. Key system requirements include 70 kbps data rate at perihelion and operation at X-band (uplink/downlink) and Ka-band (downlink). A design control table is presented to demonstrate design compliance with telecommunication needs. The Ka-band feed is to be a hexagonal array of 37 active elements, each containing 1/4W HEMT amplifiers. The array is located at the Cassegrain point of a 0.75-m reflector. When compared to the TWTA-based system, the Ka-band active array feed provides advantages of reduced mass, increased dc power efficiency, enhanced reliability, graceful degradation, and reduced volume requirements.

  8. CDPP supporting tools to Solar Orbiter and Parker Solar Probe data exploitation

    NASA Astrophysics Data System (ADS)

    Genot, V. N.; Cecconi, B.; Dufourg, N.; Gangloff, M.; André, N.; Bouchemit, M.; Jacquey, C.; Pitout, F.; Rouillard, A.; Nathanaël, J.; Lavraud, B.; Durand, J.; Tao, C.; Buchlin, E.; Witasse, O. G.

    2017-12-01

    In recent years the French Centre de Données de la Physique des Plasmas (CDPP) has extended its data analysis capability by designing a number of new tools. In the solar and heliospheric contexts, and in direct support to the forthcoming solar ESA and NASA missions in these fields, these tools comprise of the Propagation Tool which helps linking solar perturbations observed both in remote and in-situ data; this is achieved through direct connection to the companion solar database MEDOC and the CDPP AMDA database. More recently, in the frame of Europlanet 2020 RI, a 1D MHD solar wind propagation code (Tao et al., 2005) has been interfaced to provide real time solar wind monitors at cruising probes and planetary environments using ACE real time data as inputs (Heliopropa service). Finally, simulations, models and data may be combined and visualized in a 3D context with 3DView. This presentation will overview the various functionalities of these tools and provide examples, in particular a 'CME tracking' case recently published (Witasse et al., 2017). Europlanet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.

  9. Preliminary design of the thermal protection system for solar probe

    NASA Technical Reports Server (NTRS)

    Dirling, R. B., Jr.; Loomis, W. C.; Heightland, C. N.

    1982-01-01

    A preliminary design of the thermal protection system for the NASA Solar Probe spacecraft is presented. As presently conceived, the spacecraft will be launched by the Space Shuttle on a Jovian swing-by trajectory and at perihelion approach to three solar radii of the surface of the Earth's sun. The system design satisfies maximum envelope, structural integrity, equipotential, and mass loss/contamination requirements by employing lightweight carbon-carbon emissive shields. The primary shield is a thin shell, 15.5-deg half-angle cone which absorbs direct solar flux at up to 10-deg off-nadir spacecraft pointing angles. Secondary shields of sandwich construction and low thickness-direction thermal conductivity are used to reduce the primary shield infrared radiation to the spacecraft payload.

  10. Solar probe shield developmental testing

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.

    1991-01-01

    The objectives of the Solar Probe mission and the current status of the Solar Probe thermal shield subsystem development are described. In particular, the discussion includes a brief description of the mission concepts, spacecraft configuration and shield concept, material selection criteria, and the required material testing to provide a database to support the development of the shield system.

  11. NASA names unique solar mission after University of Chicago physicist Eugene Parker

    NASA Image and Video Library

    2017-05-31

    On May 31, NASA renamed humanity’s first mission to fly a spacecraft directly into the sun’s atmosphere in honor of Professor Eugene Parker, a pioneering physicist at the University of Chicago. This is the first time in agency history a spacecraft has been named for a living individual. Parker, the S. Chandrasekhar Distinguished Service Professor Emeritus in Physics, is best known for developing the concept of solar wind—the stream of electrically charged particles emitted by the sun. Previously named Solar Probe Plus, the Parker Solar Probe will launch in summer 2018. Placed in orbit within four million miles of the sun’s surface, and facing heat and radiation unlike any spacecraft in history, the spacecraft will explore the sun’s outer atmosphere and make critical observations that will answer decades-old questions about the physics of how stars work. The resulting data will improve forecasts of major space weather events that impact life on Earth, as well as satellites and astronauts in space.

  12. Heliogyro Solar Sail Research at NASA

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Guerrant, Daniel V.; Lawrence, Dale A.; Gibbs, S. Chad; Dowell, Earl H.; Heaton, Andrew F.; Heaton, Andrew F.; Juang, Jer-Nan; Horta, Lucas G.; hide

    2013-01-01

    The recent successful flight of the JAXA IKAROS solar sail has renewed interest within NASA in spinning solar sail concepts for high-performance solar sailing. The heliogyro solar sail, in particular, is being re-examined as a potential game-changing architecture for future solar sailing missions. In this paper, we present an overview of ongoing heliogyro technology development and feasibility assessment activities within NASA. In particular, a small-scale heliogyro solar sail technology demonstration concept will be described. We will also discuss ongoing analytical and experimental heliogyro structural dynamics and controls investigations and provide an outline of future heliogyro development work directed toward enabling a low cost heliogyro technology demonstration mission ca. 2020.

  13. NASA's Solar System Exploration Program

    NASA Technical Reports Server (NTRS)

    Robinson, James

    2005-01-01

    A viewgraph presentation describing NASA's Solar System Exploration Program is shown. The topics include: 1) Solar System Exploration with Highlights and Status of Programs; 2) Technology Drivers and Plans; and 3) Summary

  14. Langmuir Probe Measurements Within the Discharge Channel of the 20-kW NASA-300M and NASA-300MS Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Haag, Thomas W.; Kamhawi, Hani

    2013-01-01

    NASA is presently developing a high-power, high-efficiency, long-lifetime Hall thruster for the Solar Electric Propulsion Technology Demonstration Mission. In support of this task, studies have been performed on the 20-kW NASA-300M Hall thruster to aid in the overall design process. The ability to incorporate magnetic shielding into a high-power Hall thruster was also investigated with the NASA- 300MS, a modified version of the NASA-300M. The inclusion of magnetic shielding would allow the thruster to push existing state-of-the-art technology in regards to service lifetime, one of the goals of the Technology Demonstration Mission. Langmuir probe measurements were taken within the discharge channels of both thrusters in order to characterize differences at higher power levels, as well as validate ongoing modeling efforts using the axisymmetric code Hall2De. Flush-mounted Langmuir probes were also used within the channel of the NASA-300MS to verify that magnetic shielding was successfully applied. Measurements taken from 300 V, 10 kW to 600 V, 20 kW have shown plasma potentials near anode potential and electron temperatures of 4 to 12 eV at the walls near the thruster exit plane of the NASA-300MS, verifying magnetic shielding and validating the design process at this power level. Channel centerline measurements on the NASA-300M from 300 V, 10 kW to 500 V, 20 kW show the electron temperature peak at approximately 0.1 to 0.2 channel lengths upstream of the exit plane, with magnitudes increasing with discharge voltage. The acceleration profiles appear to be centered about the exit plane with a width of approximately 0.3 to 0.4 channel lengths. Channel centerline measurements on the NASA-300MS were found to be more challenging due to additional probe heating. Ionization and acceleration zones appeared to move downstream on the NASA-300MS compared to the NASA-300M, as expected based on the shift in peak radial magnetic field. Additional measurements or alternative

  15. NASA's SDO Sees Solar Flares

    NASA Image and Video Library

    2017-12-08

    A second X-class flare of June 10, 2014, appears as a bright flash on the left side of this image from NASA’s Solar Dynamics Observatory. This image shows light in the 193-angstrom wavelength, which is typically colorized in yellow. It was captured at 8:55 a.m EDT, just after the flare peaked. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Solar Probe Cup: Laboratory Performance

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Larson, D. E.; Wright, K. H., Jr.; Gallagher, D. L.; Whittlesey, P. L.

    2017-12-01

    The Solar Probe Cup (SPC) is a Faraday Cup instrument that will fly on the Paker Solar Probe (PSP) spacecraft, orbiting the Sun at as close as 9.86 solar radii. The SPC instrument is designed to measure the thermal solar wind plasma (protons, alphas, and electrons) that will be encountered throughout its close encounter with the Sun. Due to the solar wind flow being primarily radial, the SPC instrument is pointed directly at the Sun, resulting in an extreme thermal environment that must be tolerated throughout the primary data collection phase. Laboratory testing has been performed over the past 6 months to demonstrate the instrument's performance relative to its requirements, and to characterize the measurements over the expected thermal range. This presentation will demonstrate the performance of the instrument as measured in the lab, describe the operational configurations planned for flight, and discuss the data products that will be created.

  17. Status of Solar Sail Technology Within NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2010-01-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced and they successfully completed functional vacuum testing in NASA Glenn Research Center's (GRC's) Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L Garde, respectively. The sail systems consist of a central structure with four deployable booms that support the sails. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and were scalable to much larger solar sails perhaps as large as 150 m on a side. Computation modeling and analytical simulations were also performed to assess the scalability of the technology to the large sizes required to implement the first generation of missions using solar sails. Life and space environmental effects testing of sail and component materials were also conducted. NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30M investment made in solar sail technology to that point, NASA Marshall Space Flight Center (MSFC) funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon-1 Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare will be flown in the Fall of 2010. This paper will summarize NASA's investment in solar sail technology to-date and discuss future opportunities

  18. Status of solar sail technology within NASA

    NASA Astrophysics Data System (ADS)

    Johnson, Les; Young, Roy; Montgomery, Edward; Alhorn, Dean

    2011-12-01

    In the early 2000s, NASA made substantial progress in the development of solar sail propulsion systems for use in robotic science and exploration of the solar system. Two different 20-m solar sail systems were produced. NASA has successfully completed functional vacuum testing in their Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by Alliant Techsystems Space Systems and L'Garde, respectively. The sail systems consist of a central structure with four deployable booms that support each sail. These sail designs are robust enough for deployment in a one-atmosphere, one-gravity environment and are scalable to much larger solar sails - perhaps as large as 150 m on a side. Computation modeling and analytical simulations were performed in order to assess the scalability of the technology to the larger sizes that are required to implement the first generation of missions using solar sails. Furthermore, life and space environmental effects testing of sail and component materials was also conducted.NASA terminated funding for solar sails and other advanced space propulsion technologies shortly after these ground demonstrations were completed. In order to capitalize on the $30 M investment made in solar sail technology to that point, NASA Marshall Space Flight Center funded the NanoSail-D, a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board a Falcon-1 rocket, launched August 2, 2008. As a result of the failure of that rocket, the NanoSail-D was never successfully given the opportunity to achieve orbit. The NanoSail-D flight spare was flown in the Fall of 2010. This review paper summarizes NASA's investment in solar sail technology to date and discusses future opportunities.

  19. Gravitational wave detection with the solar probe: I. Motivation

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1978-01-01

    Questions are posed and answered through discussion of gravitational wave detection with the Solar Probe. Discussed are: (1) what a gravitational wave is; (2) why wave detection is important; (3) what astrophysical information might be learned from these waves; (4) status of attempts to detect these waves; (5) why the Solar Probe is a special mission for detecting these waves; (6) how the Solar Probe's expected sensitivity compares with the strength of predicted gravitational waves; and (7) what gravity wave searchers will do after the Solar Probe.

  20. Status of Solar Sail Propulsion Within NASA - Moving Toward Interstellar Travel

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2015-01-01

    NASA is developing solar sail propulsion for two near-term missions and laying the groundwork for their future use in deep space and interstellar precursor missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, managed by MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. Lunar Flashlight, managed by JPL, will search for and map volatiles in permanently shadowed Lunar craters using a solar sail as a gigantic mirror to steer sunlight into the shaded craters. The Lunar Flashlight spacecraft will also use the propulsive solar sail to maneuver into a lunar polar orbit. Both missions use a 6U cubesat architecture, a common an 85 sq m solar sail, and will weigh less than 12 kilograms. Both missions will be launched on the first flight of the Space Launch System in 2018. NEA Scout and Lunar Flashlight will serve as important milestones in the development of solar sail propulsion technology for future, more ambitious missions including the Interstellar Probe - a mission long desired by the space science community which would send a robotic probe beyond the edge of the solar system to a distance of 250 Astronomical Units or more. This paper will summarize the development status of NEA Scout and Lunar Flashlight and describe the next steps required to enable an interstellar solar sail capability.

  1. The FIELDS Instrument Suite for Solar Probe Plus Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Technical Reports Server (NTRS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Choi, M. K.; hide

    2016-01-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  2. The FIELDS Instrument Suite for Solar Probe Plus: Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients.

    PubMed

    Bale, S D; Goetz, K; Harvey, P R; Turin, P; Bonnell, J W; de Wit, T Dudok; Ergun, R E; MacDowall, R J; Pulupa, M; Andre, M; Bolton, M; Bougeret, J-L; Bowen, T A; Burgess, D; Cattell, C A; Chandran, B D G; Chaston, C C; Chen, C H K; Choi, M K; Connerney, J E; Cranmer, S; Diaz-Aguado, M; Donakowski, W; Drake, J F; Farrell, W M; Fergeau, P; Fermin, J; Fischer, J; Fox, N; Glaser, D; Goldstein, M; Gordon, D; Hanson, E; Harris, S E; Hayes, L M; Hinze, J J; Hollweg, J V; Horbury, T S; Howard, R A; Hoxie, V; Jannet, G; Karlsson, M; Kasper, J C; Kellogg, P J; Kien, M; Klimchuk, J A; Krasnoselskikh, V V; Krucker, S; Lynch, J J; Maksimovic, M; Malaspina, D M; Marker, S; Martin, P; Martinez-Oliveros, J; McCauley, J; McComas, D J; McDonald, T; Meyer-Vernet, N; Moncuquet, M; Monson, S J; Mozer, F S; Murphy, S D; Odom, J; Oliverson, R; Olson, J; Parker, E N; Pankow, D; Phan, T; Quataert, E; Quinn, T; Ruplin, S W; Salem, C; Seitz, D; Sheppard, D A; Siy, A; Stevens, K; Summers, D; Szabo, A; Timofeeva, M; Vaivads, A; Velli, M; Yehle, A; Werthimer, D; Wygant, J R

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  3. The FIELDS Instrument Suite for Solar Probe Plus. Measuring the Coronal Plasma and Magnetic Field, Plasma Waves and Turbulence, and Radio Signatures of Solar Transients

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T. A.; Burgess, D.; Cattell, C. A.; Chandran, B. D. G.; Chaston, C. C.; Chen, C. H. K.; Choi, M. K.; Connerney, J. E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J. F.; Farrell, W. M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S. E.; Hayes, L. M.; Hinze, J. J.; Hollweg, J. V.; Horbury, T. S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J. C.; Kellogg, P. J.; Kien, M.; Klimchuk, J. A.; Krasnoselskikh, V. V.; Krucker, S.; Lynch, J. J.; Maksimovic, M.; Malaspina, D. M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D. J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S. J.; Mozer, F. S.; Murphy, S. D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E. N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S. W.; Salem, C.; Seitz, D.; Sheppard, D. A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J. R.

    2016-12-01

    NASA's Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products.

  4. The solar probe and coronal dynamics

    NASA Technical Reports Server (NTRS)

    Belcher, J.; Heinemann, M.; Goodrich, C.

    1978-01-01

    The discovery of coronal holes led to basic changes in ideas about the structure of the low corona and its expansion into the solar wind. The nature of the energy flux is not understood. Current ideas include enhanced thermal conductivities, extended MHD wave heating, and wave momentum transfer, all in rapidly diverging geometries. There is little feel for the relative importance of these processes. The Solar Probe, with its penetration deep into the solar corona, could lead to observational constraints on their relative importance, and thus to an understanding of the origin of the solar wind. Observations from the Solar Probe will also bear on such questions as to whether small scale "intrastream" structure is common close to the Sun in open field-line regions, whether the properties of the wind are pronouncedly different over closed and open field-line regions at five solar radii, and many others. The resolution of these questions requires measurements of the magnetic field and of the proton and electron distribution functions.

  5. NASA's Terra Satellite Sees Shadows of Solar Eclipse

    NASA Image and Video Library

    2015-03-20

    During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA's Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse's shadow over the clouds in the Arctic Ocean. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles

    2007-01-01

    NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within

  7. Understanding non-equilibrium collisional and expansion effects in the solar wind with Parker Solar Probe

    NASA Astrophysics Data System (ADS)

    Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.

    2017-12-01

    The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.

  8. Solar Sail Propulsion Technology at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Charles Les

    2007-01-01

    NASA's In-Space Propulsion Technology Program developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an area density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In addition, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. The presentation will describe the status of solar sail propulsion within NASA, near-term solar sail mission applications, and near-term plans for further development.

  9. Solar Probe ANalyzer for Ions - Laboratory Performance

    NASA Astrophysics Data System (ADS)

    Livi, R.; Larson, D. E.; Kasper, J. C.; Korreck, K. E.; Whittlesey, P. L.

    2017-12-01

    The Parker Solar Probe (PSP) mission is a heliospheric satellite that will orbit the Sun closer than any prior mission to date with a perihelion of 35 solar radii (RS) and an aphelion of 10 RS. PSP includes the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite, which in turn consists of four instruments: the Solar Probe Cup (SPC) and three Solar Probe ANalyzers (SPAN) for ions and electrons. Together, this suite will take local measurements of particles and electromagnetic fields within the Sun's corona. SPAN-Ai has completed flight calibration and spacecraft integration and is set to be launched in July of 2018. The main mode of operation consists of an electrostatic analyzer (ESA) at its aperture followed by a Time-of-Flight section to measure the energy and mass per charge (m/q) of the ambient ions. SPAN-Ai's main objective is to measure solar wind ions within an energy range of 5 eV - 20 keV, a mass/q between 1-60 [amu/q] and a field of view of 2400x1200. Here we will show flight calibration results and performance.

  10. The Hera Saturn entry probe mission

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Frampton, R.; Coustenis, A.; Reh, K.; Lebreton, J.-P.; Fletcher, L. N.; Hueso, R.; Amato, M. J.; Colaprete, A.; Ferri, F.; Stam, D.; Wurz, P.; Atreya, S.; Aslam, S.; Banfield, D. J.; Calcutt, S.; Fischer, G.; Holland, A.; Keller, C.; Kessler, E.; Leese, M.; Levacher, P.; Morse, A.; Muñoz, O.; Renard, J.-B.; Sheridan, S.; Schmider, F.-X.; Snik, F.; Waite, J. H.; Bird, M.; Cavalié, T.; Deleuil, M.; Fortney, J.; Gautier, D.; Guillot, T.; Lunine, J. I.; Marty, B.; Nixon, C.; Orton, G. S.; Sánchez-Lavega, A.

    2016-10-01

    The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera's aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.

  11. Solar Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    2014-01-01

    An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.

  12. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  13. Radio Remote Sensing of Coronal Mass Ejections: Implications for Parker Solar Probe and Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Kooi, J. E.; Thomas, N. C.; Guy, M. B., III; Spangler, S. R.

    2017-12-01

    Coronal mass ejections (CMEs) are fast-moving magnetic field structures of enhanced plasma density that play an important role in space weather. The Solar Orbiter and Parker Solar Probe will usher in a new era of in situ measurements, probing CMEs within distances of 60 and 10 solar radii, respectively. At the present, only remote-sensing techniques such as Faraday rotation can probe the plasma structure of CMEs at these distances. Faraday rotation is the change in polarization position angle of linearly polarized radiation as it propagates through a magnetized plasma (e.g. a CME) and is proportional to the path integral of the electron density and line-of-sight magnetic field. In conjunction with white-light coronagraph measurements, Faraday rotation observations have been used in recent years to determine the magnetic field strength of CMEs. We report recent results from simultaneous white-light and radio observations made of a CME in July 2015. We made radio observations using the Karl G. Jansky Very Large Array (VLA) at 1 - 2 GHz frequencies of a set of radio sources through the solar corona at heliocentric distances that ranged between 8 - 23 solar radii. These Faraday rotation observations provide a priori estimates for comparison with future in situ measurements made by the Solar Orbiter and Parker Solar Probe. Similar Faraday rotation observations made simultaneously with observations by the Solar Orbiter and Parker Solar Probe in the future could provide information about the global structure of CMEs sampled by these probes and, therefore, aid in understanding the in situ measurements.

  14. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Credit: NASA/GSFC

  15. NASA Nationwide and the Year of the Solar System (Invited)

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2010-12-01

    NASA depends on the efforts of several volunteer networks to help implement its formal and informal education goals, to disseminate its key messages related to space and Earth science missions and to support broad public initiatives such as the upcoming Year of the Solar System (YSS), sponsored by the Planetary Science Education and Public Outreach Forum (SEPOF). These highly leveraged networks include programs such as Solar System Ambassadors, Solar System Educators, Night Sky Network, and NASA Explorer Schools. Founded in June 2008, NASA Nationwide: A Consortium of Formal and Informal Education Networks is a program that brings together these volunteer networks by creating an online community and shared resources which broadens the member networks’ base of support and provides opportunities to coordinate, cooperate, and collaborate with each other. Since its inception, NASA Nationwide has grown to include twelve NASA-funded volunteer networks as members and collaborates with three other NASA networks as affiliates. NASA Nationwide’s support for the Year of the Solar System includes management of several recently completed Solar System Nights kits, which will be made available regionally to collaborative teams of volunteers and affiliates for use in connecting with students in underserved, underrepresented and rural populations. In the latter part of 2010, the program will be further enhanced by the debut of the public NASA Nationwide website to showcase the successful efforts of these volunteers, provide information about member organizations and advertise their upcoming events in support of the Year of the Solar System. Through its broad reach and the dedicated enthusiasm of its members, NASA Nationwide will be an essential factor utilized to help achieve Year of the Solar System goals and ensure the ultimate success of the initiative.

  16. Demonstrated Performance of the Solar Probe Cup

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Daigneau, P.; Freeman, M.; Caldwell, D.; Gauron, T.; Wright, K. H.; Bergner, H.; Cirtain, J. W.; Larson, D.; Brodu, E.; Balat-Pichelin, M.

    2013-12-01

    The Solar Probe Cup (SPC) is a Faraday Cup being developed for the Solar Probe Plus (SPP) mission. SPP will be the first spacecraft to directly measure the solar environment near the Alfven point in the atmosphere of the Sun, approaching to within 10 solar radii of the center of the Sun. In order to make the observations of radially flowing solar wind needed to address questions of coronal and solar wind heating and acceleration, SPC must operate while looking directly at the Sun. As a result, SPC will face a harsh and unprecidented environment, with component temperatures exceeding 1000C at closest approach. SPC is similar in design and operation to the two Faraday Cup instruments on the Wind spacecraft, which have been making stable measurements of the solar wind near Earth for two decades, with two key differences. SPC must survive and operate at extreme temperatures due to the levels of solar flux near the Sun, and it must record the solar wind approximately one thousand times faster than the instruments on Wind to keep up with the rapid variations expected near the Sun. We present results of a demonstration model of SPC operated in laboratory reproductions of the near-Sun environment. In the last year, SPC has been exposed to simulated encounter solar fluxes and resulting temperature profiles using a vaccum chamber and modified IMAX film projectors. In addition, SPC has been exposed to realistic ion beams. We show that SPC can operate in these environments, and make the measurements required for the sucess of the Solar Probe mission. Based on the performance of our prototype, the expected cadence and sensitivity of SPC will be discussed, with a focus on its ability to distinguish between models of heating in the solar corona.

  17. The NASA Smart Probe Project for real-time multiple microsensor tissue recognition

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.; Mah, Robert W.

    2003-01-01

    BACKGROUND: Remote surgery requires automated sensors, effectors and sensor-effector communication. The NASA Smart Probe Project has focused on the sensor aspect. METHODS: The NASA Smart Probe uses neural networks and data from multiple microsensors for a unique tissue signature in real time. Animal and human trials use several probe configurations: (1) 8-microsensor probe (2.5 mm in diameter) for rodent studies (normal and subcutaneous mammary tumor tissues), and (2) 21-gauge needle probe with 3 spectroscopic fibers and an impedance microelectrode for breast cancer diagnosis in humans. Multisensor data are collected in real time (update 100 times/s) using PCs. RESULTS: Human data (collected by NASA licensee BioLuminate) from 15 women undergoing breast biopsy distinguished normal tissue from both benign tumors and breast carcinoma. Tumor margins and necrosis are rapidly detected. CONCLUSION: Real-time tissue identification is achievable. Potential applications, including probes incorporating nanoelectrode arrays, are presented. Copyright 2003 S. Karger AG, Basel.

  18. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, far right, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Pictured from left of Dr. Guhathakurta's are: Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  19. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. Pictured right to left are: Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  20. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. On Feb. 11, 2010, NASA launched the SDO spacecraft, which is the most advanced spacecraft ever designed to study the sun. Seated left to right are: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md.; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment Instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  1. Solar-Heliospheric-Interstellar Cosmic Ray Tour with the NASA Virtual Energetic Particle Observatory and the Space Physics Data Facility

    NASA Astrophysics Data System (ADS)

    Cooper, John F.; Papitashvili, Natalia E.; Johnson, Rita C.; Lal, Nand; McGuire, Robert E.

    2015-04-01

    NASA now has a large collection of solar, heliospheric, and local interstellar (Voyager 1) cosmic ray particle data sets that can be accessed through the data system services of the NASA Virtual Energetic Particle Observatory (VEPO) in collaboration with the NASA Space Physics Data Facility SPDF), respectively led by the first and last authors. The VEPO services were developed to enhance the long-existing OMNIWeb solar wind and energetic particle services of SPDF for on-line browse, correlative, and statistical analysis of NASA and ESA mission fields, plasma, and energetic particle data. In this presentation we take of tour through VEPO and SPDF of SEP reservoir events, the outer heliosphere earlier surveyed by the Pioneer, Voyager, and Ulysses spacecraft and now being probed by New Horizons, and the heliosheath-heliopause-interstellar regions now being explored by the Voyagers and IBEX. Implications of the latter measurements are also considered for the flux spectra of low to high energy cosmic rays in interstellar space.

  2. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  3. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels completely extended.

  4. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this rendering illustrates the Solar-B Spacecraft in earth orbit with its solar panels partially extended.

  5. The NASA Langley building solar project and the supporting Lewis solar technology program

    NASA Technical Reports Server (NTRS)

    Ragsdale, R. G.; Namkoong, D.

    1974-01-01

    The use of solar energy to heat and cool a new office building that is now under construction is reported. Planned for completion in December 1975, the 53,000 square foot, single story building will utilize 15,000 square feet of various types of solar collectors in a test bed to provide nearly all of the heating demand and over half of the air conditioning demand. Drawing on its space-program-developed skills and resources in heat transfer, materials, and systems studies, NASA-Lewis will provide technology support for the Langley building project. A solar energy technology program underway at Lewis includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Based on results obtained in this program, NASA-Lewis will select and procure the solar collectors for the Langley test bed.

  6. NASA's SDO Observes an X-class Solar Flare

    NASA Image and Video Library

    2017-12-08

    The sun emitted a significant solar flare, peaking at 1:01 a.m. EDT on Oct. 19, 2014. NASA's Solar Dynamics Observatory, which is always observing the sun, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X1.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. NASA Facts, Solar Cells.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  8. NASA's SDO Shows Images of Significant Solar Flare

    NASA Image and Video Library

    2017-12-08

    Caption: An X-class solar flare erupted on the left side of the sun on the evening of Feb. 24, 2014. This composite image, captured at 7:59 p.m. EST, shows the sun in X-ray light with wavelengths of both 131 and 171 angstroms. Credit: NASA/SDO More info: The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. The New NASA-STD-4005 and NASA-HDBK-4006, Essentials for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    High voltage solar arrays are necessary for direct-drive solar electric propulsion, which has many advantages, including simplicity and high efficiency. Even when direct-drive is not used, the use of high voltage solar arrays leads to power transmission and conversion efficiencies in electric propulsion Power Management and Distribution. Nevertheless, high voltage solar arrays may lead to temporary power disruptions, through the so-called primary electrostatic discharges, and may permanently damage arrays, through the so-called permanent sustained discharges between array strings. Design guidance is needed to prevent these solar array discharges, and to prevent high power drains through coupling between the electric propulsion devices and the high voltage solar arrays. While most electric propulsion systems may operate outside of Low Earth Orbit, the plasmas produced by their thrusters may interact with the high voltage solar arrays in many ways similarly to Low Earth Orbit plasmas. A brief description of previous experiences with high voltage electric propulsion systems will be given in this paper. There are two new official NASA documents available free through the NASA Standards website to help in designing and testing high voltage solar arrays for electric propulsion. They are NASA-STD-4005, the Low Earth Orbit Spacecraft Charging Design Standard, and NASA-HDBK-4006, the Low Earth Orbit Spacecraft Charging Design Handbook. Taken together, they can both educate the high voltage array designer in the engineering and science of spacecraft charging in the presence of dense plasmas and provide techniques for designing and testing high voltage solar arrays to prevent electrical discharges and power drains.

  10. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Here, scientists are showing an animation from Walt Feimer, lead animator for the Heliophysics team. Credit: NASA/GSFC

  11. NASA-STD-4005 and NASA-HDBK-4006, LEO Spacecraft Solar Array Charging Design Standard

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    Two new NASA Standards are now official. They are the NASA LEO Spacecraft Charging Design Standard (NASA-STD-4005) and the NASA LEO Spacecraft Charging Design Handbook (NASA-HDBK-4006). They give the background and techniques for controlling solar array-induced charging and arcing in LEO. In this paper, a brief overview of the new standards is given, along with where they can be obtained and who should be using them.

  12. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Solar Dynamics Observatory)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from NASA’s Solar Dynamics Observatory.

  13. NASA Smart Surgical Probe Project

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Andrews, Russell J.; Jeffrey, Stefanie S.; Guerrero, Michael; Papasin, Richard; Koga, Dennis (Technical Monitor)

    2002-01-01

    Information Technologies being developed by NASA to assist astronaut-physician in responding to medical emergencies during long space flights are being employed for the improvement of women's health in the form of "smart surgical probe". This technology, initially developed for neurosurgery applications, not only has enormous potential for the diagnosis and treatment of breast cancer, but broad applicability to a wide range of medical challenges. For the breast cancer application, the smart surgical probe is being designed to "see" a suspicious lump, determine by its features if it is cancerous, and ultimately predict how the disease may progress. A revolutionary early breast cancer detection tool based on this technology has been developed by a commercial company and is being tested in human clinical trials at the University of California at Davis, School of Medicine. The smart surgical probe technology makes use of adaptive intelligent software (hybrid neural networks/fuzzy logic algorithms) with the most advanced physiologic sensors to provide real-time in vivo tissue characterization for the detection, diagnosis and treatment of tumors, including determination of tumor microenvironment and evaluation of tumor margins. The software solutions and tools from these medical applications will lead to the development of better real-time minimally-invasive smart surgical probes for emergency medical care and treatment of astronauts on long space flights.

  14. NASA's SDO Shows Images of Significant Solar Flare

    NASA Image and Video Library

    2014-02-25

    Caption: These SDO images from 7:25 p.m. EST on Feb. 24, 2014, show the first moments of an X-class flare in different wavelengths of light -- seen as the bright spot that appears on the left limb of the sun. Hot solar material can be seen hovering above the active region in the sun's atmosphere, the corona. Credit: NASA/SDO More info: The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. NASA's Marshall Space Flight Center (MSFC) Contributes to Solar B/Hinode

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). Provided by the Multimedia support group at MSFC, this video clip is an animated illustration of the Solar-B Spacecraft in earth orbit.

  16. Parker Solar Probe: Delta IV Heavy Second-stage and Port CBC Arrival, Offload, and Transport

    NASA Image and Video Library

    2017-08-26

    The United Launch Alliance Mariner arrives at Port Canaveral's Army Warf carrying the third Delta IV Heavy common booster core and second stage for NASA's upcoming Parker Solar Probe spacecraft. The flight hardware is offloaded and transported to the Horizontal Integration Facility (HIF) at Cape Canaveral Air Force Station for preflight processing. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  17. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Tom Woods, (second from right), principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  18. NASA Solar Array Demonstrates Commercial Potential

    NASA Technical Reports Server (NTRS)

    Creech, Gray

    2006-01-01

    A state-of-the-art solar-panel array demonstration site at NASA's Dryden Flight Research Center provides a unique opportunity for studying the latest in high-efficiency solar photovoltaic cells. This five-kilowatt solar-array site (see Figure 1) is a technology-transfer and commercialization success for NASA. Among the solar cells at this site are cells of a type that was developed in Dryden Flight Research Center s Environmental Research Aircraft and Sensor Technology (ERAST) program for use in NASA s Helios solar-powered airplane. This cell type, now denoted as A-300, has since been transferred to SunPower Corporation of Sunnyvale, California, enabling mass production of the cells for the commercial market. High efficiency separates these advanced cells from typical previously commercially available solar cells: Whereas typical previously commercially available cells are 12 to 15 percent efficient at converting sunlight to electricity, these advanced cells exhibit efficiencies approaching 23 percent. The increase in efficiency is due largely to the routing of electrical connections behind the cells (see Figure 2). This approach to increasing efficiency originated as a solution to the problem of maximizing the degree of utilization of the limited space available atop the wing of the Helios airplane. In retrospect, the solar cells in use at this site could be used on Helios, but the best cells otherwise commercially available could not be so used, because of their lower efficiencies. Historically, solar cells have been fabricated by use of methods that are common in the semiconductor industry. One of these methods includes the use of photolithography to define the rear electrical-contact features - diffusions, contact openings, and fingers. SunPower uses these methods to produce the advanced cells. To reduce fabrication costs, SunPower continues to explore new methods to define the rear electrical-contact features. The equipment at the demonstration site includes

  19. The Solar Probe Heatshield Development

    NASA Technical Reports Server (NTRS)

    Randolph, J.; Imbriale, W.; Miyake, R.; Pierson, E.; Dirling, R.

    2000-01-01

    A NASA mission that will travel close to the sun requires a unique heatshield to protect the spacecraft and the instruments from the peak flux of 400 W/cm(sup 2) found at the mission's perihelion of 4 solar radii ( 0.02 AU).

  20. Reconnection-Driven Solar Polar Jets to be Encountered by Solar Probe Plus: Simulated In Situ Measurements and Data Analysis

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Roberts, M. A.; Karpen, J. T.; DeVore, C. R.

    2015-12-01

    Solar polar jets are observed to originate in regions within the open field of solar coronal holes. These so called "anemone" regions are associated with an embedded dipole topology, consisting of a fan-separatrix and a spine line emanating from a null point occurring at the top of the dome shaped fan surface (Antiochos 1996). In this study, we analyze simulations using the Adaptively Refined MHD Solver (ARMS) that take into account gravity, solar wind, and spherical geometry to generate polar jets by reconnection between a twisted embedded bipole and the surrounding open field (Karpen et al. 2015). These simulations confirm and extend previous Cartesian studies of polar jets based on this mechanism (Pariat et al. 2009, 2010, 2015), as well as extending the analyses from our previous work (Roberts et al. 2014,2015) out to radial distances that will be sampled by Solar Probe Plus. Focusing on the plasma density, velocity, magnetic field, and current density, we interpolate the adaptively gridded simulation data onto a regular grid, and analyze the signatures that the jet produces as it propagates outward from the solar surface into the inner heliosphere. We also conduct simulated spacecraft fly-throughs of the jet in several different velocity regimes, illustrating the signatures that Solar Probe Plus may encounter in situ as the jet propagates into the heliosphere. The trans-Alfvénic nature of the jet front is confirmed by temporally differencing the plasma mass density and comparing the result with the local Alfvén speed. Our analysis confirms the presence of a reconnection driven magnetic turbulence in the simulated plasma jet, finding spatial correlations of magnetic fluctuations inside the jet to be in agreement with the scaling model of MHD turbulence. The turbulence cascade is supported by multiscale current sheets combined with filamentary structures representing fluid vorticies. The spatial orientation of these current sheets, combined with the anisotropy

  1. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  2. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Philip H. Scherrer (left) principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, while colleagues Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters (right) look on Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  3. NASA's SDO Sees a Solar Flare and a Lunar Transit

    NASA Image and Video Library

    2017-12-08

    A solar flare erupts on Jan. 30, 2014, as seen by the bright flash on the left side of the sun, captured here by NASA's Solar Dynamics Observatory. In the lower right corner the moon can be seen, having just passed between the observatory and the sun. --- The sun emitted a mid-level solar flare, peaking at 11:11 a.m. EST on Jan. 30, 2014. Images of the flare were captured by NASA's Solar Dynamics Observatory, or SDO, shortly after the observatory witnessed a lunar transit. The black disk of the moon can be seen in the lower right of the images. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may impact Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an M6.6 class flare. Updates will be provided as needed. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Scientific Assessment of NASA's Solar System Exploration Roadmap

    NASA Technical Reports Server (NTRS)

    1996-01-01

    At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.

