Sample records for nasa spacecraft missions

  1. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  2. NASA Facts: Edison Demonstration of Spacecraft Networks (EDSN) Mission

    NASA Technical Reports Server (NTRS)

    Ord, Stephen; Yost, Bruce D.; Petro, Andrew J.

    2013-01-01

    NASA's Edison Demonstration of Smallsat Networks (EDSN) mission will launch and deploy a swarm of 8 cubesats into a loose formation approximately 500 km above Earth. EDSN will develop technology to send multiple, advanced, yet affordable nanosatellites into space with cross-link communications to enable a wide array of scientific, commercial, and academic research. Other goals of the mission include lowering the cost and shortening the development time for future small spacecraft.

  3. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    NASA Technical Reports Server (NTRS)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  4. Neptune aerocapture mission and spacecraft design overview

    NASA Technical Reports Server (NTRS)

    Bailey, Robert W.; Hall, Jeff L.; Spliker, Tom R.; O'Kongo, Nora

    2004-01-01

    A detailed Neptune aerocapture systems analysis and spacecraft design study was performed as part of NASA's In-Space Propulsion Program. The primary objectives were to assess the feasibility of a spacecraft point design for a Neptune/Triton science mission. That uses aerocapture as the Neptune orbit insertion mechanism. This paper provides an overview of the science, mission and spacecraft design resulting from that study.

  5. Low Cost Missions Operations on NASA Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Barnes, R. J.; Kusnierkiewicz, D. J.; Bowman, A.; Harvey, R.; Ossing, D.; Eichstedt, J.

    2014-12-01

    The ability to lower mission operations costs on any long duration mission depends on a number of factors; the opportunities for science, the flight trajectory, and the cruise phase environment, among others. Many deep space missions employ long cruises to their final destination with minimal science activities along the way; others may perform science observations on a near-continuous basis. This paper discusses approaches employed by two NASA missions implemented by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to minimize mission operations costs without compromising mission success: the New Horizons mission to Pluto, and the Solar Terrestrial Relations Observatories (STEREO). The New Horizons spacecraft launched in January 2006 for an encounter with the Pluto system.The spacecraft trajectory required no deterministic on-board delta-V, and so the mission ops team then settled in for the rest of its 9.5-year cruise. The spacecraft has spent much of its cruise phase in a "hibernation" mode, which has enabled the spacecraft to be maintained with a small operations team, and minimized the contact time required from the NASA Deep Space Network. The STEREO mission is comprised of two three-axis stabilized sun-staring spacecraft in heliocentric orbit at a distance of 1 AU from the sun. The spacecraft were launched in October 2006. The STEREO instruments operate in a "decoupled" mode from the spacecraft, and from each other. Since STEREO operations are largely routine, unattended ground station contact operations were implemented early in the mission. Commands flow from the MOC to be uplinked, and the data recorded on-board is downlinked and relayed back to the MOC. Tools run in the MOC to assess the health and performance of ground system components. Alerts are generated and personnel are notified of any problems. Spacecraft telemetry is similarly monitored and alarmed, thus ensuring safe, reliable, low cost operations.

  6. NASA Facts, The Viking Mission.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Presented is one of a series of publications of National Aeronautics and Space Administration (NASA) facts about the exploration of Mars. The Viking mission to Mars, consisting of two unmanned NASA spacecraft launched in August and September, 1975, is described. A description of the spacecraft and their paths is given. A diagram identifying the…

  7. NASA GRAIL Spacecraft in Science Collection Phase Artist Concept

    NASA Image and Video Library

    2012-03-27

    An artist depiction of the twin spacecraft that comprise NASA GRAIL mission. During the GRAIL mission science phase, spacecraft Ebb and Flow transmit radio signals precisely defining the distance between them as they orbit the moon in formation.

  8. The exploration of outer space with cameras: A history of the NASA unmanned spacecraft missions

    NASA Astrophysics Data System (ADS)

    Mirabito, M. M.

    The use of television cameras and other video imaging devices to explore the solar system's planetary bodies with unmanned spacecraft is chronicled. Attention is given to the missions and the imaging devices, beginning with the Ranger 7 moon mission, which featured the first successfully operated electrooptical subsystem, six television cameras with vidicon image sensors. NASA established a network of parabolic, ground-based antennas on the earth (the Deep Space Network) to receive signals from spacecraft travelling farther than 16,000 km into space. The image processing and enhancement techniques used to convert spacecraft data transmissions into black and white and color photographs are described, together with the technological requirements that drove the development of the various systems. Terrestrial applications of the planetary imaging systems are explored, including medical and educational uses. Finally, the implementation and functional characteristics of CCDs are detailed, noting their installation on the Space Telescope.

  9. NASA Celebrates 40 Years of the Voyager Mission

    NASA Image and Video Library

    2017-09-05

    NASA celebrates 40 years of the Voyager 1 and 2 spacecraft -- humanity's farthest and longest-lived mission -- on Tuesday, Sept. 5. The Voyagers’ original mission was to explore Jupiter and Saturn. Although the twin spacecraft are now far beyond the planets in the solar system, NASA continues to communicate with them daily as they explore the frontier where interstellar space begins.

  10. Micro-Inspector Spacecraft for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (<3.0 kg) free-flying micro-inspector spacecraft in an effort to enhance safety and reduce risk in future human and exploration missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro

  11. Radioisotope Electric Propulsion Missions Utilizing a Common Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Fiehler, Douglas; Oleson, Steven

    2004-01-01

    A study was conducted that shows how a single Radioisotope Electric Propulsion (REP) spacecraft design could be used for various missions throughout the solar system. This spacecraft design is based on a REP feasibility design from a study performed by NASA Glenn Research Center and the Johns Hopkins University Applied Physics Laboratory. The study also identifies technologies that need development to enable these missions. The mission baseline for the REP feasibility design study is a Trojan asteroid orbiter. This mission sends an REP spacecraft to Jupiter s leading Lagrange point where it would orbit and examine several Trojan asteroids. The spacecraft design from the REP feasibility study would also be applicable to missions to the Centaurs, and through some change of payload configuration, could accommodate a comet sample-return mission. Missions to small bodies throughout the outer solar system are also within reach of this spacecraft design. This set of missions, utilizing the common REP spacecraft design, is examined and required design modifications for specific missions are outlined.

  12. NASA's Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Johnson, Les; McNutt, Leslie; Castillo-Rogez, Julie

    2017-01-01

    NASA is developing solar sail propulsion for a near-term Near Earth Asteroid (NEA) reconnaissance mission and laying the groundwork for their future use in deep space science and exploration missions. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m2 solar sail and will weigh less than 14 kilograms. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 3 microns thick. NEA Scout will launch on the Space Launch System (SLS) first mission in 2018 and deploy from the SLS after the Orion spacecraft is separated from the SLS upper stage. The NEA Scout spacecraft will stabilize its orientation after ejection using an onboard cold-gas thruster system. The same system provides the vehicle Delta-V sufficient for a lunar flyby. After its first encounter with the moon, the 86 m2 sail will deploy, and the sail characterization phase will begin. A mechanical Active Mass Translation (AMT) system, combined with the remaining ACS propellant, will be used for sail momentum management. Once the system is checked out, the spacecraft will perform a series of lunar flybys until it achieves optimum departure trajectory to the target asteroid. The spacecraft will then begin its two year-long cruise. About one month before the asteroid flyby, NEA Scout will pause to search for the target and start its approach phase using a combination of radio tracking and optical navigation. The solar sail will provide

  13. Solar Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    2014-01-01

    An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.

  14. Developing Software for NASA Missions in the New Millennia

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is working on new mission concepts for exploration of the solar system. The concepts for these missions include swarms of hundreds of cooperating intelligent spacecraft which will be able to work in teams and gather more data than current single spacecraft missions. These spacecraft will not only have to operate independently for long periods of time on their own and in teams, but will also need to have autonomic properties of self healing, self configuring, self optimizing and self protecting for them to survive in the harsh space environment. Software for these types of missions has never been developed before and represents some of the challenges of software development in the new millennia. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm missions NASA is considering. The ANTS mission will use a swarm of one thousand pico-spacecraft that weigh less than five pounds. Using an insect colony analog, ANTS will explore the asteroid belt and catalog the mass, density, morphology, and chemical composition of the asteroids. Due to the size of the spacecraft, each will only carry a single miniaturized science instrument which will require them to cooperate in searching for asteroids that are of scientific interest. This article also discusses the ANTS mission, the properties the spacecraft will need and how that will effect future software development.

  15. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  16. Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; McDougal, John; Barley, Bryan; Stephens Karen; Fesq, Lorraine M.

    2010-01-01

    Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the

  17. NASA's spacecraft data system

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan; Flanegan, Mark

    1993-01-01

    The NASA Small Explorer Data System (SEDS), a space flight data system developed to support the Small Explorer (SMEX) project, is addressed. The system was flown on the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX) SMEX mission, and with reconfiguration for different requirements will fly on the X-ray Timing Explorer (XTE) and the Tropical Rainfall Measuring Mission (TRMM). SEDS is also foreseen for the Hubble repair mission. Its name was changed to Spacecraft Data System (SDS) in view of expansions. Objectives, SDS hardware, and software are described. Each SDS box contains two computers, data storage memory, uplink (command) reception circuitry, downlink (telemetry) encoding circuitry, Instrument Telemetry Controller (ITC), and spacecraft timing circuitry. The SDS communicates with other subsystems over the MIL-STD-1773 data bus. The SDS software uses a real time Operating System (OS) and the C language. The OS layer, communications and scheduling layer, application task layer, and diagnostic software, are described. Decisions on the use of advanced technologies, such as ASIC's (Application Specific Integrated Circuits) and fiber optics, led to technical improvements, such as lower power and weight, without increasing the risk associated with the data system. The result was a successful SAMPEX development, integration and test, and mission using SEDS, and the upgrading of that system to SDS for TRMM and XTE.

  18. Artist Rendering of NASA Dawn Spacecraft Approaching Mars

    NASA Image and Video Library

    2009-05-23

    Artist rendering of NASA's Dawn spacecraft approaching Mars. Dawn, part of NASA's Discovery Program of competitively selected missions, was launched in 2007 to orbit the large asteroid Vesta and the dwarf planet Ceres. The two bodies have very different properties from each other. By observing them both with the same set of instruments, Dawn will probe the early solar system and specify the properties of each body. http://photojournal.jpl.nasa.gov/catalog/PIA18152

  19. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions

  20. Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently

  1. NASA InSight Lander in Spacecraft Back Shell

    NASA Image and Video Library

    2015-08-18

    In this photo, NASA's InSight Mars lander is stowed inside the inverted back shell of the spacecraft's protective aeroshell. It was taken on July 13, 2015, in a clean room of spacecraft assembly and test facilities at Lockheed Martin Space Systems, Denver, during preparation for vibration testing of the spacecraft. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19813

  2. Preparing NASA InSight Spacecraft for Vibration Test

    NASA Image and Video Library

    2015-08-18

    Spacecraft specialists at Lockheed Martin Space Systems, Denver, prepare NASA's InSight spacecraft for vibration testing as part of assuring that it is ready for the rigors of launch from Earth and flight to Mars. The spacecraft is oriented with its heat shield facing up in this July 13, 2015, photograph. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19815

  3. (abstract) Follow-on Missions for the Pluto Spacecraft

    NASA Technical Reports Server (NTRS)

    Weinstein, Stacy; Salvo, Chris; Stern, Alan

    1994-01-01

    The Pluto Fast Flyby mission development baseline consists of 2 identical spacecraft (120 - 165 kg) to be launched to Pluto/Charon in the late 1990s. These spacecraft are intended to fly by Pluto and Charon in order to perform various remote-sensing scientific investigations and have a mission development cost less than $400M (FY92$) through launch plus 30 days. The long-life (6 - 10 years) mission duration and lightweight design make the Pluto spacecraft a good candidate for a number of other flyby missions to objects in the outer Solar System, and some of these were investigated by JPL in cooperation with NASA Code SL's (Solar System Exploration) Outer Planets Science Working Group (OPSWG) in 1993. The JPL team looked at what it would mean to fly one of these missions (if a third spacecraft were available) in terms of flight time, spacecraft modifications, and science payload resources; the OPSWG recommended science investigation modifications for the different targets based on the available resources. The missions could, in many cases, utilize less capable launch vehicles, thereby reducing life-cycle cost of the mission. Examples of the sort of targets which were investigated and looked attractive in terms of flight time are: Uranus, Neptune, Uranus/Neptune dual-mission, Trojan asteroids (624 Hektor, 617 Patroclus, others), 5145 Pholus (the reddest object known in the solar system), and Kuiper Belt objects (i.e., 1992 QB1) . This paper will present the results of this investigation in terms of potential science return, performance, and the potential for life-cycle cost reductions through inheritance from Pluto Fast Flyby .

  4. Nisar Spacecraft Concept Overview: Design Challenges for a Proposed Flagship Dual-Frequency SAR Mission

    NASA Technical Reports Server (NTRS)

    Xaypraseuth, Peter; Chatterjee, Alok; Satish, R.

    2015-01-01

    NISAR would be the inaugural collaboration between National Aeronautics and Space Administration (NASA) and Indian Space Research Organization (ISRO) on an Earth Science mission, which would feature an L-Band SAR instrument and an S-Band SAR instrument. As partners, NASA and ISRO would each contribute different engineering elements to help achieve the proposed scientific objectives of the mission. ISRO-Vikram Sarabhai Space Centre would provide the GSLV-Mark II launch vehicle, which would deliver the spacecraft into the desired orbit. ISRO-Satellite Centre would provide the spacecraft based on its I3K structural bus, a commonly used platform for ISRO's communication satellite missions, which would provide the resources necessary to operate the science payload. NASA would augment the spacecraft capabilities with engineering payload systems to help store, and transmit the large volume of science data.

  5. Cruise Stage of NASA's InSight Spacecraft

    NASA Image and Video Library

    2017-08-28

    Lockheed Martin spacecraft specialists check the cruise stage of NASA's InSight spacecraft in this photo taken June 22, 2017, in a Lockheed Martin clean room facility in Littleton, Colorado. The cruise stage will provide vital functions during the flight from Earth to Mars, and then will be jettisoned before the InSight lander, enclosed in its aeroshell, enters Mars' atmosphere. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in May 2018 and land on Mars Nov. 26, 2018. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21845

  6. Streamlining Collaborative Planning in Spacecraft Mission Architectures

    NASA Technical Reports Server (NTRS)

    Misra, Dhariti; Bopf, Michel; Fishman, Mark; Jones, Jeremy; Kerbel, Uri; Pell, Vince

    2000-01-01

    During the past two decades, the planning and scheduling community has substantially increased the capability and efficiency of individual planning and scheduling systems. Relatively recently, research work to streamline collaboration between planning systems is gaining attention. Spacecraft missions stand to benefit substantially from this work as they require the coordination of multiple planning organizations and planning systems. Up to the present time this coordination has demanded a great deal of human intervention and/or extensive custom software development efforts. This problem will become acute with increased requirements for cross-mission plan coordination and multi -spacecraft mission planning. The Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center is taking innovative steps to define collaborative planning architectures, and to identify coordinated planning tools for Cross-Mission Campaigns. Prototypes are being developed to validate these architectures and assess the usefulness of the coordination tools by the planning community. This presentation will focus on one such planning coordination too], named Visual Observation Layout Tool (VOLT), which is currently being developed to streamline the coordination between astronomical missions

  7. The NASA Mission Operations and Control Architecture Program

    NASA Technical Reports Server (NTRS)

    Ondrus, Paul J.; Carper, Richard D.; Jeffries, Alan J.

    1994-01-01

    The conflict between increases in space mission complexity and rapidly declining space mission budgets has created strong pressures to radically reduce the costs of designing and operating spacecraft. A key approach to achieving such reductions is through reducing the development and operations costs of the supporting mission operations systems. One of the efforts which the Communications and Data Systems Division at NASA Headquarters is using to meet this challenge is the Mission Operations Control Architecture (MOCA) project. Technical direction of this effort has been delegated to the Mission Operations Division (MOD) of the Goddard Space Flight Center (GSFC). MOCA is to develop a mission control and data acquisition architecture, and supporting standards, to guide the development of future spacecraft and mission control facilities at GSFC. The architecture will reduce the need for around-the-clock operations staffing, obtain a high level of reuse of flight and ground software elements from mission to mission, and increase overall system flexibility by enabling the migration of appropriate functions from the ground to the spacecraft. The end results are to be an established way of designing the spacecraft-ground system interface for GSFC's in-house developed spacecraft, and a specification of the end to end spacecraft control process, including data structures, interfaces, and protocols, suitable for inclusion in solicitation documents for future flight spacecraft. A flight software kernel may be developed and maintained in a condition that it can be offered as Government Furnished Equipment in solicitations. This paper describes the MOCA project, its current status, and the results to date.

  8. Parting Moon Shots from NASAs GRAIL Mission

    NASA Image and Video Library

    2013-01-10

    Video of the moon taken by the NASA GRAIL mission's MoonKam (Moon Knowledge Acquired by Middle School Students) camera aboard the Ebb spacecraft on Dec. 14, 2012. Features forward-facing and rear-facing views.

  9. Survey of Command Execution Systems for NASA Spacecraft and Robots

    NASA Technical Reports Server (NTRS)

    Verma, Vandi; Jonsson, Ari; Simmons, Reid; Estlin, Tara; Levinson, Rich

    2005-01-01

    NASA spacecraft and robots operate at long distances from Earth Command sequences generated manually, or by automated planners on Earth, must eventually be executed autonomously onboard the spacecraft or robot. Software systems that execute commands onboard are known variously as execution systems, virtual machines, or sequence engines. Every robotic system requires some sort of execution system, but the level of autonomy and type of control they are designed for varies greatly. This paper presents a survey of execution systems with a focus on systems relevant to NASA missions.

  10. Spacecraft Autonomy and Automation: A Comparative Analysis of Strategies for Cost Effective Mission Operations

    NASA Technical Reports Server (NTRS)

    Wright, Nathaniel, Jr.

    2000-01-01

    The evolution of satellite operations over the last 40 years has drastically changed. October 4, 1957 (during the cold war) the Soviet Union launched the world's first spacecraft into orbit. The Sputnik satellite orbited Earth for three months and catapulted the United States into a race for dominance in space. A year after Sputnik, President Dwight Eisenhower formed the National Space and Aeronautics Administration (NASA). With a team of scientists and engineers, NASA successfully launched Explorer 1, the first US satellite to orbit Earth. During these early years, massive amounts of ground support equipment and operators were required to successfully operate spacecraft vehicles. Today, budget reductions and technological advances have forced new approaches to spacecraft operations. These approaches require increasingly complex, on board spacecraft systems, that enable autonomous operations, resulting in more cost-effective mission operations. NASA's Goddard Space Flight Center, considered world class in satellite development and operations, has developed and operated over 200 satellites during its 40 years of existence. NASA Goddard is adopting several new millennium initiatives that lower operational costs through the spacecraft autonomy and automation. This paper examines NASA's approach to spacecraft autonomy and ground system automation through a comparative analysis of satellite missions for Hubble Space Telescope-HST, Near Earth Asteroid Rendezvous-NEAR, and Solar Heliospheric Observatory-SoHO, with emphasis on cost reduction methods, risk analysis and anomalies and strategies employed for mitigating risk.

  11. Emergency Communications for NASA's Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Lee, Charles H.; Morabito, David D.; Cesarone, Robert J.; Abraham, Douglas S.

    2011-01-01

    The ability to communicate with spacecraft during emergencies is a vital service that NASA's Deep Space Network (DSN) provides to all deep space missions. Emergency communications is characterized by low data rates(typically is approximately10 bps) with the spacecraft using either a low-gain antenna (LGA, including omnidirectional antennas) or,in some cases, a medium-gain antenna (MGA). Because of the use of LGAs/MGAs for emergency communications, the transmitted power requirements both on the spacecraft andon the ground are substantially greater than those required for normal operations on the high-gain antenna (HGA) despite the lower data rates. In this paper, we look at currentand future emergency communications capabilities available to NASA's deep-space missions and discuss their limitations in the context of emergency mode operations requirements.These discussions include the use of the DSN 70-m diameter antennas, the use of the 34-m diameter antennas either alone or arrayed both for the uplink (Earth-to-spacecraft) and the downlink (spacecraft-to-Earth), upgrades to the ground transmitters, and spacecraft power requirements both with unitygain (0 dB) LGAs and with antennas with directivity (>0 dB gain, either LGA or MGA, depending on the gain). Also discussed are the requirements for forward-error-correctingcodes for both the uplink and the downlink. In additional, we introduce a methodology for proper selection of a directionalLGA/MGA for emergency communications.

  12. NASA's Gravitational-Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consists of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to refine the conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The status of the Study are reported.

  13. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 1 - Spacecraft

    NASA Technical Reports Server (NTRS)

    Keating, Thomas; Ihara, Toshio; Miida, Sumio

    1990-01-01

    A cooperative United States/Japan study was made for one year from 1987 to 1988 regarding the feasibility of the Tropical Rainfall Measuring Mission (TRMM). As part of this study a phase-A-level design of spacecraft for TRMM was developed by NASA/GSFC, and the result was documented in a feasibility study. The phase-A-level design is developed for the TRMM satellite utilizing a multimission spacecraft.

  14. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  15. Thermal Protection Materials Technology for NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawerence, Timtohy W.; Gubert, Michael K.; Flynn, Kevin C.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2005-01-01

    To fulfill the President s Vision for Space Exploration - successful human and robotic missions between the Earth and other solar system bodies in order to explore their atmospheres and surfaces - NASA must reduce trip time, cost, and vehicle weight so that payload and scientific experiment capabilities are maximized. As a collaboration among NASA Centers, this project will generate products that will enable greater fidelity in mission/vehicle design trade studies, support risk reduction for material selections, assist in optimization of vehicle weights, and provide the material and process templates for development of human-rated qualification and certification Thermal Protection System (TPS) plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on technologies that reduce vehicle weight by minimizing the need for propellant. These missions use the destination planet s atmosphere to slow the spacecraft. Such mission profiles induce heating environments on the spacecraft that demand thermal protection heatshields. This program offers NASA essential advanced thermal management technologies needed to develop new lightweight nonmetallic TPS materials for critical thermal protection heatshields for future spacecraft. Discussion of this new program (a December 2004 new start) will include both initial progress made and a presentation of the work to be preformed over the four-year life of the program. Additionally, the relevant missions and environments expected for Exploration Systems vehicles will be presented, along with discussion of the candidate materials to be considered and of the types of testing to be performed (material property tests, space environmental effects tests, and Earth and Mars gases arc jet tests).

  16. Navigating the MESSENGER Spacecraft through End of Mission

    NASA Astrophysics Data System (ADS)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and

  17. Toward Baseline Software Anomalies in NASA Missions

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Zelkowitz, Marvin; Basili, Victor; Nikora, Allen P.

    2012-01-01

    In this fast abstract, we provide preliminary findings an analysis of 14,500 spacecraft anomalies from unmanned NASA missions. We provide some baselines for the distributions of software vs. non-software anomalies in spaceflight systems, the risk ratings of software anomalies, and the corrective actions associated with software anomalies.

  18. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  19. The NASA Spacecraft Transponding Modem

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Kayalar, Selahattin; Perret, Jonathan D.

    2000-01-01

    A new deep space transponder is being developed by the Jet Propulsion Laboratory for NASA. The Spacecraft Transponding Modem (STM) implements the standard transponder functions and the channel service functions that have previously resided in spacecraft Command/Data Subsystems. The STM uses custom ASICs, MMICs, and MCMs to reduce the active device parts count to 70, mass to I kg, and volume to 524 cc. The first STMs will be flown on missions launching in the 2003 time frame. The STM tracks an X-band uplink signal and provides both X-band and Ka-band downlinks, either coherent or non-coherent with the uplink. A NASA standard Command Detector Unit is integrated into the STM, along with a codeblock processor and a hardware command decoder. The decoded command codeblocks are output to the spacecraft command/data subsystem. Virtual Channel 0 (VC-0) (hardware) commands are processed and output as critical controller (CRC) commands. Downlink telemetry is received from the spacecraft data subsystem as telemetry frames. The STM provides the following downlink coding options: the standard CCSDS (7-1/2) convolutional coding, ReedSolomon coding with interleave depths one and five, (15-1/6) convolutional coding, and Turbo coding with rates 1/3 and 1/6. The downlink symbol rates can be linearly ramped to match the G/T curve of the receiving station, providing up to a 1 dB increase in data return. Data rates range from 5 bits per second (bps) to 24 Mbps, with three modulation modes provided: modulated subcarrier (3 different frequencies provided), biphase-L modulated direct on carrier, and Offset QPSK. Also, the capability to generate one of four non-harmonically related telemetry beacon tones is provided, to allow for a simple spacecraft status monitoring scheme for cruise phases of missions. Three ranging modes are provided: standard turn around ranging, regenerative pseudo-noise (PN) ranging, and Differential One-way Ranging (DOR) tones. The regenerative ranging provides the

  20. An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft

    NASA Technical Reports Server (NTRS)

    Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.

    2013-01-01

    The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.

  1. NASA Thermal Control Technologies for Robotic Spacecraft

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Birur, Gajanana C.

    2003-01-01

    Technology development is inevitably a dynamic process in search of an elusive goal. It is never truly clear whether the need for a particular technology drives its development, or the existence of a new capability initiates new applications. Technology development for the thermal control of spacecraft presents an excellent example of this situation. Nevertheless, it is imperative to have a basic plan to help guide and focus such an effort. Although this plan will be a living document that changes with time to reflect technological developments, perceived needs, perceived opportunities, and the ever-changing funding environment, it is still a very useful tool. This presentation summarizes the current efforts at NASA/Goddard and NASA/JPL to develop new thermal control technology for future robotic NASA missions.

  2. The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to

  3. The status of spacecraft bus and platform technology development under the NASA ISPT program

    NASA Astrophysics Data System (ADS)

    Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to

  4. The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.

    2013-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential

  5. Science Data Center concepts for moderate-sized NASA missions

    NASA Technical Reports Server (NTRS)

    Price, R.; Han, D.; Pedelty, J.

    1991-01-01

    The paper describes the approaches taken by the NASA Science Data Operations Center to the concepts for two future NASA moderate-sized missions, the Orbiting Solar Laboratory (OSL) and the Tropical Rainfall Measuring Mission (TRMM). The OSL space science mission will be a free-flying spacecraft with a complement of science instruments, placed in a high-inclination, sun synchronous orbit to allow continuous study of the sun for extended periods. The TRMM is planned to be a free-flying satellite for measuring tropical rainfall and its variations. Both missions will produce 'standard' data products for the benefit of their communities, and both depend upon their own scientific community to provide algorithms for generating the standard data products.

  6. Satellite Servicing in Mission Design Studies at the NASA GSFC

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.

    2003-01-01

    Several NASA missions in various stages of development have undergone one-week studies in the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Integrated Mission Design Center (IMDC), mostly in preparation for proposals. The possible role of satellite servicing has been investigated for several of these missions, applying the lessons learned from Hubble Space Telescope (HST) servicing, taking into account the current state of the art, projecting into the future, and implementing NASA long-range plans, and is presented here. The general benefits and costs of injecting satellite servicing are detailed, including components such as mission timeline, mass, fuel, spacecraft design, risk abatement, life extension, and improved performance. The approach taken in addressing satellite servicing during IMDC studies is presented.

  7. Mission Planning and Scheduling System for NASA's Lunar Reconnaissance Mission

    NASA Technical Reports Server (NTRS)

    Garcia, Gonzalo; Barnoy, Assaf; Beech, Theresa; Saylor, Rick; Cosgrove, Jennifer Sager; Ritter, Sheila

    2009-01-01

    In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.

  8. The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd

    2014-01-01

    The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPTs propulsion technologies include: 1) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; 2) a Hall-effect electric propulsion (HEP) system for sample return and low cost missions; 3) the Advanced Xenon Flow Control System (AXFS); ultra-lightweight propellant tank technologies (ULTT); and propulsion technologies for a Mars Ascent Vehicle (MAV). The AXFS and ULTT are two component technologies being developed with nearer-term flight infusion in mind, whereas NEXT and the HEP are being developed as EP systems. ISPTs entry vehicle technologies are: 1) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GNC) models of blunt-body rigid aeroshells; and aerothermal effect models; and 2) Multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions. The Systems Mission Analysis area is focused on developing tools and assessing the application of propulsion, entry vehicle, and spacecraft bus technologies to a wide variety of mission concepts. Several of the ISPT technologies are related to sample return missions and other spacecraft bus technology needs like: MAV propulsion, MMEEV, and electric propulsion. These technologies, as well as Aerocapture, are more vehicle and mission-focused, and present a different set of technology development challenges. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. This paper provides

  9. NASA's Gravitational - Wave Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin; Jennrich, Oliver; McNamara, Paul

    2012-01-01

    With the conclusion of the NASA/ESA partnership on the Laser Interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consisted of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded were 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance by calculating the horizons. the detection rates and the accuracy of astrophysical parameter estimation for massive black hole mergers, stellar-mass compact objects inspiraling into central engines. and close compact binary systems. Three mission concepts have been studied by Team-X, JPL's concurrent design facility. to define a conceptual design evaluate kt,y performance parameters. assess risk and estimate cost and schedule. The Study results are summarized.

  10. Ah, That New Car Smell: NASA Technology Protects Spacecraft from Outgassed Molecular Contaminants

    NASA Image and Video Library

    2017-12-08

    Goddard technologist Nithin Abraham, a member of the team that has developed a low-cost, low-mass technique for protecting sensitive spacecraft components from outgassed contaminants, studies a paint sample in her laboratory. To read this story go to: www.nasa.gov/topics/technology/features/outgas-tech.html Credit: NASA/Pat Izzo NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. NASA Earth Remote Sensing Programs: An Overview with Special Emphasis on the NASA/JAXA Led Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.

  12. Evaluation of COTS Electronic Parts for Extreme Temperature Use in NASA Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems capable of extreme temperature operation are required for many future NASA space exploration missions where it is desirable to have smaller, lighter, and less expensive spacecraft and probes. Presently, spacecraft on-board electronics are maintained at about room temperature by use of thermal control systems. An Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on development of electronics suitable for space exploration missions. The effects of exposure to extreme temperatures and thermal cycling are being investigated for commercial-off-the-shelf components as well as for components specially developed for harsh environments. An overview of this program along with selected data is presented.

  13. Asteroid Redirect Mission Briefing on This Week @NASA – September 19, 2016

    NASA Image and Video Library

    2016-09-19

    On Sept. 14, officials from the White House and NASA discussed the space agency’s Asteroid Redirect Mission (ARM) during a televised event at NASA’s Goddard Space Flight Center. On the mission, which is targeted for launch in Dec. 2021, NASA plans to send a robotic spacecraft to an asteroid tens of millions of miles from Earth, capture a multi-ton boulder, and bring it to an orbit near the moon for future exploration by astronauts on a following mission aboard NASA’s Orion spacecraft. During the live discussion, John Holdren, assistant to President Obama for Science and Technology, NASA Administrator Charles Bolden and ARM Program Director Michele Gates highlighted the mission’s scientific and technological benefits, how the mission will support NASA’s goal of sending humans to Mars in the 2030s, and how it will demonstrate technology relevant to defending Earth from potentially hazardous asteroids. Also, Astronaut Tim Kopra Visits DC Area, The Warmest August in 136 Years, and 2016 Arctic Sea Ice Minimum Ties 2nd Lowest on Record!

  14. NASA's Swarm Missions: The Challenge of Building Autonomous Software

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Hinchey, Mike; Rash, James; Rouff, Christopher

    2004-01-01

    The days of watching a massive manned cylinder thrust spectacularly off a platform into space might rapidly become ancient history when the National Aeronautics and Space Administration (NASA) introduces its new millenium mission class. Motivated by the need to gather more data than is possible with a single spacecraft, scientists have developed a new class of missions based on the efficiency and cooperative nature of a hive culture. The missions, aptly dubbed nanoswarm will be little more than mechanized colonies cooperating in their exploration of the solar system. Each swarm mission can have hundreds or even thousands of cooperating intelligent spacecraft that work in teams. The spacecraft must operate independently for long periods both in teams and individually, as well as have autonomic properties - self-healing, -configuring, -optimizing, and -protecting- to survive the harsh space environment. One swarm mission under concept development for 2020 to 2030 is the Autonomous Nano Technology Swarm (ANTS), in which a thousand picospacecraft, each weighing less than three pounds, will work cooperatively to explore the asteroid belt. Some spacecraft will form teams to catalog asteroid properties, such as mass, density, morphology, and chemical composition, using their respective miniature scientific instruments. Others will communicate with the data gatherers and send updates to mission elements on Earth. For software and systems development, this is uncharted territory that calls for revolutionary techniques.

  15. Heat Shield Construction for NASA InSight Mission

    NASA Image and Video Library

    2015-05-27

    In this February 2015 scene from a clean room at Lockheed Martin Space Systems, Denver, specialists are building the heat shield to protect NASA's InSight spacecraft when it is speeding through the Martian atmosphere. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19404

  16. Tracking and Navigation of Future NASA Spacecraft with the Square Kilometer Array

    NASA Astrophysics Data System (ADS)

    Resch, G. M.; Jones, D. L.; Connally, M. J.; Weinreb, S.; Preston, R. A.

    2001-12-01

    The international radio astronomy community is currently working on the design of an array of small radio antennas with a total collecting area of one square kilometer - more than a hundred times that of the largest existing (100-m) steerable antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are a two-orders-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased ground-based tracking capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created.

  17. Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.

    2002-01-01

    We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.

  18. New Mission Old Spacecraft: EPOXI's Approach to the Comet Hartley-2

    NASA Technical Reports Server (NTRS)

    Rieber, Richard R.; LaBorde, Gregory R.