  5. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  6. Solar Probe Plus: Report of the Science and Technology Definition Team

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Solar Probe+ will be an extraordinary and historic mission, exploring what is arguably the last region of the solar system to be visited by a spacecraft, the Sun s outer atmosphere or corona as it extends out into space. Approaching as close as 9.5 RS* (8.5 RS above the Sun s surface), Solar Probe+ will repeatedly sample the near-Sun environment, revolutionizing our knowledge and understanding of coronal heating and of the origin and evolution of the solar wind and answering critical questions in heliophysics that have been ranked as top priorities for decades. Moreover, by making direct, in-situ measurements of the region where some of the most hazardous solar energetic particles are energized, Solar Probe+ will make a fundamental contribution to our ability to characterize and forecast the radiation environment in which future space explorers will work and live.

  7. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  8. NASA's Solar Eclipse Composite Image July 11, 2010

    NASA Image and Video Library

    2017-12-08

    Eclipse 2010 Composite A solar eclipse photo (gray and white) from the Williams College Expedition to Easter Island in the South Pacific (July 11, 2010) was embedded with an image of the Sun’s outer corona taken by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft and shown in red false color. LASCO uses a disk to blot out the bright sun and the inner corona so that the faint outer corona can be monitored and studied. Further, the dark silhouette of the moon was covered with an image of the Sun taken in extreme ultraviolet light at about the same time by the Atmospheric Imaging Assembly on Solar Dynamics Observatory (SDO). The composite brings out the correlation of structures in the inner and outer corona. Credits: Williams College Eclipse Expedition -- Jay M. Pasachoff, Muzhou Lu, and Craig Malamut; SOHO’s LASCO image courtesy of NASA/ESA; solar disk image from NASA’s SDO; compositing by Steele Hill, NASA Goddard Space Flight Center. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  9. [Now, The Time for Probes and In-Situ Science

    NASA Technical Reports Server (NTRS)

    Hubbard, G. Scott

    2005-01-01

    A viewgraph explaining the need for probes and in situ measurements to understand data from extra solar planet studies is shown. The topics include: 1) To explore the universe and search for life: Probes in Context; 2) What is a probe?; 3) NASA Ames Research Center-founded 1939; 4) Past & Present: Successful Probes and Fly-by's; 5) Thermal Protection Materials and Arc-Jet Facility; 6) Mars Exploration Rovers-Spirit & Opportunity; 7) Bio/Info/Nanotechnology; 8) Technology for Exploration; 9) Award Winning NASA Research Park; 10) Where we need to go; and 11) The Future: Pico Probes

  10. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Alan Title, second from left, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. Pictured from left to right: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md., Alan Title, Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  11. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. Photo Credit: (NASA/Carla Cioffi)

  12. Fairfield Plume Measurement and Analysis on the NASA-300M and NASA-300MS

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    NASA is developing a 10- to 15-kW Hall thruster system to support future NASA missions. This activity is funded under the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project. As a part of the development process, the NASA-300M, a 20-kW Hall thruster, was modified to incorporate the magnetic shielding concept and named the NASA-300MS. This activity was undertaken to assess the viability of using the magnetic shielding concept on a high-power Hall thruster to greatly reduce discharge channel erosion. This paper reports on the study to characterize the far-field plumes of the NASA-300M and NASA-300MS. Diagnostics deployed included a polarlyswept Faraday probe, a Wien filter (ExB probe), a retarding potential analyzer, and a Langmuir probe. During the study, a new, more accurate, integration method for analyzing Wien filter probe data was implemented and effect of secondary electron emission on the Faraday probe data was treated. Comparison of the diagnostic results from the two thrusters showed that the magnetically shielded version performed with 2 percent higher voltage utilization efficiency, 2 percent lower plume divergence efficiency, and 2 percent lower mass utilization efficiency compared to the baseline version. The net change in efficiency is within the aggregate measurement uncertainty so the overall performance is roughly equal for the two versions of the thruster. Anode efficiency calculated from thrust stand measurement corroborates this finding.

  13. NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Alaska

    NASA Image and Video Library

    2017-12-08

    This image shows how the partial solar eclipse darkened clouds over Alaska. It was taken on Oct. 23 at 21:10 UTC (5:10 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Recent Advances in Solar Sail Propulsion at NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.

  15. The Solar Probe Plus Mission: Humanity's First Visit to Our Star

    NASA Technical Reports Server (NTRS)

    Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; hide

    2015-01-01

    Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPPs main science goal is to determine the structure and dynamics of the Suns coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASAs Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPPs perihelion from 35 solar radii (RS) for the first orbit to less than 10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions.

  16. The Solar Probe Plus Mission: Humanity's First Visit to Our Star

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Velli, M. C.; Bale, S. D.; Decker, R.; Driesman, A.; Howard, R. A.; Kasper, J. C.; Kinnison, J.; Kusterer, M.; Lario, D.; Lockwood, M. K.; McComas, D. J.; Raouafi, N. E.; Szabo, A.

    2016-12-01

    Solar Probe Plus (SPP) will be the first spacecraft to fly into the low solar corona. SPP's main science goal is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what processes accelerate energetic particles. Understanding these fundamental phenomena has been a top-priority science goal for over five decades, dating back to the 1958 Simpson Committee Report. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The mission design and the technology and engineering developments enable SPP to meet its science objectives to: (1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; (2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and (3) Explore mechanisms that accelerate and transport energetic particles. The SPP mission was confirmed in March 2014 and is under development as a part of NASA's Living with a Star (LWS) Program. SPP is scheduled for launch in mid-2018, and will perform 24 orbits over a 7-year nominal mission duration. Seven Venus gravity assists gradually reduce SPP's perihelion from 35 solar radii (RS) for the first orbit to {<}10 RS for the final three orbits. In this paper we present the science, mission concept and the baseline vehicle for SPP, and examine how the mission will address the key science questions

  17. NASA's search for the solar connection. I. [OSO Skylab, Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Chapman, R. W.

    1979-01-01

    NASA's solar research, which leans toward the study of the sun as a star, is surveyed. The Orbiting Solar Observatory (OSO) program is covered, which yielded data such as spectras of 140-400 A wavelength of the entire solar disk. Attention is also given to the results obtained by Skylab, such as data showing that whenever a large coronal hole exists near the sun's equator, a stream of high-speed solar wind will be observed at the earth. Finally areas of future research, such as a concerted study of flare phenomenon, are discussed.

  18. Gravity Probe B Completed With Solar Arrays

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is completed during the solar array installation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  19. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Lockett, Tiffany

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high Delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m(exp. 2) solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four approximately 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.

  20. Solar Probe ANalyzer Ion Instrument - Demonstrated Laboratory Performance

    NASA Astrophysics Data System (ADS)

    Livi, R.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.; Case, A. W.; Korreck, K. E.

    2016-12-01

    The Solar Probe Plus (SPP) mission is a heliospheric satellite that will orbit the Sun closer than any prior mission to date with a perihelion of 35 solar radii (RS) and an aphelion of 9.86 RS. SPP includes the Solar Wind Electrons Alphas and Protons (SWEAP) instrument suite, which in turn consists of four instruments: the Solar Probe Cup (SPC) and three Solar Probe ANalyzers (SPAN) for ions and electrons. Together, this suite will take local measurements of particles and electromagnetic fields within the Sun's corona. The SPAN-Ai instrument, the ion analyzer, is composed of an electrostatic analyzer (ESA) at its aperture followed by a Time-of-Flight section to measure the energy and mass per charge (m/q) of the ambient ions. The electronics consist of (1) an anode board, (2) a TDC digital board, (3) a low voltage power supply, and (4) two high voltage boards. The onboard FPGA will control electronics and event signals while sending variable digitial packets of said information to the SWEAP Electronics Module (SWEM). The majority of the components are built, assembled, and tested primarily at the University of California, Berkeley (UCB). SPAN-Ai's main objective is to measure ions with an energy range of 5 eV - 20 keV, a mass/q between 1-100 [amu/q] and a field of view of 240 x 120 degrees . This presentation will show preliminary calibration results over the past 6 months of these features performed at UCB.

  1. Solar Probe thermal shield design and testing

    NASA Technical Reports Server (NTRS)

    Millard, Jerry M.; Miyake, Robert N.; Rainen, Richard A.

    1992-01-01

    This paper discusses the major thermal shield subsystem development activities in support of the Solar Probe study being conducted at JPL. The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center to perform fundamental experiments in space physics. Exposure to 2900 earth suns at perihelion requires the spacecraft to be protected within the shadow envelope of a protective shield. In addition, the mass loss rate off of the shield at elevated temperature must comply with plasma instrument requirements and has become the driver of the shield design. This paper will focus on the analytical design work to size the shield and control the shield mass loss rate for the various spacecraft options under study, the application of carbon-carbon materials for shield components, development and preparation of carbon-carbon samples for materials testing, and a materials testing program for carbon-carbon and tungsten alloys to investigate thermal/optical properties, mass loss (carbon-carbon only), material integrity, and high velocity impact behavior.

  2. SPADER - Science Planning Analysis and Data Estimation Resource for the NASA Parker Solar Probe Mission

    NASA Astrophysics Data System (ADS)

    Rodgers, D. J.; Fox, N. J.; Kusterer, M. B.; Turner, F. S.; Woleslagle, A. B.

    2017-12-01

    Scheduled to launch in July 2018, the Parker Solar Probe (PSP) will orbit the Sun for seven years, making a total of twenty-four extended encounters inside a solar radial distance of 0.25 AU. During most orbits, there are extended periods of time where PSP-Sun-Earth geometry dramatically reduces PSP-Earth communications via the Deep Space Network (DSN); there is the possibility that multiple orbits will have little to no high-rate downlink available. Science and housekeeping data taken during an encounter may reside on the spacecraft solid state recorder (SSR) for multiple orbits, potentially running the risk of overflowing the SSR in the absence of mitigation. The Science Planning Analysis and Data Estimation Resource (SPADER) has been developed to provide the science and operations teams the ability to plan operations accounting for multiple orbits in order to mitigate the effects caused by the lack of high-rate downlink. Capabilities and visualizations of SPADER are presented; further complications associated with file downlink priority and high-speed data transfers between instrument SSRs and the spacecraft SSR are discussed, as well as the long-term consequences of variations in DSN downlink parameters on the science data downlink.

  3. NASA's Solar Observing Fleet Watch Comet ISON's Journey Around the Sun

    NASA Image and Video Library

    2013-11-22

    Comet ISON makes its appearance into the higher-resolution HI-1 camera on the STEREO-A spacecraft. The dark "clouds" coming from the right are density enhancements in the solar wind, causing all the ripples in comet Encke's tail. These kinds of solar wind interactions give us valuable information about solar wind conditions near the sun. Note: the STEREO-A spacecraft is currently located on the other side of the Sun, so it sees a totally different geometry to what we see from Earth. Credit: Karl Battams/NASA/STEREO/CIOC NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Involving Scientists in the NASA / JPL Solar System Educators Program

    NASA Astrophysics Data System (ADS)

    Brunsell, E.; Hill, J.

    2001-11-01

    The NASA / JPL Solar System Educators Program (SSEP) is a professional development program with the goal of inspiring America's students, creating learning opportunities, and enlightening inquisitive minds by engaging them in the Solar System exploration efforts conducted by the Jet Propulsion Laboratory (JPL). SSEP is a Jet Propulsion Laboratory program managed by Space Explorers, Inc. (Green Bay, WI) and the Virginia Space Grant Consortium (Hampton, VA). The heart of the program is a large nationwide network of highly motivated educators. These Solar System Educators, representing more than 40 states, lead workshops around the country that show teachers how to successfully incorporate NASA materials into their teaching. During FY2001, more than 9500 educators were impacted through nearly 300 workshops conducted in 43 states. Solar System Educators attend annual training institutes at the Jet Propulsion Laboratory during their first two years in the program. All Solar System Educators receive additional online training, materials and support. The JPL missions and programs involved in SSEP include: Cassini Mission to Saturn, Galileo Mission to Jupiter, STARDUST Comet Sample Return Mission, Deep Impact Mission to a Comet, Mars Exploration Program, Outer Planets Program, Deep Space Network, JPL Space and Earth Science Directorate, and the NASA Office of Space Science Solar System Exploration Education and Public Outreach Forum. Scientists can get involved with this program by cooperatively presenting at workshops conducted in their area, acting as a content resource or by actively mentoring Solar System Educators. Additionally, SSEP will expand this year to include other missions and programs related to the Solar System and the Sun.

  5. An Overview Of NASA's Solar Sail Propulsion Project

    NASA Technical Reports Server (NTRS)

    Garbe, Gregory; Montgomery, Edward E., IV

    2003-01-01

    Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.

  6. NASA's SDO Observes Largest Sunspot of the Solar Cycle

    NASA Image and Video Library

    2017-12-08

    On Oct. 18, 2014, a sunspot rotated over the left side of the sun, and soon grew to be the largest active region seen in the current solar cycle, which began in 2008. Currently, the sunspot is almost 80,000 miles across -- ten Earth's could be laid across its diameter. Sunspots point to relatively cooler areas on the sun with intense and complex magnetic fields poking out through the sun's surface. Such areas can be the source of solar eruptions such as flares or coronal mass ejections. So far, this active region – labeled AR 12192 -- has produced several significant solar flares: an X-class flare on Oct. 19, an M-class flare on Oct. 21, and an X-class flare on Oct. 22, 2014. The largest sunspot on record occurred in 1947 and was almost three times as large as the current one. Active regions are more common at the moment as we are in what's called solar maximum, which is the peak of the sun's activity, occurring approximately every 11 years. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Study of possible solar heating effects on thermosonde probes: Error analysis

    NASA Astrophysics Data System (ADS)

    Brown, James H.; Dewan, Edmond; Murphy, Edmund; Thomas, Peter

    1989-07-01

    Thermosonde data reveals a diurnal daytime shift in measured levels of C square (n) in the free atmosphere. The shift is manifested in two ways. First, an apparent offset in the smallest measured values of C square (n) exists. Secondly, the curve of the average profile shows an enhancement over nighttime profiles. Related optical and radar measurements have indicated that differences between day and night probably exist, but because of limited instrumental resolution and altitude capabilities those results are inconclusive. Several hypotheses were put forward concerning possible instrumental or solar based sources of data contamination. The possibility was examined that solar radiation causes probe heating with subsequent instrumental effects. Calculation, computer simulation, and direct measurements have shown that the sun heats the body of the probe sensor a couple of degrees above the ambient and that the level of heating depends upon the solar aspect angle and magnitude and direction of air flow over the probe. A small but insignificant ac type effect can result from improper probe geometry or probe mismatch together with a coupling of solar heating with velocity turbulence. Transient and dc type effects can occur, but measured, processed, and transmitted root mean square C square (n) information is not likely to contain instrumental contamination.

  8. Preparing NASA's Next Solar Satellite for Launch

    NASA Image and Video Library

    2017-12-08

    Orbital Sciences team members move the second half of the payload fairing before it is placed over NASA's IRIS (Interface Region Imaging Spectrograph) spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit. The work is taking place in a hangar at Vandenberg Air Force Base, where IRIS is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg on June 26, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun's corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. High res file available here: 1.usa.gov/11yal3w Photo Credit: NASA/Tony Vauclin NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy.

    PubMed

    Harwell, J R; Baikie, T K; Baikie, I D; Payne, J L; Ni, C; Irvine, J T S; Turnbull, G A; Samuel, I D W

    2016-07-20

    The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials.

  10. The NASA atlas of the solar system

    USGS Publications Warehouse

    Greeley, Ronald; Batson, Raymond M.

    1997-01-01

    Describes every planet, moon, and body that has been the subject of a NASA mission, including images of 30 solar system objects and maps of 26 objects. The presentation includes geologic history, geologic and reference maps, and shaded relief maps.

  11. NASA's Solar System Treks Image Mosaic Pipeline

    NASA Astrophysics Data System (ADS)

    Trautman, M. R.; Malhotra, S.; Nainan, C.; Kim, R. M.; Bui, B. X.; Sadaqathullah, S.; Sharma, P.; Gallegos, N.; Law, E. S.; Day, B. H.

    2018-06-01

    This study details the efforts of the NASA Solar System Treks project to design a framework for automated systems capable of producing quality mosaics from high resolution orbital imagery. The primary focus is on NAC, CTX, and HiRISE imagery.

  12. NASA's Aqua Satellite Sees Partial Solar Eclipse Effect in Western Canada

    NASA Image and Video Library

    2017-12-08

    This image shows how a partial solar eclipse darkened clouds over the Yukon and British Columbia in western Canada. It was taken on Oct. 23 at 21:20 UTC (5:20 p.m. EDT) by the Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Aqua satellite. Credit: NASA Goddard MODIS Rapid Response Team Unlabeled image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Grading NASA's Solar System Exploration Program: A Midterm Report

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Committee on Assessing the Solar System Exploration Program has reviewed NASA's progress to date in implementing the recommendations made in the National Research Council's (NRC's) solar system exploration decadal survey covering the period 2003-2013, New Frontiers in the Solar System, and in its Mars Architecture report, Assessment of NASA s Mars Architecture 2007-2016. The committee assessed NASA's progress with respect to each individual recommendation in these two reports, assigning an academic-style grade, explaining the rationale for the grade and trend, and offering recommendations for improvement. The committee generally sought to develop recommendations in cases where it determined that the grade, the trend, or both were worrisome and that the achievement of a decadal survey recommendation would require some kind of corrective action on NASA's part. This usually meant that the committee sought to offer a recommendation when the grade was a "C" or lower. However, the committee did offer recommendations in connection with some higher grades when it believed that minor corrective action was possible and desirable. More importantly, the committee did not offer recommendations for some of the activities given lower grades, particularly in the enabling technologies area (Chapter 6), because the committee determined that only the restoration of funding and the development of a strategic technology development program would solve these problems.

  14. NASA's New High Intensity Solar Environment Test Capability

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2012-01-01

    Across the world, new spaceflight missions are being designed and executed that will place spacecraft and instruments into challenging environments throughout the solar system. To aid in the successful completion of these new missions, NASA has developed a new flexible space environment test platform. The High Intensity Solar Environment Test (HISET) capability located at NASA fs Marshall Space Flight Center provides scientists and engineers with the means to test spacecraft materials and systems in a wide range of solar wind and solar photon environments. Featuring a solar simulator capable of delivering approximately 1 MW/m2 of broad spectrum radiation at maximum power, HISET provides a means to test systems or components that could explore the solar corona. The solar simulator consists of three high-power Xenon arc lamps that can be operated independently over a range of power to meet test requirements; i.e., the lamp power can be greatly reduced to simulate the solar intensity at several AU. Integral to the HISET capability are charged particle sources that can provide a solar wind (electron and proton) environment. Used individually or in combination, the charged particle sources can provide fluxes ranging from a few nA/cm2 to 100s of nA/cm2 over an energy range of 50 eV to 100 keV for electrons and 100 eV to 30 keV for protons. Anchored by a high vacuum facility equipped with a liquid nitrogen cold shroud for radiative cooling scenarios, HISET is able to accommodate samples as large as 1 meter in diameter. In this poster, details of the HISET capability will be presented, including the wide ]ranging configurability of the system.

  15. Solar collector performance evaluated outdoors at NASA-Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1974-01-01

    The study of solar reflector performance reported is related to a project in which solar collectors are to be provided for the solar heating and cooling system of an office building at NASA's Langley Research Center. The solar collector makes use of a liquid consisting of 50% ethylene glycol and 50% water. A conventional air-liquid heat exchanger is employed. Collector performance and solar insolation data are recorded along with air temperature, wind speed and direction, and relative humidity.

  16. High-Power Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  17. Artist Rendering of NASA Dawn Spacecraft Approaching Mars

    NASA Image and Video Library

    2009-05-23

    Artist rendering of NASA's Dawn spacecraft approaching Mars. Dawn, part of NASA's Discovery Program of competitively selected missions, was launched in 2007 to orbit the large asteroid Vesta and the dwarf planet Ceres. The two bodies have very different properties from each other. By observing them both with the same set of instruments, Dawn will probe the early solar system and specify the properties of each body. http://photojournal.jpl.nasa.gov/catalog/PIA18152

  18. Update on the Fire (solar probe) mission study

    NASA Technical Reports Server (NTRS)

    Jones, W. Veron; Forman, Miriam A.

    1995-01-01

    Since mid-1994 the U.S. and Russia have been studying the technical feasibility of a joint solar probe mission as part of the 'Fire and Ice' concept to explore close to the Sun, and Pluto, together. In the current concept of the 'Fire' mission, separate spacecraft built by each country would be launched together, fly by Jupiter to shed orbital angular momentum and achieve a solar polar orbit, and arrive 3.6 years later at 4 and 10 R(sub s). The Fire mission would measure basic parameters of the modes of energy and momentum flow and transfer to the coronal plasma that are not observable remotely. Specifically, measurement of magnetic fields, waves, suprathermal particles, and critical features of the plasma particle composition and distribution function would be made from 4 to 30 R(sub s) where the solar wind is known to be accelerated. In addition, the Fire spacecraft should image coronal structures unambiguously and relate the underlying and flown-through structures to plasma characteristics measured in situ. Each country is developing a backup plan to pursue the solar probe objectives alone if the other side is unable to carry out its mission.

  19. The FIELDS Instrument Suite for Solar Probe Plus

    PubMed Central

    Goetz, K.; Harvey, P.R.; Turin, P.; Bonnell, J.W.; de Wit, T. Dudok; Ergun, R.E.; MacDowall, R.J.; Pulupa, M.; Andre, M.; Bolton, M.; Bougeret, J.-L.; Bowen, T.A.; Burgess, D.; Cattell, C.A.; Chandran, B.D.G.; Chaston, C.C.; Chen, C.H.K.; Choi, M.K.; Connerney, J.E.; Cranmer, S.; Diaz-Aguado, M.; Donakowski, W.; Drake, J.F.; Farrell, W.M.; Fergeau, P.; Fermin, J.; Fischer, J.; Fox, N.; Glaser, D.; Goldstein, M.; Gordon, D.; Hanson, E.; Harris, S.E.; Hayes, L.M.; Hinze, J.J.; Hollweg, J.V.; Horbury, T.S.; Howard, R. A.; Hoxie, V.; Jannet, G.; Karlsson, M.; Kasper, J.C.; Kellogg, P.J.; Kien, M.; Klimchuk, J.A.; Krasnoselskikh, V.V.; Krucker, S.; Lynch, J.J.; Maksimovic, M.; Malaspina, D.M.; Marker, S.; Martin, P.; Martinez-Oliveros, J.; McCauley, J.; McComas, D.J.; McDonald, T.; Meyer-Vernet, N.; Moncuquet, M.; Monson, S.J.; Mozer, F.S.; Murphy, S.D.; Odom, J.; Oliverson, R.; Olson, J.; Parker, E.N.; Pankow, D.; Phan, T.; Quataert, E.; Quinn, T.; Ruplin, S.W.; Salem, C.; Seitz, D.; Sheppard, D.A.; Siy, A.; Stevens, K.; Summers, D.; Szabo, A.; Timofeeva, M.; Vaivads, A.; Velli, M.; Yehle, A.; Werthimer, D.; Wygant, J.R.

    2018-01-01

    NASA’s Solar Probe Plus (SPP) mission will make the first in situ measurements of the solar corona and the birthplace of the solar wind. The FIELDS instrument suite on SPP will make direct measurements of electric and magnetic fields, the properties of in situ plasma waves, electron density and temperature profiles, and interplanetary radio emissions, amongst other things. Here, we describe the scientific objectives targeted by the SPP/FIELDS instrument, the instrument design itself, and the instrument concept of operations and planned data products. PMID:29755144

  20. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    NASA Astrophysics Data System (ADS)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner

  1. Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1975-01-01

    NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.

  2. Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Brinker, David

    2010-01-01

    The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.

  3. Solar Electric Propulsion for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Oleson, Steven R.; Mercer, Carolyn R.

    2015-01-01

    Use of high-power solar arrays, at power levels ranging from approximately 500 KW to several megawatts, has been proposed for a solar-electric propulsion (SEP) demonstration mission, using a photovoltaic array to provide energy to a high-power xenon-fueled engine. One of the proposed applications of the high-power SEP technology is a mission to rendezvous with an asteroid and move it into lunar orbit for human exploration, the Asteroid Retrieval mission. The Solar Electric Propulsion project is dedicated to developing critical technologies to enable trips to further away destinations such as Mars or asteroids. NASA needs to reduce the cost of these ambitious exploration missions. High power and high efficiency SEP systems will require much less propellant to meet those requirements.

  4. The Integrated Science Investigation of the Sun (ISIS): Energetic Particle Measurements for the Solar Probe Plus Mission

    NASA Technical Reports Server (NTRS)

    McComas, D. J.; Christian, E. R.; Wiedenbeck, M. E.; McNutt, R. L.; Cummings, A. C.; Desai, M. I.; Giacalone, J.; Hill, M. E.; Mewaldt, R. A.; Krimigis, SA. M.; hide

    2011-01-01

    One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.

  5. NASA Releases Images of 1st Notable Solar Flare of 2015

    NASA Image and Video Library

    2017-12-08

    The sun emitted a mid-level solar flare, peaking at 11:24 p.m. EST on Jan. 12, 2015. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an M5.6-class flare. M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Project Helios-A. [mission planning for solar probe

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Helios-A solar probe which will fly within 28 million miles of the sun is described as a joint American and German project. The spacecraft and instrument designs, planned experiments, and mission are briefly discussed.

  7. Solar Probe Plus: A mission to touch the sun

    NASA Astrophysics Data System (ADS)

    Kinnison, J.; Lockwood, M. K.; Fox, N.; Conde, R.; Driesman, A.

    Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) determine the structure and dynamics of the magnetic fields at the sources of the fast and slow solar wind, 2) trace the flow of energy that heats the corona and accelerates the solar wind. and 3) determine what mechanisms accelerate and transport energetic particles. In this paper, we present the Solar Probe Plus mission along with a brief comparison with some previous concepts for such a mission, and discuss the trade studies that led to the SPP implementation. We present a summary of the challenges associated with operation in the solar encounter environment and discuss the technology development and engineering trade studies to compose a mission that will not only survive this environment, but will provide the data needed to answer the science questions that have remained unanswered to date.

  8. Validation of Solar Sail Simulations for the NASA Solar Sail Demonstration Project

    NASA Technical Reports Server (NTRS)

    Braafladt, Alexander C.; Artusio-Glimpse, Alexandra B.; Heaton, Andrew F.

    2014-01-01

    NASA's Solar Sail Demonstration project partner L'Garde is currently assembling a flight-like sail assembly for a series of ground demonstration tests beginning in 2015. For future missions of this sail that might validate solar sail technology, it is necessary to have an accurate sail thrust model. One of the primary requirements of a proposed potential technology validation mission will be to demonstrate solar sail thrust over a set time period, which for this project is nominally 30 days. This requirement would be met by comparing a L'Garde-developed trajectory simulation to the as-flown trajectory. The current sail simulation baseline for L'Garde is a Systems Tool Kit (STK) plug-in that includes a custom-designed model of the L'Garde sail. The STK simulation has been verified for a flat plate model by comparing it to the NASA-developed Solar Sail Spaceflight Simulation Software (S5). S5 matched STK with a high degree of accuracy and the results of the validation indicate that the L'Garde STK model is accurate enough to meet the potential future mission requirements. Additionally, since the L'Garde sail deviates considerably from a flat plate, a force model for a non-flat sail provided by L'Garde sail was also tested and compared to a flat plate model in S5. This result will be used in the future as a basis of comparison to the non-flat sail model being developed for STK.

  9. The Solar Probe mission - Mission design concepts and requirements

    NASA Technical Reports Server (NTRS)

    Ayon, Juan A.

    1992-01-01

    The Solar Probe concept as studied by the Jet Propulsion Laboratory represents the first mission to combine out-of-the-ecliptic scientific coverage with multiple, close solar encounters (at 4 solar radii). The scientific objectives of the mission have driven the investigation and analysis of several mission design concepts, all optimized to meet the science/mission requirements. This paper reviews those mission design concepts developed, the science objectives that drive the mission design, and the principle mission requirements associated with these various concepts.

  10. Marshall Space Flight Center's Solar Wind Facility

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Whittlesey, P. L.

    2017-01-01

    Historically, NASA's Marshall Space Flight Center (MSFC) has operated a Solar Wind Facility (SWF) to provide long term particle and photon exposure to material samples. The requirements on the particle beam details were not stringent as the cumulative fluence level is the test goal. Motivated by development of the faraday cup instrument on the NASA Solar Probe Plus (SPP) mission, the MSFC SWF has been upgraded to included high fidelity particle beams providing broadbeam ions, broadbeam electrons, and narrow beam protons or ions, which cover a wide dynamic range of solar wind velocity and flux conditions. The large vacuum chamber with integrated cryo-shroud, combined with a 3-axis positioning system, provides an excellent platform for sensor development and qualification. This short paper provides some details of the SWF charged particle beams characteristics in the context of the Solar Probe Plus program requirements. Data will be presented on the flux and energy ranges as well as beam stability.

  11. Remote Sensing Measurements of the Corona with the Solar Probe

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai; Woo, Richard

    1996-01-01

    Remote sensing measurements of the solar corona are indespensible for the exploration of the source and acceleration regions of the solar wind which are inaccessible to in situ plasma, paritcles and field experiments.Furthermore, imaging the solar disk and coronal from the unique vantage point of the trajectory and the proximity of the Solar Probe spacecraft, will provide the first ever opportunity to explore the small scale structures within coronal holes and streamers from viewing angles and with spatial resolutions never attained before.

  12. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  13. Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.

    2003-01-01

    NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.

  14. Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart D.; Belcher, John W.; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony W.; Chandran, Benjamin D. G.; Cheimets, Peter; Cirtain, Jonathan W.; Cranmer, Steven R.; Curtis, David W.; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, S. Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy A.; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven P.; Korreck, Kelly E.; Larson, Davin; Lazarus, Alan J.; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James P.; Marchant, William; Maruca, Bennet A.; McComas, David J.; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew M.; Pogorelov, Nikolai; Reinhart, Matthew J.; Richardson, John D.; Robinson, Miles; Rosen, Irene; Skoug, Ruth M.; Slagle, Amanda; Steinberg, John T.; Stevens, Michael L.; Szabo, Adam; Taylor, Ellen R.; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary

    2016-12-01

    The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes

  15. NASA Marshall Space Flight Center solar observatory

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1988-01-01

    A description is provided of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and a summary is given of its observations and data reduction during Jan. to Mar. 1988. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer center. The data are represented by longitudinal contours with azimuth plots.

  16. Future NASA solar system exploration activities: A framework for international cooperation

    NASA Technical Reports Server (NTRS)

    French, Bevan M.; Ramlose, Terri; Briggs, Geoffrey A.

    1992-01-01

    The goals and approaches for planetary exploration as defined for the NASA Solar System Exploration Program are discussed. The evolution of the program since the formation of the Solar System Exploration Committee (SSEC) in 1980 is reviewed and the primary missions comprising the program are described.

  17. An Overview of Solar Sail Propulsion within NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Swartzlander, Grover A.; Artusio-Glimpse, Alexandra

    2013-01-01

    Solar Sail Propulsion (SSP) is a high-priority new technology within The National Aeronautics and Space Administration (NASA), and several potential future space missions have been identified that will require SSP. Small and mid-sized technology demonstration missions using solar sails have flown or will soon fly in space. Multiple mission concept studies have been performed to determine the system level SSP requirements for their implementation and, subsequently, to drive the content of relevant technology programs. The status of SSP technology and potential future mission implementation within the United States (US) will be described.

  18. An Update to the NASA Reference Solar Sail Thrust Model

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Artusio-Glimpse, Alexandra B.

    2015-01-01

    An optical model of solar sail material originally derived at JPL in 1978 has since served as the de facto standard for NASA and other solar sail researchers. The optical model includes terms for specular and diffuse reflection, thermal emission, and non-Lambertian diffuse reflection. The standard coefficients for these terms are based on tests of 2.5 micrometer Kapton sail material coated with 100 nm of aluminum on the front side and chromium on the back side. The original derivation of these coefficients was documented in an internal JPL technical memorandum that is no longer available. Additionally more recent optical testing has taken place and different materials have been used or are under consideration by various researchers for solar sails. Here, where possible, we re-derive the optical coefficients from the 1978 model and update them to accommodate newer test results and sail material. The source of the commonly used value for the front side non-Lambertian coefficient is not clear, so we investigate that coefficient in detail. Although this research is primarily designed to support the upcoming NASA NEA Scout and Lunar Flashlight solar sail missions, the results are also of interest to the wider solar sail community.

  19. A First for NASA's IRIS: Observing a Gigantic Eruption of Solar Material

    NASA Image and Video Library

    2014-05-30

    Watch a video from this event here: www.flickr.com/photos/gsfc/14118958800/ A coronal mass ejection, or CME, surged off the side of the sun on May 9, 2014, and NASA's newest solar observatory caught it in extraordinary detail. This was the first CME observed by the Interface Region Imaging Spectrograph, or IRIS, which launched in June 2013 to peer into the lowest levels of the sun's atmosphere with better resolution than ever before. Watch the movie to see how a curtain of solar material erupts outward at speeds of 1.5 million miles per hour. Read more: 1.usa.gov/1kp7O4F NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. COMPASS Final Report: Enceladus Solar Electric Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The results of the NASA Glenn Research Center (GRC) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) internal Solar Electric Propulsion (SEP) stage design are documented in this report (Figure 1.1). The SEP Stage was designed to deliver a science probe to Saturn (the probe design was performed separately by the NASA Goddard Space Flight Center s (GSFC) Integrated Mission Design Center (IMDC)). The SEP Stage delivers the 2444 kg probe on a Saturn trajectory with a hyperbolic arrival velocity of 5.4 km/s. The design carried 30 percent mass, 10 percent power, and 6 percent propellant margins. The SEP Stage relies on the probe for substantial guidance, navigation and control (GN&C), command and data handling (C&DH), and Communications functions. The stage is configured to carry the probe and to minimize the packaging interference between the probe and the stage. The propulsion system consisted of a 1+1 (one active, one spare) configuration of gimbaled 7 kW NASA Evolutionary Xenon Thruster (NEXT) ion propulsion thrusters with a throughput of 309 kg Xe propellant. Two 9350 W GaAs triple junction (at 1 Astronomical Unit (AU), includes 10 percent margin) ultra-flex solar arrays provided power to the stage, with Li-ion batteries for launch and contingency operations power. The base structure was an Al-Li hexagonal skin-stringer frame built to withstand launch loads. A passive thermal control system consisted of heat pipes to north and south radiator panels, multilayer insulation (MLI) and heaters for the Xe tank. All systems except tanks and solar arrays were designed to be single fault tolerant.

  1. The Wide-Field Imager for the Parker Solar Probe Mission (WISPR)

    NASA Astrophysics Data System (ADS)

    Plunkett, S. P.; Howard, R.; Chua, D. H.; Crump, N. A.; Dennison, H.; Korendyke, C.; Linton, M.; Rich, N.; Socker, D. G.; Thernisien, A. F.; Wang, D.; Vourlidas, A.; Baugh, R.; Van Duyne, J. P.; Liewer, P. C.; De Jong, E.; Boies, M. T.; Mikic, Z.; Bothmer, V.; Rochus, P.; Halain, J. P.

    2017-12-01

    The Parker Solar Probe (PSP) mission will be humanity's first visit to the atmosphere of our nearest star, the Sun, when it is launched in July 2018. PSP will complete 24 orbits between the Sun and Venus with diminishing perihelia reaching as close as 7 million km (9.86 solar radii) from Sun center. In addition to a suite of in-situ probes for the magnetic field, plasma, and energetic particles, the payload includes the Wide Field Imager for Solar Probe (WISPR) that will record unprecedented visible light images of the solar corona and the inner heliosphere. WISPR is the smallest heliospheric imager to date, and comprises two nested wide-field telescopes with large-format (2K x 2K) APS CMOS detectors to optimize the performance over a combined 95º radial by 58º transverse field of view and to minimize the risk of dust damage, which may be considerable close to the Sun. WISPR will discover - in this never-before explored region of the heliosphere - the fundamental nature of coronal structures and the source regions of the solar wind as the PSP flies through them, and will determine whether a dust-free zone exists near the Sun. WISPR has completed its development effort and has been integrated onto the PSP spacecraft. In this paper, we will present our efforts to prepare for the mission including our observing plans and some results of the calibration activities.

  2. Inner Magnetosphere Imager (IMI) solar terrestrial probe class mission preliminary design study report

    NASA Technical Reports Server (NTRS)

    Hermann, M.; Johnson, L.

    1994-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing us with a clear picture of this region of space. The George C. Marshall Space Flight Center (MSFC) is responsible for defining the IMI mission which will study this region of space. NASA's Space Physics Division of the Office of Space Science placed the IMI third in its queue of Solar Terrestrial Probe missions for launch in the 1990's. A core instrument complement of three images (with the potential addition of one or more mission enhancing instruments) will fly in an elliptical, polar earth orbit with an apogee of 44,600 km and a perigee of 4,800 km. This paper will address the mission objectives, spacecraft design consideration, interim results of the MSFC concept definition study, and future plans.

  3. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Castillo-Rogez, Julie; Dervan, Jared

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellant-less thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA’s Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA’s of interest for possible future human exploration. The NEA Scout spacecraft is housed in a 6U CubeSat-form factor and utilizes an 86 square meter solar sail for a total mass less than 14 kilograms. The mission is in partnership with the Jet Propulsion Laboratory with support from Langley Research Center and science participants from various institutions. NEA Scout will be launched on the maiden flight of the Space Launch System in 2019. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and flown on The Planetary Society’s Lightsail-A. Four approximately-7-meter stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor driven and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar

  4. Usability of NASA Satellite Imagery-Based Daily Solar Radiation for Crop Yield Simulation and Management Decisions

    NASA Astrophysics Data System (ADS)

    Yang, H.; Cassman, K. G.; Stackhouse, P. W.; Hoell, J. M.

    2007-12-01

    We tested the usability of NASA satellite imagery-based daily solar radiation for farm-specific crop yield simulation and management decisions using the Hybrid-Maize model (www.hybridmaize.unl.edu). Solar radiation is one of the key inputs for crop yield simulation. Farm-specific crop management decisions using simulation models require long-term (i.e., 20 years or longer) daily local weather data including solar radiation for assessing crop yield potential and its variation, optimizing crop planting date, and predicting crop yield in a real time mode. Weather stations that record daily solar radiation have sparse coverage and many of them have record shorter than 15 years. Based on satellite imagery and other remote sensed information, NASA has provided estimates of daily climatic data including solar radiation at a resolution of 1 degree grid over the earth surface from 1983 to 2005. NASA is currently continuing to update the database and has plans to provide near real-time data in the future. This database, which is free to the public at http://power.larc.nasa.gov, is a potential surrogate for ground- measured climatic data for farm-specific crop yield simulation and management decisions. In this report, we quantified (1) the similarities between NASA daily solar radiation and ground-measured data atr 20 US sites and four international sites, and (2) the accuracy and precision of simulated corn yield potential and its variability using NASA solar radiation coupled with other weather data from ground measurements. The 20 US sites are in the western Corn Belt, including Iowa, South Dakota, Nebraska, and Kansas. The four international sites are Los Banos in the Philippines, Beijing in China, Cali in Columbia, and Ibatan in Nigeria. Those sites were selected because of their high quality weather record and long duration (more than 20 years on average). We found that NASA solar radiation was highly significantly correlated (mean r2 =0.88**) with the ground

  5. Promising Results from Three NASA SBIR Solar Array Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael

    2005-01-01

    Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW

  6. NASA's 2017 Solar Eclipse Coverage from 35,000 feet

    NASA Image and Video Library

    2017-09-13

    Robert Lightfoot, NASA’s acting administrator, and Thomas Zurbuchen, NASA science mission directorate’s associate administrator, discuss the importance and scientific value of capturing the 2017 Solar Eclipse from 35,000 feet above the coast of Oregon aboard the agency’s Gulfstream III aircraft.

  7. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    NASA Technical Reports Server (NTRS)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  8. The NASA 2017 Eclipse Education Program: Through the Eyes of NASA to the Hearts of a Nation

    NASA Astrophysics Data System (ADS)

    Young, C. Alex; Mayo, Louis; Ng, Carolyn; Cline, Troy D.; Lewis, Elaine; Stephenson, Bryan; Odenwald, Sten; Hill, Steele; Bleacher, Lora; Kirk, Michael S.; jones, andrea

    2016-05-01

    The August 21, 2017, eclipse across America will be seen by an estimated 500 million people from northern Canada to South America as well as parts of western Europe and Africa. Through This "Great American Eclipse" NASA in partnership with Google, the American Parks Network, American Astronomical Society, the Astronomical League, and numerous other science, education, outreach, and public communications groups and organizations will develop the approaches, resources, partnerships, and technology applications necessary to bring the excitement and the science of the August 21st, 2017 total solar eclipse across America to formal and informal audiences in the US and around the world. This effort will be supported by the highly visible and successful Sun Earth Days program and will be the main theme for Sun-Earth Days 2017.This presentation will discuss NASA's education and communication plans for the eclipse and will detail a number of specific programs and partnerships from across the country being leveraged to enhance our reach and impact. We also discuss the observations and science of current and future NASA missions such as SDO, Hinode and Solar Probe Plus along with their relationship to such a unique celestial event as a total solar eclipse.

  9. Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen

    1999-01-01

    A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.

  10. Total Solar Eclipse: “Through The Eyes of NASA,” Part 2

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America - featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency's website.

  11. The Solar-Sail Launched Interstellar Probe: Pre-Perihelion Trajectories and Application of Holography

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.

    2002-01-01

    Design of missions beyond our solar system presents many challenges. Here, we consider certain aspects of the solar-sail launched interstellar probe (ISP), a spacecraft slated for launch in the 2010 time period that is planned to reach the heliopause, at 200 Astronomical Units (AU) from the Sun after a flight of about 20-years duration. The baseline mission under consideration by NASA / JPL has a sail radius of 200 m, a science payload of 25 kg, a spacecraft areal mass thickness of about two grams per square meter and is accelerated out of the solar system at about 14 AU per year after performing a perihelion pass of about 0.25 AU. In current plans, the sail is to be dropped near Jupiter's orbit (5.2 AU from the Sun) on the outbound trajectory leg. One aspect of this study is application of a realistic model of sail thermo-optics to sail kinematics that includes diffuse / specular reflectance and sail roughness. The effects of solar-wind degradation of sail material, based on recent measurements at the NASA MSFC (Marshall Space Flight Center) Space Environment Facility were incorporated in the kinematical model. After setting initial and final conditions for the spacecraft, trajectory was optimized using the provision of variable sail aspect angle. The second phase of the study included consideration of rainbow holography as a medium for a message plaque that would be carried aboard the ISP in the spirit of the message plaques aboard Pioneer 10 /11 and Voyager 1 /2. A prototype holographic message plaque was designed and created by artist C. Bangs with the assistance of Ana Maria Nicholson and Dan Schweitzer of the Center for Holographic Arts in Long Island City, NY. The piece was framed by Simon Liu Inc. of Brooklyn, NY. Concurrent to the creation of the prototype message plaque, we explored the potential of this medium to transmit large amounts of visual information to any extraterrestrial civilization that might detect and intercept ISP. It was also necessary to

  12. A Preliminary Study of a Solar-Probe Mission

    NASA Technical Reports Server (NTRS)

    Dugan, Duane W.

    1961-01-01

    A preliminary study is made of some problems associated with the sending of an instrumented probe close to the Sun for the purpose of gathering and telemetering back to Earth information concerning solar phenomena and circumsolar space. The problems considered are primarily those relating to heating and to launch requirements. A nonanalytic discussion of the communications problem of a solar-probe mission is presented to obtain order-of-magnitude estimates of the output and weight of an auxiliary power supply which might be required. From the study it is believed that approaches to the Sun as close as about 4 or 5 million miles do not present insuperable difficulties insofar as heating and communications are concerned. Guidance requirements, in general, do not appear to be stringent. However, in terms of current experience, velocity requirements may be large. It is found, for example, that to achieve perihelion distances between the orbit of Mercury and the visible disc of the Sun, total burnout velocities ranging between 50,000 and 100,000 feet per second are required.

  13. Implementation Options For the Solar System Exploration Survey's "Jupiter Polar Orbiter with Probes" Mission

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2002-09-01

    In July of this year the National Academy of Science released a draft of its report, "New Frontiers in the Solar System: An Integrated Exploration Strategy," briefly describing the current state of solar system planetary science and the most important science objectives for the next decade (2003-2013). It includes a prioritized list of five mission concepts that might be flown as part of NASA's fledgling New Frontiers Program; each "concept" is more a list of science or measurement objectives than a full mission concept, since it does not specify implementation details in most cases. Number three on that list is the "Jupiter Polar Orbiter with Probes" ("JPOP") mission. This mission concept combines the strengths of previously described or proposed Jupiter missions into a single mission, and gains from the synergies of some of the newly-combined investigations. The primary science objectives are: 1. Determine if Jupiter has a central core 2. Determine the deep abundance of water (and other volatiles) 3. Measure Jupiter's deep winds 4. Determine the structure of Jupiter's dynamo magnetic field 5. Sample in situ Jupiter's polar magnetosphere This paper examines some of the implementation options for a JPOP mission, and gives relative advantages and disadvantages. Given the New Frontier Program's maximum cost to NASA of \\650M, plus an approx. \\120M cap on international contributions, implementing the full range of JPOP science objectives in a single New Frontiers mission may be challenging. This work was performed at the Jet Propulsion Laboratory / California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  14. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (NASA Gulfstream III Aircraft, Off Oregon Coast)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from NASA’s Gulfstream III research aircraft, flying off the Coast of Oregon.

  15. Introducing NASA's Solar System Exploration Research Virtual Institute

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne

    The Solar System Exploration Research Virtual Institute (SSERVI) is focused on the Moon, near Earth asteroids, and the moons of Mars. Comprised of competitively selected teams across the U.S., a growing number of international partnerships around the world, and a small central office located at NASA Ames Research Center, the institute advances collaborative research to bridge science and exploration goals. As a virtual institute, SSERVI brings unique skills and collaborative technologies for enhancing collaborative research between geographically disparate teams. SSERVI is jointly funded through the NASA Science Mission Directorate and the NASA Human Exploration and Operations Mission Directorate. Current U.S. teams include: Dr. Jennifer L. Heldmann, NASA Ames Research Center, Moffett Field, CA; Dr. William Farrell, NASA Goddard Space Flight Center, Greenbelt, MD; Prof. Carlé Pieters, Brown University, Providence, RI; Prof. Daniel Britt, University of Central Florida, Orlando, FL; Prof. Timothy Glotch, Stony Brook University, Stony Brook, NY; Dr. Mihaly Horanyi, University of Colorado, Boulder, CO; Dr. Ben Bussey, Johns Hopkins Univ. Applied Physics Laboratory, Laurel, MD; Dr. David A. Kring, Lunar and Planetary Institute, Houston, TX; and Dr. William Bottke, Southwest Research Institute, Boulder, CO. Interested in becoming part of SSERVI? SSERVI Cooperative Agreement Notice (CAN) awards are staggered every 2.5-3yrs, with award periods of five-years per team. SSERVI encourages those who wish to join the institute in the future to engage current teams and international partners regarding potential collaboration, and to participate in focus groups or current team activities now. Joining hand in hand with international partners is a winning strategy for raising the tide of Solar System science around the world. Non-U.S. science organizations can propose to become either Associate or Affiliate members on a no-exchange-of-funds basis. Current international partners

  16. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials.

    PubMed

    Giridharagopal, Rajiv; Cox, Phillip A; Ginger, David S

    2016-09-20

    From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to study materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the physics of

  17. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.

    From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the

  18. Functional Scanning Probe Imaging of Nanostructured Solar Energy Materials

    DOE PAGES

    Giridharagopal, Rajiv; Cox, Phillip A.; Ginger, David S.

    2016-08-30

    From hybrid perovskites to semiconducting polymer/fullerene blends for organic photovoltaics, many new materials being explored for energy harvesting and storage exhibit performance characteristics that depend sensitively on their nanoscale morphology. At the same time, rapid advances in the capability and accessibility of scanning probe microscopy methods over the past decade have made it possible to study processing/structure/function relationships ranging from photocurrent collection to photocarrier lifetimes with resolutions on the scale of tens of nanometers or better. Importantly, such scanning probe methods offer the potential to combine measurements of local structure with local function, and they can be implemented to studymore » materials in situ or devices in operando to better understand how materials evolve in time in response to an external stimulus or environmental perturbation. This Account highlights recent advances in the development and application of scanning probe microscopy methods that can help address such questions while filling key gaps between the capabilities of conventional electron microscopy and newer super-resolution optical methods. Focusing on semiconductor materials for solar energy applications, we highlight a range of electrical and optoelectronic scanning probe microscopy methods that exploit the local dynamics of an atomic force microscope tip to probe key properties of the solar cell material or device structure. We discuss how it is possible to extract relevant device properties using noncontact scanning probe methods as well as how these properties guide materials development. Specifically, we discuss intensity-modulated scanning Kelvin probe microscopy (IM-SKPM), time-resolved electrostatic force microscopy (trEFM), frequency-modulated electrostatic force microscopy (FM-EFM), and cantilever ringdown imaging. We explain these developments in the context of classic atomic force microscopy (AFM) methods that exploit the

  19. Probing the Structure of Our Solar System's Edge

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-02-01

    The boundary between the solar wind and the interstellar medium (ISM) at the distant edge of our solar system has been probed remotely and directly by spacecraft, but questions about its properties persist. What can models tell us about the structure of this region?The Heliopause: A Dynamic BoundarySchematic illustrating different boundaries of our solar system and the locations of the Voyager spacecraft. [Walt Feimer/NASA GSFCs Conceptual Image Lab]As our solar system travels through interstellar space, the magnetized solar wind flows outward and pushes back on the oncoming ISM, forming a bubble called the heliosphere. The clash of plasmas generates a boundary region called the heliopause, the shape of which depends strongly on the properties of the solar wind and the local ISM.Much of our understanding of the outer heliosphere and the local ISM comes from observations made by the International Boundary Explorer (IBEX) and the Voyager 1 and Voyager 2 spacecraft. IBEX makes global maps of the flux of neutral atoms, while Voyagers 1 and 2 record the plasma density and magnetic field parameters along their trajectories as they exit the solar system. In order to interpret the IBEX and Voyager observations, astronomers rely on complex models that must capture both global and local effects.Simulations of the plasma density in the meridional plane of the heliosphere due to the interaction of the solar wind with the ISM for the case of a relatively dense ISM with a weak magnetic field. [Adapted from Pogorelov et al. 2017]Modeling the Edge of the Solar SystemIn this study, Nikolai Pogorelov (University of Alabama in Huntsville) and collaborators use a hybrid magneto-hydrodynamical (MHD) and kinetic simulation to capture fully the physical processes happening in the outer heliosphere.MHD models have been used to understand many aspects of plasma flow in the heliosphere. However, they struggle to capture processes that are better described kinetically, like charge exchange

  20. Panel proposes solar system missions

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    A proposed probe to the Kuiper Belt and Pluto and another to Europa are among the priority Solar System exploration missions that should be pursued by NASA over the next decade, according to an 11 July report by a steering group of the Space Studies Board of the U.S. National Research Council (NRC).The report, "New Frontiers in the Solar System: An Integrated Exploration Strategy," was requested by NASA, and proposes a set of new missions and facilities to respond to key questions in four cross-cutting themes. The themes, which the report indicates form the basis for an integrated space exploration strategy are: the first billion years of Solar System history; volatiles and organics: the stuff of life; the origin and evolution of habitable worlds; and processes: how planets work.

  1. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  2. SOLAR SYSTEM EXPLORATION: NASA Blasted for Rising Costs, Cancellations.

    PubMed

    Lawler, A

    2000-12-01

    When NASA cancelled a project last month that would have sent a tiny rover crawling over an asteroid, the community of planetary scientists issued a public tongue lashing of the agency. Its letter warned of larger problems in the U.S. program caused by spiraling costs and recommended a sweeping reexamination of the outer solar system effort.

  3. NASA Pilot and Researcher Prepare for a Solar Cell Calibration Flight

    NASA Image and Video Library

    1964-04-21

    Pilot Earle Boyer and researcher Henry Brandhorst prepare for a solar cell calibration flight in a Martin B-57B Canberra at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis was in the early stages of decades-long energy conversion and space power research effort. Brandhorst, a member of the Chemistry and Energy Conversion Division, led a team of Lewis researchers in a quest to develop new power sources to sustain spacecraft in orbit. Solar cells proved to be an important source of energy, but researchers discovered that their behavior varied at different atmospheric levels. Their standardization and calibration were critical. Brandhorst initiated a standardized way to calibrate solar cells in the early 1960s using the B-57B aircraft. The pilots would take the aircraft up into the troposphere and open the solar cell to the sunlight. The aircraft would steadily descend while instruments recorded how much energy was being captured by the solar cell. From this data, Brandhorst could determine the estimated power for a particular solar cell at any altitude. Pilot Earle Boyer joined NASA Lewis in October 1962. He had flown Convair F-102 Delta Dagger fighters in the Air Force and served briefly in the National Guard before joining the Langley Research Center. Boyer was only at Langley a few months before he transferred to Cleveland. He flew the B-57B, a Convair F-106 Delta Dart, Gulfstream G-1 with an experimental turboprop, Learjet and many other aircraft over the next 32 years at Lewis.

  4. Coupling between non-thermal plasmas and magnetic fields in space: in situ and remote observations with Parker Solar Probe and SunRISE

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.

    2017-12-01

    This talk will review examples of open questions in the coupling between non-thermal plasmas and magnetic fields in space, including pressure anisotropies, in heating, and particle acceleration, in the context of space missions either preparing for launch or under study and using in situ observations or remote sensing techniques. The Parker Solar Probe, with launch in the summer of next year, will collect the first in situ samples of plasma in the outer corona, allowing us to directly observe the physical processes responsible for the heating and acceleration of the solar corona and solar wind. The Sun Radio Interferometer Space Experiment (SunRISE) mission is a low frequency radio array under study by NASA which would image for the first time locations of particle acceleration relative to coronal mass ejections and trace magnetic field lines that connect active regions to the heliosphere. Major open questions under investigation by these techniques will be explored, with an eye to connections to laboratory experiments.

  5. NASA's Evolutionary Xenon Thruster: The NEXT Ion Propulsion System for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Benson, Scott W.

    2008-01-01

    This viewgraph presentation reviews NASA s Evolutionary Xenon Thruster (NEXT) Ion Propulsion system. The NEXT project is developing a solar electric ion propulsion system. The NEXT project is advancing the capability of ion propulsion to meet NASA robotic science mission needs. The NEXT system is planned to significantly improve performance over the state of the art electric propulsion systems, such as NASA Solar Electric Propulsion Technology Application Readiness (NSTAR). The status of NEXT development is reviewed, including information on the NEXT Thruster, the power processing unit, the propellant management system (PMS), the digital control interface unit, and the gimbal. Block diagrams NEXT system are presented. Also a review of the lessons learned from the Dawn and NSTAR systems is provided. In summary the NEXT project activities through 2007 have brought next-generation ion propulsion technology to a sufficient maturity level.

  6. Momentum Management for the NASA Near Earth Asteroid Scout Solar Sail Mission

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew; Diedrich, Benjamin L.; Orphee, Juan; Stiltner, Brandon; Becker, Christopher

    2017-01-01

    The Momentum Management (MM) system is described for the NASA Near Earth Asteroid Scout (NEA Scout) cubesat solar sail mission. Unlike many solar sail mission proposals that used solar torque as the primary or only attitude control system, NEA Scout uses small reaction wheels (RW) and a reaction control system (RCS) with cold gas thrusters, as described in the abstract "Solar Sail Attitude Control System for Near Earth Asteroid Scout Cubesat Mission." The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The MM system keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS.

  7. The 2017 Total Solar Eclipse: Through the Eyes of NASA

    NASA Astrophysics Data System (ADS)

    Mayo, Louis; NASA Goddard Heliophysics Education Consortium

    2017-10-01

    The August 21st, 2017 Total Solar Eclipse Across America provided a unique opportunity to teach event-based science to nationwide audiences. NASA spent over three years planning space and Earth science education programs for informal audiences, undergraduate institutions, and life long learners to bring this celestial event to the public through the eyes of NASA. This talk outlines how NASA used its unique assets including mission scientists and engineers, space based assets, citizen science, educational technology, science visualization, and its wealth of science and technology partners to bring the eclipse to the country through multimedia, cross-discipline science activities, curricula, and media programing. Audience reach, impact, and lessons learned are detailed. Plans for similar events in 2018 and beyond are outlined.

  8. The Development of Solar Sail Propulsion for NASA Science Missions to the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E, IV; Johnson, Charles Les

    2004-01-01

    This paper examines recent assessments of the technology challenges facing solar sails, identifies the systems and technologies needing development, and the approach employed by NASA's In-space Propulsion Program in NASA to achieve near term products that move this important technology from low technology readiness level (TRL) toward the goal of application to science missions in near earth space and beyond. The status of on-going efforts to design, build, and test ground demonstrators of alternate approaches to structures (inflatable versus rigid), membrane materials, optical shape sensing, and attitude control will be presented along with planned future investments.

  9. The Future of NASA's Deep Space Network and Applications to Planetary Probe Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Preston, Robert A.; Vrotsos, Peter

    2010-01-01

    NASA's Deep Space Network (DSN) has been an invaluable tool in the world's exploration of space. It has served the space-faring community for more than 45 years. The DSN has provided a primary communication pathway for planetary probes, either through direct- to-Earth links or through intermediate radio relays. In addition, its radiometric systems are critical to probe navigation and delivery to target. Finally, the radio link can also be used for direct scientific measurement of the target body ('radio science'). This paper will examine the special challenges in supporting planetary probe missions, the future evolution of the DSN and related spacecraft technology, the advantages and disadvantages of radio relay spacecraft, and the use of the DSN radio links for navigation and scientific measurements.

  10. Mission Design for NASA's Inner Heliospheric Sentinels and ESA's Solar Orbiter Missions

    NASA Technical Reports Server (NTRS)

    Downing, John; Folta, David; Marr, Greg; Rodriquez-Canabal, Jose; Conde, Rich; Guo, Yanping; Kelley, Jeff; Kirby, Karen

    2007-01-01

    This paper will document the mission design and mission analysis performed for NASA's Inner Heliospheric Sentinels (IHS) and ESA's Solar Orbiter (SolO) missions, which were conceived to be launched on separate expendable launch vehicles. This paper will also document recent efforts to analyze the possibility of launching the Inner Heliospheric Sentinels and Solar Orbiter missions using a single expendable launch vehicle, nominally an Atlas V 551.

  11. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  12. Solar neutrinos as a probe of dark matter-neutrino interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozzi, Francesco; Vecchi, Luca; Shoemaker, Ian M., E-mail: capozzi.12@osu.edu, E-mail: ian.shoemaker@usd.edu, E-mail: vecchi@infn.pd.it

    2017-07-01

    Sterile neutrinos at the eV scale have long been studied in the context of anomalies in short baseline neutrino experiments. Their cosmology can be made compatible with our understanding of the early Universe provided the sterile neutrino sector enjoys a nontrivial dynamics with exotic interactions, possibly providing a link to the Dark Matter (DM) puzzle. Interactions between DM and neutrinos have also been proposed to address the long-standing 'missing satellites' problem in the field of large scale structure formation. Motivated by these considerations, in this paper we discuss realistic scenarios with light steriles coupled to DM . We point outmore » that within this framework active neutrinos acquire an effective coupling to DM that manifests itself as a new matter potential in the propagation within a medium of asymmetric DM . Assuming that at least a small fraction of asymmetric DM has been captured by the Sun, we show that a sizable region of the parameter space of these scenarios can be probed by solar neutrino experiments, especially in the regime of small couplings and light mediators where all other probes become inefficient. In the latter regime these scenarios behave as familiar 3+1 models in all channels except for solar data, where a Solar Dark MSW effect takes place. Solar Dark MSW is characterized by modifications of the most energetic {sup 8}B and CNO neutrinos, whereas the other fluxes remain largely unaffected.« less

  13. Solar neutrinos as a probe of dark matter-neutrino interactions

    NASA Astrophysics Data System (ADS)

    Capozzi, Francesco; Shoemaker, Ian M.; Vecchi, Luca

    2017-07-01

    Sterile neutrinos at the eV scale have long been studied in the context of anomalies in short baseline neutrino experiments. Their cosmology can be made compatible with our understanding of the early Universe provided the sterile neutrino sector enjoys a nontrivial dynamics with exotic interactions, possibly providing a link to the Dark Matter (DM) puzzle. Interactions between DM and neutrinos have also been proposed to address the long-standing "missing satellites" problem in the field of large scale structure formation. Motivated by these considerations, in this paper we discuss realistic scenarios with light steriles coupled to DM . We point out that within this framework active neutrinos acquire an effective coupling to DM that manifests itself as a new matter potential in the propagation within a medium of asymmetric DM . Assuming that at least a small fraction of asymmetric DM has been captured by the Sun, we show that a sizable region of the parameter space of these scenarios can be probed by solar neutrino experiments, especially in the regime of small couplings and light mediators where all other probes become inefficient. In the latter regime these scenarios behave as familiar 3+1 models in all channels except for solar data, where a Solar Dark MSW effect takes place. Solar Dark MSW is characterized by modifications of the most energetic 8B and CNO neutrinos, whereas the other fluxes remain largely unaffected.

  14. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Beatrice, NE)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Beatrice, Nebraska.

  15. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Salem, OR)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Salem, Oregon.

  16. Scanning Probe Microscopy of Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Reid, Obadiah G.

    Nanostructured composites of organic semiconductors are a promising class of materials for the manufacture of low-cost solar cells. Understanding how the nanoscale morphology of these materials affects their efficiency as solar energy harvesters is crucial to their eventual potential for large-scale deployment for primary power generation. In this thesis we describe the use of optoelectronic scanning-probe based microscopy methods to study this efficiency-structure relationship with nanoscale resolution. In particular, our objective is to make spatially resolved measurements of each step in the power conversion process from photons to an electric current, including charge generation, transport, and recombination processes, and correlate them with local device structure. We have achieved two aims in this work: first, to develop and apply novel electrically sensitive scanning probe microscopy experiments to study the optoelectronic materials and processes discussed above; and second, to deepen our understanding of the physics underpinning our experimental techniques. In the first case, we have applied conductive-, and photoconductive atomic force (cAFM & pcAFM) microscopy to measure both local photocurrent collection and dark charge transport properties in a variety of model and novel organic solar cell composites, including polymer/fullerene blends, and polymer-nanowire/fullerene blends, finding that local heterogeneity is the rule, and that improvements in the uniformity of specific beneficial nanostructures could lead to large increases in efficiency. We have used scanning Kelvin probe microscopy (SKPM) and time resolved-electrostatic force microscopy (trEFM) to characterize all-polymer blends, quantifying their sensitivity to photochemical degradation and the subsequent formation of local charge traps. We find that while trEFM provides a sensitive measure of local quantum efficiency, SKPM is generally unsuited to measurements of efficiency, less sensitive than tr

  17. A thermal shield concept for the Solar Probe mission

    NASA Technical Reports Server (NTRS)

    Miyake, Robert N.; Millard, Jerry M.; Randolph, James E.

    1991-01-01

    The Solar Probe spacecraft will travel to within 4 solar radii of the sun's center while performing a variety of fundamental experiments in space physics. Exposure to 2900 earth suns (400 W/sq cm) at perihelion imposes severe thermal and material demands on a solar shield system designed to protect the payload that will reside within the shield's shadow envelope or umbra. The design of the shield subsystem is a thermal/materials challenge requiring new technology development. While currently in the preproject study phase, anticipating a 1995 project start, shield preliminary design efforts are currently underway. This paper documents the current status of the mission concept, the materials issues, the configuration concept for the shield subsystem, the current configuration studies performed to date, and the required material testing to provide a database to support a design effort required to develop the shield subsystem.

  18. Development and test of an active pixel sensor detector for heliospheric imager on solar orbiter and solar probe plus

    NASA Astrophysics Data System (ADS)

    Korendyke, Clarence M.; Vourlidas, Angelos; Plunkett, Simon P.; Howard, Russell A.; Wang, Dennis; Marshall, Cheryl J.; Waczynski, Augustyn; Janesick, James J.; Elliott, Thomas; Tun, Samuel; Tower, John; Grygon, Mark; Keller, David; Clifford, Gregory E.

    2013-10-01

    The Naval Research Laboratory is developing next generation CMOS imaging arrays for the Solar Orbiter and Solar Probe Plus missions. The device development is nearly complete with flight device delivery scheduled for summer of 2013. The 4Kx4K mosaic array with 10micron pixels is well suited to the panoramic imaging required for the Solar Orbiter mission. The devices are robust (<100krad) and exhibit minimal performance degradation with respect to radiation. The device design and performance are described.

  19. Farfield Plume Measurement and Analysis on the NASA-300M

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    NASA is developing a 15-kW Hall thruster to support future NASA missions. This activity is funded under the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration project. As a part of the development process, the far-field plume characteristics of the NASA-300M, a 20-kW Hall thruster, were studied. The results will be used to study how various aspects of the operation of this thruster affect the overall performance. This data will be used to guide future design work and serve as a baseline for comparison to a magnetically shielded version of the NASA-300M that will be tested in the future. For this study, a far-field Faraday probe was swept in a polar fashion to map the ion current density. An ExB probe (Wien filter), two retarding potential analyzers, and a Langmuir probe were mounted at a fixed location on the thruster axis in the far-field plume. The data reduction method followed recommendations in recent studies by Brown, Reid, and Shastry with modifications that are tailored to the plasma plume environment of high-power Hall thrusters. Results from this and prior testing show that the plume is richer in doubly-charged ions, larger in spatial extent, and capable of greater probe heating than lower power thrusters. These characteristics require special treatment in experimental setup and data analysis, which will be the main focus of this paper. In particular, covered topics will include a new, more accurate, method of integration for analysis of the ExB probe data and effect of secondary electron emission on the Faraday probe data.

  20. NASA Facts, Mars as a Member of the Solar System.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. In this publication, emphasis is placed on the planet Mars as a member of the Solar System and a detailed description is given related to historical accounts of the planet's existence and its travels. The physical…

  1. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Carbondale, IL)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Southern Illinois University in Carbondale, Illinois.

  2. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Hopkinsville_KY)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from the Homestead National Monument in Hopkinsville, Kentucky.

  3. Multimodality stereotactic brain tissue identification: the NASA smart probe project

    NASA Technical Reports Server (NTRS)

    Andrews, R.; Mah, R.; Aghevli, A.; Freitas, K.; Galvagni, A.; Guerrero, M.; Papsin, R.; Reed, C.; Stassinopoulos, D.

    1999-01-01

    Real-time tissue identification can benefit procedures such as stereotactic brain biopsy, functional neurosurgery and brain tumor excision. Optical scattering spectroscopy has been shown to be effective at discriminating cancer from noncancerous conditions in the colon, bladder and breast. The NASA Smart Probe extends the concept of 'optical biopsy' by using neural network techniques to combine the output from 3 microsensors contained within a cannula 2. 7 mm in diameter (i.e. the diameter of a stereotactic brain biopsy needle). Experimental data from 5 rats show the clear differentiation between tissues such as brain, nerve, fat, artery and muscle that can be achieved with optical scattering spectroscopy alone. These data and previous findings with other modalities such as (1) analysis of the image from a fiberoptic neuroendoscope and (2) the output from a microstrain gauge suggest the Smart Probe multiple microsensor technique shows promise for real-time tissue identification in neurosurgical procedures. Copyright 2000 S. Karger AG, Basel.

  4. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5-microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  5. Galileo Probe Measurements of Thermal and Solar Radiation Fluxes in the Jovian Atmosphere

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Collard, A. D.; Fry, P. M.; Orton, G. S.; Lemmon, M. T.; Tomasko, M. G.; Freedman, R. S.

    1998-01-01

    The Galileo probe net flux radiometer (NFR) measured radiation fluxes in Jupiter's atmosphere from about 0.44 to 14 bars, using five spectral channels to separate solar and thermal components. Onboard calibration results confirm that the NFR responded to radiation approximately as expected. NFR channels also responded to a superimposed thermal perturbation, which can be approximately removed using blind channel measurements and physical constraints. Evidence for the expected NH3 cloud was seen in the spectral character of spin-induced modulations of the direct solar beam signals. These results are consistent with an overlying cloud of small NH3 ice particles (0.5-0.75 microns in radius) of optical depth 1.5-2 at 0.5 microns. Such a cloud would have so little effect on thermal fluxes that NFR thermal channels provide no additional constraints on its properties. However, evidence for heating near 0.45 bar in the NFR thermal channels would seem to require either an additional opacity source beyond this small-particle cloud, implying a heterogeneous-cloud structure to avoid conflicts with solar modulation results, or a change in temperature lapse rate just above the probe measurements. The large thermal flux levels imply water vapor mixing ratios that are only 6% of solar at 10 bars, but possibly increasing with depth, and significantly subsaturated ammonia at pressures less than 3 bars. If deep NH3 mixing ratios at the probe entry site are 3-4 times ground-based inferences, as suggested by probe radio signal attenuation, then only half as much water is needed to match NFR observations. No evidence of a water cloud was seen near the 5-bar level. The 5 microns thermal channel detected the presumed NH4SH cloud base near 1.35 bars. Effects of this cloud were also seen in the solar channel upflux measurements but not in the solar net fluxes, implying that the cloud is a conservative scatterer of sunlight. The minor thermal signature of this cloud is compatible with

  6. Modeling the Solar Probe Plus Dust Environment: Comparison with MESSENGER Observations

    NASA Astrophysics Data System (ADS)

    Strong, S. B.; Strikwerda, T.

    2009-12-01

    NASA’s Solar Probe Plus mission will be the first to approach the Sun as close as 9 solar radii from the surface. This mission will provide the only in-situ observations of the Sun’s corona. In the absence of observational data (e.g. Helios, Pioneer), specifically at distances less than 0.4 AU, the precise ambient dust distributions at these distances remain unknown and limited to extrapolative models for distances < 1 AU (e.g. Mann et al. 2004). For the Solar Probe Plus mission, it has become critical to characterize the inner solar system dust environment in order to examine potential impacts on spacecraft health and attitude. We have implemented the Mann et al. (2004) and Grün et al. (1985) dust distribution theory along with Mie scattering effects to determine the magnitude of solar irradiance scattered towards an optical sensor such as a star tracker as a function of ecliptic latitude and longitude for distances 0.05 to 1 AU. Background irradiance data from NASA’s MESSENGER mission (down to 0.3 AU) reveal trends consistent with our model predictions, potentially validating Mann et al. (2004) and Grün et al. (1985) theory, but perhaps suggesting an enhancement of dust density short ward of 0.3 AU. This paper will present the scattering model and analysis of MESSENGER data gathered to date, during the phasing orbits, and includes star tracker background irradiance, irradiance distribution over the sky, and effects on star magnitude sensitivity and position accuracy.

  7. NASA Marshall Space Flight Center solar observatory report, January - June 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    Given here is a summary of the solar vector magnetic field, H-alpha, and white-light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of operation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f/13, 30-cm Cassegrain system with a 3.5-cm image of the Sun, housed on top of a 12.8-meter tower; a 12.5-cm Razdow H-alpha telescope housed at the base of the tower; an 18-cm Questar telescope with a full aperture white-light filter mounted at the base of the tower; a 30-cm Cassegrain telescope located in a second metal dome; and a 16.5-cm H-alpha telescope mounted on side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  8. NASA Marshall Space Flight Center Solar Observatory report, July - December 1991

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    A summary is given of the solar vector magnetic field, H-alpha, and white light observations made at the NASA/Marshall Space Flight Center (MSFC) Solar Observatory during its daily periods of observation. The MSFC Solar Observatory facilities consist of the Solar Magnetograph, an f-13, 30 cm Cassegrain system with a 3.5 cm image of the Sun housed on top of a 12.8 meter tower, a 12.5 cm Razdow H-alpha telescope housed at the base of the tower, an 18 cm Questar telescope with a full aperture white-light filter mounted at the base of the tower, a 30 cm Cassegrain telescope located in a second metal dome, and a 16.5 cm H-alpha telescope mounted on the side of the Solar Vector Magnetograph. A concrete block building provides office space, a darkroom for developing film and performing optical testing, a workshop, video displays, and a computer facility for data reduction.

  9. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Rocky Mountains)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Great Smoky Mountains National Park (North Carolina and Tennessee).

  10. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    PubMed

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-18

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  11. Testing the Solar Probe Cup, An Instrument Designed to Touch The Sun

    NASA Technical Reports Server (NTRS)

    Whittlesey, Phyllis; Case, Anthony; Kasper, Justin; Wright, Kenneth; Alterman, Benjamin; Cirtain, Jonathan; Bookbinder, Jay; Korreck, Kelly; Stevens, Michael; Schneider, Todd; hide

    2014-01-01

    Abstract: Solar Probe Plus will be the first, fastest, and closest mission to the Sun, providing the first direct sampling of the sub-Alfvénic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests are created for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight-like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.