    2012-01-01

    NASA's Deep Impact mission ended successfully in 2005 after an impact and close flyby of the comet 9P/Tempel-1. The Flyby spacecraft was placed in hibernation and was left to orbit the sun. In 2007, engineers at the Jet Propulsion Laboratory brought the spacecraft out of hibernation and successfully performed two additional missions. These missions were EPOCh, Extra-solar Planetary Observation and Characterization, a photometric investigation of transiting exo-planets, and DIXI, Deep Impact eXtended Investigation, which maneuvered the Flyby spacecraft towards a close encounter with the comet 103P/Hartley- 2 on 4 November 2010. The names of these two scientific investigations combine to form the overarching mission's name, EPOXI. The encounter with 103P/Hartley-2 was vastly different from the prime mission's encounter with 9P/Tempel-1. The geometry of encounter was nearly 180 ? different and 103P/Hartley-2 was approximately one-quarter the size of 9P/Tempel-1. Mission operations for the comet flyby were broken into three phases: a) Approach, b) Encounter, and c) Departure. This paper will focus on the approach phase of the comet encounter. It will discuss the strategies used to decrease both cost and risk while maximizing science return and some of the challenges experienced during operations.

  19. The europa initiative for esa's cosmic vision: a potential european contribution to nasa's Europa mission

    NASA Astrophysics Data System (ADS)

    Blanc, Michel; Jones, Geraint H.; Prieto-Ballesteros, Olga; Sterken, Veerle J.

    2016-04-01

    The assessment of the habitability of Jupiter's icy moons is considered of high priority in the roadmaps of the main space agencies, including the decadal survey and esa's cosmic vision plan. the voyager and galileo missions indicated that europa and ganymede may meet the requirements of habitability, including deep liquid aqueous reservoirs in their interiors. indeed, they constitute different end-terms of ocean worlds, which deserve further characterization in the next decade. esa and nasa are now both planning to explore these ice moons through exciting and ambitious missions. esa selected in 2012 the juice mission mainly focused on ganymede and the jupiter system, while nasa is currently studying and implementing the europa mission. in 2015, nasa invited esa to provide a junior spacecraft to be carried on board its europa mission, opening a collaboration scheme similar to the very successful cassini-huygens approach. in order to define the best contribution that can be made to nasa's europa mission, a europa initiative has emerged in europe. its objective is to elaborate a community-based strategy for the proposition of the best possible esa contribution(s) to nasa's europa mission, as a candidate for the upcoming selection of esa's 5th medium-class mission . the science returns of the different potential contributions are analysed by six international working groups covering complementary science themes: a) magnetospheric interactions; b) exosphere, including neutrals, dust and plumes; c) geochemistry; d) geology, including expressions of exchanges between layers; e) geophysics, including characterization of liquid water distribution; f) astrobiology. each group is considering different spacecraft options in the contexts of their main scientific merits and limitations, their technical feasibility, and of their interest for the development of esa-nasa collaborations. there are five options under consideration: (1) an augmented payload to the europa mission main

  20. NASA Workshop on Hybrid (Mixed-Actuator) Spacecraft Attitude Control

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Kunz, Nans

    2014-01-01

    At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.

  1. Concurrent engineering: Spacecraft and mission operations system design

    NASA Technical Reports Server (NTRS)

    Landshof, J. A.; Harvey, R. J.; Marshall, M. H.

    1994-01-01

    Despite our awareness of the mission design process, spacecraft historically have been designed and developed by one team and then turned over as a system to the Mission Operations organization to operate on-orbit. By applying concurrent engineering techniques and envisioning operability as an essential characteristic of spacecraft design, tradeoffs can be made in the overall mission design to minimize mission lifetime cost. Lessons learned from previous spacecraft missions will be described, as well as the implementation of concurrent mission operations and spacecraft engineering for the Near Earth Asteroid Rendezvous (NEAR) program.

  2. Estimating the Reliability of a Soyuz Spacecraft Mission

    NASA Technical Reports Server (NTRS)

    Lutomski, Michael G.; Farnham, Steven J., II; Grant, Warren C.

    2010-01-01

    Once the US Space Shuttle retires in 2010, the Russian Soyuz Launcher and Soyuz Spacecraft will comprise the only means for crew transportation to and from the International Space Station (ISS). The U.S. Government and NASA have contracted for crew transportation services to the ISS with Russia. The resulting implications for the US space program including issues such as astronaut safety must be carefully considered. Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? Is the Soyuz launch system more robust than the Space Shuttle? Is it safer to continue to fly the 30 year old Shuttle fleet for crew transportation and cargo resupply than the Soyuz? Should we extend the life of the Shuttle Program? How does the development of the Orion/Ares crew transportation system affect these decisions? The Soyuz launcher has been in operation for over 40 years. There have been only two loss of life incidents and two loss of mission incidents. Given that the most recent incident took place in 1983, how do we determine current reliability of the system? Do failures of unmanned Soyuz rockets impact the reliability of the currently operational man-rated launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? NASA s next manned rocket and spacecraft development project is currently underway. Though the projects ultimate goal is to return to the Moon and then to Mars, the launch vehicle and spacecraft s first mission will be for crew transportation to and from the ISS. The reliability targets are currently several times higher than the Shuttle and possibly even the Soyuz. Can these targets be compared to the reliability of the Soyuz to determine whether they are realistic and achievable? To help answer these questions this paper will explore how to estimate the reliability of the Soyuz Launcher/Spacecraft system, compare it to the Space Shuttle, and its

  3. Attempted Recovery - Mercury Spacecraft - End - Mercury-Redstone (MR)-4 Mission

    NASA Image and Video Library

    1961-07-27

    S61-02820 (21 July 1961) --- Attempted recovery of Mercury spacecraft at end of the Mercury-Redstone 4 (MR-4) mission. View shows the Marine helicopter pulled almost to the waters surface by the weight of the capsule, which filled with water. It eventually had to abandon its recovery attempts. Behind the Marine helicopter, a Navy helicopter prepares to assist. Photo credit: NASA

  4. Spacecraft Mission Design for the Mitigation of the 2017 PDC Hypothetical Asteroid Threat

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Sarli, Bruno V.; Lyzhoft, Joshua; Chodas, Paul W.; Englander, Jacob A.

    2017-01-01

    This paper presents a detailed mission design analysis results for the 2017 Planetary Defense Conference (PDC) Hypothetical Asteroid Impact Scenario, documented at https://cneos.jpl.nasa.gov/ pd/cs/pdc17/. The mission design includes campaigns for both reconnaissance (flyby or rendezvous) of the asteroid (to characterize it and the nature of the threat it poses to Earth) and mitigation of the asteroid, via kinetic impactor deflection, nuclear explosive device (NED) deflection, or NED disruption. Relevant scenario parameters are varied to assess the sensitivity of the design outcome, such as asteroid bulk density, asteroid diameter, momentum enhancement factor, spacecraft launch vehicle, and mitigation system type. Different trajectory types are evaluated in the mission design process from purely ballistic to those involving optimal midcourse maneuvers, planetary gravity assists, and/or lowthrust solar electric propulsion. The trajectory optimization is targeted around peak deflection points that were found through a novel linear numerical technique method. The optimization process includes constrain parameters, such as Earth departure date, launch declination, spacecraft/asteroid relative velocity and solar phase angle, spacecraft dry mass, minimum/maximum spacecraft distances from Sun and Earth, and Earth/spacecraft communications line of sight. Results show that one of the best options for the 2017 PDC deflection is solar electric propelled rendezvous mission with a single spacecraft using NED for the deflection

  5. Spacecraft Mission Design for the Mitigation of the 2017 PDC Hypothetical Asteroid Threat

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Sarli, Bruno V.; Lyzhoft, Josh; Chodas, Paul W.; Englander, Jacob A.

    2017-01-01

    This paper presents a detailed mission design analysis results for the 2017 Planetary Defense Conference (PDC) Hypothetical Asteroid Impact Scenario, documented at https:cneos.jpl.nasa.govpdcspdc17. The mission design includes campaigns for both reconnaissance (flyby or rendezvous) of the asteroid (to characterize it and the nature of the threat it poses to Earth) and mitigation of the asteroid, via kinetic impactor deflection, nuclear explosive device (NED) deflection, or NED disruption. Relevant scenario parameters are varied to assess the sensitivity of the design outcome, such as asteroid bulk density, asteroid diameter, momentum enhancement factor, spacecraft launch vehicle, and mitigation system type. Different trajectory types are evaluated in the mission design process from purely ballistic to those involving optimal midcourse maneuvers, planetary gravity assists, and/or low-thrust solar electric propulsion. The trajectory optimization is targeted around peak deflection points that were found through a novel linear numerical technique method. The optimization process includes constrain parameters, such as Earth departure date, launch declination, spacecraft, asteroid relative velocity and solar phase angle, spacecraft dry mass, minimum/maximum spacecraft distances from Sun and Earth, and Earth-spacecraft communications line of sight. Results show that one of the best options for the 2017 PDC deflection is solar electric propelled rendezvous mission with a single spacecraft using NED for the deflection.

  6. Attempted Recovery of Mercury spacecraft at end of MR-4 mission

    NASA Image and Video Library

    1961-07-21

    S61-02817 (21 July 1961) --- Attempted recovery of Mercury spacecraft at end of the Mercury-Redstone 4 (MR-4) mission. View shows the Marine helicopter pulled almost to the waters surface by the weight of the capsule, which filled with water. Behind the Marine helicopter, a Navy helicopter prepares to assist. Photo credit: NASA

  7. Splashdown - Gemini-Titan (GT-12) Spacecraft - Mission Close - Atlantic

    NASA Image and Video Library

    1966-11-15

    S66-59986 (15 Nov. 1966) --- The Gemini spaceflight program concludes as the Gemini-12 spacecraft, with astronaut James A. Lovell Jr., command pilot, and Edwin E. Aldrin Jr., pilot, aboard, nears touchdown in the Atlantic Ocean 2.5 nautical miles from the prime recovery ship, USS Wasp. Gemini-12 splashed down at 2:21 p.m. (EST), Nov. 11, 1966, to conclude the four-day mission in space. Photo credit: NASA

  8. Grand Challenge Problems in Real-Time Mission Control Systems for NASA's 21st Century Missions

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara B.; Donohue, John T.; Hughes, Peter M.

    1999-01-01

    Space missions of the 21st Century will be characterized by constellations of distributed spacecraft, miniaturized sensors and satellites, increased levels of automation, intelligent onboard processing, and mission autonomy. Programmatically, these missions will be noted for dramatically decreased budgets and mission development lifecycles. Current progress towards flexible, scaleable, low-cost, reusable mission control systems must accelerate given the current mission deployment schedule, and new technology will need to be infused to achieve desired levels of autonomy and processing capability. This paper will discuss current and future missions being managed at NASA's Goddard Space Flight Center in Greenbelt, MD. It will describe the current state of mission control systems and the problems they need to overcome to support the missions of the 21st Century.

  9. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  10. A Distributed Simulation Software System for Multi-Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Burns, Richard; Davis, George; Cary, Everett

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  11. Disruption Tolerant Networking Flight Validation Experiment on NASA's EPOXI Mission

    NASA Technical Reports Server (NTRS)

    Wyatt, Jay; Burleigh, Scott; Jones, Ross; Torgerson, Leigh; Wissler, Steve

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions. This activity was part of a larger NASA space DTN development program to mature DTN to flight readiness for a wide variety of mission types by the end of 2011. This paper describes the DTN protocols, the flight demo implementation, validation metrics which were created for the experiment, and validation results.

  12. New NASA Mission to Reveal Moon Internal Structure and Evolution Artist Concept

    NASA Image and Video Library

    2007-12-11

    The Gravity Recovery and Interior Laboratory, or GRAIL, mission will fly twin spacecraft in tandem orbits around the moon to measure its gravity field in unprecedented detail. GRAIL is a part of NASA Discovery Program.

  13. NASA Completes LADEE Mission with Planned Impact on Moon's Surface (Reporter Package)

    NASA Image and Video Library

    2014-04-23

    NASA's LADEE mission came to an end as the spacecraft executed a planned de-orbit into the surface of the Moon at nearly three thousand, six hundred miles per hour. The primary goal of the mission was to collect data about the thin lunar atmosphere and the amounts of dust that are in it at multiple altitudes.

  14. NASA's Asteroid Redirect Mission: The Boulder Capture Option

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-01-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more

  15. NASA Spacecraft Fault Management Workshop Results

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen

    2010-01-01

    Fault Management is a critical aspect of deep-space missions. For the purposes of this paper, fault management is defined as the ability of a system to detect, isolate, and mitigate events that impact, or have the potential to impact, nominal mission operations. The fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and

  16. Education And Public Outreach For NASA's EPOXI Mission

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Warner, E. M.; Crow, C. A.; Ristvey, J. D.; Counley, J.

    2008-09-01

    NASA's EPOXI mission has two scientific objectives in using the Deep Impact flyby spacecraft for further studies of comets and adding studies of extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission, observations of extrasolar planets transiting their parent stars are observed to further knowledge and understanding of planetary systems. Observations of Earth allow for comparison with Earth-like planets around other stars. A movie of Earth during a day when the Moon passed between Earth and the spacecraft is an educational highlight with scientific significance. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comets with a flyby of comet Hartley 2 in November 2010 to further explore the properties of comets and their formation. The EPOXI Education and Public Outreach (E/PO) program builds upon existing materials related to exploring comets and the Deep Impact mission, updating and modifying activities based on results from Deep Impact. An educational activity called Comparing Comets is under development that will guide students in conducting analyses similar to those that DIXI scientists will perform after observing comet Hartley 2. Existing educational materials related to planet finding from other NASA programs are linked from EPOXI's web page. Journey Through the Universe at the National Air and Space Museum encourages education in family and community groups and reaches out to underrepresented minorities. EPOXI's E/PO program additionally offers a newsletter to keep the public, teachers, and space enthusiasts apprised of mission activities. For more information visit: http://epoxi.umd.edu.

  17. New millennium program ST6: autonomous technologies for future NASA spacecraft

    NASA Technical Reports Server (NTRS)

    Chmielewski, Arthur B.; Chien, Steve; Sherwood, Robert; Wyman, William; Brady, T.; Buckley, S.; Tillier, C.

    2005-01-01

    The purpose of NASA's New Millennium Program (NMP) is to validate advanced technologies in space and thus lower the risk for the first mission user. The focus of NMP is only on those technologies which need space environment for proper validation. The ST6 project has developed two advanced, experimental technologies for use on spacecraft of the future. These technologies are the Autonomous Sciencecraft Experiment and the Inertial Stellar Compass. These technologies will improve spacecraft's ability to: make decisions on what information to gather and send back to the ground, determine its own attitude and adjust its pointing.

  18. PADME (Phobos And Deimos & Mars Environment): A Proposed NASA Discovery Mission

    NASA Astrophysics Data System (ADS)

    Lee, Pascal

    2014-11-01

    Ever the since their discovery in 1877 by American astronomer Asaph Hall, the two moons of Mars, Phobos and Deimos, have been enigmas. Spacecraft missions have revealed irregular-shaped small bodies with different densities, morphologies, and evolutionary histories. Spectral data suggest that they might be akin to D-type asteroids, although compositional interpretations of the spectra are ambiguous. The origin of Phobos and Deimos remains unknown. There are three prevailing hypotheses for their origin: 1) They are captured asteroids, possibly primitive D-type bodies from the outer main belt or beyond; 2) They are reaccreted impact ejecta from Mars; 3) They are remnants of Mars’s formation. Each one of these hypotheses has radically different and important implications regarding the evolution of the solar system, and/or the formation and evolution of planets and satellites, including the delivery of water and organics to the inner solar system. The Phobos And Deimos & Mars Environment (PADME) mission is a proposed NASA Discovery mission that will test these hypotheses, by investigating simultaneously the internal structure of Phobos and Deimos, and the composition and dynamics of their surface and near-surface materials. PADME would launch in 2020 and reach Mars orbit in early 2021. PADME would then begin a series of slow and increasingly close flybys of Phobos first, then of Deimos. PADME would use the proven LADEE spacecraft and mature instrument systems to enable a low-cost and low risk approach to carrying out its investigation. In addition to achieving its scientific objectives, PADME would fill strategic knowledge gaps identified by NASA’s SBAG and HEOMD for planning future, more ambitious robotic landed or sample return missions to Phobos and/or Deimos, and eventual human missions to Mars Orbit. PADME would be built, managed, and operated by NASA Ames Research Center. Partners include the SETI Institute, NASA JPL, NASA GSFC, NASA JSC, NASA KSC, LASP

  19. NASA's asteroid redirect mission: Robotic boulder capture option

    NASA Astrophysics Data System (ADS)

    Abell, P.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.

    2014-07-01

    NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4--10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is also examining another option that entails retrieving a boulder (˜1--5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. The Robotic Boulder Capture (RBC) option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Japan Aerospace Exploration Agency's (JAXA) Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU_3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. This ARM option reduces mission risk and provides increased benefits for science, human exploration, resource utilization, and planetary defense.

  20. NASA Spacecraft Tracks Argentine Flooding

    NASA Image and Video Library

    2015-08-19

    Northwest of Buenos Aires, Argentina, seven straight days of torrential rains of up to 16 inches 40 centimeters in August 2015 resulted in flooding between the cities of Escobar and Campana as seen by NASA Terra spacecraft. The flooding has since eased, allowing some evacuated residents of the 39 affected municipalities to return to their homes. The flooding was captured in this satellite image acquired Aug. 16, 2015, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. The image covers an area of 16.7 by 17.4 miles (26.9 by 28 kilometers), and is located at 34.2 degrees south, 58.6 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19871

  1. Standard spacecraft procurement analysis: A case study in NASA-DoD coordination in space programs. Ph.D. Thesis - Rand Graduate Inst.

    NASA Technical Reports Server (NTRS)

    Harris, E. D.

    1980-01-01

    The Space Test Program Standard Satellite (STPSS), a design proposed by the Air Force, and two NASA candidates, the Applications Explorer Mission spacecraft (AEM) and the Multimission Modular Spacecraft (MMS), were considered during the first phase. During the second phase, a fourth candidate was introduced, a larger, more capable AEM (L-AEM), configured by the Boeing Company under NASA sponsorship to meet the specifications jointly agreed upon by NASA and the Air Force. Total program costs for a variety of procurement options, each of which is capable of performing all of the Air Force Space Test Program missions during the 1980-1990 time period, were used as the principal measure for distinguishing among procurement options. Program cost does not provide a basis for choosing among the AEM, STPSS, and MMS spacecraft, given their present designs. The availability of the L-AEM spacecraft, or some very similar design, would provide a basis for minimizing the cost of the Air Force Space Test Program.

  2. Simulating Humans as Integral Parts of Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Bruins, Anthony C.; Rice, Robert; Nguyen, Lac; Nguyen, Heidi; Saito, Tim; Russell, Elaine

    2006-01-01

    The Collaborative-Virtual Environment Simulation Tool (C-VEST) software was developed for use in a NASA project entitled "3-D Interactive Digital Virtual Human." The project is oriented toward the use of a comprehensive suite of advanced software tools in computational simulations for the purposes of human-centered design of spacecraft missions and of the spacecraft, space suits, and other equipment to be used on the missions. The C-VEST software affords an unprecedented suite of capabilities for three-dimensional virtual-environment simulations with plug-in interfaces for physiological data, haptic interfaces, plug-and-play software, realtime control, and/or playback control. Mathematical models of the mechanics of the human body and of the aforementioned equipment are implemented in software and integrated to simulate forces exerted on and by astronauts as they work. The computational results can then support the iterative processes of design, building, and testing in applied systems engineering and integration. The results of the simulations provide guidance for devising measures to counteract effects of microgravity on the human body and for the rapid development of virtual (that is, simulated) prototypes of advanced space suits, cockpits, and robots to enhance the productivity, comfort, and safety of astronauts. The unique ability to implement human-in-the-loop immersion also makes the C-VEST software potentially valuable for use in commercial and academic settings beyond the original space-mission setting.

  3. SOHO Mission Interruption Joint NASA/ESA Investigation Board

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Contact with the SOlar Heliospheric Observatory (SOHO) spacecraft was lost in the early morning hours of June 25, 1998, Eastern Daylight Time (EDT), during a planned period of calibrations, maneuvers, and spacecraft reconfigurations. Prior to this the SOHO operations team had concluded two years of extremely successful science operations. A joint European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) engineering team has been planning and executing recovery efforts since loss of contact with some success to date. ESA and NASA management established the SOHO Mission Interruption Joint Investigation Board to determine the actual or probable cause(s) of the SOHO spacecraft mishap. The Board has concluded that there were no anomalies on-board the SOHO spacecraft but that a number of ground errors led to the major loss of attitude experienced by the spacecraft. The Board finds that the loss of the SOHO spacecraft was a direct result of operational errors, a failure to adequately monitor spacecraft status, and an erroneous decision which disabled part of the on-board autonomous failure detection. Further, following the occurrence of the emergency situation, the Board finds that insufficient time was taken by the operations team to fully assess the spacecraft status prior to initiating recovery operations. The Board discovered that a number of factors contributed to the circumstances that allowed the direct causes to occur. The Board strongly recommends that the two Agencies proceed immediately with a comprehensive review of SOHO operations addressing issues in the ground procedures, procedure implementation, management structure and process, and ground systems. This review process should be completed and process improvements initiated prior to the resumption of SOHO normal operations.

  4. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    NASA Astrophysics Data System (ADS)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  5. NASA's X2000 Program: An Institutional Approach to Enabling Smaller Spacecraft

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Salvo, Chris; Woerner, David

    2000-01-01

    The number of NASA science missions per year is increasing from less than one to more than six. At the same time, individual mission budgets are smaller and cannot afford their own dedicated technology developments. In response to this, NASA has formed the X2000 Program. This program, which is divided into a set of subsequent "deliveries" will provide the basic avionics, power, communications, and software capability for future science missions. X2000 First Delivery, which will be completed in early 2001, will provide a full-functioned one MRAD tolerant flight computer, power switching electronics, a highly efficient radioisotope power source, and a transponder that provides high-level services at both 8.4 GHz and 32 GHz bands. The X2000 Second Delivery, which will be completed in the 2003 time frame, will enable complete spacecraft in the 10-50 kg class. All capabilities delivered by the X2000 program will be commercialized within the US and therefore will be available for others to use. Although the immediate customers for these technologies are deep space missions, most of the capabilities being delivered are generic in nature and will be equally applicable to Earth Observation missions.

  6. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  7. Global precipitation measurement (GPM) mission core spacecraft systems engineering challenges

    NASA Astrophysics Data System (ADS)

    Bundas, David J.; O'Neill, Deborah; Rhee, Michael; Feild, Thomas; Meadows, Gary; Patterson, Peter

    2006-09-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  8. Joint NASA-ESA Outer Planet Mission study overview

    NASA Astrophysics Data System (ADS)

    Lebreton, J.-P.; Niebur, C.; Cutts, J.; Falkner, P.; Greeley, R.; Lunine, J.; Blanc, M.; Coustenis, A.; Pappalardo, R.; Matson, D.; Clark, K.; Reh, K.; Stankov, A.; Erd, C.; Beauchamp, P.

    2009-04-01

    In 2008, ESA and NASA performed joint studies of two highly capable scientific missions to the outer planets: the Europa Jupiter System Mission (EJSM) and the Titan Saturn System Mission (TSSM). Joint Science Definition Teams (JSDTs) were formed with U.S. and European membership to guide study activities that were conducted collaboratively by engineering teams working on both sides of the Atlantic. EJSM comprises the Jupiter Europa Orbiter (JEO) that would be provided by NASA and the Jupiter Ganymede Orbiter (JGO) that would be provided by ESA. Both spacecraft would be launched independently in 2020, and arrive 6 years later for a 3-4 year mission within the Jupiter System. Both orbiters would explore Jupiter's system on trajectories that include flybys of Io (JEO only), Europa (JEO only), Ganymede and Callisto. The operation of JEO would culminate in orbit around Europa while that of JGO would culminate in orbit around Ganymede. Synergistic and coordinated observations would be planned. The Titan Saturn System Mission (TSSM) comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: the montgolfière and the lake lander. The mission would launch in 2020 and arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfière would last at least 6-12 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a ~2-year orbit around Titan. Synergistic and coordinated observations would be planned between the orbiter and in situ elements. The ESA contribution to this joint endeavor will be implemented as the first Cosmic Vision Large-class (L1) mission; the NASA contribution will be implemented as the Outer Planet Flagship Mission. The contribution to each mission is being reviewed and

  9. NASA Spacecraft Image Shows Location of Iranian Earthquake

    NASA Image and Video Library

    2017-12-08

    On April 9, 2013 at 11:52 GMT, a magnitude 6.3 earthquake hit southwestern Iran's Bushehr province near the town of Kaki. Preliminary information is that several villages have been destroyed and many people have died, as reported by BBC News. This perspective view of the region was acquired Nov. 17, 2012, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. The location of the earthquake's epicenter is marked with a yellow star. Vegetation is displayed in red; the vertical exaggeration of the topography is 2X. The image is centered near 28.5 degrees north latitude, 51.6 degrees east longitude. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/. Image Credit: NASA

  10. Closest Multi-Spacecraft Flying Formation on This Week @NASA – September 23, 2016

    NASA Image and Video Library

    2016-09-23

    The four spacecraft orbiting Earth in formation as part of NASA’s Magnetospheric Multiscale, or MMS, mission achieved a new record recently when the space between them was decreased from just over six miles to only four-and-a-half miles. This is the closest separation ever of any multi-spacecraft formation. The team of spacecraft fly in a pyramid shape, called a tetrahedron, which enables MMS to capture three-dimensional observations of magnetic reconnection – a mysterious phenomenon, during which magnetic fields experience explosive interactions. The closer formation will allow the spacecraft to measure magnetic reconnection at smaller scales, helping scientists to better understand it. Also, Destination Mars Exhibit, Orbital ATK Targets Launch Window, NASA-developed Technology Saves Pilot’s Life, and Combined Federal Campaign Underway!

  11. A Large Array of Small Antennas to Support Future NASA Missions

    NASA Astrophysics Data System (ADS)

    Jones, D. L.; Weinreb, S.; Preston, R. A.

    2001-01-01

    A team of engineers and scientists at JPL is currently working on the design of an array of small radio antennas with a total collecting area up to twenty times that of the largest existing (70 m) DSN antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are an order-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased DSN capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created. The DSN array would also bean immensely valuable instrument for radio astronomy. Indeed, it would be by far the most sensitive radio telescope in the world. Additional information is contained in the original extended abstract.

  12. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  13. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecrafts into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  14. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecraft into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  15. A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver L.

    2016-01-01

    Satellite constellations and Distributed Spacecraft Mission (DSM) architectures offer unique benefits to Earth observation scientists and unique challenges to cost estimators. The Cost and Risk (CR) module of the Tradespace Analysis Tool for Constellations (TAT-C) being developed by NASA Goddard seeks to address some of these challenges by providing a new approach to cost modeling, which aggregates existing Cost Estimating Relationships (CER) from respected sources, cost estimating best practices, and data from existing and proposed satellite designs. Cost estimation through this tool is approached from two perspectives: parametric cost estimating relationships and analogous cost estimation techniques. The dual approach utilized within the TAT-C CR module is intended to address prevailing concerns regarding early design stage cost estimates, and offer increased transparency and fidelity by offering two preliminary perspectives on mission cost. This work outlines the existing cost model, details assumptions built into the model, and explains what measures have been taken to address the particular challenges of constellation cost estimating. The risk estimation portion of the TAT-C CR module is still in development and will be presented in future work. The cost estimate produced by the CR module is not intended to be an exact mission valuation, but rather a comparative tool to assist in the exploration of the constellation design tradespace. Previous work has noted that estimating the cost of satellite constellations is difficult given that no comprehensive model for constellation cost estimation has yet been developed, and as such, quantitative assessment of multiple spacecraft missions has many remaining areas of uncertainty. By incorporating well-established CERs with preliminary approaches to approaching these uncertainties, the CR module offers more complete approach to constellation costing than has previously been available to mission architects or Earth

  16. In Brief: NASA's Phoenix spacecraft lands on Mars

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Kumar, Mohi

    2008-06-01

    After a 9.5-month, 679-million-kilometer flight from Florida, NASA's Phoenix spacecraft made a soft landing in Vastitas Borealis in Mars's northern polar region on 25 May. The lander, whose camera already has returned some spectacular images, is on a 3-month mission to examine the area and dig into the soil of this site-chosen for its likelihood of having frozen water near the surface-and analyze samples. In addition to a robotic arm and robotic arm camera, the lander's instruments include a surface stereo imager; thermal and evolved-gas analyzer; microscopy, electrochemistry, and conductivity analyzer; and a meteorological station that is tracking daily weather and seasonal changes.

  17. NASA-STD-4005 and NASA-HDBK-4006, LEO Spacecraft Solar Array Charging Design Standard

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2007-01-01

    Two new NASA Standards are now official. They are the NASA LEO Spacecraft Charging Design Standard (NASA-STD-4005) and the NASA LEO Spacecraft Charging Design Handbook (NASA-HDBK-4006). They give the background and techniques for controlling solar array-induced charging and arcing in LEO. In this paper, a brief overview of the new standards is given, along with where they can be obtained and who should be using them.

  18. Planning the Voyager spacecraft's mission to Uranus

    NASA Technical Reports Server (NTRS)

    Plagemann, Stephen H.

    1987-01-01

    The application of the systems engineering process to the planning of the Voyager spacecraft mission is described. The Mission Planning Office prepared guidelines that controlled the use of the project and multimission resources and spacecraft consumables in order to obtain valuable scientific data at an acceptable risk level. Examples of mission planning which are concerned with the design of the Deep Space Network antenna, the uplink window for transmitting computer command subsystem loads, and the contingency and risk assessment functions are presented.

  19. Differential Drag Demonstration: A Post-Mission Experiment with the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hull, Scott; Shelton, Amanda; Richardson, David

    2017-01-01

    Differential drag is a technique for altering the semi-major axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecrafts cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASAs EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.

  20. Differential Drag Demonstration: A Post-Mission Experiment with the EO-1 Spacecraft

    NASA Technical Reports Server (NTRS)

    Hull, Scott; Shelton, Amanda; Richardson, David

    2017-01-01

    Differential drag is a technique for altering the semimajor axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecraft's cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASA's EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.

  1. Dynamic Emulation of NASA Missions for IVandV: A Case Study of JWST and SLS

    NASA Technical Reports Server (NTRS)

    Yokum, Steve

    2015-01-01

    Software-Only-Simulations are an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations ranging from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).

  2. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  3. Advanced Spacecraft Designs in Support of Human Missions to Earth's Neighborhood

    NASA Technical Reports Server (NTRS)

    Fletcher, David

    2002-01-01

    NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by The NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a lunar transfer vehicle (LTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the LTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the LTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP.

  4. REACH: Real-Time Data Awareness in Multi-Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Coleman, Jason; Hennessy, Joseph F. (Technical Monitor)

    2002-01-01

    NASA's Advanced Architectures and Automation Branch at the Goddard Space Flight Center (Code 588) saw the potential to reduce the cost of constellation missions by creating new user interfaces to the ground system health-and-safety data. The goal is to enable a small Flight Operations Team (FOT) to remain aware and responsive to the increased amount of ground system information in a multi-spacecraft environment. Rather than abandon the tried and true, these interfaces were developed to run alongside existing ground system software to provide additional support to the FOT. These new user interfaces have been combined in a tool called REACH. REACH-the Real-time Evaluation and Analysis of Consolidated Health-is a software product that uses advanced visualization techniques to make spacecraft anomalies easy to spot, no matter how many spacecraft are in the constellation. REACH reads numerous real-time streams of data from the ground system(s) and displays synthesized information to the FOT such that anomalies are easy to pick out and investigate.

  5. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  6. Spacecraft propulsion systems test capability at the NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Baker, Pleddie; Gorham, Richard

    1993-01-01

    The NASA White Sands Facility (WSTF), a component insallation of the Johnson Space Center, is located on a 94-square-mile site in southwestern New Mexico. WSTF maintains many unique capabilities to support its mission to test and evaluate spacecraft materials, components, and propulsion systems to enable the safe human exploration and utilization of space. WSTF has tested over 340 rocket engines with more than 2.5 million firings to date. Included are propulsion system testing for Apollo, Shuttle, and now Space Station as well as unmanned spacecraft such as Viking, Pioneer, and Mars Observer. This paper describes the current WSTF propulsion test facilities and capabilities.

  7. Economic analysis of standard interface modules for use with the multi-mission spacecraft, volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A preliminary technical and economic feasibility study was made of the use of Standardized Interstate Modules (SIM) to perform electual interfacing functions that were historically incorporated into sensors. Sensor interface functions that are capable of standardization from the set of missions planned for the NASA Multi-Mission Spacecraft (MMS) in the 1981 to 1985 time period were identified. The cost savings that could be achieved through the replacement of nonstandard sensor interface flight hardware that might be used in these missions with SIM were examined.

  8. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2005-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook are solicited from the spacecraft structural dynamics testing community.

  9. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2004-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook is solicited from the spacecraft structural dynamics testing community.

  10. An Overview of NASA's Asteroid Redirect Mission (ARM) Concept

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is developing the Asteroid Redirect Mission (ARM) as a capability demonstration for future human exploration, including use of high-power solar electric propulsion, which allows for the efficient movement of large masses through deep space. The ARM will also demonstrate the capability to conduct proximity operations with natural space objects and crewed operations beyond the security of quick Earth return. The Asteroid Redirect Robotic Mission (ARRM), currently in formulation, will visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, conduct a demonstration of a slow push planetary defense technique, and redirect the multi-ton boulder into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts aboard an Orion spacecraft will dock with the robotic vehicle to explore the boulder and return samples to Earth. The ARM is part of NASA's plan to advance technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. The ARM and subsequent availability of the asteroidal material in cis-lunar space, provide significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, and in-situ resource utilization (ISRU). NASA established the Formulation Assessment and Support Team (FAST), comprised of scientists, engineers, and technologists, which supported ARRM mission requirements formulation, answered specific questions concerning potential target asteroid physical properties, and produced a publically available report. The ARM Investigation Team is being organized to support ARM implementation and execution. NASA is also open to collaboration with its international partners and welcomes further discussions. An overview of the ARM robotic and crewed segments, including mission requirements, NEA targets, and mission operations, and a discussion

  11. On-board Attitude Determination System (OADS). [for advanced spacecraft missions

    NASA Technical Reports Server (NTRS)

    Carney, P.; Milillo, M.; Tate, V.; Wilson, J.; Yong, K.

    1978-01-01

    The requirements, capabilities and system design for an on-board attitude determination system (OADS) to be flown on advanced spacecraft missions were determined. Based upon the OADS requirements and system performance evaluation, a preliminary on-board attitude determination system is proposed. The proposed OADS system consists of one NASA Standard IRU (DRIRU-2) as the primary attitude determination sensor, two improved NASA Standard star tracker (SST) for periodic update of attitude information, a GPS receiver to provide on-board space vehicle position and velocity vector information, and a multiple microcomputer system for data processing and attitude determination functions. The functional block diagram of the proposed OADS system is shown. The computational requirements are evaluated based upon this proposed OADS system.

  12. NASA Briefing New Mission to Weigh in on Earth's Changing Water

    NASA Image and Video Library

    2018-04-30

    At a NASA media briefing on April 30, scientists discussed an upcoming mission that will provide unique insights into Earth’s changing climate and have far-reaching benefits to society, such as improved water resource management. The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission will measure monthly changes in how mass is redistributed within and among Earth’s atmosphere, oceans, land and ice sheets. GRACE-FO’s pair of spacecraft are in final preparations for a California launch no earlier than Saturday, May 19.

  13. CCSDS Spacecraft Monitor and Control Mission Operations Interoperability Prototype

    NASA Technical Reports Server (NTRS)

    Lucord, Steve; Martinez, Lindolfo

    2009-01-01

    We are entering a new era in space exploration. Reduced operating budgets require innovative solutions to leverage existing systems to implement the capabilities of future missions. Custom solutions to fulfill mission objectives are no longer viable. Can NASA adopt international standards to reduce costs and increase interoperability with other space agencies? Can legacy systems be leveraged in a service oriented architecture (SOA) to further reduce operations costs? The Operations Technology Facility (OTF) at the Johnson Space Center (JSC) is collaborating with Deutsches Zentrum fur Luft- und Raumfahrt (DLR) to answer these very questions. The Mission Operations and Information Management Services Area (MOIMS) Spacecraft Monitor and Control (SM&C) Working Group within the Consultative Committee for Space Data Systems (CCSDS) is developing the Mission Operations standards to address this problem space. The set of proposed standards presents a service oriented architecture to increase the level of interoperability among space agencies. The OTF and DLR are developing independent implementations of the standards as part of an interoperability prototype. This prototype will address three key components: validation of the SM&C Mission Operations protocol, exploration of the Object Management Group (OMG) Data Distribution Service (DDS), and the incorporation of legacy systems in a SOA. The OTF will implement the service providers described in the SM&C Mission Operation standards to create a portal for interaction with a spacecraft simulator. DLR will implement the service consumers to perform the monitor and control of the spacecraft. The specifications insulate the applications from the underlying transport layer. We will gain experience with a DDS transport layer as we delegate responsibility to the middleware and explore transport bridges to connect disparate middleware products. A SOA facilitates the reuse of software components. The prototype will leverage the

  14. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    The Dawn spacecraft is seen here in clean room C of Astrotech's Payload Processing Facility. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  15. Heritage Systems Engineering Lessons from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications

  16. Control-Structure-Interaction (CSI) technologies and trends to future NASA missions

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Control-structure-interaction (CSI) issues which are relevant for future NASA missions are reviewed. This goal was achieved by: (1) reviewing large space structures (LSS) technologies to provide a background and survey of the current state of the art (SOA); (2) analytically studying a focus mission to identify opportunities where CSI technology may be applied to enhance or enable future NASA spacecraft; and (3) expanding a portion of the focus mission, the large antenna, to provide in-depth trade studies, scaling laws, and methodologies which may be applied to other NASA missions. Several sections are presented. Section 1 defines CSI issues and presents an overview of the relevant modeling and control issues for LLS. Section 2 presents the results of the three phases of the CSI study. Section 2.1 gives the results of a CSI study conducted with the Geostationary Platform (Geoplat) as the focus mission. Section 2.2 contains an overview of the CSI control design methodology available in the technical community. Included is a survey of the CSI ground-based experiments which were conducted to verify theoretical performance predictions. Section 2.3 presents and demonstrates a new CSI scaling law methodology for assessing potential CSI with large antenna systems.

  17. NASA's New Astronauts to Conduct Research Off the Earth , For the Earth and Deep Space Missions

    NASA Image and Video Library

    2017-06-07

    After receiving a record-breaking number of applications to join an exciting future of space exploration, NASA has selected its largest astronaut class since 2000. Rising to the top of more than 18,300 applicants, NASA chose 12 women and men as the agency’s new astronaut candidates. Vice President Mike Pence joined Acting NASA Administrator Robert Lightfoot, Johnson Space Center Director Ellen Ochoa, and Flight Operations Director Brian Kelly to welcome the new astronaut candidates during an event June 7 at the agency’s Johnson Space Center in Houston. The astronaut candidates will return to Johnson in August to begin two years of training. Then they could be assigned to any of a variety of missions: performing research on the International Space Station, launching from American soil on spacecraft built by commercial companies, and departing for deep space missions on NASA’s new Orion spacecraft and Space Launch System rocket.

  18. NASA'S Space Launch System: Opening Opportunities for Mission Design

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will

  19. NASA Centers and Universities Collaborate Through Smallsat Technology Partnerships

    NASA Technical Reports Server (NTRS)

    Cockrell, James

    2018-01-01

    The Small Spacecraft Technology (SST) Program within the NASA Space Technology Mission Directorate is chartered develop and demonstrate the capabilities that enable small spacecraft to achieve science and exploration missions in "unique" and "more affordable" ways. Specifically, the SST program seeks to enable new mission architectures through the use of small spacecraft, to expand the reach of small spacecraft to new destinations, and to make possible the augmentation existing assets and future missions with supporting small spacecraft. The SST program sponsors smallsat technology development partnerships between universities and NASA Centers in order to engage the unique talents and fresh perspectives of the university community and to share NASA experience and expertise in relevant university projects to develop new technologies and capabilities for small spacecraft. These partnerships also engage NASA personnel in the rapid, agile and cost-conscious small spacecraft approaches that have evolved in the university community, as well as increase support to university efforts and foster a new generation of innovators for NASA and the nation.

  20. Recent Applications of Space Weather Research to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.

    2013-01-01

    Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.

  1. NASA Spacecraft Spots Florida Wildfire

    NASA Image and Video Library

    2011-06-16

    The Espanola wildfire had consumed more than 4,300 acres when the Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER instrument aboard NASA Terra spacecraft acquired this image on June 16, 2011, over Flagler County, Fla.

  2. NASA Spacecraft Images Texas Wildfire

    NASA Image and Video Library

    2012-05-15

    The Livermore and Spring Ranch fires near the Davis Mountain Resort, Texas, burned 13,000 and 11,000 acres respectively. When NASA Terra spacecraft acquired this image on May 12, 2012, both fires had been contained.

  3. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group from center are Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology, and Robert Lockwood, TESS Spacecraft Program Manager, Orbital ATK. At far left is Jason Townsend, NASA Communications. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  4. A compiler and validator for flight operations on NASA space missions

    NASA Astrophysics Data System (ADS)

    Fonte, Sergio; Politi, Romolo; Capria, Maria Teresa; Giardino, Marco; De Sanctis, Maria Cristina

    2016-07-01

    In NASA missions the management and the programming of the flight systems is performed by a specific scripting language, the SASF (Spacecraft Activity Sequence File). In order to perform a check on the syntax and grammar it is necessary a compiler that stress the errors (eventually) found in the sequence file produced for an instrument on board the flight system. In our experience on Dawn mission, we developed VIRV (VIR Validator), a tool that performs checks on the syntax and grammar of SASF, runs a simulations of VIR acquisitions and eventually finds violation of the flight rules of the sequences produced. The project of a SASF compiler (SSC - Spacecraft Sequence Compiler) is ready to have a new implementation: the generalization for different NASA mission. In fact, VIRV is a compiler for a dialect of SASF; it includes VIR commands as part of SASF language. Our goal is to produce a general compiler for the SASF, in which every instrument has a library to be introduced into the compiler. The SSC can analyze a SASF, produce a log of events, perform a simulation of the instrument acquisition and check the flight rules for the instrument selected. The output of the program can be produced in GRASS GIS format and may help the operator to analyze the geometry of the acquisition.

  5. Asteroid Sample Return Mission Launches on This Week @NASA – September 9, 2016

    NASA Image and Video Library

    2016-09-09

    On Sept. 8, NASA launched the Origins, Spectral Interpretation, Resource Identification, Security - Regolith Explorer, or OSIRIS-REx mission from Cape Canaveral Air Force Station in Florida. OSIRIS-REx, the first U.S. mission to sample an asteroid, is scheduled to arrive at near-Earth asteroid Bennu in 2018. Mission plans call for the spacecraft to survey the asteroid, retrieve a small sample from its surface, and return the sample to Earth for study in 2023. Analysis of that sample is expected to reveal clues about the history of Bennu over the past 4.5 billion years, as well as clues about the evolution of our solar system. Also, Jeff Williams’ Record-Breaking Spaceflight Concludes, Next ISS Crew Prepares for Launch, Sample Return Robot Challenge, NASA X-Plane Gets its Wing, and Convergent Aeronautics Solutions Showcase!

  6. MarcoPolo-R: Mission and Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Peacocke, L.; Kemble, S.; Chapuy, M.; Scheer, H.

    2013-09-01

    The MarcoPolo-R mission is a candidate for the European Space Agency's medium-class Cosmic Vision programme, with the aim to obtain a 100 g sample of asteroid surface material and return it safely to the Earth. Astrium is one of two industrial contractors currently studying the mission to Phase A level, and the team has been working on the mission and spacecraft design since January 2012. Asteroids are some of the most primitive bodies in our solar system and are key to understanding the formation of the Earth, Sun and other planetary bodies. A returned sample would allow extensive analyses in the large laboratory-sized instruments here on Earth that are not possible with in-situ instruments. This analysis would also increase our understanding of the composition and structure of asteroids, and aid in plans for asteroid deflection techniques. In addition, the mission would be a valuable precursor for missions such as Mars Sample Return, demonstrating a high speed Earth re-entry and hard landing of an entry capsule. Following extensive mission analysis of both the baseline asteroid target 1996 FG3 and alternatives, a particularly favourable trajectory was found to the asteroid 2008 EV5 resulting in a mission duration of 4.5 to 6 years. In October 2012, the MarcoPolo-R baseline target was changed to 2008 EV5 due to its extremely primitive nature, which may pre-date the Sun. This change has a number of advantages: reduced DeltaV requirements, an orbit with a more benign thermal environment, reduced communications distances, and a reduced complexity propulsion system - all of which simplify the spacecraft design significantly. The single spacecraft would launch between 2022 and 2024 on a Soyuz-Fregat launch vehicle from Kourou. Solar electric propulsion is necessary for the outward and return transfers due to the DeltaV requirements, to minimise propellant mass. Once rendezvous with the asteroid is achieved, an observation campaign will begin to characterise the

  7. ASHI, an All Sky Heliospheric Imager for Future NASA Missions

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Buffington, A.; Hick, P. P.; Yu, H. S.; Bisi, M. M.

    2016-12-01

    We wish to answer the scientific question: "What are the shapes and time histories of heliospheric structures in the plasma parameters, density and velocity as structures move outward from the Sun and surround the spacecraft?" To provide answers to this question, we propose ASHI, an All-Sky Heliospheric Imager for future NASA missions. ASHI's primary applicability is to view the inner heliosphere from deep space as a photometric system. The zodiacal-light photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) on the Coriolis satellite, and the Heliospheric Imagers (HIs) on the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft, all point the way towards an optimum instrument for viewing Thomson-scattering observations. The specifications for such systems include viewing the whole sky starting beyond a few degrees of the Sun, and covering a hemisphere or more of sky. With an imager mass of about 2.5 kg per system (scalable to lower values for instruments viewing from closer than 1 AU), ten-minute exposures, 20 arc-second pointing, and low power consumption, this type of instrument has been a popular choice for recent NASA Mission concepts such as STEREO, Solar Orbiter, Solar probe, and EASCO. A key photometric specification for such imagers is 0.1% differential photometry which enables the 3-D reconstruction of density starting from near the Sun and extending outward. A proven concept using SMEI analyses, ASHI will provide an order of magnitude better resolution in three dimensions over time. As a new item we intend to include velocity in this concept, and for a heliospheric imager in deep space, provide high-resolution comparisions of in-situ density and velocity measurements obtained at the spacecraft, to structures observed remotely.

  8. Description of the attitude control, guidance and navigation space replaceable units for automated space servicing of selected NASA missions

    NASA Technical Reports Server (NTRS)

    Chobotov, V. A.

    1974-01-01

    Control elements such as sensors, momentum exchange devices, and thrusters are described which can be used to define space replaceable units (SRU), in accordance with attitude control, guidance, and navigation performance requirements selected for NASA space serviceable mission spacecraft. A number of SRU's are developed, and their reliability block diagrams are presented. An SRU assignment is given in order to define a set of feasible space serviceable spacecraft for the missions of interest.

  9. NASA Spacecraft Eyes Mississippi Flooding

    NASA Image and Video Library

    2011-05-16

    At the time NASA Terra spacecraft acquired this image, the Mississippi River had reached a level of 53 feet 16.2 meters, 3 feet 1 meter above the major flood stage. Flood water had already inundated parts of Vicksburg, Mississippi.

  10. NASA Spacecraft Images Fiji Flooding

    NASA Image and Video Library

    2012-04-10

    This image, acquired by NASA Terra spacecraft, shows Fiji, hard hit by heavy rains in early 2012, causing flooding and landslides. Hardest hit was the western part of the main Island of Viti Levu, Fiji, and the principal city of Nadi.

  11. Overview of the Nasa/science Mission Directorate University Student Instrument Project (usip)

    NASA Astrophysics Data System (ADS)

    Pierce, D. L.

    2016-12-01

    These are incredible times of space and Earth science discovery related to the Earth system, our Sun, the planets, and the universe. The National Aeronautics and Space Administration (NASA) Science Mission Directorate (SMD) provides authentic student-led hands-on flight research projects as a component part of the NASA's science program. The goal of the Undergraduate Student Instrument Project (USIP) is to enable student-led scientific and technology investigations, while also providing crucial hands-on training opportunities for the Nation's future researchers. SMD, working with NASA's Office of Education (OE), the Space Technology Mission Directorate (STMD) and its Centers (GSFC/WFF and AFRC), is actively advancing the vision for student flight research using NASA's suborbital and small spacecraft platforms. Recently proposed and selected USIP projects will open up opportunities for undergraduate researchers in conducting science and developing space technologies. The paper will present an overview of USIP, results of USIP-I, and the status of current USIP-II projects that NASA is sponsoring and expects to fly in the near future.

  12. Spacecraft and mission design for the SP-100 flight experiment

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1988-01-01

    The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kW(e) ammonia arcjet system operating at an experimentally measured specific impulse of 1031 s and an efficiency of 42.3 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kW(e) SRPS is assumed. The spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission, and an orbit raising round trip corresponding to possible orbit transfer vehicle (OTV) missions.

  13. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Jessica Sunshine, EPOXI Deputy Principal Investigator, University of Maryland, far right, discusses imagery sent back from the EPOXI Mission spacecraft during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  14. Halfway point of the one year mission on This Week @NASA – September 18, 2015

    NASA Image and Video Library

    2015-09-18

    Sept. 15 marked the halfway point in the yearlong mission on the International Space Station with NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko. An event the day before at the National Press Club in Washington included a discussion about the biomedical research conducted on the station, to help formulate future human missions to Mars. Kelly participated from the space station. His identical twin, retired NASA astronaut Mark Kelly, and NASA astronaut Terry Virts, who served as commander of Expedition 43, participated from the press club. Also, I spy the space station: Live!, Expedition 43 post-flight visit, Key milestone for Orion spacecraft, Global ocean on Enceladus, Connecting space to village and more!

  15. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  16. Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Alfano, Salvatore; Pinon, Elfego; Gold, Kenn; Gaylor, David

    2012-01-01

    The amount of hazardous debris in Earth orbit has been increasing, posing an evergreater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approximately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital debris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the famous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. The goal is to choose the order in which the cities are visited so as to minimize the total path distance traveled. In the case of orbital debris, the pieces of debris to be visited must be selected and ordered such that spacecraft propellant consumption is minimized or at least kept low enough to be feasible. Emergent Space Technologies, Inc. has developed specialized algorithms for designing efficient tour missions for near-Earth asteroids that may be applied to the design of efficient spacecraft missions capable of visiting large numbers of orbital debris pieces. The first step is to identify a list of high priority debris targets using the Analytical Graphics, Inc. SOCRATES website and then obtain their state information from Celestrak. The tour trajectory design algorithms will then be used to determine the itinerary of objects and v requirements. These results will shed light

  17. NASA Spacecraft Images Texas Wildfire

    NASA Image and Video Library

    2011-09-13

    The tri-county Riley Road wildfire burning in Texas north of Houston was 85 percent contained when NASA Terra spacecraft acquired this image on Sept. 12, 2011. Burned areas are dark gray and black; vegetation red; and bare ground and roads light gray.

  18. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. Internet Access to Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Jackson, Chris; Price, Harold; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project at NASA's Goddard Space flight Center (GSFC), is demonstrating the use of standard Internet protocols for spacecraft communication systems. This year, demonstrations of Internet access to a flying spacecraft have been performed with the UoSAT-12 spacecraft owned and operated by Surrey Satellite Technology Ltd. (SSTL). Previously, demonstrations were performed using a ground satellite simulator and NASA's Tracking and Data Relay Satellite System (TDRSS). These activities are part of NASA's Space Operations Management Office (SOMO) Technology Program, The work is focused on defining the communication architecture for future NASA missions to support both NASA's "faster, better, cheaper" concept and to enable new types of collaborative science. The use of standard Internet communication technology for spacecraft simplifies design, supports initial integration and test across an IP based network, and enables direct communication between scientists and instruments as well as between different spacecraft, The most recent demonstrations consisted of uploading an Internet Protocol (IP) software stack to the UoSAT- 12 spacecraft, simple modifications to the SSTL ground station, and a series of tests to measure performance of various Internet applications. The spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 3 months. The tests included basic network connectivity (PING), automated clock synchronization (NTP), and reliable file transfers (FTP). Future tests are planned to include additional protocols such as Mobile IP, e-mail, and virtual private networks (VPN) to enable automated, operational spacecraft communication networks. The work performed and results of the initial phase of tests are summarized in this paper. This work is funded and directed by NASA/GSFC with technical leadership by CSC in arrangement with SSTL, and Vytek Wireless.

  20. Autonomic Computing for Spacecraft Ground Systems

    NASA Technical Reports Server (NTRS)

    Li, Zhenping; Savkli, Cetin; Jones, Lori

    2007-01-01

    Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.

  1. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    NASA Astrophysics Data System (ADS)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  2. Flight Software Implementation of the Beacon Monitor Expreiment On the NASA New Millennium Deep Space 1 (DS-1) Mission

    NASA Technical Reports Server (NTRS)

    Foster, R.; Schlutsmeyer, A.

    1997-01-01

    A new technology that can lower the cost of mission operations on future spacecraft will be tested on the NASA New Millennium Deep Space 1 (DS-1) Mission. This technology, the Beacon Monitor Experiment (BMOX), can be used to reduce the Deep Space Network (DSN) tracking time and its associated costs on future missions.

  3. Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2017-01-01

    There is great interest in examining the outer planets of our solar system and Heliopause region (edge of Solar System) and beyond regions of interstellar space by both the Planetary and Heliophysics communities. These needs are well docu-mented in the recent National Academy of Sciences Decadal Surveys. There is significant interest in developing revolutionary propulsion techniques that will enable such Heliopause scientific missions to be completed within 10 to15 years of the launch date. One such enabling propulsion technique commonly known as Electric Sail (E-Sail) propulsion employs positively charged bare wire tethers that extend radially outward from a rotating spacecraft spinning at a rate of one revolution per hour. Around the positively charged bare-wire tethers, a Debye Sheath is created once positive voltage is applied. This sheath stands off of the bare wire tether at a sheath diameter that is proportional to the voltage in the wire coupled with the flux density of solar wind ions within the solar system (or the location of spacecraft in the solar system. The protons that are expended from the sun (solar wind) at 400 to 800 km/sec are electrostatically repelled away from these positively charged Debye sheaths and propulsive thrust is produced via the resulting momentum transfer. The amount of thrust produced is directly proportional to the total wire length. The Marshall Space Flight Center (MSFC) Electric Sail team is currently funded via a two year Phase II NASA Innovative Advanced Concepts (NIAC) awarded in July 2015. The team's current activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers and tethers to enable successful de-ployment of multiple, multi km length bare tethers

  4. NASA's Planetary Science Missions and Participations

    NASA Astrophysics Data System (ADS)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  5. NASA Spacecraft Images Cambodian Flooding

    NASA Image and Video Library

    2011-08-29

    This image acquired by NASA Terra spacecraft shows unusually heavy rains over the upper Mekong River in Laos and Thailand that led to severe flooding in Cambodia in mid-August 2011. The city of Phnom Penh is at the bottom center of the image.

  6. NASA Spacecraft Images Oregon Wildfire

    NASA Image and Video Library

    2012-09-21

    This image, acquired by NASA Terra spacecraft, is of the Pole Creek fire southwest of Sisters, Ore., which had grown to 24,000 acres as of Sept. 20, 2012. No structures have been destroyed, and the fire is mostly confined to the national forest.

  7. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  8. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMSis achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  9. Spacecraft radiators for advanced mission requirements

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1980-01-01

    Design requirements for spacecraft heat rejection systems are identified, and their impact on the construction of conventional pumped fluid and hybrid heat pipe/pumped fluid radiators is evaluated. Heat rejection systems to improve the performance or reduce the cost of the spacecraft are proposed. Heat rejection requirements which are large compared to those of existing systems and mission durations which are relatively long, are discussed.

  10. Electromechanical Power for NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2005-01-01

    NASA has a wide range of missions that require electrochemical power sources. These needs are met with a variety of options that include primary and secondary cells and batteries, fuel cells, and regenerative fuel cells. This presentation wil cover an overview of NASA missions and requirements for electrochemical power sources and investigate the synergy and diversity that exist between NASA's requirements and those for military tactical power sources. Current development programs at GRC and other NASA centers, aimed at meeting NASA's future requirements will also be discussed.

  11. Evaluation of the NASA Arc Jet Capabilities to Support Mission Requirements

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony; Bruce, Walt; Gage, Peter; Horn, Dennis; Mastaler, Mike; Rigali, Don; Robey, Judee; Voss, Linda; Wahlberg, Jerry; Williams, Calvin

    2010-01-01

    NASA accomplishes its strategic goals through human and robotic exploration missions. Many of these missions require launching and landing or returning spacecraft with human or return samples through Earth's and other planetary atmospheres. Spacecraft entering an atmosphere are subjected to extreme aerothermal loads. Protecting against these extreme loads is a critical element of spacecraft design. The safety and success of the planned mission is a prime concern for the Agency, and risk mitigation requires the knowledgeable use of thermal protection systems to successfully withstand the high-energy states imposed on the vehicle. Arc jets provide ground-based testing for development and flight validation of re-entry vehicle thermal protection materials and are a critical capability and core competency of NASA. The Agency's primary hypersonic thermal testing capability resides at the Ames Research Center and the Johnson Space Center and was developed and built in the 1960s and 1970s. This capability was critical to the success of Apollo, Shuttle, Pioneer, Galileo, Mars Pathfinder, and Orion. But the capability and the infrastructure are beyond their design lives. The complexes urgently need strategic attention and investment to meet the future needs of the Agency. The Office of Chief Engineer (OCE) chartered the Arc Jet Evaluation Working Group (AJEWG), a team of experienced individuals from across the Nation, to capture perspectives and requirements from the arc jet user community and from the community that operates and maintains this capability and capacity. This report offers the AJEWG's findings and conclusions that are intended to inform the discussion surrounding potential strategic technical and investment strategies. The AJEWG was directed to employ a 30-year Agency-level view so that near-term issues did not cloud the findings and conclusions and did not dominate or limit any of the strategic options.

  12. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    NASA Image and Video Library

    1962-02-20

    S64-14861 (1962) --- Department of Defense (DOD) recovery personnel and spacecraft technicians from NASA and McDonnell Aircraft Corp., inspect astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean. Photo credit: NASA

  13. CRRES Prelaunch Mission Operation Report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The overall NASA Combined Release and Radiation Effects Satellite (CRRES) program consists of a series of chemical releases from the PEGSAT spacecraft, the CRRES spacecraft and sounding rockets. The first chemical releases were made from the PEGSAT spacecraft in April, 1990 over northern Canada. In addition to the releases planned from the CRRES spacecraft there are releases from sounding rockets planned from the Kwajalein rocket range in July and August, 1990 and from Puerto Rico in June and July, 1991. It shows the major milestones in the overall CRRES program. This Mission Operations Report only describes the NASA mission objectives of the CRRES/Geosynchronous Transfer Orbit (GTO) mission.

  14. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  15. Science Goal Monitor: Science Goal Driven Automation for NASA Missions

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Pell, Melissa; Matusow, David; Bailyn, Charles

    2004-01-01

    Infusion of automation technologies into NASA s future missions will be essential because of the need to: (1) effectively handle an exponentially increasing volume of scientific data, (2) successfully meet dynamic, opportunistic scientific goals and objectives, and (3) substantially reduce mission operations staff and costs. While much effort has gone into automating routine spacecraft operations to reduce human workload and hence costs, applying intelligent automation to the science side, i.e., science data acquisition, data analysis and reactions to that data analysis in a timely and still scientifically valid manner, has been relatively under-emphasized. In order to introduce science driven automation in missions, we must be able to: capture and interpret the science goals of observing programs, represent those goals in machine interpretable language; and allow spacecrafts onboard systems to autonomously react to the scientist's goals. In short, we must teach our platforms to dynamically understand, recognize, and react to the scientists goals. The Science Goal Monitor (SGM) project at NASA Goddard Space Flight Center is a prototype software tool being developed to determine the best strategies for implementing science goal driven automation in missions. The tools being developed in SGM improve the ability to monitor and react to the changing status of scientific events. The SGM system enables scientists to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of science data to identify occurrences of key events previously specified by the scientist. When an event occurs, the system autonomously coordinates the execution of the scientist s desired reactions. Through SGM, we will improve om understanding about the capabilities needed onboard for success, develop metrics to understand the potential increase in science returns, and develop an operational prototype so that the perceived risks associated

  16. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group, from left are Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology, and Robert Lockwood, TESS Spacecraft Program Manager, Orbital ATK. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  17. SPHERES tethered formation flight testbed: advancements in enabling NASA's SPECS mission

    NASA Astrophysics Data System (ADS)

    Chung, Soon-Jo; Adams, Danielle; Saenz-Otero, Alvar; Kong, Edmund; Miller, David W.; Leisawitz, David; Lorenzini, Enrico; Sell, Steve

    2006-06-01

    This paper reports on efforts to control a tethered formation flight spacecraft array for NASA's SPECS mission using the SPHERES test-bed developed by the MIT Space Systems Laboratory. Specifically, advances in methodology and experimental results realized since the 2005 SPIE paper are emphasized. These include a new test-bed setup with a reaction wheel assembly, a novel relative attitude measurement system using force torque sensors, and modeling of non-ideal tethers to account for tether vibration modes. The nonlinear equations of motion of multi-vehicle tethered spacecraft with elastic flexible tethers are derived from Lagrange's equations. The controllability analysis indicates that both array resizing and spin-up are fully controllable by the reaction wheels and the tether motor, thereby saving thruster fuel consumption. Based upon this analysis, linear and nonlinear controllers have been successfully implemented on the tethered SPHERES testbed, and tested at the NASA MSFC's flat floor facility using two and three SPHERES configurations.

  18. NASA Spacecraft Images Mexican Volcanic Eruption

    NASA Image and Video Library

    2012-04-24

    NASA Terra spacecraft shows Mexico active Popocatepetl volcano, located about 40 miles southeast of Mexico City, spewing water vapor, gas, ashes and glowing rocks since its most recent eruption period began in April 2012.

  19. Spacecraft attitude control for a solar electric geosynchronous transfer mission

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.; Regetz, J. D., Jr.

    1975-01-01

    A study of the Attitude Control System (ACS) is made for a solar electric propulsion geosynchronous transfer mission. The basic mission considered is spacecraft injection into a low altitude, inclined orbit followed by low thrust orbit changing to achieve geosynchronous orbit. Because of the extended thrusting time, the mission performance is a strong function of the attitude control system. Two attitude control system design options for an example mission evolve from consideration of the spacecraft configuration, the environmental disturbances, and the probable ACS modes of operation. The impact of these design options on other spacecraft subsystems is discussed. The factors which must be considered in determining the ACS actuation and sensing subsystems are discussed. The effects of the actuation and sensing subsystems on the mission performance are also considered.

  20. Complexity analysis of the cost effectiveness of PI-led NASA science missions

    NASA Astrophysics Data System (ADS)

    Yoshida, J.; Cowdin, M.; Mize, T.; Kellogg, R.; Bearden, D.

    For the last 20 years, NASA has allowed Principal Investigators (PIs) to manage the development of many unmanned space projects. Advocates of PI-led projects believe that a PI-led implementation can result in a project being developed at lower cost and shorter schedule than other implementation modes. This paper seeks to test this hypothesis by comparing the actual costs of NASA and other comparable projects developed under different implementation modes. The Aerospace Corporation's Complexity-Based Risk Assessment (CoBRA) analysis tool is used to normalize the projects such that the cost can be compared for equivalent project complexities. The data is examined both by complexity and by launch year. Cost growth will also be examined for any correlation with implementation mode. Defined in many NASA Announcements of Opportunity (AOs), a PI-led project is characterized by a central, single person with full responsibility for assembling a team and for the project's scientific integrity and the implementation and integrity of all other aspects of the mission, while operating under a cost cap. PIs have larger degrees of freedom to achieve the stated goals within NASA guidelines and oversight. This study leverages the definitions and results of previous National Research Council studies of PI-led projects. Aerospace has defined a complexity index, derived from mission performance, mass, power, and technology choices, to arrive at a broad representation of missions for purposes of comparison. Over a decade of research has established a correlation between mission complexity and spacecraft development cost and schedule. This complexity analysis, CoBRA, is applied to compare a PI-led set of New Frontiers, Discovery, Explorers, and Earth System Science Pathfinder missions to the overall NASA mission dataset. This reveals the complexity trends against development costs, cost growth, and development era.

  1. Operations concepts for Mars missions with multiple mobile spacecraft

    NASA Technical Reports Server (NTRS)

    Dias, William C.

    1993-01-01

    Missions are being proposed which involve landing a varying number (anywhere from one to 24) of small mobile spacecraft on Mars. Mission proposals include sample returns, in situ geochemistry and geology, and instrument deployment functions. This paper discusses changes needed in traditional space operations methods for support of rover operations. Relevant differences include more frequent commanding, higher risk acceptance, streamlined procedures, and reliance on additional spacecraft autonomy, advanced fault protection, and prenegotiated decisions. New methods are especially important for missions with several Mars rovers operating concurrently against time limits. This paper also discusses likely mission design limits imposed by operations constraints .

  2. Short rendezvous missions for advanced Russian human spacecraft

    NASA Astrophysics Data System (ADS)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  3. DYNAMIC: A Decadal Survey and NASA Roadmap Mission

    NASA Astrophysics Data System (ADS)

    Paxton, L. J.; Oberheide, J.

    2016-12-01

    In this talk we will review the DYNAMIC mission science and implementation plans. DYNAMIC is baselined as a two satellite mission to delineate the dynamical behavior and structure of the ionosphere, thermosphere and mesosphere system. DYNAMIC was considered the top priority in the Decadal Survey upper atmosphere missions by the AIMI panel. The NASA Heliophysics Roadmap recommended that consideration be given to flying DYNAMIC as the STP 5 (next STP mission) rather than IMAP given the time-lag between the Decadal Survey recommendations and the flight of the STP 5 mission. It certainly seems as though STP 5 will be the IMAP mission. In that case what is the status of DYNAMIC? DYNAMIC could be STP 6 or some portion of the DYNAMIC mission could be executed as the next MidEx mission. In this talk we discuss the DYNAMIC science questions and goals and how they might be addressed. We note that DYNAMIC is not a mission just for the space community. DYNAMIC will enable new groundbased investigations and provide a global context for the long and rich history of groundbased observations of the dynamical state of the ITM system. Issues include: How and to what extent do waves and tides in the lower atmosphere contribute to the variability and mean state of the IT system? [Mission driver: Must have two spacecraft separated in local solar time in near polar orbits] How does the AIM system respond to outside forcing? [Mission Driver: Must measure high latitude inputs] How do neutral-plasma interactions produce neutral and ionospheric density changes over regional and global scales? [Mission Driver: Must measure all major species (O, N2, O2, H, He) and their ions] What part of the IT response occurs in the form of aurorally generated waves? [Mission Driver: Must measure small and mesoscale phenomena at high latitudes] What is the relative importance of thermal expansion, upwelling and advection in defining total mass density changes? [Mission Driver: Must determine the mid

  4. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.

    1994-01-01

    This paper summarizes a compilation of attitude determination accuracies attained by a number of satellites supported by the Goddard Space Flight Center Flight Dynamics Facility. The compilation is designed to assist future mission planners in choosing and placing attitude hardware and selecting the attitude determination algorithms needed to achieve given accuracy requirements. The major goal of the compilation is to indicate realistic accuracies achievable using a given sensor complement based on mission experience. It is expected that the use of actual spacecraft experience will make the study especially useful for mission design. A general description of factors influencing spacecraft attitude accuracy is presented. These factors include determination algorithms, inertial reference unit characteristics, and error sources that can affect measurement accuracy. Possible techniques for mitigating errors are also included. Brief mission descriptions are presented with the attitude accuracies attained, grouped by the sensor pairs used in attitude determination. The accuracies for inactive missions represent a compendium of missions report results, and those for active missions represent measurements of attitude residuals. Both three-axis and spin stabilized missions are included. Special emphasis is given to high-accuracy sensor pairs, such as two fixed-head star trackers (FHST's) and fine Sun sensor plus FHST. Brief descriptions of sensor design and mode of operation are included. Also included are brief mission descriptions and plots summarizing the attitude accuracy attained using various sensor complements.