  12. Testing the Solar Probe Cup, an Instrument Designed to Touch the Sun

    NASA Technical Reports Server (NTRS)

    Whittlesey, Phyllis L.; Case, Anthony W.; Kasper, Justin Christophe; Wright, Kenneth H., Jr.; Alterman, Ben; Cirtain, Jonathan W.; Bookbinder, Jay; Korreck, Kelly E.; Stevens, Michael Louis

    2014-01-01

    Solar Probe Plus will be the first, fastest, and closest mission to the sun, providing the first direct sampling of the sub-Alfvenic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.

  13. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  14. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  15. Rosetta Langmuir Probe Photoelectron Emission and Solar Ultraviolet Flux at Comet 67P

    NASA Astrophysics Data System (ADS)

    Johansson, F. L.; Odelstad, E.; Paulsson, J. J.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Epavier, F.; Andersson, L.

    2017-12-01

    The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting dataset can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths that are important for photoionisation of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 percent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.

  16. Mathematical model of solar radiation based on climatological data from NASA SSE

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Masolov, V. G.

    2018-05-01

    An original model of solar radiation arriving at the arbitrarily oriented surface has been developed. The peculiarity of the model is that it uses numerical values of the atmospheric transparency index and the surface albedo from the NASA SSE database as initial data. The model is developed in the MatLab/Simulink environment to predict the main characteristics of solar radiation for any geographical point in Russia, including those for territories with no regular actinometric observations.

  17. Neptune Polar Orbiter with Probes

    NASA Technical Reports Server (NTRS)

    Bienstock, Bernard; Atkinson, David; Baines, Kevin; Mahaffy, Paul; Steffes, Paul; Atreya, Sushil; Stern, Alan; Wright, Michael; Willenberg, Harvey; Smith, David; hide

    2005-01-01

    The giant planets of the outer solar system divide into two distinct classes: the gas giants Jupiter and Saturn, which consist mainly of hydrogen and helium; and the ice giants Uranus and Neptune, which are believed to contain significant amounts of the heavier elements oxygen, nitrogen, and carbon and sulfur. Detailed comparisons of the internal structures and compositions of the gas giants with those of the ice giants will yield valuable insights into the processes that formed the solar system and, perhaps, other planetary systems. By 2012, Galileo, Cassini and possibly a Jupiter Orbiter mission with microwave radiometers, Juno, in the New Frontiers program, will have yielded significant information on the chemical and physical properties of Jupiter and Saturn. A Neptune Orbiter with Probes (NOP) mission would deliver the corresponding key data for an ice giant planet. Such a mission would ideally study the deep Neptune atmosphere to pressures approaching and possibly exceeding 1000 bars, as well as the rings, Triton, Nereid, and Neptune s other icy satellites. A potential source of power would be nuclear electric propulsion (NEP). Such an ambitious mission requires that a number of technical issues be investigated, however, including: (1) atmospheric entry probe thermal protection system (TPS) design, (2) probe structural design including seals, windows, penetrations and pressure vessel, (3) digital, RF subsystem, and overall communication link design for long term operation in the very extreme environment of Neptune's deep atmosphere, (4) trajectory design allowing probe release on a trajectory to impact Neptune while allowing the spacecraft to achieve a polar orbit of Neptune, (5) and finally the suite of science instruments enabled by the probe technology to explore the depths of the Neptune atmosphere. Another driving factor in the design of the Orbiter and Probes is the necessity to maintain a fully operational flight system during the lengthy transit time

  18. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Jefferson City, MO)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Jefferson City, Missouri.

  19. Helioseismology: A probe of the solar interior, atmosphere, and activity cycle

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.

    1995-01-01

    Helioseismology began in earnest in the mid 1970's. In the two decades which have elapsed since that time this branch of solar physics has become a mature field of research. Helioseismology has demonstrated that the solar convection zone is about twice as deep as was generally thought to be the case before 1977. Helioseismology has also provided measurements of the solar internal angular velocity over much of the sun's interior. Helioseismology has also ruled out models which would solve the solar neutrino problem by a lowering of the temperature of the core. Recently, some of the seismic properties of the sun have been demonstrated to vary with changing levels of solar activity. Also, helioseismology has recently provided evidence for helical flow patterns in the shallow, sub-photosphere layers. The techniques of helioseismology are also expanding to include seismic probes of solar active regions. Some work is also being conducted into the possible contributions of the solar acoustic models to the heating of the solar atmosphere. In this talk I will highlight a few of the above results and concentrate on current areas of research in the field.

  20. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Law, E.

    2017-12-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX mission as a primary driver.

  1. NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Day, Brian

    2017-01-01

    NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX (Martian Moons eXploration) mission as a primary driver.

  2. Basic Questions About the Solar System: The Need for Probes

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2005-01-01

    Probes are an essential element in the scientific study of planets with atmospheres. In-situ measurements provide the most accurate determination of composition, winds, temperatures, clouds, and radiative fluxes. They address fundamental NASA objectives concerning volatile compounds, climate, and the origin of life. Probes also deliver landers and aerobots that help in the study of planetary surfaces. This talk focuses on Venus, Titan, and the giant planets. I review the basic science questions and discuss the recommended missions. I stress the need for a balanced program that includes an array of missions that increase in size by factors of two. Gaps in this array lead to failures and cancellations that are harmful to the program and to scientific exploration.

  3. NASA Marshall Space Flight Center solar observatory report, January - June 1993

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1993-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January-June 1993. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  4. NASA Marshall Space Flight Center Solar Observatory report, July - October 1993

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1994-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during June-October 1993. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  5. NASA Marshall Space Flight Center Solar Observatory report, January - June 1992

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1992-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during Jan. to Jun. 1992. The systems that make up the facility are a magnetograph telescope, and H-alpha telescope, a Questar telescope, and a computer code.

  6. NASA Marshall Space Flight Center Solar Observatory report, March - May 1994

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1994-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during March-May 1994. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  7. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Exploratorium, Madras, OR)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from the Exploratorium in Madras, Oregon.

  8. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Idaho Falls, ID)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from the Museum of Idaho, in Idaho Falls.

  9. High-Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  10. 1958 NASA/USAF Space Probes (ABLE-1). Volume 3; Vehicles, Trajectories, and Flight Histories

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The three NASA/USAF lunar probes of August 17, October 13, and November 8, 1958 are described. Details of the program, the vehicles, the payloads, the firings, the tracking, and the results are presented. Principal result was the first experimental verification of a confined radiation zone of the type postulated by Van Allen and others.

  11. Application of a Split-Fiber Probe to Velocity Measurement in the NASA Research Compressor

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2003-01-01

    A split-fiber probe was used to acquire unsteady data in a research compressor. The probe has two thin films deposited on a quartz cylinder 200 microns in diameter. A split-fiber probe allows simultaneous measurement of velocity magnitude and direction in a plane that is perpendicular to the sensing cylinder, because it has its circumference divided into two independent parts. Local heat transfer considerations indicated that the probe direction characteristic is linear in the range of flow incidence angles of +/- 35. Calibration tests confirmed this assumption. Of course, the velocity characteristic is nonlinear as is typical in thermal anemometry. The probe was used extensively in the NASA Glenn Research Center (GRC) low-speed, multistage axial compressor, and worked reliably during a test program of several months duration. The velocity and direction characteristics of the probe showed only minute changes during the entire test program. An algorithm was developed to decompose the probe signals into velocity magnitude and velocity direction. The averaged unsteady data were compared with data acquired by pneumatic probes. An overall excellent agreement between the averaged data acquired by a split-fiber probe and a pneumatic probe boosts confidence in the reliability of the unsteady content of the split-fiber probe data. To investigate the features of unsteady data, two methods were used: ensemble averaging and frequency analysis. The velocity distribution in a rotor blade passage was retrieved using the ensemble averaging method. Frequencies of excitation forces that may contribute to high cycle fatigue problems were identified by applying a fast Fourier transform to the absolute velocity data.

  12. Remote Sensing of the Solar Wind Density, Speed, and Temperature in the Region between the Sun and Parker Solar Probe

    NASA Astrophysics Data System (ADS)

    Davila, J. M.; Reginald, N. L.

    2017-12-01

    A coronagraph is the tool of choice to understand and observe the structure of the corona from space. The novel coronagraph concept presented her provides a new scientific capability that will allow the measurement of density, temperature, and flow velocity in the solar atmosphere. This instrument will provide the first remote sensing measurement of the global solar wind temperature, density, and flow speed in the regions between 3 and 8 Rsun. It is in this region that the manority of the solar wind acceleration takes place, and where the ion compsition of the solar wind is "frozen in". This is also the region of the corona that links the surface of the Sun to the Parker Solar Probe and to Solar Orbiter. The observations suggested here would dramatically improve our understanding of solar wind formation and evolution in this critical region.

  13. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA 300M Hall Thruster

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A; Shastry, Rohit; Huang, Wensheng; Soulas, George C.; KamHawi, Hani

    2012-01-01

    In order to aid in the design of high-power Hall thrusters and provide experimental validation for existing modeling efforts, plasma potential and Langmuir probe measurements were performed in the near-field plume of the NASA 300M Hall thruster. A probe array consisting of a Faraday probe, Langmuir probe, and emissive probe was used to interrogate the plume from approximately 0.1 - 2.0 DT,m downstream of the thruster exit plane at four operating conditions: 300 V, 400 V, and 500 V at 20 kW as well as 300 V at 10 kW. Results show that the acceleration zone and high-temperature region were contained within 0.3 DT,m from the exit plane at all operating conditions. Isothermal lines were shown to strongly follow magnetic field lines in the nearfield, with maximum temperatures ranging from 19 - 27 eV. The electron temperature spatial distribution created large drops in measured floating potentials in front of the magnetic pole surfaces where the plasma density was small, which suggests strong sheaths at these surfaces. The data taken have provided valuable information for future design and modeling validation, and complements ongoing internal measurement efforts on the NASA 300 M.

  14. Recent Science Highlights of the Van Allen Probes Mission

    NASA Astrophysics Data System (ADS)

    Ukhorskiy, Aleksandr

    2016-10-01

    The morning of 30 August 2012 saw an Atlas 5 rocket launch NASA's second Living With a Star spacecraft mission, the twin Radiation Belt Storm Probes, into an elliptic orbit cutting through Earth's radiation belts. Renamed the Van Allen Probes soon after launch, the Probes are designed to determine how the highly variable populations of high-energy charged particles within the radiation belts, dangerous to astronauts and satellites, are created, respond to solar variations, and evolve in space environments. The Van Allen Probes mission extends beyond the practical considerations of the hazard's of Earth's space environment. Twentieth century observations of space and astrophysical systems throughout the solar system and out into the observable universe have shown that the processes that generate intense particle radiation within magnetized environments such as Earth's are universal. During its mission the Van Allen Probes verified and quantified previously suggested energization processes, discovered new energization mechanisms, revealed the critical importance of dynamic plasma injections into the innermost magnetosphere, and used uniquely capable instruments to reveal inner radiation belt features that were all but invisible to previous sensors. This paper gives a brief overview of the mission, presents some recent science highlights, and discusses plans for the extended mission.

  15. The Solar Wind from Pseudostreamers and their Environs: Opportunities for Observations with Parker Solar Probe and Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Panasenco, O.; Velli, M.; Panasenco, A.; Lionello, R.

    2017-12-01

    may be observed by Parker Solar Probe and Solar Orbiter.

  16. The Interstellar Probe (ISP): Pre-Perihelion Trajectories and Application of Holography

    NASA Technical Reports Server (NTRS)

    Matloff, G. L.; Vulpetti, G.; Bangs, C.; Haggerty, R.; Johnson, L. (Technical Monitor)

    2002-01-01

    Between February and September 2001, a number of aspects of the solar-sail-launched Interstellar probe (ISP), which is under consideration by NASA for launch in the 2010-2015 timeframe, were researched. The effort was conducted in New York City (NYC) February-May, at Marshall Space Flight Center (MSFC) May-July (when the PI served as a NASA Summer 2001 Faculty Fellow), and in NYC August-September. In addition to the people listed on the title sheet, many people in NYC and at MSFC participated in this research.

  17. NASA Marshall Space Flight Center Solar Observatory report, January - June 1990

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1990-01-01

    A description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility is presented and a summary of its observations and data reduction is given. The systems that make up the facility are a magnetograph telescope, an H alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  18. Design of a solar array simulator for the NASA EOS testbed

    NASA Technical Reports Server (NTRS)

    Butler, Steve J.; Sable, Dan M.; Lee, Fred C.; Cho, Bo H.

    1992-01-01

    The present spacecraft solar array simulator addresses both dc and ac characteristics as well as changes in illumination and temperature and performance degradation over the course of array service life. The computerized control system used allows simulation of a complete orbit cycle, in addition to automated diagnostics. The simulator is currently interfaced with the NASA EOS testbed.

  19. Radiation belt electron dynamics at low L (<4): Van Allen Probes era versus previous two solar cycles

    NASA Astrophysics Data System (ADS)

    Li, X.; Baker, D. N.; Zhao, H.; Zhang, K.; Jaynes, A. N.; Schiller, Q.; Kanekal, S. G.; Blake, J. B.; Temerin, M.

    2017-05-01

    Long-term (>2 solar cycles) measurements reveal that MeV electron fluxes, solar wind speed, and geomagnetic activity have been extremely low during this current solar cycle, including years before and during the Van Allen Probes era. This study examines solar wind speed, the geomagnetic storm index (Dst), >2 MeV electrons at geostationary orbit, and 2 MeV electrons across various L shells measured by Solar Anomalous Magnetospheric Particle Explorer in low Earth orbit (LEO) and by the Van Allen Probes/Relativistic Electron and Proton Telescope (REPT) in a geotransfer-like orbit; the latter measurements are normalized to LEO based on comparison with Colorado Student Space Weather Experiment/Relativistic Electron and Proton Telescope integrated little experiment (REPTile) measurements in LEO. The average ratio of REPTile/REPT varies in a systematic manner with L, 16% at L = 2.7, decreasing with L and reaching 0.7% at L = 4.7, and increasing again with L though with greater uncertainty. We show that there have been no 2 MeV electron enhancements inside L 2.6 since 2006, prior to which numerous penetrations of 2 MeV electrons into L < 2.5 were measured during periods of stronger solar wind conditions (in terms of high-speed solar wind, magnitude of interplanetary magnetic field, B, and a sustained southward Bz) and thus stronger geomagnetic activity. We conclude that results from the Van Allen Probes, which have been providing the finest measurements but in operation during a quiet solar activity period, may not be representative of radiation belt dynamics, particularly for the inner edge of the outer belt, during other solar cycle phases.

  20. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (The International Space Station)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from The International Space Station.

  1. Preliminary Results From NASA's Space Solar Power Exploratory Research and Technology Program

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.

    2000-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, during 1999-2000, NASA has been conducting the SSP Exploratory Research and Technology (SERT) program. The goal of the SERT activity has been to conduct preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). In pursuing that goal, the SERT: (1) refined and modeled systems approaches for the utilization of SSP concepts and technologies, ranging from the near-term (e.g., for space science, exploration and commercial space applications) to the far-term (e.g., SSP for terrestrial markets), including systems concepts, architectures, technology, infrastructure (e.g. transportation), and economics; (2) conducted technology research, development and demonstration activities to produce "proof-of-concept" validation of critical SSP elements for both nearer and farther-term applications; and (3) engendered the beginnings of partnerships (nationally and internationally) that could be expanded, as appropriate, to pursue later SSP technology and applications. Through these efforts, the SERT should allow better informed future decisions regarding further SSP and related technology research and development investments by both NASA and prospective partners, and guide further definition of technology roadmaps - including performance objectives, resources and schedules, as well as "multi-purpose" applications (e.g., commerce, science, and government). This paper

  2. NASA Sun-Earth Connections Theory Program: The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, Joseph M. (Technical Monitor)

    2001-01-01

    This report covers technical progress during the fourth quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation, and covers the period May 16,2001 to August 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.

  3. NASA SMART Probe: Breast Cancer Application

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Norvig, Peter (Technical Monitor)

    2000-01-01

    There is evidence in breast cancer and other malignancies that the physiologic environment within a tumor correlates with clinical outcome. We are developing a unique percutaneous Smart Probe to be used at the time of needle biopsy of the breast. The Smart Probe will simultaneously measure multiple physiologic parameters within a breast tumor. Direct and indirect measurements of tissue oxygen levels, blood flow, pH, and tissue fluid pressure will be analyzed in real-time. These parameters will be interpreted individually and collectively by innovative neural network techniques using advanced intelligent software. The goals are 1) develop a pecutaneous Smart Probe with multiple sensor modalities and applying advanced Information Technologies to provide real time diagnostic information of the tissue at tip of the probe, 2) test the percutaneous Smart Probe in women with benign and malignant breast masses who will be undergoing surgical biopsy, 3) correlate probe sensor data with benign and malignant status of breast masses, 4) determine whether the probe can detect physiologic differences within a breast tumor, and its margins, and in adjacent normal breast tissue, 5) correlate probe sensor data with known prognostic factors for breast caner, including tumor size, tumor grade, axillary lymph node metastases, estrogen receptor and progesterone receptor status.

  4. The Heliosphere Through the Solar Activity Cycle

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Lanzerotti, L. J.; Suess, S. T.

    2006-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun the heliosphere has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors describe the rise in solar ESA and NASA have now unamiously agreed a third extension to operate the highly successful Ulysses spacecraft until March 2008 and, in 2007 and 2008, the European-built space probe will fly over the poles of the Sun for a third time. This will enable Ulysses to add an important chapter to its survey of the high-latitude heliosphere and this additional material would be included in a 2nd edition of this book.

  5. ICARUS Mission, Next Step of Coronal Exploration after Solar Orbiter and Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, V.; Tsurutani, B.; Velli, M.; Maksimovic, M.; Balikhin, M. A.; Dudok de Wit, T.; Kretzschmar, M.

    2017-12-01

    The primary scientific goal of ICARUS, a mother-daughter satellite mission, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind and the heliosphere. Reaching this goal will be a Rosetta-stone step, with results broadly applicable in the fields of space plasma and astrophysics. Within ESA's Cosmic Vision roadmap, these goals address Theme 2: How does the solar system work ?" Investigating basic processes occurring from the Sun to the edge of the Solar System". ICARUS will not only advance our understanding of the plasma environment around the Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the firstever direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution and flows directly in the regions where the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion at 1 Solar radius from its surface, it will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow wind are generated. It will probe local characteristics of the plasma and provide unique information about the processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will provide bridges for understanding the magnetic links between heliosphere and solar atmosphere. Such information is crucial to understanding of the physics and electrodynamics of the solar atmosphere. ICARUS II will also play an important relay role, enabling the radio-link with ICARUS I. It will receive, collect and store information transmitted from ICARUS I during its closest approach to the Sun. It will perform preliminary data processing and

  6. NASA Marshall Space Flight Center Solar Observatory report, October - December 1990

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    A description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility is provided, and a summary of its observations and data reduction during Oct. - Dec. 1990 is presented. The systems that make up the facility are a magnetograph telescope, and H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  7. NASA Marshall Space Flight Center solar observatory report, January - December 1987

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1989-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during January to December 1987. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  8. NASA Marshall Space Flight Center Solar Observatory report, July - September 1990

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1991-01-01

    A description of the NASA Marshall Space Flight C nter's Solar Vector Magnetograph Facility is provided and gives a summary of its observations and data reduction during Jul. - Sep. 1990. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  9. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  10. NASA Marshall Space Flight Center Solar Observatory Report, July to December 1992

    NASA Technical Reports Server (NTRS)

    Smith, J. E.

    1993-01-01

    This report provides a description of the NASA Marshall Space Flight Center's Solar Vector Magnetograph Facility and gives a summary of its observations and data reduction during July-December 1992. The systems that make up the facility are a magnetograph telescope, an H-alpha telescope, a Questar telescope, and a computer code.

  11. NASA's "Eyes On The Solar System:" A Real-time, 3D-Interactive Tool to Teach the Wonder of Planetary Science

    NASA Astrophysics Data System (ADS)

    Hussey, K.

    2014-12-01

    NASA's Jet Propulsion Laboratory is using video game technology to immerse students, the general public and mission personnel in our solar system and beyond. "Eyes on the Solar System," a cross-platform, real-time, 3D-interactive application that can run on-line or as a stand-alone "video game," is of particular interest to educators looking for inviting tools to capture students interest in a format they like and understand. (eyes.nasa.gov). It gives users an extraordinary view of our solar system by virtually transporting them across space and time to make first-person observations of spacecraft, planetary bodies and NASA/ESA missions in action. Key scientific results illustrated with video presentations, supporting imagery and web links are imbedded contextually into the solar system. Educators who want an interactive, game-based approach to engage students in learning Planetary Science will see how "Eyes" can be effectively used to teach its principles to grades 3 through 14.The presentation will include a detailed demonstration of the software along with a description/demonstration of how this technology is being adapted for education. There will also be a preview of coming attractions. This work is being conducted by the Visualization Technology Applications and Development Group at NASA's Jet Propulsion Laboratory, the same team responsible for "Eyes on the Earth 3D," and "Eyes on Exoplanets," which can be viewed at eyes.nasa.gov/earth and eyes.nasa.gov/exoplanets.

  12. Going for the Moon instead of Just Going into Orbit: The Quest for Approval of the United States' First Lunar-Probe Attempts, 1957-1958

    NASA Astrophysics Data System (ADS)

    Waff, C. B.

    2005-12-01

    The U.S. program for exploring the solar system with spacecraft began with the five Pioneer lunar-probe attempts of 1958-1959, which were initiated prior to the formation of NASA under the auspices of the Department of Defense's newly formed Advanced Research Projects Agency. Although most historical accounts of early U.S. solar-system exploration note the failure of all the probes to get anywhere near the moon (only the final Pioneer 4 probe succeeded in escaping the earth's gravity), virtually no attention has been paid to how these probe attempts came to be approved by President Eisenhower in March 1958. An examination of formerly classified documents at NASA's Jet Propulsion Laboratory and the Space Systems Division History Office at Los Angeles Air Force Base has revealed that while efforts were made to place scientific instrumentation aboard the probes, a major impetus for the approval of the probes and a major factor in their design was a desire by President's Scientific Advisory Committee (PSAC) members and ARPA officials to restore national prestige by surpassing in a very public way the Soviet Union's recent achievement of orbiting the world's first artificial satellite. Although PSAC members ultimately decided visual reconnaissance (i.e., close-up photographs of the lunar surface) was the best means to achieve this goal, they did briefly consider (but rejected) the idea of landing and exploding an atomic bomb on the moon. (This paper is based on research conducted under a NASA-JPL contract.)

  13. Going for the Moon instead of Just Going into Orbit: The Quest for Approval of the United States' First Lunar-Probe Attempts, 1957-1958

    NASA Astrophysics Data System (ADS)

    Waff, C. B.

    2005-08-01

    The U.S. program for exploring the solar system with spacecraft began with the five Pioneer lunar-probe attempts of 1958-1959, which were initiated prior to the formation of NASA under the auspices of the Department of Defense's newly formed Advanced Research Projects Agency. Although most historical accounts of early U.S. solar-system exploration note the failure of all the probes to get anywhere near the moon (only the final Pioneer 4 probe succeeded in escaping the earth's gravity), virtually no attention has been paid to how these probe attempts came to be approved by President Eisenhower in March 1958. An examination of formerly classified documents at NASA's Jet Propulsion Laboratory and the Space Systems Division History Office at Los Angeles Air Force Base has revealed that while efforts were made to place scientific instrumentation aboard the probes, a major impetus for the approval of the probes and a major factor in their design was a desire by President's Scientific Advisory Committee (PSAC) members and ARPA officials to restore national prestige by surpassing in a very public way the Soviet Union's recent achievement of orbiting the world's first artificial satellite. Although PSAC members ultimately decided visual reconnaissance (i.e., close-up photographs of the lunar surface) was the best means to achieve this goal, they did briefly consider (but rejected) the idea of landing and exploding an atomic bomb on the moon. (This paper is based on research conducted under a NASA-JPL contract.)

  14. A Common Probe Design for Multiple Planetary Destinations

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Allen, G. A., Jr.; Alunni, A. I.; Amato, M. J.; Atkinson, D. H.; Bienstock, B. J.; Cruz, J. R.; Dillman, R. A.; Cianciolo, A. D.; Elliott, J. O.; hide

    2018-01-01

    Atmospheric probes have been successfully flown to planets and moons in the solar system to conduct in situ measurements. They include the Pioneer Venus multi-probes, the Galileo Jupiter probe, and Huygens probe. Probe mission concepts to five destinations, including Venus, Jupiter, Saturn, Uranus, and Neptune, have all utilized similar-shaped aeroshells and concept of operations, namely a 45-degree sphere cone shape with high density heatshield material and parachute system for extracting the descent vehicle from the aeroshell. Each concept designed its probe to meet specific mission requirements and to optimize mass, volume, and cost. At the 2017 International Planetary Probe Workshop (IPPW), NASA Headquarters postulated that a common aeroshell design could be used successfully for multiple destinations and missions. This "common probe"� design could even be assembled with multiple copies, properly stored, and made available for future NASA missions, potentially realizing savings in cost and schedule and reducing the risk of losing technologies and skills difficult to sustain over decades. Thus the NASA Planetary Science Division funded a study to investigate whether a common probe design could meet most, if not all, mission needs to the five planetary destinations with extreme entry environments. The Common Probe study involved four NASA Centers and addressed these issues, including constraints and inefficiencies that occur in specifying a common design. Study methodology: First, a notional payload of instruments for each destination was defined based on priority measurements from the Planetary Science Decadal Survey. Steep and shallow entry flight path angles (EFPA) were defined for each planet based on qualification and operational g-load limits for current, state-of-the-art instruments. Interplanetary trajectories were then identified for a bounding range of EFPA. Next, 3-degrees-of-freedom simulations for entry trajectories were run using the entry state

  15. The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  16. Comparison of Total Solar Irradiance with NASA/NSO Spectromagnetograph Data in Solar Cycles 22 and 23

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.; Branston, Detrick D.; Jones, Patricia B.; Popescu, Miruna D.

    2002-01-01

    An earlier study compared NASA/NSO Spectromagnetograph (SPM) data with spacecraft measurements of total solar irradiance (TSI) variations over a 1.5 year period in the declining phase of solar cycle 22. This paper extends the analysis to an eight-year period which also spans the rising and early maximum phases of cycle 23. The conclusions of the earlier work appear to be robust: three factors (sunspots, strong unipolar regions, and strong mixed polarity regions) describe most of the variation in the SPM record, but only the first two are associated with TSI. Additionally, the residuals of a linear multiple regression of TSI against SPM observations over the entire eight-year period show an unexplained, increasing, linear time variation with a rate of about 0.05 W m(exp -2) per year. Separate regressions for the periods before and after 1996 January 01 show no unexplained trends but differ substantially in regression parameters. This behavior may reflect a solar source of TSI variations beyond sunspots and faculae but more plausibly results from uncompensated non-solar effects in one or both of the TSI and SPM data sets.

  17. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Moon's Shadow Seen From Gulfstream III Aircraft, Off Oregon Coast)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21 NASA provided coast-to-coast coverage of the solar eclipse across America- featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during live broadcast seen on NASA Television and the agency’s website. Footage of the moon's shadow moving across the planet is captured from NASA's Gulfstream III aircraft as it flew in the skies off the coast of Oregon during the Aug. 21 solar eclipse

  18. Sun-Earth Day WEBCAST - NASA TV; Host Paul Mortfield, Astronomer Stanford Solar Center and visiting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sun-Earth Day WEBCAST - NASA TV; Host Paul Mortfield, Astronomer Stanford Solar Center and visiting students from San Francisco Bay Area Schools Documentation Technology Branch Video communications van (code-JIT)

  19. ICARUS mission, next step of coronal exploration after Solar Orbiter and Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, Vladimir; Tsurutani, Bruce T.; Velli, Marco; Maksimovic, Milan; Balikhin, Mikhael; Dudok de Wit, Thierry; Kretzschmar, Matthieu

    2017-04-01

    The primary scientific goal of ICARUS (Investigation of Coronal AcceleRation and heating Up to the Sun), a mother-daughter satellite mission, will be to determine how the magnetic _field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind and the entire heliosphere. Reaching this goal will be a Rosetta-stone step, with results broadly applicable within the fields of space plasma physics and astrophysics. Within ESA's Cosmic Vision roadmap, these science goals address Theme 2: How does the solar system work ?" by investigating basic processes occurring From the Sun to the edge of the Solar System". ICARUS will not only advance our understanding of the plasma environment around our the Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the first-ever direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution and flows directly in the regions where the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion at 1 Solar radius from its surface, it will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow wind are generated. It will probe local characteristics of the plasma and provide unique information about the physical processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will thus provide bridges for understanding the magnetic links between the heliosphere and the solar atmosphere. Such information is crucial to our understanding of the plasma physics and electrodynamics of the solar atmosphere. ICARUS II will also play a very important relay role, enabling the radio-link with ICARUS I. It will receive

  20. Solar Orbiter Status Report

    NASA Astrophysics Data System (ADS)

    Gilbert, Holly; St. Cyr, Orville Chris; Mueller, Daniel; Zouganelis, Yannis; Velli, Marco

    2017-08-01

    With the delivery of the instruments to the spacecraft builder, the Solar Orbiter mission is in the midst of Integration & Testing phase at Airbus in Stevenage, U.K. This mission to “Explore the Sun-Heliosphere Connection” is the first medium-class mission of ESA’s Cosmic Vision 2015-2025 program and is being jointly implemented with NASA. The dedicated payload of 10 remote-sensing and in-situ instruments will orbit the Sun as close as 0.3 A.U. and will provide measurments from the photosphere into the solar wind. The three-axis stabilized spacecraft will use Venus gravity assists to increase the orbital inclination out of the ecliptic to solar latitudes as high as 34 degrees in the extended mission. The science team of Solar Orbiter has been working closely with the Solar Probe Plus scientists to coordinate observations between these two highly-complementary missions. This will be a status report on the mission development; the interested reader is referred to the recent summary by Müller et al., Solar Physics 285 (2013).

  1. “Total Eclipse Preview Show”, Total Solar Eclipse: “Through The Eyes of NASA,” Part 1

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website.

  2. Cutting-edge Kinetic Physics with Parker Solar Probe and Solar Orbiter: The Arbitrary Linear Plasma Solver (ALPS)

    NASA Astrophysics Data System (ADS)

    Verscharen, D.; Klein, K. G.; Chandran, B. D. G.; Stevens, M. L.; Salem, C. S.; Bale, S. D.

    2017-12-01

    The Arbitrary Linear Plasma Solver (ALPS) is a parallelized numerical code that solves the dispersion relation in a hot (even relativistic) magnetized plasma with an arbitrary number of particle species with arbitrary gyrotropic equilibrium distribution functions for any direction of wave propagation with respect to the background field. In this way, ALPS retains generality and overcomes the shortcomings of previous (bi-)Maxwellian solvers for the plasma dispersion relations. The unprecedented high-resolution particle and field data products from Parker Solar Probe (PSP) and Solar Orbiter (SO) will require novel theoretical tools. ALPS is one such tool, and its use will make possible new investigations into the role of non-Maxwellian distributions in the near-Sun solar wind. It can be applied to numerous high-velocity-resolution systems, ranging from current space missions to numerical simulations. We will briefly discuss the ALPS algorithm and demonstrate its functionality based on previous solar-wind measurements. We will then highlight our plans for future applications of ALPS to PSP and SO observations.

  3. Through the Eyes of NASA: NASA's 2017 Eclipse Education Progam

    NASA Astrophysics Data System (ADS)

    Mayo, L.

    2017-12-01

    Over the last three years, NASA has been developing plans to bring the August 21st total solar eclipse to the nation, "as only NASA can", leveraging its considerable space assets, technology, scientists, and its unmatched commitment to science education. The eclipse, long anticipated by many groups, represents the largest Big Event education program that NASA has ever undertaken. It is the latest in a long string of successful Big Event international celebrations going back two decades including both transits of Venus, three solar eclipses, solar maximum, and mission events such as the MSL/Curiosity landing on Mars, and the launch of the Lunar Reconnaissance Orbiter (LRO) to name a few. This talk will detail NASA's program development methods, strategic partnerships, and strategies for using this celestial event to engage the nation and improve overall science literacy.

  4. NASA Provides Coast-to-Coast Coverage of Aug. 21 Solar Eclipse (Clarksville, TN – Austin Peay)

    NASA Image and Video Library

    2017-08-21

    On Monday, Aug. 21, NASA provided coast-to-coast coverage of the solar eclipse across America – featuring views of the phenomenon from unique vantage points, including from the ground, from aircraft, and from spacecraft including the ISS, during a live broadcast seen on NASA Television and the agency’s website. This is footage from Austin Peay State University, in Clarksville, TN.

  5. The Interaction of the Solar Wind with Solar Probe Plus - 3D Hybrid Simulation. Report 2: The Study for the Distance 9.5Rs

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2010-01-01

    Our paper is a 2.5D and 3D numerical plasma models of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC). These results should be interpreted as a basic plasma model for which the derived SW interaction with spacecraft (SC) could have consequences for both plasma wave and electron plasma measurements on board SC in the inner heliosphere. We observe an excitation of the low frequency Alfven and whistler type wave directed by the magnetic field with an amplitude of the electromagnetic field oscillation about of (0.015-0.06) V/m. The compression waves and the jumps in an electric field with an amplitude of about 1.5 V/m and (12-18) V/m were also observed. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements, which were planned in future Solar Probe Plus mission.

  6. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  7. NASA Marshall Space Flight Center solar observatory report, January to December 1989

    NASA Technical Reports Server (NTRS)

    Smith, James E.

    1990-01-01

    A description is provided of the NASA-Marshall's Solar Vector Magnetograph Facility and a summary of its observations and data reduction during January to December 1989 is given. The systems that make up the facility are a magnetograph telescope, and H-alpha telescope, a Questar telescope, and a computer code. The data are represented by longitudinal contours with azimuth plots.

  8. The Saturn Probe Interior and aTmosphere Explorer (SPRITE) Mission

    NASA Astrophysics Data System (ADS)

    Simon, Amy; Banfield, Donald; Atkinson, David; SPRITE Science Team

    2018-01-01

    A key question in planetary science is how the planets formed in our Solar System, and, by extension, in exoplanet systems. The abundances of the noble gases (He, Ne, Ar, Kr, Xe), heavy elements (C, N, O, S), and their isotopes provide important forensic clues as to location and time of formation in the early Solar System. Jupiter and Saturn contain most of the planetary mass in our solar system, and their chemical fingerprints will distinguish between competing models of the formation of all the planets. After the end of the Cassini mission, some of these elements have only ambiguous values above the cloud tops, while others (particularly the noble gases) have not been measured at all. Resolving this requires direct in situ measurements. The proposed NASA New Frontiers Saturn PRobe Interior and aTmosphere Explorer (SPRITE) mission delivers an instrumented entry probe from a carrier relay spacecraft that also provides context imaging. The powerful probe instrument suite is comprised of a Quadrupole Mass Spectrometer, a Tunable Laser Spectrometer, and an Atmospheric Structure Instrument including a Doppler Wind Experiment and a simple backscatter nephelometer. These instruments measure the elemental and isotopic abundances of helium, the heavier noble gases, and the major elements, as well as constraining cloud properties, 3-D atmospheric dynamics, and disequilibrium chemistry to at least 10 bars in Saturn's troposphere. In situ measurements of Saturn's atmosphere by SPRITE will provide a significantly improved context for interpreting the results from the Galileo probe, Juno, and Cassini missions. SPRITE will revolutionize our understanding of the formation and evolution of the gas giant planets, and ultimately the present-day structure of the Solar System.

  9. Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1995-01-01

    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.