  5. NASA Spacecraft Images Continued Thailand Flooding

    NASA Image and Video Library

    2011-10-28

    On Oct. 25, 2011, the Chao Phraya River was in flood stage as NASA Terra spacecraft imaged flooded agricultural fields and villages depicted here in dark blue, and the sediment-laden water in shades of tan.

  6. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen in mission control as the Cassini spacecraft makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. NASA Spacecraft Images New Mexico Wildfire

    Atmospheric Science Data Center

    2014-05-15

    article title:  NASA Spacecraft Images New Mexico Wildfire     Left, ...   Lightning ignited the Silver Fire in western New Mexico on June 7, 2013. It has since consumed more than 137,000 acres of timber ...

  8. NASA Spacecraft Eyes Iceland Volcanic Eruption

    NASA Image and Video Library

    2014-09-03

    On the night of Sept. 1, 2014, NASA Earth Observing 1 EO-1 spacecraft observed the ongoing eruption at Holuhraun, Iceland. This false-color image that emphasizes the hottest areas of the vent and resulting lava flows.

  9. Report from the School of Experience: Lessons-Learned on NASA's EOS/ICESat Mission

    NASA Technical Reports Server (NTRS)

    Anselm, William

    2003-01-01

    Abstract-NASA s Earth Observing System EOS) Ice, Cloud, and Land Elevation Satellite (ICESat) mission was one of the first missions under Goddard Space Flight Center s (then-) new Rapid Spacecraft Development Office. This paper explores the lessons-learned under the ICESat successful implementation and launch, focusing on four areas: Procurement., Management, Technical, and Launch and Early Operations. Each of these areas is explored in a practical perspective of communication, the viewpoint of the players, and the interactions among the organizations. Conclusions and lessons-learned are summarized in the final section.

  10. Real-Time Visualization of Spacecraft Telemetry for the GLAST and LRO Missions

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.; Shah, Neerav; Chai, Dean J.

    2010-01-01

    GlastCam and LROCam are closely-related tools developed at NASA Goddard Space Flight Center for real-time visualization of spacecraft telemetry, developed for the Gamma-Ray Large Area Space Telescope (GLAST) and Lunar Reconnaissance Orbiter (LRO) missions, respectively. Derived from a common simulation tool, they use related but different architectures to ingest real-time spacecraft telemetry and ground predicted ephemerides, and to compute and display features of special interest to each mission in its operational environment. We describe the architectures of GlastCam and LROCam, the customizations required to fit into the mission operations environment, and the features that were found to be especially useful in early operations for their respective missions. Both tools have a primary window depicting a three-dimensional Cam view of the spacecraft that may be freely manipulated by the user. The scene is augmented with fields of view, pointing constraints, and other features which enhance situational awareness. Each tool also has another "Map" window showing the spacecraft's groundtrack projected onto a map of the Earth or Moon, along with useful features such as the Sun, eclipse regions, and TDRS satellite locations. Additional windows support specialized checkout tasks. One such window shows the star tracker fields of view, with tracking window locations and the mission star catalog. This view was instrumental for GLAST in quickly resolving a star tracker mounting polarity issue; visualization made the 180-deg mismatch immediately obvious. Full access to GlastCam's source code also made possible a rapid coarse star tracker mounting calibration with some on the fly code adjustments; adding a fine grid to measure alignment offsets, and introducing a calibration quaternion which could be adjusted within GlastCam without perturbing the flight parameters. This calibration, from concept to completion, took less than half an hour. Both GlastCam and LROCam were

  11. REACH: Real-Time Data Awareness in Multi-Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Coleman, Jason; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    Missions have been proposed that will use multiple spacecraft to perform scientific or commercial tasks. Indeed, in the commercial world, some spacecraft constellations already exist. Aside from the technical challenges of constructing and flying these missions, there is also the financial challenge presented by the tradition model of the flight operations team (FOT) when it is applied to a constellation mission. Proposed constellation missions range in size from three spacecraft to more than 50. If the current ratio of three-to-five FOT personnel per spacecraft is maintained, the size of the FOT becomes cost prohibitive. The Advanced Architectures and Automation Branch at the Goddard Space Flight Center (GSFC Code 588) saw the potential to reduce the cost of these missions by creating new user interfaces to the ground system health-and-safety data. The goal is to enable a smaller FOT to remain aware and responsive to the increased amount of ground system information in a multi-spacecraft environment. Rather than abandon the tried and true, these interfaces were developed to run alongside existing ground system software to provide additional support to the FOT. These new user interfaces have been combined in a tool called REACH. REACH-the Real-time Evaluation and Analysis of Consolidated Health-is a software product that uses advanced visualization techniques to make spacecraft anomalies easy to spot, no matter how many spacecraft are in the constellation. REACH reads a real-time stream of data from the ground system and displays it to the FOT such that anomalies are easy to pick out and investigate. Data visualization has been used in ground system operations for many years. To provide a unique visualization tool, we developed a unique source of data to visualize: the REACH Health Model Engine. The Health Model Engine is rule-based software that receives real-time telemetry information and outputs "health" information related to the subsystems and spacecraft that

  12. The Spacecraft Emergency Response System (SERS) for Autonomous Mission Operations

    NASA Technical Reports Server (NTRS)

    Breed, Julia; Chu, Kai-Dee; Baker, Paul; Starr, Cynthia; Fox, Jeffrey; Baitinger, Mick

    1998-01-01

    Today, most mission operations are geared toward lowering cost through unmanned operations. 7-day/24-hour operations are reduced to either 5-day/8-hour operations or become totally autonomous, especially for deep-space missions. Proper and effective notification during a spacecraft emergency could mean success or failure for an entire mission. The Spacecraft Emergency Response System (SERS) is a tool designed for autonomous mission operations. The SERS automatically contacts on-call personnel as needed when crises occur, either on-board the spacecraft or within the automated ground systems. Plus, the SERS provides a group-ware solution to facilitate the work of the person(s) contacted. The SERS is independent of the spacecraft's automated ground system. It receives and catalogues reports for various ground system components in near real-time. Then, based on easily configurable parameters, the SERS determines whom, if anyone, should be alerted. Alerts may be issued via Sky-Tel 2-way pager, Telehony, or e-mail. The alerted personnel can then review and respond to the spacecraft anomalies through the Netscape Internet Web Browser, or directly review and respond from the Sky-Tel 2-way pager.

  13. Game Changing: NASA's Space Launch System and Science Mission Design

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2013-01-01

    NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  14. Game changing: NASA's space launch system and science mission design

    NASA Astrophysics Data System (ADS)

    Creech, S. D.

    NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher characteristic energy (C3) energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as “ monolithic” telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  15. Baseline spacecraft and mission design for the SP-100 flight experiment

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1989-01-01

    The design and performance of a spacecraft employing arcjet nuclear electric propulsion, suitable for use in the SP-100 Space Reactor Power System (SRPS) Flight Experiment, are outlined. The vehicle design is based on a 93 kWe ammonia arcjet system operating at an experimentally-measured specific impulse of 1030 s and an efficiency of 42 percent. The arcjet/gimbal assemblies, power conditioning subsystem, propellant feed system, propulsion system thermal control, spacecraft diagnostic instrumentation, and the telemetry requirements are described. A 100 kWe SRPS is assumed. The total spacecraft mass is baselined at 5675 kg excluding the propellant and propellant feed system. Four mission scenarios are described which are capable of demonstrating the full capability of the SRPS. The missions considered include spacecraft deployment to possible surveillance platform orbits, a spacecraft storage mission and an orbit raising round trip corresponding to possible orbit transfer vehicle missions. Launches from Kennedy Space Center using the Titan IV expendable launch vehicle are assumed.

  16. Historical trends of participation of women in robotic spacecraft missions

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Dones, Luke; Gay, Pamela; Cohen, Barbara; Horst, Sarah; Lakdawalla, Emily; Spickard, James; Milazzo, Moses; Sayanagi, Kunio M.; Schug, Joanna

    2015-11-01

    For many planetary scientists, being involved in a spacecraft mission is the highlight of a career. Many young scientists hope to one day be involved in such a mission. We will look at the science teams of several flagship-class spacecraft missions to look for trends in the representation of groups that are underrepresented in science. We will start with The Galileo, Cassini, and Europa missions to the outer solar system as representing missions that began in the 1980s, 1990s and 2010s respectively. We would also like to extend our analysis to smaller missions and those to targets other than the outer solar system.

  17. NASA Spacecraft Monitors Flooding in Algeria

    NASA Image and Video Library

    2012-03-09

    Extremely heavy rains fell at the end of February 2012 in the northern Algerian province of El Tarf, near the Tunisian border. The rainfall total was the greatest recorded in the last 30 years. This image is from NASA Terra spacecraft.

  18. Clementine: An inexpensive mission to the Moon and Geographos

    NASA Astrophysics Data System (ADS)

    Shoemaker, Eugene M.; Nozette, Stewart

    1993-03-01

    The Clementine Mission, a joint project of the Strategic Defense Initiative Organization (SDIO) and NASA, has been planned primarily to test and demonstrate a suite of lightweight sensors and other lightweight spacecraft components under extended exposure to the space environment. Although the primary objective of the mission is to space-qualify sensors for Department of Defense applications, it was recognized in 1990 that such a mission might also be designed to acquire scientific observations of the Moon and of Apollo asteroid (1620) Geographos. This possibility was explored jointly by SDIO and NASA, including representatives from NASA's Discovery Program Science Working Group, in early 1991. Besides the direct return of scientific information, one of the benefits envisioned from a joint venture was the development of lightweight components for possible future use in NASA's Discovery-class spacecraft. In Jan. 1992, SDIO informed NASA of its intent to fly a 'Deep Space Program Science Experiment,' now popularly called Clementine; NASA then formed an advisory science working group to assist in the early development of the mission. The Clementine spacecraft is being assembled at the Naval Research Laboratory, which is also in charge of the overall mission design and mission operations. Support for mission design is being provided by GSFC and by JPL. NASA's Deep Space Network will be utilized in tracking and communicating with the spacecraft. Following a recommendation of the COMPLEX committee of the Space Science Board, NASA will issue an NRA and appoint a formal science team in early 1993. Clementine is a 3-axis stabilized, 200 kg (dry weight) spacecraft that will be launched on a refurbished Titan-2G. One of the goals has been to build two spacecraft, including the sensors, for $100M. Total time elapsed from the decision to proceed to the launch will be two years.

  19. Temperature control of the Mariner class spacecraft - A seven mission summary.

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.

    1973-01-01

    Mariner spacecraft have completed five missions of scientific investigation of the planets. Two additional missions are planned. A description of the thermal design of these seven spacecraft is given herein. The factors which have influenced the thermal design include the mission requirements and constraints, the flight environment, certain programmatic considerations and the experience gained as each mission is completed. These factors are reviewed and the impact of each on thermal design and developmental techniques is assessed. It is concluded that the flight success of these spacecraft indicates that adequate temperature control has been obtained, but that improvements in design data, hardware performance and analytical techniques are needed.

  20. NASA's Asteroid Redirect Mission: Overview and Status

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Brophy, John; Mazanek, Dan; Muirhead, Brian

    mission will utilize an enhanced NEA observation campaign that will detect, track, and characterize both spacecraft mission targets and potentially hazardous asteroids that may threaten Earth in the future. Potential secondary objectives for ARM include planetary defense demonstrations at the NEA, conducting planetary science (both during the robotic and crewed mission segments), and encouraging commercial and international partnership opportunities. References [1] J. Brophy et al., “Asteroid Retrieval Feasibility Study,” Keck Institute for Space Studies Report, April 2012. [2] N. Strange et al., “Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept,” presented at the 33rd International Electric Propulsion Conference, The George Washington University, Washington, D.C., October 2013. [3] B. Muirhead, J. Brophy “Asteroid Redirect Robotic Mission Feasibility Study,” presented at IEEE Aerospace Conference, Big Sky, Montana, March 2014. [4] Mazenek et al., “Asteroid Redirect Robotic Mission: Alternate Concept Overview”, American Institute of Aeronautics and Astronautics, Space 2014 Conference, San Diego, California, August 2014.

  1. Recent Development Activities and Future Mission Applications of NASA's Evolutionary Xenon Thruster (NEXT)

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Pencil, Eric J.

    2014-01-01

    NASAs Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. This presentation is a follow-up to the NEXT project overviews presented in 2009-2010. It reviews the status of the NEXT project, presents the current system performance characteristics, and describes planned activities in continuing the transition of NEXT technology to a first flight. In 2013 a voluntary decision was made to terminate the long duration test of the NEXT thruster, given the thruster design has exceeded all expectations by accumulating over 50,000 hours of operation to demonstrate around 900 kg of xenon throughput. Besides its promise for upcoming NASA science missions, NEXT has excellent potential for future commercial and international spacecraft applications.

  2. Pi-Sat: A Low Cost Small Satellite and Distributed Spacecraft Mission System Test Platform

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan

    2015-01-01

    Current technology and budget trends indicate a shift in satellite architectures from large, expensive single satellite missions, to small, low cost distributed spacecraft missions. At the center of this shift is the SmallSatCubesat architecture. The primary goal of the Pi-Sat project is to create a low cost, and easy to use Distributed Spacecraft Mission (DSM) test bed to facilitate the research and development of next-generation DSM technologies and concepts. This test bed also serves as a realistic software development platform for Small Satellite and Cubesat architectures. The Pi-Sat is based on the popular $35 Raspberry Pi single board computer featuring a 700Mhz ARM processor, 512MB of RAM, a flash memory card, and a wealth of IO options. The Raspberry Pi runs the Linux operating system and can easily run Code 582s Core Flight System flight software architecture. The low cost and high availability of the Raspberry Pi make it an ideal platform for a Distributed Spacecraft Mission and Cubesat software development. The Pi-Sat models currently include a Pi-Sat 1U Cube, a Pi-Sat Wireless Node, and a Pi-Sat Cubesat processor card.The Pi-Sat project takes advantage of many popular trends in the Maker community including low cost electronics, 3d printing, and rapid prototyping in order to provide a realistic platform for flight software testing, training, and technology development. The Pi-Sat has also provided fantastic hands on training opportunities for NASA summer interns and Pathways students.

  3. NASA STD-4005: The LEO Spacecraft Charging Design Standard

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2006-01-01

    Power systems with voltages higher than about 55 volts may charge in Low Earth Orbit (LEO) enough to cause destructive arcing. The NASA STD-4005 LEO Spacecraft Charging Design Standard will help spacecraft designers prevent arcing and other deleterious effects on LEO spacecraft. The Appendices, an Information Handbook based on the popular LEO Spacecraft Charging Design Guidelines by Ferguson and Hillard, serve as a useful explanation and accompaniment to the Standard.

  4. Spacecraft attitude determination accuracy from mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, D.; Hashmall, J.; Baker, D.

    1994-01-01

    This document presents a compilation of the attitude accuracy attained by a number of satellites that have been supported by the Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC). It starts with a general description of the factors that influence spacecraft attitude accuracy. After brief descriptions of the missions supported, it presents the attitude accuracy results for currently active and older missions, including both three-axis stabilized and spin-stabilized spacecraft. The attitude accuracy results are grouped by the sensor pair used to determine the attitudes. A supplementary section is also included, containing the results of theoretical computations of the effects of variation of sensor accuracy on overall attitude accuracy.

  5. View of Mission Control Center celebrating conclusion of Apollo 11 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, Manned Spacecraft Center (MSC), at the conclusion of the Apollo 11 lunar landing mission. The television monitor shows President Richard M. Nixon greeting the Apollo 11 astronauts aboard the U.S.S. Hornet in the Pacific recovery area (40301); NASA and MSC Officials join the flight controllers in celebrating the conclusion of the Apollo 11 mission. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Offic of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ (40302).

  6. A Study of Learning Curve Impact on Three Identical Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Chen, Guangming; McLennan, Douglas D.

    2003-01-01

    With an eye to the future strategic needs of NASA, the New Millennium Program is funding the Space Technology 5 (ST-5) project to address the future needs in the area of small satellites in constellation missions. The ST-5 project, being developed at Goddard Space Flight Center, involves the development and simultaneous launch of three small, 20-kilogram-class spacecraft. ST-5 is only a test drive and future NASA science missions may call for fleets of spacecraft containing tens of smart and capable satellites in an intelligent constellation. The objective of ST-5 project is to develop three such pioneering small spacecraft for flight validation of several critical new technologies. The ST-5 project team at Goddard Space Flight Center has completed the spacecraft design, is now building and testing the three flight units. The launch readiness date (LRD) is in December 2005. A critical part of ST-5 mission is to prove that it is possible to build these small but capable spacecraft with recurring cost low enough to make future NASA s multi- spacecraft constellation missions viable from a cost standpoint.

  7. NASA names unique solar mission after University of Chicago physicist Eugene Parker

    NASA Image and Video Library

    2017-05-31

    On May 31, NASA renamed humanity’s first mission to fly a spacecraft directly into the sun’s atmosphere in honor of Professor Eugene Parker, a pioneering physicist at the University of Chicago. This is the first time in agency history a spacecraft has been named for a living individual. Parker, the S. Chandrasekhar Distinguished Service Professor Emeritus in Physics, is best known for developing the concept of solar wind—the stream of electrically charged particles emitted by the sun. Previously named Solar Probe Plus, the Parker Solar Probe will launch in summer 2018. Placed in orbit within four million miles of the sun’s surface, and facing heat and radiation unlike any spacecraft in history, the spacecraft will explore the sun’s outer atmosphere and make critical observations that will answer decades-old questions about the physics of how stars work. The resulting data will improve forecasts of major space weather events that impact life on Earth, as well as satellites and astronauts in space.

  8. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, second from right, talks about her experiences with Cassini during the Cassini NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Also participating in the engineering panel was Cassini program manager at JPL, Earl Maize, right, guidance and control engineer for the Cassini mission at Saturn, Luis Andrade, second from left, and mission planner for the Cassini mission at Saturn, Molly Bittner, left. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Spacecraft Will Communicate "on the Fly"

    NASA Technical Reports Server (NTRS)

    Laufenberg, Lawrence

    2003-01-01

    As NASA probes deeper into space, the distance between sensor and scientist increases, as does the time delay. NASA needs to close that gap, while integrating more spacecraft types and missions-from near-Earth orbit to deep space. To speed and integrate communications from space missions to scientists on Earth and back again. NASA needs a comprehensive, high-performance communications network. To this end, the CICT Programs Space Communications (SC) Project is providing technologies for building the Space Internet which will consist of large backbone network, mid-size access networks linked to the backbones, and smaller, ad-hoc network linked to the access network. A key component will be mobile, wireless networks for spacecraft flying in different configurations.

  10. The Spacecraft Fire Experiment (Saffire) - Objectives, Development and Status

    NASA Technical Reports Server (NTRS)

    Schoren, William; Ruff, Gary A.; Urban, David L.

    2016-01-01

    Since 2012, the Spacecraft Fire Experiment (Saffire) has been under development by the Spacecraft Fire Safety Demonstration (SFS Demo) project that is funded by NASA's Advanced Exploration Systems Division in the Human Exploration and Operations Mission Directorate. The overall objective of this project is to reduce the uncertainty and risk associated with the design of spacecraft fire safety systems for NASA's exploration missions. This is accomplished by defining, developing, and conducting experiments that address gaps in spacecraft fire safety knowledge and capabilities identified by NASA's Fire Safety System Maturation Team. This paper describes the three Spacecraft Fire Experiments (Saffire-I, -II, and -III) that were developed at NASA-GRC and that will conduct a series of material flammability tests in low-gravity and at length scales that are realistic for a spacecraft fire. The experiments will be conducted in Orbital ATK's Cygnus vehicle after it has unberthed from the International Space Station. The tests will be fully automated with the data downlinked at the conclusion of the test and before the Cygnus vehicle reenters the atmosphere. The objectives of these experiments are to (1) determine how rapidly a large scale fire grows in low-gravity and (2) investigate the low-g flammability limits compared to those obtained in NASA's normal gravity material flammability screening test. The hardware for these experiments has been completed and is awaiting their respective launches, all planned for 2016. This paper will review the objectives of these experiments and how they address several of the knowledge gaps for NASA's exploration missions. The hardware development will be discussed including several novel approaches that were taken for testing and evaluation of these series payloads. The status of the missions and operational status will also be presented.

  11. NASA Administrator Visits Goddard, Discusses MMS

    NASA Image and Video Library

    2014-05-12

    NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. NASA Administrator Visits Goddard, Discusses MMS

    NASA Image and Video Library

    2014-05-12

    NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. NASA Administrator Visits Goddard, Discusses MMS

    NASA Image and Video Library

    2017-12-08

    NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. NASA Administrator Visits Goddard, Discusses MMS

    NASA Image and Video Library

    2017-12-08

    NASA Administrator Charles Bolden got a firsthand look at work being done on the four Magnetospheric Multiscale (MMS) spacecraft during his visit to the agency's Goddard Space Flight Center in Greenbelt, Maryland, on May 12. Standing 20 feet high inside a Goddard clean room, the spacecraft were in their "four-stack" formation, similar to how they will be arranged inside their launch vehicle. The MMS spacecraft recently completed vibration testing. With MMS as a backdrop, Bolden and Goddard Center Director Chris Scolese discussed the mission, ground testing and preparations for launch with project personnel. Read more: go.nasa.gov/1jSza7E Credit: NASA/Goddard/Bill Hrybyk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, rips up the final contingency plan for the Cassini mission, Friday, Sept. 15, 2017 in mission control at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  16. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  17. Mariner-C Spacecraft Model

    NASA Image and Video Library

    1964-06-21

    A model of the Mariner-C spacecraft at the National Aeronautics and Space Administration (NASA) Lewis Research Center for a June 1964 Conference on New Technology. Mariner-C and Mariner-D were identical spacecraft designed by the Jet Propulsion Laboratory to flyby Mars and photograph the Martian surface. Mariner-C was launched on November 4, 1964, but the payload shroud did not jettison properly and the spacecraft’s battery power did not function. The mission ended unsuccessfully two days later. Mariner-D was launched as designed on November 28, 1964 and became the first successful mission to Mars. It was the first time a planet was photographed from space. Mariner-D’s 21 photographs revealed an inhospitable and barren landscape. The two Mariner spacecraft were launched by Atlas-Agena-D rockets. Lewis had taken over management of the Agena Program in October 1962. There had been five failures and two partial failures in the 17 Agena launches before being taken over by NASA Lewis. Lewis, however, oversaw 28 successful Agena missions between 1962 and 1968, including several Rangers and the Mariner Venus '67.

  18. NASA Spacecraft Sees 'Pac-Man' on Saturn Moon

    NASA Image and Video Library

    2017-12-08

    NASA release date March 29, 2010 The highest-resolution-yet temperature map and images of Saturn’s icy moon Mimas obtained by NASA’s Cassini spacecraft reveal surprising patterns on the surface of the small moon, including unexpected hot regions that resemble “Pac-Man” eating a dot, and striking bands of light and dark in crater walls. The left portion of this image shows Mimas in visible light, an image that has drawn comparisons to the "Star Wars" Death Star. The right portion shows the new temperature map, which resembles 1980s video game icon "Pac Man." To learn more about this image go to: www.nasa.gov/centers/goddard/news/features/2010/pac-man-m... Credit: NASA/JPL/Goddard/SWRI/SSI NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  19. NASA Medical Response to Human Spacecraft Accidents

    NASA Technical Reports Server (NTRS)

    Patlach, Robert

    2010-01-01

    Manned space flight is risky business. Accidents have occurred and may occur in the future. NASA's manned space flight programs, with all their successes, have had three fatal accidents, one at the launch pad and two in flight. The Apollo fire and the Challenger and Columbia accidents resulted in a loss of seventeen crewmembers. Russia's manned space flight programs have had three fatal accidents, one ground-based and two in flight. These accidents resulted in the loss of five crewmembers. Additionally, manned spacecraft have encountered numerous close calls with potential for disaster. The NASA Johnson Space Center Flight Safety Office has documented more than 70 spacecraft incidents, many of which could have become serious accidents. At the Johnson Space Center (JSC), medical contingency personnel are assigned to a Mishap Investigation Team. The team deploys to the accident site to gather and preserve evidence for the Accident Investigation Board. The JSC Medical Operations Branch has developed a flight surgeon accident response training class to capture the lessons learned from the Columbia accident. This presentation will address the NASA Mishap Investigation Team's medical objectives, planned response, and potential issues that could arise subsequent to a manned spacecraft accident. Educational Objectives are to understand the medical objectives and issues confronting the Mishap Investigation Team medical personnel subsequent to a human space flight accident.

  20. NASA's small planetary mission plan released

    NASA Astrophysics Data System (ADS)

    Jones, Richard M.

    A ten-page report just submitted to Congress outlines a new strategy for NASA planetary programs emphasizing small missions. If implemented, this plan would represent a shift away from large “flagship” missions that have characterized many programs of NASA's Solar System Exploration Division.There are a number of reasons for this shift in strategy. The current NASA appropriations bill requires “a plan to stimulate and develop small planetary or other space science projects, emphasizing those which could be accomplished by the academic or research communities.” Budgetary realities make it more difficult to fly large missions. There is also concern about a “significant gap” in data from planetary missions between 1998 and 2004.

  1. NASA Spacecraft Images New Mexico Wildfire

    NASA Image and Video Library

    2013-07-02

    NASA Terra spacecraft passed over the Silver Fire in western New Mexico on June 7, 2013. It has since consumed more than 137,000 acres of timber in a rugged area of the Gila National Forest that has not seen large fires for nearly a century.

  2. NASA's Terra Spacecraft Eyes Smoke Plumes from Massive Rim Fire Near Yosemite

    Atmospheric Science Data Center

    2014-05-15

    article title:  NASA's Terra Spacecraft Eyes Smoke Plumes from Massive Rim Fire Near Yosemite   ... on NASA's Terra spacecraft, showing extensive, brownish smoke. The imaged area measures 236 by 215 miles (380 by 346 kilometers). ...

  3. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, left, Cassini project scientist at JPL, Linda Spilker, second from left, director of NASA's Jet Propulsion Laboratory, Michael Watkins, center, director of NASA's Planetary Science Division, Jim Green, second from right, and director of the interplanetary network directorate at NASA's Jet Propulsion Laboratory, Keyur Patel, left, are seen in mission control, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  4. U.K. Flooding Captured by NASA Spacecraft

    NASA Image and Video Library

    2014-02-19

    This image acquired by NASA Terra spacecraft depicts the high water levels and flooding along the Thames River west of London as record-breaking rains covered the United Kingdom in January and February.

  5. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  6. Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session. Volume 2

    NASA Technical Reports Server (NTRS)

    Nahra, Henry (Compiler)

    2004-01-01

    Reports are presented from volume 2 of the conference titled Strategic Research to Enable NASA's Exploration Missions, poster session. Topics included spacecraft fire suppression and fire extinguishing agents,materials flammability, various topics on the effects of microgravity including crystal growth, fluid mechanics, electric particulate suspension, melting and solidification, bubble formation, the sloshing of liquid fuels, biological studies, separation of carbon dioxide and carbon monoxide for Mars ISRU.

  7. Analysis of a spacecraft life support system for a Mars mission.

    PubMed

    Czupalla, M; Aponte, V; Chappell, S; Klaus, D

    2004-01-01

    This report summarizes a trade study conducted as part of the Fall 2002 semester Spacecraft Life Support System Design course (ASEN 5116) in the Aerospace Engineering Sciences Department at the University of Colorado. It presents an analysis of current life support system technologies and a preliminary design of an integrated system for supporting humans during transit to and on the surface of the planet Mars. This effort was based on the NASA Design Reference Mission (DRM) for the human exploration of Mars [NASA Design Reference Mission (DRM) for Mars, Addendum 3.0, from the world wide web: http://exploration.jsc.nasa.gov/marsref/contents.html.]. The integrated design was broken into four subsystems: Water Management, Atmosphere Management, Waste Processing, and Food Supply. The process started with the derivation of top-level requirements from the DRM. Additional system and subsystem level assumptions were added where clarification was needed. Candidate technologies were identified and characterized based on performance factors. Trade studies were then conducted for each subsystem. The resulting technologies were integrated into an overall design solution using mass flow relationships. The system level trade study yielded two different configurations--one for the transit to Mars and another for the surface habitat, which included in situ resource utilization. Equivalent System Mass analyses were used to compare each design against an open-loop (non-regenerable) baseline system. c2003 International Astronautical Federation. Published by Elsevier Ltd. All rights reserved.

  8. NASA Mars 2020 Rover Mission: New Frontiers in Science

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    The Mars 2020 rover mission is the next step in NASAs robotic exploration of the red planet. The rover, based on the Mars Science Laboratory Curiosity rover now on Mars, will address key questions about the potential for life on Mars. The mission would also provide opportunities to gather knowledge and demonstrate technologies that address the challenges of future human expeditions to Mars.Like the Mars Science Laboratory rover, which has been exploring Mars since 2012, the Mars 2020 spacecraft will use a guided entry, descent, and landing system which includes a parachute, descent vehicle, and, during the provides the ability to land a very large, heavy rover on the surface of Mars in a more precise landing area. The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting NASAs challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

  9. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    A computer screen in mission control displays mission elapsed time for Cassini minutes after the spacecraft plunged into Saturn's atmosphere, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Space Environment Survivability of Live Organisms: Results From a NASA Astrobiology Nanosatellite Mission

    NASA Astrophysics Data System (ADS)

    Santos, Orlando; Ehrenfreund, Pascale; Mancinelli, Rocco; Nicholson, Wayne; Ricco, Antonio

    NASA's Organism/Organic Exposure to Orbital Stresses, or O/OREOS, nanosatellite is a sci-ence demonstration mission that showcases achievements in using hardware from a technology development program led by the Small Spacecraft Division at NASA's Ames Research Center, Moffett Field, California. Continuing Ames' development of triple-cube nanosatellite tech-nology and flight systems, which includes the successful GeneSat-1 and PharmaSat missions, O/OREOS is constructed from off-the-shelf commercial and NASA-designed parts to create a fully self-contained, automated, stable, light-weight space science laboratory with innovative environment and power control techniques; sensors to monitor the levels of pressure, temper-ature, humidity, radiation and acceleration; and a communications system able to regularly accept commands from the ground and transmit data back to Earth for scientific analysis. The overall goal of the O/OREOS mission is to demonstrate the capability to do low-cost sci-ence experiments on autonomous nanosatellites in space in support of the Astrobiology Small Payloads program under the Planetary Science Division of the Science Mission Directorate at NASA Headquarters. The spacecraft houses two science payloads: the Space Environment Viability of Organics (SEVO) experiment will monitor the stability and changes in four classes of organic matter (results presented at another COSPAR session); and the Space Environment Survivability of Live Organisms (SESLO) experiment (presented here). SESLO will charac-terize the growth, activity, health, and ability of microorganisms to adapt to the stresses of the space environment. The experiment is sealed in a vessel at one atmosphere and contains two types of microbes commonly found in salt ponds and soil, in a dried and dormant state: Halorubrum chaoviator and Bacillus subtilis. After it reaches orbit, the experiment will initiate and begin to rehydrate and grow three sets of the microbes at three different times

  12. NASA Spacecraft Eyes Severe Flooding in Argentina

    NASA Image and Video Library

    2013-04-05

    NASA Terra spacecraft captured this view of severe flooding in La Plata, Argentina, on April 4, 2013. Torrential rains and record flash flooding has killed more than 50 and left thousands homeless, according to news reports.

  13. Artist's Concept of Psyche Spacecraft with Five-Panel Array

    NASA Image and Video Library

    2017-05-23

    This artist's-concept illustration depicts the spacecraft of NASA's Psyche mission near the mission's target, the metal asteroid Psyche. The artwork was created in May 2017 to show the five-panel solar arrays planned for the spacecraft. The spacecraft's structure will include power and propulsion systems to travel to, and orbit, the asteroid. These systems will combine solar power with electric propulsion to carry the scientific instruments used to study the asteroid through space. The mission plans launch in 2022 and arrival at Psyche, between the orbits of Mars and Jupiter, in 2026. This selected asteroid is made almost entirely of nickel-iron metal. It offers evidence about violent collisions that created Earth and other terrestrial planets. https://photojournal.jpl.nasa.gov/catalog/PIA21499

  14. GRAIL Spacecraft Over the Moon Artist Concept

    NASA Image and Video Library

    2012-03-27

    An artist depiction of the twin spacecraft Ebb and Flow that comprise NASA GRAIL mission. As Ebb and Flow fly over areas of greater and lesser gravity surface features can influence the distance between the two spacecraft.

  15. Nap Time for New Horizons: NASA Spacecraft Enters Hibernation

    NASA Image and Video Library

    2017-04-11

    This is an overhead view of NASA's New Horizons full trajectory; the spacecraft has entered a hibernation phase on April 7 that will last until early September. The full article is available at https://photojournal.jpl.nasa.gov/catalog/PIA21589

  16. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants, and to review SMACs for various space-craft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee On Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMACs for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMACs for approximately 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the SMAC reports for 12 chemical contaminants that have been reviewed for

  17. Evaluating NASA Technology Programs in Terms of Private Sector Impacts

    NASA Technical Reports Server (NTRS)

    Greenberg, J. S.

    1984-01-01

    NASA is currently developing spacecraft technology for application to NASA scientific missions, military missions and commercial missions which are part of or form the basis of private sector business ventures. The justification of R&D programs that lead to spacecraft technology improvements encompasses the establishment of the benefits in terms of improved scientific knowledge that may result from new and/or improved NASA science missions, improved cost effectiveness of NASA and DOD missions and new or improved services that may be offered by the private sector (for example communications satellite services). It is with the latter of these areas that attention will be focused upon. In particular, it is of interest to establish the economic value of spacecraft technology improvements to private sector communications satellite business ventures. It is proposed to assess the value of spacecraft technology improvements in terms of the changes in cash flow and present value of cash flows, that may result from the use of new and/or improved spacecraft technology for specific types of private sector communications satellite missions (for example domestic point-to-point communication or direct broadcasting). To accomplish this it is necessary to place the new and/or improved technology within typical business scenarios and estimate the impacts of technical performance upon business and financial performance.

  18. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, is seen in mission control as he monitors the Cassini spacecraft, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, embrace after the Cassini spacecraft plunged into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  20. NASA Spacecraft Captures Fury of Russian Volcano

    NASA Image and Video Library

    2011-01-27

    This nighttime thermal infrared image from NASA Terra spacecraft shows Shiveluch volcano, one of the largest and most active volcanoes in Russia Kamchatka Peninsula; the bright, hot summit lava dome is evident in the center of the image.

  1. NASA Spacecraft Shows Location of China Quake

    NASA Image and Video Library

    2013-04-22

    This image from NASA Terra spacecraft highlights the epicenter of a powerful magnitude 6.6 earthquake which struck Sichuan Province in southwest China on April 20, 2013. Vegetation is displayed in red; clouds and snow are in white.

  2. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Department of Defense Recovery personnel and spacecraft technicians from NASA adn McDonnell Aircraft Corp., inspect Astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean.

  3. Deep Impact Spacecraft Collides With Comet Tempel 1 (Video)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After 172 days and 268 million miles of deep space travel, the NASA Deep Impact spacecraft successfully reached out and touched comet Tempel 1. The collision between the coffee table-sized space probe and city-sized comet occurred July 4, 2005 at 12:52 a.m. CDT. Comprised of images taken by the targeting sensor aboard the impactor probe, this movie shows the spacecraft approaching the comet up to just seconds before impact. Mission scientists expect Deep Impact to provide answers to basic questions about the formation of the solar system. Principal investigator for Deep Impact, Dr. Michael A'Hearn of the University of Maryland in College Park, is responsible for the mission, and project management is handled by the Jet Propulsion Laboratory in Pasadena, California. The program office at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama assisted the Science Mission Directorate at NASA Headquarters in Washington with program management, technology planning, systems assessment, flight assurance and public outreach. The spacecraft was built for NASA by Ball Aerospace & Technologies Corporation of Boulder, Colorado. (NASA/JPL-Caltech/UMD)

  4. Standardization and economics of nuclear spacecraft: Executive summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Feasibility and cost benefits of nuclear-powered standardized spacecraft were investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 2200 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification.

  5. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  6. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Duane Roth, of Cassini's navigation team, left, speaks with director of NASA's Jet Propulsion Laboratory, Michael Watkins, right, after Cassini's mission was declared over, Friday, Sept. 15, 2017 in mission control at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, technicians dressed in "bunny suits," or clean-room attire, begin working on the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  8. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight

  9. NASA Spacecraft Captures Image of Brazil Flooding

    NASA Image and Video Library

    2011-01-19

    On Jan. 18, 2011, NASA Terra spacecraft captured this 3-D perspective image of the city of Nova Friburgo, Brazil. A week of torrential rains triggered a series of deadly mudslides and floods. More details about this image at the Photojournal.

  10. Angry Indonesian Volcano Imaged by NASA Spacecraft

    NASA Image and Video Library

    2014-02-11

    This image acquired by NASA Terra spacecraft is of Mount Sinabung, a stratovolcano located in Indonesia. In late 2013, a lava dome formed on the summit. In early January 2014, the volcano erupted, and it erupted again in early February.

  11. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    NASA Technical Reports Server (NTRS)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  12. Unveiling Clues from Spacecraft Missions to Comets and Asteroids through Impact Experiments

    NASA Technical Reports Server (NTRS)

    Lederer, Susan M.; Jensen, Elizabeth; Fane, Michael; Smith, Douglas; Holmes, Jacob; Keller, Lindasy P.; Lindsay, Sean S.; Wooden, Diane H.; Whizin, Akbar; Cintala, Mark J.; hide

    2016-01-01

    The Deep Impact Spacecraft mission was the first to boldly face the challenge of impacting the surface of a comet, 9P/Tempel 1, to investigate surface and subsurface 'pristine' materials. The Stardust mission to Comet 81P/Wild 2 brought back an exciting surprise: shocked minerals which were likely altered during the comet's lifetime. Signatures of shock in meteorites also suggest that the violent past of the solar system has left our small bodies with signatures of impacts and collisions. These results have led to the question: How have impacts affected the evolutionary path taken by comets and asteroids, and what signatures can be observed? A future planetary mission to a near-Earth asteroid is proposing to take the next steps toward understanding small bodies through impacts. The mission would combine an ESA led AIM (Asteroid Impact Mission) with a JHU/APL led DART (Double Asteroid Redirect Mission) spacecraft to rendezvous with binary near-Earth asteroid 65803 Didymus (1996 G2). DART would impact the smaller asteroid, 'Didymoon' while AIM would characterize the impact and the larger Didymus asteroid. With these missions in mind, a suite of experiments have been conducted at the Experimental Impact Laboratory (EIL) at NASA Johnson Space Center to investigate the effects that collisions may have on comets and asteroids. With the new capability of the vertical gun to cool targets in the chamber through the use of a cold jacket fed by liquid nitrogen, the effects of target temperature have been the focus of recent studies. Mg-rich forsterite and enstatite (orthopyroxene), diopside (monoclinic pyroxene) and magnesite (Mg-rich carbonate) were impacted. Target temperatures ranged from 25 deg to -100 deg, monitored by connecting thermocouples to the target container. Impacted targets were analyzed with a Fourier Transform Infrared Spectrometer (FTIR) and Transmission Electron Microscope (TEM). Here we present the evidence for impact-induced shock in the minerals through

  13. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Cassini program manager at JPL, Earl Maize, watches monitors in mission control of the Space Flight Operations Center as the Cassini spacecraft begins downlink data through NASA's Deep Space Network, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. SOHO spacecraft observations interrupted

    NASA Astrophysics Data System (ADS)

    1998-06-01

    Efforts to re-establish nominal operations did not succeed and telemetry was lost. Subsequent attempts using the full NASA Deep Space Network capabilities have so far not been successful. ESA and NASA engineers are continuing with the task of re-establishing contact with the spacecraft. The SOHO mission is a joint undertaking of ESA and NASA. The spacecraft was launched aboard an Atlas II rocket from Florida on 2 December 1995 from the Cape Canaveral Air Station. Mission operations are directed from the control center at NASA Goddard Space Flight Center in Maryland, USA. In April 1998 SOHO successfully completed its nominal two-year mission to study the Sun's atmosphere, surface and interior. Major science highlights include the detection of rivers of plasma beneath the surface of the sun; the discovery of a magnetic "carpet" on the solar surface that seems to account for a substantial part of the energy that is needed to cause the very high temperatures of the corona, the Sun's outermost layer; the first detection of flare-induced solar quakes; the discovery of more than 50 sungrazing comets; the most detailed view to date of the solar atmosphere; and spectacular images and movies of Coronal Mass Ejections, which are being used to improve the ability to forecast space weather.

  15. NASA Spacecraft Depicts More Flooding in Thailand

    NASA Image and Video Library

    2011-11-10

    NASA Terra spacecraft acquired this image of flooding from the Chao Phraya River, Thailand on Nov. 8, 2011. The muddy water that had overflowed the banks of the river, flooding agricultural fields and villages, is seen in dark blue and blue-gray.

  16. NASA Juno Spacecraft Taking Shape in Denver

    NASA Image and Video Library

    2011-03-07

    This image shows NASA Juno spacecraft undergoing environmental testing at Lockheed Martin Space Systems on Jan. 26, 2011. All 3 solar array wings are installed and stowed, and the large high-gain antenna is in place on the top of the avionics vault.

  17. The NASA X-Ray Mission Concepts Study

    NASA Technical Reports Server (NTRS)

    Petre, Robert; Ptak, A.; Bookbinder, J.; Garcia, M.; Smith, R.; Bautz, M.; Bregman, J.; Burrows, D.; Cash, W.; Jones-Forman, C.; hide

    2012-01-01

    The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.

  18. EPO in NASA's Science Mission Directorate

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, A.; Cooper, L. P.

    2005-05-01

    The Science Mission Directorate (SMD) at NASA believes very strongly in education and public outreach (EPO) and has embedded such programs within its missions. There are also some funding opportunities that are available outside the mission context. We will provide an overview of the various funding opportunities available through the SMD at NASA to carry out EPO programs. We will introduce speakers who have won such EPO awards and they will discuss their experience with writing the proposals and carrying out their projects.

  19. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-11

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen on launch Pad-0A, Friday, July 11, 2014, at NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  20. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-12

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen, Saturday, July 12, 2014, at launch Pad-0A of NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  1. An Internet Protocol-Based Software System for Real-Time, Closed-Loop, Multi-Spacecraft Mission Simulation Applications

    NASA Technical Reports Server (NTRS)

    Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.

  2. Leo Spacecraft Charging Design Guidelines: A Proposed NASA Standard

    NASA Technical Reports Server (NTRS)

    Hillard, G. B.; Ferguson, D. C.

    2004-01-01

    Over the past decade, Low Earth Orbiting (LEO) spacecraft have gradually required ever-increasing power levels. As a rule, this has been accomplished through the use of high voltage systems. Recent failures and anomalies on such spacecraft have been traced to various design practices and materials choices related to the high voltage solar arrays. NASA Glenn has studied these anomalies including plasma chamber testing on arrays similar to those that experienced difficulties on orbit. Many others in the community have been involved in a comprehensive effort to understand the problems and to develop practices to avoid them. The NASA Space Environments and Effects program, recognizing the timeliness of this effort, commissioned and funded a design guidelines document intended to capture the current state of understanding. This document, which was completed in the spring of 2003, has been submitted as a proposed NASA standard. We present here an overview of this document and discuss the effort to develop it as a NASA standard.

  3. Failures and anomalies attributed to spacecraft charging

    NASA Technical Reports Server (NTRS)

    Leach, R. D.; Alexander, M. B. (Editor)

    1995-01-01

    The effects of spacecraft charging can be very detrimental to electronic systems utilized in space missions. Assuring that subsystems and systems are protected against charging is an important engineering function necessary to assure mission success. Spacecraft charging is expected to have a significant role in future space activities and programs. Objectives of this reference publication are to present a brief overview of spacecraft charging, to acquaint the reader with charging history, including illustrative cases of charging anomalies, and to introduce current spacecraft charging prevention activities of the Electromagnetics and Environments Branch, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).

  4. NASA Spacecraft Spots Signs of Erupting Russian Volcano

    NASA Image and Video Library

    2014-05-20

    Winter still grips the volcanoes on Russia Kamchatka peninsula. NASA Terra spacecraft acquired this image showing the mantle of white, disturbed by dark ash entirely covering Sheveluch volcano from recent eruptions.

  5. Education and Public Outreach for NASA's EPOXI Mission.

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Crow, C. A.; Behne, J.; Brown, R. N.; Counley, J.; Livengood, T. A.; Ristvey, J. D.; Warner, E. M.

    2009-09-01

    NASA's EPOXI mission is reusing the Deep Impact (DI) flyby spacecraft to study comets and extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission extrasolar planets transiting their parent stars were observed to gain further knowledge and understanding of planetary systems. Observations of Earth also allowed for characterization of Earth as an extrasolar planet. A movie of a lunar transit of the Earth created from EPOCh images and links to existing planet finding activities from other NASA missions are available on the EPOXI website. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comet properties and formation by observing comet Hartley 2 in November 2010. The EPOXI Education and Public Outreach (E/PO) program is both creating new materials and updating and modifying existing Deep Impact materials based on DI mission results. Comparing Comets is a new educational activity under development that will guide students in conducting analyses of comet surface features similar to those the DIXI scientists will perform after observing comet Hartley 2. A new story designed to stimulate student creativity was developed in alignment with national educational standards. EPOXI E/PO also funded Family Science Night (FSN), a program bringing together students, families, and educators for an evening at the National Air and Space Museum in Washington, DC. FSN events include time for families to explore the museum, a presentation by a space scientist, and an astronomy themed IMAX film. Nine events were held during the 2008-2009 school year with a total attendance of 3,145 (attendance since inception reached 44,732). Half of attendance is reserved for schools with high percentages of underrepresented minorities. EPOXI additionally offers a bi-monthly newsletter to keep the public, teachers, and space enthusiasts updated on current mission activities. For more

  6. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In Astrotech's Payload Processing Facility, technicians help secure the Dawn spacecraft onto a moveable stand. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  7. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In Astrotech's Payload Processing Facility, an overhead crane lifts the Dawn spacecraft from its transporter. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C

  8. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael (Editor); Shaw, Tianna

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve

  9. Spacecraft Coming out of Protective Storage

    NASA Image and Video Library

    2017-08-28

    Members of the InSight mission's assembly, test and launch operations (ATLO) team remove the "birdcage" from NASA's InSight spacecraft, in this photo taken June 19, 2017, in a Lockheed Martin clean room facility in Littleton, Colorado. The birdcage is the inner layer of protective housing that shielded the spacecraft while in storage following a postponement of launch. It is made of a film that dissipates electrostatic conditions to protect the spacecraft from contamination. The InSight mission (for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is scheduled to launch in May 2018 and land on Mars Nov. 26, 2018. It will investigate processes that formed and shaped Mars and will help scientists better understand the evolution of our inner solar system's rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21843

  10. NASA Terra Spacecraft Images Russian Volcanic Eruption

    NASA Image and Video Library

    2013-01-16

    Plosky Tolbachik volcano in Russia far eastern Kamchatka peninsula erupted on Nov. 27, 2012, for the first time in 35 years, sending clouds of ash to the height of more than 9,800 feet 3,000 meters in this image from NASA Terra spacecraft.

  11. Using NASA's Space Launch System to Enable Game Changing Science Mission Designs

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2013-01-01

    NASA's Marshall Space Flight Center is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will help restore U.S. leadership in space by carrying the Orion Multi-Purpose Crew Vehicle and other important payloads far beyond Earth orbit. Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids, Mars, and the outer solar system. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required with several gravity-assist planetary fly-bys to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip times and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as monolithic telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  12. Mission operations update for the restructured Earth Observing System (EOS) mission

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  13. Technology Development for NASA Mars Missions

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    2005-01-01

    A viewgraph presentation on technology development for NASA Mars Missions is shown. The topics include: 1) Mars mission roadmaps; 2) Focus and Base Technology programs; 3) Technology Infusion; and 4) Feed Forward to Future Missions.

  14. NASA Spacecraft Captures Effects of U.S. Drought

    NASA Image and Video Library

    2012-09-06

    Two satellite images acquired by NASA Terra spacecraft, obtained about 10 years apart, clearly illustrate the effects of the near-historic drought conditions in southwestern Kansas. Farmers are among the hardest hit.

  15. Deep Impact Sequence Planning Using Multi-Mission Adaptable Planning Tools With Integrated Spacecraft Models

    NASA Technical Reports Server (NTRS)

    Wissler, Steven S.; Maldague, Pierre; Rocca, Jennifer; Seybold, Calina

    2006-01-01

    The Deep Impact mission was ambitious and challenging. JPL's well proven, easily adaptable multi-mission sequence planning tools combined with integrated spacecraft subsystem models enabled a small operations team to develop, validate, and execute extremely complex sequence-based activities within very short development times. This paper focuses on the core planning tool used in the mission, APGEN. It shows how the multi-mission design and adaptability of APGEN made it possible to model spacecraft subsystems as well as ground assets throughout the lifecycle of the Deep Impact project, starting with models of initial, high-level mission objectives, and culminating in detailed predictions of spacecraft behavior during mission-critical activities.

  16. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  17. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry T.

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

  18. Standard spacecraft economic analysis. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Harris, E. D.; Large, J. P.

    1976-01-01

    A study of the comparative program costs associated with use of various standardized spacecraft for Air Force space test program missions to be flown on the space shuttle during the 1980-1990 time period is reviewed. The first phase of the study considered a variety of procurement mixes composed of existing or programmed NASA standard spacecraft designs and a Air Force standard spacecraft design. The results were briefed to a joint NASA/Air Force audience on July 11, 1976. The second phase considered additional procurement options using an upgraded version of an existing NASA design. The results of both phases are summarized.

  19. NASA's OSIRIS-REx Spacecraft In Thermal Vacuum Testing

    NASA Image and Video Library

    2017-12-08

    The OSIRIS-REx spacecraft being lifted into the thermal vacuum chamber at Lockheed Martin for environmental testing. Credits: Lockheed Martin Read more: www.nasa.gov/feature/goddard/2016/osiris-rex-in-thermal-vac

  20. Enabling Advanced Automation in Spacecraft Operations with the Spacecraft Emergency Response System

    NASA Technical Reports Server (NTRS)

    Breed, Julie; Fox, Jeffrey A.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    True autonomy is the Holy Grail of spacecraft mission operations. The goal of launching a satellite and letting it manage itself throughout its useful life is a worthy one. With true autonomy, the cost of mission operations would be reduced to a negligible amount. Under full autonomy, any problems (no matter the severity or type) that may arise with the spacecraft would be handled without any human intervention via some combination of smart sensors, on-board intelligence, and/or smart automated ground system. Until the day that complete autonomy is practical and affordable to deploy, incremental steps of deploying ever-increasing levels of automation (computerization of once manual tasks) on the ground and on the spacecraft are gradually decreasing the cost of mission operations. For example, NASA's Goddard Space Flight Center (NASA-GSFC) has been flying spacecraft with low cost operations for several years. NASA-GSFC's SMEX (Small Explorer) and MIDEX (Middle Explorer) missions have effectively deployed significant amounts of automation to enable the missions to fly predominately in 'light-out' mode. Under light-out operations the ground system is run without human intervention. Various tools perform many of the tasks previously performed by the human operators. One of the major issues in reducing human staff in favor of automation is the perceived increased in risk of losing data, or even losing a spacecraft, because of anomalous conditions that may occur when there is no one in the control center. When things go wrong, missions deploying advanced automation need to be sure that anomalous conditions are detected and that key personal are notified in a timely manner so that on-call team members can react to those conditions. To ensure the health and safety of its lights-out missions, NASA-GSFC's Advanced Automation and Autonomy branch (Code 588) developed the Spacecraft Emergency Response System (SERS). The SERS is a Web-based collaborative environment that enables

  1. Data catalog series for space science and applications flight missions. Volume 1A: Descriptions of planetary and heliocentric spacecraft and investigations, second edition

    NASA Technical Reports Server (NTRS)

    Cameron, Winifred Sawtell (Editor); Vostreys, Robert W. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also included.

  2. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen, speaks to NASA Social attendees about the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. Flooding on the Mississippi River Captured by NASA Spacecraft

    NASA Image and Video Library

    2016-01-20

    This image acquired on Jan. 17, 2016 by NASA Terra spacecraft shows major flooding along the Mississippi River, affecting Missouri, Illinois, Arkansas and Tennessee. As of January 17, flood warnings were issued for the area around Baton Rouge, Louisiana, as the river crested at 43.3 feet (13.1 meters), 8 feet (2.4 meters) above flood stage. Shipping and industrial activities were significantly affected; low-lying areas were flooded, and agricultural operations were impacted on the west side of the river. This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra spacecraft was acquired Jan. 17, 2016, covers an area of 23.6 by 23.6 miles (38 by 38 kilometers), and is located at 30.6 degrees north, 91.3 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20364

  4. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-12

    The full Moon sets in the fog behind the Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, Saturday, July 12, 2014, launch Pad-0A, NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  5. Orbital-2 Mission

    NASA Image and Video Library

    2014-07-12

    The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, is seen during sunrise, Saturday, July 12, 2014, at launch Pad-0A of NASA's Wallops Flight Facility in Virginia. The Antares will launch with the Cygnus spacecraft filled with over 3,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-2 mission is Orbital Sciences' second contracted cargo delivery flight to the space station for NASA. Photo Credit: (NASA/Bill Ingalls)

  6. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    Cassini program manager at JPL, Earl Maize, is seen in mission control of the Space Flight Operations Center as the Cassini team wait for the spacecraft to establish a connection with NASA's Deep Space Network to begin the final playback of its data recorder, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  7. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Alan Stern, Principal Investigator on NASA's New Horizons Mission, left, delivers closing remarks following a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  8. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Alan Stern, Principal Investigator on NASA's New Horizons Mission, delivers closing remarks following a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  9. The Future of NASA's Deep Space Network and Applications to Planetary Probe Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, Leslie J.; Preston, Robert A.; Vrotsos, Peter

    2010-01-01

    NASA's Deep Space Network (DSN) has been an invaluable tool in the world's exploration of space. It has served the space-faring community for more than 45 years. The DSN has provided a primary communication pathway for planetary probes, either through direct- to-Earth links or through intermediate radio relays. In addition, its radiometric systems are critical to probe navigation and delivery to target. Finally, the radio link can also be used for direct scientific measurement of the target body ('radio science'). This paper will examine the special challenges in supporting planetary probe missions, the future evolution of the DSN and related spacecraft technology, the advantages and disadvantages of radio relay spacecraft, and the use of the DSN radio links for navigation and scientific measurements.

  10. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Castillo-Rogez, Julie; Dervan, Jared

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellant-less thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA’s Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA’s of interest for possible future human exploration. The NEA Scout spacecraft is housed in a 6U CubeSat-form factor and utilizes an 86 square meter solar sail for a total mass less than 14 kilograms. The mission is in partnership with the Jet Propulsion Laboratory with support from Langley Research Center and science participants from various institutions. NEA Scout will be launched on the maiden flight of the Space Launch System in 2019. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and flown on The Planetary Society’s Lightsail-A. Four approximately-7-meter stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor driven and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar

  11. Spacecraft Hybrid Control At NASA: A Look Back, Current Initiatives, and Some Future Considerations

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheels failures on aging, but still scientifically productive, NASA spacecraft. This paper describes the highlights of the first NASA Cross-Center Hybrid Control Workshop that was held in Greenbelt, Maryland in April of 2013 under the sponsorship of the NASA Engineering and Safety Center (NESC). A brief historical summary of NASA's past experiences with spacecraft mixed actuator hybrid attitude control approaches, some of which were implemented on-orbit, will be provided. This paper will also convey some of the lessons learned and best practices captured at that workshop. Some relevant recent and current hybrid control activities will be described with an emphasis on work in support of a repurposed Kepler spacecraft. Specific technical areas for future considerations regarding spacecraft hybrid control will also be identified.

  12. Engineering Feasibility and Trade Studies for the NASA/VSGC MicroMaps Space Mission

    NASA Technical Reports Server (NTRS)

    Abdelkhalik, Ossama O.; Nairouz, Bassem; Weaver, Timothy; Newman, Brett

    2003-01-01

    Knowledge of airborne CO concentrations is critical for accurate scientific prediction of global scale atmospheric behavior. MicroMaps is an existing NASA owned gas filter radiometer instrument designed for space-based measurement of atmospheric CO vertical profiles. Due to programmatic changes, the instrument does not have access to the space environment and is in storage. MicroMaps hardware has significant potential for filling a critical scientific need, thus motivating concept studies for new and innovative scientific spaceflight missions that would leverage the MicroMaps heritage and investment, and contribute to new CO distribution data. This report describes engineering feasibility and trade studies for the NASA/VSGC MicroMaps Space Mission. Conceptual studies encompass: 1) overall mission analysis and synthesis methodology, 2) major subsystem studies and detailed requirements development for an orbital platform option consisting of a small, single purpose spacecraft, 3) assessment of orbital platform option consisting of the International Space Station, and 4) survey of potential launch opportunities for gaining assess to orbit. Investigations are of a preliminary first-order nature. Results and recommendations from these activities are envisioned to support future MicroMaps Mission design decisions regarding program down select options leading to more advanced and mature phases.

  13. New Earth-Observing Small Satellite Missions on This Week @NASA – November 11, 2016

    NASA Image and Video Library

    2016-11-11

    NASA this month is scheduled to launch the first of six next-generation, Earth-observing small satellites. They’ll demonstrate innovative new approaches for measuring hurricanes, Earth's energy budget – which is essential to understanding greenhouse gas effects on climate, aerosols, and other atmospheric factors affecting our changing planet. These small satellites range in size from a loaf of bread to a small washing machine, and weigh as little as a few pounds to about 400 pounds. Their size helps keeps development and launch costs down -- because they often hitchhike to space as a “secondary payload” on another mission’s rocket. Small spacecraft and satellites are helping NASA advance scientific and human exploration, test technologies, reduce the cost of new space missions, and expand access to space. Also, CYGNSS Hurricane Mission Previewed, Expedition 50-51 Crew Prepares for Launch in Kazakhstan, and Orion Underway Recovery Test 5 Completed!

  14. Mission description and in-flight operations of ERBE instruments on ERBS, NOAA 9, and NOAA 10 spacecraft

    NASA Technical Reports Server (NTRS)

    Weaver, William L.; Bush, Kathryn A.; Degnan, Keith T.; Howerton, Clayton E.; Tolson, Carol J.

    1992-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by NASA, and NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the second in a series that describes the ERBE mission, and data processing and validation procedures. This paper describes the spacecraft and instrument operations for the second full year of in-orbit operations, which extend from February 1986 through January 1987. Validation and archival of radiation measurements made by ERBE instruments during this second year of operation were completed in July 1991. This period includes the only time, November 1986 through January 1987, during which all ERBE instruments aboard the ERBE, NOAA 9, and NOAA 10 spacecraft were simultaneously operational. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  15. Pluto Express: Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Giuliano, J. A.

    1996-01-01

    Pluto is the smallest, outermost and last-discovered planet in the Solar System and the only one that has never been visited by a spacecraft from Earth. Pluto and its relatively large satellite Charon are the destinations of a proposed spacecraft mission for the next decade, being developed for NASA by scientists and engineers at NASA's Jet Propulsion Laboratory.

  16. NASA Spacecraft Spots Large Eruption of Russian Volcano

    NASA Image and Video Library

    2012-06-07

    NASA Terra spacecraft acquired this image on June 2, 2012 of Sheveluch, one of the most active volcanoes on the Kamchatka peninsula, with frequent explosive events that can disrupt air traffic over the northern Pacific.

  17. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wears a "bunny suit," or clean-room attire, next to the Dawn spacecraft, which will be unbagged and undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  18. Anomaly Trends for Missions to Mars: Mars Global Surveyor and Mars Odyssey

    NASA Technical Reports Server (NTRS)

    Green, Nelson W.; Hoffman, Alan R.

    2008-01-01

    Conducted as a part of NASA Ultra-Reliability effort: Goal is to design for increased reliability in all NASA missions. Desire is to increase reliability by a factor of 10. Study provides a baseline for current technology. Analyzed anomalies for spacecraft orbiting Mars. Long lived spacecraft. Comparison with current rover missions and past orbiters. Looked for trends to assist design of future missions.

  19. Feasibility of Reusable Continuous Thrust Spacecraft for Cargo Resupply Missions to Mars

    NASA Astrophysics Data System (ADS)

    Rabotin, C. B.

    Continuous thrust propulsion systems benefit from a much greater efficiency in vacuum than chemical rockets, at the expense of lower instantaneous thrust and high power requirements. The satellite telecommunications industry, known for greatly emphasizing heritage over innovation, now uses electric propulsion for station keeping on a number of spacecraft, and for orbit raising for some smaller satellites, such as the Boeing 702SP platform. Only a few interplanetary missions have relied on continuous thrust for most of their mission, such as ESA's 367 kg SMART-1 and NASA's 1217 kg Dawn mission. The high specific impulse of these continuous thrust engines should make them suitable for transportation of heavy payloads to inner solar system destinations in such a way to limit the dependency on heavy rocket launches. Additionally, such spacecraft should be able to perform orbital insertions at destination in order to deliver the cargo directly in a desired orbit. An example application is designing round-trip missions to Mars to support exploration and eventually colonization. This research investigates the feasibility of return journeys to Mars based on the performance of existing or in-development continuous thrust propulsion systems. In order to determine the business viability of such missions, an emphasis is made on the time of flight during different parts of the mission, the relative velocity with respect to the destination planet, and the fuel requirements. The study looks at the applicability for interplanetary mission design of simple control laws for efficient correction of orbital elements, and of thrusting purely in velocity or anti-velocity direction. The simulations explore different configurations of continuous thrusting technologies using a patched-conics approach. In addition, all simulation scenarios facilitate escape from planetary gravity wells as the initial spacecraft orbit is highly elliptical, both around the Earth and around Mars. This work

  20. Message Mode Operations for Spacecraft: A Proposal for Operating Spacecraft During Cruise and Mitigating the Network Loading Crunch

    NASA Technical Reports Server (NTRS)

    Greenberg, Ed; MacMedan, Marv; Kazz, Greg; Kallemeyn, Pieter

    2000-01-01

    The NASA Deep Space Network (DSN) is a world-class spacecraft tracking facility with stations located in Spain, Australia and USA, servicing Deep Space Missions of many space agencies. The current system of scheduling spacecraft during cruise for multiple 8 hour tracking sessions per week currently leads to an overcommitted DSN. Studies indicate that future projected mission demands upon the Network will only make the loading problem worse. Therefore, a more efficient scheduling of DSN resources is necessary in order to support the additional network loading envisioned in the next few years: The number of missions is projected to increase from 25 in 1998 to 34 by 2001. In fact given the challenge of the NASA administrator, Dan Goldin, of launching 12 spacecraft per year, the DSN would be tracking approximately 90 spacecraft by 2010. Currently a large amount of antenna time and network resources are subscribed by a project in order to have their mission supported during the cruise phase. The recently completed Mars Pathfinder mission was tracked 3 times a week (8 hours/day) during the majority of its cruise to Mars. This paper proposes an innovative approach called Message Mode Operations (MMO) for mitigating the Network loading problem while continuing to meet the tracking, reporting, time management, and scheduling requirements of these missions during Cruise while occupying very short tracking times. MMO satisfies these requirements by providing the following services: Spacecraft Health and Welfare Monitoring Service Command Delivery Service Adaptive Spacecraft Scheduling Service Orbit Determination Service Time Calibration Service Utilizing more efficient engineering telemetry summarization and filtering techniques on-board the spacecraft and collapsing the navigation requirements for Doppler and Range into shorter tracks, we believe spacecraft can be adequately serviced using short 10 to 30 minute tracking sessions. This claim assumes that certain changes would

  1. ARM Spacecraft Illustration

    NASA Image and Video Library

    2016-09-20

    This graphic depicts the Asteroid Redirect Vehicle conducting a flyby of its target asteroid. During these flybys, the Asteroid Redirect Mission (ARM) would come within 0.6 miles (1 kilometer), generating imagery with resolution of up to 0.4 of an inch (1 centimeter) per pixel. The robotic segment of ARM will demonstrate advanced, high-power, high-throughput solar electric propulsion; advanced autonomous precision proximity operations at a low-gravity planetary body; and controlled touchdown and liftoff with a multi-ton mass. The crew segment of the mission will include spacewalk activities for sample selection, extraction, containment and return; and mission operations of integrated robotic and crewed vehicle stack -- all key components of future in-space operations for human missions to the Mars system. After collecting a multi-ton boulder from the asteroid, the robotic spacecraft will redirect the boulder to a crew-accessible orbit around the moon, where NASA plans to conduct a series of proving ground missions in the 2020s that will help validate capabilities needed for NASA's Journey to Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21062

  2. Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing

    NASA Technical Reports Server (NTRS)

    Doyle, Richard; Bergman, Larry; Some, Raphael; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael

    2013-01-01

    Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and the mission; it can be aptly viewed as a "technology multiplier" in that advances in onboard computing provide dramatic improvements in flight functions and capabilities across the NASA mission classes, and will enable new flight capabilities and mission scenarios, increasing science and exploration return per mission-dollar.

  3. NASA Spacecraft Images Severe Flooding in South Asia

    NASA Image and Video Library

    2011-09-27

    NASA Terra spacecraft captured this image of the city of Jhudo, Pakistan, and surrounding countryside on Sept. 24, 2011. Torrential monsoon rains in south Asia have displaced hundreds of thousands of residents in India, Pakistan and Thailand.

  4. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster is seen during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Computer-automated evolution of an X-band antenna for NASA's Space Technology 5 mission.

    PubMed

    Hornby, Gregory S; Lohn, Jason D; Linden, Derek S

    2011-01-01

    Whereas the current practice of designing antennas by hand is severely limited because it is both time and labor intensive and requires a significant amount of domain knowledge, evolutionary algorithms can be used to search the design space and automatically find novel antenna designs that are more effective than would otherwise be developed. Here we present our work in using evolutionary algorithms to automatically design an X-band antenna for NASA's Space Technology 5 (ST5) spacecraft. Two evolutionary algorithms were used: the first uses a vector of real-valued parameters and the second uses a tree-structured generative representation for constructing the antenna. The highest-performance antennas from both algorithms were fabricated and tested and both outperformed a hand-designed antenna produced by the antenna contractor for the mission. Subsequent changes to the spacecraft orbit resulted in a change in requirements for the spacecraft antenna. By adjusting our fitness function we were able to rapidly evolve a new set of antennas for this mission in less than a month. One of these new antenna designs was built, tested, and approved for deployment on the three ST5 spacecraft, which were successfully launched into space on March 22, 2006. This evolved antenna design is the first computer-evolved antenna to be deployed for any application and is the first computer-evolved hardware in space.