  10. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  11. Data Analysis Measurement: Having a Solar Blast! NASA Connect: Program 7 in the 2001-2002 Video Series. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA Connect is an interdisciplinary, instructional distance learning program targeting students in grades 6-8. This videotape explains how engineers and researchers at the National Aeronautics and Space Administration (NASA) use data analysis and measurement to predict solar storms, anticipate how they will affect the Earth, and improve…

  12. NASA's Discovery Program: Moving Toward the Edge (of the Solar System)

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Gilbert, Paul

    2007-01-01

    NASA's Planetary Science , Division sponsors a competitive program of small spacecraft missions with the goal of performing focused science investigations that complement NASA's larger planetary science explorations at relatively low cost. The goal of the Discovery program is to launch many smaller missions with fast development times to increase our understanding of the solar system by exploring the planets, dwarf planets, their moons, and small bodies such as comets and asteroids. Discovery missions are solicited from the broad planetary science community approximately every 2 years. Active missions within the Discovery program include several with direct scientific or engineering connections to potential future missions to the edge of the solar system and beyond. In addition to those in the Discovery program are the missions of the New Frontiers program. The first New Frontiers mission. is the New Horizons mission to Pluto, which will explore this 38-AU distant dwarf planet and potentially some Kuiper Belt objects beyond. The Discovery program's Dawn mission, when launched in mid-2007, will use ion drive as its primary propulsion system. Ion propulsion is one of only two technologies that appear feasible for early interstellar precursor missions with practical flight times. The Kepler mission will explore the structure and diversity of extrasolar planetary systems, with an emphasis on the detection of Earth-size planets around other stars. Kepler will survey nearby solar systems searching for planets that may fall within the habitable zone,' a region surrounding a star within which liquid water may exist on a planet's surface - an essential ingredient for life as we know it. With its open and competitive approach to mission selections, the Discovery program affords scientists the opportunity to propose missions to virtually any solar system destination. With its emphasis on science and proven openness to the use of new technologies such as ion propulsion

  13. Missions to the sun and to the earth. [planning of NASA Solar Terrestrial Program

    NASA Technical Reports Server (NTRS)

    Timothy, A. F.

    1978-01-01

    The program outlined in the present paper represents an optimized plan of solar terrestrial physics. It is constrained only in the sense that it involves not more than one new major mission per year for the Solar Terrestrial Division during the 1980-1985 period. However, the flight activity proposed, if accepted by the Agency and by Congress, would involve a growth in the existing Solar Terrestrial budget by more than a factor of 2. Thus, the program may be considered as somewhat optimistic when viewed in the broader context of the NASA goals and budget. The Agency's integrated FY 1980 Five Year Plan will show how many missions proposed will survive this planning process.

  14. The Slow and Fast Solar Wind Boundary, Corotating Interaction Regions, and Coronal Mass Ejection observations with Solar Probe Plus and Solar Orbiter (Invited)

    NASA Astrophysics Data System (ADS)

    Velli, M. M.

    2013-12-01

    The Solar Probe Plus and Solar Orbiter missions have as part of their goals to understand the source regions of the solar wind and of the heliospheric magnetic field. In the heliosphere, the solar wind is made up of interacting fast and slow solar wind streams as well as a clearly intermittent source of flow and field, arising from coronal mass ejections (CMEs). In this presentation a summary of the questions associated with the distibution of wind speeds and magnetic fields in the inner heliosphere and their origin on the sun will be summarized. Where and how does the sharp gradient in speeds develop close to the Sun? Is the wind source for fast and slow the same, and is there a steady component or is its origin always intermittent in nature? Where does the heliospheric current sheet form and how stable is it close to the Sun? What is the distribution of CME origins and is there a continuum from large CMEs to small blobs of plasma? We will describe our current knowledge and discuss how SPP and SO will contribute to a more comprehensive understanding of the sources of the solar wind and magnetic fields in the heliosphere.

  15. Performance of the Phase Doppler Particle Analyzer icing cloud droplet sizing probe in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Rudoff, R. C.; Bachalo, E. J.; Bachalo, W. D.; Oldenburg, J. R.

    1992-01-01

    The design, development, and testing of an icing cloud droplet sizing probe based upon the Phase Doppler Particle Analyzer (PDPA) are discussed. This probe is an in-situ laser interferometry based single particle measuring device capable of determining size distributions. The probe is designed for use in harsh environments such as icing tunnels and natural icing clouds. From the measured size distribution, Median Volume Diameter (MVD) and Liquid Water Content (LWC) may be determined. Both the theory of measurement and the mechanical aspects of the probe design and development are discussed. The MVD results from the probe are compared to an existing calibration based upon different instruments in a series of tests in the NASA Lewis Icing Research Tunnel. Agreement between the PDPA probe and the existing calibration is close for MVDs between 15 to 30 microns, but the PDPA results are considerably smaller for MVDs under 15 microns.

  16. Probes, Moons, and Kinetic Plasma Wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Nonmagnetic objects as varied as probes in tokamaks or moons in space give rise to flowing plasma wakes in which strong distortions of the ion and electron velocity distributions cause electrostatic instabilities. Non-linear phenomena such as electron holes are then produced. Historic probe theory largely ignores the resulting unstable character of the wake, but since we can now simulate computationally the non-linear wake phenomena, a timely challenge is to reassess the influence of these instabilities both on probe measurements and on the wakes themselves. Because the electron instability wavelengths are very short (typically a few Debye-lengths), controlled laboratory experiments face serious challenges in diagnosing them. That is one reason why they have long been neglected as an influence in probe interpretation. Space-craft plasma observations, by contrast, easily obtain sub-Debye-length resolution, but have difficulty with larger-scale reconstruction of the plasma spatial variation. In addition to surveying our developing understanding of wakes in magnetized plasmas, ongoing analysis of Artemis data concerning electron holes observed in the solar-wind lunar wake will be featured. Work partially supported by NASA Grant NNX16AG82G.

  17. On the radial evolution of reflection-driven turbulence in the inner solar wind in preparation for Parker Solar Probe

    NASA Astrophysics Data System (ADS)

    Perez, J. C.; Chandran, B. D. G.

    2017-12-01

    In this work we present recent results from high-resolution direct numerical simulations and a phenomenological model that describes the radial evolution of reflection-driven Alfven Wave turbulence in the solar atmosphere and the inner solar wind. The simulations are performed inside a narrow magnetic flux tube that models a coronal hole extending from the solar surface through the chromosphere and into the solar corona to approximately 21 solar radii. The simulations include prescribed empirical profiles that account for the inhomogeneities in density, background flow, and the background magnetic field present in coronal holes. Alfven waves are injected into the solar corona by imposing random, time-dependent velocity and magnetic field fluctuations at the photosphere. The phenomenological model incorporates three important features observed in the simulations: dynamic alignment, weak/strong nonlinear AW-AW interactions, and that the outward-propagating AWs launched by the Sun split into two populations with different characteristic frequencies. Model and simulations are in good agreement and show that when the key physical parameters are chosen within observational constraints, reflection-driven Alfven turbulence is a plausible mechanism for the heating and acceleration of the fast solar wind. By flying a virtual Parker Solar Probe (PSP) through the simulations, we will also establish comparisons between the model and simulations with the kind of single-point measurements that PSP will provide.

  18. Interstellar Propulsion Research Within NASA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Cook, Stephen (Technical Monitor)

    2001-01-01

    NASA is actively conducting advanced propulsion research and technology development in various in-space transportation technologies with potential application to interstellar missions and precursors. Within the last few years, interest in the scientific community in interstellar missions as well as outer heliospheric missions, which could function as interstellar precursor missions, has increased. A mission definition team was charted by NASA to define such a precursor, The Interstellar Probe, which resulted in a prioritization of relatively near-term transportation technologies to support its potential implementation. In addition, the goal of finding and ultimately imaging extra solar planets has raised the issue of our complete inability to mount an expedition to such as planet, should one be found. Even contemplating such a mission with today's technology is a stretch of the imagination. However, there are several propulsion concepts, based on known physics, that have promise to enable interstellar exploration in the future. NASA is making small, incremental investments in some key advanced propulsion technologies in an effort to advance their state-of-the-art in support potential future mission needs. These technologies, and their relative maturity, are described.

  19. The 2017 Total Solar Eclipse: Through the Eyes of NASA

    NASA Astrophysics Data System (ADS)

    Young, C. Alex; Mayo, Louis; Ng, Carolyn; Cline, Troy; Lewis, Elaine; Reed, Shannon; Debebe, Asidesach; Stephenson, Bryan; Odenwald, Sten; Hill, Steele; Wright, Ernest

    2017-01-01

    The August 21, 2017 eclipse will be the first time a total solar eclipse has traversed the Continental US since June 8th, 1918. Anticipation and energy for this eclipse is off the charts! Over 500 million in North America alone will catch the eclipse in either partial or total phase. Parts of South America, Africa, and Europe will see a partial eclipse as well. NASA is planning to take full advantage of this unique celestial event as an education and public engagement opportunity by leveraging its extensive networks of partners, numerous social media platforms, broadcast media, and its significant unique space assets and people to bring the eclipse to America and the world as only NASA can.This talk will outline NASA’s education plans in some detail replicating our many Big Events successes including the 2012 Transit of Venus and the MSL/Curiosity landing and show how scientists and the public can get involved.

  20. Solar wind helium ions - Observations of the Helios solar probes between 0.3 and 1 AU

    NASA Technical Reports Server (NTRS)

    Marsch, E.; Rosenbauer, H.; Schwenn, R.; Muehlhaeuser, K.-H.; Neubauer, F. M.

    1982-01-01

    A Helios solar probe survey of solar wind helium ion velocity distributions and derived parameters between 0.3 and 1 AU is presented. Distributions in high-speed wind are found to generally have small total anisotropies, with some indication that, in the core part, the temperatures are greater parallel rather than perpendicular to the magnetic field. The anisotropy tends to increase with heliocentric radial distance, and the average dependence of helium ion temperatures on radial distance from the sun is described by a power law. Differential ion speeds with values of more than 150 km/sec are observed near perihelion, or 0.3 AU. The role of Coulomb collisions in limiting differential ion speeds and the ion temperature ratio is investigated, and it is found that collisions play a distinct role in low-speed wind, by limiting both differential ion velocity and temperature.

  1. Material Development of Faraday Cup Grids for the Solar Probe Plus Mission

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Wright, K. H.; Cirtain, J. W.; Lee, R.; Kasper, J. C.

    2011-01-01

    The Solar Probe Plus mission will launch a spacecraft to the Sun to study it's outer atmosphere. One of the instruments on board will be a Faraday Cup (FC) sensor. The FC will determine solar wind properties by measuring the current produced by ions striking a metal collector plate. It will be directly exposed to the Sun and will be subject to the temperature and radiation environment that exist within 10 solar radii. Conducting grids within the FC are biased up to 10 kV and are used to selectively transmit particles based on their energy to charge ratio. We report on the development of SiC grids. Tests were done on nitrogen-doped SiC starting disks obtained from several vendors, including annealing under vacuum at 1400 C and measurement of their electrical properties. SiC grids were manufactured using a photolithographic and plasma-etching process. The grids were incorporated into a prototype FC and tested in a simulated solar wind chamber. The energy cutoffs were measured for both proton and electron fluxes and met the anticipated sensor requirements.

  2. Solar and airglow measurements aboard the two suborbital flights NASA 36.098 and 36.107

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.

    1994-01-01

    This suborbital program, involving the University of Colorado (CU), National Center for Atmospheric Research (NCAR), University of California at Berkeley (UCB), and Boston University (BU), has resulted in two rocket flights from the White Sands Missile Range, one in 1992 and one in 1993 as NASA 36.098 and 36.107 respectively. The rocket payload includes five solar instruments and one airglow instrument from CU/NCAR and one solar instrument and two airglow instruments from UCB/BU. This report discusses results on solar radiation measurements and the study of thermospheric airglow, namely the photoelectron excited emissions from N2 and O, for the CU/NCAR program.

  3. NASA's Solar System Exploration Research Virtual Institute (SSERVI)

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne J.

    2015-11-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA’s Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies.NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships.The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  4. NASA Future Forum

    NASA Image and Video Library

    2012-02-21

    Neal Seater, President, Greenfield Solar, holds up a small solar chip during the NASA Future Forum panel titled "Transferring and Commercializing Technology to Benefit Our Lives and Our Economy" at The Ohio State University on Tuesday, Feb. 21, 2012 in Columbus, Ohio. The NASA Future Forum features panel discussions on the importance of education to our nation's future in space, the benefit of commercialized space technology to our economy and lives here on Earth, and the shifting roles for the public, commercial and international communities in space. Photo Credit: (NASA/Bill Ingalls)

  5. An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter

    NASA Astrophysics Data System (ADS)

    Wurz, P.; Lasi, D.; Thomas, N.; Piazza, D.; Galli, A.; Jutzi, M.; Barabash, S.; Wieser, M.; Magnes, W.; Lammer, H.; Auster, U.; Gurvits, L. I.; Hajdas, W.

    2017-08-01

    We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (<100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes ( 1 km), during the probe's fast ( km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. All in all, it is demonstrated how the descent probe has the potential to provide a high science return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.

  6. NASA Spitzer 12th Anniversary Space Calendar

    NASA Image and Video Library

    2015-08-20

    NASA Spitzer Space Telescope celebrated its 12th anniversary with a new digital calendar showcasing some of the mission most notable discoveries and popular cosmic eye candy. The digital calendar is online at http://www.jpl.nasa.gov/images/spitzer/20150820/Spitzer12thAnniversaryCalendar.pdf The calendar follows the life of the mission, with each month highlighting top infrared images and discoveries from successive years -- everything from a dying star resembling the eye of a monster to a star-studded, swirling galaxy. The final month includes a brand new image of the glittery star-making factory known as the Monkey Head nebula. Spitzer, which launched into space on August 25, 2003, from Cape Canaveral, Florida, is still going strong. It continues to use its ultra-sensitive infrared vision to probe asteroids, comets, exoplanets (planets outside our solar system) and some of the farthest known galaxies. Recently, Spitzer helped discover the closest known rocky exoplanet to us, named HD219134b, at 21 light-years away. In fact, Spitzer's exoplanet studies continue to surprise the astronomy community. The telescope wasn't originally designed to study exoplanets, but as luck -- and some creative engineering -- would have it, Spitzer has turned out to be a critical tool in the field, probing the climates and compositions of these exotic worlds. This pioneering work began in 2005, when Spitzer became the first telescope to detect light from an exoplanet. http://photojournal.jpl.nasa.gov/catalog/PIA19872

  7. NASA and energy

    NASA Technical Reports Server (NTRS)

    1974-01-01

    NASA technology contributions to create energy sources include direct solar heating and cooling systems, wind generation of electricity, solar thermal energy turbine drives, solar cells, and techniques for locating, producing, and collecting organic materials for conversion into fuel.

  8. Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility

    NASA Technical Reports Server (NTRS)

    Moore, S. H.; Voecks, G. E.

    1997-01-01

    Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.

  9. Validation of a Compact Isokinetic Total Water Content Probe for Wind Tunnel Characterization at NASA Glenn Icing Research Tunnel and at NRC Ice Crystal Tunnel

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Landreville, Charles; Ratvasky, Thomas P.

    2017-01-01

    A new compact isokinetic probe to measure total water content in a wind tunnel environment has been developed. The probe has been previously tested under altitude conditions. This paper presents a comprehensive validation of the probe under a range of liquid water conditions at sea level in the NASA Glenn Icing Research Tunnel and with ice crystals at sea level at the NRC wind tunnel. The compact isokinetic probe is compared to tunnel calibrations and other probes.

  10. NASA Science Mission Directorate's Year of the Solar System: An Opportunity for Scientist Involvement

    NASA Astrophysics Data System (ADS)

    Dalton, Heather; Shipp, S.; Boonstra, D.; Shupla, C.; CoBabe-Ammann, E.; LaConte, K.; Ristvey, J.; Wessen, A.; Zimmerman-Bachman, R.; Science E/PO Community, Planetary

    2010-10-01

    Between October 2010 and August 2012 - across a Martian year - a large number of Science Mission Directorate's (SMD) planetary missions will pass milestones (e.g., EPOXI, Stardust-NExT, MESSENGER, Dawn, Juno, GRAIL, and Mars Science Laboratory), with many other missions continuing to explore (e.g., Lunar Reconnaissance Orbiter, Mars Odyssey, Mars Exploration Rovers, Mars Reconnaissance Orbiter, Mars Express, Cassini, New Horizons, and Voyager). This Year of the Solar System (YSS) offers the Planetary Science Education and Public Outreach (E/PO) community an opportunity to collaborate with each other and the science community. Based on audience needs from formal and informal educators, YSS is structured to have monthly thematic topics that are driven by mission milestones, as well as observing opportunities. YSS will connect to ongoing and planned events nationwide. A website for YSS is in development and will be hosted off of the existing JPL Solar System website (http://solarsystem.nasa.gov/index.cfm). Once live, scientists, educators, and E/PO professionals will have a place to interact and collaborate. YSS will tie to NASA's Big Questions in Planetary Science - how did the Sun's family of planets and minor bodies originate and how have they evolved? - how did life begin and evolve on Earth, is it elsewhere, and what characteristics of the solar system lead to the origins of life? The thematic topics are broad in order to encompass many missions and planetary bodies each month, as well as address the Big Questions. YSS will kick off in October with the theme "Solar System Components and Scale” and a national event involving building solar system scale models across the country. Scientists are encouraged to contact schools, museums, planetaria, etc. in their communities to give presentations, provide science content, and collaborate on educational materials and events related to YSS.

  11. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    The second stage of a United Launch Alliance Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  12. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    The second stage of a United Launch Alliance Delta IV Heavy is being mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  13. Titan Lake Probe: The Ongoing NASA Decadal Study Preliminary Report

    NASA Astrophysics Data System (ADS)

    Waite, J. Hunter; Brockwell, Tim; Elliot, John; Reh, Kim; Spencer, John; Outer Planets Satellites Decadal Subpanel, The

    2010-05-01

    This talk provides an update on the scientific requirements and preliminary design of a Titan Lake Probe for a future NASA Flagship mission. The starting point for this study is the joint NASA ESA TSSM mission. Using this as a starting point we have revisited the scientific requirements and expanded them to include the possibility of a lake floater and a submersible. The preliminary results of this ongoing study will be presented. The scientific objectives of a Titan Lake Probe mission are: 1) to understand the formation and evolution of Titan and its atmosphere through measurement of the composition of the target lake (e.g., Kraken Mare), with particular emphasis on the isotopic composition of dissolved minor species and on dissolved noble gases, 2) to study the lake-atmosphere interaction in order to determine the role of Titan's lakes in the methane cycle, 3) to investigate the target lake as a laboratory for both pre-biotic organic chemistry in both water (or ammonia-enriched water) solutions and non-water solvents, and 4) to determine if Titan has an interior ocean by measuring tidal changes in the level of the lake over the course of Titan's sixteen-day orbit. The driving requirements for the mission are: 1) the need to land on and explore the lake at depth while adequately communicating the data back to Earth via either direct to Earth or relay communications, 2) thermal design that allows sustained (>32 days) sampling of the 94K lake environment, and 3) a mass spectrometer inlet system that allows sampling of gas, liquid, and solids from the 94K environment. The primary payload is an analytical chemistry laboratory that includes an inlet system for sampling gas, liquid, and solids in and above the lake feeding two capable mass spectrometers that determine the organic and isotopic composition of the sampled materials. The instrumentation also includes a meteorological package that can measure the rate of gas exchange between the lake and the atmosphere, and

  14. The Interaction of the Solar Wind with Solar Probe Plus - 3D Hybrid Simulation. Report 1; The Study for the Distance 4.5Rs

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2010-01-01

    Our report devotes a 3D numerical hybrid model of the interaction of the solar wind with the Solar Probe spacecraft. The Solar Probe Plus (SPP) model includes 3 main parts, namely, a non-conducting heat shield, a support system, and cylindrical section or spacecraft bus that contains the particle analysis devices and antenna. One observes an excitation of the low frequency Alfven and whistler type wave directed by the magnetic field with an amplitude of about (0.06-0.6) V/m. The compression waves and the jumps in an electric field with an amplitude of about (0.15-0.7) V/m were also observed. The wave amplitudes are comparable to or greater than previously estimated max wave amplitudes that SPP is expected to measure. The results of our hybrid simulation will be useful for understanding the plasma environment near the SPP spacecraft at the distance 4.5 Rs. Future simulation will take into account the charging of the spacecraft, the charge separation effects, an outgassing from heat shield, a photoionization and an electron impact ionization effects near the spacecraft.

  15. Solar and Heliospheric Data Requirements: Going Further Than L1

    NASA Technical Reports Server (NTRS)

    Szabo, A.

    2011-01-01

    Current operational space weather forecasting relies on solar wind observations made by the ACE spacecraft located at the L1 point providing 30-40 minutes warning time. Some use is also made of SOHO and STEREO solar imaging that potentially can give multiple days of warning time. However, our understanding of the propagation and evolution of solar wind transients is still limited resulting in a typical timing uncertainty of approximately 10 hours. In order to improve this critical understanding, a number of NASA missions are being planned. Specifically the Solar Probe Plus and Solar Orbiter missions will investigate the inner Heliospheric evolution of coronal mass ejections and the acceleration and propagation of solar energetic particles. In addition, a number of multi-spacecraft concepts have been studied that have the potential to significantly improve the accuracy of long-term space weather forecasts.

  16. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission.

    PubMed

    Chaplin, W J; Kjeldsen, H; Christensen-Dalsgaard, J; Basu, S; Miglio, A; Appourchaux, T; Bedding, T R; Elsworth, Y; García, R A; Gilliland, R L; Girardi, L; Houdek, G; Karoff, C; Kawaler, S D; Metcalfe, T S; Molenda-Żakowicz, J; Monteiro, M J P F G; Thompson, M J; Verner, G A; Ballot, J; Bonanno, A; Brandão, I M; Broomhall, A-M; Bruntt, H; Campante, T L; Corsaro, E; Creevey, O L; Doğan, G; Esch, L; Gai, N; Gaulme, P; Hale, S J; Handberg, R; Hekker, S; Huber, D; Jiménez, A; Mathur, S; Mazumdar, A; Mosser, B; New, R; Pinsonneault, M H; Pricopi, D; Quirion, P-O; Régulo, C; Salabert, D; Serenelli, A M; Silva Aguirre, V; Sousa, S G; Stello, D; Stevens, I R; Suran, M D; Uytterhoeven, K; White, T R; Borucki, W J; Brown, T M; Jenkins, J M; Kinemuchi, K; Van Cleve, J; Klaus, T C

    2011-04-08

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.

  17. Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination.

    PubMed

    Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; I Cabarrocas, Pere Roca

    2016-12-01

    Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements.

  18. NASA Growth Space Station missions and candidate nuclear/solar power systems

    NASA Technical Reports Server (NTRS)

    Heller, Jack A.; Nainiger, Joseph J.

    1987-01-01

    A brief summary is presented of a NASA study contract and in-house investigation on Growth Space Station missions and appropriate nuclear and solar space electric power systems. By the year 2000 some 300 kWe will be needed for missions and housekeeping power for a 12 to 18 person Station crew. Several Space Station configurations employing nuclear reactor power systems are discussed, including shielding requirements and power transmission schemes. Advantages of reactor power include a greatly simplified Station orientation procedure, greatly reduced occultation of views of the earth and deep space, near elimination of energy storage requirements, and significantly reduced station-keeping propellant mass due to very low drag of the reactor power system. The in-house studies of viable alternative Growth Space Station power systems showed that at 300 kWe a rigid silicon solar cell array with NiCd batteries had the highest specific mass at 275 kg/kWe, with solar Stirling the lowest at 40 kg/kWe. However, when 10 year propellant mass requirements are factored in, the 300 kWe nuclear Stirling exhibits the lowest total mass.

  19. Probing the magnetic topologies of magnetic clouds by means of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Reames, D. V.

    1991-01-01

    Solar energetic particles (SEPs) have been used as probes of magnetic cloud topologies. The rapid access of SEPs to the interiors of many clouds indicates that the cloud field lines extend back to the sun and hence are not plasmoids. The small modulation of galactic cosmic rays associated with clouds also suggests that the magnetic fields of clouds are not closed.

  20. Spacecraft-environment interaction model cross comparison applied to Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Deca, J.; Markidis, S.; Marchand, R.; Guillemant, S.; Matéo Vélez, J.; Miyake, Y.; Usui, H.; Ergun, R.; Sturner, A. P.

    2013-12-01

    Given that our society becomes increasingly dependent on space technology, it is imperative to develop a good understanding of spacecraft-plasma interactions. Two main issues are important. First, one needs to be able to design a reliable spacecraft that can survive in the harsh solar wind conditions, and second a very good knowledge of the behaviour and plasma structure around the spacecraft is required to be able to interpret and correct measurements from onboard instruments and science experiments. In this work we present the results of a cross-comparison study between five spacecraft-plasma models (EMSES, iPic3D, LASP, PTetra, SPIS) used to simulate the interaction of the Solar Probe Plus (SPP) satellite with the space environment under representative solar wind conditions near perihelion. The purpose of this cross-comparison is to assess the consistency and validity of the different numerical approaches from the similarities and differences of their predictions under well defined conditions, with attention to the implicit PIC code iPic3D, which has never been used for spacecraft-environment interaction studies before. The physical effects considered are spacecraft charging, photoelectron and secondary electron emission, the presence of a background magnetic field and density variations. The latter of which can cause the floating potential of SPP to go from negative to positive or visa versa, depending on the solar wind conditions, and spacecraft material properties. Simulation results are presented and compared with increasing levels of complexity in the physics to evaluate the sensitivity of the model predictions to certain physical effects. The comparisons focus particularly on spacecraft floating potential, detailed contributions to the currents collected and emitted by the spacecraft, and on the potential and density spatial profiles near the satellite. Model predictions obtained with our different computational approaches are found to be in good agreement

  1. The NASA probe-class mission concept, CETUS (Cosmic Evolution Through Ultraviolet Spectroscopy)

    NASA Astrophysics Data System (ADS)

    Heap, Sara; Danchi, William; Burge, James; Dodson, Kelly; Hull, Anthony; Kendrick, Steven; McCandliss, Stephan; Mehle, Gregory; Purves, Lloyd; Sheikh, David; Valente, Martin; Woodruff, Robert A.

    2017-09-01

    We report on the early phases of a NASA-sponsored study of CETUS (Cosmic Evolution Through Ultraviolet Spectroscopy), a Probe-class mission concept. By definition, the full lifecycle cost of a Probe mission is greater than 400M (i.e. Explorer missions) and less than 1.00B ("Flagship" missions). The animating idea behind our study is that CETUS can help answer fundamental questions about galaxy evolution by carrying out a massive UV imaging and spectroscopic survey of galaxies and combining its findings with data obtained by other survey telescopes of the 2020's. The CETUS mission concept comprises a 1.5-m wide-field telescope and three scientific instruments: a near-UV multi-object slit spectrograph with a micro-shutter array as the slit device; a near-UV and far-UV camera with angular resolution of 0.42" (near-UV) or 0.55" (far-UV); and a near-UV or far-UV single-object spectrograph aimed at providing access to the UV after Hubble is gone. We describe the scientific rationale for CETUS and the telescope and instruments in their early design phase.

  2. A Study of the Structure of the Source Region of the Solar Wind in Support of a Solar Probe Mission

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Forman, M. A. (Technical Monitor)

    2001-01-01

    Despite the richness of the information about the physical properties and the structure of the solar wind provided by the Ulysses and SOHO (Solar and Heliospheric Observatory) observations, fundamental questions regarding the nature of the coronal heating mechanisms, their source, and the manifestations of the fast and slow solar wind, still remain unanswered. The last unexplored frontier to establish the connection between the structure and dynamics of the solar atmosphere, its extension into interplanetary space, and the mechanisms responsible for the evolution of the solar wind, is the corona between 1 and 30 R(sub s). A Solar Probe mission offers an unprecedented opportunity to explore this frontier. Its uniqueness stems from its trajectory in a plane perpendicular to the ecliptic which reaches within 9 R(sub s) of the solar surface over the poles and 3 - 9 R(sub s) at the equator. With a complement of simultaneous in situ and remote sensing observations, this mission is destined to detect remnants and signatures of the processes which heat the corona and accelerate the solar wind. In support of this mission, we fulfilled the following two long-term projects: (1) Study of the evolution of waves and turbulence in the solar wind (2) Exploration of signatures of physical processes and structures in the corona. A summary of the tasks achieved in support of these projects are given below. In addition, funds were provided to support the Solar Wind 9 International Conference which was held in October 1998. A brief report on the conference is also described in what follows.

  3. Overview of Key Saturn Probe Mission Trades

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Kowalkowski, Theresa; Folkner, Bill

    2007-01-01

    Ongoing studies, performed at NASA/JPL over the past two years in support of NASA's SSE Roadmap activities, proved the feasibility of a NF class Saturn probe mission. I. This proposed mission could also provide a good opportunity for international collaboration with the proposed Cosmic Vision KRONOS mission: a) With ESA contributed probes (descent modules) on a NASA lead mission; b) Early 2017 launch could be a good programmatic option for ESA-CV/NASA-NF. II. A number of mission architectures could be suitable for this mission: a) Probe Relay based architecture with short flight time (approx. 6.3-7 years); b) DTE probe telecom based architecture with long flight time (-11 years), and low probe data rate, but with the probes decoupled from the carrier, allowing for polar trajectories I orbiter. This option may need technology development for telecom; c) Orbiter would likely impact mission cost over flyby, but would provide significantly higher science return. The Saturn probes mission is expected to be identified in NASA's New Frontiers AO. Thus, further studies are recommended to refine the most suitable architecture. International collaboration is started through the KRONOS proposal work; further collaborated studies will follow once KRONOS is selected in October under ESA's Cosmic Vision Program.

  4. NASA/JPL Solar System Educators Program: Twelve Years of Success and Looking Forward

    NASA Astrophysics Data System (ADS)

    Ferrari, K.; NASA/JPL Solar System Educators Program

    2011-12-01

    Since 1999, the NASA/JPL Solar System Educators Program (SSEP) has been the model of a successful master teacher volunteer program. Integrating nationwide volunteers in this professional development program helped optimize agency funding set aside for education. Through the efforts of these volunteers, teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials, schools added these products to their curriculum and students benefitted. The years since 1999 have brought about many changes. There have been advancements in technology that allow more opportunities for telecon and web based learning methods. Along with those advancements have also come significant challenges. With NASA budgets for education shrinking, this already frugal program has become more spartan. Teachers face their own hardships with school budget cuts, limited classroom time and little support for professional development. In order for SSEP to remain viable in the face of these challenges, the program management, mission funders and volunteers themselves are working together to find ways of maintaining the quality that made the program a success and at the same time incorporate new, cost-effective methods of delivery. The group will also seek new partnerships to provide enhancements that will aid educators in advancing their careers at the same time as they receive professional development. By working together and utilizing the talent and experience of these master teachers, the Solar System Educators Program can enjoy a revitalization that will meet the needs of today's educators at the same time as renewing the enthusiasm of the volunteers.

  5. To Boldly Go: America's Next Era in Space. Probing the Primordial Constituents of Our Solar System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Dr. France Cordova, NASA's Chief Scientist, chaired this, another seminar in the Administrator's Seminar Series. She introduced NASA Administrator, Daniel S. Goldin, who greeted the attendees, and noted that, from the day people first looked into the sky, they've wondered what was up there, who or what created it, is Earth unique, what shaped the solar system, what is the Kuiper Belt and why is it there, and what are the solar system's building blocks. NASA's missions may discover some of the answers. Dr. Cordova then introduced Dr. Anita Cochran, research scientist at the University of Texas. Dr. Cochran has been searching for some of this information. She is especially interested in finding out when various planets and asteroids were discovered, what their orbits are, when the solar system was formed, and more about the comets in the Kuiper Belt. Are they icy planetisimals that helped form our solar system? Dr. Toby Owen of the University of Hawaii faculty spoke next. He believes that life on Earth exists because comets brought water and a variety of light elements to Earth from the outer parts of the solar system. Without them, we couldn't exist. He noted that noble gases don't mix with other gases. Gases come to Earth via rocks and by bombardment. Ice can trap argon and carbon, but not neon. Dr. Owens concluded with comments that we need 'better numbers for the Martian atmosphere', and it would be good to get samples of material from a comet. The third speaker was Dr. Eugene Shoemaker of the Lowell Observatory and the U.S. Geological Survey. He is credited with discovering more than 800 asteroids and learning about the Oort Cloud, which is believed to be a cloud of rocks and dust that may surround our solar system and be where comets originate. Comet storms reoccur about every 30 million years. Dr. Shoemaker suggested that since we are presently in a period of comet showers, it would be good to get a comet sample. It might provide insight regarding the origin

  6. Scientific rationale and concepts for in situ probe exploration of Uranus and Neptune

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Atkinson, D.; Amato, M.; Aslam, S.; Atreya, S.; Blanc, M.; Brugger, B.; Calcutt, S.; Cavalié, T.; Charnoz, S.; Coustenis, A.; Deleuil, M.; Dobrijevic, M.; Encrenaz, T.; Ferri, F.; Fletcher, L.; Guillot, T.; Hartogh, P.; Hofstadter, M.; Hueso, R.

    2017-09-01

    Uranus and Neptune, referred to as ice giants, are fundamentally different from the better-known gas giants (Jupiter and Saturn). Exploration of an ice giant system is a high-priority science objective, as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. The importance of the ice giants is reflected in NASA's 2011 Decadal Survey, comments from ESA's SSC in response to L2/L3 mission proposals and results of the 2017 NASA/ESA Ice Giants study. A crucial part of exploration of the ice giants is in situ sampling of the atmosphere via an atmospheric probe. A probe would bring insights in two broad themes: the formation history of our Solar System and the processes at play in planetary atmospheres. Here we summarize the science driver for in situ measurements at these two planets and discuss possible mission concepts that would be consistent with the constraints of ESA M-class missions.

  7. A Summary of The 2000-2001 NASA Glenn Lear Jet AM0 Solar Cell Calibration Program

    NASA Technical Reports Server (NTRS)

    Scheiman, David; Brinker, David; Snyder, David; Baraona, Cosmo; Jenkins, Phillip; Rieke, William J.; Blankenship, Kurt S.; Tom, Ellen M.

    2002-01-01

    Calibration of solar cells for space is extremely important for satellite power system design. Accurate prediction of solar cell performance is critical to solar array sizing, often required to be within 1%. The NASA Glenn Research Center solar cell calibration airplane facility has been in operation since 1963 with 531 flights to date. The calibration includes real data to Air Mass (AM) 0.2 and uses the Langley plot method plus an ozone correction factor to extrapolate to AM0. Comparison of the AM0 calibration data indicates that there is good correlation with Balloon and Shuttle flown solar cells. This paper will present a history of the airplane calibration procedure, flying considerations, and a brief summary of the previous flying season with some measurement results. This past flying season had a record 35 flights. It will also discuss efforts to more clearly define the ozone correction factor.

  8. Energy Exchange NASA Opening Plenary

    NASA Technical Reports Server (NTRS)

    Marrs, Rick

    2017-01-01

    Rick Marrs, Deputy Assistant Administrator Office of Strategic Infrastructure NASA Headquarters will be speaking during the 2017 Energy Exchange opening plenary. His presentation showcases the NASA mission, sustainability at NASA, NASA's strategic Sustainability Performance Plan, Existing PV Partnerships, and NASA funded Solar Initiatives at KSC.

  9. Mid-level Solar Flare

    NASA Image and Video Library

    2017-12-08

    SDO View of M7.3 Class Solar Flare on Oct. 2, 2014 NASA's Solar Dynamics Observatory captured this image of an M7.3 class solar flare on Oct. 2, 2014. The solar flare is the bright flash of light on the right limb of the sun. A burst of solar material erupting out into space can be seen just below it. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Usage of NASA's Near Real-Time Solar and Meteorological Data for Monitoring Building Energy Systems Using RETScreen International's Performance Analysis Module

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Charles, Robert W.; Chandler, William S.; Hoell, James M.; Westberg, David; Zhang, Taiping; Ziegler, Urban; Leng, Gregory J.; Meloche, Nathalie; Bourque, Kevin

    2012-01-01

    This paper describes building energy system production and usage monitoring using examples from the new RETScreen Performance Analysis Module, called RETScreen Plus. The module uses daily meteorological (i.e., temperature, humidity, wind and solar, etc.) over a period of time to derive a building system function that is used to monitor building performance. The new module can also be used to target building systems with enhanced technologies. If daily ambient meteorological and solar information are not available, these are obtained over the internet from NASA's near-term data products that provide global meteorological and solar information within 3-6 days of real-time. The accuracy of the NASA data are shown to be excellent for this purpose enabling RETScreen Plus to easily detect changes in the system function and efficiency. This is shown by several examples, one of which is a new building at the NASA Langley Research Center that uses solar panels to provide electrical energy for building energy and excess energy for other uses. The system shows steady performance within the uncertainties of the input data. The other example involves assessing the reduction in energy usage by an apartment building in Sweden before and after an energy efficiency upgrade. In this case, savings up to 16% are shown.

  11. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance (ULA) worker monitors the progress as the second stage of a ULA Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  12. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    United Launch Alliance (ULA) workers monitor the progress as the second stage of a ULA Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  13. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    United Launch Alliance (ULA) workers assist as the second stage of a ULA Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  14. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance (ULA) worker on a scissor lift watches as the second stage of a ULA Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  15. A Merged Dataset for Solar Probe Plus FIELDS Magnetometers

    NASA Astrophysics Data System (ADS)

    Bowen, T. A.; Dudok de Wit, T.; Bale, S. D.; Revillet, C.; MacDowall, R. J.; Sheppard, D.

    2016-12-01

    The Solar Probe Plus FIELDS experiment will observe turbulent magnetic fluctuations deep in the inner heliosphere. The FIELDS magnetometer suite implements a set of three magnetometers: two vector DC fluxgate magnetometers (MAGs), sensitive from DC- 100Hz, as well as a vector search coil magnetometer (SCM), sensitive from 10Hz-50kHz. Single axis measurements are additionally made up to 1MHz. To study the full range of observations, we propose merging data from the individual magnetometers into a single dataset. A merged dataset will improve the quality of observations in the range of frequencies observed by both magnetometers ( 10-100 Hz). Here we present updates on the individual MAG and SCM calibrations as well as our results on generating a cross-calibrated and merged dataset.

  16. Mid-level Solar Flare

    NASA Image and Video Library

    2014-10-02

    NASA's Solar Dynamics Observatory captured these images of a solar flare on Oct. 2, 2014. The solar flare is the bright flash of light on the right limb of the sun. A burst of solar material erupting out into space can be seen just below it. Read more: 1.usa.gov/1mW8rel Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Eight Wonders of the solar system.

    PubMed

    Bell, Edward

    2010-04-01

    Artist Ron Miller takes us on a journey to eight of the most breathtaking views that await intrepid explorers of our solar system. The scale of these natural wonders dwarfs anything Earth has to offer. What might we see and feel if we could travel to these distant domains? The artist's eye-interpreting data from probes such as NASA's Cassini, which is now exploring the Saturnian system, and MESSENGER, which has flown by Mercury three times and goes into permanent orbit next March-allows us an early visit to these unforgettable locales.

  18. Overview of NASA FINESSE (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Results

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer L.; Lim, Darlene S. S.; Hughes, S.; Kobs, S.; Garry, B.; Osinski, G. R.; Hodges, K.; Kobayashi, L.; Colaprete, A.

    2015-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our moon, Mars' moons Phobos and Deimos, and near-Earth asteroids. Scientific study focuses on planetary volcanism (e.g., the formation of volcanoes, evolution of magma chambers and the formation of multiple lava flow types, as well as the evolution and entrapment of volatile chemicals) and impact cratering (impact rock modification, cratering mechanics, and the chronologic record). FINESSE conducts multiple terrestrial field campaigns (Craters of the Moon National Monument and Preserve in Idaho for volcanics, and West Clearwater Impact Structure in Canada for impact studies) to study such features as analogs relevant to our moon, Phobos, Deimos, and asteroids. Here we present the science and exploration results from two deployments to Idaho (2014, 2015) and our first deployment to Canada (2014). FINESSE was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint effort by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  19. Benefit from NASA

    NASA Image and Video Library

    1999-01-01

    The red light from the Light Emitting Diode (LED) probe shines through the fingers of Dr. Harry Whelan, a pediatric neurologist at the Children's Hospital of Wisconsin in Milwaukee. Dr. Whelan uses the long waves of light from the LED surgical probe to activate special drugs that kill brain tumors. Laser light previously has been used for this type of surgery, but the LED light illuminates through all nearby tissues, reaching parts of tumors that shorter wavelengths of laser light carnot. The new probe is safer because the longer wavelengths of light are cooler than the shorter wavelengths of laser light, making the LED less likely to injure normal brain tissue near the tumor. Also, it can be used for hours at a time while still remaining cool to the touch. The probe was developed for photodynamic cancer therapy under a NASA Small Business Innovative Research Program grant. The program is part of NASA's Technology Transfer Department at the Marshall Space Flight Center.

  20. Laboratory studies in ultraviolet solar physics

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Kohl, J. L.; Gardner, L. D.; Raymond, J. C.; Smith, P. L.

    1991-01-01

    The research activity comprised the measurement of basic atomic processes and parameters which relate directly to the interpretation of solar ultraviolet observations and to the development of comprehensive models of the component structures of the solar atmosphere. The research was specifically directed towards providing the relevant atomic data needed to perform and to improve solar diagnostic techniques which probe active and quiet portions of the solar chromosphere, the transition zone, the inner corona, and the solar wind acceleration regions of the extended corona. The accuracy with which the physical conditions in these structures can be determined depends directly on the accuracy and completeness of the atomic and molecular data. These laboratory data are used to support the analysis programs of past and current solar observations (e.g., the Orbiting solar Observatories, the Solar Maximum Mission, the Skylab Apollo Telescope Mount, and the Naval Research Laboratory's rocket-borne High Resolution Telescope and Spectrograph). In addition, we attempted to anticipate the needs of future space-borne solar studies such as from the joint ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft. Our laboratory activities stressed two categories of study: (1) the measurement of absolute rate coefficients for dielectronic recombination and electron impact excitation; and (2) the measurement of atomic transition probabilities for solar density diagnostics. A brief summary of the research activity is provided.

  1. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-27

    The United Launch Alliance Delta IV Heavy common booster core arrives aboard the company's Mariner ship at Port Canaveral in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  3. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    A United Launch Alliance Delta IV Heavy common booster core arrives by truck at Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  4. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-08-01

    A United Launch Alliance Delta IV Heavy common booster core is offloaded from the company's Mariner ship at Port Canaveral in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  5. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-27

    The United Launch Alliance Delta IV Heavy common booster core arrives aboard the company's Mariner ship and prepared for offload at Port Canaveral in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  6. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    A United Launch Alliance Delta IV Heavy common booster core is transported by truck inside Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  7. Touching is believing: interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Li, Jiangyu; Huang, Boyuan; Nasr Esfahani, Ehsan; Wei, Linlin; Yao, Jianjun; Zhao, Jinjin; Chen, Wei

    2017-10-01

    Halide perovskite solar cells based on CH3NH3PbI3 and related materials have emerged as the most exciting development in the next generation photovoltaic technologies, yet the microscopic phenomena involving photo-carriers, ionic defects, spontaneous polarization, and molecular vibration and rotation interacting with numerous grains, grain boundaries, and interfaces are still inadequately understood. In fact, there is still need for an effective method to interrogate the local photovoltaic properties of halide perovskite solar cells that can be directly traced to their microstructures on one hand and linked to their device performance on the other hand. In this perspective, we propose that scanning probe microscopy (SPM) techniques have great potential to realize such promises at the nanoscale, and highlight some of the recent progresses and challenges along this line of investigation toward local probing of photocurrent, work function, ionic activities, polarization switching, and chemical degradation. We also emphasize the importance of multi-modality imaging, in-operando scanning, big data analysis, and multidisciplinary collaboration for further studies toward fully understanding of these complex systems.

  8. A seven-month solar cycle observed with the Langmuir probe on Pioneer Venus Orbiter

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.; Wolff, C. L.

    1989-01-01

    Data collected by the Langmuir probe aboard the Pioneer Venus orbiter (PVO) over the years 1979 though 1987 were normalized to remove the long-period 11-year solar maximum to minimum trend and were analyzed for periodicity. Results yield evidence for the existence of an approximately 7-month solar cycle, which was also observed from SME Lyman alpha and 2800-MHz radio flux measurements carried out from an earth-based platform. This coincidence suggests that the cycle is an intrinsic periodicity in the solar output. The cycle has a frequency independent of the orbital frequency of the PVO and is distinct from a 'rotating beacon' cycle whose period depends on the orbital motion of the PVO about the sun. The second most dominant cycle discovered was a 5-month period. Results of an oscillation model of solar periodicity indicate that the 7-month and 5-month cycles are caused by long-lived flux enhancements from nonlinear interactions of global oscillation modes in the sun's convective envelope (r modes) and radiative interior (g modes).

  9. Analysis of AC and DC Lighting Systems with 150-Watt Peak Solar Panel in Denpasar Based on NASA Data

    NASA Astrophysics Data System (ADS)

    Narottama, A. A. N. M.; Amerta Yasa, K.; Suwardana, I. W.; Sapteka, A. A. N. G.; Priambodo, P. S.

    2018-01-01

    Solar energy on the Earth’s surface has different magnitudes on every longitude and latitude. National Aeronautics and Space Administration (NASA) provides surface meteorology and solar energy database which can be accessed openly online. This database delivers information about Monthly Averaged Insolation Incident On A Horizontal Surface, Monthly Averaged Insolation Incident On A Horizontal Surface At Indicated GMT Times and also data about Equivalent Number Of No-Sun Or Black Days for any latitude and longitude. Therefore, we investigate the lighting systems with 150-Watt peak solar panel in Denpasar City, the capital province of Bali. Based on NASA data, we analyse the received wattage by a unit of 150-Watt peak solar panel in Denpasar City and the sustainability of 150-Watt peak solar panel to supply energy for 432-Watt hour/day AC and 360-Watt hour/day DC lighting systems using 1.2 kWh battery. The result shows that the maximum received wattage by a unit of 150-Watt peak solar panel is 0.76 kW/day in October. We concluded that the 1.2 kWh installed battery has higher capacity than the battery capacity needed in March, the month with highest no-sun days, for both AC and DC lighting systems. We calculate that the installed battery can be used to store the sustainable energy from sun needed by AC and DC lighting system for about 2.78 days and 3.51 days, consecutively.

  10. Hinode: A Decade of Success in Capturing Solar Activity

    NASA Technical Reports Server (NTRS)

    Savage, S.; Elrod, S.; Deluca, E.; Doschek, G.; Tarbell, T.

    2017-01-01

    As the present solar cycle passes into its minimum phase, the Hinode mission marks its tenth year of investigating solar activity. Hinode's decade of successful observations have provided us with immeasurable insight into the solar processes that invoke space weather and thereby affect the interplanetary environment in which we reside. The mission's complementary suite of instruments allows us to probe transient, high energy events alongside long-term, cycle-dependent phenomena from magnetic fields at the Sun's surface out to highly thermalized coronal plasma enveloping active regions (ARs). These rich data sets have already changed the face of solar physics and will continue to provoke exciting research as new observational paradigms are pursued. Hinode was launched as part of the Science Mission Directorate's (SMD) Solar Terrestrial Probes Program in 2006. It is a sophisticated spacecraft equipped with a Solar Optical Telescope (SOT), an Extreme-ultraviolet Imaging Spectrometer (EIS), and an X-Ray Telescope (XRT) (see x 4). With high resolution and sensitivity, Hinode serves as a microscope for the Sun, providing us with unique capabilities for observing magnetic fields near the smallest scales achievable, while also rendering full-Sun coronal context in the highest thermal regimes. The 2014 NASA SMD strategic goals objective to "Understand the Sun and its interactions with the Earth and the solar system, including space weather" forms the basis of three underlying Heliophysics Science Goals. While Hinode relates to all three, the observatory primarily addresses: Explore the physical processes in the space environment from the Sun to the Earth and through the solar system. Within the NASA National Research Council (NRC) Decadal Survey Priorities, Hinode targets: (a) Determine the origins of the Sun's activity and predict the variations of the space environment and (d) Discover and characterize fundamental processes that occur both within the heliosphere and

  11. The FIELDS experiment for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Bale, S.; Spp/Fields Team

    2010-12-01

    Many of our basic ideas on the plasma physics of acceleration, energy flow, and dissipation, and structure of the solar wind have never been rigorously confronted by direct experimental measurements in the region where these processes are actually occurring. Although Alfven waves, shocks, and magnetic reconnection are often invoked as heating mechanisms, there have never been any direct measurements of Alfvenic waves nor the associated Poynting flux nor any measurements of ion or electron kinetic energy flux in the region from 10 R_s to 30 R_s where the final stages of wind acceleration are believed to occur. The radial profiles of both slow and fast solar wind acceleration are based on remote-sensing measurements and have been obtained for only a few selected events. Thus, the spatial radial and perpendicular scales of the acceleration process have been averaged by line-of-sight effects and the possibility of intense localized acceleration cannot be ruled out. The Solar Probe Plus (SPP) mission calls for the high quality fields and particles measurements required to solve the coronal heating and wind acceleration problem. The SPP 'FIELDS' experiment measures the electric and magnetic fields fundamental to the plasma physics of the structured and turbulent solar wind, flux ropes, collisionless shocks, and magnetic reconnection. FIELDS will make the first-ever measurements of the DC/Low-Frequency electric field inside of 1 AU allowing for in situ, high cadence measurements of the Poynting vector, the Elsasser variables, and E/B diagnostics of the wave spectrum to fce in the solar wind. SPP/FIELDS measures the radio wave (type III and II) signatures of microflares, energized electrons, and CME propagation. SPP/ FIELDS measures the plasma electron density to ~2% accuracy and the core electron temperature to ~5-10% accuracy more than 90% of the time at perihelion. FIELDS will also measure the in situ density fluctuation spectrum and structures at a very high cadence (

  12. Highlighting Your Science to NASA

    NASA Astrophysics Data System (ADS)

    Sharkey, C.

    2003-12-01

    An effort is underway to provide greater visibility within NASA headquarters, and to those who provide funding to NASA, of the outstanding work that is being performed by scientists involved in the Solar System Exploration Research and Analysis Programs, most of whom are DPS members. In support of this effort, a new feature has been developed for the NASA Headquarters Solar System Exploration Division web site whereby researchers can provide a synopsis of their current research results. The site (http://solarsystem.nasa.gov/spotlight/ - Username: your email address Password: sse) is an online submission area where NASA-funded scientists can upload the results of their research. There they provide their contact information, briefly describe their research, and upload any associated images or graphics. The information is available to a limited number of reviewers and writers at JPL. Each month, one researcher's work will be chosen as a science spotlight. After a writer interviews the scientist, a brief Power Point presentation that encapsulates their work will be given to Dr. Colleen Hartman at NASA headquarters. She will then present the exciting findings to Associate Administrator for Space Science, Dr. Ed Weiler. The information from some of these highlights can serve as a basis to bring Principal Investigators to NASA Headquarters for exposure to media through Space Science Updates on NASA television. In addition, the science results may also be incorporated into briefing material for the Office of Management and Budget and congressional staffers. Some spotlights will also be converted into feature stories for the Solar System Exploration website so the public, too, can learn about exciting new research. The site, http://solarsystem.nasa.gov/, is one of NASA's most visited. Over the past decade, there has been a trend of flat budgets for Research and Analysis activities. By giving more visibility to results of Solar System research, our goal is to encourage

  13. STEM Engagement with NASA's Solar System Treks Portals for Lunar and Planetary Mapping and Modeling

    NASA Technical Reports Server (NTRS)

    Law, E. S.; Day, B. H.

    2018-01-01

    This presentation will provide an overview of the uses and capabilities of NASA's Solar System Treks family of online mapping and modeling portals. While also designed to support mission planning and scientific research, this presentation will focus on the Science, Technology, Engineering, and Math (STEM) engagement and public outreach capabilities of these web based suites of data visualization and analysis tools.

  14. NASA's Solar System Exploration Research Virtual Institute: Combining Science and Exploration

    NASA Astrophysics Data System (ADS)

    Bailey, B.; Schmidt, G.; Daou, D.; Pendleton, Y.

    2015-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science andexploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the research efforts of the nine domestic teams that constitute the U.S. complement of the Institute and how we will engage the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  15. NASA's What's Up Astronomy and Mission video series celebrates the Year of the Solar System: Fall 2010 - late summer 2012

    NASA Astrophysics Data System (ADS)

    Houston Jones, J.; Alice Wessen, Manager Of Solar System Eduction; Public Engagement

    2010-12-01

    NASA's What's Up video podcast supports the Year of the Solar System (YSS) October 2010 - August 2012. During YSS each podcast pairs a popular night sky viewing target (Moon, Comet, Planets, solar system features) with a mission event (launch, flyby, orbit insertion, landing). This product has proven popular with public, formal and informal audiences and will compliment and augment other programming material.

  16. Application of a Global-to-Beam Irradiance Model to the NASA GEWEX SRB Dataset: An Extension of the NASA Surface Meteorology and Solar Energy Datasets

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Westberg, David J.

    2014-01-01

    The DIRINDEX model was designed to estimate hourly solar beam irradiances from hourly global horizontal irradiances. This model was applied to the NASA GEWEX SRB(Rel. 3.0) 3-hourly global horizontal irradiance data to derive3-hourly global maps of beam, or direct normal, irradiance for the period from January 2000 to December 2005 at the 1 deg. x 1 deg. resolution. The DIRINDEX model is a combination of the DIRINT model, a quasi-physical global-to-beam irradiance model based on regression of hourly observed data, and a broadband simplified version of the SOLIS clear-sky beam irradiance model. In this study, the input variables of the DIRINDEX model are 3-hourly global horizontal irradiance, solar zenith angle, dew-point temperature, surface elevation, surface pressure, sea-level pressure, aerosol optical depth at 700 nm, and column water vapor. The resulting values of the 3-hourly direct normal irradiance are then used to compute daily and monthly means. The results are validated against the ground-based BSRN data. The monthly means show better agreement with the BSRN data than the results from an earlier endeavor which empirically derived the monthly mean direct normal irradiance from the GEWEX SRB monthly mean global horizontal irradiance. To assimilate the observed information into the final results, the direct normal fluxes from the DIRINDEX model are adjusted according to the comparison statistics in the latitude-longitude-cosine of solar zenith angle phase space, in which the inverse-distance interpolation is used for the adjustment. Since the NASA Surface meteorology and Solar Energy derives its data from the GEWEX SRB datasets, the results discussed herein will serve to extend the former.

  17. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    NASA employees and contractors use protective glasses to view a partial solar eclipse from NASA Headquarters Monday, Aug. 21, 2017 in Washington. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Gwen Pitman)

  18. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-22

    NASA employees and contractors use protective glasses to view a partial solar eclipse from NASA Headquarters Tuesday, Aug. 22, 2017 in Washington. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Gwen Pitman)

  19. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    Zoom in on the flare in ultraviolet (SDO/AIA), X-rays (Hinode) and gamma-rays (RHESSI) -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    A combination of many (but not all) of the datasets which observed this flare. -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Particle Energization in Earth's Van Allen Radiation Belts Due to Solar Wind Forcing

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2017-12-01

    Early observations of the Earth's radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. However, recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed unexpected properties of the radiation belts, especially for electrons at highly relativistic (E > 2 MeV) and ultra-relativistic (E > 5 MeV) kinetic energies. In this presentation we show using high spatial and temporal resolution data from the experiments on board the Van Allen Probes that multiple belts can exist concurrently and that an exceedingly sharp inner boundary exists for ultra-relativistic electrons. Using additionally available Van Allen Probes data, we demonstrate that these remarkable features of energetic electrons are driven by strong solar and solar wind forcings. The comprehensive Van Allen Probes data show more broadly and in many ways how extremely high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. The new data have shown especially how dayside processes play a key role in electron acceleration and loss processes.

  2. KINETIC EVOLUTION OF CORONAL HOLE PROTONS BY IMBALANCED ION-CYCLOTRON WAVES: IMPLICATIONS FOR MEASUREMENTS BY SOLAR PROBE PLUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isenberg, Philip A.; Vasquez, Bernard J.

    We extend the kinetic guiding-center model of collisionless coronal hole protons presented in Isenberg and Vasquez to consider driving by imbalanced spectra of obliquely propagating ion-cyclotron waves. These waves are assumed to be a small by-product of the imbalanced turbulent cascade to high perpendicular wavenumber, and their total intensity is taken to be 1% of the total fluctuation energy. We also extend the kinetic solutions for the proton distribution function in the resulting fast solar wind to heliocentric distances of 20 solar radii, which will be attainable by the Solar Probe Plus spacecraft. We consider three ratios of outward-propagating tomore » inward-propagating resonant intensities: 1, 4, and 9. The self-consistent bulk flow speed reaches fast solar wind values in all cases, and these speeds are basically independent of the intensity ratio. The steady-state proton distribution is highly organized into nested constant-density shells by the resonant wave-particle interaction. The radial evolution of this kinetic distribution as the coronal hole plasma flows outward is understood as a competition between the inward- and outward-directed large-scale forces, causing an effective circulation of particles through the (v{sub ∥}, v{sub ⊥}) phase space and a characteristic asymmetric shape to the distribution. These asymmetries are substantial and persist to the outer limit of the model computation, where they should be observable by the Solar Probe Plus instruments.« less

  3. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    Like almost all solar observatories, NASA's IRIS can provide images of different layers of the sun's atmosphere, which together create a whole picture of what's happening. This image shows light at a wavelength of 1400 Angstrom, which highlights material some 650 miles above the sun's surface. The vertical line in the middle shows the slit for IRIS's spectrograph, which can separate light into its many wavelengths to provide even more information about the temperature and velocity of material during a flare. Credit: NASA/IRIS/Goddard Space Flight Center -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Recent Progress in CuInS2 Thin-Film Solar Cell Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Jin, M. H.-C.; Banger, K. K.; Kelly, C. V.; Scofield, J. H.; McNatt, J. S.; Dickman, J. E.; Hepp, A. F.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) is interested in developing low-cost highly efficient solar cells on light-weight flexible substrates, which will ultimately lower the mass-specific power (W/kg) of the cell allowing extra payload for missions in space as well as cost reduction. In addition, thin film cells are anticipated to have greater resistance to radiation damage in space, prolonging their lifetime. The flexibility of the substrate has the added benefit of enabling roll-to-roll processing. The first major thin film solar cell was the "CdS solar cell" - a heterojunction between p-type CuxS and n-type CdS. The research on CdS cells started in the late 1950s and the efficiency in the laboratory was up to about 10 % in the 1980s. Today, three different thin film materials are leading the field. They include amorphous Si, CdTe, and Cu(In,Ga)Se2 (CIGS). The best thin film solar cell efficiency of 19.2 % was recently set by CIGS on glass. Typical module efficiencies, however, remain below 15 %.

  5. Cosmic Evolution Through UV Spectroscopy (CETUS): A NASA Probe-Class Mission Concept

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; CETUS Team

    2017-01-01

    CETUS is a probe-class mission concept proposed for study to NASA in November 2016. Its overarching objective is to provide access to the ultraviolet (~100-400 nm) after Hubble has died. CETUS will be a major player in the emerging global network of powerful, new telescopes such as E-ROSITA, DESI, Subaru/PFS, GMT, LSST, WFIRST, JWST, and SKA. The CETUS mission concept provisionally features a 1.5-m telescope with a suite of instruments including a near-UV multi-object spectrograph (200-400 nm) complementing Subaru/PFS observations, wide-field far-UV and near-UV cameras, and far-UV and near-UV spectrographs that can be operated in either high-resolution or low-resolution mode. We have derived the scope and specific science requirements for CETUS for understanding the evolutionary history of galaxies, stars, and dust, but other applications are possible.

  6. Eclipse 2017: Through the Eyes of NASA

    NASA Astrophysics Data System (ADS)

    Mayo, Louis; NASA Heliophysics Education Consortium

    2017-10-01

    The August 21, 2017 total solar eclipse across America was, by all accounts, the biggest science education program ever carried out by NASA, significantly larger than the Curiosity Mars landing and the New Horizons Pluto flyby. Initial accounting estimates over two billion people reached and website hits exceeding five billion. The NASA Science Mission Directorate spent over two years planning and developing this enormous public education program, establishing over 30 official NASA sites along the path of totality, providing imagery from 11 NASA space assets, two high altitude aircraft, and over 50 high altitude balloons. In addition, a special four focal plane ground based solar telescope was developed in partnership with Lunt Solar Systems that observed and processed the eclipse in 6K resolution. NASA EDGE and NASA TV broadcasts during the entirity of totality across the country reached hundreds of millions, world wide.This talk will discuss NASA's strategy, results, and lessons learned; and preview some of the big events we plan to feature in the near future.

  7. NASA Sun-Earth Connections Theory Program: The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, Joseph (Technical Monitor)

    2001-01-01

    This report covers technical progress during the first quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP). SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.

  8. 2006 NASA Strategic Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On January 14, 2004, President George W. Bush announced A Renewed Spirit of Discovery: The President's Vision for U.S. Space Exploration, a new directive for the Nation's space program. The fundamental goal of this directive is "to advance U.S. scientific, security, and economic interests through a robust space exploration program." In issuing it, the President committed the Nation to a journey of exploring the solar system and beyond: returning to the Moon in the next decade, then venturing further into the solar system, ultimately sending humans to Mars and beyond. He challenged NASA to establish new and innovative programs to enhance understanding of the planets, to ask new questions, and to answer questions that are as old as humankind. NASA enthusiastically embraced the challenge of extending a human presence throughout the solar system as the Agency's Vision, and in the NASA Authorization Act of 2005, Congress endorsed the Vision for Space Exploration and provided additional guidance for implementation. NASA is committed to achieving this Vision and to making all changes necessary to ensure success and a smooth transition. These changes will include increasing internal collaboration, leveraging personnel and facilities, developing strong, healthy NASA Centers,a nd fostering a safe environment of respect and open communication for employees at all levels. NASA also will ensure clear accountability and solid program management and reporting practices. Over the next 10 years, NASA will focus on six Strategic Goals to move forward in achieving the Vision for Space Exploration. Each of the six Strategic Goals is clearly defined and supported by multi-year outcomes that will enhance NASA's ability to measure and report Agency accomplishments in this quest.

  9. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    NASA Astrophysics Data System (ADS)

    Pendleton, Yvonne J.

    2016-10-01

    Established in 2013, through joint funding from the NASA Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD), NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on science at the intersection of these two enterprises. Addressing questions of value to the human exploration program that also represent important research relevant to planetary science, SSERVI creates a bridge between HEOMD and SMD. The virtual institute model reduces travel costs, but its primary virtue is the ability to join together colleagues who bring the right expertise, techniques and tools, regardless of their physical location, to address multi-faceted problems, at a deeper level than could be achieved through the typical period of smaller research grants. In addition, collaboration across team lines and international borders fosters the creation of new knowledge, especially at the intersections of disciplines that might not otherwise overlap.SSERVI teams investigate the Moon, Near-Earth Asteroids, and the moons of Mars, addressing questions fundamental to these target bodies and their near space environments. The institute is currently composed of nine U.S. teams of 30-50 members each, distributed geographically across the United States, ten international partners, and a Central Office located at NASA Ames Research Center in Silicon Valley, CA. U.S. teams are competitively selected through peer-reviewed proposals submitted to NASA every 2-3 years, in response to a Cooperative Agreement Notice (CAN). The current teams were selected under CAN-1, with funding for five years (2014-2019). A smaller, overlapping set of teams are expected to be added in 2017 in response to CAN-2, thereby providing continuity and a firm foundation for any directional changes NASA requires as the CAN-1 teams end their term. This poster describes the research areas and composition of the institute to introduce SSERVI to the broader planetary

  10. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Schmidt, G. K.; Bailey, B. E.; Minafra, J. A.

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  11. NASA's Solar System Exploration Research Virtual Institute: Building Collaboration Through International Partnerships

    NASA Technical Reports Server (NTRS)

    Gibbs, K. E.; Schmidt, G. K.

    2017-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on re-search at the intersection of science and exploration, training the next generation of lunar scientists, and community development. As part of the SSERVI mission, we act as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. This talk will describe the international partner re-search efforts and how we are engaging the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships.

  12. NASA's RPS Design Reference Mission Set for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2007-01-01

    NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could

  13. Update on the NASA GRC Stirling Technology development project

    NASA Astrophysics Data System (ADS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2001-02-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project. .

  14. Update on the NASA GRC Stirling Technology Development Project

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project.

  15. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld talks during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  16. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Lunar Atmosphere and Dust Environment Explorer (LADEE) Program Scientist Sarah Noble talks during a NASA Social about the LADEE mission at NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  17. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Bob Barber, Lunar Atmosphere and Dust Environment Explorer (LADEE) Spacecraft Systems Engineer at NASA Ames Research Center, points to a model of the LADEE spacecraft a NASA Social, Thursday, Sept. 5, 2013 at NASA Wallops Flight Facility in Virginia. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  18. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    Jason Townsend, NASA's Deputy Social Media Manager, kicks off the Lunar Atmosphere and Dust Environment Explorer (LADEE) NASA Social at Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  19. NASA's SDO Sees Lunar Transit

    NASA Image and Video Library

    2017-12-08

    NASA's Solar Dynamics Observatory captured this image of the moon crossing in front of its view of the sun on Jan. 30, 2014, at 9:00 a.m. EST. -- On Jan 30, 2014, beginning at 8:31 a.m EST, the moon moved between NASA’s Solar Dynamics Observatory, or SDO, and the sun, giving the observatory a view of a partial solar eclipse from space. Such a lunar transit happens two to three times each year. This one lasted two and one half hours, which is the longest ever recorded. When the next one will occur is as of yet unknown due to planned adjustments in SDO's orbit. Note in the picture how crisp the horizon is on the moon, a reflection of the fact that the moon has no atmosphere around it to distort the light from the sun. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Fast E-sail Uranus entry probe mission

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka; Lebreton, Jean-Pierre; Merikallio, Sini; Paton, Mark; Mengali, Giovanni; Quarta, Alessandro A.

    2014-12-01

    The electric solar wind sail is a novel propellantless space propulsion concept. According to numerical estimates, the electric solar wind sail can produce a large total impulse per propulsion system mass. Here we consider using a 0.5 N electric solar wind sail for boosting a 550 kg spacecraft to Uranus in less than 6 years. The spacecraft is a stack consisting of the electric solar wind sail module which is jettisoned roughly at Saturn distance, a carrier module and a probe for Uranus atmospheric entry. The carrier module has a chemical propulsion ability for orbital corrections and it uses its antenna for picking up the probe's data transmission and later relaying it to Earth. The scientific output of the mission is similar to what the Galileo Probe did at Jupiter. Measurements of the chemical and isotope composition of the Uranian atmosphere can give key constraints to different formation theories of the Solar System. A similar method could also be applied to other giant planets and Titan by using a fleet of more or less identical probes.

  1. Suprathermal and Solar Energetic Particles - Key questions for the Interstellar Mapping and Acceleration Probe (IMAP)

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; McComas, D. J.; Christian, E. R.; Mewaldt, R. A.; Schwadron, N.

    2014-12-01

    Solar energetic particles or SEPs from suprathermal (few keV) up to relativistic (~few GeV) speeds are accelerated near the Sun in at least two ways, namely, (1) by magnetic reconnection-driven processes during solar flares resulting in impulsive SEPs and (2) at fast coronal-mass-ejection-driven shock waves that produce large gradual SEP events. Large gradual SEP events are of particular interest because the accompanying high-energy (>10s MeV) protons pose serious radiation threats to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. However, a complete understanding of SEP events has eluded us primarily because their properties, as observed near Earth orbit, are smeared due to mixing and contributions from many important physical effects. Thus, despite being studied for decades, several key questions regarding SEP events remain unanswered. These include (1) What are the contributions of co-temporal flares, jets, and CME shocks to impulsive and gradual SEP events?; (2) Do flares contribute to large SEP events directly by providing high-energy particles and/or by providing the suprathermal seed population?; (3) What are the roles of ambient turbulence/waves and self-generated waves?; (4) What are the origins of the source populations and how do their temporal and spatial variations affect SEP properties?; and (5) How do diffusion and scattering during acceleration and propagation through the interplanetary medium affect SEP properties observed out in the heliosphere? This talk describes how during the next decade, inner heliospheric measurements from the Solar Probe Plus and Solar Orbiter in conjunction with high sensitivity measurements from the Interstellar Mapping and Acceleration Probe will provide the ground-truth for various models of particle acceleration and transport and address these questions.

  2. NASA's 2004 In-Space Propulsion Refocus Studies for New Frontiers Class Missions

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin E.; Manzella, David; Oh, David; Cupples, Mike

    2006-01-01

    The New Frontiers (NF) program is designed to provide opportunities to fulfill the science objectives for top priority, medium class missions identified in the Decadal Solar System Exploration Survey. This paper assesses the applicability of the In-Space Propulsion s (ISP) Solar Electric Propulsion (SEP) technologies for representative NF class missions that include a Jupiter Polar Orbiter with Probes (JPOP), Comet Surface Sample Return (CSSR), and two different Titan missions. The SEP technologies evaluated include the 7-kW, 4,100-second NASA's Evolutionary Xenon Thruster (NEXT), the 3-kW, 2,700-second Hall thruster, and two different NASA Solar Electric Propulsion Technology Readiness (NSTAR) thrusters that are variants of the Deep Space 1 (DS1) thruster. One type of NSTAR, a 2.6-kW, 3,100-second thruster, will be the primary propulsion system for the DAWN mission that is scheduled to launch in 2006; the other is an "enhanced", higher power variant (3.8-kW, 4,100-second) and is so-called because it uses NEXT system components such as the NEXT power processing unit (PPU). The results show that SEP is applicable for the CSSR mission and a Titan Lander mission. In addition, NEXT has improved its applicability for these types of missions by modifying its thruster performance relative to its performance at the beginning of this study.

  3. Homemade Solar Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Through the use of NASA Tech Briefs, Peter Kask, was able to build a solarized domestic hot water system. Also by applying NASA's solar energy design information, he was able to build a swimming pool heating system with minimal outlay for materials.

  4. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  5. MMS Partial Solar Array Inspection

    NASA Image and Video Library

    2014-11-14

    A plaque affixed to the side of a Magnetospheric Multiscale, or MMS, observatory dedicates the mission to Richard “Richy” D’Antonio, now deceased, in grateful appreciation for his dedicated service to NASA’s MMS mission. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.

  6. MMS Partial Solar Array Inspection

    NASA Image and Video Library

    2014-11-14

    A plaque affixed to the side of a Magnetospheric Multiscale, or MMS, observatory dedicates the mission to Dr. John William Klein, now deceased, who served the MMS team as the standing review board chairman. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.

  7. MMS Partial Solar Array Inspection

    NASA Image and Video Library

    2014-11-14

    A plaque affixed to the side of a Magnetospheric Multiscale, or MMS, observatory dedicates the mission to George S. Moore, now deceased, an engineer who was a beloved colleague and friend to the MMS team. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015.

  8. Incident Energy Focused Design and Validation for the Floating Potential Probe

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2002-01-01

    Utilizing the spacecraft shadowing and incident energy analysis capabilities of the NASA Glenn Research Center Power and Propulsion Office's SPACE System Power Analysis for Capability Evaluation) computer code, this paper documents the analyses for various International Space Station (ISS) Floating Potential Probe (EPP) preliminary design options. These options include various solar panel orientations and configurations as well as deployment locations on the ISS. The incident energy for the final selected option is characterized. A good correlation between the predicted data and on-orbit operational telemetry is demonstrated. Minor deviations are postulated to be induced by degradation or sensor drift.

  9. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    Robert Lightfoot, acting NASA administrator and Thomas Zurbuchen NASA AA for the science mission directorate view a partial eclipse solar eclipse Monday, August 21, 2017, from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 35,000 feet above the Oregon Coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)

  10. Exploration at the Edge of the Solar System: The Pluto-Kuiper Express Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Terrile, R. J.

    1999-09-01

    The Pluto-Kuiper Express mission is one component of the Outer Planets/Solar Probe Project which is part of the exploration strategy laid out in the Solar System Exploration Roadmap. The first three missions of this project are the Europa Orbiter, Pluto-Kuiper Express and the Solar Probe. All require challenging new technologies and the ability to operate in deep space and at Jupiter. Use of common management and design approaches, avionics, and mission software is planned to reduce the costs of the three missions. The Pluto-Kuiper Express mission is planned to launch in 2004 and is designed to provide the first reconnaissance of the Solar System's most distant planet, Pluto, and it, moon Charon. A gravity assist from Jupiter will allow an 8-year flight time to Pluto and the possibility of encountering one or more Edgeworth-Kuiper Belt objects after the Pluto encounter. The primary science objectives for the mission include characterizing the global geology and geomorphology of Pluto and Charon, mapping their surface composition and characterizing Pluto's neutral atmosphere and its escape rate. This mission is currently soliciting scientific investigations through a NASA Announcement of Opportunity.

  11. Post flight analysis of NASA standard star trackers recovered from the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Newman, P.

    1985-01-01

    The flight hardware returned after the Solar Maximum Mission Repair Mission was analyzed to determine the effects of 4 years in space. The NASA Standard Star Tracker would be a good candidate for such analysis because it is moderately complex and had a very elaborate calibration during the acceptance procedure. However, the recovery process extensively damaged the cathode of the image dissector detector making proper operation of the tracker and a comparison with preflight characteristics impossible. Otherwise, the tracker functioned nominally during testing.