  6. NASA Tropospheric Emission Spectrometer TES Instrument Onboard Aura

    NASA Image and Video Library

    2004-04-01

    Technicians install NASA's Tropospheric Emission Spectrometer (TES) instrument on NASA's Aura spacecraft prior to launch. Launched in July 2004 and designed to fly for two years, the TES mission is currently in an extended operations phase. Mission managers at NASA's Jet Propulsion Laboratory, Pasadena, California, are evaluating an alternate way to collect and process science data from the Tropospheric Emission Spectrometer (TES) instrument on NASA's Aura spacecraft following the age-related failure of a critical instrument component. TES is an infrared sensor designed to study Earth's troposphere, the lowermost layer of Earth's atmosphere, which is where we live. The remainder of the TES instrument, and the Aura spacecraft itself, are operating as expected, and TES continues to collect science data. TES is one of four instruments on Aura, three of which are still operating. http://photojournal.jpl.nasa.gov/catalog/PIA15608

  7. Autonomous Spacecraft Communication Interface for Load Planning

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  8. Mars Science Laboratory Spacecraft Assembled for Testing

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The major components of NASA's Mars Science Laboratory spacecraft cruise stage atop the aeroshell, which has the descent stage and rover inside were connected together in October 2008 for several weeks of system testing, including simulation of launch vibrations and deep-space environmental conditions.

    These components will be taken apart again, for further work on each of them, after the environmental testing. The Mars Science Laboratory spacecraft is being assembled and tested for launch in 2011.

    This image was taken inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif., which manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL is a division of the California Institute of Technology.

  9. Component Verification and Certification in NASA Missions

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Penix, John; Norvig, Peter (Technical Monitor)

    2001-01-01

    Software development for NASA missions is a particularly challenging task. Missions are extremely ambitious scientifically, have very strict time frames, and must be accomplished with a maximum degree of reliability. Verification technologies must therefore be pushed far beyond their current capabilities. Moreover, reuse and adaptation of software architectures and components must be incorporated in software development within and across missions. This paper discusses NASA applications that we are currently investigating from these perspectives.

  10. NASA Spacecraft Images Some of Earth Newest Real

    NASA Image and Video Library

    2012-01-20

    In December, 2011, NASA Terra spacecraft captured this image of a new volcanic island forming in the Red Sea. This region is part of the Red Sea Rift where the African and Arabian tectonic plates are pulling apart.

  11. NASA Spacecraft Images One of Earth Iceberg Incubators

    NASA Image and Video Library

    2012-04-13

    Acquired by NASA Terra spacecraft, this image shows the west coast of Greenland, one of Earth premiere incubators for icebergs -- large blocks of land ice that break off from glaciers or ice shelves and float in the ocean.

  12. Impact of Space Transportation System on planetary spacecraft and missions design

    NASA Technical Reports Server (NTRS)

    Barnett, P. M.

    1975-01-01

    Results of Jet Propulsion Laboratory (JPL) activities to define and understand alternatives for planetary spacecraft operations with the Space Transportation System (STS) are summarized. The STS presents a set of interfaces, operational alternatives, and constraints in the prelaunch, launch, and near-earth flight phases of a mission. Shuttle-unique features are defined and coupled with JPL's existing program experience to begin development of operationally efficient alternatives, concepts, and methods for STS-launched missions. The time frame considered begins with the arrival of the planetary spacecraft at Kennedy Space Center and includes prelaunch ground operations, Shuttle-powered flight, and near-earth operations, up to acquisition of the spacecraft signal by the Deep Space Network. The areas selected for study within this time frame were generally chosen because they represent the 'driving conditions' on planetary-mission as well as system design and operations.

  13. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Nechnical producer for NASA's Eyes at JPL, Jason Craig discusses the Cassini mission as seen through the NASA Eyes program during a NASA Social, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. An Architecture to Enable Autonomous Control of Spacecraft

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Dever, Timothy P.; Soeder, James F.; George, Patrick J.; Morris, Paul H.; Colombano, Silvano P.; Frank, Jeremy D.; Schwabacher, Mark A.; Wang, Liu; LawLer, Dennis

    2014-01-01

    Autonomy is required for manned spacecraft missions distant enough that light-time communication delays make ground-based mission control infeasible. Presently, ground controllers develop a complete schedule of power modes for all spacecraft components based on a large number of factors. The proposed architecture is an early attempt to formalize and automate this process using on-vehicle computation resources. In order to demonstrate this architecture, an autonomous electrical power system controller and vehicle Mission Manager are constructed. These two components are designed to work together in order to plan upcoming load use as well as respond to unanticipated deviations from the plan. The communication protocol was developed using "paper" simulations prior to formally encoding the messages and developing software to implement the required functionality. These software routines exchange data via TCP/IP sockets with the Mission Manager operating at NASA Ames Research Center and the autonomous power controller running at NASA Glenn Research Center. The interconnected systems are tested and shown to be effective at planning the operation of a simulated quasi-steady state spacecraft power system and responding to unexpected disturbances.

  15. New Small Satellite Missions Launching To Space

    NASA Image and Video Library

    2017-11-07

    On November 11, 2017, NASA will launch four new small satellite missions to space from the Wallops Flight Facility in Virginia. Each mission will demonstrate critical new capabilities for small spacecraft. More info: https://go.nasa.gov/2isTr8q

  16. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  17. Atmosphere explorer missions C, D, and E. Spacecraft experiment interface definition study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Atmosphere Explorer Missions C, D, & E Spacecraft/Experiment Interface Definition Study is discussed. The objectives of the study included an analysis of the accommodation requirements of the experiments for the three missions, an assessment of the overall effect of these requirements on the spacecraft system design and performance, and the detailed definition of all experiment/spacecraft electrical, mechanical, and environmental interfaces. In addition, the study included the identification and definition of system characteristics required to ensure compatibility with the consolidated STADAN and MSFN communications networks.

  18. Bounding the Spacecraft Atmosphere Design Space for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Perka, Alan T.; Duffield, Bruce E.; Jeng, Frank F.

    2005-01-01

    The selection of spacecraft and space suit atmospheres for future human space exploration missions will play an important, if not critical, role in the ultimate safety, productivity, and cost of such missions. Internal atmosphere pressure and composition (particularly oxygen concentration) influence many aspects of spacecraft and space suit design, operation, and technology development. Optimal atmosphere solutions must be determined by iterative process involving research, design, development, testing, and systems analysis. A necessary first step in this process is the establishment of working bounds on the atmosphere design space.

  19. Saturn Uranus atmospheric entry probe mission spacecraft system definition study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The modifications required of the Pioneer F/G spacecraft design for it to deliver an atmospheric entry probe to the planets Saturn and Uranus are investigated. It is concluded that it is feasible to conduct such a mission within the constraints and interfaces defined. The spacecraft required to perform the mission is derived from the Pioneer F/G design, and the modifications required are generally routinely conceived and executed. The entry probe is necessarily a new design, although it draws on the technology of past, present, and imminent programs of planetary atmospheric investigations.

  20. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini project scientist at JPL, Linda Spilker, center, speaks about a montage of images, made from data obtained by Cassini's visual and infrared mapping spectrometer, shows the location on Saturn where the NASA spacecraft entered Saturn's atmosphere, Friday, Sept. 15, 2017 during a press conference at NASA's Jet Propulsion Laboratory in Pasadena, California. Cassini program manager at JPL, Earl Maize, left, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, also participated in the press conference. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. Spacecraft Fire Safety Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  2. Cassini End of Mission

    NASA Image and Video Library

    2017-09-14

    A jar of peanuts is seen sitting on a console in mission control of the Space Flight Operations Center as the Cassini mission team await the final downlink of the spacecraft's data recorder, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. NASA's Asteroid Redirect Mission (ARM)

    NASA Astrophysics Data System (ADS)

    Abell, Paul; Mazanek, Dan; Reeves, David; Naasz, Bo; Cichy, Benjamin

    2015-11-01

    The National Aeronautics and Space Administration (NASA) is developing a robotic mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder from its surface, and redirect it into a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA’s plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. In order to maximize the knowledge return from the mission, NASA is organizing an ARM Investigation Team, which is being preceded by the Formulation Assessment and Support Team. These teams will be comprised of scientists, technologists, and other qualified and interested individuals to help plan the implementation and execution of ARM. An overview of robotic and crewed segments of ARM, including the mission requirements, NEA targets, and mission operations, will be provided along with a discussion of the potential opportunities associated with the mission.

  4. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA Social attendees film director of NASA's Planetary Science Division, Jim Green as he discusses the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  5. Systems Engineering Challenges for GSFC Space Science Mission Operations

    NASA Technical Reports Server (NTRS)

    Thienel, Julie; Harman, Richard R.

    2017-01-01

    The NASA Goddard Space Flight Center Space Science Mission Operations (SSMO) project currently manages19 missions for the NASA Science Mission Directorate, within the Planetary, Astrophysics, and Heliophysics Divisions. The mission lifespans range from just a few months to more than20 years. The WIND spacecraft, the oldest SSMO mission, was launched in 1994. SSMO spacecraft reside in low earth, geosynchronous,highly elliptical, libration point, lunar, heliocentric,and Martian orbits. SSMO spacecraft range in size from 125kg (Aeronomy of Ice in the Mesosphere (AIM)) to over 4000kg (Fermi Gamma-Ray Space Telescope (Fermi)). The attitude modes include both spin and three-axis stabilized, with varying requirements on pointing accuracy. The spacecraft are operated from control centers at Goddard and off-site control centers;the Lunar Reconnaissance Orbiter (LRO), the Solar Dynamics Observatory (SDO) and Magnetospheric MultiScale (MMS)mission were built at Goddard. The Advanced Composition Explorer (ACE) and Wind are operated out of a multi-mission operations center, which will also host several SSMO-managed cubesats in 2017. This paper focuses on the systems engineeringchallenges for such a large and varied fleet of spacecraft.

  6. Standard spacecraft economic analysis. Volume 2: Findings and conclusions

    NASA Technical Reports Server (NTRS)

    Harris, E. D.; Large, J. P.

    1976-01-01

    The comparative program costs associated with use of various standardized spacecraft for Air Force space test program missions to be flown on the space shuttle were studied in two phases. In the first phase, a variety of procurement mixes composed of existing or programmed NASA standard spacecraft designs and an Air Force standard spacecraft design were considered. The second phase dealt with additional procurement options using an upgraded version of an existing NASA design. The results of both phases are discussed.

  7. NASA EO-1 Spacecraft Images Chile Volcanic Eruption

    NASA Image and Video Library

    2011-06-17

    On June 14, 2011, NASA Earth Observing-1 EO-1 spacecraft obtained this image showing ash-rich volcanic plume billowing out of the vent, punching through a low cloud layer. The plume grey color is a reflection of its ash content.

  8. Deadly Everest Avalanche Site Spotted by NASA Spacecraft

    NASA Image and Video Library

    2014-04-28

    On Friday, April 26, 2014, an avalanche on Mount Everest killed at least 13 Sherpa guides. NASA Terra spacecraft looked toward the northeast, with Mount Everest center, and Lhotse, the fourth-highest mountain on Earth, on the skyline to right center.

  9. NASA Spacecraft Images Wildfire Near Yosemite National Park

    NASA Image and Video Library

    2013-06-21

    This image, acquired by NASA Terra spacecraft, is of the Carstens, Calif. wildfire which continues to burn in the foothills west of Yosemite National Park. Vegetation is displayed in green and burned and bare areas are dark to light gray.

  10. Green Propellant Infusion Mission Program Development and Technology Maturation

    NASA Technical Reports Server (NTRS)

    McLean, Christopher H.; Deininger, William D.; Joniatis, John; Aggarwal, Pravin K.; Spores, Ronald A.; Deans, Matthew; Yim, John T.; Bury, Kristen; Martinez, Jonathan; Cardiff, Eric H.; hide

    2014-01-01

    The NASA Space Technology Mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) is comprised of a cross-cutting team of domestic spacecraft propulsion and storable green propellant technology experts. This TDM is led by Ball Aerospace & Technologies Corp. (BATC), who will use their BCP- 100 spacecraft to carry a propulsion system payload consisting of one 22 N thruster for primary divert (DeltaV) maneuvers and four 1 N thrusters for attitude control, in a flight demonstration of the AF-M315E technology. The GPIM project has technology infusion team members from all three major market sectors: Industry, NASA, and the Department of Defense (DoD). The GPIM project team includes BATC, includes Aerojet Rocketdyne (AR), Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB (AFRL), NASA Glenn Research Center (GRC), NASA Kennedy Space Center (KSC), and NASA Goddard Space Flight Center (GSFC). STMD programmatic and technology oversight is provided by NASA Marshall Space Flight Center. The GPIM project shall fly an operational AF-M315E green propulsion subsystem on a Ball-built BCP-100 spacecraft.

  11. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Dave Bates, left, and Tom Burk, right, working Cassini's attitude and articulation control subsystems, are seen at their console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Todd Brown, right, working Cassini's attitude and articulation control subsystems, is seen at his console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Todd Brown, working Cassini's attitude and articulation control subsystems, is seen at his console during the spacecraft's final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  14. Costa Rica Turrialba Volcano, Continued Activity seen by NASA Spacecraft

    NASA Image and Video Library

    2015-04-06

    The March, 2015 eruption of Turrialba Volcano in Costa Rica caught everyone by surprise as seen in this image from the ASTER instrument onboard NASA Terra spacecraft. Activity had greatly diminished when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft acquired this nighttime thermal infrared image on April 2, 2015. The hot summit crater appears in white, indicating continued volcanic unrest. To the west, Poas Volcano's hot crater lake also appears white, though its temperature is considerably less than Turrialba's crater. The large image covers an area of 28 by 39 miles (45 by 63 kilometers); the insets 2 by 2 miles (3.1 by 3.1 kilometers). The image is centered at 10.1 degrees north, 84 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19355

  15. Tracking and data relay satellite system - NASA's new spacecraft data acquisition system

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Garman, A. A.

    1979-01-01

    This paper describes NASA's new spacecraft acquisition system provided by the Tracking and Data Relay Satellite System (TDRSS). Four satellites in geostationary orbit and a ground terminal will provide complete tracking, telemetry, and command service for all of NASA's orbital satellites below a 12,000 km altitude. Western Union will lease the system, operate the ground terminal and provide operational satellite control. NASA's network control center will be the focal point for scheduling user services and controlling the interface between TDRSS and the NASA communications network, project control centers, and data processing. TDRSS single access user spacecraft data systems will be designed for time shared data relay support, and reimbursement policy and rate structure for non-NASA users are being developed.

  16. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Associate administrator for NASA's Science Mission Directorate Thomas Zurbuchen speaks during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  17. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better

  18. NASA reports

    NASA Technical Reports Server (NTRS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    1992-01-01

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  19. NASA reports

    NASA Astrophysics Data System (ADS)

    Obrien, John E.; Fisk, Lennard A.; Aldrich, Arnold A.; Utsman, Thomas E.; Griffin, Michael D.; Cohen, Aaron

    Activities and National Aeronautics and Space Administration (NASA) programs, both ongoing and planned, are described by NASA administrative personnel from the offices of Space Science and Applications, Space Systems Development, Space Flight, Exploration, and from the Johnson Space Center. NASA's multi-year strategic plan, called Vision 21, is also discussed. It proposes to use the unique perspective of space to better understand Earth. Among the NASA programs mentioned are the Magellan to Venus and Galileo to Jupiter spacecraft, the Cosmic Background Explorer, Pegsat (the first Pegasus payload), Hubble, the Joint U.S./German ROSAT X-ray Mission, Ulysses to Jupiter and over the sun, the Astro-Spacelab Mission, and the Gamma Ray Observatory. Copies of viewgraphs that illustrate some of these missions, and others, are provided. Also discussed were life science research plans, economic factors as they relate to space missions, and the outlook for international cooperation.

  20. NASA astronaut Rex Walheim checks out the Dragon spacecraft und

    NASA Image and Video Library

    2012-01-30

    HAWTHORNE, Calif. -- NASA astronaut Rex Walheim checks out the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  1. NASA's Asteroid Redirect Mission (ARM)

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.

    2017-01-01

    Mission Description and Objectives: NASA's Asteroid Redirect Mission (ARM) consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), a robotic mission to visit a large (greater than approximately 100 meters diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will explore and investigate the boulder and return to Earth with samples. The ARRM is currently planned to launch at the end of 2021 and the ARCM is scheduled for late 2026.

  2. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, are seen as they watch a replay of the final moments of the Cassini spacecraft during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. NICER Mission

    NASA Image and Video Library

    2017-12-08

    This video previews the Neutron star Interior Composition Explorer (NICER). NICER is an Astrophysics Mission of Opportunity within NASA’s Explorer program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation. NICER is an upcoming International Space Station payload scheduled to launch in June 2017. Learn more about the mission at nasa.gov/nicer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. MISSION CONTROL CENTER (MCC) - APOLLO 16 - MSC

    NASA Image and Video Library

    1972-05-08

    S72-37010 (20 April 1972) --- NASA officials gather around a console in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) prior to the making of a decision whether to land Apollo 16 on the moon or to abort the landing. Seated, left to right, are Dr. Christopher C. Kraft Jr., Director of the Manned Spacecraft Center (MSC), and Brig. Gen. James A. McDivitt (USAF), Manager, Apollo Spacecraft Program Office, MSC; and standing, left to right, are Dr. Rocco A. Petrone, Apollo Program Director, Office Manned Space Flight (OMSF), NASA HQ.; Capt. John K. Holcomb (U.S. Navy, Ret.), Director of Apollo Operations, OMSF; Sigurd A. Sjoberg, Deputy Director, MSC; Capt. Chester M. Lee (U.S. Navy, Ret.), Apollo Mission Director, OMSF; Dale D. Myers, NASA Associate Administrator for Manned Space Flight; and Dr. George M. Low, NASA Deputy Administrator. Photo credit: NASA

  5. Analysis of selected deep space missions

    NASA Technical Reports Server (NTRS)

    West, W. S.; Holman, M. L.; Bilsky, H. W.

    1971-01-01

    Task 1 of the NEW MOONS (NASA Evaluation With Models of Optimized Nuclear Spacecraft) study is discussed. Included is an introduction to considerations of launch vehicles, spacecraft, spacecraft subsystems, and scientific objectives associated with precursory unmanned missions to Jupiter and thence out of the ecliptic plane, as well as other missions to Jupiter and other outer planets. Necessity for nuclear power systems is indicated. Trajectories are developed using patched conic and n-body computer techniques.

  6. TEMPEST-D Spacecraft

    NASA Image and Video Library

    2018-05-17

    The complete TEMPEST-D spacecraft shown with the solar panels deployed. RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATKs Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms. https://photojournal.jpl.nasa.gov/catalog/PIA22458

  7. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  8. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini-Huygens spacecraft is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, David I.; McClure, Patrick

    2017-01-01

    The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  10. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, Dave I.; McClure, Patrick

    2017-01-01

    The development of NASA's Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  11. 30-kW SEP Spacecraft as Secondary Payloads for Low-Cost Deep Space Science Missions

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Larson, Tim

    2013-01-01

    The Solar Array System contracts awarded by NASA's Space Technology Mission Directorate are developing solar arrays in the 30 kW to 50 kW power range (beginning of life at 1 AU) that have significantly higher specific powers (W/kg) and much smaller stowed volumes than conventional rigid-panel arrays. The successful development of these solar array technologies has the potential to enable new types of solar electric propulsion (SEP) vehicles and missions. This paper describes a 30-kW electric propulsion vehicle built into an EELV Secondary Payload Adapter (ESPA) ring. The system uses an ESPA ring as the primary structure and packages two 15-kW Megaflex solar array wings, two 14-kW Hall thrusters, a hydrazine Reaction Control Subsystem (RCS), 220 kg of xenon, 26 kg of hydrazine, and an avionics module that contains all of the rest of the spacecraft bus functions and the instrument suite. Direct-drive is used to maximize the propulsion subsystem efficiency and minimize the resulting waste heat and required radiator area. This is critical for packaging a high-power spacecraft into a very small volume. The fully-margined system dry mass would be approximately 1120 kg. This is not a small dry mass for a Discovery-class spacecraft, for example, the Dawn spacecraft dry mass was only about 750 kg. But the Dawn electric propulsion subsystem could process a maximum input power of 2.5 kW, and this spacecraft would process 28 kW, an increase of more than a factor of ten. With direct-drive the specific impulse would be limited to about 2,000 s assuming a nominal solar array output voltage of 300 V. The resulting spacecraft would have a beginning of life acceleration that is more than an order of magnitude greater than the Dawn spacecraft. Since the spacecraft would be built into an ESPA ring it could be launched as a secondary payload to a geosynchronous transfer orbit significantly reducing the launch costs for a planetary spacecraft. The SEP system would perform the escape

  12. Attempted Recovery of Mercury spacecraft at end of MR-4 mission

    NASA Image and Video Library

    1961-07-21

    S61-02826 (21 July 1961) --- A U.S. Marine Corps helicopter attempts an unsuccessful recovery of the Mercury-Redstone 4 "Liberty Bell 7" spacecraft. The spacecraft hatch opened prematurely, and astronaut Virgil I. Grissom, pilot, escaped into the water. The helicopter hooked onto the spacecraft but could not retrieve it. Grissom was recovered by another helicopter and flown to the recovery ship, USS Randolph. The Mercury spacecraft sank to the bottom of the ocean. Photo credit: NASA

  13. Attempted Recovery of Mercury spacecraft at end of MR-4 mission

    NASA Image and Video Library

    1961-07-21

    S61-02824 (21 July 1961) --- A U.S. Marine Corps helicopter attempts an unsuccessful recovery of the Mercury-Redstone 4 "Liberty Bell 7" spacecraft. The spacecraft hatch opened prematurely, and astronaut Virgil I. Grissom, pilot, escaped into the water. The helicopter hooked onto the spacecraft but could not retrieve it. Grissom was recovered by another helicopter and flown to the recovery ship, USS Randolph. The Mercury spacecraft sank to the bottom of the ocean. Photo credit: NASA

  14. Mission operations for unmanned nuclear electric propulsion outer planet exploration with a thermionic reactor spacecraft.

    NASA Technical Reports Server (NTRS)

    Spera, R. J.; Prickett, W. Z.; Garate, J. A.; Firth, W. L.

    1971-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration NEP spacecraft employing in-core thermionic reactors for electric power generation. The selected reference missions are the Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. The characteristics of the baseline multi-mission NEP spacecraft are presented and its performance in other outer planet missions, such as Saturn and Uranus orbiters and a Neptune flyby, are discussed. Candidate mission operations are defined from spacecraft assembly to mission completion. Pre-launch operations are identified. Shuttle launch and subsequent injection to earth escape by the Centaur D-1T are discussed, as well as power plant startup and the heliocentric mission phases. The sequence and type of operations are basically identical for all missions investigated.

  15. Data catalog series for space science and applications flight missions. Volume 4B: Descriptions of data sets from meteorological and terrestrial applications spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Ng, Carolyn; Stonesifer, G. Richard

    1989-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from meteorological and terrestrial applications spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  16. Inflight - Apollo XI (Mission Control Center [MCC]) - MSC

    NASA Image and Video Library

    1969-07-24

    S69-40302 (24 July 1969) --- A group of NASA and Manned Spacecraft Center (MSC) officials join in with the flight controllers in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, in celebrating the successful conclusion of the Apollo 11 lunar landing mission. From left foreground are Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director of Flight Operations; Julian Scheer (in back), Assistant Administrator, Office of Public Affairs, NASA Headquarters; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA Headquarters.

  17. Mars Orbiter Study. Volume 2: Mission Design, Science Instrument Accommodation, Spacecraft Design

    NASA Technical Reports Server (NTRS)

    Drean, R.; Macpherson, D.; Steffy, D.; Vargas, T.; Shuman, B.; Anderson, K.; Richards, B.

    1982-01-01

    Spacecraft system and subsystem designs were developed at the conceptual level to perform either of two Mars Orbiter Missions, a Climatology Mission and an Aeronomy Mission. The objectives of these missions are to obtain and return data to increase knowledge of Mars.

  18. Relating MBSE to Spacecraft Development: A NASA Pathfinder

    NASA Technical Reports Server (NTRS)

    Othon, Bill

    2016-01-01

    The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.

  19. Mission Advantages of NEXT: Nasa's Evolutionary Xenon Thruster

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Benson, Scott; Patterson, Michael; Noca, Muriel; Sims, Jon

    2002-01-01

    With the demonstration of the NSTAR propulsion system on the Deep Space One mission, the range of the Discovery class of NASA missions can now be expanded. NSTAR lacks, however, sufficient performance for many of the more challenging Office of Space Science (OSS) missions. Recent studies have shown that NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is the best choice for many exciting potential OSS missions including outer planet exploration and inner solar system sample returns. The NEXT system provides the higher power, higher specific impulse, and higher throughput required by these science missions.

  20. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize packs up his workspace in mission control after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  1. NASA's New Discovery Missions

    NASA Image and Video Library

    2017-01-04

    On Jan. 4, 2017 NASA announced the selection of two missions to explore previously unexplored asteroids. The first mission, called Lucy, will study asteroids, known as Trojan asteroids, trapped by Jupiter’s gravity. The Psyche mission will explore a very large and rare object in the solar system’s asteroid belt that’s made of metal, and scientists believe might be the exposed core of a planet that lost its rocky outer layers from a series of violent collisions. Lucy is targeted for launch in 2021 and Psyche in 2023. Both missions have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 million years after the birth of our sun.

  2. Deep Impact Spacecraft Collides With Comet Tempel 1-Video

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After 172 days and 268 million miles of deep space travel, the NASA Deep Impact spacecraft successfully reached out and touched comet Tempel 1. The collision between the coffee table-sized space probe and city-sized comet occurred July 4, 2005 at 12:52 a.m. CDT. The objects met at 23,000 miles per hour. The heat produced by the impact was at least several thousand degrees Kelvin and at that extreme temperature, just about any material begins to glow. This movie, made up of images taken by the medium resolution camera aboard the spacecraft, from May 1 to July 2, shows the Deep Impact approach to comet Tempel 1. The spacecraft detected 3 outbursts during this time period, on June 14th, June 22nd, and July 2nd. The movie ends during the final outburst. Mission scientists expect Deep Impact to provide answers to basic questions about the formation of the solar system. Principal investigator, Dr. Michael A'Hearn of the University of Maryland in College Park, is responsible for the mission, and project management is handled by the Jet Propulsion Laboratory in Pasadena, California. The program office at Marshall Space Flight Center MSFC) in Huntsville, Alabama, assisted the Science Mission Directorate at NASA Headquarters in Washington with program management, technology planning, systems assessment, flight assurance and public outreach. The spacecraft was built for NASA by Ball Aerospace & Technologies Corporation of Boulder, Colorado. (NASA/JPL-Caltech/UMD)

  3. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  4. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been encapsulated in its payload fairing. TDRS-L will then be transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  5. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  6. On the calibration and use of Dual Electron Sensors for NASA's Magnetospheric MultiScale mission

    NASA Astrophysics Data System (ADS)

    Avanov, L. A.; Gliese, U.; Pollock, C. J.; Barrie, A.; Mariano, A. J.; Tucker, C. J.; Jacques, A. D.; Zeuch, M.; Shields, N.; Christian, K. D.

    2013-12-01

    The scientific target of NASA's Magnetospheric MultiScale (MMS) mission is to study the fundamentally important phenomenon of magnetic reconnection. Theoretical models of this process predict a small (order of ten kilometers) size for the diffusion region where electrons are demagnetized at the dayside magnetopause. Yet, the region may typically sweep over the spacecraft at relatively high speeds of 50km/s. That is why Fast Plasma Investigation (FPI) instrument suite must have extremely high time resolution for measurements of the 3D particle distribution functions. The Dual Electron Spectrometers (DESs) provide fast (30ms) 3D electron velocity distributions, from 10eV to 30,000 eV, as part of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission. This is accomplished by combining the measurements from eight different spectrometers (packaged in four dual sets) on each MMS spacecraft to produce each full distribution. This approach presents a new and challenging aspect to the calibration and operation of these instruments. The response uniformity among the spectrometer set, the consistency and reliability of their calibration in both sensitivity and their phase space selectivity (energy and angle), and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application. In this paper, we will present brief descriptions of the spectrometers and our approach their ground calibration, trended results of those calibrations, and our plans to detect, track, and respond to any temporal evolution in instrument performance through the life of the mission.

  7. The Economics of NASA Mission Cost Reserves

    NASA Technical Reports Server (NTRS)

    Whitley, Sally; Shinn, Stephen

    2012-01-01

    Increases in NASA mission costs have led to analysis of the causes and magnitude of historical mission overruns as well as mitigation and prevention attempts. This paper hypothesizes that one cause is that the availability of reserves may reduce incentives to control costs. We draw a comparison to the insurance concept of moral hazard, and we use actuarial techniques to better understand the increase in mission costs due to the availability of reserves. NASA's CADRe database provided the data against which we tested our hypothesis and discovered that there is correlation between the amount of available reserves and project overruns, particularly for mission hardware cost increases. We address the question of how to prevent reserves from increasing mission spending without increasing cost risk to projects.

  8. Probe interface design consideration. [for interplanetary spacecraft missions

    NASA Technical Reports Server (NTRS)

    Casani, E. K.

    1974-01-01

    Interface design between a probe and a spacecraft requires not only technical considerations but also management planning and mission analysis interactions. Two further aspects of importance are the flyby versus the probe trade-off, and the relay link design and data handling optimization.

  9. Site of Destructive China Temblor Imaged by NASA Spacecraft

    NASA Image and Video Library

    2014-08-05

    The star on this image from the NASA Terra spacecraft indicates the eipcenter of a magnitude 6.1 earthquake which truck in southern China Yunnan province, toppling thousands of homes and causing numerous casualties.

  10. Cassini End of Mission

    NASA Image and Video Library

    2017-09-15

    A monitor in mission control shows the time remaining until Cassini makes its final plunge into Saturn, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Webb, W. A.

    1978-01-01

    The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.

  12. NASA Sample Return Missions: Recovery Operations

    NASA Technical Reports Server (NTRS)

    Pace, L. F.; Cannon, R. E.

    2017-01-01

    The Utah Test and Training Range (UTTR), southwest of Salt Lake City, Utah, is the site of all NASA unmanned sample return missions. To date these missions include the Genesis solar wind samples (2004) and Stardust cometary and interstellar dust samples (2006). NASA’s OSIRIS-REx Mission will return its first asteroid sample at UTTR in 2023.

  13. Internet Technology on Spacecraft

    NASA Technical Reports Server (NTRS)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  14. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, answer questions from the media during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  15. Smart Aerospace eCommerce: Using Intelligent Agents in a NASA Mission Services Ordering Application

    NASA Technical Reports Server (NTRS)

    Moleski, Walt; Luczak, Ed; Morris, Kim; Clayton, Bill; Scherf, Patricia; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes how intelligent agent technology was successfully prototyped and then deployed in a smart eCommerce application for NASA. An intelligent software agent called the Intelligent Service Validation Agent (ISVA) was added to an existing web-based ordering application to validate complex orders for spacecraft mission services. This integration of intelligent agent technology with conventional web technology satisfies an immediate NASA need to reduce manual order processing costs. The ISVA agent checks orders for completeness, consistency, and correctness, and notifies users of detected problems. ISVA uses NASA business rules and a knowledge base of NASA services, and is implemented using the Java Expert System Shell (Jess), a fast rule-based inference engine. The paper discusses the design of the agent and knowledge base, and the prototyping and deployment approach. It also discusses future directions and other applications, and discusses lessons-learned that may help other projects make their aerospace eCommerce applications smarter.

  16. America in Space: The First Decade - NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    It is ten years since the National Aeronautics and Space Administration was created to explore space and to continue the American efforts that had already begun with the launch of Explorer 1 on January 31, 1958. Many changes have occurred since that tumbling, 31 -pound cylinder went into an Earth orbit. "NASA Spacecraft" represents one of the broad avenues selected by NASA as an approach to its objective of making widely known the progress that has taken place in its program of space exploration. This report is a vivid illustration of the changes that have occurred and the complexities that have developed. Here one finds descriptions of the present family of spacecraft some small, some large; some spinoriented, some accurately attitude-controlled; some manned, some automated; some in low orbits, some in trajectories to the Moon and the planets; some free in space until they expire, others commanded to return to the Earth or to land on the Moon

  17. Increasing Mission Science Return Through Use of Spacecraft Autonomy and Sensor Webs: A Volcanology Example

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Chien, S. A.; Castano, R.; Tran, D. Q.; Scharenbroich, L. J.

    2006-12-01

    Mission science return is increased through use of onboard autonomy, and using disparate assets integrated into an autonomously-operating sensor web that can re-task these assets to rapidly obtain additional data. Software on spacecraft has been used to analyse data to detect dynamic events of high interest, such as on- going volcanic activity. This capability has been successfully demonstrated by the NASA New Millennium Program Autonomous Sciencecraft Experiment (ASE), on the Earth Observing 1 spacecraft in Earth-orbit [1-2]. The potential now exists for eruption parameters to be quantified onboard a spacecraft, using models that relate thermal emission to volumetric eruption rate. This promises a notification not only of on-going activity, but also the magnitude of the event, within a few hours of the original observation, a process that normally takes weeks. ASE/EO-1 is part of the JPL Volcano Sensor Web [3]. This autonomous system collates information of volcanic activity from numerous assets and retasks EO-1 to obtain observations as soon as practicable. The use of a ground-based planner allows rapid insertion or replacement of new observations, with no human intervention. Endusers are notified automatically by email. Spacecraft autonomy, involving automatic fault detection and mitigation, onboard processing of data, and replanning of observations, allows mission operations to break free from pre-ordained operations sequencing, necessary for studying dynamic volcanic processes on other bodies in the Solar System (e.g., Io and Enceladus). Onboard processing allows quantification of dynamic processes, improving both science content per returned byte and optimization of subsequent resource use. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. [1] Chien, S. et al. (2004) The EO-1 Autonomous Science Agent, Proceedings of the 2004 Conferences on Autonomous Agents and Multi-agent Systems (AAMAS

  18. Advanced solar-propelled cargo spacecraft for Mars missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, J.; Beall, M.; Burianek, J.; Cinniger, A.; Dunmire, B.; Haberman, E.; Iwamoto, J.; Johnson, S.; Mccracken, S.; Miller, M.