  12. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    NASA Associate Administrator for the Science Mission Directorate John Grunsfeld is seen in a video monitor during a NASA Social about the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission at the NASA Wallops Flight Facility, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  13. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    IBIS can focus in on different wavelengths of light, and so reveal different layers at different heights in the sun's lower atmosphere, the chromosphere. This image shows a region slightly higher than the former one. Credit: Lucia Kleint (BAER Institute), Paul Higgins (Trinity College Dublin, Ireland) -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. NASA Aims to Create First-Ever Space-Based Sodium Lidar to Study Poorly Understood Mesosphere

    NASA Image and Video Library

    2017-12-08

    Caption: Mike Krainak (left) and Diego Janches recently won NASA follow-on funding to advance a spaceborne sodium lidar needed to probe Earth’s poorly understood mesosphere. Credits: NASA/W. Hrybyk More: A team of NASA scientists and engineers now believes it can leverage recent advances in a greenhouse-detecting instrument to build the world’s first space-based sodium lidar to study Earth’s poorly understood mesosphere. Scientist Diego Janches and laser experts Mike Krainak and Tony Yu, all of whom work at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are leading a research-and-development effort to further advance the sodium lidar, which the group plans to deploy on the International Space Station if it succeeds in proving its flightworthiness. Read more: go.nasa.gov/2rcGpSM NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks NASA Associate Administrator for the Science Mission Directorate John Grunsfeld a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  16. Parker Solar Probe (PSP): The Dawn of a New Age… 60 Years in the Making

    NASA Astrophysics Data System (ADS)

    McComas, D. J.

    2017-12-01

    Next summer the launch window opens July 31, 2018 for the Parker Solar Probe (PSP) mission. This mission will repeatedly fly within 9 solar radii of the Sun's surface and directly measure the particles and fields in the innermost reaches of our heliosphere for the first time. With this historic mission, humanity will be able to achieve the key scientific objectives of 1) tracing the flow of energy that heats and accelerates the solar corona and solar wind, 2) determining the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, and 3) exploring the mechanisms that accelerate and transport energetic particles near the Sun. Next year also marks the 60th anniversary of the 1958 report from the Physics of Particles and Fields in Space Committee of the National Research Council's Space Studies Board, chaired by John Simpson and James Van Allen, which first called for sending a spacecraft to measure the particles and fields environment near the Sun. This talk briefly reviews the history, examines how we got to the current PSP mission, and describes some of the science drivers and the promise of what the PSP mission is about to accomplish.

  17. 10 Years of Student Questions about the Sun and Solar Physics: Preparing Graduate Students to Work with Parker Solar Probe Data

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Hughes, W. J.; Wiltberger, M. J.

    2017-12-01

    The NSF funded CISM Space Weather Summer School is designed for graduate students who are just starting in space physics. It provides comprehensive conceptual background to the field. Insights about student understanding and learning from this summer school can provide valuable information to graduate instructors and graduate student mentors. During the school, students are invited to submit questions at the end of the lecture component each day. The lecturers then take the time to respond to these questions. We have collected over 4000 student questions over the last 15 years. A significant portion of the summer school schedule is devoted to solar physics and solar observations, and the questions submitted reflect this. As researchers prepare to work with graduate students who will analyze the data from the Parker Solar Probe, they should be aware of the sorts of questions these students will have as they start in the field. Some student questions are simply about definitions: - What is a facula/prominence/ribbon structure/arcade? - What is a Type 3 radio burst? - How is a solar flare defined? How is it different from a CME/energetic particle event? - What is the difference between "soft" and "hard" X-rays?Other student questions involve associations and correlations. - Why are solar flares associated with CME's? - Are all magnetic active regions associated with sunspots? - How does a prominence eruption compare to a CME? - Why do energetic particles follow the magnetic field lines but the solar wind does not? - Why are radio burst (F10.7 flux) associated with solar flares (EUV Flux)?Others can be topics of current research. - What is the source of the slow solar wind? - Why is there a double peak in the sunspot number the solar maximum? - Why is the corona hotter than the solar surface. What is the mechanism of coronal heating? The goal of this paper is to identify and categorize these questions for the community so that graduate educators can be aware of them

  18. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    The March 29, 2014, X-class flare appears as a bright light on the upper right in this image from SDO, showing light in the 304 Angstrom wavelength. This wavelength shows material on the sun in what's called the transition region, where the chromosphere transitions into the upper solar atmosphere, the corona. Some light of the flare is clearly visible, but the flare appears brighter in other images that show hotter temperature material. Credit: NASA/SDO/AIA -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. NASA takes stock

    NASA Technical Reports Server (NTRS)

    Frosch, R. A.

    1979-01-01

    The history of NASA activities and achievements in the past decade is reviewed with consideration given to the Apollo expeditions and the post-Apollo planetary exploration. Progress in spaceborne astronomy and in satellite communications is characterized as revolutionary. It is also noted that Landsat alone may eventually repay the United States for the cost of the entire space program. Special attention is given to the Shuttle program which will be the key to all operations in space for the next decade including the Galileo mission to Jupiter (1982) and the Space Telescope (1983). Future missions could include a Venus orbiter with imaging radar to finally penetrate the cloud cover of the planet and to map its surface; a rover or sample return expedition to Mars; a Saturn orbiter combined with a probe of its Titan satellite, and an examination of Halley's Comet. Finally the next decade should bring the data needed to make a 'go' or 'no go' decision on the concept of SPS that would beam solar energy into earth stations.

  20. Phoenix Conductivity Probe with Shadow and Toothmark

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. The imprint left by the insertion is visible below the probe, and a shadow showing the probe's four needles is cast on a rock to the left.

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. NASA Investigating the Life of Comet ISON

    NASA Image and Video Library

    2013-12-02

    Comet ISON comes in from the bottom right and moves out toward the upper right, growing more faint, in this time-lapse image from the ESA/NASA Solar and Heliospheric Observatory. The image of the sun at the center is from NASA's Solar Dynamics Observatory. Credit: ESA/NASA/SOHO/SDO/GSFC After several days of fading, scientists continue to work to determine and to understand the fate of Comet ISON: There's no doubt that the comet shrank in size considerably as it rounded the sun and there's no doubt that something made it out on the other side to shoot back into space. The question remains as to whether the bright spot seen moving away from the sun was simply debris, or whether a small nucleus of the original ball of ice was still there. Regardless, it is likely that it is now only dust. Comet ISON, which began its journey from the Oort Cloud some 3 million years ago, made its closest approach to the sun on Nov. 28, 2013. The comet was visible in instruments on NASA's Solar Terrestrial Relations Observatory, or STEREO, and the joint European Space Agency/NASA Solar and Heliospheric Observatory, or SOHO, via images called coronagraphs. Coronagraphs block out the sun and a considerable distance around it, in order to better observe the dim structures in the sun's atmosphere, the corona. As such, there was a period of several hours when the comet was obscured in these images, blocked from view along with the sun. During this period of time, NASA's Solar Dynamics Observatory could not see the comet, leading many scientists to surmise that the comet had disintegrated completely. However, something did reappear in SOHO and STEREO coronagraphs some time later – though it was significantly less bright. Read more: 1.usa.gov/18hGYag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments

  2. LADEE NASA Social

    NASA Image and Video Library

    2013-09-05

    A participant at a NASA Social on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission asks a question, Thursday, Sept. 5, 2013 on Wallops Island, VA. Fifty of NASA's social media followers are attending a two-day event in support of the LADEE launch. Data from LADEE will provide unprecedented information about the environment around the moon and give scientists a better understanding of other planetary bodies in our solar system and beyond. LADEE is scheduled to launch at 11:27 p.m. Friday, Sept. 6, from NASA's Wallops Flight Facility. Photo Credit: (NASA/Carla Cioffi)

  3. Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.

  4. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    This combined image shows the March 29, 2014, X-class flare as seen through the eyes of different observatories. SDO is on the bottom/left, which helps show the position of the flare on the sun. The darker orange square is IRIS data. The red rectangular inset is from Sacramento Peak. The violet spots show the flare's footpoints from RHESSI. -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. G-III Aircraft from NASA Armstrong Provides Live TV Coverage of Solar Eclipse Across America

    NASA Image and Video Library

    2017-08-13

    For the first time in 99 years, a total solar eclipse will cross the entire nation Monday, Aug. 21. A total solar eclipse occurs when the sun is completely obscured by the moon. The lunar shadow enters the United States near Lincoln City, Oregon, at 9:05 a.m. PDT. Totality, where the moon completely covers the sun, begins in Lincoln City around 10:16 a.m. PDT. During totality, there will be up to two and a half minutes of darkness. The G-III aircraft was modified with upgraded windows and communications equipment to enable high-definition video to be streamed to NASA TV during the eclipse enabling citizen science. The aircraft will be flying at 25,000 feet over the coast of Oregon, near Lincoln City during the eclipse on August 21, 2017.

  6. NASA's Exobiology Program.

    PubMed

    DeVincenzi, D L

    1984-01-01

    The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life, and life-related molecules, on Earth and throughout the universe. Emphasis is focused on determining how the rate and direction of these processes were affected by the chemical and physical environment of the evolving planet, as well as by planetary, solar, and astrophysical phenomena. This is accomplished by a multi-disciplinary program of research conducted by over 60 principal investigators in both NASA and university laboratories. Major program thrusts are in the following research areas: biogenic elements; chemical evolution; origin of life; organic geochemistry; evolution of higher life forms; solar system exploration; and the search for extraterrestrial intelligence (SETI).

  7. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    Framed by a series of cabbage palms, a United Launch Alliance Delta IV Heavy common booster core is transported by truck to Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility after arriving at Port Canaveral. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  8. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2018-01-01

    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10-5. By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter β = 1 + (-1.6 ± 1.8) × 10-5 and the Sun's gravitational oblateness, J2⊙J2⊙ = (2.246 ± 0.022) × 10-7. Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, GM⊙°/GM⊙GM⊙°/GM⊙ = (-6.13 ± 1.47) × 10-14, which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain ∣∣G°∣∣/GG°/G to be <4 × 10-14 per year.

  9. Solar Flares Observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2004-01-01

    Solar flares are impressive examples of explosive energy release in unconfined, magnetized plasma. It is generally believed that the flare energy is derived from the coronal magnetic field. However, we have not been able to establish the specific energy release mechanism(s) or the relative partitioning of the released energy between heating, particle acceleration (electrons and ions), and mass motions. NASA's RHESSI Mission was designed to study the acceleration and evolution of electrons and ions in flares by observing the X-ray and gamma-ray emissions these energetic particles produce. This is accomplished through the combination of high-resolution spectroscopy and spectroscopic imaging, including the first images of flares in gamma rays. RHESSI has observed over 12,000 solar flares since its launch on February 5, 2002. I will demonstrate how we use the RHESSI spectra to deduce physical properties of accelerated electrons and hot plasma in flares. Using images to estimate volumes, w e typically find that the total energy in accelerated electrons is comparable to that in the thermal plasma. I will also present flare observations that provide strong support for the presence of magnetic reconnection in a large-scale, vertical current sheet in the solar corona. RHESSI observations such as these are allowing us to probe more deeply into the physics of solar flares.

  10. Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells.

    PubMed

    Song, Zhaoning; Werner, Jérémie; Shrestha, Niraj; Sahli, Florent; De Wolf, Stefaan; Niesen, Björn; Watthage, Suneth C; Phillips, Adam B; Ballif, Christophe; Ellingson, Randy J; Heben, Michael J

    2016-12-15

    Perovskite/silicon tandem solar cells with high power conversion efficiencies have the potential to become a commercially viable photovoltaic option in the near future. However, device design and optimization is challenging because conventional characterization methods do not give clear feedback on the localized chemical and physical factors that limit performance within individual subcells, especially when stability and degradation is a concern. In this study, we use light beam induced current (LBIC) to probe photocurrent collection nonuniformities in the individual subcells of perovskite/silicon tandems. The choices of lasers and light biasing conditions allow efficiency-limiting effects relating to processing defects, optical interference within the individual cells, and the evolution of water-induced device degradation to be spatially resolved. The results reveal several types of microscopic defects and demonstrate that eliminating these and managing the optical properties within the multilayer structures will be important for future optimization of perovskite/silicon tandem solar cells.

  11. Phoenix Conductivity Probe Inserted into Martian Soil

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008).

    The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 while the probe's needles were in the ground. The science team informally named this soil target 'Gandalf.'

    The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water.

    The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. NASA-OAST photovoltaic energy conversion program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  13. Bright Solar Flare

    NASA Image and Video Library

    2017-12-08

    A bright solar flare is captured by the EIT 195Å instrument on 1998 May 2. A solar flare (a sudden, rapid, and intense variation in brightness) occurs when magnetic energy that has built up in the solar atmosphere is suddenly released, launching material outward at millions of km per hour. The Sun’s magnetic fields tend to restrain each other and force the buildup of tremendous energy, like twisting rubber bands, so much that they eventually break. At some point, the magnetic lines of force merge and cancel in a process known as magnetic reconnection, causing plasma to forcefully escape from the Sun. Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  14. Rapid Development of Gossamer Propulsion for NASA Inner Solar System Science Missions

    NASA Technical Reports Server (NTRS)

    Young, Roy M.; Montgomery, Edward E.

    2006-01-01

    Over a two and one-half year period dating from 2003 through 2005, NASA s In-Space Propulsion Program matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. This paper describes the challenges identified; as well as the approaches taken toward solving a broad set of issues spanning material science, manufacturing technology, and interplanetary trajectory optimization. Revolutionary advances in system structural predictive analysis and characterization testing occurred. Also addressed are the remaining technology challenges that might be resolved with further ground technology research, geared toward reducing technical risks associated with future space validation and science missions.

  15. The solar and heliospheric imager (SoloHI) instrument for the solar orbiter mission

    NASA Astrophysics Data System (ADS)

    Howard, Russell A.; Vourlidas, Angelos; Korendyke, Clarence M.; Plunkett, Simon P.; Carter, Michael T.; Wang, Dennis; Rich, Nathan; McMullin, Donald R.; Lynch, Sean; Thurn, Adam; Clifford, Greg; Socker, Dennis G.; Thernisien, Arnaud F.; Chua, Damien; Linton, Mark G.; Keller, David; Janesick, James R.; Tower, John; Grygon, Mark; Hagood, Robert; Bast, William; Liewer, Paulett C.; DeJong, Eric M.; Velli, Marco M. C.; Mikic, Zoran; Bothmer, Volker; Rochus, Pierre; Halain, Jean-Philippe; Lamy, Philippe L.

    2013-09-01

    The SoloHI instrument for the ESA/NASA Solar Orbiter mission will track density fluctuations in the inner heliosphere, by observing visible sunlight scattered by electrons in the solar wind. Fluctuations are associated with dynamic events such as coronal mass ejections, but also with the "quiescent" solar wind. SoloHI will provide the crucial link between the low corona observations from the Solar Orbiter instruments and the in-situ measurements on Solar Orbiter and the Solar Probe Plus missions. The instrument is a visible-light telescope, based on the SECCHI/Heliospheric Imager (HI) currently flying on the STEREO mission. In this concept, a series of baffles reduce the scattered light from the solar disk and reflections from the spacecraft to levels below the scene brightness, typically by a factor of 1012. The fluctuations are imposed against a much brighter signal produced by light scattered by dust particles (the zodiacal light/F-corona). Multiple images are obtained over a period of several minutes and are summed on-board to increase the signal-to-noise ratio and to reduce the telemetry load. SoloHI is a single telescope with a 40⁰ field of view beginning at 5° from the Sun center. Through a series of Venus gravity assists, the minimum perihelia for Solar Orbiter will be reduced to about 60 Rsun (0.28 AU), and the inclination of the orbital plane will be increased to a maximum of 35° after the 7 year mission. The CMOS/APS detector is a mosaic of four 2048 x 1930 pixel arrays, each 2-side buttable with 11 μm pixels.

  16. ASHI, an All Sky Heliospheric Imager for Future NASA Missions

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Buffington, A.; Hick, P. P.; Yu, H. S.; Bisi, M. M.

    2016-12-01

    We wish to answer the scientific question: "What are the shapes and time histories of heliospheric structures in the plasma parameters, density and velocity as structures move outward from the Sun and surround the spacecraft?" To provide answers to this question, we propose ASHI, an All-Sky Heliospheric Imager for future NASA missions. ASHI's primary applicability is to view the inner heliosphere from deep space as a photometric system. The zodiacal-light photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) on the Coriolis satellite, and the Heliospheric Imagers (HIs) on the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all point the way towards an optimum instrument for viewing Thomson-scattering observations. The specifications for such systems include viewing the whole sky starting beyond a few degrees of the Sun, and covering a hemisphere or more of sky. With an imager mass of about 2.5 kg per system (scalable to lower values for instruments viewing from closer than 1 AU), ten-minute exposures, 20 arc-second pointing, and low power consumption, this type of instrument has been a popular choice for recent NASA Mission concepts such as STEREO, Solar Orbiter, Solar probe, and EASCO. A key photometric specification for such imagers is 0.1% differential photometry which enables the 3-D reconstruction of density starting from near the Sun and extending outward. A proven concept using SMEI analyses, ASHI will provide an order of magnitude better resolution in three dimensions over time. As a new item we intend to include velocity in this concept, and for a heliospheric imager in deep space, provide high-resolution comparisions of in-situ density and velocity measurements obtained at the spacecraft, to structures observed remotely.

  17. Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy M.

    2013-07-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solar science concepts, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions. These books are being distributed through teacher workshops and conferences, and are available free at http://sdo.gsfc.nasa.gov/epo/educators/thinkscientifically.php.

  18. Recent results from advanced research on space solar cells at NASA

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  19. A Modified Version of Taylor’s Hypothesis for Solar Probe Plus Observations

    NASA Astrophysics Data System (ADS)

    Klein, Kristopher G.; Perez, Jean C.; Verscharen, Daniel; Mallet, Alfred; Chandran, Benjamin D. G.

    2015-03-01

    The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment, reaching heliocentric distances less than 10 {{R}⊙ }. Near Earth, spacecraft measurements of fluctuating velocities and magnetic fields taken in the time domain are translated into information about the spatial structure of the solar wind via Taylor’s “frozen turbulence” hypothesis. Near the perihelion of SPP, however, the solar-wind speed is comparable to the Alfvén speed, and Taylor’s hypothesis in its usual form does not apply. In this paper, we show that under certain assumptions, a modified version of Taylor’s hypothesis can be recovered in the near-Sun region. We consider only the transverse, non-compressive component of the fluctuations at length scales exceeding the proton gyroradius, and we describe these fluctuations using an approximate theoretical framework developed by Heinemann and Olbert. We show that fluctuations propagating away from the Sun in the plasma frame obey a relation analogous to Taylor’s hypothesis when {{V}sc,\\bot }\\gg {{z}-} and {{z}+}\\gg {{z}-}, where {{V}sc,\\bot } is the component of the spacecraft velocity perpendicular to the mean magnetic field and {{{\\boldsymbol{z}} }+} ({{{\\boldsymbol{z}} }-}) is the Elsasser variable corresponding to transverse, non-compressive fluctuations propagating away from (toward) the Sun in the plasma frame. Observations and simulations suggest that, in the near-Sun solar wind, the above inequalities are satisfied and {{{\\boldsymbol{z}} }+} fluctuations account for most of the fluctuation energy. The modified form of Taylor’s hypothesis that we derive may thus make it possible to characterize the spatial structure of the energetically dominant component of the turbulence encountered by SPP.

  20. Mars Lander Deck of NASA's InSight Mission

    NASA Image and Video Library

    2017-08-28

    This view looks upward toward the InSight Mars lander suspended upside down. It shows the top of the lander's science deck with the mission's two main science instruments -- the Seismic Experiment for Interior Structure (SEIS) and the Heat Flow and Physical Properties Probe (HP3) -- plus the robotic arm and other subsystems installed. The photo was taken Aug. 9, 2017, in a Lockheed Martin clean room facility in Littleton, Colorado. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in May 2018 and land on Mars Nov. 26, 2018. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21847

  1. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    This close-up of the sunspot underneath the March 29, 2014, flare shows incredible detail. The image was captured by the G-band camera at Sacramento Peak in New Mexico. This instrument can focus on only a small area at once, but provide very high resolution. Ground-based telescope data can be hindered by Earth's atmosphere, which blocks much of the sun's ultraviolet and X-ray light, and causes twinkling even in the light it does allow through. As it happens, the March 29 flare occurred at a time of day in New Mexico that often results in the best viewing times from the ground. Credit: Kevin Reardon (National Solar Observatory), Lucia Kleint (BAER Institute) -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Short Wavelength Electromagnetic Perturbations Excited Near the Solar Probe Plus Spacecraft in the Inner Heliosphere: 2.5D Hybrid Modeling

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2011-01-01

    A 2.5D numerical plasma model of the interaction of the solar wind (SW) with the Solar Probe Plus spacecraft (SPPSC) is presented. These results should be interpreted as a basic plasma model derived from the SW-interaction with the spacecraft (SC), which could have consequences for both plasma wave and electron plasma measurements on board the SC in the inner heliosphere. Compression waves and electric field jumps with amplitudes of about 1.5 V/m and (12-18) V/m were also observed. A strong polarization electric field was also observed in the wing of the plasma wake. However, 2.5D hybrid modeling did not show excitation of whistler/Alfven waves in the upstream connected with the bidirectional current closure that was observed in short-time 3D modeling SPPSC and near a tether in the ionosphere. The observed strong electromagnetic perturbations may be a crucial point in the electromagnetic measurements planned for the future Solar Probe Plus (SPP) mission. The results of modeling electromagnetic field perturbations in the SW due to shot noise in absence of SPPSC are also discussed.

  3. Magnetic probing of the solar interior

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Estes, R. H.

    1985-01-01

    The magnetic field patterns in the region beneath the solar photosphere is determined. An approximate method for downward extrapolation of line of sight magnetic field measurements taken at the solar photosphere was developed. It utilizes the mean field theory of electromagnetism in a form thought to be appropriate for the solar convection zone. A way to test that theory is proposed. The straightforward application of the lowest order theory with the complete model fit to these data does not indicate the existence of any reasonable depth at which flux conservation is achieved.

  4. Plasma Potential and Langmuir Probe Measurements in the Near-field Plume of the NASA-457Mv2 Hall Thruster

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Huang, Wensheng; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    In order to further the design of future high-power Hall thrusters and provide experimental validation for ongoing modeling efforts, plasma potential and Langmuir probe measurements were performed on the 50-kW NASA-457Mv2. An electrostatic probe array comprised of a near-field Faraday probe, single Langmuir probe, and emissive probe was used to interrogate the near-field plume from approximately 0.1 - 2.0 mean thruster diameters downstream of the thruster exit plane at the following operating conditions: 300 V, 400 V and 500 V at 30 kW and 500 V at 50 kW. Results have shown that the acceleration zone is limited to within 0.4 mean thruster diameters of the exit plane while the high-temperature region is limited to 0.25 mean thruster diameters from the exit plane at all four operating conditions. Maximum plasma potentials in the near-field at 300 and 400 V were approximately 50 V with respect to cathode potential, while maximum electron temperatures varied from 24 - 32 eV, depending on operating condition. Isothermal lines at all operating conditions were found to strongly resemble the magnetic field topology in the high-temperature regions. This distribution was found to create regions of high temperature and low density near the magnetic poles, indicating strong, thick sheath formation along these surfaces. The data taken from this study are considered valuable for future design as well as modeling validation.

  5. NASA’s Solar Dynamics Observatory Captured Trio of Solar Flares April 2-3

    NASA Image and Video Library

    2017-12-08

    The sun emitted a trio of mid-level solar flares on April 2-3, 2017. The first peaked at 4:02 a.m. EDT on April 2, the second peaked at 4:33 p.m. EDT on April 2, and the third peaked at 10:29 a.m. EDT on April 3. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured images of the three events. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. Learn more: go.nasa.gov/2oQVFju Caption: NASA's Solar Dynamics Observatory captured this image of a solar flare peaking at 10:29 a.m. EDT on April 3, 2017, as seen in the bright flash near the sun’s upper right edge. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is typically colorized in teal. Credits: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Inter-Comparison between July 24, 2014 EUV Data from NASA Sounding Rocket 36.289 and Concurrent Measurements from Orbital Solar Observatories

    NASA Astrophysics Data System (ADS)

    Didkovsky, L. V.; Wieman, S. R.; Judge, D. L.

    2014-12-01

    Sounding rocket mission NASA 36.289 Didkovsky provided solar EUV irradiance measurements from four instruments built at the USC Space Sciences Center: the Rare Gas Ionization Cell (RGIC), the Solar Extreme ultraviolet Monitor (SEM), the Dual Grating Spectrometer (DGS), and the Optics-Free Spectrometer (OFS), thus meeting the mission comprehensive success criteria. These sounding rocket data allow us to inter-compare the observed absolute EUV irradiance with the data taken at the same time from the SOHO and SDO solar observatories. The sounding rocket data from the two degradation-free instruments (DGS and OFS) can be used to verify the degradation rates of SOHO and SDO EUV channels and serve as a flight-proven prototypes for future improvements of degradation-free instrumentation for solar physics.

  7. Summary of Recent Results from NASA's Space Solar Power (SSP) Programs and the Current Capabilities of Microwave WPT Technology

    NASA Technical Reports Server (NTRS)

    McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.

  8. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  9. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  10. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  11. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  12. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  13. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  14. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  15. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  16. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission.

    PubMed

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2018-01-18

    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10 -5 . By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter β = 1 + (-1.6 ± 1.8) × 10 -5 and the Sun's gravitational oblateness, [Formula: see text] = (2.246 ± 0.022) × 10 -7 . Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, [Formula: see text] = (-6.13 ± 1.47) × 10 -14 , which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain [Formula: see text] to be <4 × 10 -14 per year.

  17. NASA's SDO Catches a Double Photobomb

    NASA Image and Video Library

    2017-12-08

    On Sept. 13, 2015, as NASA’s Solar Dynamics Observatory, or SDO, kept up its constant watch on the sun, its view was photobombed not once, but twice. Just as the moon came into SDO’s field of view on a path to cross the sun, Earth entered the picture, blocking SDO’s view completely. When SDO's view of the sun emerged from Earth’s shadow, the moon was just completing its journey across the sun’s face. Though SDO sees dozens of Earth eclipses and several lunar transits each year, this is the first time ever that the two have coincided. This alignment of the sun, moon and Earth also resulted in a partial solar eclipse on Sept. 13, visible only from parts of Africa and Antarctica. Read more: www.nasa.gov/feature/goddard/nasas-sdo-catches-a-double-p... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e2, and 1/e3 times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  19. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  20. RECON - A new system for probing the outer solar system with stellar occultations

    NASA Astrophysics Data System (ADS)

    Buie, M. W.; Keller, J. M.; Wasserman, L. H.

    2015-10-01

    The Research and Education Collaborative Occultation Network (RECON) is a new system for coordinated occultation observations of outer solar system objects. Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited duration of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations too small to be resolved directly. Our system takes the new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from the International Occultation Timing Association. At our minimum size, two stations will record an event while the other stations will be probing for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We have successfully completed our first TNO observation which is presented in the compainion paper by G. Rossi et al (this conference).

  1. NASA Webb Telescope

    NASA Image and Video Library

    2017-12-08

    NASA image release September 17, 2010 In preparation for a cryogenic test NASA Goddard technicians install instrument mass simulators onto the James Webb Space Telescope ISIM structure. The ISIM Structure supports and holds the four Webb telescope science instruments : the Mid-Infrared Instrument (MIRI), the Near-Infrared Camera (NIRCam), the Near-Infrared Spectrograph (NIRSpec) and the Fine Guidance Sensor (FGS). Credit: NASA/GSFC/Chris Gunn To learn more about the James Webb Space Telescope go to: www.jwst.nasa.gov/ NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  2. Total Eclipse From Onboard NASA's G-III Research Aircraft

    NASA Image and Video Library

    2017-09-13

    As the 2017 solar eclipse approaches and enters totality, NASA Armstrong staff and NASA senior management share their excitement and first-hand experience from aboard NASA’s Armstrong Flight Research Center Gulfstream III aircraft. The G-III aircraft flew at 35,000 feet above the coast of Oregon during the 2017 total solar eclipse, capturing some of the very first views of the 2017 total solar eclipse as it made its way across the United States.

  3. ISIS/EPI-Lo: A New Instrument for Measuring keV to MeV Ions and Electrons with Simultaneous Half-Sky Coverage on NASA's Solar Probe Plus Mission

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Mitchell, D. G.; McNutt, R. L., Jr.; Cooper, S.; Crew, A. B.; Dupont, A.; Hayes, J.; Hoffer, E.; Nelson, K.; Parker, C.; Schlemm, C., II; Seifert, H.; Stokes, M.; Angold, N. G.; McComas, D. J.; Weidner, S.; Wiedenbeck, M. E.

    2016-12-01

    The Solar Probe Plus (SPP) Mission's Integrated Science Investigation of the Sun (ISIS) is a suite of two energetic particle instruments, EPI-Lo and EPI-Hi, covering lower ( 10 keV-100 MeV) and higher ( 1-100 MeV/nuc) energies, respectively. The ISIS team will investigate the origins, acceleration, and transport of energetic particles in the corona and inner heliosphere during the planned 7-year, 24-orbit mission, with a perihelion initially of 0.16 AU (36 Solar radii; RS), the three final orbits reaching 0.044 AU (9.9 RS). EPI-Lo has a novel approach to obtaining large angular coverage, well-suited to 3-axis stabilized spacecraft such as SPP, by densely sampling its 2π steradian field of view with 80 apertures organized in eight matching, 10-aperture wedges. Each wedge relies primarily on time-of-flight (TOF) mass spectrometer techniques, employing thin secondary-electron-emitting foils, microchannel plates, and solid state detectors (SSDs), to measure ions from 50 keV - 15 MeV and electrons from 50-500 keV. Signal attenuation, absorbers, TOF-only measurements, and SSD-only techniques are used to extend this energy range higher and lower. In 2015 and 2016 we made measurements with engineering units and flight-spare EPI-Lo wedges at accelerators and with radioactive sources; in addition to presenting the instrument design, we will report the results from these tests to characterize the instrument's measurement performance.

  4. The NASA Langley building solar project and the supporting Lewis solar technology program

    NASA Technical Reports Server (NTRS)

    Ragsdale, R. G.; Namkoong, D.

    1974-01-01

    A solar energy technology program is described that includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Early results from simulator tests indicate that non-selective coatings behave more nearly in accord with predicted performance than do selective coatings. Initial experiments on the decay rate of thermally stratified hot water in a storage tank have been run. Results suggest that where high temperature water is required, excess solar energy collected by a building solar system should be stored overnight in the form of chilled water rather than hot water.

  5. NASA Captures Images of a Late Summer Flare

    NASA Image and Video Library

    2014-08-25

    On Aug. 24, 2014, the sun emitted a mid-level solar flare, peaking at 8:16 a.m. EDT. NASA's Solar Dynamics Observatory captured images of the flare, which erupted on the left side of the sun. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an M5 flare. M-class flares are ten times less powerful than the most intense flares, called X-class flares. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA's P-3 at Sunrise

    NASA Image and Video Library

    2017-12-08

    NASA's P-3B airborne laboratory on the ramp at Thule Air Base in Greenland early on the morning of Mar. 21, 2013. Credit: NASA/Goddard/Christy Hansen NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Facility Effect Characterization Test of NASA's HERMeS Hall Thruster

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.; Ortega, Alejandro Lopez; Mikellides, Ioannis G.

    2016-01-01

    A test to characterize the effect of varying background pressure on NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had being completed. This thruster is the baseline propulsion system for the Solar Electric Propulsion Technology Demonstration Mission (SEP TDM). Potential differences in thruster performance and oscillation characteristics when in ground facilities versus on-orbit are considered a primary risk for the propulsion system of the Asteroid Redirect Robotic Mission, which is a candidate for SEP TDM. The first primary objective of this test was to demonstrate that the tools being developed to predict the zero-background-pressure behavior of the thruster can provide self-consistent results. The second primary objective of this test was to provide data for refining a physics-based model of the thruster plume that will be used in spacecraft interaction studies. Diagnostics deployed included a thrust stand, Faraday probe, Langmuir probe, retarding potential analyzer, Wien filter spectrometer, and high-speed camera. From the data, a physics-based plume model was refined. Comparisons of empirical data to modeling results are shown.

  8. NASA Space Telescopes See Weather Patterns in Brown Dwarf

    NASA Image and Video Library

    2017-12-08

    JANUARY 8, 2013: Astronomers using NASA's Hubble and Spitzer space telescopes have probed the stormy atmosphere of a brown dwarf named 2MASSJ22282889-431026, creating the most detailed "weather map" yet for this class of cool, star-like orbs. The forecast shows wind-driven, planet-sized clouds enshrouding these strange worlds. Brown dwarfs form out of condensing gas, as stars do, but lack the mass to fuse atoms and produce energy. Instead, these objects, which some call failed stars, are more similar to gas planets with their complex, varied atmospheres. The new research is a stepping stone toward a better understanding not only brown dwarfs, but also of the atmospheres of planets beyond our solar system. Hubble and Spitzer simultaneously watched the brown dwarf as its light varied in time, brightening and dimming about every 90 minutes as the body rotated. Astronomers found the timing of this change in brightness depended on whether they looked using different wavelengths of infrared light. The variations are the result of different layers or patches of material swirling around in the brown dwarf in windy storms as large as Earth itself. Spitzer and Hubble see different atmospheric layers because certain infrared wavelengths are blocked by vapors of water and methane high up, while other infrared wavelengths emerge from much deeper layers. Daniel Apai, the principal investigator of the research from the University of Arizona, Tucson, presented the results at the American Astronomical Society meeting on January 8 in Long Beach, Calif. A study describing the results, led by Esther Buenzli, also of the University of Arizona, is published in the Astrophysical Journal Letters. For more information about this study, visit www.nasa.gov/spitzer . NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA

  9. NASA Tech House

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The NASA Technology Utilization House, called Tech House, was designed and constructed at NASA's Langley Research Center in Hampton, Virginia, to demonstrate new technology that is available or will be available in the next several years and how the application of aerospace technology could help advance the homebuilding industry. Solar energy use, energy and water conservation, safety, security, and cost were major considerations in adapting the aerospace technology to the construction of Tech House.

  10. Solar System, in Perspective

    NASA Image and Video Library

    2014-03-24

    This artist's concept puts solar system distances in perspective. The scale bar is in astronomical units, with each set distance beyond 1 AU representing 10 times the previous distance. One AU is the distance from the sun to the Earth, which is about 93 million miles or 150 million kilometers. Neptune, the most distant planet from the sun, is about 30 AU. Informally, the term "solar system" is often used to mean the space out to the last planet. Scientific consensus, however, says the solar system goes out to the Oort Cloud, the source of the comets that swing by our sun on long time scales. Beyond the outer edge of the Oort Cloud, the gravity of other stars begins to dominate that of the sun. The inner edge of the main part of the Oort Cloud could be as close as 1,000 AU from our sun. The outer edge is estimated to be around 100,000 AU. NASA's Voyager 1, humankind's most distant spacecraft, is around 125 AU. Scientists believe it entered interstellar space, or the space between stars, on Aug. 25, 2012. Much of interstellar space is actually inside our solar system. It will take about 300 years for Voyager 1 to reach the inner edge of the Oort Cloud and possibly about 30,000 years to fly beyond it. Alpha Centauri is currently the closest star to our solar system. But, in 40,000 years, Voyager 1 will be closer to the star AC +79 3888 than to our own sun. AC +79 3888 is actually traveling faster toward Voyager 1 than the spacecraft is traveling toward it. The Voyager spacecraft were built and continue to be operated by NASA's Jet Propulsion Laboratory, in Pasadena, Calif. Caltech manages JPL for NASA. The Voyager missions are a part of NASA's Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate at NASA Headquarters in Washington. For more information about Voyager, visit: www.nasa.gov/voyager and voyager.jpl.nasa.gov . Image credit: NASA/JPL-Caltech NASA image use policy. NASA Goddard Space Flight Center enables

  11. Space Science Research and Technology at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Johnson, Charles L.

    2007-01-01

    This presentation will summarize the various projects and programs managed in the Space Science Programs and Projects Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. Projects in the portfolio include NASA's Chandra X-Ray telescope, Hinode solar physics satellite, various advanced space propulsion technologies, including solar sails and tethers, as well as NASA's Discovery and New Frontiers Programs.

  12. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    A total solar eclipse is seen on Monday, August 21, 2017 from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 25,000 feet above the Oregon coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)

  13. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Moon is seen passing in front of the Sun during a total solar eclipse on Monday, August 21, 2017 from onboard a NASA Gulfstream III aircraft flying 25,000 feet above the Oregon coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Carla Thomas)

  14. NHQ_2017_0804_This Week at NASA

    NASA Image and Video Library

    2017-08-04

    Scientists are studying our closest Earth-size exoplanet neighbor – Proxima b – to determine if it’s habitable. A NASA book is helping many people learn more about the total solar eclipse across the U.S. on Aug. 21st. "Getting a Feel for Eclipses," is a tactile guide designed to help illustrate basic concepts about the alignment of the Sun, Moon and Earth during a solar eclipse. After 40 years of searching, scientists have finally found evidence of g-mode gravity waves in our Sun – using data from our and the European Space Agency’s Solar and Heliospheric Observatory, or SOHO, spacecraft. Aug. 5 is the five-year anniversary of our Curiosity rover’s landing on Mars. At NASA Headquarters, young research professionals discussed the summer projects they completed – using NASA Earth observations and modelling data – to address a range of environmental issues around the globe.