    1989-01-01

    At the University of Washington, three concepts for an unmanned, solar powered, cargo spacecraft for Mars-support missions have been investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: a solar radiation absorption (SRA) system, a solar-pumped laser (SPL) system, and a solar powered mangetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process developed at the University of Washington. A solar concentrator focuses sunlight into an absorption chamber. A mixture of hydrogen and potassium vapor absorbs the incident radiation and is heated to approximately 3700 K. The hot propellant gas exhausts through a nozzle to produce thrust. The SRA has an I(sub sp) of approximately 1000 sec and produces a thrust of 2940 N using two thrust chambers. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sun-synchronous Earth orbit converts solar energy to laser energy. The laser beams are transmitted to the spacecraft via laser relay satellites. The laser energy heats the hydrogen propellant through a plasma breakdown process in the center of an absorption chamber. Propellant flowing through the chamber, heated by the plasma core, expands through a nozzle to produce thrust. The SPL has an I(sub sp) of 1285 sec and produces a thrust of 1200 N using two thrust chambers. The MPD system uses indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. In this system, the argon propellant is ionized and electromagnetically accelerated by a magnetoplasmadynamic arc to produce thrust. The MPD spacecraft has an I(sub sp) of 2490 sec and produces a thrust of 100 N. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary

  19. NASA's Core Trajectory Sub-System Project: Using JBoss Enterprise Middleware for Building Software Systems Used to Support Spacecraft Trajectory Operations

    NASA Technical Reports Server (NTRS)

    Stensrud, Kjell C.; Hamm, Dustin

    2007-01-01

    NASA's Johnson Space Center (JSC) / Flight Design and Dynamics Division (DM) has prototyped the use of Open Source middleware technology for building its next generation spacecraft mission support system. This is part of a larger initiative to use open standards and open source software as building blocks for future mission and safety critical systems. JSC is hoping to leverage standardized enterprise architectures, such as Java EE, so that its internal software development efforts can be focused on the core aspects of their problem domain. This presentation will outline the design and implementation of the Trajectory system and the lessons learned during the exercise.

  20. MIDEX Advanced Modular and Distributed Spacecraft Avionics Architecture

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Castell, Karen; Flatley, Thomas; Lin, Michael

    1998-01-01

    MIDEX (Medium Class Explorer) is the newest line in NASA's Explorer spacecraft development program. As part of the MIDEX charter, the MIDEX spacecraft development team has developed a new modular, distributed, and scaleable spacecraft architecture that pioneers new spaceflight technologies and implementation approaches, all designed to reduce overall spacecraft cost while increasing overall functional capability. This resultant "plug and play" system dramatically decreases the complexity and duration of spacecraft integration and test, providing a basic framework that supports spacecraft modularity and scalability for missions of varying size and complexity. Together, these subsystems form a modular, flexible avionics suite that can be modified and expanded to support low-end and very high-end mission requirements with a minimum of redesign, as well as allowing a smooth, continuous infusion of new technologies as they are developed without redesigning the system. This overall approach has the net benefit of allowing a greater portion of the overall mission budget to be allocated to mission science instead of a spacecraft bus. The MIDEX scaleable architecture is currently being manufactured and tested for use on the Microwave Anisotropy Probe (MAP), an inhouse program at GSFC.

  1. Shipping InSight Mars Spacecraft to California for Launch

    NASA Image and Video Library

    2018-02-28

    Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space, was shipped February 28, 2018, in preparation for launch from Vandenberg in May 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22220

  2. Shipping InSight Mars Spacecraft to California for Launch

    NASA Image and Video Library

    2018-02-28

    Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space, was shipped February 28, 2018, in preparation for launch from Vandenberg in May 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22252

  3. Shipping InSight Mars Spacecraft to California for Launch

    NASA Image and Video Library

    2018-02-28

    Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space, was shipped February 28, 2018, in preparation for launch from Vandenberg in May 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22253

  4. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Bonnie Buratti, senior scientist at NASA's Jet Propultion Laboratory, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  5. Artificial Neural Network Based Mission Planning Mechanism for Spacecraft

    NASA Astrophysics Data System (ADS)

    Li, Zhaoyu; Xu, Rui; Cui, Pingyuan; Zhu, Shengying

    2018-04-01

    The ability to plan and react fast in dynamic space environments is central to intelligent behavior of spacecraft. For space and robotic applications, many planners have been used. But it is difficult to encode the domain knowledge and directly use existing techniques such as heuristic to improve the performance of the application systems. Therefore, regarding planning as an advanced control problem, this paper first proposes an autonomous mission planning and action selection mechanism through a multiple layer perceptron neural network approach to select actions in planning process and improve efficiency. To prove the availability and effectiveness, we use autonomous mission planning problems of the spacecraft, which is a sophisticated system with complex subsystems and constraints as an example. Simulation results have shown that artificial neural networks (ANNs) are usable for planning problems. Compared with the existing planning method in EUROPA, the mechanism using ANNs is more efficient and can guarantee stable performance. Therefore, the mechanism proposed in this paper is more suitable for planning problems of spacecraft that require real time and stability.

  6. Mission Description and In-Flight Operations of ERBE Instruments on ERBS, NOAA 9, and NOAA 10 Spacecraft

    NASA Technical Reports Server (NTRS)

    Snyder, Dianne; Bush, Kathryn; Lee, Kam-Pui; Summerville, Jessica

    1998-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) have operated on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is one of a series that describes the ERBE mission, in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper also describes the in-flight operations for the ERBE nonscanner instruments aboard the ERBS, NOAA 9, and NOAA 10 spacecraft from January 1990 through December 1990. Validation and archives of radiation measurements made by ERBE nonscanner instruments during this period were completed in August 1996. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  7. Development and Execution of End-of-Mission Operations Case Study of the UARS and ERBS End-of-Mission Plans

    NASA Technical Reports Server (NTRS)

    Hughes, John; Marius, Julio L.; Montoro, Manuel; Patel, Mehul; Bludworth, David

    2006-01-01

    This Paper is a case study of the development and execution of the End-of-Mission plans for the Earth Radiation Budget Satellite (ERBS) and the Upper Atmosphere Research Satellite (UARS). The goals of the End-of-Mission Plans are to minimize the time the spacecraft remains on orbit and to minimize the risk of creating orbital debris. Both of these Missions predate the NASA Management Instructions (NMI) that directs missions to provide for safe mission termination. Each spacecrafts had their own unique challenges, which required assessing End-of-Mission requirements versus spacecraft limitations. Ultimately the End-of- Mission operations were about risk mitigation. This paper will describe the operational challenges and the lessons learned executing these End-of-Mission Plans

  8. Small Rocket/Spacecraft Technology (SMART) Platform

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  9. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Director of NASA's Jet Propulsion Laboratory, Michael Watkins speaks during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.

    2011-01-01

    The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.

  11. MISSION CONTROL CENTER (MCC) - MSC - during Apollo 16

    NASA Image and Video Library

    1972-05-08

    S72-37009 (20 April 1972) --- NASA officials gather around a console in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) prior to the making of a decision whether to land Apollo 16 on the moon or to abort the landing. Seated, left to right, are Dr. Christopher C. Kraft Jr., Director of the Manned Spacecraft Center (MSC), and Brig. Gen. James A. McDivitt (USAF), Manager, Apollo Spacecraft Program Office, MSC; and standing, left to right, are Dr. Rocco A. Petrone, Apollo Program Director, Office Manned Space Flight (OMSF), NASA HQ.; Capt. John K. Holcomb (U.S. Navy, Ret.), Director of Apollo Operations, OMSF; Sigurd A. Sjoberg, Deputy Director, MSC; Capt. Chester M. Lee (U.S. Navy, Ret.), Apollo Mission Director, OMSF; Dale D. Myers, NASA Associate Administrator for Manned Space Flight; and Dr. George M. Low, NASA Deputy Administrator. Photo credit: NASA

  12. The Gravity Recovery and Interior Laboratory mission

    NASA Astrophysics Data System (ADS)

    Lehman, D. H.; Hoffman, T. L.; Havens, G. G.

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and Extended Mission in December 2012. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission used twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such as an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  13. The Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  14. Participation of women in spacecraft science teams

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie

    2017-06-01

    There is an ongoing discussion about the participation of women in science and particularly astronomy. Demographic data from NASA's robotic planetary spacecraft missions show women scientists to be consistently under-represented.

  15. NASA Spacecraft Images Drought Impacts on the Mighty Mississippi

    NASA Image and Video Library

    2012-08-25

    NASA Terra spacecraft acquired this image on Aug. 24, 2012, 13 miles 20 kilometers north of Vicksburg, Miss., as drought continued to afflict the U.S. Midwest, water levels of the Mississippi River approached historic lows.

  16. Data Catalog Series for Space Science and Applications Flight Missions. Volume 2B; Descriptions of Data Sets from Geostationary and High-Altitude Scientific Spacecraft and Investigations

    NASA Technical Reports Server (NTRS)

    Schofield, Norman J. (Editor); Parthasarathy, R. (Editor); Hills, H. Kent (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  17. Data catalog series for space science and applications flight missions. Volume 3B: Descriptions of data sets from low- and medium-altitude scientific spacecraft and investigations

    NASA Technical Reports Server (NTRS)

    Jackson, John E. (Editor); Horowitz, Richard (Editor)

    1986-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  18. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini-Huygens spacecraft is seen in the von Kármán Auditorium during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  19. NASA Spacecraft Views Aftermath of Texas Floods

    NASA Image and Video Library

    2015-06-02

    The torrential rains that lashed Texas in late May 2015 caused widespread flooding and devastation. Now that skies have partially cleared, evidence of the excessive water can still be seen in this image, acquired June 1, 2015 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft. Located south of San Antonio, the Nueces River was one of many that overflowed its banks, sending water into adjacent fields and towns. The image covers an area of 23 by 13 miles (37 by 21 kilometers), and is located at 28.2 degrees north, 99 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19681

  20. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  1. NASA SSA for Robotic Missions

    NASA Technical Reports Server (NTRS)

    Newman, Lauri K.

    2009-01-01

    This viewgraph presentation reviews NASA's Space Situational Awareness (SSA) activities as preparation for robotic missions and Goddard's role in this work. The presentation includes the preparations that Goddard Space Flight Center (GSFC) has made to provide consolidated space systems protection indluding consolidating GSFC support for Orbit Debris analysis, conjunction assessment and collision avoidance, commercial and foreign support, and protection of GSFC managed missions.

  2. Comparison of Optimal Small Spacecraft Micro Electric Propulsion Technologies for Mission Opportunities

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara

    2015-01-01

    The goal of this paper is to explore the mission opportunities that are uniquely enabled by U-class Solar Electric Propulsion (SEP) technologies. Small SEP thrusters offers significant advantages relative to existing technologies and will revolutionize the class of mission architectures that small spacecraft can accomplish by enabling trajectory maneuvers with significant change in velocity requirements and reaction wheel-free attitude control. This paper aims to develop and apply a common system-level modeling framework to evaluate these thrusters for relevant upcoming mission scenarios, taking into account the mass, power, volume, and operational constraints of small highly-constrained missions. We will identify the optimal technology for broad classes of mission applications for different U-class spacecraft sizes and provide insights into what constrains the system performance to identify technology areas where improvements are needed.

  3. Global Precipitation Measurement (GPM) Mission Development Status

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Ardeshir Art

    2011-01-01

    Mission Objective: (1) Improve scientific understanding of the global water cycle and fresh water availability (2) Improve the accuracy of precipitation forecasts (3) Provide frequent and complete sampling of the Earth s precipitation Mission Description (Class B, Category I): (1) Constellation of spacecraft provide global precipitation measurement coverage (2) NASA/JAXA Core spacecraft: Provides a microwave radiometer (GMI) and dual-frequency precipitation radar (DPR) to cross-calibrate entire constellation (3) 65 deg inclination, 400 km altitude (4) Launch July 2013 on HII-A (5) 3 year mission (5 year propellant) (6) Partner constellation spacecraft.

  4. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  5. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini NASA Social attendees speak with members of the Cassini mission team in the Charles Elachi Mission Control Center in the Space Flight Operation Center, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  6. Shipping InSight Mars Spacecraft to California for Launch

    NASA Image and Video Library

    2015-12-17

    Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space Systems, was shipped Dec. 16, 2015, in preparation for launch from Vandenberg in March 2016. InSight, for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20278

  7. Kepler's Third Law and NASA's "Kepler Mission"

    ERIC Educational Resources Information Center

    Gould, Alan; Komatsu, Toshi; DeVore, Edna; Harman, Pamela; Koch, David

    2015-01-01

    NASA's "Kepler Mission" has been wildly successful in discovering exoplanets. This paper summarizes the mission goals, briefly explains the transit method of finding exoplanets and design of the mission, provides some key findings, and describes useful education materials available at the "Kepler" website.

  8. NASA-STD-6016 Standard Materials and Processes Requirements for Spacecraft

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2009-01-01

    The standards for materials and processes surrounding spacecraft are discussed. Presentation focused on minimum requirements for Materials and Processes (M&P) used in design, fabrication, and testing of flight components for NASA manned, unmanned, robotic, launch vehicle, lander, in-space and surface systems, and spacecraft program/project hardware elements.Included is information on flammability, offgassing, compatibility requirements, and processes; both metallic and non-metallic materials are mentioned.

  9. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    NASA JPL digital and social media lead Stephanie Smith, introduces technical producer for NASA's Eyes at JPL, Jason Craig, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  10. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Director of NASA's Planetary Science Division, Jim Green, speaks to NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  11. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini interdisciplinary Titan scientist at Cornell University, Jonathan Lunine, speaks to NASA Social attendees about the Cassini mission, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  12. Surface refractivity measurements at NASA spacecraft tracking sites

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.

  13. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    Four reindeer walk past the BARREL payload on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Samar Mathur NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A member of the BARREL team prepares a payload for launch from Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The fourth BARREL balloon of this campaign sits on the launch pad shortly before it launched on Aug. 21, 2016. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The third BARREL balloon floats towards the stratosphere on Aug. 21, 2016. This payload flew for nearly 30 hours, measuring X-rays in Earth’s atmosphere. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL payload sits on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL team member recovers the second payload after it landed. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Montana State University/Arlo Johnson NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    Prior to launch, the BARREL team works on the payload from the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Dartmouth/Robyn Millan NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The BARREL team prepares to launch their third payload from Esrange Space Center near Kiruna, Sweden, on Aug. 21, 2016. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL team member watches as one of their payloads launches from Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL balloon inflates on the launch pad at Esrange Space Center on Aug. 29, 2016. Throughout August 2016, the BARREL team was at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carried instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The first BARREL balloon is inflated just before its launch on Aug. 13, 2016, from Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/University of Houston/Edgar Bering NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The BARREL team inflates the balloon to launch their fifth scientific payload from Esrange Space Center near Kiruna, Sweden, on Aug. 24, 2016. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    A BARREL payload sits on the launch pad at Esrange Space Center near Kiruna, Sweden. The BARREL team is at Esrange Space Center launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Image credit: NASA/Dartmouth/Robyn Millan NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA Laboratory Analysis for Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Shaw, Tianna E.

    2014-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.

  7. Persistent Flooding in Louisiana Imaged by NASA Spacecraft

    NASA Image and Video Library

    2016-03-21

    Torrential rains in the mid-South of the United States in mid-March 2016 produced flooding throughout Texas, Louisiana and Mississippi. On March 21, 2016, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft acquired this image showing persistent flooding along the Mississippi River between the Louisiana cities of Alexandria and Natchitoches. The image covers an area of 25 to 36 miles (41 by 58 kilometers), and is located at 31.5 degrees north, 92.8 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA20533

  8. NASA's Dawn Mission to Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    McFadden, Lucyann A.

    2011-01-01

    NASA's Dawn Mission to asteroid 4 Vesta is part of a 13-year robotic space project designed to reveal the nature of two of the largest asteroids in the Main Asteroid Belt of our Solar System. Ceres and Vesta are two complementary terrestrial protoplanets whose accretion was probably terminated by the formation of Jupiter. They provide a bridge in our understanding between the rocky bodies of the inner solar system and the icy bodies of the outer solar system. Ceres appears to be undifferentiated Vesta has experienced significant heating and likely differentiation. Both formed very early in history of the solar system and while suffering many impacts have remained intact, thereby retaining a record of events and processes from the time of planet formation. Detailed study of the geophysics and geochemistry of these two bodies provides critical benchmarks for early solar system conditions and processes that shaped its subsequent evolution. Dawn provides the missing context for both primitive and evolved meteoritic data, thus playing a central role in understanding terrestrial planet formation and the evolution of the asteroid belt. Dawn is to he launched in 2006 arriving at Vesta in 20l0 and Ceres in 2014, stopping at each to make 11 months of orbital measurements. The spacecraft uses solar electric propulsion, both in cruise and in orbit, to make most efficient use of its xenon propellant. The spacecraft carries a framing camera, visible and infrared mapping spectrometer, gamma ray/neutron magnetometer, and radio science.

  9. Autonomous Command Operations of the WIRE Spacecraft

    NASA Technical Reports Server (NTRS)

    Walyus, Keith; Prior, Mike; Saylor, Richard

    1999-01-01

    This paper presents operational innovations which will be introduced on NASA's Wide Field Infrared Explorer (WIRE) mission. These innovations include an end-to-end design architecture for an autonomous commanding capability for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented all autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period. The key factors driving design and implementation of this capability were: 1) integration with already existing ground system autonomous capabilities and systems, 2) the desire to evolve autonomous operations capabilities based upon previous SMEX operations experience - specifically the TRACE mission, 3) integration with ground station operations - both autonomous and man-tended, 4) low cost and quick implementation, and 5) end-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed in addition to use of the TRACE mission as a testbed for autonomous commanding prior to implementation on WIRE. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and

  10. Cost efficient operations for Discovery class missions

    NASA Technical Reports Server (NTRS)

    Cameron, G. E.; Landshof, J. A.; Whitworth, G. W.

    1994-01-01

    The Near Earth Asteroid Rendezvous (NEAR) program at The Johns Hopkins University Applied Physics Laboratory is scheduled to launch the first spacecraft in NASA's Discovery program. The Discovery program is to promote low cost spacecraft design, development, and mission operations for planetary space missions. The authors describe the NEAR mission and discuss the design and development of the NEAR Mission Operations System and the NEAR Ground System with an emphasis on those aspects of the design that are conducive to low-cost operations.

  11. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  12. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. David H. Grinspoon, senior scientist at the Planetary Science Institute, speaks about working on NASA's Voyager team while serving as moderator for a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  13. Progress of Hawaii Lava Flow Tracked by NASA Spacecraft

    NASA Image and Video Library

    2014-09-24

    On June 27, 2014, a new vent opened on Hawaii Puu Oo vent, on the eastern flank of Kilauea volcano. NASA Terra spacecraft shows the hot lava flow in white, extending about 11 miles 17 kilometers from the vent.

  14. Multiple spacecraft configuration designs for coordinated flight missions

    NASA Astrophysics Data System (ADS)

    Fumenti, Federico; Theil, Stephan

    2018-06-01

    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.

  15. The Threat of Uncertainty: Why Using Traditional Approaches for Evaluating Spacecraft Reliability are Insufficient for Future Human Mars Missions

    NASA Technical Reports Server (NTRS)

    Stromgren, Chel; Goodliff, Kandyce; Cirillo, William; Owens, Andrew

    2016-01-01

    Through the Evolvable Mars Campaign (EMC) study, the National Aeronautics and Space Administration (NASA) continues to evaluate potential approaches for sending humans beyond low Earth orbit (LEO). A key aspect of these missions is the strategy that is employed to maintain and repair the spacecraft systems, ensuring that they continue to function and support the crew. Long duration missions beyond LEO present unique and severe maintainability challenges due to a variety of factors, including: limited to no opportunities for resupply, the distance from Earth, mass and volume constraints of spacecraft, high sensitivity of transportation element designs to variation in mass, the lack of abort opportunities to Earth, limited hardware heritage information, and the operation of human-rated systems in a radiation environment with little to no experience. The current approach to maintainability, as implemented on ISS, which includes a large number of spares pre-positioned on ISS, a larger supply sitting on Earth waiting to be flown to ISS, and an on demand delivery of logistics from Earth, is not feasible for future deep space human missions. For missions beyond LEO, significant modifications to the maintainability approach will be required.Through the EMC evaluations, several key findings related to the reliability and safety of the Mars spacecraft have been made. The nature of random and induced failures presents significant issues for deep space missions. Because spare parts cannot be flown as needed for Mars missions, all required spares must be flown with the mission or pre-positioned. These spares must cover all anticipated failure modes and provide a level of overall reliability and safety that is satisfactory for human missions. This will require a large amount of mass and volume be dedicated to storage and transport of spares for the mission. Further, there is, and will continue to be, a significant amount of uncertainty regarding failure rates for spacecraft

  16. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Dr. James Green, Director of Planetary Science, NASA Headquarters, at podium, speaks during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  17. The Potential for Hosted Payloads at NASA

    NASA Technical Reports Server (NTRS)

    Andraschko, Mark; Antol, Jeffrey; Baize, Rosemary; Horan, Stephen; Neil, Doreen; Rinsland, Pamela; Zaiceva, Rita

    2012-01-01

    The 2010 National Space Policy encourages federal agencies to actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including...hosting government capabilities on commercial spacecraft. NASA's Science Mission Directorate has taken an important step towards this goal by adding an option for hosted payload responses to its recent Announcement of Opportunity (AO) for Earth Venture-2 missions. Since NASA selects a significant portion of its science missions through a competitive process, it is useful to understand the implications that this process has on the feasibility of successfully proposing a commercially hosted payload mission. This paper describes some of the impediments associated with proposing a hosted payload mission to NASA, and offers suggestions on how these impediments might be addressed. Commercially hosted payloads provide a novel way to serve the needs of the science and technology demonstration communities at a fraction of the cost of a traditional Geostationary Earth Orbit (GEO) mission. The commercial communications industry launches over 20 satellites to GEO each year. By exercising this repeatable commercial paradigm of privately financed access to space with proven vendors, NASA can achieve science goals at a significantly lower cost than the current dedicated spacecraft and launch vehicle approach affords. Commercial hosting could open up a new realm of opportunities for NASA science missions to make measurements from GEO. This paper also briefly describes two GEO missions recommended by the National Academies of Science Earth Science Decadal Survey, the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Precipitation and All-weather Temperature and Humidity (PATH) mission. Hosted payload missions recently selected for implementation by the Office of the Chief Technologist are also discussed. Finally, there are

  18. Parachute Testing for NASA InSight Mission

    NASA Image and Video Library

    2015-05-27

    This parachute testing for NASA's InSight mission to Mars was conducted inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California, in February 2015. The wind tunnel is 80 feet (24 meters) tall and 120 feet (37 meters) wide. It is part of the National Full-Scale Aerodynamics Complex, operated by the Arnold Engineering Development Center of the U.S. Air Force. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19405

  19. Generalized Analysis Tools for Multi-Spacecraft Missions

    NASA Astrophysics Data System (ADS)

    Chanteur, G. M.

    2011-12-01

    Analysis tools for multi-spacecraft missions like CLUSTER or MMS have been designed since the end of the 90's to estimate gradients of fields or to characterize discontinuities crossed by a cluster of spacecraft. Different approaches have been presented and discussed in the book "Analysis Methods for Multi-Spacecraft Data" published as Scientific Report 001 of the International Space Science Institute in Bern, Switzerland (G. Paschmann and P. Daly Eds., 1998). On one hand the approach using methods of least squares has the advantage to apply to any number of spacecraft [1] but is not convenient to perform analytical computation especially when considering the error analysis. On the other hand the barycentric approach is powerful as it provides simple analytical formulas involving the reciprocal vectors of the tetrahedron [2] but appears limited to clusters of four spacecraft. Moreover the barycentric approach allows to derive theoretical formulas for errors affecting the estimators built from the reciprocal vectors [2,3,4]. Following a first generalization of reciprocal vectors proposed by Vogt et al [4] and despite the present lack of projects with more than four spacecraft we present generalized reciprocal vectors for a cluster made of any number of spacecraft : each spacecraft is given a positive or nul weight. The non-coplanarity of at least four spacecraft with strictly positive weights is a necessary and sufficient condition for this analysis to be enabled. Weights given to spacecraft allow to minimize the influence of some spacecraft if its location or the quality of its data are not appropriate, or simply to extract subsets of spacecraft from the cluster. Estimators presented in [2] are generalized within this new frame except for the error analysis which is still under investigation. References [1] Harvey, C. C.: Spatial Gradients and the Volumetric Tensor, in: Analysis Methods for Multi-Spacecraft Data, G. Paschmann and P. Daly (eds.), pp. 307-322, ISSI

  20. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  1. Nighttime Look at Ambrym Volcano, Vanuatu by NASA Spacecraft

    NASA Image and Video Library

    2014-02-12

    Ambrym volcano in Vanuatu is one of the most active volcanoes in the world. A large summit caldera contains two active vent complexes, Marum and Benbow is seen in this February 12, 2014 nighttime thermal infrared image from NASA Terra spacecraft.

  2. Galileo spacecraft integration - International cooperation on a planetary mission in the Shuttle era

    NASA Technical Reports Server (NTRS)

    Spehalski, R. J.

    1983-01-01

    The Galileo mission is designed to greatly expand scientific knowledge of Jupiter and its system. The retropropulsion module (RPM) as a major functional element of the Galileo spacecraft is described. The major mission and spacecraft requirements on the RPM are presented. Complexities of the integration process due to the international interface are identified. Challenges associated with integration with new launch vehicles, the Shuttle and upper stage, and their relationships to the RPM are discussed. The results of the integration process involving mission and propulsion performance, reliability, mechanical and thermal interfaces, and safety are described. Finally, considerations and recommendations for future missions involving international cooperation are given.

  3. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute in Boulder, Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  4. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Fran Bagenal, senior scientist at the University of Colorado, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  5. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. Fran Bagenal, senior scientist at the University of Colorado, far right, speaks during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  6. NASA Facts, Voyager.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This document is one of a series of publications of the National Aeronautics and Space Administration (NASA) on facts about the exploration of Jupiter and Saturn. This NASA mission consists of two unmanned Voyager spacecrafts launched in August and September of 1977, and due to arrive at Jupiter in 1979. An account of the scientific equipment…

  7. Spacecraft Thermal Management

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  8. NASA Spacecraft Views Erupting Chilean Volcano

    NASA Image and Video Library

    2015-03-13

    On March 3, 2015, Chile's Villarrica volcano erupted, forcing the evacuation of thousands of people. The eruption deposited a layer of ash over the volcano's eastern slope, blanketing and darkening the normal winter snow cover. The eruption and its effects were captured by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra spacecraft on March 9. Black flows on the other flanks are mud and ash flows. Vegetation is displayed in red colors. The thermal infrared image shows hot spots (white colored) at the summit crater, indicating continuing volcanic activity. The ash blanket is warmer (brighter) than the cold snow (black). The image covers an area of 13.5 by 16.5 kilometers, and is located at 39.4 degrees south, 71.9 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19241

  9. NASA ER-2 flys over Hurricane Dennis during TSCP mission.

    NASA Image and Video Library

    2005-07-06

    The NASA ER-2 airplane flew over hurricane Dennis as part of the Tropical Cloud Systems and Processes "TSCP" Mission. This 28-day field mission sponsored by NASA's Science Mission Directorate is studying the bursting conditions for tropical storms, hurricanes and related phenomena. The flight originated from TSCP's base-of-operations in San Juan Santa Maria airport in San Jose, Costa Rica. Photo Credit: "NASA/Bill Ingalls"

  10. LDEF materials results for spacecraft applications: Executive summary

    NASA Astrophysics Data System (ADS)

    Whitaker, A. F.; Dooling, D.

    1995-03-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  11. LDEF materials results for spacecraft applications: Executive summary

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Compiler); Dooling, D. (Compiler)

    1995-01-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  12. NASA Spacecraft Captures 3-D View of Massive Australian Wildfire

    NASA Image and Video Library

    2013-02-05

    This 3-D view was created from data acquired Feb. 4, 2013 by NASA Terra spacecraft showing a massive wildfire which damaged Australia largest optical astronomy facility, the Siding Spring Observatory.

  13. NASA Spacecraft Shows Before/After of Typhoon Haiyan Devastation

    NASA Image and Video Library

    2013-11-20

    On Nov. 8, 2013, NASA Terra spacecraft acquired this image of Super Typhoon Haiyan as it tore across the central Philippines, leaving a trail of destruction in its path. Among the worst-hit areas is eastern Leyte island and the city of Tacloban.

  14. NASA Spacecraft Images Hudson River Flooding from Hurricane Irene

    NASA Image and Video Library

    2011-09-09

    Brown and tan muddy water flows down the Hudson River are seen in this image acquired by NASA Terra spacecraft on Sept. 1, 2011. After the torrential rains from Hurricane Irene, many rivers in the eastern United States were filled with sediment.

  15. NASA Spacecraft Watches as Eruption Reshapes African Volcano

    NASA Image and Video Library

    2017-02-23

    On Jan. 24, 2017, the Hyperion Imager on NASA's Earth Observing 1 (EO-1) spacecraft observed a new eruption at Erta'Ale volcano, Ethiopia, from an altitude of 438 miles (705 kilometers). Data were collected at a resolution of 98 feet (30 meters) per pixel at different visible and infrared wavelengths and were combined to create these images. A visible-wavelength image is on the left. An infrared image is shown on the right. The infrared image emphasizes the hottest areas and reveals a spectacular rift eruption, where a crack opens and lava gushes forth, fountaining into the air. The lava flows spread away from the crack. Erta'Ale is the location of a long-lived lava lake, and it remains to be seen if this survives this new eruption. The observation was scheduled via the Volcano Sensor Web, a network of sensors linked by artificial intelligence software to create an autonomous global monitoring program of satellite observations of volcanoes. The Volcano Sensor Web was alerted to this new activity by data from another spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA11239

  16. Ensuring Payload Safety in Missions with Special Partnerships

    NASA Technical Reports Server (NTRS)

    Staubus, Calvert A.; Willenbring, Rachel C.; Blankenship, Michael D.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Expendable Launch Vehicle (ELV) payload space flight missions involve cooperative work between NASA and partners including spacecraft (or payload) contractors, universities, nonprofit research centers, Agency payload organization, Range Safety organization, Agency launch service organizations, and launch vehicle contractors. The role of NASA's Safety and Mission Assurance (SMA) Directorate is typically fairly straightforward, but when a mission's partnerships become more complex, to realize cost and science benefits (e.g., multi-agency payload(s) or cooperative international missions), the task of ensuring payload safety becomes much more challenging. This paper discusses lessons learned from NASA safety professionals working multiple-agency missions and offers suggestions to help fellow safety professionals working multiple-agency missions.

  17. Human and Robotic Space Mission Use Cases for High-Performance Spaceflight Computing

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Doyle, Richard; Bergman, Larry; Whitaker, William; Powell, Wesley; Johnson, Michael; Goforth, Montgomery; Lowry, Michael

    2013-01-01

    Spaceflight computing is a key resource in NASA space missions and a core determining factor of spacecraft capability, with ripple effects throughout the spacecraft, end-to-end system, and mission. Onboard computing can be aptly viewed as a "technology multiplier" in that advances provide direct dramatic improvements in flight functions and capabilities across the NASA mission classes, and enable new flight capabilities and mission scenarios, increasing science and exploration return. Space-qualified computing technology, however, has not advanced significantly in well over ten years and the current state of the practice fails to meet the near- to mid-term needs of NASA missions. Recognizing this gap, the NASA Game Changing Development Program (GCDP), under the auspices of the NASA Space Technology Mission Directorate, commissioned a study on space-based computing needs, looking out 15-20 years. The study resulted in a recommendation to pursue high-performance spaceflight computing (HPSC) for next-generation missions, and a decision to partner with the Air Force Research Lab (AFRL) in this development.

  18. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, answers a question from the audience during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  19. Space Environments and Spacecraft Effects Organization Concept

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  20. Cluster: A fleet of four spacecraft to study plasma structures in three dimensions

    NASA Technical Reports Server (NTRS)

    Schmidt, R.; Goldstein, M. L.

    1988-01-01

    The four Cluster spacecraft are spin stabilized spacecraft which are designed and built under stringent requirements as far as electromagnetic cleanliness is concerned. Conductive surfaces and low electromagnetic background noise are mandatory for accurate electric field and cold plasma measurements. The mission is implemented in collaboration between ESA and NASA. A Russian mission will be closely coordinated with Cluster.

  1. NASA Engineering Design Challenges: Spacecraft Structures. EP-2008-09-121-MSFC

    ERIC Educational Resources Information Center

    Haddad, Nick; McWilliams, Harold; Wagoner, Paul

    2007-01-01

    NASA (National Aeronautics and Space Administration) Engineers at Marshall Space Flight Center along with their partners at other NASA centers, and in private industry, are designing and beginning to develop the next generation of spacecraft to transport cargo, equipment, and human explorers to space. These vehicles are part of the Constellation…

  2. Cassini End of Mission Press Conference

    NASA Image and Video Library

    2017-09-15

    Cassini program manager at JPL, Earl Maize, left, Cassini project scientist at JPL, Linda Spilker, center, and spacecraft operations team manager for the Cassini mission at Saturn, Julie Webster, right, react to seeing images of the Cassini science and engineering teams during a press conference held after the end of the Cassini mission, Friday, Sept. 15, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators deliberately plunged the spacecraft into Saturn, as Cassini gathered science until the end. Loss of contact with the Cassini spacecraft occurred at 7:55 a.m. EDT (4:55 a.m. PDT). The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  3. The Value of Participating Scientists on NASA Planetary Missions

    NASA Astrophysics Data System (ADS)

    Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.

    2016-10-01

    NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.

  4. TDRS-L Spacecraft is Lifted Onto Transporter

    NASA Image and Video Library

    2014-01-10

    TITUSVILLE, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being mounted on a transporter for its trip from the Astrotech payload processing facility in Titusville to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Kim Shiflett

  5. TDRS-L Spacecraft is Lifted Onto Transporter

    NASA Image and Video Library

    2014-01-10

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Kim Shiflett

  6. NASA's Optical Communications Program for 2015 and Beyond

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M.

    2015-01-01

    NASA's Space Communications and Navigation (SCaN) program at NASA headquarters is pursuing a vibrant and wide-ranging optical communications program for further planetary and near-Earth missions following the spectacular success of NASA's Lunar Laser Communication Demonstration (LLCD) from the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft orbiting the moon in 2013. This invited paper will discuss NASA's new laser communication missions, key scenarios and details, and the plans to infuse this new technology into NASA's existing communications networks.

  7. Challenges of Developing New Classes of NASA Self-Managing Mission

    NASA Technical Reports Server (NTRS)

    Hinchey, M. G.; Rash, J. I.; Truszkowski, W. F.; Rouff, C. A.; Sterritt, R.

    2005-01-01

    NASA is proposing increasingly complex missions that will require a high degree of autonomy and autonomicity. These missions pose hereto unforeseen problems and raise issues that have not been well-addressed by the community. Assuring success of such missions will require new software development techniques and tools. This paper discusses some of the challenges that NASA and the rest of the software development community are facing in developing these ever-increasingly complex systems. We give an overview of a proposed NASA mission as well as techniques and tools that are being developed to address autonomic management and the complexity issues inherent in these missions.

  8. JPL-20170915-CASSINf-0002-Cassini End of Mission Post Event Press ConferenceAVAIL

    NASA Image and Video Library

    2017-09-15

    This press briefing summarizes the end of NASA-ESA's Cassini-Huygens mission to Saturn and presents the final images made by the spacecraft before its planned disintegration in Saturn's atmosphere on September 15, 2017. Featured: Earl Maize, Cassini Program Manager, JPL; Linda Spilker, Cassini Project Scientist, JPL; Julie Webster, Cassini Spacecraft operations Manager, JPL; and Thomas Zurbuchen, Associate Administrator, Science Mission Directorate, NASA HQ.

  9. The Voyager Spacecraft. [Jupiter-Saturn mission investigations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The configuration of the Voyager spacecraft is described as well as the subsystems for power, temperature control, attitude control, and propulsion. Major features of Jupiter and Saturn including their atmospheres, surfaces, and natural satellites are discussed. The 13 onboard experiments and their scientific objectives are explained. Other aspects covered include tracking, data acquisition, and the mission control and computing center. Members of the Voyager team and subcontractors are listed.

  10. Initialization of distributed spacecraft for precision formation flying

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Scharf, D. P.; Ploen, S. R.

    2003-01-01

    In this paper we present a solution to the formation initialization problem for N distributed spacecraft located in deep space. Our solution to the FI problem is based on a three-stage sky search procedure that reduces the FI problem for N spacecraft to the simpler problem of initializing a set of sub-formations. We demonstrate our FI algorithm in simulation using NASA's five spacecraft Terrestrial Planet Finder mission as an example.

  11. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    NASA Astrophysics Data System (ADS)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  12. Communicating the Science from NASA's Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  13. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated

  14. TDRS-L Spacecraft Transported from Astrotech to SLC

    NASA Image and Video Library

    2014-01-13

    TITUSVILLE, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft begins it trip from the Astrotech payload processing facility in Titusville to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  15. TDRS-L Spacecraft Transported from Astrotech to SLC

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft arrives at Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  16. Meeting NASA's Mission Through Commercial Partnerships

    NASA Technical Reports Server (NTRS)

    Nall, Mark

    2003-01-01

    This paper examines novel approaches to furthering NASA's missions through the use of commercial partnerships. The exploration of space ha proven to be a costly endeavor requiring the development of new technologies at significant expense. One of the prime factors holding bac the robust development of space is insufficient investment in the technologies necessary to make it a reality. The key to success in bringin needed space development technologies to maturation lies in bringing technology investors together from government, industry and academia. aggressive road map for developing space will require a diverse set of interest to industry or other government agencies. By having each invest( contributing to the part of the technology development of interest to them development of space systems can be put together at a cost far below wl would be required to develop for a stand-alone effort. The NASA Space Partnership Division has been employing this technique to leverage a 30 million dollar NASA investment into at 100 million dollar advanced technology development effort focused on meeting NASA's mission needs.

  17. Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft

    NASA Technical Reports Server (NTRS)

    Herberg, Joseph R.; Folta, David C.

    1993-01-01

    Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed.

  18. NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy o

    NASA Image and Video Library

    2014-08-25

    Dr. John Spencer, senior scientist at the Southwest Research Institute, left, Dr. Jeffrey Moore, senior scientist at NASA Ames Researh Center, center, and Dr. David H. Grinspoon, senior scientist at the Plentary Science Institute, left, are seen during a panel discussion at the "NASA's New Horizons Pluto Mission: Continuing Voyager's Legacy of Exploration" event on Monday, August, 25, 2014, in the James E. Webb Auditorium at NASA Headquarters in Washington, DC. The panelists gave their accounts of Voyager's encounter with Neptune and discussed their current assignments on NASA's New Horizons mission to Pluto. Photo Credit: (NASA/Joel Kowsky)

  19. NASA's BARREL Mission in Sweden

    NASA Image and Video Library

    2017-12-08

    The faint green glow of aurora can be seen above the clouds at Esrange Space Center in this photo from Aug. 23, 2016. Auroras are created by energetic electrons, which rain down from Earth’s magnetic bubble and interact with particles in the upper atmosphere to create glowing lights that stretch across the sky. The BARREL team is at Esrange Space Center near Kiruna, Sweden, launching a series of six scientific payloads on miniature scientific balloons. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – primarily measures X-rays in Earth’s atmosphere near the North and South Poles. These X-rays are produced by electrons raining down into the atmosphere from two giant swaths of radiation that surround Earth, called the Van Allen belts. Learning about the radiation near Earth helps us to better protect our satellites. Several of the BARREL balloons also carry instruments built by undergraduate students to measure the total electron content of Earth’s ionosphere, as well as the low-frequency electromagnetic waves that help to scatter electrons into Earth’s atmosphere. Though about 90 feet in diameter, the BARREL balloons are much smaller than standard football stadium-sized scientific balloons. This is the fourth campaign for the BARREL mission. BARREL is led by Dartmouth College in Hanover, New Hampshire. The undergraduate student instrument team is led by the University of Houston and funded by the Undergraduate Student Instrument Project out of NASA’s Wallops Flight Facility. For more information on NASA’s scientific balloon program, visit: www.nasa.gov/scientificballoons. Credit: NASA/University of Houston/Michael Greer NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling

  20. A new environment for multiple spacecraft power subsystem mission operations

    NASA Technical Reports Server (NTRS)

    Bahrami, K. A.

    1990-01-01

    The engineering analysis subsystem environment (EASE) is being developed to enable fewer controllers to monitor and control power and other spacecraft engineering subsystems. The EASE prototype has been developed to support simultaneous real-time monitoring of several spacecraft engineering subsystems. It is being designed to assist with offline analysis of telemetry data to determine trends, and to help formulate uplink commands to the spacecraft. An early version of the EASE prototype has been installed in the JPL Space Flight Operations Facility for online testing. The EASE prototype is installed in the Galileo Mission Support Area. The underlying concept, development, and testing of the EASE prototype and how it will aid in the ground operations of spacecraft power subsystems are discussed.

  1. Science aspects of 1980 ballistic missions to comet Encke, using Mariner and Pioneer spacecraft

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Elachi, C.; Giffin, C. E.; Huntress, W.; Newburn, R. L., Jr.; Parker, R. H.; Taylor, F. W.; Thorpe, T. E.

    1976-01-01

    Science aspects of a 1980 spacecraft reconnaissance of Comet Encke are considered. The mission discussed is a ballistic flyby (more exactly, a fly-through) of P/Encke, using either a spin stabilized spacecraft, without despin of instruments, or a 3-axis stabilized spacecraft.

  2. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Pete Schultz, EPOXI scientist from Brown University, makes a point during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  3. Next space station crew discusses mission on This Week @NASA – September 25, 2015

    NASA Image and Video Library

    2015-09-25

    A news conference was held on Sept. 24 at NASA’s Johnson Space Center with the next crew launching to the International Space Station, including NASA astronaut Tim Kopra. ESA astronaut Timothy Peake, cosmonaut Yuri Malenchenko of the Russian Federal Space Agency and Kopra will launch to the station aboard a Soyuz spacecraft on Dec. 15 from the Baikonur Cosmodrome in Kazakhstan. They’re currently scheduled to return to Earth in May 2016. Also, The rich colors of Pluto, Anniversary of MAVEN’s arrival at Mars, Fall IceBridge missions at both poles, New aviation technology and Robotics team on Capitol Hill!

  4. Shared mission operations concept

    NASA Technical Reports Server (NTRS)

    Spradlin, Gary L.; Rudd, Richard P.; Linick, Susan H.

    1994-01-01

    Historically, new JPL flight projects have developed a Mission Operations System (MOS) as unique as their spacecraft, and have utilized a mission-dedicated staff to monitor and control the spacecraft through the MOS. NASA budgetary pressures to reduce mission operations costs have led to the development and reliance on multimission ground system capabilities. The use of these multimission capabilities has not eliminated an ongoing requirement for a nucleus of personnel familiar with a given spacecraft and its mission to perform mission-dedicated operations. The high cost of skilled personnel required to support projects with diverse mission objectives has the potential for significant reduction through shared mission operations among mission-compatible projects. Shared mission operations are feasible if: (1) the missions do not conflict with one another in terms of peak activity periods, (2) a unique MOS is not required, and (3) there is sufficient similarity in the mission profiles so that greatly different skills would not be required to support each mission. This paper will further develop this shared mission operations concept. We will illustrate how a Discovery-class mission would enter a 'partner' relationship with the Voyager Project, and can minimize MOS development and operations costs by early and careful consideration of mission operations requirements.

  5. Mission Design for NASA's Inner Heliospheric Sentinels and ESA's Solar Orbiter Missions

    NASA Technical Reports Server (NTRS)

    Downing, John; Folta, David; Marr, Greg; Rodriquez-Canabal, Jose; Conde, Rich; Guo, Yanping; Kelley, Jeff; Kirby, Karen

    2007-01-01

    This paper will document the mission design and mission analysis performed for NASA's Inner Heliospheric Sentinels (IHS) and ESA's Solar Orbiter (SolO) missions, which were conceived to be launched on separate expendable launch vehicles. This paper will also document recent efforts to analyze the possibility of launching the Inner Heliospheric Sentinels and Solar Orbiter missions using a single expendable launch vehicle, nominally an Atlas V 551.

  6. Propellant-Less Spacecraft Formation-Flying and Maneuvering with Photonic Laser Thrusters

    NASA Technical Reports Server (NTRS)

    Bae, Young K.

    2015-01-01

    The present NIAC Phase II program explored an amplified photon thruster, Photonic Laser Thruster (PLT), as a means of enabling unprecedented maneuverability of small spacecraft, such as cubesats, and reducing space system SWaP for future NASA missions and other commercial and DoD space endeavors. In addition to its propellantless operation capability, PLT can provide orders of magnitude more precise controls in thrust magnitude and vector than conventional thrusters. Furthermore, PLT promises to enable innovative CONOPS (Concept of Operations) to change how some NASA missions are conceived and to represent a revolutionary departure from the "all-in-one" single-spacecraft approach, where a primary factor that dominates spacecraft design is a heavy and risk-intolerant mission-critical payload. Instead, the PLT CONOPS has evolved from a different path based on interbody dynamics via thrust and power beaming. As interbody atomic dynamics unfolds completely new classes of molecular structures that cannot be formed by solo acting atoms alone, the PLT interbody dynamics is predicted to unfold unprecedented multibody spacecraft structures. Therefore, the revolutionary path of the PLT CONOPS represents a technology push rather than a mission pull, and will enable an entirely new generation of planetary, heliospheric, and Earth-centric missions. The chief accomplishments of the present Phase II program are: 1) achievement of photon thrust up to 3.5 mN (100 times scaling up of Phase I PLT) and amplification factor up to 1,500 (15 times enhancement of Phase I PLT), 2) laboratory demonstration of propelling, slowing and stopping a 1U cubesat on an air track with PLT, 3) proof of feasibility on persistent out-of-plane formation flying with PLT in simulation studies, 4) preliminary SolidWorks designs of 1-mN class PLT, 5) establishment of SWaP for flight-ready PLT, 6) designs for proof-ofconcept missions of precision formation flying with cubesats, 7) definition of PLT-based NASA

  7. NASA Spacecraft Captures Swath of Destruction from Deadly Oklahoma Tornado

    NASA Image and Video Library

    2013-06-05

    The Newcastle-Moore EF-5 tornado ripped through central Oklahoma on May 20, 2013, killing 24 people and leaving behind more than billion in damage. This image was acquired NASA Terra spacecraft on June 2, 2013.

  8. Cassini NASA Social

    NASA Image and Video Library

    2017-09-14

    Cassini imaging science subsystem (ISS) team associate Mike Evans speaks with Cassini NASA Social attendees, Thursday, Sept. 14, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  9. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    NASA Technical Reports Server (NTRS)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  10. The spacecraft encounters of Comet Halley

    NASA Technical Reports Server (NTRS)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  11. NASA CYGNSS Tropical Cyclone Mission

    NASA Astrophysics Data System (ADS)

    Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane

    2017-04-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites that were launched into low-Earth orbit on 15 December 2016. Each observatory carries a four-channel bistatic scatterometer receiver to measure near surface wind speed over the ocean. The transmitter half of the scatterometer is the constellation of GPS satellites. CYGNSS is designed to address the inadequacy in observations of the inner core of tropical cyclones (TCs) that result from two causes: 1) much of the TC inner core is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. The retrieval of wind speed by CYGNSS in the presence of heavy precipitation is possible due to the long operating wavelength used by GPS (19 cm), at which scattering and attenuation by rain are negligible. Improved temporal sampling by CYGNSS is possible due to the use of eight spacecraft with 4 scatterometer channels on each one. Median and mean revisit times everywhere in the tropics are 3 and 7 hours, respectively. Wind speed referenced to 10m height above the ocean surface is retrieved from CYGNSS measurements of bistatic radar cross section in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC and UK-TDS missions. Wind speed is retrieved with 25 km spatial resolution and an uncertainty of 2 m/s at low wind speeds and 10% at wind speeds above 20 m/s. Extensive simulation studies conducted prior to launch indicate that there will be a significant positive impact on TC forecast skill for both track and intensity with CYGNSS measurements assimilated into HWRF numerical forecasts. Simulations of CYGNSS spatial and temporal sampling

  12. Cassini End of Mission Preview

    NASA Image and Video Library

    2017-09-13

    A model of the Cassini spacecraft is seen during a press conference previewing Cassini's End of Mission, Wednesday, Sept. 13, 2017 at NASA's Jet Propulsion Laboratory in Pasadena, California. Participants in the press conference were: Director of NASA's Planetary Science Division, Jim Green, left, Cassini program manager at JPL, Earl Maize, second from right, Cassini project scientist at JPL, Linda Spilker, second from right, and principle investigator for the Neutral Mass Spectrometer (INMS) at the Southwest Research Institute, Hunter Waite, right. Since its arrival in 2004, the Cassini-Huygens mission has been a discovery machine, revolutionizing our knowledge of the Saturn system and captivating us with data and images never before obtained with such detail and clarity. On Sept. 15, 2017, operators will deliberately plunge the spacecraft into Saturn, as Cassini gathered science until the end. The “plunge” ensures Saturn’s moons will remain pristine for future exploration. During Cassini’s final days, mission team members from all around the world gathered at NASA’s Jet Propulsion Laboratory, Pasadena, California, to celebrate the achievements of this historic mission. Photo Credit: (NASA/Joel Kowsky)

  13. A Comparative Study of Aerocapture Missions with a Mars Destination

    NASA Technical Reports Server (NTRS)

    Vaughan, Diane; Miller, Heather C.; Griffin, Brand; James, Bonnie F.; Munk, Michelle M.

    2005-01-01

    Conventional interplanetary spacecraft use propulsive systems to decelerate into orbit. Aerocapture is an alternative approach for orbit capture, in which the spacecraft makes a single pass through a target destination's atmosphere. Although this technique has never been performed, studies show there are substantial benefits of using aerocapture for reduction of propellant mass, spacecraft size, and mission cost. The In-Space Propulsion (ISP) Program, part of NASA's Science Mission Directorate, has invested in aerocapture technology development since 2002. Aerocapture investments within ISP are largely driven by mission systems analysis studies, The purpose of this NASA-funded report is to identify and document the fundamental parameters of aerocapture within previous human and robotic Mars mission studies which will assist the community in identifying technology research gaps in human and robotic missions, and provide insight for future technology investments. Upon examination of the final data set, some key attributes within the aerocapture disciplines are identified.

  14. Development of a NASA 2018 Mars Landed Mission Concept

    NASA Technical Reports Server (NTRS)

    Wilson, M. G.; Salvo, C. G.; Abilleira, F.; Sengstacken, A. J.; Allwood, A. G.; Backes, P. G.; Lindemann, R. A.; Jordan, J. F.

    2010-01-01

    Fundamental to NASA's Mars Exploration Program (MEP) is an ongoing development of an integrated and coordinated set of possible future candidate missions that meet fundamental science and programmatic objectives of NASA and the Mars scientific community. In the current planning horizon of the NASA MEP, a landed mobile surface exploration mission launching in the 2018 Mars launch opportunity exists as a candidate project to meet MEP in situ science and exploration objectives. This paper describes the proposed mission science objectives and the mission implementation concept developed for the 2018 opportunity. As currently envisioned, this mission concept seeks to explore a yet-to-be-selected site with high preservation potential for physical and chemical biosignatures, evaluate paleoenvironmental conditions, characterize the potential for preservation of biosignatures, and access multiple sequences of geological units in a search for evidence of past life and/or prebiotic chemistry at a site on Mars.

  15. Trajectory Design for the Phobos and Deimos & Mars Environment Spacecraft

    NASA Technical Reports Server (NTRS)

    Genova, Anthony L.; Korsmeyer, David J.; Loucks, Michel E.; Yang, Fan Yang; Lee, Pascal

    2016-01-01

    The presented trajectory design and analysis was performed for the Phobos and Deimos & Mars Environment (PADME) mission concept as part of a NASA proposal submission managed by NASA Ames Research Center in the 2014-2015 timeframe. The PADME spacecraft would be a derivative of the successfully flown Lunar Atmosphere & Dust Environment Explorer (LADEE) spacecraft. While LADEE was designed to enter low-lunar orbit, the PADME spacecraft would instead enter an elliptical Mars orbit of 2-week period. This Mars orbit would pass by Phobos near periapsis on successive orbits and then raise periapsis to yield close approaches of Deimos every orbit thereafter.

  16. NASA Spacecraft Images Massive Crack in Antarctica Pine Island Glacier

    NASA Image and Video Library

    2011-11-15

    This image from NASA Terra spacecraft shows a massive crack across the Pine Island Glacier, a major ice stream that drains the West Antarctic Ice Sheet. Eventually, the crack will extend all the way across the glacier.

  17. The NASA controls-structures interaction technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.

    1990-01-01

    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.

  18. MERCURY-ATLAS (MA)-9 - "FRIENDSHIP 7" SPACECRAFT - PRELAUNCH ACTIVITIES - CAPE

    NASA Image and Video Library

    1963-02-01

    S63-03960 (1 Feb. 1963) --- Astronaut L. Gordon Cooper Jr., prime pilot for the Mercury-Atlas 9 (MA-9) mission, checks over the instrument panel from Mercury spacecraft #20 with Robert Graham, McDonnell Aircraft Corp. spacecraft engineer. It contains the instruments necessary to monitor spacecraft systems and sequencing, the controls required to initiate primary sequences manually, and flight control displays. Photo credit: NASA

  19. Evolutionary Design of an X-Band Antenna for NASA's Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Hornby, Gregory S.; Rodriguez-Arroyo, Adan; Linden, Derek S.; Kraus, William F.; Seufert, Stephen E.

    2003-01-01

    We present an evolved X-band antenna design and flight prototype currently on schedule to be deployed on NASA s Space Technology 5 spacecraft in 2004. The mission consists of three small satellites that wall take science measurements in Earth s magnetosphere. The antenna was evolved to meet a challenging set of mission requirements, most notably the combination of wide beamwidth for a circularly-polarized wave and wide bandwidth. Two genetic algorithms were used: one allowed branching an the antenna arms and the other did not. The highest performance antennas from both algorithms were fabricated and tested. A handdesigned antenna was produced by the contractor responsible for the design and build of the mission antennas. The hand-designed antenna is a quadrifilar helix, and we present performance data for comparison to the evolved antennas. As of this writing, one of our evolved antenna prototypes is undergoing flight qualification testing. If successful, the resulting antenna would represent the first evolved hardware in space, and the first deployed evolved antenna.

  20. Future Opportunities for Dynamic Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    2007-01-01

    Dynamic power systems have the potential to be used in Radioisotope Power Systems (RPS) and Fission Surface Power Systems (FSPS) to provide high efficiency, reliable and long life power generation for future NASA applications and missions. Dynamic power systems have been developed by NASA over the decades, but none have ever operated in space. Advanced Stirling convertors are currently being developed at the NASA Glenn Research Center. These systems have demonstrated high efficiencies to enable high system specific power (>8 W(sub e)/kg) for 100 W(sub e) class Advanced Stirling Radioisotope Generators (ASRG). The ASRG could enable significant extended and expanded operation on the Mars surface and on long-life deep space missions. In addition, advanced high power Stirling convertors (>150 W(sub e)/kg), for use with surface fission power systems, could provide power ranging from 30 to 50 kWe, and would be enabling for both lunar and Mars exploration. This paper will discuss the status of various energy conversion options currently under development by NASA Glenn for the Radioisotope Power System Program for NASA s Science Mission Directorate (SMD) and the Prometheus Program for the Exploration Systems Mission Directorate (ESMD).

  1. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 10 spacecraft, February 1987 - February 1990

    NASA Technical Reports Server (NTRS)

    Busch, Kathryn A.; Degnan, Keith T.

    1994-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the third in a series that describes the ERBE mission in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper describes the in-flight operations for the ERBE instruments aboard the ERBS and NOAA 10 spacecraft for the period from February 1987 through February 1990. Validation and archival of radiation measurements made by ERBE instruments during this period were completed in May 1992. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  2. Missions to Venus

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  3. NASA's Analog Missions: Driving Exploration Through Innovative Testing

    NASA Technical Reports Server (NTRS)

    Reagan, Marcum L.; Janoiko, Barbara A.; Parker, Michele L.; Johnson, James E.; Chappell, Steven P.; Abercromby, Andrew F.

    2012-01-01

    Human exploration beyond low-Earth orbit (LEO) will require a unique collection of advanced, innovative technologies and the precise execution of complex and challenging operational concepts. One tool we in the Analog Missions Project at the National Aeronautics and Space Administration (NASA) utilize to validate exploration system architecture concepts and conduct technology demonstrations, while gaining a deeper understanding of system-wide technical and operational challenges, is our analog missions. Analog missions are multi-disciplinary activities that test multiple features of future spaceflight missions in an integrated fashion to gain a deeper understanding of system-level interactions and integrated operations. These missions frequently occur in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They allow us to test robotics, vehicle prototypes, habitats, communications systems, in-situ resource utilization, and human performance as it relates to these technologies. And they allow us to validate architectural concepts, conduct technology demonstrations, and gain a deeper understanding of system-wide technical and operational challenges needed to support crewed missions beyond LEO. As NASA develops a capability driven architecture for transporting crew to a variety of space environments, including the moon, near-Earth asteroids (NEA), Mars, and other destinations, it will use its analog missions to gather requirements and develop the technologies that are necessary to ensure successful human exploration beyond LEO. Currently, there are four analog mission platforms: Research and Technology Studies (RATS), NASA s Extreme Environment Mission Operations (NEEMO), In-Situ Resource Utilization (ISRU), and International Space Station (ISS) Test bed for Analog Research (ISTAR).

  4. Low-Cost Approaches to Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Squibb, G. F.; Edwards, C. D.; Schober, W. R.; Hooke, A. J.; Tai, W. S.; Pollmeier, V. M.

    2000-01-01

    The past decade has brought about a radical transformation in NASA's planetary exploration program. At the beginning of this decade, NASA was focused on the Cassini mission to Saturn. Following on the heels of the successful Voyager and Galileo missions, Cassini represents the culmination of an evolution towards successively larger, more complex, and more expensive spacecraft. The Cassini spacecraft weighs in at over 5 metric tons, and carries an entry probe and a sophisticated suite of sensors supporting 27 different science investigations enabling a comprehensive scientific investigation of Saturn with a single spacecraft. The cost of this spacecraft exceeded $2B, including the cost of the large Titan IV launch vehicle. During Cassini development, NASA realized that it could no longer afford these "flagship" missions, and the agency moved aggressively towards a "faster, better, cheaper" design philosophy of focused science goals and simpler, rapidly-developed spacecraft, allowing much more frequent launches of smaller, lower-cost missions. The Mars Global Surveyor, launched in November 1996, is an example of this new paradigm. Developed in less than 3-years, MGS is only one-fifth the mass of Cassini, and only cost on the order of $220M. The reduced spacecraft mass allows use of the smaller, lower cost Delta launch vehicle. Currently in orbit about Mars, MGS carries a focused suite of six science instruments that are currently returning high-resolution remote sensing of the Martian surface. The future calls for continued even more aggressive mass and cost targets. Examples of these next-generation goals are embodied in the Mars Micromission spacecraft concept, targeted for launch in 2003. With a mass of only 200kg, this lightweight bus can be tailored to carry a variety of payloads to Mars or other inner-planet destinations. The design of the Micromission spacecraft enable them to be launched at extremely low cost as a secondary "piggyback" payload.

  5. Ashy Aftermath of Indonesian Volcano Eruption seen by NASA Spacecraft

    NASA Image and Video Library

    2014-02-23

    On Feb. 13, 2014, violent eruption of Kelud stratovolcano in Java, Indonesia sent volcanic ash covering an area of 70,000 square miles, prompting the evacuation of tens of thousands of people. This image is from NASA Terra spacecraft.

  6. Compendium of Current Single Event Effects for Candidate Spacecraft Electronics for NASA

    NASA Technical Reports Server (NTRS)

    O'Bryan, Martha V.; Label, Kenneth A.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Lauenstein, Jean-Marie; Pellish, Jonathan A.; Ladbury, Raymond L.; Berg, Melanie D.

    2015-01-01

    NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is and adequate understanding of the test condition is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event transient (SET). For total ionizing dose (TID) and displacement damage dose (DDD) results, see a companion paper submitted to the 2015 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "compendium of Current Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA by M. Campola, et al.

  7. TDRS-L Spacecraft Transported from Astrotech to SLC

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is transported along the Saturn Causeway at the Kennedy Space Center on its way to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  8. GRACE-FO Spacecraft Artist Rendering

    NASA Image and Video Library

    2017-05-04

    This artist's rendering shows the twin spacecraft of the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission, a partnership between NASA and the German Research Centre for Geosciences (GFZ). GRACE-FO is a successor to the original GRACE mission, which began orbiting Earth on March 17, 2002. GRACE-FO will carry on the extremely successful work of its predecessor while testing a new technology designed to dramatically improve the already remarkable precision of its measurement system. The GRACE missions measure variations in gravity over Earth's surface, producing a new map of the gravity field every 30 days. Thus, GRACE shows how the planet's gravity differs not only from one location to another, but also from one period of time to another. https://photojournal.jpl.nasa.gov/catalog/PIA21607

  9. Wind Prelaunch Mission Operations Report (MOR)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Wind mission is the first mission of the Global Geospace Science (GGS) initiative. The Wind laboratory will study the properties of particles and waves in the region between the Earth and the Sun. Using the Moon s gravity to save fuel, dual lunar swing-by orbits enable the spacecraft to sample regions close to and far from the Earth. During the three year mission, Wind will pass through the bow shock of Earth's magnetosphere to begin a thorough investigation of the solar wind. Mission objectives require spacecraft measurements in two orbits: lunar swing- by ellipses out to distances of 250 Earth radii (RE) and a small orbit around the Lagrangian point L-l that remains between the Earth and the Sun. Wind will be placed into an initial orbit for approximately 2 years. It will then be maneuvered into a transition orbit and ultimately into a halo orbit at the Earth-Sun L-l point where it will operate for the remainder of its lifetime. The Wind satellite development was managed by NASA's Goddard Space Flight Center with the Martin Marietta Corporation, Astro-Space Division serving as the prime contractor. Overall programmatic direction was provided by NASA Headquarters, Office of Space Science. The spacecraft will be launched under a launch service contract with the McDonnell Douglas Corporation on a Delta II Expendable Launch Vehicle (ELV) within a November l-l4, 1994 launch window. The Wind spacecraft carries six U.S. instruments, one French instrument, and the first Russian instrument ever to fly on an American satellite. The Wind and Polar missions are the two components of the GGS Program. Wind is also the second mission of the International Solar Terrestrial Physics (ISTP) Program. The first ISTP mission, Geotail, is a joint project of the Institute of Space and Astronautical Science of Japan and NASA which launched in 1992. The Wind mission is planned to overlap Geotail by six months and Polar by one year

  10. At the Cosmonaut Hotel in Baikonur, Kazakhstan, Expedition 48-49 crewmembers Takuya Onishi of the Japan Aerospace Exploration Agency (left) and Anatoly Ivanishin of Roscosmos share a game of ping-pong June 30 during pre-launch activities. They and Kate Rubins of NASA will launch July 7, Baikonur time, on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station...NASA/Alexander Vysotsky.

    NASA Image and Video Library

    2016-06-30

    At the Cosmonaut Hotel in Baikonur, Kazakhstan, Expedition 48-49 crewmembers Takuya Onishi of the Japan Aerospace Exploration Agency (left) and Anatoly Ivanishin of Roscosmos share a game of ping-pong June 30 during pre-launch activities. They and Kate Rubins of NASA will launch July 7, Baikonur time, on the Soyuz MS-01 spacecraft for a planned four-month mission on the International Space Station. NASA/Alexander Vysotsky

  11. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for begin transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  12. TDRS-L Spacecraft Fairing Encapsulation

    NASA Image and Video Library

    2014-01-08

    TITUSVILLE, Fla. – Inside the Astrotech payload processing facility in Titusville, the Tracking and Data Relay Satellite, or TDRS-L, spacecraft is being encapsulated in its payload fairing in preparation for being transported to Launch Complex 41 at Cape Canaveral Air Force Station. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on January 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html

  13. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.

    1989-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  14. GRACE Follow-On Satellites Separating from Spacecraft (Artist's Concept)

    NASA Image and Video Library

    2018-04-30

    Illustration of the twin spacecraft of the NASA/German Research Centre for Geosciences (GFZ) Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission. GRACE-FO will continue tracking the evolution of Earth's water cycle by monitoring changes in the distribution of mass on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22447

  15. Extreme Underwater Mission on This Week @NASA – July 29, 2016

    NASA Image and Video Library

    2016-07-29

    The 21st NASA Extreme Environment Mission Operations got underway July 21 in the Florida Keys. NASA astronauts Reid Wiseman and Megan McArthur are part of the international crew of NEEMO-21 aquanauts performing research during the 16-day mission, which takes place about 60 feet below the surface of the Atlantic Ocean, in the Aquarius habitat – the world's only undersea science station. Simulated spacewalks are designed to evaluate tools and mission operation techniques that could be used on future space missions. NEEMO-21’s objectives include testing a mini DNA sequencer similar to the one NASA astronaut Kate Rubins also will test aboard the International Space Station, and a telemedicine device that will be used for future space applications. The mission also will simulate communications delays like those that would be encountered on a mission to Mars. Also, Space Launch System Work Platforms, All-Electric X-Plane Arrives, Asteroid Mission Technology, and NASA @Comic-Con International.

  16. Microbial Contamination in the Spacecraft

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.

    2001-01-01

    Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human spaceflight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) spaceflight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of spaceflight on biological functions and population dynamics of microorganisms in spacecraft.

  17. Overview of the Mission Design Reference Trajectory for NASA's Asteroid Redirect Robotic Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Strange, Nathan J.; Burke, Laura M.; McCarty, Steven L.; Lantoine, Gregory B.; Qu, Min; Shen, Haijun; Smith, David A.; Vavrina, Matthew A.

    2017-01-01

    The National Aeronautics and Space Administration's (NASA's) recently cancelled Asteroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus class near-Earth asteroid and provide the capability to capture and retrieve a boulder off of the surface of the asteroid and bring the asteroidal material back to cislunar space. Leveraging the best of NASA's science, technology, and human exploration efforts, this mission was originally conceived to support observation campaigns, advanced solar electric propulsion, and NASA's Space Launch System heavy-lift rocket and Orion crew vehicle. The asteroid characterization and capture portion of ARM was referred to as the Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where astronauts would visit and study it. The purpose of this paper is to document the final reference trajectory of ARRM and the challenges and unique methods employed in the trajectory design of the mission.

  18. GRACE-FO Spacecraft (Artist's Rendering)

    NASA Image and Video Library

    2018-04-25

    Artist's rendering of the twin spacecraft of the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission, scheduled to launch in May, 2018. GRACE-FO will track the evolution of Earth's water cycle by monitoring changes in the distribution of mass on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22431

  19. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Tim Larson, EPOXI Project Manager from the Jet Propulsion Laboratory in Pasadena, Calif., speaks during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  20. Evolution of Training in NASA's Mission Operations Directorate

    NASA Technical Reports Server (NTRS)

    Hutt, Jason

    2012-01-01

    NASA s Mission Operations Directorate provides all the mission planning, training, and operations support for NASA's human spaceflight missions including the International Space Station (ISS) and its fleet of supporting vehicles. MOD also develops and maintains the facilities necessary to conduct training and operations for those missions including the Mission Control Center, Space Station Training Facility, Space Vehicle Mockup Facility, and Neutral Buoyancy Laboratory. MOD's overarching approach to human spaceflight training is to "train like you fly." This approach means not only trying to replicate the operational environment in training but also to approach training with the same mindset as real operations. When in training, this means using the same approach for executing operations, responding to off-nominal situations, and conducting yourself in the operations environment in the same manner as you would for the real vehicle.