  15. NASA SDO - Solar & Space Weather Education via Social Media

    NASA Astrophysics Data System (ADS)

    Durscher, Romeo; Wawro, Martha

    2012-03-01

    NASA has embraced social media as a valuable tool to communicate the activities of the agency in fulfillment of its mission. Team SDO continues to be on the forefront of using social media in a very engaging and interactive way and share mission information, solar images and space weather updates via a variety of social media platforms and outlets. We will present the impact SDO's social media strategy has made, including follower, friends and fan statistics from Twitter, Facebook, YouTube, Google+ and other outlets. We will discuss the various social media outlets and the techniques we use for reaching and engaging our audience. Effectiveness is measured through the use of various automatically-gathered statistics and level of public engagement. Of key importance to effective social media use is having access to scientists who can quickly respond to questions and express their answers in meaningful ways to the public. Our presentation will highlight the importance of scientist involvement and suggest ways for encouraging more scientists to support these efforts. We will present some of the social media plans for 2012 and discuss how we can continue to educate, inform, engage and inspire.

  16. NASA's SDO Sees Giant Filament on the Sun

    NASA Image and Video Library

    2015-02-10

    A dark line snaked across the lower half of the sun on Feb.10, 2015, as seen in this image from NASA's Solar Dynamics Observatory, or SDO. SDO shows colder material as dark and hotter material as light, so the line is, in fact, an enormous swatch of colder material hovering in the sun's atmosphere, the corona. Stretched out, that line – or solar filament as scientists call it – would be more than 533,000 miles long. That is longer than 67 Earths lined up in a row. Filaments can float sedately for days before disappearing. Sometimes they also erupt out into space, releasing solar material in a shower that either rains back down or escapes out into space, becoming a moving cloud known as a coronal mass ejection, or CME. SDO captured images of the filament in numerous wavelengths, each of which helps highlight material of different temperatures on the sun. By looking at such features in different wavelengths and temperatures, scientists learn more about what causes these structures, as well as what catalyzes their occasional eruptions. For more on SDO, visit: www.nasa.gov/sdo Karen C. Fox NASA's Goddard Space Flight Center, Greenbelt, Maryland Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NASA Redox system development project status

    NASA Technical Reports Server (NTRS)

    Nice, A. W.

    1981-01-01

    NASA-Redox energy storage systems developed for solar power applications and utility load leveling applications are discussed. The major objective of the project is to establish the technology readiness of Redox energy storage for transfer to industry for product development and commercialization by industry. The approach is to competitively contract to design, build, and test Redox systems progressively from preprototype to prototype multi-kW and megawatt systems and conduct supporting technology advancement tasks. The Redox electrode and membrane are fully adequate for multi-kW solar related applications and the viability of the Redox system technology as demonstrated for multi-kW solar related applications. The status of the NASA Redox Storage System Project is described along with the goals and objectives of the project elements.

  18. Using Long-Distance Scientist Involvement to Enhance NASA Volunteer Network Educational Activities

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2012-12-01

    Since 1999, the NASA/JPL Solar System Ambassadors (SSA) and Solar System Educators (SSEP) programs have used specially-trained volunteers to expand education and public outreach beyond the immediate NASA center regions. Integrating nationwide volunteers in these highly effective programs has helped optimize agency funding set aside for education. Since these volunteers were trained by NASA scientists and engineers, they acted as "stand-ins" for the mission team members in communities across the country. Through the efforts of these enthusiastic volunteers, students gained an increased awareness of NASA's space exploration missions through Solar System Ambassador classroom visits, and teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials through Solar System Educator workshops; however the scientist was still distant. In 2003, NASA started the Digital Learning Network (DLN) to bring scientists into the classroom via videoconferencing. The first equipment was expensive and only schools that could afford the expenditure were able to benefit; however, recent advancements in software allow classrooms to connect to the DLN via personal computers and an internet connection. Through collaboration with the DLN at NASA's Jet Propulsion Laboratory and the Goddard Spaceflight Center, Solar System Ambassadors and Solar System Educators in remote parts of the country are able to bring scientists into their classroom visits or workshops as guest speakers. The goals of this collaboration are to provide special elements to the volunteers' event, allow scientists opportunities for education involvement with minimal effort, acquaint teachers with DLN services and enrich student's classroom learning experience.;

  19. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  20. The NASA welding assessment program

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.; Bozek, J.

    1984-01-01

    The potential cost and performance advantages of welding was understood but ignored by solar panel manufacturers in the U.S. Although NASA, DOD and COMSAT have supported welding development efforts, soldering remains the only U.S. space qualified method for interconnecting solar cells. The reason is that no U.S. satellite prime contractor found it necessary, due to mission requirements, to abandon the space proven soldering process. It appears that the proposed NASA space station program will provide an array requirement, a 10 year operation in a low Earth orbital environment, that mandates welding. The status of welding technology in the U.S. is assessed.

  1. NASA's SDO Satellite Captures 2012 Venus Transit

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 5, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, HMI To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. 2017 - The Year @NASA

    NASA Image and Video Library

    2017-12-07

    2017: A year of groundbreaking discoveries and record-setting exploration at NASA. The Moon became a focal point for the agency, we brought you unique coverage of the first coast-to-coast total solar eclipse in the U.S. in 99 years, we announced the most Earth-size planets ever found in the habitable zone of a star outside our solar system, and more!

  3. Solar eclipse over the South Pacific Ocean

    NASA Image and Video Library

    2017-12-08

    During a total solar eclipse, the MODIS instrument on NASA's Aqua satellite recorded this image of the shadow of the moon over the South Pacific Ocean on March 8, 2016, at 10:05 pm EST. This total solar eclipse was the last one before an August 21, 2017, total solar eclipse that will be visible in much of the United States. Credit: NASA/Goddard/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Entry Probe Missions to the Giant Planets

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.

    2009-12-01

    The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition

  5. NASA Tech Briefs, Summer 1978

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Topics covered include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of selected innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Solar Energy; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.

  6. Packaging a Successful NASA Mission to Reach a Large Audience with a Small Budget. Earth's Dynamic Space: Solar-Terrestrial Physics and NASA's Polar Mission

    NASA Technical Reports Server (NTRS)

    Fox, Nicola J.; Goldberg, Richard; Barnes, Robin J.; Sigwarth, John B.; Beisser, Kerri B.; Moore, Thomas E.; Hoffman, Robert A.; Russell, Christopher T.; Scudder, Jack D.; Spann, James F.

    2004-01-01

    To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth's dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story. Team members also created visualizations using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA's Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.

  7. The Solar-B Mission

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro; Acton, Loren; Canfield, Richard; Davila, Joseph; Davis, John; Dere, Kenneth; Doschek, George; Golub, Leon; Harvey, John; Hathaway, David; hide

    1997-01-01

    Solar-B, the next ISAS mission (with major NASA participation), is designed to address the fundamental question of how magnetic fields interact with plasma to produce solar variability. The mission has a number of unique capabilities that will enable it to answer the outstanding questions of solar magnetism. First, by escaping atmospheric seeing, it will deliver continuous observations of the solar surface with unprecedented spatial resolution. Second, Solar-B will deliver the first accurate measurements of all three components of the photospheric magnetic field. Solar-B will measure both the magnetic energy driving the photosphere and simultaneously its effects in the corona. Solar-B offers unique programmatic opportunities to NASA. It will continue an effective collaboration with our most reliable international partner. It will deliver images and data that will have strong public outreach potential. Finally, the science of Solar-B is clearly related to the themes of origins and plasma astrophysics, and contributes directly to the national space weather and global change programs.

  8. NASA's IRIS Observed a Gigantic Eruption on the Sun!

    NASA Image and Video Library

    2014-05-30

    A coronal mass ejection, or CME, surged off the side of the sun on May 9, 2014, and NASA's newest solar observatory caught it in extraordinary detail. This was the first CME observed by the Interface Region Imaging Spectrograph, or IRIS, which launched in June 2013 to peer into the lowest levels of the sun's atmosphere with better resolution than ever before. Watch the movie to see how a curtain of solar material erupts outward at speeds of 1.5 million miles per hour. Read more: 1.usa.gov/1kp7O4F Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  10. Emission Spectroscopic Measurements with an Optical Probe in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael; Prabhu, Dinesh K.; Raiche, George A.; Terrazas-Salinas, Imelda; Hui, Frank C. L.

    2011-01-01

    An optical probe was designed to measure radiation (from inside the arc heater) incident on a test sample immersed in the arc-heated stream. Currently, only crude estimates are available for this incident radiation. Unlike efforts of the past, where the probe line of sight was inclined to the nozzle centerline, the present development focuses on having the probe line of sight coincide with the nozzle centerline. A fiber-coupled spectrometer was used to measure the spectral distribution of incident radiation in the wavelength range of 225 to 900 nm. The radiation heat flux in this wavelength range was determined by integration of measured emission spectral intensity calibrated to incident irradiance from an integrating sphere. Two arc-heater conditions, corresponding to stream bulk enthalpy levels of 12 and 22 MJ/kg, were investigated in the 13-inch diameter nozzle of the Interaction Heating Facility at NASA Ames Research Center. With the probe placed at a distance of 10 inches from the nozzle exit plane, total radiative heat fluxes were measured to be 3.3 and 8.4 W/sq cm for the 12 and 22 MJ/kg conditions, respectively. About 17% of these radiative fluxes were due to bound-bound radiation from atoms and molecules, while the remaining 83% could be attributed to continua (bound-free and/or free-free). A comparison with spectral simulation based on CFD solutions for the arc-heater flow field and with spectroscopic measurements in the plenum region indicates that more than 95% of the measured radiation is generated in the arc region. The total radiative heat flux from the line radiation could increase by a factor of two through contributions from wavelengths outside the measured range, i.e., from the vacuum ultraviolet (wavelengths less than 225 nm) and the infrared (wavelengths greater than 900 nm). An extrapolation of the continuum radiation to these two wavelength regions was not attempted. In the tested configuration, the measured radiative heat flux accounts for

  11. "NASA's Solar System Exploration Research Virtual Institute" - Expanded Goals and More Partners

    NASA Astrophysics Data System (ADS)

    Daou, D.; Schmidt, G.; Pendleton, Y.; Bailey, B.; Morrison, D.

    2015-10-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inceptionas the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the I nstitute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan- European lunar science consortium, which promises both new scientific approaches and mission concepts.International partner membership requires longterm commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner.International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists.This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  12. NASAs Solar System Exploration Research Virtual Institute- Expanded Goals and More Partners

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.; Daou, D.; Pendleton, Y.; Bailey, B. E.

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  13. "NASA's Solar System Exploration Research Virtual Institute"; - Expanded Goals and New Teams

    NASA Astrophysics Data System (ADS)

    Daou, D.; Schmidt, G. K.; Pendleton, Y.; Bailey, B. E.

    2014-04-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) has been pursuing international partnerships since its inception as the NASA Lunar Science Institute (NLSI), in order to both leverage the science being done by its domestic member institutions as well as to help lunar science and exploration become a greater global endeavor. The international partners of the Institute have pursued a broad program of lunar science stimulated by scientific partnerships enabled by the SSERVI community. Furthermore, regional partnerships have been formed such as the new pan-European lunar science consortium, which promises both new scientific approaches and mission concepts. International partner membership requires long-term commitment from both the partner and SSERVI, together with tangible and specific plans for scientific interaction that will produce results of mutual benefit to both the institute's U.S. Teams and the international partner. International partners are invited to participate in all aspects of the Institute's activities and programs, on a basis of no exchange of funds. Through these activities, SSERVI researchers and international partners participate in sharing ideas, information, and data arising from their respective research efforts, and contribute to the training of young scientists. This talk will present an overview of the Institute and the international nodes. We will also discuss the various processes to become a SSERVI partner as well as the opportunities available for collaborations with the SSERVI national teams.

  14. Lynda Barry Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Cartoonist and professor of creativity Lynda Barry presented the benefits of creativity in everyday life as part of Goddard's Office of Communications Story Lab seminar series. Read more: www.nasa.gov/feature/goddard/2016/cartoonist-discusses-cr... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  16. Solar Sail Propulsion for Interplanetary Cubesats

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Sobey, Alex; Sykes, Kevin

    2015-01-01

    NASA is developing two small satellite missions as part of the Advanced Exploration Systems (AES) Program, both of which will use a solar sail to enable their scientific objectives. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high (Delta)V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. Solar sail technology is rapidly maturing for space propulsion applications within NASA and around the world.

  17. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2016-01-06

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Senator Barbara Mikulski Visits NASA Goddard

    NASA Image and Video Library

    2016-01-06

    Maryland's Sen. Barbara Mikulski greeted employees at NASA's Goddard Space Flight Center in Greenbelt, Maryland, during a packed town hall meeting Jan. 6. She discussed her history with Goddard and appropriations for NASA in 2016. Read more: www.nasa.gov/feature/goddard/2016/maryland-sen-barbara-mi... Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Electromagnetic plasma particle simulations on Solar Probe Plus spacecraft interaction with near-Sun plasma environment

    NASA Astrophysics Data System (ADS)

    Miyake, Yohei; Usui, Hideyuki

    It is necessary to predict the nature of spacecraft-plasma interactions in extreme plasma conditions such as in the near-Sun environment. The spacecraft environment immersed in the solar corona is characterized by the small Debye length due to dense (7000 mathrm{/cc}) plasmas and a large photo-/secondary electron emission current emitted from the spacecraft surfaces, which lead to distinctive nature of spacecraft-plasma interactions [1,2,3]. In the present study, electromagnetic field perturbation around the Solar Probe Plus (SPP) spacecraft is examined by using our original EM-PIC (electromagnetic particle-in-cell) plasma simulation code called EMSES. In the simulations, we consider the SPP spacecraft at perihelion (0.04 mathrm{AU} from the Sun) and important physical effects such as spacecraft charging, photoelectron and secondary electron emission, solar wind plasma flow including the effect of spacecraft orbital velocity, and the presence of a background magnetic field. Our preliminary results show that both photoelectrons and secondary electrons from the spacecraft are magnetized in a spatial scale of several meters, and make drift motion due the presence of the background convection electric field. This effect leads to non-axisymmetric distributions of the electron density and the resultant electric potential near the spacecraft. Our simulations predict that a strong (˜ 100 mathrm{mV/m}) spurious electric field can be observed by the probe measurement on the spacecraft due to such a non-axisymmetric effect. We also confirm that the large photo-/secondary electron current alters magnetic field intensity around the spacecraft, but the field variation is much smaller than the background magnetic field magnitude (a few mathrm{nT} compared to a few mathrm{mu T}). [1] Ergun et al., textit{Phys. Plasmas}, textbf{17}, 072903, 2010. [2] Guillemant et al., textit{Ann. Geophys.}, textbf{30}, 1075-1092, 2012. [3] Guillemant et al., textit{IEEE Trans. Plasma Sci

  2. InSight Lander Solar Array Test

    NASA Image and Video Library

    2018-01-23

    The solar arrays on NASA's InSight Mars lander were deployed as part of testing conducted Jan. 23, 2018, at Lockheed Martin Space in Littleton, Colorado. Engineers and technicians evaluated the solar arrays and performed an illumination test to confirm that the solar cells were collecting power. The launch window for InSight opens May 5, 2018. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22205

  3. Ground Testing A 20-Meter Inflation Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Mann, Troy; Behun, Vaughn; Lichodziejewski, David; Derbes, Billy; Sleight, David

    2006-01-01

    Solar sails have been proposed for a variety of future space exploration missions and provide a cost effective source of propellantless propulsion. Solar sails span very large areas to capture and reflect photons from the Sun and are propelled through space by the transfer of momentum from the photons to the solar sail. The thrust of a solar sail, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful space exploration missions utilizing solar sail propulsion. The team of L Garde, NASA Jet Propulsion Laboratory (JPL), Ball Aerospace, and NASA Langley Research Center, under the direction of the NASA In-Space Propulsion Office (ISP), has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The 100-m baseline solar sail concept was optimized around the one astronomical unit (AU) Geostorm mission, and features a Mylar sail membrane with a striped-net sail suspension architecture with inflation-deployed sail support beams consisting of inflatable sub-Tg (glass transition temperature) rigidizable semi-monocoque booms and a spreader system. The solar sail has vanes integrated onto the tips of the support beams to provide full 3-axis control of the solar sail. This same structural concept can be scaled to meet the requirements of a number of other NASA missions. Static and dynamic testing of a 20m scaled version of this solar sail concept have been completed in the Space Power Facility (SPF) at the NASA Glenn Plum Brook facility under vacuum and thermal conditions simulating the operation of a solar sail in space. This paper details the lessons learned from these and other similar ground based tests of gossamer structures during the three year solar sail project.

  4. A Survey of the Rapidly Emerging Field of Nanotechnology: Potential Applications for Scientific Instruments and Technologies for Atmospheric Entry Probes

    NASA Technical Reports Server (NTRS)

    Meyyappan, M.; Arnold, J. O.

    2005-01-01

    The field of Nanotechnology is well funded worldwide and innovations applicable to Solar System Exploration are emerging much more rapidly than thought possible just a few years ago. This presentation will survey recent innovations from nanotechnololgy with a focus on novel applications to atmospheric entry science and probe technology, in a fashion similar to that presented by Arnold and Venkatapathy at the previous workshop forum at Lisbon Portugal, October 6-9, 2003. Nanotechnology is a rapidly emerging field that builds systems, devices and materials from the bottom up, atom by atom, and in so doing provides them with novel and remarkable macro-scale performance. This technology has the potential to revolutionize space exploration by reducing mass and simultaneously increasing capability. Thermal, Radiation, Impact Protective Shields: Atmospheric probes and humans on long duration deep space missions involved in Solar System Exploration must safely endure 3 significant hazards: (i) atmospheric entry; (ii) radiation; and (iii) micrometeorite or debris impact. Nanostructured materials could be developed to address all three hazards with a single protective shield, which would involve much less mass than a traditional approach. The concept can be ready in time for incorporation into NASA s Crew Exploration Vehicle, and possible entry probes to fly on the Jupiter Icy Moons

  5. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  6. Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.

    1978-01-01

    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.

  7. ATLAS Probe: Exploring Frontiers in Galaxy Evolution, Cosmology, and Milky Way Science

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Robberto, Massimo; Dickinson, Mark; Ferguson, Henry C.; Hillenbrand, Lynne; Hirata, Christopher M.; Cimatti, Andrea; Bartlett, James; Barkhouser, Robert; Benjamin, Robert A.; Brinchmann, Jarle; Chary, Ranga-Ram; Conroy, Charlie; Daddi, Emanuele; Donahue, Megan; Dore, Olivier; Eisenhardt, Peter; Fraser, Wesley C.; Helou, George; Kirkpatrick, J. Davy; Malhotra, Sangeeta; Moscardini, Lauro; Ninkov, Zoran; Ressler, Michael; Rhoads, James; Rhodes, Jason; Shapley, Alice; Smee, Stephen; ATLAS Probe Team

    2018-01-01

    ATLAS (Astrophysics Telescope for Large Area Spectroscopy) Probe is a concept for a NASA probe-class space mission that leverages WFIRST imaging for targeted spectroscopy. ATLAS Probe will obtain spectra of 90% of all galaxies imaged by the WFIRST High Latitude Survey at z > 0.5, with slit spectra of 300 million galaxies to z = 7. ATLAS Probe and WFIRST together will produce a 3D map of the Universe with Mpc resolution over 2200 sq deg, the definitive data sets for studying galaxy evolution, probing dark matter, dark energy and modification of general relativity, and quantifying the 3D structure and stellar content of the Milky Way.ATLAS Probe science spans four broad categories: (1) Revolutionize galaxy evolution studies by tracing the relation between galaxies and dark matter from the local group to cosmic voids and filaments, from the epoch of reionization through the peak era of galaxy assembly. (2) Open a new window into the Universe by mapping the dark matter filaments using 3D weak lensing with spectroscopic redshifts to unveil the nature of the dark Universe, and obtaining definitive measurements of dark energy and possible modification of general relativity using cosmic large-scale structure. (3) Probe the Milky Way's dust-shrouded regions, reaching the far side of our Galaxy. (4) Characterize asteroids and comets in the outer Solar System.ATLAS Probe is a 1.5m telescope with a field of view (FoV) of 0.4 sq deg, and uses Digital Micromirror Devices (DMDs) as slit selectors. It has a spectroscopic resolution of R = 600, and a wavelength range of 1-4μm. The lack of slit spectroscopy from space over a wide FoV is the obvious gap in current and planned future space missions; ATLAS fills this big gap with an unprecedented spectroscopic capability (with an estimated spectroscopic multiplex factor of 5000-10000). It has an estimated cost under $1B, with a single instrument, a telescope aperture that allows for a lighter launch vehicle, and mature technology

  8. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Compton Tucker’s presentation on NASA’s earth science research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Photo Credit: NASA/Goddard/Rebecca Roth Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Compton Tucker’s presentation on NASA’s earth science research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Joihn Mather’s presentation on NASA’s astrophysics research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. OSIRIS-REx NASA Social

    NASA Image and Video Library

    2016-09-07

    Social media followers were briefed by NASA scientists on asteroids, how they relate to the origins of our solar system and the search for life beyond Earth, during a NASA Social presentation in the Operations Support Building II at the agency’s Kennedy Space Center in Florida. The presentation took place before launch of the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. From the left, are Dante Lauretta, OSIRIS-REx principal investigator from the University of Arizona at Tucson, and Christina Richey, OSIRIS-REx deputy program scientists at NASA Headquarters in Washington.

  12. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for installation on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for installation on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  13. VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  14. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  15. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  16. Solar Schematic

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  17. Future Gamma-Ray Imaging of Solar Eruptive Events

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2012-01-01

    Solar eruptive events, the combination of large solar flares and coronal mass ejections (CMEs), accelerate ions to tens of Gev and electrons to hundreds of MeV. The energy in accelerated particles can be a significant fraction (up to tens of percent) of the released energy and is roughly equipartitioned between ions and electrons. Observations of the gamma-ray signatures produced by these particles interacting with the ambient solar atmosphere probes the distribution and composition of the accelerated population, as well as the atmospheric parameters and abundances of the atmosphere, ultimately revealing information about the underlying physics. Gamma-ray imaging provided by RHESSI showed that the interacting approx.20 MeV/nucleon ions are confined to flare magnetic loops rather than precipitating from a large CME-associated shock. Furthermore, RHESSI images show a surprising, significant spatial separation between the locations where accelerated ions and electrons are interacting, thus indicating a difference in acceleration or transport processes for the two types of particles. Future gamma-ray imaging observations, with higher sensitivity and greater angular resolution, can investigate more deeply the nature of ion acceleration. The technologies being proven on the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), a NASA balloon instrument, are possible approaches for future instrumentation. We discuss the GRIPS instrument and the future of studying this aspect of solar eruptive events.

  18. Huygens Titan Probe Trajectory Reconstruction Using Traditional Methods and the Program to Optimize Simulated Trajectories II

    NASA Technical Reports Server (NTRS)

    Striepe, Scott A.; Blanchard, Robert C.; Kirsch, Michael F.; Fowler, Wallace T.

    2007-01-01

    On January 14, 2005, ESA's Huygens probe separated from NASA's Cassini spacecraft, entered the Titan atmosphere and landed on its surface. As part of NASA Engineering Safety Center Independent Technical Assessment of the Huygens entry, descent, and landing, and an agreement with ESA, NASA provided results of all EDL analyses and associated findings to the Huygens project team prior to probe entry. In return, NASA was provided the flight data from the probe so that trajectory reconstruction could be done and simulation models assessed. Trajectory reconstruction of the Huygens entry probe at Titan was accomplished using two independent approaches: a traditional method and a POST2-based method. Results from both approaches are discussed in this paper.

  19. Solar System Educators Program

    NASA Astrophysics Data System (ADS)

    Knudsen, R.

    2004-11-01

    The Solar System Educators Program is a nationwide network of highly motivated teachers who lead workshops that show other teachers in their local communities how to successfully incorporate NASA materials and research into their classes. Currently there are 57 Solar System Educators in 37 states whose workshops are designed to assist their fellow teachers in understanding and including standards-based NASA materials into their classroom activities. Solar System Educators attend a training institute during their first year in the program and have the option of attending subsequent annual institutes. The volunteers in this program receive additional web-based mission-specific telecon trainings in conjunction with the Solar System Ambassadors. Resource and handout materials in the form of DVDs, posters, pamphlets, fact sheets, postcards and bookmarks are also provided. Scientists can get involved with this program by partnering with the Solar System Educators in their regions, presenting at their workshops and mentoring these outstanding volunteers. This formal education program helps optimize project funding set aside for education through the efforts of these volunteer master teachers. At the same time, teachers become familiar with NASA's educational materials with which to inspire students into pursuing careers in science, technology, engineering and math.

  20. Extended Temperature Solar Cell Technology Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  1. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, left, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, as Madhulika Guhathakurta, SDO Program Scientist looks on at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  2. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and

  3. NASA's SDO Satellite Captures Venus Transit Approach

    NASA Image and Video Library

    2012-06-05

    NASA image captured June 5, 2012 at 212357 UTC (about 5:24 p.m. EDT). On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. This image was captured by SDO's AIA instrument at 193 Angstroms. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Solar B/Hinode Image of Sunspot

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Hinode (Sunrise), formerly known as Solar-B before reaching orbit, was launched from the Uchinoura Space Center in Japan on September 23, 2006. Hinode was designed to probe into the Sun's magnetic field to better understand the origin of solar disturbances which interfere with satellite communications, electrical power transmission grids, and the safety of astronauts traveling beyond the Earth's magnetic field. Hinode is circling Earth in a polar orbit that places the instruments in continuous sunlight for nine months each year and allows data dumps to a high latitude European Space Agency (ESA) ground station every orbit. NASA and other science teams will support instrument operations and data collection from the spacecraft's operation center at the Japanese Aerospace Exploration Agency's (JAXA's) Institute of Space and Aeronautical Science facility located in Tokyo. The Hinode spacecraft is a collaboration among space agencies of Japan, the United States, the United Kingdom, and Europe. The Marshall Space Flight Center (MSFC) managed development of three instruments comprising the spacecraft; the Solar Optical Telescope (SOT); the X-Ray Telescope (XRT); and the Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS). This image of a sunspot, taken by Hinode, is a prime example of what the spacecraft can offer.

  5. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Madhulika Guhathakurta, SDO Program Scientist, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  6. Overview of NASA Heliophysics and the Science of Space Weather

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.

    2017-12-01

    In this paper, an overview is presented on the various activities within NASA that address space weather-related observations, model development, and research to operations. Specific to space weather, NASA formulates and implements, through the Heliophysics division, a national research program for understanding the Sun and its interactions with the Earth and the Solar System and how these phenomena impact life and society. NASA researches and prototypes new mission and instrument capabilities in this area, providing new physics-based algorithms to advance the state of solar, space physics, and space weather modeling.

  7. NASA Satellite View of Antarctica

    NASA Image and Video Library

    2017-12-08

    NASA image acquired November 2, 2011 The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra satellite captured this image of the Knox, Budd Law Dome, and Sabrina Coasts, Antarctica on November 2, 2011 at 01:40 UTC (Nov. 1 at 9:40 p.m. EDT). Operation Ice Bridge is exploring Antarctic ice, and more information can be found at www.nasa.gov/icebridge. Image Credit: NASA Goddard MODIS Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Preliminary Design of a Solar Photovoltaic Array for Net-Zero Energy Buildings at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cole, Stuart K.; DeYoung, Russell J.

    2012-01-01

    An investigation was conducted to evaluate photovoltaic (solar electric systems) systems for a single building at NASA Langley as a representative case for alternative sustainable power generation. Building 1250 in the Science Directorate is comprised of office and laboratory space, and currently uses approximately 250,000 kW/month of electrical power with a projected use of 200,000 kW/month with additional conservation measures. The installation would be applied towards a goal for having Building 1250 classified as a net-zero energy building as it would produce as much energy as it uses over the course of a year. Based on the facility s electrical demand, a photovoltaic system and associated hardware were characterized to determine the optimal system, and understand the possible impacts from its deployment. The findings of this investigation reveal that the 1.9 MW photovoltaic electrical system provides favorable and robust results. The solar electric system should supply the needed sustainable power solution especially if operation and maintenance of the system will be considered a significant component of the system deployment.

  9. Swedish Delegation Visits NASA Goddard

    NASA Image and Video Library

    2017-12-08

    Swedish Delegation Visits GSFC – May 3, 2017 –Goddard Space Flight Center senior management and members of the Royal Swedish Academy walk towards Building 29 as part of the Swedish delegation’s tour of the center. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. NASA Goddard All Hands Meeting

    NASA Image and Video Library

    2017-12-08

    Monday, September 30, 2013 - NASA Goddard civil servant and contractor employees were invited to an all hands meeting with Center Director Chris Scolese and members of the senior management team to learn the latest information about a possible partial government shutdown that could happen as early as midnight. Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Overview of the Solar Dynamic Ground Test Demonstration Program at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1995-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LERC) vacuum facility. Data from the SD GTD program will be provided to the joint U.S. and Russian team which is currently designing a 2 kW SD flight demonstration power system. This SD technology has the potential as a future power source for the International Space Station. This paper reviews the goals and status of the SD GTD program. A description of the SD GTD system includes key design features of the system, subsystems and components.

  12. Survey of localized solar flare signatures in the ionosphere with GNSS, VLF, and GOES observations

    NASA Astrophysics Data System (ADS)

    Blevins, S. M.; Hayes, L.; Collado-Vega, Y. M.; Michael, B. P.; Noll, C. E.

    2017-12-01

    Global navigation satellite system (GNSS) phase measurements of the total electron content (TEC) and ionospheric delay are sensitive to sudden increases in electron density in the layers of the Earth's ionosphere. These sudden ionospheric disruptions, or SIDs, are due to enhanced X-ray and extreme ultraviolet radiation from a solar flare that drastically increases the electron density in localized regions. SIDs are solar flare signatures in the Earth's ionosphere and can be observed with very low frequency (VLF 3-30 kHz) monitors and dual-frequency GNSS (L1 = 1575.42 MHz, L2 = 1227.60 MHz) receivers that probe lower (D-region) to upper (F-region) ionospheric layers, respectively. Data from over 500 solar flare events, spanning April 2010 to July 2017, including GOES C-, M-, and X-class solar flares at various intensities, were collected from the Space Weather Database Of Notifications, Knowledge, Information (DONKI) developed at the NASA Goddard Space Flight Center (GSFC) Community Coordinated Modeling Center (CCMC). Historical GOES satellite (NOAA) X-ray flux (NASA GSFC CCMC integrated Space Weather Analysis system (iSWA)), and VLF SID (Stanford University Solar SID Space Weather Monitor program) time series data are available for all solar flare events of the sample set. We use GNSS data archived at the NASA GSFC Crustal Dynamics Data Information System (CDDIS) to characterize the F-region reactions to the increased ionization, complementing the ground-based D-region (VLF), and space-based X-ray observations (GOES). CDDIS provides GNSS data with 24-hour coverage at a temporal resolution of 30 seconds from over 500 stations. In our study we choose 63 stations, spanning 23 countries at a variety of geographic locations to provide continuous coverage for all solar flare events in the sample. This geographic distribution enables us to explore the effects of different solar flare intensities at localized regions in the Earths ionosphere around the globe. The GNSS

  13. Coronal Rain, Solar Storm

    NASA Image and Video Library

    2010-03-19

    Explanation: In this picture, the Sun's surface is quite dark. A frame from a movie recorded on November 9th by the orbiting TRACE telescope, it shows coronal loops lofted over a solar active region. Glowing brightly in extreme ultraviolet light, the hot plasma entrained above the Sun along arching magnetic fields is cooling and raining back down on the solar surface. Hours earlier, on November 8th, astronomers had watched this particular active region produce a not so spectacular solar flare. Still, the M-class flare spewed forth an intense storm of particles, suddenly showering satellites near the Earth with high energy protons. The flare event was also associated with a large coronal mass ejection, a massive cloud of material which impacted our fair planet's magnetic field about 31 hours later. The result ... a strong geomagnetic storm. Credit: NASA/GSFC/TRACE To learn more go to: nasascience.nasa.gov/missions/trace To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  14. Pegasus XL CYGNSS Solar Panel Deployment and Illumination Test

    NASA Image and Video Library

    2016-10-02

    Inside Building 1555 at Vandenberg Air Force Base in California, solar panels for one of eight NASA's Cyclone Global Navigation Satellite System (CYGNSS) spacecraft has been deployed for illumination testing. Processing activities will prepare the spacecraft for launch aboard an Orbital ATK Pegasus XL rocket. When preparations are completed at Vandenberg, the rocket will be transported to NASA's Kennedy Space Center in Florida attached to the Orbital ATK L-1011 carrier aircraft within its payload fairing. CYGNSS will launch on the Pegasus XL rocket from the Skid Strip at Cape Canaveral Air Force Station. CYGNSS will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a critical role in the beginning and intensification of hurricanes.

  15. Management experience of an international venture in space The Ulysses mission

    NASA Technical Reports Server (NTRS)

    Yoshida, Ronald Y.; Meeks, Willis G.

    1986-01-01

    The management of the Ulysses project, a probe which will fly a solar polar orbit, is described. The 5-yr mission will feature a flyby of Jupiter to deflect the spacecraft into a high-inclination orbit. Data on the solar corona, solar wind, the sun-wind interface, the heliospheric magnetic field, solar and nonsolar cosmic rays, etc., will be gathered as a function of the solar latitude. NASA will track and control the probe with the Deep Space Network. JPL provides project management for NASA while the Directorate of Scientific Programs performs ESA management functions. The DOE will provide a radioisotope thermoelectric generator while NASA and ESA each supply half the scientific payload. A NASA-ESA Joint Working Group meets about twice per year to monitor the project and discuss the technical and scientific requirements. Safety issues and measures which are being addressed due to the presence of the Pu-238 heat source for the RTG are discussed.

  16. An inside look at NASA planetology

    NASA Technical Reports Server (NTRS)

    Dwornik, S. E.

    1976-01-01

    Staffing, financing and budget controls, and research grant allocations of NASA are reviewed with emphasis on NASA-supported research in planetary geological sciences: studies of the composition, structure, and history of solar system planets. Programs, techniques, and research grants for studies of Mars photographs acquired through Mariner 6-10 flights are discussed at length, and particularly the handling of computer-enhanced photographic data. Scheduled future NASA-sponsored planet exploration missions (to Mars, Jupiter, Saturn, Uranus) are mentioned.

  17. NASA Strategic Roadmap Summary Report

    NASA Technical Reports Server (NTRS)

    Wilson, Scott; Bauer, Frank; Stetson, Doug; Robey, Judee; Smith, Eric P.; Capps, Rich; Gould, Dana; Tanner, Mike; Guerra, Lisa; Johnston, Gordon

    2005-01-01

    In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees.

  18. Science is Cool with NASA's "Space School Musical"

    NASA Astrophysics Data System (ADS)

    Asplund, S.

    2011-10-01

    To help young learners understand basic solar system science concepts and retain what they learn, NASA's Discovery and New Frontiers Programs have collaborated with KidTribe to create "Space School Musical," an innovative approach for teaching about the solar system. It's an educational "hip-hopera" that raps, rhymes, moves and grooves its way into the minds and memories of students and educators alike. The solar system comes alive, combining science content with music, fun lyrics, and choreography. Kids can watch the videos, learn the songs, do the cross-curricular activities, and perform the show themselves. The videos, songs, lyrics, and guides are available to all with free downloads at http://discovery.nasa.gov/

  19. Internationally supported data acquisition for solar system exploration in the 1990's

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Lyman, P. T.; Layland, J. W.; Renzetti, N. A.

    1983-01-01

    Procedures that could be followed for cooperative agreements between countries with large ground station antennas to help provide mission telemetry support for increasing solar system exploration are outlined. It is noted that mission cost reductions, and thereby greater chances that missions will be approved, are offered by the opportunity to make planetary probes multinational efforts. The Canberra station is a suitable site for the Japanese Planet A Halley's comet intercept probe. The French have requested U.S. cooperation in developing VLBI stations in the L-band to receive signals from the Venus balloons and landers being sent as part of a joint French-Soviet mission to Venus and Halley's comet. The construction of the stations would extend the capabilities already present with NASA's deep space network, particularly for tracking the Voyager visits to Uranus and Neptune.

  20. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.